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1. Abstract

Flowering date in perennial fruit trees is an important trait for fruit production. Depending on the
winter and spring temperatures, flowering of olive may be advanced, delayed, or even
suppressed. Deciphering the genetic control of flowering date is thus key to help selecting
cultivars better adapted to the current climate context. Here, we investigated the genetic
determinism of full flowering date stage in cultivated olive based on capture sequencing data of
318 genotypes from the worldwide olive germplasm bank of Marrakech, Morocco. The genetic
structure of this collection was organized in three clusters that were broadly attributed to eastern,
central, and western Mediterranean regions, based on the presumed origin of genotypes.
Flowering dates, collected over seven years, were used to estimate the genotypic best linear
unbiased predictors, which were then analyzed in a genome-wide association study. Loci with
small effects were significantly associated with the studied trait, by either a single- or a multi-
locus approach. The three most robust loci were located on chromosomes 01 and 04, and on a
scaffold, and explained 7.1%, 6.2%, and 6.5 % of the trait variance, respectively. A significantly
higher accuracy in the best linear unbiased predictors of flowering date prediction was reported
with Ridge- compared to LASSO-based genomic prediction model. Along with genomic
association results, this suggests a complex polygenic determinism of flowering date, as seen in
many other fruit perennials. These results and the screening of associated regions for candidate

genes open perspectives for further studies and breeding programs targeting flowering date.


https://doi.org/10.1101/2024.06.10.598200
http://creativecommons.org/licenses/by/4.0/

49
50
51
52
53
54
55
56
57
58
59

60
61
62
63
64
65
66

67
68
69
70
71
72
73

74
75
76
77
78

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.10.598200; this version posted June 10, 2024. The copyright holder for this preprint

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

2. Introduction

Flowering date in fruit perennial trees is known to be influenced by temperature, specifically
during periods of accumulation of chill and heat requirements (Guo et al., 2014). Increasing
temperatures during winter can result in difficulties in chilling requirements fulfillment and may
delay flowering date (Atkinson et al., 2013). In contrast, the increase in temperatures during
spring advances the flowering date (Grab and Craparo 2011). This can increase frost damage risk
(Saxe et al., 2001), and result in several morphological disorders, such as bud burst delay, low
burst rate, irregular floral or leaf budbreak and poor fruit set (Dirlewanger et al., 2012). In
allogamous species with a self-incompatibility reproductive system, it can also cause asynchrony
between compatible varieties (Dirlewanger et al., 2012). This may disturb pollination and

consequently, fruit production (Atkinson et al., 2013).

Flowering date has been shown to be quantitatively inherited in fruit trees, several Quantitative
Trait Loci (QTL) have been detected in bi- or multi-parental populations of apple tree (Allard et
al., 2016), peach (Li et al., 2023), and apricot (Kitamura et al., 2018). More recently, Genome-
Wide Association Study (GWAS) have been conducted on several fruit tree species (e.g. Watson
et al., 2024). However, no similar study has been conducted so far on the cultivated olive tree, an
emblematic species of the Mediterranean Basin (MB), despite the region being known to be

particularly affected by the current global warming (Pardo et al., 2023).

GWAS is one of the methods used to discover genetic variations affecting complex traits
(Abdellaoui et al., 2023). Unlike QTL mapping studies, GWAS can investigate associations
within populations where relatedness among individuals is variable, and even when the
relatedness is unknown (Atwell et al., 2010). To handle spurious associations, several factors
have to be considered, including population structure and linkage disequilibrium (LD), which
could associate non-causal variants in LD with the causal variants to the trait (Uffelmann et al.,

2021).

The olive tree (Olea europaea L.) is often considered as an iconic species of MB. It is believed
that olive has been domesticated around 6000 years ago, with a main domestication event in the
eastern MB supported by several studies (Khadari and El Bakkali, 2018). It remains unclear
whether subsequent diversification followed the first domestication (Khadari and El Bakkali,

2018), or if a second independent domestication event occurred in the central Mediterranean area
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79  (Diez et al., 2015). The cultivated olive tree is diploid, and 23 chromosomes have been assembled
80  (Julcaet al., 2020). Four assembled genomes are currently available for the species Olea

81  europaea var. europaea: two versions of cv. Farga: Oe6 version (Cruz et al., 2016) and Oe9

82  version (Julca et al., 2020), cv. Picual (Jiménez-Ruiz et al., 2020) and cv. Arbequina (Rao et al.,
83  2021). The last version of Farga estimated the length of the olive genome to be approximately

84 1.3 Gb, with 7.3 Mb corresponding to scaffolds and 54 Kb to contigs (Julca et al., 2020). This

85  genome was the last one available when we started the present study. A more recent assembly of
86  the Arbequina cultivar was published afterwards that has estimated a similar genome length with

87  1.25 Gb on chromosomes (Rao et al., 2021).

88  Several germplasm collections of olive trees have been constituted, the two most extensive being
89  the Worldwide Olive Germplasm Bank of Marrakech, Morocco (WOGBM) and Cordoba, Spain
90 (WOGBC) (El Bakkali et al., 2019). The genetic structure of the WOGBM has been investigated
91 using Simple Sequence Repeat (SSR) markers (El Bakkali et al., 2019), while that of the

92 WOGRBC relies on SSR (Diez et al., 2015) and Expressed Sequence Tag Single Nucleotide

93  Polymorphism (EST-SNP) markers (Belaj et al., 2022). These analyses resulted in the detection
94  of three distinct genetic clusters, corresponding to the assumed geographical areas of origin of

95  cultivars, with a large proportion of non-assigned individuals.

96  Those collections have been phenotyped for several traits, in particular, flowering date. A large
97  wvariation in this trait between years has been observed in the WOGBM (Abou-Saaid et al., 2022).
98  As other fruit tree species, this variability is assumed to rely on temperature sensing during
99  winter and spring (Guo et al., 2014). In addition, the olive tree presents the particularity to require
100  low temperature for floral induction (Haberman et al., 2017). Therefore, in olive tree, winter
101  temperatures not only impact the flowering dates but also its occurrence (Benlloch-Gonzalez et
102 al., 2018). Under the current climate change situation that deeply modifies temperature regimes,
103 the major risk for olive trees concerns the synchrony between compatible varieties, which may
104  disturb their cross-pollination. Indeed, the sexual reproductive system of olive is allogamous due
105  to a self-incompatibility system (Saumitou-Laprade et al, 2017). Since successful pollination is a
106  main factor in fruit development, flowering date is a key trait for the success of the olive tree
107  reproductive cycle, upon which the uniformity and quality of fruit production depend (EIl
108  Yaacoubi et al., 2014).
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109  The main purpose of our study was to explore the genetic determinism of flowering date in

110  cultivated olive, based on a specific phenological stage, the full flowering date (FFD). For this
111  intent, the large panel of genetic diversity from the WOGBM and a new high-quality SNP data
112 that we developed through capture sequencing were used in a GWAS. This new genotypic data
113 was first validated through a genetic structure analysis before considering it for the GWAS.

114 3. Results

115  Characterization and distribution of SNPs in the cultivated olive genome

116  We initially sequenced 335 genomic libraries. The raw sequencing data ranges from 1,590 read
117  pairs for the Atounsi Setif (MAR00516) genotype to 39,801,319 read pairs for the Aggezi Shami
118  (MARO00480) genotype, with a mean of 8,603,434 read pairs (Figure S1). The Aharoun

119  (MARO00447) genotype was filtered out (quality reads below 30). After cleaning, the read pairs

120  count ranged from 1,514 to 39,231,314, with a mean of 8,488,947 (Figure S1).

121  We mapped our reads to the latest version of the Farga Oe9 reference genome assembly (Julca et
122 al., 2020). A mean of 98.82 % of the reads were mapped on the Farga genome and tagged as

123 properly paired. The mapping rate ranged from 84.68% (Atounsi Setif) to 99.59% (Sayali

124 (MARO00287)). The genotype Azeradj Tamokra (MAR00448) was removed (mapping rate of

125  0%). The mean enrichment rate in targeted sequences was 39 times (Table S1).

126 A total of 64,835,479 variants were initially identified among 333 samples (Azeradj Tamokra and
127 Aharoun were filtered out). After removing experimental duplicates, biological replicates, and
128  individuals whose genomic libraries were not captured, 325 unique genotypes remained (Table
129  S2). After handling filtration steps to ensure retrieving SNP of high-quality, we retained 235,825
130  SNPs across 318 genotypes (Table S2). These SNPs were then used for genetic structure and

131  PCA analyses. Additional filters (retaining only nuclear markers, filtering on Minor Allele

132 Frequency, and imputation of missing data) resulted in 118,948 SNPs across 318 genotypes,

133 which were used for GWAS and genomic prediction analyses (Table S2). Of these SNPs, 49.2%
134 were in the targeted region by the baits, while the remaining were in the non-target region.

135  Approximately 50% of the filtered SNPs were located on chromosomal regions, while the rest of

136  SNPs were found on scaffolds.
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137  Three genetic clusters are identified in the WOGBM collection

138 The sNMF approach (Frichot et al., 2014) was used to analyze population structure using 235,825
139  high-quality SNPs from 318 genotypes. The SNMF approach estimated individual ancestry

140  coefficients and helped determine the number of ancestral populations (Table S3). We set the

141 number of clusters to three based on the cross-entropy criterion (Figure S2).

142 A genotype was assigned to a genetic cluster if it had a minimum of 70% ancestry estimation
143 within that cluster. Genotypes not reaching a 70% assignment to any of the three genetic clusters
144  were classified as non-assigned. Out of the 318 genotypes, 79 were assigned to the ancestry

145  cluster K1 (from 71% to 100%). This group of genotypes was denoted C1 in the following. 33
146  genotypes were assigned to the ancestry cluster K2 (from 71% to 100%). This group of

147  genotypes was denoted C2. 71 genotypes were assigned to the ancestry cluster K3 (from 72% to
148  100%). This group of genotypes was denoted C3. The remaining 135 genotypes were non-

149  assigned and their group was denoted as the M group (Figure 1). A PCA performed using the
150  same genotypic dataset highlighted that the genotypes from the three genetic groups, C1, C2, and
151  C3, were clearly separated on the plot of the first two components (Figure 2). The first principal
152  component accounted for 9.5% of the genetic variability and separated C2 from C1 and C3. The
153 second principal component accounted for 5% of the genetic variability and separated C1 from
154  C2 (Figure S3, Figure 2). PC3 explained 2.6% of the genetic variability (Figure S3). The

155  genotypes in the C3 group appeared to be more closely related compared to those assigned to the
156  other two groups, C1 and C2, whether on the PC1-PC2 plot (Figure 2) or the PC2-PC3 plot

157  (Figure S4). Non-assigned individuals were widely spread in the region between the three groups

158  on PC1 and PC2 (Figure 2).
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160  Figure 1. Admixture coefficients as inferred by sSNMF analysis (Frichot et al., 2014) for the 318
161  genotypes of Worldwide Olive Germplasm Banks of Marrakech (WOGBM) using 235,825 SNPs.

162  Bars are ordered by assignment to genetic clusters K1, K2, or K3. Groups of genotypes were
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163  named C1 for those assigned to the genetic cluster K1, C2 for those assigned to the genetic
164  cluster K2, C3 for those assigned to the genetic cluster K3, and M for genotypes non-assigned to

165  a genetic cluster.
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167  Figure 2. Projection of the 318 genotypes from WOGBM on the first two principal components
168  (PC) of a PC analysis based on 235,825 SNPs. Colors blue, green, and orange indicate the group
169  to which each genotype was assigned (C1, C2, C3), and grey indicates the non-assigned

170  genotypes (M). Circles, squares, and triangles indicate genotypes that are assumed to originate
171  from the western, central, and eastern regions of the Mediterranean basin (MB), respectively. The
172 east corresponds to Cyprus, Egypt, Greece, Lebanon, and Syria; the center corresponds to

173 Algeria, Croatia, France, Italy, Slovenia, and Tunisia; and the west corresponds to Algeria,

174  Croatia, France, Italy, Slovenia, and Tunisia.

175  The information regarding the assumed origin of genotypes in the WOGBM (EI Bakkali et al.,
176  2019) was crossed with the genetic structure analysis results. We ordered the barplot displaying
177  individually estimated ancestries of genotypes based on the assumed geographical origin. We

178  started ordering from the western Mediterranean on the left and progressing towards the eastern
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179  Mediterranean on the right according to the country of origin indicated in their passport data

180  (Figure 3). This representation suggests a geographical basis for the genetic structure. To further
181  explore this geographically based genetic structure hypothesis, we confronted information about
182  the genotype’s genetic cluster assignment, following the criteria presented above (i.e. an

183  individual is assigned to a cluster if they have a minimum of 70% ancestry estimation within that
184  cluster), with information about the supposed country of origin (Table S4). 70% of genotypes of
185  the CI1 group had a supposed origin from Cyprus, Egypt, Greece, Lebanon and Syria (eastern
186  MB). 79% of the C2 group genotypes were indicated in their passport data as originating from
187  Algeria, Croatia, France, Italy, Slovenia and Tunisia (central MB). 93% of the C3 group

188  genotypes were supposed to originate from Morocco, Spain, and Portugal (western MB). The
189  non-assigned group of genotypes consists of 70% of genotypes supposed to originate from the

190  central MB (Table S4).

[-F 4 |
EEx

Agrmioniue caetficiants
0.4

‘.’.;.5

A % L Y 1 % FCS U Y

Indend ks

P

191  Figure 3. Admixture coefficients as inferred by SNMF analysis (Frichot et al., 2014) of the 318
192 genotypes of WOGBM using 235,825 SNPs. Bars indicate the proportion of assignment to
193 genetic clusters K1, K2, or K3 and are sorted by the assumed geographic origin of genotypes,

194  from western to eastern Mediterranean regions.

195  Flowering date is different among genetic groups

196  The Best Linear Unbiased Predictor (BLUP) of the genotype effect was estimated using a mixed
197  model that included genotype, year, and the interaction between genotype and year effects based
198  on data of seven years. The collection contained at least three trees for each genotype. The

199  variance of the phenotypes, based on raw data, was 98.77 calendar days. After the mixed model
200  estimation, the variance attributed to the genotypic effect was 4.12 days, the variance of the

201 interaction between genotypes and years was 4.61 days, whereas the residual variance was 5.53
202  days. Based on the variance components issued from the model, the broad-sense heritability was

203  estimated at 0.84, indicating a relatively high value. The genetic BLUP of flowering date in the
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204  whole collection (331 genotypes) follows a normal distribution (Shapiro-Wilk, p-value = 0.97),
205  with a mean value of 116.37 calendar days. The range spans 10.4 days, with minimum and

206  maximum values of 110.8 days for the genotype Borriolenca and 121.1 days for the genotype
207  Ogliarola del Bradano respectively (Figure S5). The distribution of the genetic BLUP of

208  flowering dates was compared across the different genetic groups C1, C2, and C3 (Figure 4). A
209  significant difference in the distribution of genotypic BLUP of FFD was observed among genetic
210  clusters based on a Mann-Whitney pairwise comparison test (Table S5). C1 genotypes exhibited
211  the earliest FFD values, with a mean of 115.47 calendar days, including genotypes such as Karme
212 and Minekiri. C2 genotypes flowered the latest, with a mean value of 117.55 days, including

213 genotypes such as Ogliarola del Bradano and Olivastra di Populonia. C3 exhibits an

214  intermediate flowering date compared to C1 and C2, with a mean value of 116.53 days, including
215  genotypes such as Negrillo de Iznalloz and Manzanilla de Agua. C1 genotypes were highly

216  distinct from both C2 and C3 ones, according to the p-values of the Mann-Whitney test (Table
217  S5).

FFD BLUP

218

219  Figure 4. Distribution of the genetic BLUP of FFD depending on the genetic groups (C1 in blue,

220  C2in green, and C3 in orange) with pairwise significance of their difference according to the


https://doi.org/10.1101/2024.06.10.598200
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.10.598200; this version posted June 10, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

221  Wilcoxon-Mann-Whitney test (Wilcoxon, 1945). Levels of significance: ns (not significant); *
222 (p<0.05); ** (p<0.01); *** (p<0.001). Black circles indicate the mean value, the horizontal bar
223  the median value, and the box plot the first and third quartile of each distribution, respectively.
224 Three genomic regions are associated with FFD using single-locus and multi-locus

225  association analyses

226  Before performing the association study, we tested three linear mixed models that account for
227  structure and/or kinship effects. The structure was considered as a fixed effect (as assessed by the
228  ancestry matrix obtained from the SNMF run that exhibited the lowest cross-entropy value at the
229  considered K, Q model) while the kinship was considered as the covariance matrix of a random
230  effect separately (u model) or jointly (u+Q model). We tested two kinship matrices: Weir &

231  Goudet (Weir and Goudet, 2017), recommended for populations with related individuals (Goudet
232 etal, 2018), and VanRaden Kinship (VanRaden, 2008), widely used in association studies. We
233 found that the best model was the one considering kinship only, regardless of the considered

234  kinship matrix (Table S6). This model (u model) was thus retained to investigate the genetic

235  determinism of the FFD trait using a GWAS approach. We firstly used a single-locus mixed-

236  model approach, implemented in the R package MM4LMM (Laporte et al., 2022), and

237  complemented it with a multi-locus method, MLMM (Segura et al., 2012). The two distinct

238  kinship matrices (Weir & Goudet and VanRaden) previously described were tested for each of

239  the two approaches, resulting in four analyses.

240  Associations were tested between the genotypic BLUP of FFD (Table S7) and 118,948 high-
241  quality SNP datasets obtained after applying all filtering criteria (Table S2) from 318 genotypes
242 in the WOGBM collection. The empirical significance threshold for MM4LMM was set at a 5%
243 FDR, a commonly used criterion (Nelson et al., 2017). For MLMM, the significance threshold
244 was set at 9.6E-6, which corresponds to the p-value of the least significant SNP in the initial run

245  analysis of MM4LMM using the Weir & Goudet kinship (Weir and Goudet, 2017).

246  The single-locus approach resulted in 23 significantly associated SNPs when using the Weir &
247  Goudet kinship (Figure 5 A, Figure 5 B, Table S8), while no SNP was detected when using the
248  VanRaden kinship (Table S8). P-values of the significant SNPs ranged from 1.5E-07 for the
249 “0Oe9 LGO1 90177717 SNP to 9.6E-06 for the “Oe9 LGOS 12679503 SNP (Table S8).

10
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250  The multi-locus approach yielded six significant SNPs, depending on the kinship matrix

251  considered. Four of them were detected using Weir & Goudet kinship, having p-values ranging
252 from 3.74E-08 for “Oe9 LG04 16512411 SNP to 9.11E-06 for “Oe9 s06150 161951” SNP
253  (Figure 5 C, Figure 5 D, Table S8). Three SNPs were detected using VanRaden, with p-values
254 ranging from 4.81E-08 for the “Oe9 s07747 163567” SNP to 6.41E-06 for the

255  “Oe9 LGO04 16512411” SNP (Table S8).
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256  Figure 5. Manhattan plot of the GWAS study of genotypic BLUP of FFD using Weir & Goudet
257  kinship (only chromosomal regions are shown in the plot). A. Manhattan plot based on the single-
258  locus approach MM4LMM. B. Q—Q plot corresponding to the MM4LMM model. C. Manhattan
259  plot based on the multi-locus approach MLMM. D. Q-Q plot corresponding to the MLMM

260  model. The horizontal red line in the Manhattan plots indicates the p-value that corresponds to a
261  threshold of 5% false discovery rate (FDR) in the MM4LMM model using the Weir & Goudet
262  kinship.

263 A total of 26 SNPs were significantly associated with the FFD BLUPs in at least one of the four
264  association analyses. Two SNPs, “Oe9 LG01 9017771 and “Oe9 s04305 16459, were
265  detected by two of the four analyses, while only one SNP, “Oe9 LG04 16512411, was detected

11
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266 by three analyses (Table S8, Figure S6 A,B, and C). These three SNPs were considered as strong
267  candidates, with “Oe9 LG04 16512411” being the most robust. The three SNPs:

268  “0Oe9 LGOI 90177717, “Oe9_s04305 164597, and “Oe9 LG04 165124117, explained 7.1%,
269  6.5%, and 6.2% of the trait's variance, respectively (Table 1).

270  Table 1. Characterization of the three robust SNPs significantly associated with genotypic BLUP
271  of FFD: SNP name, chromosome or scaffold number, position in base pair, allelic composition
272 (Refindicates the allele of reference and ALT the alternative allele), minor allele frequency

273  (MAF), Model (MM4LMM or MLMM), Kinship matrix (Weir & Goudet or VanRaden), p-value
274  and portion of variance explained (R2) by each SNP.

SNP_name Linkage Position  Alleles(Ref/ALT) MAF Model Kinship P_value R2
group (bp)
0e9_LGO01_9017771  Chromosome 9017771 T/C 0.17 MM4LMM Weir & 1.50E-07  0.071
01 Goudet
MLMM Weir & 1.78E-06
Goudet
0e9_s04305_16459 s04305 16459 T/C 0.10 MMA4ALMM Weir & 5.77E-07  0.065
Goudet

MLMM VanRaden 1.51E-06

0e9_L.G04_16512411 Chromosome 16512411 G/C 0.06 MM4LMM Weir & 1.01E-06  0.062
04 Goudet

MLMM Weir & 3.74E-08
Goudet

MLMM VanRaden 6.41E-06

275
276  FFD can be predicted with high accuracy using genomic prediction approach

277 A limited portion of the variance in the genotypic BLUP of the FFD trait was explained by the
278  associated SNPs from the GWAS study (6.2% to 7.1% for the 3 SNPs retained as most robust).
279  We aimed to investigate whether genomic prediction using a larger set of SNPs could account for

280  alarger proportion of the trait's variance.

281  For this purpose, we complemented the association analyses with a modeling approach based on
282  a genome-wide analysis, using all SNPs simultaneously. This approach made use of genomic
283  prediction models with two complementary regression approaches, Least Absolute Shrinkage and

284  Selection Operator (LASSO) and Ridge regression (RR), respectively. LASSO estimation relies

12


https://doi.org/10.1101/2024.06.10.598200
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.10.598200; this version posted June 10, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

285  on a limited number of major effects, whereas RR is based on many minor effects. The prediction
286  accuracy was measured by calculating Pearson’s correlation between predicted and observed

287  values on a cross-validation setting with 5 folds and repeated one hundred times. Overall, the

288  prediction of the FFD trait demonstrated relatively high accuracy, whether by LASSO or RR

289  (Figure 6). The accuracy values for the RR model ranged from 0.47 to 0.79, whereas those for the
290  LASSO model ranged from 0.31 to 0.70. The RR model achieved a significantly higher

291  (Wilcoxon-Mann-Whitney, p-value = 6.1e-11) mean accuracy (0.64) compared to the LASSO-
292 based model (0.55) in predicting the trait (Figure 6).

Wikcox tast, p = 6.0048-11 **°

Accuracy

Lo
(=}

ASSO BR

293 sl

294 Figure 6. Distribution of Pearson’s correlation between predicted and observed values (accuracy)
295  according to LASSO- and Ridge-based models based on 100 iterations. p is the p-value of the

296  Wilcoxon-Mann-Whitney test of comparison of the two distributions (Wilcoxon, 1945). Levels of
297  significance: ns (not significant); * (p<0.05); ** (p<0.01); *** (p<0.001). white circles indicate
298  the mean value, and the boxplot the first and third quartile of each distribution, respectively.

299  Identification of candidate genes in the genomic regions putatively associated with

300 flowering date

301  We specifically examined the genomic regions neighboring the three SNPs previously identified
302  as the most robust by single and multi-locus approaches. To ensure the inclusion of all

303  neighboring SNPs in linkage disequilibrium (LD) in the genomic region of interest, we first
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analyzed the LD decay within our SNP dataset. A relatively rapid decay of LD was observed,
where the average r2 values dropped within 100 bp from 0.35 which corresponds to the
maximum value to 0.2 (Figure S7). Considering such a rapid LD decay, we used genomic
windows of 1500 bases upstream and downstream of the associated SNP positions to retrieve
candidate genes (Table 2). Based on the annotation of the reference genome (Julca et al., 2020),
three genes were identified: OE94117378 and OE9A4084268 on Scaffold s04305 and
OEY9A4057547 gene on chromosome 01 (Table 2). No gene was identified within the associated
genomic region on Chromosome 04 (Table 2, Table S9). We blasted the transcripts of the three
genes against the UniProt database (The UniProt Consortium, 2023). A high degree of sequence
similarity was identified with the XCT gene for the olive genes OE9A4117378 and OE9A4084268.

14


https://doi.org/10.1101/2024.06.10.598200
http://creativecommons.org/licenses/by/4.0/

314

Table 2. Annotation of genes found in the associated regions, corresponding to 1500pb upstream and downstream each of the three

315  robust SNPs linked with genotypic BLUP of FFD: SNP name, chromosome (Chr) or scaffold number, interval position of the
316  associated region from the olive reference genome Farga V2 (Julca et al., 2020); Gene and protein names based on UniProt database
317  (The UniProt Consortium, 2023); Gene ID, position, Transcripts, respective positions indicating their overlap, annotation and ontology
318  term from the reference genome Farga V2.
SNP_name  Linkage Associated Gene Protein Name Gene_ID Gene_ Gene_ Overlap_ Overlap_  Transcrit_ Annotation Ontology_term
group _region Name start end start end name
0e9_LGOl  Chr 01 9016271-  At5g27430  Signal peptidase ~ OE9A057547 9017718 9022199 9017717 9019271  OE9A057547T1  InterPro:IPR  GO:0005787,G
9017771 9019271 complex subunit 007653,Pfam  0:0006465,GO:
3B ‘PF04573 0008233,G0:00
16021,GO:0045
047
9017717 9019271  OE9A057547T2  InterPro:IPR  GO:0005787,G
007653,Pfam  0:0006465,GO:
:PF04573 0008233,G0:00
16021,GO:0045
047
9017717 9019271  OE9A057547T3  InterPro:IPR  GO:0005787,G
007653,PIRS ~ 0:0006465,GO:
F:PIRSFO16  0008233,G0:00
089 16021,GO:0045
047
0e9_s04305 504305 14959- XCT Protein XAPS  OE9A117378 14465 16127 14732 16127 OE9A117378T1  InterPro:IPR  GO:0005634,G
_16459 17959 CIRCADIAN 007005,PAN  0:0048511
TIMEKEEPER THER:PTHR
OE9A084268 16131 18668 16130 18020 OE9A084268T1 12722 G0:0005634,G

0:0006325,GO:
0009637,G0O:00
09873,G0O:0010
099,G0O:001011
4,G0:003519%6,

GO:0042752,G

0:0048511
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319  The Oryza sativa XCT gene exhibited 80.1% identity with the olive gene OE94117378, while the
320  Arabidopsis thaliana XCT gene shared 94.8% identity with the olive gene OE94084268. The

321  XCT gene encodes for the protein XAPS5 circadian timekeeper. The Arabidopsis thaliana gene
322 At5g27430, encoding the protein signal peptidase complex subunit 3B, shares 80.2% identity

323  with the olive gene OE9A4057547. We also reported a total of 18 candidate genes found in the
324  different genomic regions corresponding to all significant SNPs found in one of the four GWAS
325 analyses (Table S9). Their annotation and putative similarities correspond to 11 genes known in
326  plant models and possibly to several transcripts (Table S9, Table S10). It is noticeable that the
327  gene OE9A4037893 located on chromosome 15 encodes for a calcium-dependent protein kinase 4
328  (CPK4) whose putative function in potato is to regulate the production of Reactive Oxygen

329  Species (ROS). These findings will provide a baseline for future candidate gene studies of FFD in
330  olive.

331 4.  Discussion

332  Identification of three genetic clusters with varying flowering date in WOGBM

333  Consistently with previous studies (Diez et al., 2015; EI Bakkali et al., 2019; Belaj et al., 2022),
334  three genetic clusters were identified within the cultivated olive, based on the WOGBM. These
335  clusters broadly correspond to the presumed geographical origins of the genotypes. The C1 group
336  involved genotypes assumed to originate from the eastern Mediterranean, including Cyprus,

337  Egypt, Greece, Lebanon and Syria. Group C2 consisted mainly of genotypes presumably

338  originating from the central Mediterranean, encompassing Algeria, Croatia, France, Italy,

339  Slovenia and Tunisia. The C3 group comprised genotypes putatively from the western

340  Mediterranean, including Morocco, Spain and Portugal.

341  The comparison of genetic groups we obtained with the ones found in the same collection,

342 WOGBM, but using SSR markers and another methodological approach (EI Bakkali et al., 2019),
343  and with the ones described in the WOGBC using either SSR (Diez et al., 2015) or EST-SNP

344  markers (Belaj et al., 2022) revealed a general agreement in the composition of the groups (S1
345  File, Table S11, Table S12, Table S13). The concordance in terms of individuals assigned to each
346  genetic group ranges from 66% to 85% for each respective group. The majority of individuals
347  who were not assigned in our study were predominantly included in the non-assigned group from

348  El Bakkali et al. (2019). The few discrepancies detected are assumed to result from differences in
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349  the approaches and markers employed. The STRUCTURE method (Pritchard et al., 2000) used
350 by El Bakkali et al. (2019), Diez et al. (2015), and Belaj et al. (2022) relies on the assumptions of
351  the absence of genetic drift, Hardy—Weinberg equilibrium, and linkage equilibrium between

352  markers in ancestral populations (Pritchard et al., 2000), while the SNMF approach we used is not
353  based on a genetic population model (Frichot et al., 2014). Moreover, the threshold of assignment
354  to genetic clusters differs between the two methods. Even though these two methods usually

355  converge (Frichot et al., 2014), it is not surprising that results may slightly differ.

356  Also, the markers used are possibly in different positions along the genome: SSR markers could
357  be found in either coding or non-coding regions, while SNP markers in this study were selected
358  to be located in coding regions or near them as we targeted annotated genes. Coding and non-
359  coding regions are known to undergo different selection pressures (Jha et al., 2015). The two
360  types of markers may have different evolution histories, with a higher mutation rate of SSRs
361  compared to SNP markers (Fischer et al., 2017), that can result in different genetic structure
362  signals. Moreover, our SNP data were not filtered for rare variants. Doing the analysis after

363  applying a 5% MAF filter did not alter general structure, with more than 96% of similarities
364  between the reported analysis and the one made after MAF filtration. Discordance was only due
365 to some genotypes moving from a genetic cluster to the non-assigned group or vice versa (no
366  shifts between genetic groups were observed) (Table S14, S1 File). This indicates that filtering
367  for rare variants did not result in difficulty for classifying genotypes within one of the three

368  genetic clusters.

369  Overall, in line with previous studies, we confirmed the existence of three distinct genetic

370  clusters within cultivated olive. However, the boundaries between assigned and non-assigned
371  genotypes are not fixed, as some genotypes assigned to a genetic cluster by a study could be

372 found within the non-assigned in another one. Incorporating precise GPS coordinates of parent
373  trees into our study could enrich our understanding of the genetic structure. Genotypes of the C3
374  group were closely related compared to C1 and C2 in the PCA plots. This finding aligns with the
375  high level of genetic relatedness found between genotypes assigned to the Q1 cluster from Diez

376  etal. (2015), representing western genotypes of MB.

377 A higher rate of non-assigned genotypes was observed in central MB compared to western MB

378  and eastern MB. This suggests that admixture events may have occurred between genotypes from
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379  central MB and those from the western and eastern Mediterranean. Consistently with Diez et al.

380  (2015), the non-assigned individuals were mainly from central and western MB.

381  Marker-trait associations and potential candidate genes for flowering date

382  Distinct associated loci were detected in each of the four GWAS. Only three associated SNPs
383  were consistent between at least two analyses. While a high value of heritability was estimated,
384  these SNPs exhibited minor effects and accounted for a low proportion of the phenotypic

385  variance. However, we must notice that the broad-sense heritability value was calculated based
386  on arelatively small portion of the total variance of the trait, i.e. the part of variance explained by
387  the genotypic effect only, as extracted from a mixed model, while the year and the interaction of
388  genotype and year had high and significant effects. The combination of high heritability with few
389  detected SNPs with low effects suggests that several other additional genomic regions could be

390 involved in the genetic control of this trait.

391  Several factors may have prevented the detection of additional genomic regions. First, the genetic
392 architecture of the studied trait is a key factor. A genetic architecture consisting of many loci with
393  minor effects and/or rare variants with large effects can limit the power of GWAS to detect

394  significant associations (Korte and Farlow, 2013). In our case, high accuracy values of genomic
395  prediction were found with both RR- and LASSO-based models, even though the RR-based

396  model performed significantly better than the LASSO-based model. This finding supports a

397  polygenic genetic determinism underlying the flowering date trait in olive tree.

398  Second, the genomic data used can influence the detection power. Here, we used a capture

399  sequencing approach, which targeted annotated genes rather than the Genotyping-by-Sequencing
400  (GBS) method or whole-genome sequencing (WGS) which would have covered more

401  exhaustively the genome, coding or non-coding. Given the high cost associated with WGS, the
402 GBS method has been widely used as an alternative. While GBS offers a broader overview of the
403  genome than capture sequencing, it often results in a high rate of missing data (Wang et al.,

404  2020). This is due to the random digestion of the genome by restriction enzymes in GBS, leading
405  to heterogeneous depth across genomic regions and variability in the coverage of loci between
406  individuals (Elshire et al., 2011). In contrast, the capture sequencing approach used in the present
407  work allowed to target identical genomic regions among individuals with high sequencing depth

408  and limited missing data. Furthermore, capture sequencing of annotated genes enabled the
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409  identification of candidate genes after the GWAS, utilizing the annotation of associated loci.
410  Even though WGS might be considered the best and most complete approach for GWAS studies,

411  the capture sequencing chosen in this study appears to be an adequate compromise.

412  Third, the population size matters for the association detection power. A population size of less
413  than 100 genotypes is usually considered too low to obtain a sufficient power of association

414  detection (Hong and Park, 2012), even though the recommended population size depends on
415  several factors, such as the genetic architecture of the trait with possible dominance and the

416  extent of linkage disequilibrium (LD) (Hong and Park, 2012). The first association study in olive
417  was performed using 96 olive genotypes sourced from the Turkish Olive GenBank Resources in
418  Izmir, Turkey (Kaya et al., 2016). This study used a combination of SNP, AFLP, and SSR

419  markers, totaling 1070 polymorphic loci, and focused on five traits related to yield. Subsequent
420  GWAS studies, employing SNP data, have investigated the genetic determinism of various

421  agronomic and morphological traits, making use of 183 genotypes (Kaya et al., 2019) or a large
422 number of SNPs (428,320 SNPs) but 89 genotypes only (Bazakos et al., 2023). As our analysis
423  benefited from a large dataset of 318 individuals genotyped with 118,948 SNPs, we can thus

424  consider that those conditions are adequate to perform GWAS analysis.

425  Fourth, the power of detection depends on the frequency of SNP alleles within the studied

426  population (Hong and Park, 2012). In WOGBM, the representation across Mediterranean regions
427  of genotypes was unequal, with 25% of genotypes assumed to originate from Spain, 28% from
428  Italy, and 18% from eastern MB only. This imbalance might result in a low frequency of alleles
429  fixed in the eastern region in the whole population, even though they could be associated with the
430 trait. It is noticeable that other types of populations, such as bi or multi-parental populations,

431  although including less genetic diversity than collections, usually allow a better balance among
432  allelic classes. Several studies based on bi-parental populations of apple tree have revealed a

433 major QTL associated with flowering time that remained stable across populations (van Dyk et
434  al., 2010) and was subsequently detected by GWAS (Watson et al., 2024). Therefore, combining
435  investigations on bi-parental or multi-parental populations could complement the present study
436  on WOGBM in the future. In this perspective, crosses between Oliviere and Arbequina (Ben

437  Sadok et al., 2013), have been created and could be used for such studies.
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438  The analysis of linkage disequilibrium (LD) in the olive genome using SNP data from capture
439  sequencing revealed a relatively rapid decay of LD. The average r2 value was relatively low

440  (0.35), compared to the one reported using 57 olive cultivars sequenced via genotyping by

441  sequencing technology (GBS) (Zhu et al., 2019). The LD decay distance observed in our study
442 (~100 bp) aligns closely with the one reported by Zhu et al., 2019 (~85 bp) and is higher than that
443  reported by D’Agostino et al., 2018 (~25 pb), both studies using data from GBS. The LD decay
444  of olive was relatively shorter than that found in pear (211 bp; Wu et al., 2018) and apple (161
445  bp; Duan et al., 2017). Considering the LD decay value in our study, the regions explored around
446  the associated loci were extended. Three putative genes were localized in the explored regions.
447  However, none of these genes has a known function related to flowering date, even though the
448  XCT gene encodes functions related to the circadian clock and photomorphogenesis. Moreover,
449  the gene found on chromosome 15 for a less robust association points towards a gene whose

450  putative function is to regulate the production of Reactive Oxygen Species (ROS), known to be
451  involved in dormancy release (Watson et al., 2024). These findings provide a baseline for future

452  candidate gene studies of FFD in olive.

453  Another perspective of the present work would be to deepen the comprehension of the year

454  effects and their interaction with genotypic effects on the FFD. Indeed, as previously found,

455  flowering date is a highly heritable trait but also strongly depends on environmental conditions
456  (Branchereau et al., 2023). Winter temperatures are particularly known to influence chilling

457  fulfillment, which impacts FFD (Atkinson et al., 2013). Deciphering the genotype by year effects
458  may lead to detect associations specific to a given year or environmental conditions, as

459  previously demonstrated (Allard et al., 2016; Branchereau et al., 2023). As the WOGBM

460  genotypes were phenotyped over seven years at the same experimental station (Tassaout,

461  Morocco), testing associations for FFD per year will be interesting to assess environmental-

462  specific associations. Additionally, phenotyping the same genotypes in various locations could be
463  alonger-term perspective that would enhance differentiation between environments and facilitate
464  the detection of environmental-specific associations and the exploration of FFD trait plasticity in

465  response to environmental variations.

466  In conclusion, the BLUPs for the flowering date were associated with three loci only with minor
467  effects, i.e. they accounted for a low proportion of the phenotypic variance. Considering the low

468  effect and variance explained by the associated loci, these underlying genes should be
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469  approached with caution in the future. Altogether, our results suggest the implication of other
470  genomic regions not being detected so far. The significantly higher accuracy of the RR-based
471  model compared to the LASSO-based model in genomic prediction supports the hypothesis of a
472  polygenicity of the trait. This knowledge could be further considered in olive breeding programs
473  that will have to create new material combining optimal yield and flowering date adapted to

474  future climatic conditions.

475 5.  Materials and methods

476  Plant materials

477  We used a panel of olive tree genotypes from the WOGBM. This collection is located at

478  31°49'10" N; 7°25'58" W (CRS: WGS84-EPSG:4326) in the Tassaout experimental station

479  (Marrakech, Morocco), at an altitude of 465 meters above sea level (Abou-Saaid et al., 2022).
480  The collection is initially composed of 554 accessions originating from 14 countries around the
481  Mediterranean area. Characterization analyses using 20 SSR markers and 11 endocarp traits
482  1identified 331 unique cultivars within the collection (El Bakkali et al., 2019). The phenotyping
483  was conducted on the 331 genotypes of the WOGBM collection, while genotypic data remained
484  for 318 genotypes only after all data processing (see below).

485  DNA extraction and genotyping

486  DNA was extracted from leaves using MATAB protocol and NucleoMag Plant Kit (Cormier et
487  al., 2019). Libraries were constructed with NEBNext® Ultra™ II FS DNA Library Prep Kit
488  (New England Biolabs, Ipswich, MA).

489  We constructed 333 individual genomic libraries from 330 accessions, thus including some

490  experimental duplicates. Of the total sequenced samples three were duplicated from the same
491  extraction and preparation, to assess the reproducibility of the experiment (S2 File, Table S15):
492  Leccino (MARO0016), Picual (MAR00267), and Picholine Marocaine (MARO00540). These

493  libraries were subject to capture experiments. We targeted the first 640 bp of each of the 55,595
494  annotated genes available by placing 1 to 4 probes (depending on gene length) of 80 bp each,
495  with 0.5x tilling. The filtered set captured 16.8 Mb, including 210,367 baits representing 55,452
496  unique loci (Zunino et al., 2024). The Mybaits custom kits were designed and synthesized by
497  Daicel Arbor Biosciences (Ann Arbor, Michigan, USA). Additionally, two genomic libraries,

498  derived from the initial preparation of libraries but not subjected to the capture experiment, were
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499  sequenced: Picholine (MAR00196) and Picholine Marocaine (MAR00540), and were used as a
500  control to estimate capture efficiency. All captured and non-captured libraries were pooled

501  together in equimolar conditions. MGX-Montpellier GenomiX has performed the sequencing on
502  an [llumina® NovaseqTM 181 6000 (Illumina Inc., San Diego, CA, USA). The detailed protocol
503  was described by Zunino et al. (2024).

504  SNP calling and filtering

505  We trimmed raw sequencing reads using FastP version 0.20.1 (Chen et al., 2018), where

506  genotype Aharoun (MARO00447) was filtered out (quality reads below 30). The remaining reads
507  were aligned to the reference genome of olive, Farga V2 (Julca et al., 2020), using the bwa-mem?2
508  wversion 2.0 software (Vasimuddin et al., 2019). Duplicate reads were removed from sorted reads
509  using picard-tools version 2.24.0. Alignments were then cleaned to keep only primary alignment,
510  properly paired, and unique reads. The genotype Azeradj Tamokra (MAR00448) was removed
511  due to its mapping rate of 0%. Finally, variants were called using the Genome Analysis Toolkit
512 wversion 4.2.0.0 (Poplin et al., 2018) following GATK best practices. The final dataset comprises
513 64,835,479 variants across 333 samples. Data from the two non-captured libraries of Picholine
514  (MARO00196) and Picholine Marocaine (MAR00540), were used to calculate the enrichment rate
515  (the mean depth of targeted sequencing divided by the mean depth of non-captured sequencing).
516  All the steps, from read cleaning to variant calling, were performed using the following

517  Snakemake workflow: https://forgemia.inra.fr/gautier.sarah/ClimOlivMedCapture.

518  We removed the three biological replicates: Unknown-VS2-545 (MAR00546 and MAR00547)
519  and Dhokar (MAR00417), the three experimental duplicates: Leccino (MARO0016), Picual

520 (MARO00267), and Picholine Marocaine (MAR00540), and the two non-enriched samples:

521  Picholine (MARO00196) and Picholine Marocaine (MARO00540). This filter resulted in 325

522 genotypes being filtered to ensure data quality. We filtered out low-quality SNPs below a

523  threshold of 200 and indels. We allowed a maximum of 3 SNPs within a 10 bp region and set the
524  minimum mean depth per site at 8, with a maximum of 400. Additionally, the minimum mean
525  depth per genotype was restricted to 8. We retained only biallelic SNPs. SNPs with a

526  heterozygosity rate greater than 75% were removed. Loci with more than 10% missing data and
527  samples with over 25% missing data were also excluded. Singleton SNPs were filtered out. The
528  outcome dataset comprises 235,825 SNPs across 318 individuals. This set was used for genetic

529  structure and PCA analyses. An additional filtration step consisting of setting a minor allele
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530  frequency filter of 0.05 was applied before the GWAS analysis, resulting in a set of 119,614

531  SNPs for the 318 individuals. The nuclear SNPs set comprises 119,600 variants (Table S2). This
532 SNP set was used for the GWAS analysis, including a missing data imputation step followed by a
533  minor allele frequency filter of 0.05 (see below).

534  Phenotypic data and statistical analyses

535  Full flowering dates [Stage 65 according to the BBCH scale of olive tree (Sanz-Cortés et al.,
536  2002)] have been recorded for the 331 genotypes of the WOGBM for seven years. Data from
537 2014 to 2019 were previously reported by Abou-Saaid et al., 2022. Additional data were

538  collected in 2021 using the same methodology (Abou-Saaid et al., 2022). The collection

539  exhibited varying numbers of repetitions per genotype, with each genotype being represented by
540  a minimum of three trees. Some genotypes were represented by multiple trees because of

541  synonymy and redundancy cases. For example, Picholine Marocaine was represented by 88 trees.

542  To account for the effect of years and possible interaction between years and genotypes on

543  phenotypic data, three mixed models were tested and compared [see also (Abou-Saaid et al.,

544 2022)]: (i) the model with the genotype as a random effect only; (ii) the model with the genotype
545  as arandom effect and the year as a fixed effect and (iii) the model with interaction “genotype X
546  year” as a second random effect. The last model was the best model regarding the Akaike

547  Information Criterion (AIC) (Akaike, 1974) and Bayesian Information Criterion (BIC)

548  (Schwarz,1978) (Table S16, Table S17).

549  The equation of the best model is:
550  Yijk=pt+ Git+ Aj+ (GA) +sijk (1)

551  where Yij represents the FFD value of tree k from genotype i in year j, u denotes the overall
552  mean of the population, Gi is the random effect of genotype 1, A;j is the fixed effect of year j,
553  (GA); represents the random interaction between genotype i1 and year j, and &ij represents the
554  random residual error. the broad-sense heritability (H?) (Hiihn et al., 1975) was estimated based

555  on variance components:

2

o

556 H? = -
2 4 96xa | €

o; + i 3
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557  where 6 is the variance of genotype effect; 62, is the variance of interaction between genotype
558  and year effect; £2 is the variance of the residual term; J is the number of years and n is the mean

559  number of observations per genotype and year.

560  The best linear unbiased predictor (BLUP) of the genotypic values of FFD for the 331 cultivars
561  was extracted from the mixed model (1). The normality of BLUP of FFD genotypic values was
562  tested using the Shapiro-Wilk test in R (Shapiro and Wilk, 1965).

563  Population structure

564  To investigate the genetic structure of the cultivated olive collection under study, we used the
565  dataset consisting of 235,825 SNPs from 318 genotypes. The genetic structure analysis was

566  conducted using the SNMF approach (Frichot et al., 2014) implemented in the LEA R package
567  (Frichot et al., 2015). This allowed us to estimate individual ancestry coefficients and determine
568  the number of ancestral populations (K) within the dataset. We performed sNMF with K values
569  ranging from 2 to 10. The smallest K value at which the cross-entropy did not significantly differ
570  from that of K+1 was considered the most likely value of K.

571  Genotypes were assigned to genetic clusters based on their ancestry coefficients. If a genotype
572  exhibited a minimum of 70% ancestry coefficient to a genetic cluster, it was assigned to that

573  genetic cluster. Genotypes not reaching a 70% assignment to any of the genetic clusters are

574  classified as non-assigned. To further investigate the genetic relationships among individuals, we
575  performed a principal component analysis (PCA) to visualize their distribution within the

576  population. The distribution of the genetic BLUP of FFD was compared between genetic groups
577  using the Wilcoxon-Mann-Whitney test (Wilcoxon, 1945).

578  Genome-wide association analyses

579  The association test was conducted between the BLUP of FFD genotypic values and the genomic
580  data from the 318 genotypes of the WOGBM collection. The initial genomic dataset contained
581 119,600 filtered SNPs (Table S2), with 2.4% missing data. The missing data were imputed based
582 on the genetic structure inferred by sSNMF, using the LEA R package v3.11.3 (Frichot et al.,

583  2015). The resulting imputed dataset was filtered for a minor allele frequency of 5%, resulting in

584 118,948 SNPs.

585  Three mixed models were tested and compared using the MM4LMM package (Laporte et al.,

586  2022) to evaluate the inclusion of a random polygenic term and/or a fixed population structure
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587 effect in the model: 1) the model with only polygenic effect (u), i1) the model with only genetic
588  structure effect (Q), and iii) the model with both polygenic and genetic structure effects

589  (utQ). Two kinship matrices were tested for the covariance of the polygenic effect: the Weir and
590  Goudet method (2017), implemented in the HIERFSTAT package in R (Goudet, 2005), and the
591  VanRaden method (2008), implemented in the statgenGWAS package in R (Astle and Balding,
592 2009). VanRaden’s method is widely used in association studies, while Weir & Goudet is better
593  suited to the structure of our dataset, especially considering the relatedness among certain

594  genotypes (Goudet et al, 2018).
595  The most complete model equation was as follows:

596  Yi=p+ Qi +uit &

597  Where Y; is the BLUP value for genotype i, Qik the fixed effect of the assignment of genotype i
598 in structure group k, ui the random polygenic effect for genotype i and i the random residual
599  error. ui ~ N(0, 6:2K), K being the genomic relationship (kinship). The best model was selected
600  based on the Akaike Information Criterion (Akaike, 1974) and Bayesian Information Criterion
601  (Schwarz,1978) (AIC and BIC; Table S6). The model that only included the random polygenic
602  term was the best, regardless of the kinship matrix used to model its covariance, as it had the
603  lowest values for both AIC and BIC. For further GWAS analysis, we thus used a model with the
604  polygenic term only, but considering both the VanRaden, or Weir and Goudet methods for

605  modeling the covariance of this polygenic effect.

606  The GWAS analysis was carried out using both single-locus and multi-locus models. For the

607  single-locus model, we employed the MM4LMM package (Laporte et al., 2022), while for the
608  multi-locus model, we utilized the MLMM approach, as proposed by Segura et al. (2012).

609 MLMM is based on a forward and backward stepwise linear mixed model approach. In the

610  forward steps, the most significant SNP detected in a step is incorporated into the model as a new
611  cofactor before running again the GWAS, until reaching a defined threshold. Conversely, in the
612  backward stepwise process, the least significant SNP from the list of candidates identified in the
613  forward steps is removed from the cofactors at each step until only a single selected marker

614  remains. The selected model was the one with the largest number of SNPs, which all have a P-
615  value below the multiple-testing significance threshold as previously determined (Segura et al.,

616  2012).
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617  The combination of models (MM4LMM and MLMM) and kinships (VanRaden and Weir &

618  Goudet) resulted in four distinct analyses. The significance threshold for MM4LMM was set at
619 5% false discovery rate (FDR). For MLMM, the threshold was established at 9.6 E-6,

620  corresponding to the p-value of the least significant SNP in the initial run analysis of MM4LMM
621  using the Weir & Goudet kinship matrix.

622  To calculate the variance explained by significant SNPs, likelihood-ratio-based R?*.x (Sun et al.,
623  2010) was calculated for retained SNPs associated with the FFD trait.

624  Looking for candidate genes

625  To include all SNPs in linkage disequilibrium (LD) in the region investigated for candidate

626  genes, we estimated LD between SNPs using PopLDdecay V3.40 (Zhang et al., 2019) on a total
627  of 235,825 SNPs from 318 genotypes (the same dataset used to study the genetic structure). The
628 LD decayed at approximately 100 bp (r2 = 0.2). In order to encompass a larger genomic region,
629  we extended the windows around the significantly associated SNPs by 1500 bases upstream and
630  downstream of the SNP positions. We retrieved the list of genes within these defined intervals,
631  along with their annotations and associated Gene Ontology (GO) terms reported by Julca et al.
632 (2020), using the bedtools program v2.30.0 (Quinlan and Hall, 2010). Protein sequences of the
633  genes found in these associated regions were further analyzed using BLAST against the UniProt

634  database (The UniProt Consortium, 2023). Descriptions of these genes are provided in Table S10.

635  Assessing accuracies of different Genomic Prediction models

636  We tested the accuracy of the genomic prediction of FFD BLUPs. For that, we used the same set
637  of 118,948 SNPs of imputed data, previously used in the GWAS analysis, involving 318

638 individuals. Two genomic prediction models based on different regression algorithms to describe
639  genetic architecture were tested. The ridge regression (RR) based model (Hoerl and Kennard,
640  1970), designed for scenarios with many minor effects, shrinks all marker effects toward 0 (but
641  never truly 0) and the least absolute shrinkage and selection operator (LASSO) based model

642  (Tibshirani, 1996), designed for scenarios with a limited number of major effects, enforces other
643  effects to be exactly 0. The relative performance of RR or LASSO-based models could provide
644  valuable information on the genetic architecture of the trait. Both models were implemented

645  using the R/glmnet package (Friedman et al., 2010). Cross-validation to calibrate the shrinkage

646  parameter A was performed using a five folds cross-validation. Model accuracy was assessed by
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647  calculating the Pearson’s correlation between the observed values of the validation set

648  (representing 1/5 of the total data) and the estimated values. One hundred iterations were

649  conducted to estimate the distribution of model accuracy. The distribution of the accuracy values
650  was compared between RR and LASSO-based models using the Wilcoxon-Mann-Whitney test
651  (Wilcoxon, 1945).
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