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1. Abstract  30 

Flowering date in perennial fruit trees is an important trait for fruit production. Depending on the 31 

winter and spring temperatures, flowering of olive may be advanced, delayed, or even 32 

suppressed. Deciphering the genetic control of flowering date is thus key to help selecting 33 

cultivars better adapted to the current climate context. Here, we investigated the genetic 34 

determinism of full flowering date stage in cultivated olive based on capture sequencing data of 35 

318 genotypes from the worldwide olive germplasm bank of Marrakech, Morocco. The genetic 36 

structure of this collection was organized in three clusters that were broadly attributed to eastern, 37 

central, and western Mediterranean regions, based on the presumed origin of genotypes. 38 

Flowering dates, collected over seven years, were used to estimate the genotypic best linear 39 

unbiased predictors, which were then analyzed in a genome-wide association study. Loci with 40 

small effects were significantly associated with the studied trait, by either a single- or a multi-41 

locus approach. The three most robust loci were located on chromosomes 01 and 04, and on a 42 

scaffold, and explained 7.1%, 6.2%, and 6.5 % of the trait variance, respectively. A significantly 43 

higher accuracy in the best linear unbiased predictors of flowering date prediction was reported 44 

with Ridge- compared to LASSO-based genomic prediction model. Along with genomic 45 

association results, this suggests a complex polygenic determinism of flowering date, as seen in 46 

many other fruit perennials. These results and the screening of associated regions for candidate 47 

genes open perspectives for further studies and breeding programs targeting flowering date.  48 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 10, 2024. ; https://doi.org/10.1101/2024.06.10.598200doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.10.598200
http://creativecommons.org/licenses/by/4.0/


 

3 

 

2. Introduction 49 

Flowering date in fruit perennial trees is known to be influenced by temperature, specifically 50 

during periods of accumulation of chill and heat requirements (Guo et al., 2014). Increasing 51 

temperatures during winter can result in difficulties in chilling requirements fulfillment and may 52 

delay flowering date (Atkinson et al., 2013). In contrast, the increase in temperatures during 53 

spring advances the flowering date (Grab and Craparo 2011). This can increase frost damage risk 54 

(Saxe et al., 2001), and result in several morphological disorders, such as bud burst delay, low 55 

burst rate, irregular floral or leaf budbreak and poor fruit set (Dirlewanger et al., 2012). In 56 

allogamous species with a self-incompatibility reproductive system, it can also cause asynchrony 57 

between compatible varieties (Dirlewanger et al., 2012). This may disturb pollination and 58 

consequently, fruit production (Atkinson et al., 2013).  59 

Flowering date has been shown to be quantitatively inherited in fruit trees, several Quantitative 60 

Trait Loci (QTL) have been detected in bi- or multi-parental populations of apple tree (Allard et 61 

al., 2016), peach (Li et al., 2023), and apricot (Kitamura et al., 2018). More recently, Genome-62 

Wide Association Study (GWAS) have been conducted on several fruit tree species (e.g. Watson 63 

et al., 2024). However, no similar study has been conducted so far on the cultivated olive tree, an 64 

emblematic species of the Mediterranean Basin (MB), despite the region being known to be 65 

particularly affected by the current global warming (Pardo et al., 2023).  66 

GWAS is one of the methods used to discover genetic variations affecting complex traits 67 

(Abdellaoui et al., 2023). Unlike QTL mapping studies, GWAS can investigate associations 68 

within populations where relatedness among individuals is variable, and even when the 69 

relatedness is unknown (Atwell et al., 2010). To handle spurious associations, several factors 70 

have to be considered, including population structure and linkage disequilibrium (LD), which 71 

could associate non-causal variants in LD with the causal variants to the trait (Uffelmann et al., 72 

2021). 73 

The olive tree (Olea europaea L.) is often considered as an iconic species of MB. It is believed 74 

that olive has been domesticated around 6000 years ago, with a main domestication event in the 75 

eastern MB supported by several studies (Khadari and El Bakkali, 2018). It remains unclear 76 

whether subsequent diversification followed the first domestication (Khadari and El Bakkali, 77 

2018), or if a second independent domestication event occurred in the central Mediterranean area 78 
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(Diez et al., 2015). The cultivated olive tree is diploid, and 23 chromosomes have been assembled 79 

(Julca et al., 2020). Four assembled genomes are currently available for the species Olea 80 

europaea var. europaea: two versions of cv. Farga: Oe6 version (Cruz et al., 2016) and Oe9 81 

version (Julca et al., 2020), cv. Picual (Jiménez-Ruiz et al., 2020) and cv. Arbequina (Rao et al., 82 

2021). The last version of Farga estimated the length of the olive genome to be approximately 83 

1.3 Gb, with 7.3 Mb corresponding to scaffolds and 54 Kb to contigs (Julca et al., 2020). This 84 

genome was the last one available when we started the present study. A more recent assembly of 85 

the Arbequina cultivar was published afterwards that has estimated a similar genome length with 86 

1.25 Gb on chromosomes (Rao et al., 2021). 87 

Several germplasm collections of olive trees have been constituted, the two most extensive being 88 

the Worldwide Olive Germplasm Bank of Marrakech, Morocco (WOGBM) and Cordoba, Spain 89 

(WOGBC) (El Bakkali et al., 2019). The genetic structure of the WOGBM has been investigated 90 

using Simple Sequence Repeat (SSR) markers (El Bakkali et al., 2019), while that of the 91 

WOGBC relies on SSR (Diez et al., 2015) and Expressed Sequence Tag Single Nucleotide 92 

Polymorphism (EST-SNP) markers (Belaj et al., 2022). These analyses resulted in the detection 93 

of three distinct genetic clusters, corresponding to the assumed geographical areas of origin of 94 

cultivars, with a large proportion of non-assigned individuals.  95 

Those collections have been phenotyped for several traits, in particular, flowering date. A large 96 

variation in this trait between years has been observed in the WOGBM (Abou-Saaid et al., 2022). 97 

As other fruit tree species, this variability is assumed to rely on temperature sensing during 98 

winter and spring (Guo et al., 2014). In addition, the olive tree presents the particularity to require 99 

low temperature for floral induction (Haberman et al., 2017). Therefore, in olive tree, winter 100 

temperatures not only impact the flowering dates but also its occurrence (Benlloch-González et 101 

al., 2018). Under the current climate change situation that deeply modifies temperature regimes, 102 

the major risk for olive trees concerns the synchrony between compatible varieties, which may 103 

disturb their cross-pollination. Indeed, the sexual reproductive system of olive is allogamous due 104 

to a self-incompatibility system (Saumitou-Laprade et al, 2017). Since successful pollination is a 105 

main factor in fruit development, flowering date is a key trait for the success of the olive tree 106 

reproductive cycle, upon which the uniformity and quality of fruit production depend (El 107 

Yaacoubi et al., 2014).  108 
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The main purpose of our study was to explore the genetic determinism of flowering date in 109 

cultivated olive, based on a specific phenological stage, the full flowering date (FFD). For this 110 

intent, the large panel of genetic diversity from the WOGBM and a new high-quality SNP data 111 

that we developed through capture sequencing were used in a GWAS. This new genotypic data 112 

was first validated through a genetic structure analysis before considering it for the GWAS. 113 

3. Results 114 

Characterization and distribution of SNPs in the cultivated olive genome  115 

We initially sequenced 335 genomic libraries. The raw sequencing data ranges from 1,590 read 116 

pairs for the Atounsi Setif (MAR00516) genotype to 39,801,319 read pairs for the Aggezi Shami 117 

(MAR00480) genotype, with a mean of 8,603,434 read pairs (Figure S1). The Aharoun 118 

(MAR00447) genotype was filtered out (quality reads below 30). After cleaning, the read pairs 119 

count ranged from 1,514 to 39,231,314, with a mean of 8,488,947 (Figure S1).  120 

We mapped our reads to the latest version of the Farga Oe9 reference genome assembly (Julca et 121 

al., 2020). A mean of 98.82 % of the reads were mapped on the Farga genome and tagged as 122 

properly paired. The mapping rate ranged from 84.68% (Atounsi Setif) to 99.59% (Sayali 123 

(MAR00287)). The genotype Azeradj Tamokra (MAR00448) was removed (mapping rate of 124 

0%). The mean enrichment rate in targeted sequences was 39 times (Table S1).  125 

A total of 64,835,479 variants were initially identified among 333 samples (Azeradj Tamokra and 126 

Aharoun were filtered out). After removing experimental duplicates, biological replicates, and 127 

individuals whose genomic libraries were not captured, 325 unique genotypes remained (Table 128 

S2). After handling filtration steps to ensure retrieving SNP of high-quality, we retained 235,825 129 

SNPs across 318 genotypes (Table S2). These SNPs were then used for genetic structure and 130 

PCA analyses. Additional filters (retaining only nuclear markers, filtering on Minor Allele 131 

Frequency, and imputation of missing data) resulted in 118,948 SNPs across 318 genotypes, 132 

which were used for GWAS and genomic prediction analyses (Table S2). Of these SNPs, 49.2% 133 

were in the targeted region by the baits, while the remaining were in the non-target region. 134 

Approximately 50% of the filtered SNPs were located on chromosomal regions, while the rest of 135 

SNPs were found on scaffolds. 136 
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Three genetic clusters are identified in the WOGBM collection 137 

The sNMF approach (Frichot et al., 2014) was used to analyze population structure using 235,825 138 

high-quality SNPs from 318 genotypes. The sNMF approach estimated individual ancestry 139 

coefficients and helped determine the number of ancestral populations (Table S3). We set the 140 

number of clusters to three based on the cross-entropy criterion (Figure S2). 141 

A genotype was assigned to a genetic cluster if it had a minimum of 70% ancestry estimation 142 

within that cluster. Genotypes not reaching a 70% assignment to any of the three genetic clusters 143 

were classified as non-assigned. Out of the 318 genotypes, 79 were assigned to the ancestry 144 

cluster K1 (from 71% to 100%). This group of genotypes was denoted C1 in the following. 33 145 

genotypes were assigned to the ancestry cluster K2 (from 71% to 100%). This group of 146 

genotypes was denoted C2. 71 genotypes were assigned to the ancestry cluster K3 (from 72% to 147 

100%). This group of genotypes was denoted C3. The remaining 135 genotypes were non-148 

assigned and their group was denoted as the M group (Figure 1). A PCA performed using the 149 

same genotypic dataset highlighted that the genotypes from the three genetic groups, C1, C2, and 150 

C3, were clearly separated on the plot of the first two components (Figure 2). The first principal 151 

component accounted for 9.5% of the genetic variability and separated C2 from C1 and C3. The 152 

second principal component accounted for 5% of the genetic variability and separated C1 from 153 

C2 (Figure S3, Figure 2). PC3 explained 2.6% of the genetic variability (Figure S3). The 154 

genotypes in the C3 group appeared to be more closely related compared to those assigned to the 155 

other two groups, C1 and C2, whether on the PC1-PC2 plot (Figure 2) or the PC2-PC3 plot 156 

(Figure S4). Non-assigned individuals were widely spread in the region between the three groups 157 

on PC1 and PC2 (Figure 2). 158 

 159 

Figure 1. Admixture coefficients as inferred by sNMF analysis (Frichot et al., 2014) for the 318 160 

genotypes of Worldwide Olive Germplasm Banks of Marrakech (WOGBM) using 235,825 SNPs. 161 

Bars are ordered by assignment to genetic clusters K1, K2, or K3. Groups of genotypes were 162 
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named C1 for those assigned to the genetic cluster K1, C2 for those assigned to the genetic 163 

cluster K2, C3 for those assigned to the genetic cluster K3, and M for genotypes non-assigned to 164 

a genetic cluster. 165 

 166 

Figure 2. Projection of the 318 genotypes from WOGBM on the first two principal components 167 

(PC) of a PC analysis based on 235,825 SNPs. Colors blue, green, and orange indicate the group 168 

to which each genotype was assigned (C1, C2, C3), and grey indicates the non-assigned 169 

genotypes (M). Circles, squares, and triangles indicate genotypes that are assumed to originate 170 

from the western, central, and eastern regions of the Mediterranean basin (MB), respectively. The 171 

east corresponds to Cyprus, Egypt, Greece, Lebanon, and Syria; the center corresponds to 172 

Algeria, Croatia, France, Italy, Slovenia, and Tunisia; and the west corresponds to Algeria, 173 

Croatia, France, Italy, Slovenia, and Tunisia. 174 

The information regarding the assumed origin of genotypes in the WOGBM (El Bakkali et al., 175 

2019) was crossed with the genetic structure analysis results. We ordered the barplot displaying 176 

individually estimated ancestries of genotypes based on the assumed geographical origin. We 177 

started ordering from the western Mediterranean on the left and progressing towards the eastern 178 
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Mediterranean on the right according to the country of origin indicated in their passport data 179 

(Figure 3). This representation suggests a geographical basis for the genetic structure. To further 180 

explore this geographically based genetic structure hypothesis, we confronted information about 181 

the genotype’s genetic cluster assignment, following the criteria presented above (i.e. an 182 

individual is assigned to a cluster if they have a minimum of 70% ancestry estimation within that 183 

cluster), with information about the supposed country of origin (Table S4). 70% of genotypes of 184 

the C1 group had a supposed origin from Cyprus, Egypt, Greece, Lebanon and Syria (eastern 185 

MB). 79% of the C2 group genotypes were indicated in their passport data as originating from 186 

Algeria, Croatia, France, Italy, Slovenia and Tunisia (central MB). 93% of the C3 group 187 

genotypes were supposed to originate from Morocco, Spain, and Portugal (western MB). The 188 

non-assigned group of genotypes consists of 70% of genotypes supposed to originate from the 189 

central MB (Table S4). 190 

Figure 3. Admixture coefficients as inferred by sNMF analysis (Frichot et al., 2014) of the 318 191 

genotypes of WOGBM using 235,825 SNPs. Bars indicate the proportion of assignment to 192 

genetic clusters K1, K2, or K3 and are sorted by the assumed geographic origin of genotypes, 193 

from western to eastern Mediterranean regions. 194 

Flowering date is different among genetic groups 195 

The Best Linear Unbiased Predictor (BLUP) of the genotype effect was estimated using a mixed 196 

model that included genotype, year, and the interaction between genotype and year effects based 197 

on data of seven years. The collection contained at least three trees for each genotype. The 198 

variance of the phenotypes, based on raw data, was 98.77 calendar days. After the mixed model 199 

estimation, the variance attributed to the genotypic effect was 4.12 days, the variance of the 200 

interaction between genotypes and years was 4.61 days, whereas the residual variance was 5.53 201 

days. Based on the variance components issued from the model, the broad-sense heritability was 202 

estimated at 0.84, indicating a relatively high value. The genetic BLUP of flowering date in the 203 
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whole collection (331 genotypes) follows a normal distribution (Shapiro-Wilk, p-value = 0.97), 204 

with a mean value of 116.37 calendar days. The range spans 10.4 days, with minimum and 205 

maximum values of 110.8 days for the genotype Borriolenca and 121.1 days for the genotype 206 

Ogliarola del Bradano respectively (Figure S5). The distribution of the genetic BLUP of 207 

flowering dates was compared across the different genetic groups C1, C2, and C3 (Figure 4). A 208 

significant difference in the distribution of genotypic BLUP of FFD was observed among genetic 209 

clusters based on a Mann-Whitney pairwise comparison test (Table S5). C1 genotypes exhibited 210 

the earliest FFD values, with a mean of 115.47 calendar days, including genotypes such as Karme 211 

and Minekiri. C2 genotypes flowered the latest, with a mean value of 117.55 days, including 212 

genotypes such as Ogliarola del Bradano and Olivastra di Populonia. C3 exhibits an 213 

intermediate flowering date compared to C1 and C2, with a mean value of 116.53 days, including 214 

genotypes such as Negrillo de Iznalloz and Manzanilla de Agua. C1 genotypes were highly 215 

distinct from both C2 and C3 ones, according to the p-values of the Mann-Whitney test (Table 216 

S5).  217 

 218 

Figure 4. Distribution of the genetic BLUP of FFD depending on the genetic groups (C1 in blue, 219 

C2 in green, and C3 in orange) with pairwise significance of their difference according to the 220 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 10, 2024. ; https://doi.org/10.1101/2024.06.10.598200doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.10.598200
http://creativecommons.org/licenses/by/4.0/


 

10 

 

Wilcoxon-Mann-Whitney test (Wilcoxon, 1945). Levels of significance: ns (not significant); * 221 

(p<0.05); ** (p<0.01); *** (p<0.001). Black circles indicate the mean value, the horizontal bar 222 

the median value, and the box plot the first and third quartile of each distribution, respectively. 223 

Three genomic regions are associated with FFD using single-locus and multi-locus 224 

association analyses 225 

Before performing the association study, we tested three linear mixed models that account for 226 

structure and/or kinship effects. The structure was considered as a fixed effect (as assessed by the 227 

ancestry matrix obtained from the sNMF run that exhibited the lowest cross-entropy value at the 228 

considered K, Q model) while the kinship was considered as the covariance matrix of a random 229 

effect separately (u model) or jointly (u+Q model). We tested two kinship matrices: Weir & 230 

Goudet (Weir and Goudet, 2017), recommended for populations with related individuals (Goudet 231 

et al., 2018), and VanRaden Kinship (VanRaden, 2008), widely used in association studies. We 232 

found that the best model was the one considering kinship only, regardless of the considered 233 

kinship matrix (Table S6). This model (u model) was thus retained to investigate the genetic 234 

determinism of the FFD trait using a GWAS approach. We firstly used a single-locus mixed-235 

model approach, implemented in the R package MM4LMM (Laporte et al., 2022), and 236 

complemented it with a multi-locus method, MLMM (Segura et al., 2012). The two distinct 237 

kinship matrices (Weir & Goudet and VanRaden) previously described were tested for each of 238 

the two approaches, resulting in four analyses.  239 

Associations were tested between the genotypic BLUP of FFD (Table S7) and 118,948 high-240 

quality SNP datasets obtained after applying all filtering criteria (Table S2) from 318 genotypes 241 

in the WOGBM collection. The empirical significance threshold for MM4LMM was set at a 5% 242 

FDR, a commonly used criterion (Nelson et al., 2017). For MLMM, the significance threshold 243 

was set at 9.6E-6, which corresponds to the p-value of the least significant SNP in the initial run 244 

analysis of MM4LMM using the Weir & Goudet kinship (Weir and Goudet, 2017). 245 

The single-locus approach resulted in 23 significantly associated SNPs when using the Weir & 246 

Goudet kinship (Figure 5 A, Figure 5 B, Table S8), while no SNP was detected when using the 247 

VanRaden kinship (Table S8). P-values of the significant SNPs ranged from 1.5E-07 for the 248 

“Oe9_LG01_9017771” SNP to 9.6E-06 for the “Oe9_LG05_12679503” SNP (Table S8).  249 
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The multi-locus approach yielded six significant SNPs, depending on the kinship matrix 250 

considered. Four of them were detected using Weir & Goudet kinship, having p-values ranging 251 

from 3.74E-08 for “Oe9_LG04_16512411” SNP to 9.11E-06 for “Oe9_s06150_161951” SNP 252 

(Figure 5 C, Figure 5 D, Table S8). Three SNPs were detected using VanRaden, with p-values 253 

ranging from 4.81E-08 for the “Oe9_s07747_163567” SNP to 6.41E-06 for the 254 

“Oe9_LG04_16512411” SNP (Table S8).  255 

Figure 5. Manhattan plot of the GWAS study of genotypic BLUP of FFD using Weir & Goudet 256 

kinship (only chromosomal regions are shown in the plot). A. Manhattan plot based on the single-257 

locus approach MM4LMM. B. Q–Q plot corresponding to the MM4LMM model. C. Manhattan 258 

plot based on the multi-locus approach MLMM. D. Q–Q plot corresponding to the MLMM 259 

model. The horizontal red line in the Manhattan plots indicates the p-value that corresponds to a 260 

threshold of 5% false discovery rate (FDR) in the MM4LMM model using the Weir & Goudet 261 

kinship. 262 

A total of 26 SNPs were significantly associated with the FFD BLUPs in at least one of the four 263 

association analyses. Two SNPs, “Oe9_LG01_9017771” and “Oe9_s04305_16459”, were 264 

detected by two of the four analyses, while only one SNP, “Oe9_LG04_16512411”, was detected 265 
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by three analyses (Table S8, Figure S6 A,B, and C). These three SNPs were considered as strong 266 

candidates, with “Oe9_LG04_16512411” being the most robust. The three SNPs: 267 

“Oe9_LG01_9017771”, “Oe9_s04305_16459”, and “Oe9_LG04_16512411”, explained 7.1%, 268 

6.5%, and 6.2% of the trait's variance, respectively (Table 1). 269 

Table 1. Characterization of the three robust SNPs significantly associated with genotypic BLUP 270 

of FFD: SNP name, chromosome or scaffold number, position in base pair, allelic composition 271 

(Ref indicates the allele of reference and ALT the alternative allele), minor allele frequency 272 

(MAF), Model (MM4LMM or MLMM), Kinship matrix (Weir & Goudet or VanRaden), p-value 273 

and portion of variance explained (R2) by each SNP. 274 

SNP_name Linkage 

group 

Position 

(bp) 

Alleles(Ref/ALT) MAF Model Kinship P_value R2 

Oe9_LG01_9017771 Chromosome 

01 

9017771  T/C  0.17 MM4LMM Weir & 

Goudet 

1.50E-07 0.071 

MLMM  Weir & 

Goudet 

1.78E-06 

Oe9_s04305_16459 s04305 16459 T/C 0.10 MM4LMM  Weir & 

Goudet 

5.77E-07 0.065 

MLMM  VanRaden 1.51E-06 

Oe9_LG04_16512411 Chromosome 

04 

16512411 G/C 0.06 MM4LMM  Weir & 

Goudet 

1.01E-06 0.062 

MLMM  Weir & 

Goudet 

3.74E-08 

MLMM  VanRaden 6.41E-06 

 275 

FFD can be predicted with high accuracy using genomic prediction approach 276 

A limited portion of the variance in the genotypic BLUP of the FFD trait was explained by the 277 

associated SNPs from the GWAS study (6.2% to 7.1% for the 3 SNPs retained as most robust). 278 

We aimed to investigate whether genomic prediction using a larger set of SNPs could account for 279 

a larger proportion of the trait's variance.  280 

For this purpose, we complemented the association analyses with a modeling approach based on 281 

a genome-wide analysis, using all SNPs simultaneously. This approach made use of genomic 282 

prediction models with two complementary regression approaches, Least Absolute Shrinkage and 283 

Selection Operator (LASSO) and Ridge regression (RR), respectively. LASSO estimation relies 284 
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on a limited number of major effects, whereas RR is based on many minor effects. The prediction 285 

accuracy was measured by calculating Pearson’s correlation between predicted and observed 286 

values on a cross-validation setting with 5 folds and repeated one hundred times. Overall, the 287 

prediction of the FFD trait demonstrated relatively high accuracy, whether by LASSO or RR 288 

(Figure 6). The accuracy values for the RR model ranged from 0.47 to 0.79, whereas those for the 289 

LASSO model ranged from 0.31 to 0.70. The RR model achieved a significantly higher 290 

(Wilcoxon-Mann-Whitney, p-value = 6.1e-11) mean accuracy (0.64) compared to the LASSO-291 

based model (0.55) in predicting the trait (Figure 6).  292 

 293 

Figure 6. Distribution of Pearson’s correlation between predicted and observed values (accuracy) 294 

according to LASSO- and Ridge-based models based on 100 iterations. p is the p-value of the 295 

Wilcoxon-Mann-Whitney test of comparison of the two distributions (Wilcoxon, 1945). Levels of 296 

significance: ns (not significant); * (p<0.05); ** (p<0.01); *** (p<0.001). white circles indicate 297 

the mean value, and the boxplot the first and third quartile of each distribution, respectively. 298 

Identification of candidate genes in the genomic regions putatively associated with 299 

flowering date 300 

We specifically examined the genomic regions neighboring the three SNPs previously identified 301 

as the most robust by single and multi-locus approaches. To ensure the inclusion of all 302 

neighboring SNPs in linkage disequilibrium (LD) in the genomic region of interest, we first 303 
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analyzed the LD decay within our SNP dataset. A relatively rapid decay of LD was observed, 304 

where the average r2 values dropped within 100 bp from 0.35 which corresponds to the 305 

maximum value to 0.2 (Figure S7). Considering such a rapid LD decay, we used genomic 306 

windows of 1500 bases upstream and downstream of the associated SNP positions to retrieve 307 

candidate genes (Table 2). Based on the annotation of the reference genome (Julca et al., 2020), 308 

three genes were identified: OE9A117378 and OE9A084268 on Scaffold s04305 and 309 

OE9A057547 gene on chromosome 01 (Table 2). No gene was identified within the associated 310 

genomic region on Chromosome 04 (Table 2, Table S9). We blasted the transcripts of the three 311 

genes against the UniProt database (The UniProt Consortium, 2023). A high degree of sequence 312 

similarity was identified with the XCT gene for the olive genes OE9A117378 and OE9A084268. 313 
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Table 2. Annotation of genes found in the associated regions, corresponding to 1500pb upstream and downstream each of the three 314 

robust SNPs linked with genotypic BLUP of FFD: SNP name, chromosome (Chr) or scaffold number, interval position of the 315 

associated region from the olive reference genome Farga V2 (Julca et al., 2020); Gene and protein names based on UniProt database 316 

(The UniProt Consortium, 2023); Gene ID, position, Transcripts, respective positions indicating their overlap, annotation and ontology 317 

term from the reference genome Farga V2. 318 

SNP_name Linkage 

group 

Associated

_region 

Gene 

Name 

Protein Name Gene_ID Gene_ 

start 

Gene_ 

end 

Overlap_ 

start 

Overlap_

end 

Transcrit_ 

name 

Annotation Ontology_term 

Oe9_LG01

_9017771 

Chr 01 9016271-

9019271 

At5g27430 Signal peptidase 

complex subunit 

3B 

OE9A057547 9017718 9022199 9017717 9019271 OE9A057547T1 InterPro:IPR

007653,Pfam

:PF04573 

GO:0005787,G

O:0006465,GO:

0008233,GO:00
16021,GO:0045

047 

9017717 9019271 OE9A057547T2 InterPro:IPR

007653,Pfam

:PF04573 

GO:0005787,G

O:0006465,GO:

0008233,GO:00
16021,GO:0045

047 

9017717 9019271 OE9A057547T3 InterPro:IPR

007653,PIRS

F:PIRSF016

089 

GO:0005787,G

O:0006465,GO:

0008233,GO:00

16021,GO:0045
047 

Oe9_s04305

_16459 

s04305 14959-
17959 

XCT Protein XAP5 
CIRCADIAN 

TIMEKEEPER 

OE9A117378 14465 16127 14732 16127 OE9A117378T1 InterPro:IPR
007005,PAN

THER:PTHR

12722 

GO:0005634,G
O:0048511 

OE9A084268 16131 18668 16130 18020 OE9A084268T1 GO:0005634,G

O:0006325,GO:

0009637,GO:00
09873,GO:0010

099,GO:001011

4,GO:0035196,
GO:0042752,G

O:0048511 
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The Oryza sativa XCT gene exhibited 80.1% identity with the olive gene OE9A117378, while the 319 

Arabidopsis thaliana XCT gene shared 94.8% identity with the olive gene OE9A084268. The 320 

XCT gene encodes for the protein XAP5 circadian timekeeper. The Arabidopsis thaliana gene 321 

At5g27430, encoding the protein signal peptidase complex subunit 3B, shares 80.2% identity 322 

with the olive gene OE9A057547. We also reported a total of 18 candidate genes found in the 323 

different genomic regions corresponding to all significant SNPs found in one of the four GWAS 324 

analyses (Table S9). Their annotation and putative similarities correspond to 11 genes known in 325 

plant models and possibly to several transcripts (Table S9, Table S10). It is noticeable that the 326 

gene OE9A037893 located on chromosome 15 encodes for a calcium-dependent protein kinase 4 327 

(CPK4) whose putative function in potato is to regulate the production of Reactive Oxygen 328 

Species (ROS). These findings will provide a baseline for future candidate gene studies of FFD in 329 

olive.  330 

4. Discussion 331 

Identification of three genetic clusters with varying flowering date in WOGBM  332 

Consistently with previous studies (Diez et al., 2015; El Bakkali et al., 2019; Belaj et al., 2022), 333 

three genetic clusters were identified within the cultivated olive, based on the WOGBM. These 334 

clusters broadly correspond to the presumed geographical origins of the genotypes. The C1 group 335 

involved genotypes assumed to originate from the eastern Mediterranean, including Cyprus, 336 

Egypt, Greece, Lebanon and Syria. Group C2 consisted mainly of genotypes presumably 337 

originating from the central Mediterranean, encompassing Algeria, Croatia, France, Italy, 338 

Slovenia and Tunisia. The C3 group comprised genotypes putatively from the western 339 

Mediterranean, including Morocco, Spain and Portugal.  340 

The comparison of genetic groups we obtained with the ones found in the same collection, 341 

WOGBM, but using SSR markers and another methodological approach (El Bakkali et al., 2019), 342 

and with the ones described in the WOGBC using either SSR (Diez et al., 2015) or EST-SNP 343 

markers (Belaj et al., 2022) revealed a general agreement in the composition of the groups (S1 344 

File, Table S11, Table S12, Table S13). The concordance in terms of individuals assigned to each 345 

genetic group ranges from 66% to 85% for each respective group. The majority of individuals 346 

who were not assigned in our study were predominantly included in the non-assigned group from 347 

El Bakkali et al. (2019). The few discrepancies detected are assumed to result from differences in 348 
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the approaches and markers employed. The STRUCTURE method (Pritchard et al., 2000) used 349 

by El Bakkali et al. (2019), Diez et al. (2015), and Belaj et al. (2022) relies on the assumptions of 350 

the absence of genetic drift, Hardy–Weinberg equilibrium, and linkage equilibrium between 351 

markers in ancestral populations (Pritchard et al., 2000), while the sNMF approach we used is not 352 

based on a genetic population model (Frichot et al., 2014). Moreover, the threshold of assignment 353 

to genetic clusters differs between the two methods. Even though these two methods usually 354 

converge (Frichot et al., 2014), it is not surprising that results may slightly differ. 355 

Also, the markers used are possibly in different positions along the genome: SSR markers could 356 

be found in either coding or non-coding regions, while SNP markers in this study were selected 357 

to be located in coding regions or near them as we targeted annotated genes. Coding and non-358 

coding regions are known to undergo different selection pressures (Jha et al., 2015). The two 359 

types of markers may have different evolution histories, with a higher mutation rate of SSRs 360 

compared to SNP markers (Fischer et al., 2017), that can result in different genetic structure 361 

signals. Moreover, our SNP data were not filtered for rare variants. Doing the analysis after 362 

applying a 5% MAF filter did not alter general structure, with more than 96% of similarities 363 

between the reported analysis and the one made after MAF filtration. Discordance was only due 364 

to some genotypes moving from a genetic cluster to the non-assigned group or vice versa (no 365 

shifts between genetic groups were observed) (Table S14, S1 File). This indicates that filtering 366 

for rare variants did not result in difficulty for classifying genotypes within one of the three 367 

genetic clusters. 368 

Overall, in line with previous studies, we confirmed the existence of three distinct genetic 369 

clusters within cultivated olive. However, the boundaries between assigned and non-assigned 370 

genotypes are not fixed, as some genotypes assigned to a genetic cluster by a study could be 371 

found within the non-assigned in another one. Incorporating precise GPS coordinates of parent 372 

trees into our study could enrich our understanding of the genetic structure. Genotypes of the C3 373 

group were closely related compared to C1 and C2 in the PCA plots. This finding aligns with the 374 

high level of genetic relatedness found between genotypes assigned to the Q1 cluster from Diez 375 

et al. (2015), representing western genotypes of MB.  376 

A higher rate of non-assigned genotypes was observed in central MB compared to western MB 377 

and eastern MB. This suggests that admixture events may have occurred between genotypes from 378 
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central MB and those from the western and eastern Mediterranean. Consistently with Diez et al. 379 

(2015), the non-assigned individuals were mainly from central and western MB. 380 

Marker-trait associations and potential candidate genes for flowering date  381 

Distinct associated loci were detected in each of the four GWAS. Only three associated SNPs 382 

were consistent between at least two analyses. While a high value of heritability was estimated, 383 

these SNPs exhibited minor effects and accounted for a low proportion of the phenotypic 384 

variance. However, we must notice that the broad-sense heritability value was calculated based 385 

on a relatively small portion of the total variance of the trait, i.e. the part of variance explained by 386 

the genotypic effect only, as extracted from a mixed model, while the year and the interaction of 387 

genotype and year had high and significant effects. The combination of high heritability with few 388 

detected SNPs with low effects suggests that several other additional genomic regions could be 389 

involved in the genetic control of this trait.  390 

Several factors may have prevented the detection of additional genomic regions. First, the genetic 391 

architecture of the studied trait is a key factor. A genetic architecture consisting of many loci with 392 

minor effects and/or rare variants with large effects can limit the power of GWAS to detect 393 

significant associations (Korte and Farlow, 2013). In our case, high accuracy values of genomic 394 

prediction were found with both RR- and LASSO-based models, even though the RR-based 395 

model performed significantly better than the LASSO-based model. This finding supports a 396 

polygenic genetic determinism underlying the flowering date trait in olive tree.  397 

Second, the genomic data used can influence the detection power. Here, we used a capture 398 

sequencing approach, which targeted annotated genes rather than the Genotyping-by-Sequencing 399 

(GBS) method or whole-genome sequencing (WGS) which would have covered more 400 

exhaustively the genome, coding or non-coding. Given the high cost associated with WGS, the 401 

GBS method has been widely used as an alternative. While GBS offers a broader overview of the 402 

genome than capture sequencing, it often results in a high rate of missing data (Wang et al., 403 

2020). This is due to the random digestion of the genome by restriction enzymes in GBS, leading 404 

to heterogeneous depth across genomic regions and variability in the coverage of loci between 405 

individuals (Elshire et al., 2011). In contrast, the capture sequencing approach used in the present 406 

work allowed to target identical genomic regions among individuals with high sequencing depth 407 

and limited missing data. Furthermore, capture sequencing of annotated genes enabled the 408 
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identification of candidate genes after the GWAS, utilizing the annotation of associated loci. 409 

Even though WGS might be considered the best and most complete approach for GWAS studies, 410 

the capture sequencing chosen in this study appears to be an adequate compromise.  411 

Third, the population size matters for the association detection power. A population size of less 412 

than 100 genotypes is usually considered too low to obtain a sufficient power of association 413 

detection (Hong and Park, 2012), even though the recommended population size depends on 414 

several factors, such as the genetic architecture of the trait with possible dominance and the 415 

extent of linkage disequilibrium (LD) (Hong and Park, 2012). The first association study in olive 416 

was performed using 96 olive genotypes sourced from the Turkish Olive GenBank Resources in 417 

Izmir, Turkey (Kaya et al., 2016). This study used a combination of SNP, AFLP, and SSR 418 

markers, totaling 1070 polymorphic loci, and focused on five traits related to yield. Subsequent 419 

GWAS studies, employing SNP data, have investigated the genetic determinism of various 420 

agronomic and morphological traits, making use of 183 genotypes (Kaya et al., 2019) or a large 421 

number of SNPs (428,320 SNPs) but 89 genotypes only (Bazakos et al., 2023). As our analysis 422 

benefited from a large dataset of 318 individuals genotyped with 118,948 SNPs, we can thus 423 

consider that those conditions are adequate to perform GWAS analysis.  424 

Fourth, the power of detection depends on the frequency of SNP alleles within the studied 425 

population (Hong and Park, 2012). In WOGBM, the representation across Mediterranean regions 426 

of genotypes was unequal, with 25% of genotypes assumed to originate from Spain, 28% from 427 

Italy, and 18% from eastern MB only. This imbalance might result in a low frequency of alleles 428 

fixed in the eastern region in the whole population, even though they could be associated with the 429 

trait. It is noticeable that other types of populations, such as bi or multi-parental populations, 430 

although including less genetic diversity than collections, usually allow a better balance among 431 

allelic classes. Several studies based on bi-parental populations of apple tree have revealed a 432 

major QTL associated with flowering time that remained stable across populations (van Dyk et 433 

al., 2010) and was subsequently detected by GWAS (Watson et al., 2024). Therefore, combining 434 

investigations on bi-parental or multi-parental populations could complement the present study 435 

on WOGBM in the future. In this perspective, crosses between Olivière and Arbequina (Ben 436 

Sadok et al., 2013), have been created and could be used for such studies.  437 
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The analysis of linkage disequilibrium (LD) in the olive genome using SNP data from capture 438 

sequencing revealed a relatively rapid decay of LD. The average r2 value was relatively low 439 

(0.35), compared to the one reported using 57 olive cultivars sequenced via genotyping by 440 

sequencing technology (GBS) (Zhu et al., 2019). The LD decay distance observed in our study 441 

(~100 bp) aligns closely with the one reported by Zhu et al., 2019 (~85 bp) and is higher than that 442 

reported by D’Agostino et al., 2018 (~25 pb), both studies using data from GBS. The LD decay 443 

of olive was relatively shorter than that found in pear (211 bp; Wu et al., 2018) and apple (161 444 

bp; Duan et al., 2017). Considering the LD decay value in our study, the regions explored around 445 

the associated loci were extended. Three putative genes were localized in the explored regions. 446 

However, none of these genes has a known function related to flowering date, even though the 447 

XCT gene encodes functions related to the circadian clock and photomorphogenesis. Moreover, 448 

the gene found on chromosome 15 for a less robust association points towards a gene whose 449 

putative function is to regulate the production of Reactive Oxygen Species (ROS), known to be 450 

involved in dormancy release (Watson et al., 2024). These findings provide a baseline for future 451 

candidate gene studies of FFD in olive. 452 

Another perspective of the present work would be to deepen the comprehension of the year 453 

effects and their interaction with genotypic effects on the FFD. Indeed, as previously found, 454 

flowering date is a highly heritable trait but also strongly depends on environmental conditions 455 

(Branchereau et al., 2023). Winter temperatures are particularly known to influence chilling 456 

fulfillment, which impacts FFD (Atkinson et al., 2013). Deciphering the genotype by year effects 457 

may lead to detect associations specific to a given year or environmental conditions, as 458 

previously demonstrated (Allard et al., 2016; Branchereau et al., 2023). As the WOGBM 459 

genotypes were phenotyped over seven years at the same experimental station (Tassaout, 460 

Morocco), testing associations for FFD per year will be interesting to assess environmental-461 

specific associations. Additionally, phenotyping the same genotypes in various locations could be 462 

a longer-term perspective that would enhance differentiation between environments and facilitate 463 

the detection of environmental-specific associations and the exploration of FFD trait plasticity in 464 

response to environmental variations. 465 

In conclusion, the BLUPs for the flowering date were associated with three loci only with minor 466 

effects, i.e. they accounted for a low proportion of the phenotypic variance. Considering the low 467 

effect and variance explained by the associated loci, these underlying genes should be 468 
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approached with caution in the future. Altogether, our results suggest the implication of other 469 

genomic regions not being detected so far. The significantly higher accuracy of the RR-based 470 

model compared to the LASSO-based model in genomic prediction supports the hypothesis of a 471 

polygenicity of the trait. This knowledge could be further considered in olive breeding programs 472 

that will have to create new material combining optimal yield and flowering date adapted to 473 

future climatic conditions. 474 

5. Materials and methods  475 

Plant materials  476 

We used a panel of olive tree genotypes from the WOGBM. This collection is located at 477 

31°49'10" N; 7°25'58" W (CRS: WGS84-EPSG:4326) in the Tassaout experimental station 478 

(Marrakech, Morocco), at an altitude of 465 meters above sea level (Abou-Saaid et al., 2022). 479 

The collection is initially composed of 554 accessions originating from 14 countries around the 480 

Mediterranean area. Characterization analyses using 20 SSR markers and 11 endocarp traits 481 

identified 331 unique cultivars within the collection (El Bakkali et al., 2019). The phenotyping 482 

was conducted on the 331 genotypes of the WOGBM collection, while genotypic data remained 483 

for 318 genotypes only after all data processing (see below).  484 

DNA extraction and genotyping  485 

DNA was extracted from leaves using MATAB protocol and NucleoMag Plant Kit (Cormier et 486 

al., 2019). Libraries were constructed with NEBNext® Ultra™ II FS DNA Library Prep Kit 487 

(New England Biolabs, Ipswich, MA).  488 

We constructed 333 individual genomic libraries from 330 accessions, thus including some 489 

experimental duplicates. Of the total sequenced samples three were duplicated from the same 490 

extraction and preparation, to assess the reproducibility of the experiment (S2 File, Table S15): 491 

Leccino (MAR0016), Picual (MAR00267), and Picholine Marocaine (MAR00540). These 492 

libraries were subject to capture experiments. We targeted the first 640 bp of each of the 55,595 493 

annotated genes available by placing 1 to 4 probes (depending on gene length) of 80 bp each, 494 

with 0.5x tilling. The filtered set captured 16.8 Mb, including 210,367 baits representing 55,452 495 

unique loci (Zunino et al., 2024). The Mybaits custom kits were designed and synthesized by 496 

Daicel Arbor Biosciences (Ann Arbor, Michigan, USA). Additionally, two genomic libraries, 497 

derived from the initial preparation of libraries but not subjected to the capture experiment, were 498 
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sequenced: Picholine (MAR00196) and Picholine Marocaine (MAR00540), and were used as a 499 

control to estimate capture efficiency. All captured and non-captured libraries were pooled 500 

together in equimolar conditions. MGX-Montpellier GenomiX has performed the sequencing on 501 

an Illumina® NovaseqTM 181 6000 (Illumina Inc., San Diego, CA, USA). The detailed protocol 502 

was described by Zunino et al. (2024). 503 

SNP calling and filtering  504 

We trimmed raw sequencing reads using FastP version 0.20.1 (Chen et al., 2018), where 505 

genotype Aharoun (MAR00447) was filtered out (quality reads below 30). The remaining reads 506 

were aligned to the reference genome of olive, Farga V2 (Julca et al., 2020), using the bwa-mem2 507 

version 2.0 software (Vasimuddin et al., 2019). Duplicate reads were removed from sorted reads 508 

using picard-tools version 2.24.0. Alignments were then cleaned to keep only primary alignment, 509 

properly paired, and unique reads. The genotype Azeradj Tamokra (MAR00448) was removed 510 

due to its mapping rate of 0%. Finally, variants were called using the Genome Analysis Toolkit 511 

version 4.2.0.0 (Poplin et al., 2018) following GATK best practices. The final dataset comprises 512 

64,835,479 variants across 333 samples. Data from the two non-captured libraries of Picholine 513 

(MAR00196) and Picholine Marocaine (MAR00540), were used to calculate the enrichment rate 514 

(the mean depth of targeted sequencing divided by the mean depth of non-captured sequencing). 515 

All the steps, from read cleaning to variant calling, were performed using the following 516 

Snakemake workflow: https://forgemia.inra.fr/gautier.sarah/ClimOlivMedCapture. 517 

We removed the three biological replicates: Unknown-VS2-545 (MAR00546 and MAR00547) 518 

and Dhokar (MAR00417), the three experimental duplicates: Leccino (MAR0016), Picual 519 

(MAR00267), and Picholine Marocaine (MAR00540), and the two non-enriched samples: 520 

Picholine (MAR00196) and Picholine Marocaine (MAR00540). This filter resulted in 325 521 

genotypes being filtered to ensure data quality. We filtered out low-quality SNPs below a 522 

threshold of 200 and indels. We allowed a maximum of 3 SNPs within a 10 bp region and set the 523 

minimum mean depth per site at 8, with a maximum of 400. Additionally, the minimum mean 524 

depth per genotype was restricted to 8. We retained only biallelic SNPs. SNPs with a 525 

heterozygosity rate greater than 75% were removed. Loci with more than 10% missing data and 526 

samples with over 25% missing data were also excluded. Singleton SNPs were filtered out. The 527 

outcome dataset comprises 235,825 SNPs across 318 individuals. This set was used for genetic 528 

structure and PCA analyses. An additional filtration step consisting of setting a minor allele 529 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 10, 2024. ; https://doi.org/10.1101/2024.06.10.598200doi: bioRxiv preprint 

https://forgemia.inra.fr/gautier.sarah/ClimOlivMedCapture
https://doi.org/10.1101/2024.06.10.598200
http://creativecommons.org/licenses/by/4.0/


 

23 

 

frequency filter of 0.05 was applied before the GWAS analysis, resulting in a set of 119,614 530 

SNPs for the 318 individuals. The nuclear SNPs set comprises 119,600 variants (Table S2). This 531 

SNP set was used for the GWAS analysis, including a missing data imputation step followed by a 532 

minor allele frequency filter of 0.05 (see below). 533 

Phenotypic data and statistical analyses  534 

Full flowering dates [Stage 65 according to the BBCH scale of olive tree (Sanz-Cortés et al., 535 

2002)] have been recorded for the 331 genotypes of the WOGBM for seven years. Data from 536 

2014 to 2019 were previously reported by Abou-Saaid et al., 2022. Additional data were 537 

collected in 2021 using the same methodology (Abou-Saaid et al., 2022). The collection 538 

exhibited varying numbers of repetitions per genotype, with each genotype being represented by 539 

a minimum of three trees. Some genotypes were represented by multiple trees because of 540 

synonymy and redundancy cases. For example, Picholine Marocaine was represented by 88 trees. 541 

To account for the effect of years and possible interaction between years and genotypes on 542 

phenotypic data, three mixed models were tested and compared [see also (Abou-Saaid et al., 543 

2022)]: (i) the model with the genotype as a random effect only; (ii) the model with the genotype 544 

as a random effect and the year as a fixed effect and (iii) the model with interaction “genotype × 545 

year” as a second random effect. The last model was the best model regarding the Akaike 546 

Information Criterion (AIC) (Akaike, 1974) and Bayesian Information Criterion (BIC) 547 

(Schwarz,1978) (Table S16, Table S17).  548 

The equation of the best model is:  549 

Yijk = µ+ Gi + Aj + (GA)ij + εijk (1)  550 

where Yijk represents the FFD value of tree k from genotype i in year j, µ denotes the overall 551 

mean of the population, Gi is the random effect of genotype i, Aj is the fixed effect of year j, 552 

(GA)ij represents the random interaction between genotype i and year j, and εijk represents the 553 

random residual error. the broad-sense heritability (H2) (Hühn et al., 1975) was estimated based 554 

on variance components:  555 

𝐻2 =
𝜎𝐺

2

𝜎𝐺
2 +

𝜎𝐺𝑥𝐴
2

𝐽  +
𝜀2

𝑛

 556 
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where 𝜎𝐺
2 is the variance of genotype effect; 𝜎𝐺𝑥𝐴

2  is the variance of interaction between genotype 557 

and year effect; 𝜀2 is the variance of the residual term; J is the number of years and n is the mean 558 

number of observations per genotype and year. 559 

The best linear unbiased predictor (BLUP) of the genotypic values of FFD for the 331 cultivars 560 

was extracted from the mixed model (1). The normality of BLUP of FFD genotypic values was 561 

tested using the Shapiro-Wilk test in R (Shapiro and Wilk, 1965).  562 

Population structure  563 

To investigate the genetic structure of the cultivated olive collection under study, we used the 564 

dataset consisting of 235,825 SNPs from 318 genotypes. The genetic structure analysis was 565 

conducted using the sNMF approach (Frichot et al., 2014) implemented in the LEA R package 566 

(Frichot et al., 2015). This allowed us to estimate individual ancestry coefficients and determine 567 

the number of ancestral populations (K) within the dataset. We performed sNMF with K values 568 

ranging from 2 to 10. The smallest K value at which the cross-entropy did not significantly differ 569 

from that of K+1 was considered the most likely value of K.  570 

Genotypes were assigned to genetic clusters based on their ancestry coefficients. If a genotype 571 

exhibited a minimum of 70% ancestry coefficient to a genetic cluster, it was assigned to that 572 

genetic cluster. Genotypes not reaching a 70% assignment to any of the genetic clusters are 573 

classified as non-assigned. To further investigate the genetic relationships among individuals, we 574 

performed a principal component analysis (PCA) to visualize their distribution within the 575 

population. The distribution of the genetic BLUP of FFD was compared between genetic groups 576 

using the Wilcoxon-Mann-Whitney test (Wilcoxon, 1945).  577 

Genome-wide association analyses 578 

The association test was conducted between the BLUP of FFD genotypic values and the genomic 579 

data from the 318 genotypes of the WOGBM collection. The initial genomic dataset contained 580 

119,600 filtered SNPs (Table S2), with 2.4% missing data. The missing data were imputed based 581 

on the genetic structure inferred by sNMF, using the LEA R package v3.11.3 (Frichot et al., 582 

2015). The resulting imputed dataset was filtered for a minor allele frequency of 5%, resulting in 583 

118,948 SNPs.  584 

Three mixed models were tested and compared using the MM4LMM package (Laporte et al., 585 

2022) to evaluate the inclusion of a random polygenic term and/or a fixed population structure 586 
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effect in the model: i) the model with only polygenic effect (u), ii) the model with only genetic 587 

structure effect (Q), and iii) the model with both polygenic and genetic structure effects 588 

(u+Q). Two kinship matrices were tested for the covariance of the polygenic effect: the Weir and 589 

Goudet method (2017), implemented in the HIERFSTAT package in R (Goudet, 2005), and the 590 

VanRaden method (2008), implemented in the statgenGWAS package in R (Astle and Balding, 591 

2009). VanRaden’s method is widely used in association studies, while Weir & Goudet is better 592 

suited to the structure of our dataset, especially considering the relatedness among certain 593 

genotypes (Goudet et al, 2018). 594 

The most complete model equation was as follows:   595 

Yi= μ + Qik + ui+ εi  596 

Where Yi is the BLUP value for genotype i, Qik the fixed effect of the assignment of genotype i 597 

in structure group k, ui the random polygenic effect for genotype i and εi the random residual 598 

error. ui ~ N(0, 𝜎𝑢
2K), K being the genomic relationship (kinship). The best model was selected 599 

based on the Akaike Information Criterion (Akaike, 1974) and Bayesian Information Criterion 600 

(Schwarz,1978) (AIC and BIC; Table S6). The model that only included the random polygenic 601 

term was the best, regardless of the kinship matrix used to model its covariance, as it had the 602 

lowest values for both AIC and BIC. For further GWAS analysis, we thus used a model with the 603 

polygenic term only, but considering both the VanRaden, or Weir and Goudet methods for 604 

modeling the covariance of this polygenic effect.  605 

The GWAS analysis was carried out using both single-locus and multi-locus models. For the 606 

single-locus model, we employed the MM4LMM package (Laporte et al., 2022), while for the 607 

multi-locus model, we utilized the MLMM approach, as proposed by Segura et al. (2012). 608 

MLMM is based on a forward and backward stepwise linear mixed model approach. In the 609 

forward steps, the most significant SNP detected in a step is incorporated into the model as a new 610 

cofactor before running again the GWAS, until reaching a defined threshold. Conversely, in the 611 

backward stepwise process, the least significant SNP from the list of candidates identified in the 612 

forward steps is removed from the cofactors at each step until only a single selected marker 613 

remains. The selected model was the one with the largest number of SNPs, which all have a P-614 

value below the multiple-testing significance threshold as previously determined (Segura et al., 615 

2012).  616 
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The combination of models (MM4LMM and MLMM) and kinships (VanRaden and Weir & 617 

Goudet) resulted in four distinct analyses. The significance threshold for MM4LMM was set at 618 

5% false discovery rate (FDR). For MLMM, the threshold was established at 9.6 E-6, 619 

corresponding to the p-value of the least significant SNP in the initial run analysis of MM4LMM 620 

using the Weir & Goudet kinship matrix. 621 

To calculate the variance explained by significant SNPs, likelihood-ratio-based R2
LR (Sun et al., 622 

2010) was calculated for retained SNPs associated with the FFD trait. 623 

Looking for candidate genes  624 

To include all SNPs in linkage disequilibrium (LD) in the region investigated for candidate 625 

genes, we estimated LD between SNPs using PopLDdecay V3.40 (Zhang et al., 2019) on a total 626 

of 235,825 SNPs from 318 genotypes (the same dataset used to study the genetic structure). The 627 

LD decayed at approximately 100 bp (r2 = 0.2). In order to encompass a larger genomic region, 628 

we extended the windows around the significantly associated SNPs by 1500 bases upstream and 629 

downstream of the SNP positions. We retrieved the list of genes within these defined intervals, 630 

along with their annotations and associated Gene Ontology (GO) terms reported by Julca et al. 631 

(2020), using the bedtools program v2.30.0 (Quinlan and Hall, 2010). Protein sequences of the 632 

genes found in these associated regions were further analyzed using BLAST against the UniProt 633 

database (The UniProt Consortium, 2023). Descriptions of these genes are provided in Table S10. 634 

Assessing accuracies of different Genomic Prediction models 635 

We tested the accuracy of the genomic prediction of FFD BLUPs. For that, we used the same set 636 

of 118,948 SNPs of imputed data, previously used in the GWAS analysis, involving 318 637 

individuals. Two genomic prediction models based on different regression algorithms to describe 638 

genetic architecture were tested. The ridge regression (RR) based model (Hoerl and Kennard, 639 

1970), designed for scenarios with many minor effects, shrinks all marker effects toward 0 (but 640 

never truly 0) and the least absolute shrinkage and selection operator (LASSO) based model 641 

(Tibshirani, 1996), designed for scenarios with a limited number of major effects, enforces other 642 

effects to be exactly 0. The relative performance of RR or LASSO-based models could provide 643 

valuable information on the genetic architecture of the trait. Both models were implemented 644 

using the R/glmnet package (Friedman et al., 2010). Cross-validation to calibrate the shrinkage 645 

parameter λ was performed using a five folds cross-validation. Model accuracy was assessed by 646 
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calculating the Pearson’s correlation between the observed values of the validation set 647 

(representing 1/5 of the total data) and the estimated values. One hundred iterations were 648 

conducted to estimate the distribution of model accuracy. The distribution of the accuracy values 649 

was compared between RR and LASSO-based models using the Wilcoxon-Mann-Whitney test 650 

(Wilcoxon, 1945).  651 
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