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v Rapid learning confers significant advantages to animals in ecological environ-
u ments. Despite the need for speed, animals appear to only slowly learn to as-
» sociate rewarded actions with predictive cues'™. This slow learning is thought
13 to be supported by a gradual expansion of predictive cue representation in the
1 sensory cortex?®°. However, evidence is growing that animals learn more rapidly
15 than classical performance measures suggest%?®, challenging the prevailing model
16 of sensory cortical plasticity. Here, we investigated the relationship between
17 learning and sensory cortical representations. We trained mice on an auditory
15 go/no-go task that dissociated the rapid acquisition of task contingencies (learn-
1 ing) from its slower expression (performance)’. Optogenetic silencing demon-
» strated that the auditory cortex (AC) drives both rapid learning and slower
2 performance gains but becomes dispensable at expert. Rather than enhance-
» ment or expansion of cue representations?, two-photon calcium imaging of AC
;3 excitatory neurons throughout learning revealed two higher-order signals that
2 were causal to learning and performance. First, a reward prediction (RP) sig-
»» nal emerged rapidly within tens of trials, was present after action-related errors
% only early in training, and faded at expert levels. Strikingly, silencing at the
 time of the RP signal impaired rapid learning, suggesting it serves an associa-
s tive and teaching role. Second, a distinct cell ensemble encoded and controlled
2 licking suppression that drove the slower performance improvements. These two
s ensembles were spatially clustered but uncoupled from underlying sensory rep-
s resentations, indicating a higher-order functional segregation within AC. Our
» results reveal that the sensory cortex manifests higher-order computations that
;3 separably drive rapid learning and slower performance improvements, reshaping
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s our understanding of the fundamental role of the sensory cortex.

35 Despite the value of rapid learning in ecological environments, most laboratory models of
s rodent learning show that linking sensory cues with reinforced actions is a slow, gradual

1-4,10

37 Process An alternative view suggests that animals, including humans, rapidly infer

s relationships between cues, actions, and reinforcement (i.e. learning)® even if they continue

% to make ongoing performance errors %!

. Recent behavioral studies in rodents have begun to
w0 reconcile these views, arguing that latent task knowledge (i.e. discriminative contingencies)
a can emerge rapidly even though behavioral performance appears to improve only gradually”.
22 How are these two dissociable behavioral processes—rapid acquisition of contingencies versus

i3 slower performance improvements—implemented in the brain?

s An attractive brain region to consider is the sensory cortex as it is thought to subserve
s instrumental learning by enhancing or attenuating the representation of sensory cues that
s drive behavior. Plasticity of cue-related responses in the sensory cortex is thought to subserve
s learning as it mirrors the slow and gradual improvements in behavioral performance®?51°,
s This raises a fundamental challenge: if animals learn discriminative contingencies rapidly but
w cue representations in the sensory cortex change slowly??  the causal model linking cue-
so related plasticity to learning becomes problematic. One possible solution is that the sensory
51 cortex plays a role beyond cue-related representational plasticity and directly represents high-
s order signals that associate reinforced actions with predictive cues. Here we focus on the
53 auditory cortex (AC) and asked whether and how it plays a higher-order role in cue-guided

s« learning.

55 We trained head-fixed, water-restricted mice to lick to a target tone (S+) for water reward
ss and to withhold licking to a foil tone (S—) to avoid a timeout (auditory go/no-go task,
s» Fig.la). We used simple pure tones to prevent the AC from being recruited for complex
ss sensory processing. To confirm this, two-photon imaging of AC excitatory neurons showed
so that stimulus identity could accurately be decoded from AC activity from the first training
o0 day with no subsequent improvement throughout training (Supplementary Figure 1), sug-
s1 gesting that the AC was indeed not needed for perceptual sharpening in the task and thereby
&2 allowing us to identify possible associative functions. Performance was evaluated in each ses-
63 sion in reinforced and non-reinforced (‘probe’) trials (Fig.1b). Performance in probe trials
s revealed a rapid acquisition of task contingency knowledge which was only expressed much
es later in reinforced trials (Fig.1c)”. Reinforcement feedback, although critical for learning,
s paradoxically masked the underlying task knowledge. By combining this behavioral proce-
e dure with optogenetics and longitudinal two-photon imaging, we aimed to determine how
¢ quickly animals learn stimulus-action contingencies and to define the fundamental role of the
s auditory cortex in sound-guided learning.
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Fig.1. Auditory cortex silencing impairs sound-guided learning and performance during
learning.
continued —
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Fig.1 (continued).

a, Head-fixed mice were trained on an auditory go/no-go task with %—spaeed pure tones. H: hit, M:
miss, FA: false alarm, CR: correct reject. b, Every day during training, task knowledge is probed
by omitting reinforcement for 20 trials. c, Two distinct learning trajectories are revealed: a fast
acquisition of task contingencies (measured in probe trials; green) and a slower knowledge expression
(measured in reinforced trials; black). d, Probabilistic optogenetic silencing of the auditory cortex
over learning. e, Testing conditions. f, Accuracy in reinforced light-on trials (two-way ANOVA,
p < 107%). g, Action rate in reinforced light-on trials (HIT, p = 0.07; FA, p < 10733). See
also Supplementary Figure 4. h, Accuracy in probe light-off trials (two-way ANOVA, p < 1074).
i, Tone response index in S+ trials (see Methods; two-way ANOVA, p < 107!%1). Black and gray
lines are individual mice and dots indicate change points (see Methods). j, Maximal difference
between hit and FA rates in probe light-off trials over the first 6 days (t-test, p < 1073). k, Hit
lick latency in probe light-off trials (median + s.e.median; Wilcoxon test, p = 0.007). 1, Accuracy
in reinforced light-off trials (two-way ANOVA, p < 10~%). m, Action rate in reinforced light-off
trials (two-way ANOVA, HIT: p = 0.57, FA: p < 107%). n, Accuracy in reinforced light-off trials
with inter-subject alignment to the day where probe accuracy > 0.65 (green triangle) (two-way
ANOVA, p < 107°). Supplementary Figure 3a-c. o, Comparison of light-off versus light-on trials to
measure auditory cortex silencing effect on on-line performance. p, Session density plot of accuracy
in reinforced light-on against light-off. Top, control; bottom, PV-ChR2. See also Supplementary
Figure 3d-g. q, Within subject accuracy difference in reinforced light-on and light-off trials, aligned
to the day where FA rate < 0.3 in reinforced light-off (two-way ANOVA, p < 1071%). r, Within
subject accuracy difference in reinforced light-on and light-off when silencing started at expert level
(n = 4; t-test, p = 0.58). See also Supplementary Figure 6. mean + s.e.m.; *p < 0.05; **p < 0.01;
***p < 0.001, n.s.: not significant.
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7 The auditory cortex is the default pathway for sound-guided learning

n  Lesion studies have suggested that the AC may not be essential to learn or execute cue-
2 guided tasks with simple sensory stimuli'?'°. However, permanent lesions cannot determine
s whether the AC is normally used for, or causally produces'®, learning in an intact brain.
7 To address this, we exploited a transient silencing approach to prevent the recruitment of

15,1720 while also using a probabilistic design to allow assessment of

75 alternative pathways
s learning as distinct from performance by measuring behavior on non-silenced trials, thereby

77 avoiding direct effects of silencing on performance.

72 We examined the impact of bilateral cortical silencing of the AC throughout learning (Fig.1a).
79 We probabilistically silenced the AC on 90% of reinforced trials throughout learning (‘light-on
o reinforced’, Fig.1d), leaving 10% of reinforced (‘light-off reinforced’) and 100% of probe trials
a1 (‘light-off probe’) with intact AC activity. Silenced trials were pseudo-randomly sequenced
&2 and equally split between S+ and S—. Silencing was achieved by shining blue light bilaterally
g3 through cranial windows implanted above the AC of double transgenic mice (n=8) expressing
s channel rhodopsin (ChR2) in parvalbumin (PV) interneurons'*?' (Fig.1d). We confirmed
ss that the excitatory network was effectively silenced using this approach by combining two-
s photon calcium imaging of excitatory neurons and full-field optogenetic stimulation in PV-
&7 ChR2 mice (Supplementary Figure 2). Control mice (n=8) received the same light stimulation
ss  but did not express ChR2. This experimental design allowed us to assay the impact of cortical
s silencing on performance (control vs PV-ChR2 performance on light-on reinforced trials)
o versus acquisition learning (control vs PV-ChR2 performance on light-off probe trials) and
o expression learning (control vs PV-ChR2 performance on light-off reinforced trials) (Fig.le).

oo We first compared performance in light-on reinforced trials between PV-ChR2 and control
s mice (Fig.le) and observed a large performance impairment in PV-ChR2 mice (Fig.1fg).
o To address whether this performance reduction was accompanied by an impairment in rapid
os learning, we compared performance in PV-ChR2 and control animals in light-off probe trials
o (Fig.le,h-k) when the AC was not silenced and knowledge acquisition can be accurately
v measured”. Accuracy was lower during probe trials in PV-ChR2 mice (Fig.1h), with delayed
¢ S+-response learning (Fig.1i), lower discrimination (Fig.1j), and longer lick latency on hit
o trials (Fig.1k). Rapid acquisition of task knowledge was therefore impaired in PV-ChR2
00 mice.

1 Accuracy was also lower in reinforced light-off trials in PV-ChR2 mice (Fig.1l,m). This
102 remained true even after controlling for their slower task acquisition (Figs.1n, Supplementary
03 Figure 3a-c). These impairments were also apparent in response latency and response vigor
e (Supplementary Figure 4). Together, these results suggest that the AC is the default pathway
s for sound-guided reward learning, even when not needed for perceptual sharpening.
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The auditory cortex is used during learning but becomes dispensable at expert
levels

We next sought to understand the contribution of AC activity for the expression of the learned
behavior as animals transitioned to expert performance. Transient inactivation of auditory
cortex in expert animals has led to conflicting results, with some reports showing degrada-
tion of sound-guided behavior 472223 and others not 4?42, We exploited our probabilistic
silencing strategy and compared performance in light-on (AC silenced) versus light-off (AC
functional) reinforced trials within subjects (Fig.1lo). Performance on these two trial types
was similar at early periods of training, as performance was poor overall (Fig.1p). As train-
ing progressed, performance remained poor on light-on trials but improved on light-off trials
(Fig.1p), demonstrating that the AC is used for task performance at early and intermediate
time-point during learning. Surprisingly, this deficit in performance on light-on trials grad-
ually waned (Fig.1p,q), suggesting that while the AC was used during learning, it became
dispensable once the mice had mastered the task.

These results could be explained by three alternative explanations. First, the optogenetic
manipulation per se may not be interfering with a task-relevant process but instead could be
‘distracting’ the animal, necessitating more time to increase performance in light-on trials.
We reasoned that bilateral silencing of another cortical region that is nominally unrelated
to the task would serve as an important control. We bilaterally silenced the visual cortex
throughout learning in PV-ChR2 mice and found no evidence of performance impairment in
light-on trials (Supplementary Figure 5), demonstrating that the performance impairment
was specific to AC silencing. Second, it is possible that AC silencing altered tone perception,
increasing task difficulty at the perceptual level in light-on trials. Third, the reduction of
impairment during light-on trials could be driven by a reduction of the silencing effect with
time due, for example, to brain damage induced by repeated silencing. To address the
second and third possibilities, we trained a separate cohort of PV-ChR2 mice without daily
inactivation and, instead, inactivated the AC only after they reached expert performance
(see Methods). We observed no impact from AC silencing (Figs.1r, Supplementary Figure
6)11.

Altogether, these results show that the AC is engaged during learning but is dispensable at
expert levels, potentially tutoring subcortical structures that take over once the associations
are learned.

Unsupervised discovery of learning-related dynamics by low-rank tensor decom-
position

We next sought to understand the nature and dynamics of auditory cortical activity under-
lying learning and performance. To do so, we performed longitudinal, two-photon calcium
imaging of thousands of excitatory neurons in mice learning the auditory go/no-go task
(n =5). A separate group of water-restricted mice was passively exposed to two pure tones
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over the same duration but with no association with reinforcement (n = 3, see Methods;
Supplementary Figure 7). This design allowed us to use the passive network as a base-case
model to isolate learning-related neural dynamics.

We expressed the genetically encoded calcium indicator GCaMP6f under the CaMKII pro-
moter, targeting AC layer 2/3 pyramidal neurons. We imaged two planes ~50um apart
(Fig.2a), allowing us to record simultaneously hundreds of neurons per animal (n=7,137 neu-
rons in 8 mice). All mice were passively presented with a series of pure tones (4 to 64kHz,
quarter-octave spaced) to characterize auditory tuning properties within the local area of ex-
pression. We computed single-neuron tuning curves and then constructed a ‘best frequency’
map confirming the location in the AC (Fig.2b). For each mouse, we chose two stimuli that
were similarly represented in the recorded population and were 3/4 octaves apart (Fig.2c).
We used a custom head-fixation system that allowed for kinematic registration and tracked
the activity of the same neurons across weeks, including pre- and post-learning tuning curve
sessions (n = 4,643 neurons in 8 mice, see Methods; Fig.2d-g).

From this high-dimensional dataset, we sought to identify single neurons and neuronal ensem-
bles carrying learning-related information, resolve stimulus and non-stimulus related activity
within a given trial, identify changes in representation across trials, and determine outcome-
specific dynamics. To do so, we organized our data into a 4-dimensional array containing
neurons X time in trial X trials across learning x trial outcome (Fig.2h). To identify shared
and distinct variability in neuronal populations recorded in passive mice (n = 2,339, ‘passive
network’) and in learning mice (n = 2,304, ‘learning network’), we created a ‘megamouse’ by
combining data from all mice and aligning neural activity to learning phase (n=4,643 neurons,
see Methods; Fig.2i; Supplementary Figure 8). We then used low-rank tensor decomposi-
tion to allow unsupervised identification of demixed, low-dimensional neural dynamics across

2627 (Supplementary Figure 9 and Supplementary Figure 10a,b;

multiple (> 2) dimensions
see Methods). The tensor decomposition revealed six neuronal dynamics, each characterized
by the four factors of the original tensor (see Methods; Figs.2j, Supplementary Figure 10c,d,
Supplementary Figure 11d). These six dynamics represented independent computations per-

formed by the auditory cortical networks.

Projecting the product of the decomposition into principal component subspace showed that
learning and passive networks exhibit almost orthogonal dynamics (Fig.2k; Supplementary
Figure 10f,g) and that the neural dynamics of different trial types evolved further apart in
the learning network than in the passive network (Supplementary Figure 10h,i). Importantly,
we ensured that the identified dynamics were not driven by isolated mice (Supplementary
Figure 10e). Therefore, decomposition of the megamouse tensor discovered distinct dynamics
exhibited by passive versus learning networks.

For further analyses, we attributed each dynamic to individual neurons based on the neuron’s
maximum weight (‘unique participation’; Fig.21; see Methods and Supplementary Figure 11).
This allowed us to map the six dynamics onto six distinct cell ensembles, i.e. groups of neu-
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Fig.2. Low-rank tensor decomposition reveals learning-related network dynamics.

a, Multi-plane, longitudinal two-photon calcium imaging of layer 2/3 excitatory network in the
auditory cortex during learning (n = 5 mice) or passive exposure (n = 3 mice; see Methods).
b, Tonotopic organization of the field of view of one example mouse before learning (left). Cells
are colored according to their best frequency and tone-evoked responses of example cells circled in
black to 17 pure tones ranging from 4 to 64 kHz are displayed on the right. ¢, Tone-evoked activity
(top) and proportion of responsive cells (bottom) to pure tones. S+ and S— (filled and unfilled
triangles, respectively) are chosen for training in the task based on their equal representation in the
field of view in b. d, Six example cells tracked everyday across weeks. e, Two planes recorded in one
example mouse. Cells are colored according to the number of days tracked among the 19 recording
sessions in this mouse. f, Distribution of number of tracked days per cells in e. g, Cumulative
distribution of tracked cells according to the percentage of recording sessions. Data for mouse in
e is the light blue line. h, Calcium data is arranged by neurons x time within trial (—1 to +4s
relative to tone onset, vertical line) x trials over time x trial outcomes. continued —
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Fig.2 (continued).

i, Activity from all Learning and Passive cells are concatenated together to create a fourth-order
tensor (megamouse; left). In the 37¢, ‘across trials’ dimension, data is aligned across mice according
to learning phases: Acquisition (performance increases in probe trials), Expression (performance
increases in reinforced trials), and Expert (high, stable performance in reinforced trials; see Methods
and Supplementary Figure 8). j, Megamouse tensor decomposition identifies six neuronal dynamics
(numbered; see Methods) that are characterized by a set of four factors: Neuron, Within trial, Across
trial, and Outcome (see also Supplementary Figure 10). k, Projection of the tensor decomposition
output onto principal subspace. Wy,, Wi and W, indicate neuronal, within trial and across
trial weights for a component r, respectively. 1, t-distributed stochastic neighbor embedding (t-
SNE) projections of neuronal weights. Each dot represents a cell, colored according to the neuronal
dynamic it contributed in the most. Bars (right) display the proportion of learning and passive
cells among the highest contributors for each dynamic. Dynamics 1 and 2 are driven by the passive
network (burgundy), while Dynamics 3 to 6 are driven by the learning network (blue). m, In the
passive network, the highest contributing cells in Dynamic 1 define cell ensemble 1, and highest
contributing cells in Dynamic 2 define cell ensemble 2. Similarly, in the learning network, cell
ensembles 3 to 6 are constituted of the highest contributing cells to Dynamics 3 to 6, respectively.
n, Absolute weights of cell ensembles across the six identified dynamics. Neurons can participate
in more than one dynamic.

rons maximally encoding a particular network-specific dynamic (Fig.2m and Supplementary
Figure 11d). It is important to note that individual neurons (and corresponding ensembles)
could exhibit mixed selectivity for the six dynamics, which allows an individual neurons to
contribute to multiple, independent computations (Fig.2n).

Learning counteracts tone-evoked habituation by maintaining stimulus selectivity
in distinct cell populations

A prevailing view in sensory systems holds that sensory cortices subserve associative learning
through plasticity of the cue representation®2?®3%. This model posits that individual neurons
(via changes in sensory tuning) and neural populations (via cortical map expansion) enhance
the representation of behaviorally relevant cues for use by downstream regions*” 3?. These
studies, however, measure neural tuning and map expansion outside of the task context in
a ‘pre’ and ‘post’ learning design and infer that plasticity of cue representations reflects the
mechanistic role of the sensory cortex. To assess this model, we initially focused on the cell
ensembles that exhibited classical stimulus-evoked activity (Fig.2j), namely cell ensembles
1-4.

We observed a prominent signature of stimulus-evoked habituation over hundreds to thou-
sands of trials. This habituation dominated activity in passive networks, as seen in cell en-
sembles 1 and 2 which represented ~77% (1,803/2,339) of all passive cells (Fig.3a,d). These
neurons exhibited stimulus-evoked activation (cell ensemble 1) or suppression (cell ensemble
2), both of which decreased in amplitude over time (Fig.3b-c,e-f). These cell ensembles were
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not stimulus selective and displayed the same dynamic in both stimulus 1 (S1) and stimu-
lus 2 (S2) trials (Fig.3b,e). These ensembles thus reflected the broad-based suppression of
non-selective neurons after long-term repeated presentation of the same sounds.

Stimulus-evoked responses in learning networks were observed in cell ensembles 3 and 4
(Fig.3g-j). This includes a high selectivity for the S— (cell ensemble 3) or S+ (cell ensemble 4)
cues (Fig.3g-j). Cell ensemble 3 consisted of 19% of the Learning cell population (Fig.3g), and
displayed a slight habituation but mainly a strong preference for the S— throughout learning
(Fig.3h), while cell ensemble 4 (12% of total learning cells; Fig.3j) exhibited S+ selectivity
throughout learning (Fig.3j). Cell ensembles 3 and 4 were more tone responsive and tone
selective than cell ensembles 1 and 2 (Fig.3k,1). Stimulus-evoked activity analyses across
days of all recorded neurons (n = 7,137) also support these results (Supplementary Figure
12, Supplementary Figure 13). Therefore, learning counteracted tone-evoked habituation by
maintaining distinct ensembles that encoded either the S+ or S— selectively.

Learning was not associated with cortical map expansion

To directly test representational expansion and tuning shifts, we conducted a series of anal-
yses focusing on stimulus-evoked responses before (pre-task) and after (post-task) learning,
akin to classical measures of tuning and tonotopy. We computed the change in surface area
occupied by S+ and S— preferring cells in tuning curve sessions, outside the task (Fig.3m).
Surprisingly, we observed no increase in the map-level representation of the S+ or S— af-
ter learning, and instead, observed a modest decrease (Fig.3m-n). In addition to the best
frequency representation, the fraction of neurons responding to the S+ and S— decreased
(Fig.30) and the response amplitude of neurons that were initially tuned to the S+ and S—
was lower after learning (Fig.3p). Interestingly, while we observed no increase in representa-
tion to the S+ and S—, learning networks favored the representation of frequencies in between
S+ and S—, but not higher or lower as seen in passive networks (Fig.3n). Finally, using our
passive networks as a base-case comparison, we calculated the local changes in the tonotopic
map structure (Fig.3q). Learning networks were surprisingly stable and exhibited less local
changes than passive networks (Fig.3r). These pre- vs post-learning changes in responsiveness
and tonotopy thus mirrored the responsiveness observed online during learning (in dynamics
1 and 2) in a stable, tracked network (n=4,643 neurons, Fig.3a-1), as well as when we include
all neurons from each session (n=7,137 neurons) (Supplementary Figure 13). Altogether, our
results suggest that cortical map expansion and changes in single-neuron tuning are unlikely

to be the substrate for associative learning*’4!,

Tone-restricted silencing only partially impairs learning and performance

We next sought to understand the extent to which the maintenance of stimulus-selectivity
by learning networks was important to learning and performing the task. We performed
daily bilateral silencing of AC during stimulus presentation throughout learning (Supple-
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Fig.3. Learning counteracts tone-evoked habituation by maintaining stimulus selectiv-
ity in distinct populations.

a, Representation of cell ensemble 1 in the Passive network. b, Average activity of cell ensemble
1 in S1 (black) and S2 (gray) trials across time in 80-trial blocks. Black triangles indicate tone
onset, gray lines delimit averaged trial blocks. Black dashed lines separate time phases indicated
by light to dark gray rectangles at the top: early, middle and late (see Methods). ¢, Cell ensemble
1 tone-evoked calcium responses across time phases for S1 and S2 trials combined (Friedman test,
p = 1.26.1072%). d, Representation of cell ensemble 2 in the Passive network. e, Average activity
of cell ensemble 2 in S1 and S2 trials across time. f, Cell ensemble 2 tone-evoked calcium responses
across time phases for S1 and S2 trials combined (Friedman test, p = 7.32.10712!). g Representa-
tion of cell ensemble 3 in the Learning network. h, Average activity of cell ensemble 3 in hit (green)
and CR (yellow) trials across learning in 80-trial blocks. Black triangles indicate tone onset, gray
lines delimit averaged trial blocks. Black dashed lines separate learning phases indicated by colored
rectangles at the top: Acquisition, Expression and Expert (see Methods). i, Representation of cell
ensemble 4 in the Learning network. j, Average activity of cell ensemble 4 in hit and CR trials across
learning. k, Response index (response probability over learning; see Methods) of cell ensembles 1
and 2 (red) vs cell ensembles 3 and 4 (blue) (Wilcoxon test, p = 1.23.10730). continued —
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Fig.3 (continued).

1, Selectivity index (see Methods) of cell ensembles 1 and 2 (red) vs cell ensembles 3 and 4 (blue)
(Wilcoxon test, p = 1.37.107%4). m, Pre (top raw) and post (bottom raw) learning tonotopic maps
(left), after spatial binning (middle) and restricted to surface with S+ (filled triangle) and S— (open
triangle) best frequency (right) of one example mouse. n, Change in surface representation of S+
and S— pre- vs post-task learning (Learning) or pre- vs post-passive exposure (Passive) (binomial
proportion tests). o, Pre vs post-learning change in percentage of neurons responsive to S+ and S—
(binomial proportion tests). p, Pre vs post-learning change in tone-evoked responses of pre-task S+
and S— responsive neurons (KW test, p = 2.77.107°). q, Pre- vs post-learning comparison of local
best frequency differences in tonotopic maps. r, Distribution of local differences (from difference
maps in q) in Learning versus Passive. median + s.e.median; *p < 0.05; **p < 0.01; ***p < 0.001,
n.s.: not significant.

mentary Figure 14a). Tone-restricted AC silencing impaired task performance throughout
learning (Supplementary Figure 14b-e), task acquisition (Supplementary Figure 14f-i), and
online performance during learning, with gradual fading of the effect at expert performance
(Supplementary Figure 14n-q). Accuracy and action rate were not affected in reinforced
light-off trials (Supplementary Figure 14j-k), but PV-ChR2 mice lick more and faster to the
S— (Supplementary Figure 141-m), suggesting that tone-restricted AC silencing also impaired
expression, but to a lesser extent than full-trial silencing. Altogether, these results showed
that information carried by the AC network in the tone-evoked window is used during learn-
ing. Interestingly, tone-restricted silencing impacted learning less than full trial silencing
across nearly all measures (Fig.1, Supplementary Figure 14), suggesting that activity af-
ter the tone-evoked window was critical for rapid contingency acquisition and performance
during learning.

Rapid emergence of reward prediction activity in the auditory cortex

The sensory cortex is widely considered to be specialized for perception by interpreting com-

42,43 2,33,37,44,45

plex sensory objects or adjusting representations of behaviorally-relevant stimuli

Recent evidence, however, suggests that sensory cortical neurons directly encode non-sensory

variables such as movement*®*° reward timing®’ 3, expectation®*°, and context 234356763,
Conjoint representations of sensory and non-sensory variables in the same network could

further hone perception or, alternatively, subserve more integrative associative processes.

Inspection of the within-trial dynamics of learning-driven cell ensembles 5 and 6 suggested
that these neurons exhibited non-canonical activity in the form of a signal that occurred
late in the trial, delayed from the tone-evoked response (Fig.2j). This late-in-trial signal
increased over learning and was trial type selective (Fig.2j). We next sought to further
explore the encoding properties of these two cell ensembles. Cell ensemble 5 (n = 155 cells
from the learning network), exhibited late-in-trial activity on hit trials (licking to the S+)
that increased with learning (Fig.4a). This delayed activity was not apparent on correct S—
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Fig.4. Rapid emergence of reward prediction encoding drives learning.

a, Heat map of cell ensemble 5 activity (n = 155 cells) across learning phases (delimited by horizontal
white dashed lines) in hit trials (20-trial blocks). White trace represents the average trial trace.
Inserts (right) show average activity at time indicated by black triangles. Colored rectangles indicate
learning phases: Acquisition (green), Expression (black) and Expert (blue). b, Heat map of cell
ensemble 5 activity across learning phases (delimited by horizontal white dashed lines) in CR trials
(20-trial blocks). ¢, Heat map of the activity of a fraction of cells from cell ensemble 5 (n = 20 cells)
from one example mouse across consecutive S+ trials. Black dots indicate licks. Trial outcome is
represented on the right (green circle: hit; blue stars: miss). d, Cell ensemble 5 activity in hit
vs miss trials (time and number matched, see Methods and Supplementary Figure 15a). e, Area
under the curve (AUC) quantification of data in gray rectangle in d (Wilcoxon signed rank test,
p = 6.78.10721). f, Procedure of reinforced and probe hit trial (H) matching. g, Average cell
ensemble 5 activity in reinforced hit trials immediately before (black) or after (gray) probe hit trials
(green). h, AUC quantification of data in h (Friedman test, p = 0.3071). i, Lick PSTHs in reinforced
hit trials immediately before (black) or after (gray) probe hit trials (green). j, Quantification of
number of licks in 1-s window post-tone (KW test, p = 3.18.107°%). continued —
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Fig.4 (continued).

k, Average activity of cell ensemble 5 over the first five blocks of 40-reinforced hit trials in learn-
ing. 1, Late peak activity in HIT trials across learning phases of cell ensemble 5 (green) and low
weighted cells (null, black). m, Procedure of reinforced and probe FA trial (fa) matching (top) and
corresponding local accuracy quantification (bottom; see Methods; repeated measures ANOVA,
p = 3.16.10~%). n, Average cell ensemble 5 activity in FA trials in the probe, non-reinforced con-
text (orange). AUC late-in-trial (gray rectangle) compared to zero (Wilcoxon signed rank test,
p = 1.46.1078). o, Average activity of cell ensemble 5 (n = 51 cells) from one example mouse in
FA trials in the reinforced context (n = 423) after classification based on the detection of a reward
prediction signal. Bottom, average activity of FA trials with (RP+, n = 101) or without (RP-,
n = 322) reward prediction signal, and activity during FA trials in the probe context (n = 19
trials, orange) reflecting ‘knowledge’ errors (see also Supplementary Figure 16). p, Heat map of
the activity of a fraction of cells from cell ensemble 5 (n = 51 cells) from the same example mouse
in o across consecutive FA trials in the reinforced context. Identification of a RP signal is repre-
sented by a black dot (right). q, Distribution of RP+ and RP— FA trials over learning in learning
mice (binomial proportion tests, Acquisition, p = 1.65.10~7, Expression, p = 3.32.10710, Expert,
p = 0.22). r, Trial-specific closed-loop optogenetic AC inactivation over learning. s, Performance
index (left, see Methods; two-way ANOVA, p = 2.11.1072!) and hit lick latency (right; two-way
ANOVA, p = 0.013) in probe context in post-hit silencing experiments. t, Performance index
(left, see Methods; two-way ANOVA, p = 6.36.10°) and hit lick latency (right; two-way ANOVA,
p = 0.008) in probe context in post-FA silencing experiments.

66 trials (correct reject, CR), where neurons exhibited classical stimulus-evoked response that

=3

2

=)

7+ habituated over learning (Fig.4b).

x%s 1o understand the nature of the late-in-trial activity, we exploited our multiple trial types to

x0 disambiguate the contribution of sensory, motor, and reward signals. To assess whether the

=)

2

3

o late-in-trial signal was a delayed form of sensory activity, we compared activity in hit trials to

2

3

1 activity in trials where the same stimulus was presented but the mice did not lick and did not

o2 get rewarded (miss trials, Figs.la and 4c-e). To ensure an appropriate comparison between

3

23 hit and miss trials, we generated a balanced set of trials that were matched in number (given
o that miss trials were less frequent) and occurred within the same time period (given that

2

3

s the signal amplitude evolved with learning) (Supplementary Figure 15a). Cell ensemble 5
26 did not exhibit late-in-trial activity on miss trials (Fig.4c-e), discarding the possibility that

a7 it reflected a delayed sensory response. We then asked whether this activity reflected reward

3

ars - consumption. We compared cell ensemble activity during hit trials in the reinforced context
20 to the activity during hit trials in the probe context (Fig.4f), where the mice expected reward
20 and thus correctly licked to the S+ but the reward was omitted (Fig.1b). We matched the
s number of trials between reinforced and probe contexts and controlled for within-session
22 and across-session changes by comparing probe hit trials to reinforced hit trials immediately
23 before and after the probe block (Fig.4f). Strikingly, late-in-trial activity was preserved
8¢ in probe trials (Fig.4g,h), indicating that it did not reflect reward consumption. Finally,

46,64-66

25 although movement has been reported to decrease auditory cortical activity , we sought

@
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to understand the degree to which this late-in-trial signal could be driven by licking itself. To
do this, we first exploited probe hit trials where the lick rate was strongly reduced compared
to reinforced hit trials (Fig.4i,j). We observed no difference in the late-in-trial neural signal
and could thus conclude that the signal was not due to ongoing licking (Fig.4i,j). Second, we
tested the possibility that this late-in-trial signal was driven by the initiation of a lick bout
as compared to the ongoing licking activity. We isolated spontaneous lick bouts in between
training blocks and observed that the cell ensemble was not lick-responsive (Supplementary
Figure 15b,c). In addition, if lick initiation drove this activity, we would also expect to
see it on false alarm trials (incorrect licking to the S—). For this analysis, we focused on
false alarms that occurred after task acquisition, as these errors are unlikely to be errors
due to imperfect task knowledge. We observed no systematic late-in-trial activity on these
trials (Supplementary Figure 15d) even though the licking pattern in false alarm trials was
similar to that during probe hit trials (Supplementary Figure 15e). Taken together, the
late-in-trial activity did not reflect stimulus, reward consumption, licking, nor lick initiation.
Instead, these results showed that cell ensemble 5 encoded the higher-order process of reward
prediction (RP).

We next sought to identify the precise moment when a contingency is formed by identify-
ing the trials when this reward prediction signal emerged. Initially, these neurons exhibited
classical tone-evoked responses but then abruptly and within only 40 hit trials, developed a
robust reward prediction activity (Fig.4k, Supplementary Figure 15f). This reward predic-
tion signal continued to develop over Acquisition, strengthened during Expression, and then
surprisingly receded at Expert level when learning is nominally complete (Fig.4a,l, Supple-
mentary Figure 15g). This longitudinal temporal dynamic mirrored our optogenetic results
which demonstrates that the AC is the default pathway for learning but then becomes dis-
pensable at expert levels. Altogether, these results show that a reward prediction signal
rapidly emerges at the timescale of Acquisition in auditory cortical networks.

Revealing the underlying cognitive drivers of errors

Identifying the cognitive drivers of errors is particularly challenging during learning*. Errors
during learning are typically considered ‘mistakes’ while discriminative contingencies (task
knowledge) are still forming. However, errors arise not only from knowledge-related mistakes
(for which animals incorrectly expect reward), but also from factors such as impulsivity,
disengagement, and exploration (for which animals do not expect reward). While detailed
behavioral inspection has been a promising route to uncover the nature of errors'!, an al-
ternative approach is to use neural activity itself. Given our findings of reward prediction
encoding on correct trials, we hypothesized that the same signal would be present when an-
imals make ‘knowledge-related’ errors, when animals incorrectly ‘expected’ rewards on S—
trials. To address this, we first focused on the occasional false alarms (FA) that occurred
during probe trials, as they reflected errors of task knowledge (Fig.4m)". Strikingly, we ob-
served a robust reward prediction activity in these trials (Fig.4n), strongly suggesting that
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animals were indeed expecting reward. We next reasoned that such knowledge errors should
be present not only on probe trials, but also in a subset of reinforced trials, interspersed with
non-knowledge errors. We classified individual FA trials in the reinforced context based on
the presence of a reward prediction signal (see Methods; Supplementary Figure 16a). We
identified a significant proportion of trials that exhibited robust reward prediction activity,
but also many that did not (Fig.4o, Supplementary Figure 16b). The reward prediction
signal was identical to that observed in probe trials (Fig.4o, Supplementary Figure 16d),
providing further confidence that these were indeed knowledge errors. These data suggest
that we could isolate knowledge errors using neural data, which was not possible from behav-
ioral inspection alone (Supplementary Figure 16¢). Interestingly, we found that knowledge
errors were interspersed with errors that did not elicit reward prediction activity (Fig.4p).
Finally, we hypothesized that knowledge errors should predominantly occur during the Ac-
quisition phase of behavior, when animals are still learning the discriminative contingencies.
We computed the fraction of RP+ (knowledge-related errors) and RP- (non-knowledge er-
rors) over time and found that RP+ errors peaked during the Acquisition phase of learning,
and rarely occurred during Expression or Expert phases of behavior (Fig.4q, Supplementary
Figure 15d). These results demonstrate that the internal cognitive drivers of errors may be
accessible from neural data, which is particularly striking when behavior alone is insufficient.

Reward prediction activity provides the core teaching signal

Learning theory proposes that animals learn from correct actions that are rewarded but also
from incorrect actions that are not rewarded®”. This allows animals to select the appropriate
action after reward-predictive (S+) versus non-predictive (S—) cues. Given the presence of
the reward prediction activity on correct S+ trials (throughout learning) and incorrect S—
trials (early in learning), we reasoned that silencing auditory cortical activity during the
post-response period could impact learning and/or performance. To test this, we performed
closed-loop probabilistic optogenetic silencing of the AC whereby light was delivered upon
lick detection in 90% of either S+ reinforced trials (n = 5 control, n = 8 PV-ChR2 mice) or,
in a separate cohort, S— reinforced trials (n = 7 control, n = 8 PV-ChR2 mice; see Methods;
Fig.4r, Supplementary Figure 17a, Supplementary Figure 18a). No light was delivered in
10% of S+ reinforced trials and 100% of probe trials. Given that the light was delivered after
the instrumental lick response, the effect of the manipulation could not affect the instrumen-
tal behavior on the current trial, only on subsequent ones. To confirm this, we calculated
the difference in performance between light-on and light-off trials and observed no differ-
ence (Supplementary Figure 17b-d and Supplementary Figure 18b-d). In the S+ cohort,
post-hit silencing weakened the stimulus-action association (Fig.4s), delayed cue-response
discrimination (Figs.4s), but did not impact probe accuracy over the first 6 days (Supple-
mentary Figure 17e-g). Importantly, the same silencing protocol above the visual cortex
(n = 6 PV-ChR2 mice) had no effect on behavior, confirming that these effects were specific
to the auditory cortex (Supplementary Figure 17k,1). In the S— cohort, post-FA silencing
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s« weakened the stimulus-action association as measured on hit trials (Fig.4t), robustly de-

k=3

w5 layed cue-response discrimination (Fig.4t, Supplementary Figure 17g), and impaired probe

3

=)

s accuracy over the first 6 days (Supplementary Figure 17e,f). Accuracy of PV-ChR2 mice
37 was lower than control in the reinforced context in both experiments (Supplementary Figure
s 17h and Supplementary Figure 18h), with lower hit rate and higher FA rate (Supplemen-

30 tary Figure 17i and Supplementary Figure 18i), and longer response latencies on hit trials

I3

3

b
o

(Supplementary Figure 17j and Supplementary Figure 18j), suggesting an impairment of ex-

sn pression. Overall, these closed-loop manipulations showed that AC activity at the time of

X

> the reward prediction signal in both hit and FA trials was used by the animal for the task

3

3

3

X

3 acquisition and expression. These data also demonstrate that learning is sensitive to cortical

3

by

+ silencing on mistakes (FA trials) suggesting that in a go/no-go paradigm, reward feedback on

a5 error trials is crucial to the learning process. Altogether, these results suggest that reward

3

srs - prediction activity in auditory cortical networks is used as a teaching signal during learning.
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Fig.5. Action suppression signals in the AC induce suppression of licking.

a, Representation of cell ensemble 6 (n = 704 cells) in the Learning network. b, Average activity
of cell ensemble 6 (yellow) versus cells that do not contribute to this dynamic (null, black) in CR
trials in Expert phase (Wilcoxon test, p = 7.44.107'7). ¢, Average activity of cell ensemble 6 in
CR trials (top) and CR rate (bottom) during Acquisition (green), Expression (black) and Expert
(blue) phases (KW test, p = 0.09). d, Heat map of cell ensemble 6 activity in hit, FA and CR trials.
FA trials are binned according to lick latencies (white dots, latency range extrema; white cross,
mean latency). e, Heat map of cell ensemble 6 activity in hit and FA trials significantly different
from CR trials (Wilcoxon tests, red, higher; blue, lower; white, n.s.). f, Average cell ensemble 6
activity in miss and CR trials (time and number matched, see Methods; middle). Quantifications
of tone-evoked activity (bottom left; Wilcoxon signed rank test, p = 0.84) and late-in-trial AUC
(bottom right; Wilcoxon signed rank test, p = 5.24.10726). g, Procedure of reinforced and probe
CR trial matching (top) and corresponding calcium activity (middle; Friedman test, p = 1.36.1071!)
and local hit rate (bottom; Friedman test, p = 3.45.10~!!). h, FA rate difference between light-on
and light-off trials in PV-ChR2 mice (two-way ANOVA, p = 7.20.1071%; t-tests compared to 0,
p=4.96.10"% p = 0.96, p = 0.002). Auditory or visual cortex were inhibited during the full trial
(AC trial, n = 8; VC trial, n = 8) or AC was silenced during tone presentation only (AC tone,
n = 4). i, Average lick probability in FA light-on versus FA light-off trials (two-way ANOVA,
p = 1.18.1075; t-tests compared to 0, p = 1.94.107%, p = 0.10, p = 0.68).
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Encoding of action suppression enables task performance

A critical requirement in a go/no-go task is the ability to suppress responding to the non-
rewarded, S— cue. In our task, we demonstrate that mice have the capacity to withhold
licking to the S— very early in learning (as shown in probe trials during the acquisition
phase) but continue to lick for hundreds to thousands of trials when being reinforced and
throughout Expression. Here, we ask the extent to which the AC mediates this form of action
suppression. Neurons in cell ensemble 6 (n = 704, 31% of learning networks; Fig.5a), but
not non-member cells, exhibited late-in-trial activity when animals correctly withheld from
licking on S— trials (correct rejects, CR; Fig.5b, Supplementary Figure 19a-b). This signal
was stable throughout training despite the strong increase of CR rate over learning (Fig.5c,
Supplementary Figure 19¢-d). This all-or-none attribute suggested that this late-in-trial
activation was tied to performance rather than being a signal used for learning. Once mice
acquired the task contingencies, they essentially learned to inhibit a licking response to the
S— tone. We therefore thought to test the hypothesis that late-in-trial activation in CR trials
reflected action suppression. First, we reasoned that activity in FA and CR trials should be
similar until the moment of suppression failure (i.e. first lick). We compared the activity
of cell ensemble 6 in CR vs FA trials, i.e. when mice fail to withhold licking (see Methods)
exploiting the different first lick latencies in FA trials (Fig.5d). We observed that calcium
activity dropped abruptly in FA trials at the time of the first lick compared to CR trials
(Fig.5d,e, Supplementary Figure 19e). Second, if lick suppression is an active contingency-
specific process, the late-in-trial activation should be specific for correct rejections for the
S— tone, and not observed when the animal did not lick in response to the S+ tone (miss
trials). Given that miss trials were rare and sporadic, we controlled for the effect of time
over learning and difference in the number of trials for each outcome type (see Methods) and
did not observe late-in-trial activation on miss trials despite similar peak activity after tone
onset in miss and CR trials (Fig.5f). Third, we reasoned that if this activity reflects the
active process of action suppression, the signal should decrease when the animal disengaged
from the task. We therefore compared late-in-trial activity in CR trials immediately before,
during and after short blocks of disengagement (see Methods) and observed that the activity
dropped significantly when mice transiently disengaged from the task (Fig.5g). These data
suggest that the auditory cortex integrates a higher-order action suppression signal.

Finally, we wondered whether the action suppression activity in the AC was causal to perfor-
mance during learning. To test this, we reasoned that silencing the AC network throughout
S— trials should increase the FA rate but also the lick probability (since the action suppres-
sion neurons are silenced during this period). In contrast, silencing the AC network only
during the stimulus period should increase the FA rate but not impact the lick probability
when the light is off (Supplementary Figure 19f). We first compared the FA rate between
light-on and light-off trials in PV-ChR2 mice during full trial silencing (Fig.5h) and observed
a marked increase in FA rate and lick probability (Fig.5h,i). Importantly, this effect was not
the result of the perception of optogenetic manipulation per se as suppression of the visual
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Fig.6. Reward prediction and action suppression signals emerged in segregated neu-
ronal populations and do not rely on underlying stimulus selectivity

a, Spatial distribution of reward prediction (purple circles) and behavioral inhibition (orange cir-
cles) cell ensembles in an example mouse. Color scale indicates neuronal weights in Dynamics 5
(purple) and 6 (orange). b, Median of cell distance between cell ensembles compared to shuffle
distribution (n = 500) for example mouse in a. The null hypothesis is that the distance between
the two ensembles is no different than chance (i.e. no spatial organization). ¢, Z-scored distances
between clusters per mouse (blue: significant; gray: non-significant). Red arrow points to example
mouse in a. d, Neuronal weights in Dynamics 5 and 6 of cells from learning mice (n = 1,216, left)
and their pre-task stimulus selectivity index (right). e, Distributions of pre-task stimulus selectivity
of cell ensembles 5 and 6 (KS test, p = 0.25, Wilcoxon test, p = 0.18). f, Pre-task tonotopic map of
the example mice in a. Cells are colored according to their best frequency (BF). Frequencies used
as S+ and S— for training are indicated by full and empty triangles, respectively. g, Distribution of
BF distance from S+ for reward prediction cell ensemble (purple). Null hypothesis is that reward
prediction cells have a BF as close to S+ as possible (black; see Methods; KS test, p = 3.81.107Y).
h, Distribution of BF distance from S— for action suppression cell ensemble (orange). Null hypoth-
esis is that action suppression cells had a BF as close to S— as possible (black; see Methods; KS
test, p = 9.21.10716). i, Proportions of S+ and S—-preferring cells in reward prediction and action
suppression cell ensembles (binomial proportion tests, S+, p = 0.17, S—, p = 0.53)
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cortex in PV-ChR2 mice did not have this effect (Fig.5h,i). In contrast, restricting silenc-
ing to the stimulus period increased FA rate while not affecting lick probability (Fig.5h,i),
suggesting that the late-in-trial activity in CR trials was critical for the maintenance of ac-
tion suppression. Altogether, these results showed that action suppression is encoded in the
auditory cortex and is instrumental for performance during learning.

Higher-order contingency ensembles are spatially clustered and uncoupled from
sensory representations

We next asked the extent to which reward prediction and action suppression ensembles
mapped onto the underlying stimulus properties of the AC. We exploited the spatial res-
olution of two-photon imaging to characterize the spatial distribution of reward prediction
and action suppression neurons in the AC network. Strikingly, we observed that the two cell
ensembles were spatially clustered (Fig.6a-c). To determine whether this organization was
driven by the neuron’s pre-learning stimulus selectivity, we calculated the selectivity index
(SI) of each neuron before training to test whether neurons selective for the S+ preferentially
became reward prediction neurons and S— selective neurons preferentially became action
suppression neurons. We observed no difference in SI distribution between reward predictive
and action suppression neurons (Fig.6d,e), suggesting that pre-task stimulus selectivity was
not predictive of either reward prediction or action suppression. We then asked whether the
spatial location of reward prediction and action suppression neurons aligned with the under-
lying tonotopic map. In other words, did action suppression neurons have S— tone for best
frequency, and were reward prediction neurons preferentially responsive to S+ tone (Fig.6f;
see Methods)? We found that this was not the case (Fig.6g,h), with similar proportion
of S+- and S—-preferring neurons in reward prediction and action suppression cell ensem-
bles (Fig.6i). Therefore, contingency-related ensembles clustered into spatial domains that
were uncoupled from underlying stimulus selectivity and tonotopy, indicating a higher-order
functional segregation within the AC.

Discussion

Learning-related neural dynamics are traditionally defined as task-specific neural activity
changes that occur at the timescale of an animal’s performance improvements in the learn-
ing, i.e. a reinforced context®. Using this conceptual and experimental framework, perceptual
and instrumental (reward-based) learning and their underlying neural dynamics have been

described as slow and gradual e.g?**

, with animals requiring thousands of trials to learn
low information-content tasks®*. We took advantage of a recent behavioral paradigm’ that
uses non-reinforced probe trials to show that task knowledge emerges more rapidly and ear-
lier than behavioral performance improvement in the learning, reinforced context. Using this
powerful behavioral manipulation to quantitatively assess when the animals acquired the task

contingencies, we aligned our neuronal recordings to learning stages between animals while
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preserving trial-based resolution, and took advantage of an unsupervised, dimensionality re-
duction method across multiple timescales?® to identify learning-specific neural dynamics.
We observed that reward prediction activity emerged remarkably fast - within tens of trials
and on the first day of training - in the AC, hundreds to thousands of trials before noticeable
performance improvements. The AC thus exhibits latent knowledge of the task (encoded in
the network but not behaviorally apparent) with animals experiencing periods when knowl-
edge of environmental contingencies (between cues, actions, and rewards) becomes rapidly
encoded in the brain, perhaps reflecting an insight-like moment. The latent task knowledge
was manifested not as changes in sensory representations, but as the emergence of discrete
ensembles encoding reward prediction (needed for identifying that a particular cue signals
reward availability) and action suppression (needed for suppressing licking on S— trials).
These computations were spatially clustered and developed in a manner that was uncoupled
from the underlying stimulus-related processing that takes place in the AC, suggesting a
higher-order functional organization. Overall, we find that AC contains separable and causal
neural dynamics for both learning and performance.

Our results call for a revision of the classical view of the sensory cortex, according to which
its primary role is to process and interpret sensory stimuli. We propose instead that the sen-
sory cortex is better described as a sensory-enriched associative cortex, driving rapid forms
of associative learning and where sensory and associative functions are intrinsically inter-
mingled (i.e. co-exist within the same network) but computationally separable (Fig.6). This
function of the sensory cortex may have thus far been obscured by the use of complex sensory
objects that recruit the sensory cortex for object-level processing, making it difficult to iso-
late non-perceptual learning computations. Finally, it is important to note that our results
do not contradict studies that demonstrate single-neuron tuning curve shifts and tonotopic
map plasticity when animals learn perceptually challenging tasks. Our revised model of the
sensory cortex would suggest that perceptual sharpening and complex object processing can
be subserved by stimulus-related plasticity while the higher-order computations related to
associative learning and performance occur in parallel. We expect this view will apply beyond
rodents, as rich encoding of non-sensory and task-relevant variables has also been described

in human and non-human primate sensory cortical areas® ",

The detailed input-output circuit that enables reward prediction and action suppression
computations remains an important area for future exploration. One possibility is that

23,29,71-75

ascending neuromodulatory inputs and top-down projections from motor and frontal

447678 gerve as critical non-sensory inputs to the sensory cortex. The sensory cortex

regions
may then integrate and generate higher-order computations that are incorporated by broader
decision-related circuits (e.g. frontal cortex, striatum and amygdala) to enable rapid learning

and ongoing performance.
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Methods

Animals

All procedures were approved by Johns Hopkins University Animal Care and Use Committee
(MO20A272). Male and female double (PV-ChR2; test mice) or single (PV-cre or flox-ChR2;
control mice) transgenic mice between 6 and 12 weeks at the start of experiments were used for
the optogenetic experiments. PV-cre (Jackson laboratory, strain #017320), flox-ChR2 (Ai32,
Jackson laboratory, strain #012569) and PV-ChR2 mice were bred in-house. PV-ChR2 mice
were obtained by crossing male PV-cre?/~ mice with female flox-ChR2*/* or by crossing
male flox-ChR2*/* with female PV-cret/~. To obtain PV-cre*/~ line, we bred female PV-
cre™/* with male C57BL/6J (Jackson laboratory, strain #000664). Offspring genotypes were
confirmed by PCR (Lucigen EconoTaq Plus GREEN 2X) and using two-photon imaging to
observe expression of the reporter protein (GFP, see subsection ‘Optogenetic experiments’).
Male C57BL/6J (Jackson laboratory, strain #000664) aged between 6 and 12 weeks at the
start of experiments were used for two-photon calcium imaging experiments. Animals were
group housed in standard plastic cages with food available ad libitum and maintained on a
12-hour reversed light-dark cycle at stable temperature (19.5-22°C) and humidity (35-38%).
Experiments took place during the dark phase. Mice were kept on a mild water restriction
diet (>85% of body weight) after surgery and throughout task training.

Surgical procedures

Mice were anesthetized with isoflurane (5% at induction and maintained at 2% during
surgery) and their body temperature was maintained at ~35°C throughout the surgery.

Calcium imaging experiments

Mice were injected (34 gauge, 25.4 mm, 12-degree bevel needle; Hamilton Company) with
1ul of AAV9-CaMKII-GCaMP6f (Addgene, #100834-AAV9, dilution 1/15) at 0.75ul.min?
(microinjection pump, Harvard Apparatus) in the left primary auditory cortex (centered at
1.75 mm anterior to the intersection of the lambdoid and interparietal-occipital sutures, DV:-
200pm). Above the injection coordinates, a cranial window was implanted replacing a circular
piece of skull by a 3-mm diameter cover glass slip (Warner Instruments) that was secured in
place using a mix of dental cement and Krazy Glue. A custom-made, three-point stainless
steel headpost was secured to the skull with C&B Metabond dental cement (Parkell). The
headpost consisted on a two-point kinematic fixation on the right side of the head, prolonged
by a rod encircling the cranial window and descending at ~45° ventrally on the left. Mice
were given a two-week recovery period to allow weight recovery and viral expression.
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Optogenetic experiments

3-mm diameter cover glass slips were implanted bilaterally over the auditory cortex (centered
at 1.75 mm anterior to the intersection of the lambdoid and interparietal-occipital sutures,
on the ridge line of the temporal bone). Custom-made aluminum funnels were implanted
above each cranial window. The role of these funnels was threefold: 1) to precisely center the
end of the patch cord on the cranial windows, 2) to hold the patch cord perpendicular to the
cranial window (optimizing in-depth light diffusion), and 3) to fix the distance between the
patch cord and the cranial window to allow identical light delivery across days. A custom-
made, two-point stainless steel headpost was fixed onto the skull with C&B metabond dental
cement (Parkell) and dental cement. Mice were allowed to recover for at least one week
following surgery.

Optogenetic silencing verification experiments

For silencing verification experiments (Supplementary Figure 2, n=2), PV-ChR2 mice were
injected with 1ul of AAV-CaMK2-GCaMP6f (Addgene, #100834-AAV9, dilution 1/15) at
0.75pl.min~! in the left primary auditory cortex (centered at 1.75 mm anterior to the inter-
section of the lambdoid and interparietal-occipital sutures, DV:-200um) and implanted with
a 3-mm cover glass slip and a custom-made, two-point stainless steel headpost. Mice were
given a two-week recovery period to allow weight recovery and viral expression.

Auditory Go/No-go task

All mice (optogenetic and two-photon imaging) underwent the same habituation and training
procedures. After recovery from surgery, mice were water restricted for at least 5 days so
that their weight stabilized at 85% of their ad libitum weight. During this period, mice were
handled daily. Mice were then head-fixed and placed in the experimental context, where they
were trained to lick from a lick tube or water cup to receive a drop of water (3ul). No tone
was presented during lick training. Lick training session ended after 30 min or when 1 ml
of water was consumed. After two days of lick training, mice were trained on the auditory
Go/No-go task for at least 15 days.

Mice were trained to lick to a target (S+4) tone to receive a water drop (3ul) and with-
hold licking to the foil (S—) tone to avoid a timeout. Auditory stimuli were three quarter
octave-spaced pure tones. Target and foil tones were presented pseudo-randomly and coun-
terbalanced every 20 trials. Each trial consisted of a no lick period (1 s), tone presentation
(100 ms), dead period (200 ms), response period (2.5 s) and a delay period: hit: 4 s (to
enable full licking of the reward), miss and correct reject: 2 s, false alarm: 7 s (timeout).
In this learning context, called the ‘reinforced’ context, the lick-tube delivering water was
positioned within reach of the tongue. In contrast, in the ‘probe context’; the lick-tube was
moved out of tongue and whisker reach by an automated actuator. The blocks of probe trials
were interspersed between reinforced trials and no additional delay was introduced by lick-
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tube movement. Importantly, we have shown that the performance gap observed between
probe and reinforced trials early in learning is not driven by the change in the sensory context
induced by the absence of the lick-tube in the probe context”.

Optogenetic experiments

Mice were trained in the Go/No-go task for 300 trials every day: 280 trials in the rein-
forced context interspersed with a short block of 20 non-reinforced (probe) trials starting
at trial #141. Head-fixation habituation, lick training and Go/No-go task training took
place in custom-made, sound-attenuated behavioral boxes (ambient noise level ~53 dB SPL)
controlled with custom-written MATLAB programs interfacing with Bpod State Machines
(Sanworks). Pure tones (4,757 and 8,000 Hz) were delivered through an electrostatic speaker
driver (TDT) to a free field electrostatic speaker (TDT) at an intensity of 70 dB SPL and
licks were detected through an infrared beam. Blue light (453nm, DPSS laser, Opto-Engine
LLC) was delivered in a 20-Hz sinewave generated by Arduino. The power recorded at the
end of the patch cord (splitter branching fiber-optic patch cords, Doric Lenses) was 6-8mW.
When dispersed over a diameter of 3mm, that yields a light intensity of 0.85-1.13 mw/mm?
at the cortical surface. Sound amplitude, water drop size, and laser power were calibrated at
the beginning of each experiment. To dissociate the effect of AC silencing on behavior from
its consequence on the learning process, we used a probabilistic approach whereby no light
was delivered during probe trials and a subset of reinforced trials. These light-off trials were
critical to assess behavior when the auditory cortex was available again.

Full trial experiment (n =8 PV-ChR2, n = 8 control mice, n = 8 PV-ChR2 visual cortex): light

was turned on on 90% of reinforced trials pseudo-randomly (18 trials — 9 S+ and 9 S— —
every 20-trial block). In light-on trials, the light was turned on 100 ms before tone onset and
stayed on for ~2.5 s for all trial types (hit: 2.5 s post operant lick, CR and miss: stop at the
end of response window, FA: 2.5 s post first lick).

Expert only full trial experiment (n = 4 PV-ChR2 mice): Mice were trained for 18 days with-
out light. Afterward and for 5 days, from day 19 to 23, the light was turned on following the

‘full trial experiment’ protocol or on 90% of reinforced trials consecutively.

Tone experiment (n =4 PV-ChR2, n = 3 control mice): light was turned on on 90% of re-

inforced trials pseudo-randomly (18 trials — 9 S+ and 9 S— — were light-on every 20-trial
block). In light-on trials, the light was turned on 100 ms before tone onset and turned off at
tone offset.

Post hit experiment (n = 8 PV-ChR2, n =5 control mice, n = 6 PV-ChR2 visual cortex): we
used a closed-loop lick-triggered stimulation approach, whereby light was turned on after a

rewarded lick on 90% of reinforced trials pseudo-randomly (light could be turned on on 9
over 10 S+ trials every 20-trial block). In light-on trials, the light was turned on 70 ms after
the first lick detection (to allow the lick cycle to complete and the tongue to retract) and
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100 ms before reward delivery and stayed on for 2.5 s.

Post false alarm experiment (n = 8 PV-ChR2, n = 7 control mice): we used a closed-loop

lick-triggered stimulation approach, whereby light was turned on after a non-rewarded lick
on 90% of reinforced trials pseudo-randomly (light could be turned on on 9 over 10 S- trials
every 20-trial block). In light-on trials, the light was turned on 70 ms after the first lick
detection (to allow the lick cycle to complete and the tongue to retract) for 2.5 s.

At the end of the experiments, mice were anesthetized (isoflurane 5% at induction and 2%
during surgery; body temperature maintained at ~35°C) and the left funnel was drilled out.
Mice were then put under the two-photon microscope and the field of view was excited at
980nm. Green fluorescence was detected in test mice (ChR2-EYFP) but not in control mice.
This procedure allowed to confirm mice genotypes and to assess cell health. Z-stacks were
collected (unidirectional, 30.98 Hz; magnification 1.7 or 2.0X; range: 450um, step: 10 pm,
50 frames per step; depth from brain surface 420-445 pm) to generate 3D reconstruction
(ImagelJ).

Longitudinal two-photon calcium imaging during learning

Two-photon fluorescence of GCaMP6f was excited at 980nm using a mode locked Ti:Sapphire
laser (Spectra-Physics) and detected in the green channel (GFP emission). Imaging was
performed with a two-photon resonant-scanning microscope (Neurolabware) equipped with
a water immersion objective (16x, 0.8NA, Nikon) tilted to an angle of 40-50° to image the
auditory cortex. The arm of the microscope was enclosed in a custom-made sound-attenuated
box. An electronically tunable lens was used to record near-simultaneously two planes in
layer 2/3 (150-250pm below dura, 50um spaced, 312x192um?, at 15.96Hz per plane, with a
laser power of <40 mW). Images were collected at 1.7x or 2x magnification using ScanBox
(Neurolabware) and task events (sounds, rewards, licks and frames) were recorded using a
digitizer (Digidata 1550b). Pure tones were delivered through an electrostatic speaker driver
(RZ6, TDT) to a free field electrostatic speaker (TDT) located at ~5cm from the right ear
at intensity of 70dB SPL. Licks were detected through an infrared beam. Scanner noise
(8kHz) was attenuated using a custom-made foam sound enclosure directly surrounding the
animal and the resonant scanner was set to continuous throughout the recording session (to
avoid any scanning onset-related activity). Custom-written MATLAB program interfaced
with RPvdsEx to control task events. Mice were placed in a plastic tube and head-fixed
via a two-point pneumatic clamp on the right and a one-point, 360°-rotational clamp on the
left (at 45-50° in the horizontal plane). The whole behavioral platform was installed on a
rotation platform so that the field of views could be precisely retrieved one day to the next.
Imaging fields were retrieved every day before task training by visual inspection (see also
‘Pre- and post- task tonotopic mappings’). Typically, mice were trained for three blocks
of 80-100 trials, with either two blocks of 10 probe trials interleaved in two of these three
blocks, or one block of 20 probe trials. The field of view was adjusted in between blocks
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to compensate for z-drift, if necessary. An additional 10,000 frames of spontaneous activity
were recorded in a separate block at the end of each behavior session.

Pre- and post- task tonotopic mapping

One day before lick training, mice were placed under the microscope and were presented
with a set of 17 pure tones (duration 100ms), three-quarter octave spaced, in a pseudo-
random order ranging from 4 to 64 kHz at 70 dB SPL. Target and foil tones were selected
for the Go/No-go task as pure tones that were similarly represented in the recorded neuronal
population. The same mapping procedure took place immediately after or one day after the
last behavior session, and 7 and 14 days later.

Two-photon calcium imaging and one-photon blue light stimulation for silencing
verification

To validate our optogenetic silencing protocol and determine light power to use for efficient
and reliable silencing of cortical networks, we recorded calcium activity of layer 2/3 pyramidal
cells while stimulating ChR2-expressing PV interneurons with blue light (Supplementary
Figure 2a,b). Two-photon imaging was performed as indicated in ‘Longitudinal two-photon
calcium imaging during learning’, except that only one plane was recorded (15.49Hz, 150-
250pum below dura, 312x192um?, x1.7 or x2 magnification, laser power <40 mW). A mounted
LED (490nm, M490L4, Thorlabs) and a LED driver (Thorlab, LEDD1B) were used to deliver
blue light at six different power levels over the AC. Pure tones (4-64kHz, 80dB SPL) and
complex sounds were played (100-ms duration each, 100-frame intervals) and blue light was
delivered in a counterbalanced manner. On a silencing trial, a trigger command is sent 100ms
before sound onset from Clampex to the Tower electronics (Scanbox) that generates control
signals for the LED and the PMT shutter (LED on for 1ms, PMTs off for 9ms, repeat for
5 frames; Supplementary Figure 2¢). The first pulse was triggered 68ms before the onset of
the sound, and the stimulation continued for a total of 320ms (Supplementary Figure 2c).
To estimate the LED powers at the cortical surface (in mW /mm?), we measured the LED
power coming out of the objective and estimated the cortical surface illuminated to be 2 mm
(16X Nikon objective), leading to LED powers ranging from 0 to 3.15 mW /mm?.

Non-rigid registration and cell segmentation were performed using suite2p ™ (https://github.
com/MouseLand/suite2p). Fluorescence of each putative neuron (n = 454) was extracted
and converted into AF/F by taking the mean activity as the baseline. We aligned neural
responses to tone presentation, and quantified the effect of optogenetic silencing by compar-
ing the mean activity of each neuron across all repetitions of sound presentations at different
light powers (Supplementary Figure 2d,e). Only AF/F in frames immediately following light
presentation were considered for quantification to avoid light contamination of the signal.
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Calcium imaging preprocessing

Upon acquisition, images were cropped (to remove artifact bands on plane 1 due to the
electronically tunable lens) and converted to HDF5 files. Non-rigid registration (suite2p, ™
https://github.com/Mouseland/suite2p) was run on the concatenated movie of all files
recorded for a given mouse. All motion-corrected movies were visually inspected. Because
recordings were made over weeks for a given dataset, our dataset could contain cells only
weakly active overall. We, therefore, opted for manual detection of regions of interest (ROIs)
rather than a semi-automatic one that uses cell activity to detect ROIs (e.g. suite2p cell
registration). Manual ROI drawing was done in ImageJ using mean enhanced and maximum
projection images. We identified 7,137 ROIs in 8 mice, with an average of 892+109 ROIs per
mouse. The stability of each ROI throughout the entire recording was then assessed using
a custom-written GUI in Matlab (MathWorks, Natick, MA). Overall, 2,332/3,935 cells were
tracked every day of the task training in Learning mice (mean proportion of 67.3+7.5% of
total ROIs per mouse), and 2,321/3,202 cells were tracked every day of passive exposure in
Passive mice (mean proportion of 87.6+6.2% of total ROIs per mouse). Fluorescence activity
from the ROIs was extracted using custom functions (Matlab). Raw fluorescence of each cells
was then normalized as:

AF/F = Fai — Nan
where
Far=F F;...F,

where the symbol ~ represents a concatenation, n is the number of files, F; = £ ;OF 0 with F the

raw fluorescence extracted from recording file i and Fy the median of this time series. 1, is

the median of F,;; over a sliding window of ~3 minutes. To compare calcium activity across
trials, baseline fluorescence (activity during the inter-trial interval, before tone onset) was
subtracted from the trial activity, so the AF/F reflected changes of intensity to the original
intensity before trial onset.

Data analysis
Statistics

Analyses were performed in Matlab (MathWorks, Natick, MA), using custom written pro-
grams, FMAToolbox (M. Zugaro, http://fmatoolbox.sourceforge.net), and Tensor Tool-
box for MATLAB (https://www.tensortoolbox.org/). Descriptive statistics are reported
as mean + standard error of the mean when the underlying distribution is Gaussian-shaped
(Jarque-Bera test) or median £ standard error of the median otherwise. Unless indicated
otherwise, bars represent median + standard error of the median, box-plots represent median
(center line), upper and lower quartiles (box limits) and 1.5x interquartile range (whiskers),
and all statistical tests were two-sided. Student’s t-test was used for two group comparisons
of Gaussian distributions, paired t-test for paired Gaussian distributions. For non-Gaussian
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distributions of independent data, two group comparisons were made using Wilcoxon rank
sum tests. Wilcoxon sign rank tests were used for two group comparisons of non-Gaussian
paired data or to compare medians of non-Gaussian distributions to single values. Two-way
ANOVAs were performed to evaluate the effects of two independent variables on data and
their interaction. All ANOVA statistics are reported in Supplementary Table 1. Proportions
were compared using the binomial proportion test. Distributions were compared using the
Kolmogorov-Smirnov test. No statistical methods were used to pre-determine sample sizes,
but our sample sizes are similar to those generally employed in the field. Data collection and
analysis were not performed blind to the conditions of the experiments.

Behavior analysis

Rare non-learner mice were excluded and massive drops in performance after reaching high
performance (accuracy > 0.7) were not analyzed. Accuracy in probe and reinforced context
was computed as (ng;1 + ncr)/(ns+ + ns_), where ny;r, ncgr, nsy, and ns_ are the number
of hit, correct reject, S+ and S— trials, respectively. To have trial-resolution assessment of
behavior, we also computed response index curves (Fig.1i), which reflected the latency to
respond to the cues compared to local, spontaneous licking rate®®’. Response index curves
were computed for the two cues (S+ and S— trials) separately as the latency to lick in a
2.5s window before the cue onset minus the latency to lick in the response window (2.5s
after cue onset). If no lick was detected in either of these windows, the latency was set to
the window duration, i.e. 2.5s. Therefore, for a given trial, the response index ranges from
—2.5 to +2.5, with positive values indicating that the response to the cue was shorter than
the local spontaneous licking rate of the animal, negative values indicating a decrease of
licking in response to the cue, and values around 0 indicated that the cue did not impact the
response rate. Performance index (Fig.4s,t) was computed as the difference between S+ and
S— cumulative response index curves. From the S+ response index, we identified the ‘change
point’ (CP)%®0 ie. the trial after which there is a consistent expression of cued behavior
(Fig.1i). We used the method described here®’| itself a variation of the method used in®.
Briefly, a recursive algorithm successively run over each data point i of the cumulative S+
response index curve and performs the following steps: 1) draws a straight line from trial
i to trial O or the previous true CP, whatever is the closest to i and identifies the point
that deviates maximally from this line as a putative CP; 2) calculates the strength of the
evidence that it is a true CP, i.e. the log of the odds against the null hypothesis of no change
(the logit). If logit > 1.3%%9  the putative CP becomes a true CP. As multiple CPs can be
identified on a single curve, we reported in Fig.1i only the first CP associated with a positive

change of the slope of the cumulative behavioral responses®.

Best frequency

Single cell responses to the 17 tones presented were evaluated with paired t-test comparing
pre- vs post-tone mean activity (over 10 frames, ~626ms). Bonferroni correction for the

7
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902 number of sounds (n = 17) was applied. For each cell, the peak amplitude response to each
w3 tone was determined as the maximum value of the averaged traces in the 10-frame post-tone
sa  window. A neuron’s best frequency was determined as the pure tone for which the peak
ws amplitude response was the highest among significant responses only.

ws Tone-evoked responses across days

o7 Evolution of tone-evoked responses in the reinforced context was analyzed using all cells
oz recorded (Supplementary Figure 12 and Supplementary Figure 13) but the conclusions held
w0 when restricted to cells tracked every day. Response to S+ and S—, or stimulus 1 (S1) and
wo  stimulus 2 (S2) for Passive mice, were analyzed separately with paired t-tests comparing
w01 pre- vs post-tone mean activity (in 11-frame windows, ~688ms). A cell was considered tone-
w2 Tesponsive in a given day if it significantly responded to either S+/S1 or S—/S2. Given that
w3 response profiles were identical to S1 and S2, responses to the two tones were sometimes
s Tepresented together (Supplementary Figure 13).

ws  Tone-evoked responses, responsiveness, response index and stimulus selectivity index

Tone-evoked responses were defined as the mean A F/F in a 11-frame window (~688ms)
post tone onset. Responsiveness was defined as the proportion of cells exhibiting a signifi-
cant tone response (paired t-tests; Supplementary Figure 13). To compute response indices
(Fig.3k), the peak of the average A F/F for hit and S— trials (FA trials until mid-expression,
CR trials after that) in 80-trial blocks was calculated, followed by the proportion of blocks
with significant (peak A F/F > 2% of baseline) response throughout learning. The response
index of a neuron was computed as the average response probability in hit and S— trials over

learning. Stimulus selectivity was computed for each neuron in 80-trial blocks over learning
and defined as:

_ 5T =57
R

s where ST is the peak A F/F in the tone-evoked response window on hit trials, S~ is the peak

Sl

1

wr A F/F in the tone-evoked response window on S— trials. SI could therefore ranged from 0
wes  to 1, with 1 indicating maximal selectivity for either the S+ or the S—. Values of ST and S~
we < 2% were set to zero, and SI in blocks where St and S~ were both equal to zero was set to
w0 zero. The selectivity index of a neuron was its average SI over learning (Fig.31).

wn Stimulus decoding

w2 For each mouse, cue identity was decoded across trial frames from activity of cells tracked
i3 across all days using linear discriminant analysis with 5-fold cross-validation (Supplementary
s Figure 1). Tone decoding accuracy in the tone-evoked window referred to the mean accuracy
s in the tone-evoked window (11 frames post-tone onset; Supplementary Figure le). Chance
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s accuracy level was estimated by decoding cue identity across trial after randomly shuffling
7 cue identity across trials (n = 20 shuffles/day/mouse).

ws  Data organization and tensor decomposition

81783, a

w9 1o analyze our high dimensional dataset, we took advantage of tensor decomposition
w20 method that enables unbiased and interpretable descriptions of dynamic changes at multiple
1021 timescales, also referred as ‘tensor component analysis’ or TCA2°. Here we used it not only to
1022 reveal within and across trial dynamics®®, but also to identify shared and distinct variability
w23 in cell networks recorded from Learning and Passive mice. We organized calcium traces into
102 a fourth-order tensor (or four-dimensional array) with four axes corresponding to individual
s neurons (recorded in Learning and Passive mice), time within trial, trials over time, and trial
s types. We then fit a tensor CANDECOMP/PARAFAC (CP) decomposition model®®> to
w2 identify in an unsupervised way a set of low-dimensional components describing variability
s along each of these four axes (also referred here as factors; Supplementary Figure 9).

w0 Data organization. We first built two arrays for learning and passive data separately and

w0 combined them afterwards. Only data from the reinforced context was taken for Learning
. mice. We filtered out disengagement periods (hit rate < 0.5 in a 20-trial block), sometimes
w2 occurring during the last dozens of trials of the day and associated with significant changes

23,45,56-63 © For both Learning and Passive

1033 in neuronal dynamics compared to engaged state
01 data, AF/F of each trial was selected from —1s to +4s relative to tone onset (2nd tensor
03 dimension). With 4,643 cells tracked all days, 75 frames/trials, ~300 trials/day over 15 days,
w3 our dataset approximated 1,567,000,000 data points. To reduce computation time, trials
37 of identical types (hit, miss, FA or CR) within 20-trial blocks were averaged together. In
s other words, from a given 20-trial block, up to four trial traces could be obtained (4th tensor
03 dimension). Because of the exclusion of disengaged periods and the tendency of the animals
140 to lick, miss trials were too rare in the Learning group to be considered without adding sig-
e nificant noise and were excluded. As a result, the 4th tensor dimension dissociated S+ (hit
w2 trials for Learning data, miss trials for Passive data), FA and CR trials. Finally, a crucial
w3 goal of this analysis was to be able to identify neural dynamics associated with task learn-
i ing, and more precisely to isolate any dynamics associated with task contingency acquisition
s (measured in the probe context) or performance improvement (measured in the reinforced
s context). To this end, we aligned the trial traces to learning phases (3rd tensor dimension).
e First, we identified Acquisition, Expression and Expert phases in our 5 learning mice (see
s Supplementary Figure 8). The Acquisition phase started at the first trial of training and
140 continued until maximum accuracy was reached in probe or when accuracy was > 0.65 in
wso  probe and < 0.70 in reinforced trials. This marked the beginning of Expression phase, which
w1 continued until Expert phase started at the second day of high and stable performance. Data
ws2  in between Acquisition and Expert phases was part of the Expression phase. Evolution of
053 individual mouse performance per identified phases is quantified in Supplementary Figure 8f.
s« Resultant mega-mouse performance (i.e. pooled performance in 20-trial block across mice) is
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shown in Supplementary Figure 8d,e. Second, because these phases varied in duration across
animals, we identified the mouse with the minimum number of trial traces in a given phases
and downsampled the number of trial traces of the other mice to match this number. Down-
sampling was performed by preserving the duration/performance range in each mouse (i.e.
keeping first and last trial traces) and removing trial traces at consistent intervals in-between,
such as the overall learning evolution of the phase was preserved. Third, each Passive mouse
was assigned with the learning phases of a Learning mouse, and the same downsampling
procedure was used. Finally, the two four-dimensional arrays containing Learning and Pas-
sive data, respectively, were concatenated in the first (neurons) dimension (referred as the
‘mega-mouse’ tensor) and A F/F traces were z-scored. Because Passive mice essentially did
not lick, any data for FA trials for Passive cells were zeroed out. Any missing entries of the
mega-mouse tensor were also zeroed out.

Tensor decomposition. To deal with incomplete data (absence of FA trials in Passive mice

and possible missing CR early in learning or missing FA at expert level for Learning mice),
we fitted an R-component weighted CP model?” to our mega-mouse tensor. Briefly, CP
decomposition decomposes a tensor into a sum of rank-one tensors. For a third-order tensor
X € R™*K we wish to write it as:

R
XzZar®b,®cr,
r=1

where ® represents the vector outer product, a, € R, a, ¢ R’ and a, € R' for R=1,...R,
and a, ® b, ® ¢, is a rank-one tensor. With perfect data we would obtain equality; however,

in practice the presence of noise prevents it. We can use the Kruskal operator to simplify the

previous expression %7

R
Y aeboc=[ABC]
r=1
where factor matrices A € R/*R B € R”*R and C € RX*R with
A =1 A forn=1,...,3

To fit the CP decomposition model to data, we used the CP-WOPT (CP Weighted OPTi-
mization) algorithm?” that uses a first-order optimization approach to solve the weighted
least squares problem, i.e. minimize the error function

1
f(A.B.C) = SIW(X — [A B C])|I”
where W is a nonnegative weight tensor with same size as X defined as

1 if x;isk , ) )
W,-jk:{ - Xijk 18 KHOWR foralli=1,...,1,j=1,....,J,k=1,... K

0 if Xjjx is missing,
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The weighted least squares objective function is solved over all the factor matrices simulta-
neously.

In practice, the rank R of a tensor is generally not known and is not easily determined®®. To
fit the CP models and choose the number of components, we closely followed the pipeline
detailed in?°. Briefly, we ran models 20 times with different random initializations for differ-
ent numbers of low-dimensional components R = 1,...,6. We used two metrics to compare
and assess models: 1) the (normalized) weighted squared reconstruction error, computed for
each fitted model, defined as:

1/IW(X-TAB CDI?
2 ( IWXJ? >

2689 " quantifying the match between two fitted models i.e. how

and 2) a similarity score
similar are the components resulting from two different runs. Let’s consider the Kruskal

form of the tensor X (or ktensor)

R
X:Z/\,a,®b,®c,,
r=1

where ), is the scaling factor after rescaling a,, b, and ¢, to be unit length. Considering two
tensors [A, B, C] and [D, E, FJ,

R
1
max - ; penalty x (a,d.) ® breur) @ ¢ fym),
with
. |)\r - )\w(r)|
penalty =1 — —————

max(Ar, Au(r))

wer  where (2 is the set of all permutations of the R components, and w a particular permutation.
wes  With increasing number of components R, considering all possible matches is exponentially
e expensive and can be computationally prohibitive and factors were matched in a greedy fash-
o ion to identify good alignment (although not necessarily optimal). Similarity for each model
wn  fit was computed with respect to the best-fit model with the same number of components.
w2 Adding more components caused models to be less reliably identified (lower similarity score).
w3 For a given number of components R, the model fits were also visually inspected and com-
wa  pared. With our dataset, models with similarity scores above 0.8 were qualitatively similar
wrs  while consistency dropped for values closed to 0.5. Therefore, a decomposition into 4 com-
w7 ponents was chosen for our dataset. The output of our decomposition was therefore a set of
w7 four components, each composed of four factors (i.e. weight vectors): 1) neuron factor (Wy),
s reflecting cell ensembles, 2) within trial factor (W), indicating when the activity occur in
e the trial, 3) across trial factor (Wa), reflecting the evolution profile over learning/time at
s trial resolution, and 4) outcomes factor (W), reflecting contribution of sensory, motor and
ws1  cognitive variables. When R is small, increasing number of components demixed the activity
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g2 until providing redundant information (when R > 4 for this tensor). Importantly, other types
03 of decomposition were run, and other tensors (individual mouse, Passive and Learning data
s separately) were decomposed, and they all converged into the same description of the data.

wss Identification of learning-related dynamics

wss  Quantification. To determine whether the low-dimensional dynamics described by the tensor

sz decomposition were selectively attributed to the cells from Learning or Passive mice, we
s analyzed the neuronal factor, i.e. the neuronal weigths (Wy) of the four components. We
s first compared the contribution of Learning and Passive networks to the highest (absolute)
o neuronal weights across components (Fig.10c, Supplementary Figure 11c¢). Given that no
wa  constraint was applied on the sign of the weights, a given component could describe up to
we two distinct dynamics. We therefore also analyzed positive and negative neuronal weights
o3 separately (Supplementary Figure 10d,e, Supplementary Figure 11d) and obtained the same
w04 Tesults: components 1 and 2 described dynamics largely driven by the passive network while
wos components 3 and 4 described neural dynamics driven by the learning network. Importantly,
we  we verified that this effect was not driven only by one mouse: for each component, we
wer  compared the neuronal weights of cell populations recorded in each mouse of a group (e.g.
s passive) and compared it to the other group (e.g. learning) (Supplementary Figure 10e).
w0 Because the components described different neuronal dynamics, this result therefore implied
noo that learning and passive networks contained different low-dimensional dynamics.

non  Visualization. To visualize how the revealed neural dynamics maps onto our two experimental
ue2  groups (learning and passive), we used two different dimensionality reduction approaches to
nos  project the data into a two- or three-dimensional space. First, we used t-distributed stochastic
nos  neighbor embedding (t-SNE) on the neuronal weight matrix Wy of size N x R, where N is
uos  the number of cells in tensor and R the number of components (Fig.2l,m, Supplementary
uos  Figure 10f). Second, we used principal component analysis (PCA) on different combinations
uor  of factors: Wy ® Wiy (Supplementary Figure 10g), Wy ® Wy @ Wa (Fig.2k), Wy @ Wy, @ Wo
ues  (Supplementary Figure 10h), and Wy ® Wy @ Wa ® Wo (Supplementary Figure 10i), and
o projected learning and passive data separately into the same principal component subspace.

wo  Unique participation: defining cell ensembles

un  For visualization and quantification purposes, we attributed each neural dynamic to unique
iz cell ensembles based on neurons’ weights (Supplementary Figure 11a). As indicated earlier,
miz factor weights could be positive or negative and therefore up to two distinct dynamics could
us be represented per component. With this in mind, each neuron / was associated with a two
s digit code [ componentID sign], i.e. a unique dynamic, where componentID is the component
s where the |Wy| of the neuron i was maximal. This approach therefore filtered out non-
w7 participating (i.e. low weighted) neurons in describing neuronal dynamics, as illustrated in
ws  Supplementary Figure 11b. Finally, in order to assess the nature of encoding of these cell
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uo  ensembles, cell ensembles 1 and 2 were restricted to cells recorded in the passive mice, while
n20 cell ensembles 3 to 6, describing dynamics of components 3 and 4, were restricted to cells
uz recorded in learning mice (Fig.2m).

nz  Comparison of calcium responses between trial outcomes with a time-changing signal

12 For each AF/F comparison between different trial types, both the number of trials taken
uz  (‘how many’) and the trial numbers (‘when’) were matched between group to control for
uzs  time/learning effect and power/noise difference (Figs. 4d-h,m-n, 5f g).

we  Analysis of licks outside task events

nzr  Lick bouts outside task events were defined as lick bouts that preceded the first tone presen-
s tation at the beginning of each behavioral block. The analysis was restricted to the first day
12 of training, to remove learning confound as much as possible (Supplementary Figure 15b,c).
u0 A lick bout was defined as a succession of at least 3 licks with less than 1s interval in-between
uan  each lick. In addition, it had to be preceded by a 1s no lick period, used to z-score the traces.

un  Classification of false alarm trials based on reward prediction activity

uss  For each learning mouse, we trained a two-class support vector machine (SVM) algorithm
uu  to decode trial identity (matched hit and CR trials) from late-in-trial activity (single trial
s AUCSs) of neurons part of cell ensemble 5. This decoding gave us access to a misclassification
us rate (for each class and global), representing the noise level in the data (Supplementary
uy  Figure 16a,b,e). We then used this trained SVM to classify FA trials, reasoning that if a
s reward prediction signal is present during an FA trial, it will be decoded as a hit trial. In
me each mouse, the proportion of FA trials with a RP signal was higher than the misclassification
us  rate of the decoder (Supplementary Figure 16e).

na  Isolating brief disengagement periods during behavior

ne2  Once mice acquire task contingencies and start increasing their correct rejection in the re-
uss  inforced context, they generally stop behaving in the probe context (hit rate close to zero;
1as €.g. Supplementary Figure 8)7. We therefore found these periods by looking for probe blocks
uss  with hit rate < 0.4 (Fig.Sg).

ws  Pre- vs post-behavior changes in tonopy

To assess how learning and passive exposure affected the cortical tonotopic map, we compared
best frequency surfaces from tuning curve recording sessions before and after learning (see
‘Pre- and post- task tonotopic mapping’). We first split the field of views in 30 x 30 pixels
(~41 x 41pm) and computed the best frequency mode of the local neuronal population in
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each of those pixel blocks (Fig.30). We estimated the change in surface before and after

nr post nr pre
Asurface = [( ) — < ) } x 100,
nany nany

us7 - where nr is the number of pixel block with T best frequency mode and n,,, the number

behavior as:

s of pixel block with any best frequency. In our analysis, T could be the S+, S—, tones in
s between S+ and S—, and tones with lower or higher frequency than S+ or S— (Fig.3n).
uso  We also evaluated best frequency mode differences before and after behavior in pixel blocks

1151 (Fig.3q).

us2  Spatial clustering of contingency-related cell ensembles

us3 10 assess the spatial distribution of reward prediction and action suppression cell ensembles
usa (referred to here as ‘clusters’), we compared the distance between the two ensembles to a
uss  random spatial organization (Fig.6a,b). To do so, we computed the median of between-
uss cluster cell distances and compared it to a median distribution obtained with cell ensemble
us7 identity shuffles (n = 500). This allowed us to assess the clustered nature of these two cell
uss ensembles while preserving the spatial cell distribution in the fields of view. We considered
uso the cell ensembles significantly clustered if the median distance of the cell ensembles was
ueo > 97.5% of the shuffle distribution. Because of the different statistics of cell distribution
uer inside a field of view for each mouse, comparing raw cell ensembles distances between mice
ue2  was prohibited. Instead, we computed a z-scored distance for each mouse by subtracting the
ues mean and dividing by the standard deviation of the shuffle distribution to the data median
uss  distance (Fig.6c).

ues Pre-task stimulus selectivity index

For cells with positive tone-evoked responses to both S+ and S— in pre-task tuning curve
session, pre-task stimulus index (SI, (Fig.6d,e) was computed as:

St—-§-

MTss

e where ST is the peak AF/F in the tone-evoked response window to the S+ tone and S~ is the
usr  peak AF/F in the tone-evoked response window to the S— tone. SI could therefore ranged
ues from —1 to 1, with 1 indicating total selectivity for the S+, —1 indicating total selectivity
use  for the S—, and zero an absence of selectivity (similar response to both tone).

un  Assessing the relationship between tonotopic map and contingency organization

un  To assess whether reward prediction cells were S+ preferring cells and action suppression
u  cells were S— preferring cells before training started, we generated two separate statistical
urs tests (Fig.6g,h). First, we tested the hypothesis that the reward prediction cell ensemble
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ue  emerged from S+ preferring cells. We constructed a distribution of best-frequency distance
urs  to S+ if HO was true, i.e. if reward prediction cells were to have a best frequency the closest
urs  to S+ given the field of view statistics (Fig.6g). Separately, we tested the hypothesis that
urr  the action suppression cell ensemble emerged from S— preferring cells. We constructed a
urs  distribution of best-frequency distance to S- if HO was true, i.e. if action suppression cells
urs were to have a best frequency the closest to S- given the field of view statistics (Fig.6h).
uso  Finally, we compared the proportion of S+ and S- preferring cells among reward prediction
ust  and action suppression cell ensembles and observed no differences (Fig.61).

ugz  Data availability

uss  The data that support the findings of this study are available from the corresponding authors
s+ upon request.
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Supplementary Figure 1. Stimulus decoding in the auditory cortex is at ceiling from
Day 1 of learning.

a, Stimulus decoding is at ceiling on Day 1 and remains high throughout learning (example mouse)
Only the cells tracked across all days were used to decode tone identity. b, Stimulus decoding is
at ceiling on day 1 and remains high throughout passive exposure over 15 days (example mouse).
¢, Average decoding accuracy for all Learning mice (n = 5). d, Average decoding accuracy for all
Passive mice (n = 3). e, Evolution of tone decoding accuracy in the tone-evoked window across
days for Learning and Passive mice compared to chance level (trial shuffle, see Methods).
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Supplementary Figure 2. Activating PV+ neurons in the auditory cortex robustly
suppresses stimulus-evoked activity of excitatory neurons.

a, PV-ChR2 mice (n = 2) were injected with AAV-CaMKII-GCaMP6f to allow simultaneous one-
photon excitation of PV cells and two-photon recordings of pyramidal cell population. b, Schematic
of simultaneous widefield optogenetics and two-photon imaging. ¢, Optogenetic activation was
locked to frame acquisition. d, Trial-averaged AF/F aligned to tone onset (black vertical line) of an
example neuron at different intensity of LED power (blue scale). Yellow rectangle indicates period
of light delivery. mean + s.e.m. e, Effect of optogenetic silencing as a function of LED power
(n = 454 neurons; Friedman test, p ~ 0). AF/F at powers 0-0.26 mW /mm? are all significantly
different from AF/F at powers 0.84-3.15 mW/mm? (post hoc comparisons with Tukey-Kramer
test, ***p < 0.001). Black line is the logistic fit. median + s.e.median. f, Immunostaining of PV-
ChR2 mice auditory cortex showing ChR2 expression in PV cells (PV+ and ChR2+ colocalization).
g, Post-task imaging of a representative control (top) and a representative test (PV-ChR2, bottom)
mouse used in AC silencing experiments. Note that no fluorescence below the dura is detected in
control mice.
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Supplementary Figure 3. AC full trial silencing impairs expression and on-line perfor-
mance

a, Assessment of the impact of AC full trial silencing over learning on Expression by controlling
for the delay in Acquisition. b, Cumulative distribution function (CDF) of mice as function of the
day to reach an accuracy >0.65 in probe trials. ¢, Cumulative distribution function (CDF) of mice
as function of the relative number of days to reach accuracy (acc.) criteria of >0.7 (left), >0.8
(middle), and >0.9 (right) in reinforced light-off trials after reaching an accuracy >0.65 in probe
trials. Black and dark gray vertical lines correspond to when CDF was reach for acc.>0.7 and >0.8,
respectively. d, Comparing action rate and accuracy between reinforced light-off versus reinforced
light-on trials to assess the impact of AC silencing on on-line performance. e, Hit (solid line) and
FA (dashed line) of an example control mouse (top) and an example PV-ChR2 mouse (bottom) in
reinforced light-off (black) and reinforced light-on (blue) trials across learning. f, Averaged action
rate in reinforced light-off (black) and reinforced light-on (blue) trials per day for control (top) and
PV-ChR2 (bottom) groups. g, Accuracy in light-on reinforced trials from the day when FA<0.3 in
light-off reinforced trials. Note how PV-ChR2 mice (gray lines) increase accuracy (positive slopes)
with light-on, showing that performance impairment fades away.
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Supplementary Figure 4. Effect of AC full trial silencing on lick patterns

a, Example control (top) and ChR2 (bottom) mice accuracy in probe light-off, reinforced light-
off and reinforced light-on trials across day. Dashed rectangle indicates day where licks in b are
extracted from. continued —
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Supplementary Figure 4 (continued).

b, Lick raster plots from day 4 from the example mouse from A in probe light-off (left), reinforced
light-off (middle) and reinforced light-on (right) trials, split into target (black, left) and foil (red,
right) trials. Green and red dots indicates correct and incorrect trials, respectively. Note the
difference in discrimination in all contexts between control and PV-ChR2 mice. ¢, Average lick
probability across training days for control (n = 8) and ChR2 (n = 8) mice in response to target
(vertical green line) and foil (vertical red line) tones, in reinforced light-off (black) and light-on
(blue) trials. d, Insets showing faster lick latencies (red arrow heads) in response to both tones and
higher lick probability in response to the foil (incorrect licking) in reinforced light-on compared to
light-off in ChR2 mice (right). Light has no effect on lick structure in control mice (left). e, Lick
latencies (top) and lick rate (bottom) in response to target (HIT trials; left) and foil (false alarm
(FA) trials; right) tones in reinforced light-off trials (HIT lick latencies, Days: F(20,256) = 8.2738,
p < 10717, Groups: F(1,256) = 8.1568, p = 0.0046, Days*Groups: F(20,256) = 0.9176, p = 0.56;
FA Lick latencies, Days: F(20,190) = 2.2393, p = 0.0027, Groups: F(1,190) = 1.8422, p = 0.18,
Days*Group: F(20,190) = 1.5563, p = 0.067; HIT lick rate, Days: F(20,256) = 4.3619, p < 1078,
Groups: F(1,256) = 2.9549, p = 0.087, Days*Groups: F(20,256) = 0.2927, p = 0.99; FA lick rate,
Days: F(20,190) = 4.04477, p < 107° Groups: F(1,190) = 7.4070, p = 0.0071, Days*Groups:
F(20,190) = 1.1944, p = 0.26). f, Lick latencies (top) and lick rate (bottom) in response to target
(HIT trials; left) and foil (false alarm (FA) trials; right) tones in reinforced light-on trials (HIT
lick latencies, Days: F(20,256) = 10.5303, p < 10722, Groups: F(1,256) = 11.2328, p < 1073,
Days*Groups: F(20,256) = 0.6211, p = 0.90; FA Lick latencies, Days: F(20,254) = 3.9111,
p < 107°, Groups: F(1,254) = 450.4358, p < 10757, Days*Group: F(20,254) = 2.1947, p = 0.0029;
HIT lick rate, Days: F(20,256) = 2.6372, p < 1073, Groups: F(1,256) = 3.7748, p = 0.0531,
Days*Groups: F(20,256) = 0.4520, p = 0.98; FA lick rate, Days: F(20,254) = 6.4469, p < 10713,
Groups: F(1,254) = 301.2679, p < 10~** Days*Groups: F(20,254) = 0.6326, p = 0.89). g, Lick
latencies (left) and lick rate (right) in response to target (HIT) and foil (FA) tones in probe light-
off trials (HIT lick latencies, Days: F(5,83) = 6.4522, p < 10~* Groups: F(1,83) = 11.7734,
p < 1073, Days*Groups: F(5,83) = 0.2878, p = 0.92; FA Lick latencies, Days: F(5,58) = 2.9217,
p = 0.020, Groups: F(1,58) = 0.9337, p = 0.338, Days*Group: F(5,58) = 2.1909, p = 0.068; HIT
lick rate, Days: F(5,83) = 2.0103, p = 0.086, Groups: F(1,83) = 5.9422, p = 0.017, Days*Groups:
F(5,83) = 0.5721, p = 0.72; FA lick rate, Days: F(5,58) = 5.6386, p < 1073, Groups: F(1,58) =
0.0192, p = 0.89, Days*Groups: F(5,58) = 1.6182, p = 0.17).

20


https://doi.org/10.1101/2024.06.10.597946
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.10.597946; this version posted June 10, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

b Reinf., Reinf., ¢ 1 S
Ilght -off  light-on 209 ,_::::|§n
______ ~ P -~ - "'
N | | g 0.8 ,’/’ e W
)
o
<

o = : 071 2 liaht
‘i ' . 1 --light on
w 82 7 -- light off

L | 0 10 20

Visual cortex

PV::ChR2 (n=8) > On-line performance Days
n.s.
d 1 e f -
) 3 S ool —AC«ct
g g 2 ZE Y| ---VvC-ChR2
: 3 g2 Aong -
8 8 = 8 ;I: 0 =7 A9 |
< 05 <2 <2
. ’ é’ -0.2
On On-Of‘f 0 10 20
Light Days

Supplementary Figure 5. Silencing of the visual cortex does not impair performance
throughout learning

a, Silencing of the visual cortex in 90% of the reinforced trials throughout learning (n = 8 PV-ChR2
mice). b, Comparison of reinforced light-off versus light-on trials shows no deficit when silencing the
VC demonstrating the specificity of the effects of AC silencing. ¢, Accuracy in reinforced light-off
and light-on trials across days (two-way repeated measures ANOVA, Group: F(1,140) = 0.5093,
p = 0.50). d, Accuracy in reinforced light-off and light-on trials (n = 168 sessions; Wilcoxon signed
rank, p = 0.41). e, Difference in accuracy in reinforced light-on versus light-off trials per session.
f, Difference in accuracy in reinforced light-on versus light-off trials across days in visual cortex PV-
ChR2 mice (dashed line) versus auditory cortex control mice (solid line) (two-way ANOVA, Days:
F(20,271) = 1.5547, p = 0.06, Groups: F(1,271) = 2.3072, p = 0.13, Days*Groups: F(20,271) =
1.1540, p = 0.2950).

a py ChR2 _ /reinf., light on rein., light off b | —ghtoff 100% Tight-on 90% ¢
< / probe, lightoff 7 il - oo 4
N ||||||||||||||||||||||||||||||||||||[ﬂ|fﬂl,|{|,|l|_|||||||||||\||||||||||||||||||||||||||||||||||||||||||||| XY VA b . 2

Silencing on 90% Of 0 iy e 3 =) i H 3
reinforced trials at ~ __ AWWWWWWWWWWW___ £ 0.6} / /' <

.
>
expert level response delay §

ChR2, n=4 tone 0-40

5 10 15 19 24
Days

Supplementary Figure 6. AC full trial silencing at expert level

a, Probabilistic optogenetic silencing of the auditory cortex at expert level. Silencing starts once
stable performance is reached. b, Accuracy in probe light-off (green), reinforced light-off (black)
and reinforced light-on (blue) trials. Silencing is performed from day 19 to 23. ¢, Accuracy in
reinforced light-off and light-on trials (paired t-test, p = 0.602).
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Supplementary Figure 7. Experimental design and timeline of imaging experiments.
a, After surgery, animals underwent a 10-day recovery period after which water restriction started.
Tonotopic mapping (tuning curve session) of the auditory cortex took place 5 days later under the
two-photon microscope, followed by two days of lick training under the two-photon microscope.
These two sessions also allowed for habituation to head fixation and context. Behavior sessions
started the following day for 15 or 16 days, after which tonotopic mapping sessions took place at
day +1, 47 and +15 post learning. b, One behavioral session consisted of three blocks of 80 or
100 trials, and a baseline session (no tone presented). Two groups of mice were imaged under the
two-photon microscope: the Passive group (top; n = 3) was presented with two pure tones but was
never rewarded (lick tube out), and the Learning group (n = 5) was rewarded (3ul water drop) if
licking in the response window after the S+ tone. Two probe blocks of 10 trials each were introduced
in two of the three reinforced blocks. ¢, Trial structure. After a no-lick period of 1s, a 100-ms tone
was played, followed by a 200-ms dead period and a <2.5s response period. The length of the delay
period was of 2s after a miss (M, no lick after S+) or a correct reject (CR, no lick after S-), 4s after
a hit (H, lick after S+) and 7s after a false alarm (FA, lick after S-).
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Supplementary Figure 8. Inter-subject performance alignment for megamouse tensor.
a, Accuracy in probe and reinforced contexts across days of all Learning mice. b, Action rate
in reinforced context across days of all Learning mice. ¢, Action rate in probe context across
days of all Learning mice. Please note that we fixed the probe performance at the maximum
discrimination that was followed by a decrease in hit rate do to extinction. d, After the alignment
procedure, action rate from the megamouse (all learning mice pooled) in reinforced context across
learning phases. e, Megamouse accuracy in reinforced context across learning phases. f, Accuracy
difference between the start and the end of the three learning phases in probe (green) and reinforced
(black) contexts. Acquisition is characterized by an increase of accuracy in probe trials (paired t-
test, p = 5.47.10~*) but not in reinforced trials (paired t-test, p = 0.07), Expression corresponds to
an increase of accuracy in reinforced trials (paired t-test, p = 0.008) and Expert is when accuracy
in reinforced trials is high and stable (paired t-test, p = 0.27).
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Supplementary Figure 9. Tensor representation of neural data.

a, Data are organized into a fourth-order tensor with dimensions NxWxAxO. Tensor decom-
position approximates the data as a sum of outer products of four vectors. Each outer product
contains a neuron factor (green rectangles), within trial factor (pink rectangles), across trial factor
(blue rectangles) and outcome factor (purple rectangles). Each set of low-dimensional factors (i.e.
component) describes the activity of group of neurons within and across trials according to trial
outcomes.

24


https://doi.org/10.1101/2024.06.10.597946
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.10.597946; this version posted June 10, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

a b
o i
8 ------- K
%) .09
2 o
3 Wos
= '
? o 0.7
1 2 3 456 1 2 3 456
Nb of components Nb of components
C 99% 20% 77% 33% d ooz Leaming
Sign Kok *kk Passive
1 gy gl Jkk ik 0.01 *kk Kk
o0
AL ‘
'% o Z 0
EgE =
*g = -0.01 L e
o=/ *kk *kk
= -0.02
0 3 1 2 3 4
Components Components
e
0.03
*k% *kk
0.02
*kk
0.01
= 0
-0.01
*%
1 —_
Passive mouse 1 *okk Learning mouse 1
-0.021  passive mouse 2 oy g
! Learning mouse 2
Passive mouse 3 Learning mouse 3 kil
Learning mouse 4
. Learning mouse 5
0.03 1 2 3 4
Components
f, g, h, [ ,
2 W, 2 W, Wy 2 Woy oW r G,
r:%assive cells (n=2,339) =1 r0=% _NgLeamings
: Passive ‘ 3=

Learning cells (n=2,304)

Learning

; 1Trial block98
01 Passive
02 0.2 ) -

& N

tSNE 2

Supplementary Figure 10. Low-rank tensor decomposition.
a, Similarity score as a function of model components. Each dot shows the similarity of a single
optimization run compared to the best-fit model within each category. continued —
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Supplementary Figure 10 (continued).

b, Model reconstruction error as a function of the number of components, where each dot corre-
sponds to a different optimization run. c, Neuronal contribution (Learning vs Passive cells) per
components (binomial proportion tests, all p < 0.001). d, Positive and negative neuronal weights
across components in cell population recorded in learning mice (Learning) or in passive mice (Pas-
sive) (Wilcoxon tests). e, Positive and negative neuronal weights across components and individual
mice. f; t-SNE of neuronal weights. Note how Learning and Passive cell populations are largely
non-overlapping. g, Projection of neuronal x within trial weights of Learning and Passive network
activity into principal component space. h, Projection of neuronal x within trial x trial outcome
weights of Learning and Passive network activity into principal component space. i, Projection of
neuronal x within trial x across trials x trial outcome (H/M and CR only) weights of Learning
and Passive network activity into principal component space.
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Supplementary Figure 11. Defining unique cell ensembles based on neuronal weights.
a, Neuronal weights in the four components. Each neuron is attributed to a given dynamic accord-
ing to its highest absolute weights, i.e. highest contribution. As a result, each dynamic is attributed
to a unique cell ensemble (gray rectangles). b, Neuronal weights distribution before (raw, black)
and after unique contribution attribution (gray). c, Learning and Passive cell proportion among
components after unique attribution (binomial proportion tests). d, Learning and Passive cell
proportion among components and given neuronal weight sign after unique attribution. In other
words, proportion of cells from Learning and Passive networks describing the tensor-revealed neu-
ronal dynamics (binomial proportion tests). ***p < 0.001, n.s.: not significant.
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Supplementary Figure 12. Evolution of tone-evoked responses across days.
a, Tone-evoked responses to S+ and S— in Learning mice across days for all cells recorded. b, Tone-
evoked responses to S1 and S2 in Passive mice across days for all cells recorded.
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Supplementary Figure 13. Learning counteracts tone-evoked habituation.

a, Proportion of tone-responsive cells across days among Passive and Learning cells. b, Averaged
proportion of tone-responsive cells in Passive and Learning networks (mean =+ s.e.m.; t-test, p =
3.89.107%). ¢, Proportion of tone-responsive cells in days 1-5 versus days 11-15 in Learning and
Passive networks (mean =+ s.e.m.; two-way ANOVA, Time x Group, p = 1.73.10~7). d, Proportion
of cells responsive to S+ and S— in Learning network and S1, S2 or S7 or S2 (S) in Passive network.
e, Averaged proportion of cells responsive to S+, S— or S (mean + s.e.m.; ANOVA, p = 1.93.1079).
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Supplementary Figure 14. AC silencing restricted to sound presentation impairs au-
diomotor learning and on-line performance during learning.

a, Probabilistic optogenetic silencing of the auditory cortex during learning. Light-on periods
were restricted to sound presentation only (see Methods). b, Accuracy in reinforced light-on trials
(two-way ANOVA, Days: F(17,86) = 5.4950, p < 10~'; Groups: F(1,86) = 50.5343, p < 1077;
Days*Groups: F(17,86) = 0.70700, p = 0.79). c, Action rate in reinforced light-on trials (HIT,
two-way ANOVAs, HIT, Days: F(17,86)10.68010, p < 10~1#; Groups: F(1,86) = 0.0200, p = 0.89;
Days*Groups: F(17,86) = 1.0647, p = 0.40; FA, Days: F(17,86) = 2.7330, p = 0.0012; Groups:
F(1,86) = 41.5010, p < 10~8; Days*Groups: F(17,86) = 0.7255, p = 0.77). continued —
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Supplementary Figure 14 (continued).

d, False alarm lick rate in reinforced light-on trials (two-way ANOVA, Days: F(17,86) = 0.8663,
p = 0.6140; Groups: F(1,86) = 89.3004, p < 10~'*; Days*Groups: F(17,86) = 3.2285, p < 1073).
e, False alarm lick latency in reinforced light-on trials (two-way ANOVA, Days: F(17,86) = 2.0216,
p = 0.018; Groups: F(1,86) = 251.7387, p < 10~2%; Days*Groups: F(17,86) = 4.8600, p < 107°).
f, Accuracy in probe light-off trials (two-way ANOVA, Days: F(5,30) = 8.3041, p < 10~*; Groups:
F(1,30) = 4.7288, p = 0.038; Days*Groups: F(5,30) =0.7288, p = 0.619). g, Action rate in probe
light-off trials (two-way ANOVAs, HIT, Days: F(5,30) = 5.4632, p = 0.0011; Groups: F(1,30) =
6.3510, p = 0.017; Days*Groups: F(5,30) = 1.2158, p = 0.33; FA, Days: F(5,30) = 5.5019,
p = 0.0010; Groups: F(1,30) = 0, p = 1; Days*Groups: F(5,30) = 1.1320, p = 0.37). h, HIT
lick latency in probe light-off trials (two-way ANOVA, Days: F(5,29) = 6.0308, p < 10~3; Groups:
F(1,29) = 10.3058, p = 0.0032; Days*Groups: F(5,29) = 0.1542, p = 0.98). i, Maximal difference
between hit and false alarm rates in probe light-off trials over the first 6 days (t-test, p = 0.40).
j,Accuracy in reinforced light-off trials (two-way ANOVA, Days: F(17,86) = 8.3579, p < 10~1L;
Groups: F(1,86) = 1.6832, p = 0.20; Days*Groups: F(17,86) = 0.2356, p = 1).

k, Action rate in reinforced light-off trials (two-way ANOVAs, HIT, Days: F(17,86) = 11.1314,
p < 107 Groups: F(1,86) = 2.1423, p = 0.15; Days*Groups: F(17,86) = 0.9107, p = 0.56;
FA, Days: F(17,86) = 4.2760, p < 107°; Groups: F(1,86) = 0.5043, p = 0.48; Days*Groups:
F(17,86) = 0.3026, p = 1). 1, FA lick latency in reinforced light-off trials (two-way ANOVA,
Days: F(17,78) = 1.7364, p = 0.053; Groups: F(1,78) = 9.0848, p = 0.0035; Days*Groups:
F(17,78) = 1.3749, p = 0.17). m, FA lick rate in reinforced light-off trials (two-way ANOVA, Days:
F(17,78) = 0.7983, p = 0.69; Groups: F(1,78) = 13.4564, p < 10~3; Days*Groups: F(17,78) =
1.4494, p = 0.14). n, Comparison of light-off versus light-on trials to measure auditory cortex
silencing effect on on-line performance. o, Session density plot of accuracy in reinforced light-on
against light-off. Top, control; bottom, PV-ChR2. p, Accuracy in light-on reinforced trials from
day where FA< 0.3 in light-off reinforced trials. Note the general trend for ChR2 mice (gray lines)
to increase accuracy (positive slopes), i.e. performance impairment fades away. q, Within subject
difference between accuracy in reinforced light-on and light-off aligned to the day where false alarm
rate < 0.3 in reinforced light-off.
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Supplementary Figure 15. Emergence of reward prediction signal.

a, Procedure of hit and miss trial matching. b, Heat map of members of cell ensemble 5 (n = 105)
activity aligned to lick bout onset outside task events in day 1 of training. Lick PSTH is represented
above. ¢, Quantification of z-scored calcium activity 1s pre- vs 1s post- lick bout onset (Wilcoxon
test, p = 0.11). d, Average cell ensemble 5 activity in reinforced hit (green) and FA (orange) trials
over Expression phase. e, Lick PSTHs aligned to tone onset of FA trials in Expression and hit
trials in probe context. f, Cell ensemble 5 activity over the first 300 hit trials (20-trial blocks).
Only significant activity (and higher than null population, see Methods) is represented. Note the
emergence of a stable late-on-trial signal after 40 hit trials onwards. g, Quantification of Fig.4l, i.e.
evolution of late-in-trial signal of cell ensemble 5 across learning, taking first and last two 40-hit
trial blocks (KW test, p = 1.05.10723). *p < 0.05, **p < 0.01, ***p < 0.001, n.s.: not significant.
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Supplementary Figure 16. Reward prediction signal on error trials.

a, Classification of hit versus CR trials in the reinforced context from the AUC post-tone of a
fraction of cell ensemble 5 (n = 51) recorded in the example mouse showed in Fig.4p,q. Right:
posterior probability of being part of CR class. b, Proportion of RP+ and RP— FA trials from the
example mouse showed in Fig.40,p. ¢, No difference in lick latency was observed between RP+ and
RP— FA trials (Wilcoxon test, p = 0.83). d, AUC quantification of RP+, RP— and probe FA trials
(KW, p=9.76.10728). e, Proportion of RP+4 among all FA trials and misclassification rate in each
learning mice. *p < 0.05, **p < 0.01, ***p < 0.001, n.s.: not significant.
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Supplementary Figure 17. Post-hit silencing over learning.

a, Experimental design of optogenetic silencing of AC activity throughout learning post hit only.
b, Hit rate across days in control (Ctl) and test (ChR2) mice in reinforced light-on or light-off
trials across days. c, Difference in hit rate in reinforced light-on versus light-off trials across days.
d, Difference in hit rate in reinforced light-on versus light-off trials (Wilcoxon test, p = 0.13).
e, Accuracy in probe light-off trials. f, Action rate (hit, H; false alarm, FA) in probe light-off trials.
g, Maximum difference between hit and false alarm trials over the first 6 days in probe light-off
trials. h, Accuracy in reinforced light-off trials. i, Action rate in reinforced light-off trials. j, Hit lick
latency in reinforced light-off trials. k, Silencing of visual cortex (VC) activity throughout learning
post hit only. 1, Performance index in probe trials for AC control (n = 5), AC PV-ChR2 (n = 8)
and VC PV-ChR2 (n = 6) (two-way ANOVA, p = 1.90.10732).
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Supplementary Figure 18. Post-FA silencing over learning.

a, Experimental design of optogenetic silencing of AC activity throughout learning post false alarm
(FA) only. b, False alarm rate across days in control (Ctl) and test (ChR2) mice in reinforced
light-on or light-off trials across days. c, Difference in false alarm rate in reinforced light-on versus
light-off trials across days. d, Difference in false alarm rate in reinforced light-on versus light-off
trials (t-test, p = 0.76). e, Accuracy in probe light-off trials. f, Action rate (hit, H; false alarm, FA)
in probe light-off trials. g, Maximum difference between hit and false alarm trials over the first 6
days in probe light-off trials. h, Accuracy in reinforced light-off trials. i, Action rate in reinforced
light-off trials. j, Hit lick latency in reinforced light-off trials. j, Hit lick rate in reinforced light-off
trials.
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Supplementary Figure 19. A signal for action suppression in Learning network.

a, Average activity of cell ensemble 6 or low weighted cells (null, black) in CR and FA trials in
Expert phase. b, Quantification of late-in-trial activity (KW test, p = 4.76.10~%). ¢, Average
cell ensemble 6 activity across learning phases. CR trials were split into 6, 9 and 4 quantiles over
Acquisition, Expression and Expert phases, respectively. d, Quantification of late-in-trial activity
(left axis) and CR rate (right axis) over learning phases. e,Averaged ensemble 6 activity in FA and
CR trials. FA trials are split according to lick latencies (white dashed line, mean latency; graded
rectangles, latency range extrema). f, Silencing protocols compared in Fig.5h,i.
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. Factor 1 Factor 2 Interaction
Test Figure Variable — — —
Name F statistic p-value Name F statistic p-value F statistic p-value
2-way ANOVA 1f Aiﬁ;;:?'n'?ri:'s"f‘ Days | F(20,256)=17.5118 | <10% | Groups| F(1,256)=195.4231 | <10% | F(20,256)=1.8215 | 0.02
HIT 'e'{::;‘lLs'gh“’” Days | F(20,256)=6.9034 | <10™ | Groups| F(1,256)=3.3036 0.07 F (20, 256)=0.7914 | 0.72
2-way ANOVA 1g n -
FA reinf. Light-on _ 22 _ 33 _
Niale Days | F(20,256)=102452 | <102 | Groups| F(1,256)=197.5210 | <10 F(20,256)=1.1138 | 033
2-way ANOVA 1h Accuracy probe Days F (5, 84) = 17.5637 <10 | Groups F (1, 84) = 20.7994 <10* F (5, 84) = 2.1360 0.07
2-way ANOVA 1i S+ response index Days F (119, 1680) = 8.8 <10 | Groups [ F (1, 1680) = 532.07 <10 F (119, 1680) = 1.85 <10°®
2-way ANOVA 1 A‘I:_(i:lgj:\i?ff":ri::]f. Days | F(20,256)=21.8381 | <10® | Groups| F(1,256)=39.9729 <10® | F(20,256)=1.1202 [ 0.33
I 'e';ifg:‘s'ghmﬁ Days | F(20,256)=56985 | <10 | Groups| F(1,256)=0.3266 057 | F(20,256)=04733 | 0.97
2-way ANOVA im FA Teint. Lightoft
rEI:{a Islg o Days | F(20,256)=14.1390 | <10% | Groups| F(1,256)=38.8122 <10° | F(20,256)=0.8034 | 0.71
Aligned accuracy in _ 43 — 3 -
2-way ANOVA n reint Lightoff s | DS | F(20.232)=2300 <10 | Groups| F(1,282)=20.43 <10 F(20,232)=14462 | 01
g Aligned light-on-light- _ _ 15
2-way ANOVA 1q off reinf. Accuracy Days F(17,181)=1.91 0.02 Groups F (1, 181) =80.72 <10
rm ANOVA 4m Accuracy Groups F(2,66)=9.13 3.16.10*
2-way ANOVA 4s Performance index Days | F(119,1320)=47.7299 0 Groups | F(1,1320)=93.4275 2.11.10%' | F(119,1320)=0.9718 0.57
HIT lick latency Days F(8.95)=0.5799 079 | Groups | F(1,95)-6.4473 0.013 F(8.95)=0.4567 0.8833
2-way ANOVA &t Performance index Days F(119,1140)=3.8374 | 5.51.10* | Groups [ F(1,1440)=16.0877 6.36.10° | F(119,1440)=0.5461 1
HIT lick latency Days F(8,104)=0.9029 05172_| Groups | _ F(1,104)=11.1571 0.0012 F(8,104)=0.8396 053
2-way ANOVA sh FA rate Days F(16,279)=1.4149 0.13 Groups 7.20.10%° 0.22
2-way ANOVA 5i Av. Lick probability Days F(16,253)=1.1327 0.32 Groups 1.18.10° 0.05
1m 2-way ANOVA Ex‘egfjgecha‘a Accuracy Days | F(20,140)=15.6714 | 1.47.10% | Groups | F (1, 140) = 0.5003 051
2-way ANOVA EXter;‘:;‘;fData Accurﬁgcz‘{'::“’” " | pays | F(20,271)=15547 006 | Groups| F(1,271)=2.3072 013 F(20,271)=1.154 | 0.205
2-way ANOVA Ex‘eggel‘gga‘a P mp”""’c”elrle:p“s"’e Time F(1,16)=57.9347 1.05.10° | Groups |  F(1,16)=68.3328 362107 | F(1,16)=76.3993 | 1.73.107
Extended Data | Proportion responsive B .
1-way ANOVA Fig.13e cells Groups F(2,57)=16.7209 1.93.10
2-way ANOVA Ex‘el:';sel'isa‘a ACC”'?zgl's'gh"O" Days | F(17,86)=5.4950 <107 | Groups| F(1,86)=50.5343 <10° | F(17,86)=0.70700 | 0.79
2-way ANOVA Extended Data HIT light-on trials Days F (17, 86)10.68010 <10™* | Groups F (1, 86) = 0.0200 0.89 F (17, 86) = 1.0647 0.4
Fig.14c FA light-on trials Days F (17, 86) = 2.7330 0.0012 | Groups | F (1, 86) = 41.5010 <10°® F (17, 86) = 0.7255 0.77
Ex‘i’;del‘igata FAlick !':i‘:s"gmm Days | F(17,86)=0.8663 061 | Groups| F(1,86)=89.3004 <10 | F(17.86)=32285 | <10°
Zway ANOVA =2 ?1 dData |FA lick latency light
X EF':gel e ata e iﬁ;lcsy 'OON pays | F(17,86)=2.0216 0018 | Groups| F(1,86)=2517387 | <10% | F(17,86)=4.8600 | <10°
2-way ANOVA Exre;‘;eﬂ?ata Accuracy probe Days F (5, 30) = 8.3041 <10* | Groups| F (1 30)=4.7288 0.038 F (5,30) = 0.7288 0.62
2way ANOVA | Etended Data HIT probe Days F (5, 30) = 5.4632 0.0011_| Groups | __F (1, 30) =6.351 0.017 F(5.30)=12158 | 0.33
Fig.14g FA probe Days F (5, 30) = 5.5019 0.001 [ Groups F(1,300=0 1 F (5, 30) = 1.1320 0.37
2-way ANOVA EXter__';;el‘iEa‘a HIT lick latency Days F (5, 29) = 6.0308 <10° | Groups| F(1,29=103058 | 0.0032 F (5,29) = 0.1542 0.98
2-way ANOVA EX‘e:i‘;ff 4J.Da'a Acc“’ircigl's'gh“’ﬁ Days | F(17,86)=8.3579 <10™ | Groups| F (1, 86) = 1.6832 02 F (17, 86) = 0.2356 1
2way ANOVA | EXendedDaia | HITightofftals | Days | F(17.86)=111314 | <10” | Growps| F(1,86)=21423 0.15 F (17,86) = 0.9107 | 056
Fig.14k FA light-off trials Days F (17, 86) = 4.2760 <10° [ Groups F (1, 86) = 0.5043 0.48 F (17, 86) = 0.3026 1
2-way ANOVA Extended Data |FA lick latency light-off| | ¢ (17 7g) = 1 7364 0053 | Groups| F(1,78)=9.0848 00035 | F(17,78)=13749 | 017
Fig.14| trials
2-way ANOVA EX‘ii”;_ei‘in?a‘a FA lick t’fi‘:l’s“gm'"ﬁ Days | F(17,78)=0.7983 069 |Groups| F(1,78)=134564 | <10° | F(17,78)=14494 | 014
2-way ANOVA EXtT:Tsel‘iga‘a Accuracy probe | Days F(5.66)=28.4499 | 2.96.10" | Groups |  F(1,66)=1.1059 03 F(5,66)=1.6693 015
2wy ANOVA | EXtended Data HIT probe Days F(5.66)-3.7418 0.0048 | Groups | __ F(1,66)=0.3151 058 F(5,66)=0.9120 048
Fig.17f FA probe Days F(5,66)=10.0172 3.66.107 | Groups F(1,66)=0.5165 0.47 F(5,66)=1.6770 0.1524
2-way ANOVA EX‘T:"i;el‘;E | Accuracy reinf. trials | Days | F(17.196)=21.3723 | 8.07.10% | Groups | F(1,196)=16.4149 | 7.33.10° | F(17,196)=0.6588 0.84
2way ANOVA | Eended Daia HIT reinf. trials Days | F(17.196)=30906 | 7.78.10° | Groups | F(1,196)=7.4877 00068 | F(17,196)=07175 | 078
Fig.17i FA reinf. trials Days F(17,196)=19.3955 2.70.10° | Groups F(1,196)=5.2646 0.023 F(17,196)=1.2621 0.22
2-way ANOVA Emg‘;ef#a‘a HIT lick latency Days F(17,196)=1.0782 038 | Groups| F(1,196)=9.9505 0.0019 F(17,196)=0.9034 0.57
2-way ANOVA E’“e:i‘;ef7?a‘a Performance index | Days | F(119,1920)=73.4277 0 Groups | F(2,1920)=75.8901 | 1.90.10% | F(238,1920)=0.7307 | 0.999
2-way ANOVA Eni?gi%gata Accuracy probe Days F(5,78)=4.7464 7.74.10* | Groups F(1,78)=4.9199 0.03 F(5,78)=1.2012 0.32
2-way ANOVA Extended Data HIT probe Days F(5,78)=1.0833 0.38 Groups F(1,78)=16.6632 1.07.10"* F(5,78)=0.1594 0.98
Fig.18f FA probe Days F(5.78)=2.7704 002 | Groups | F(L.78)=2.7111 0.1 F(5,78)=2.6530 0.029
2-way ANOVA EX‘?S‘Z’;E 3 | Accuracy reinf. trials | Days F(17,199)=7.7483 | 1.19.10" | Groups | F(1,199)=68.0233 | 2.17.10™ | F(17,199)=1.3683 0.16
2-way ANOVA | Eended Daia HIT reinf. trials Days | F(17,199)=2.0458 0011 | Groups | _F(1,199)=32.4866 | 4.28.10° | F(17,199)=0.2519 0.1
Fig.18i FA reinf. trials Days | F(17,199)=4.1289 | 4.34.10" | Groups | F(1,199)=19.9782_| 1.31.10° | F(17,199)=1.5640 | 0.077
2-way ANOVA EXte:i‘;efaljData HIT lick latency Days F(17,199)=1.8158 0028 | Groups| F(1,199)=11.5078 | 7.99.10* | F(17,199)=0.2495 0.1
2-way ANOVA EX‘EF':SeldBE ata HIT lick rate Days F(17,199)=0.9297 054 | Groups| F(1,199)=8.1477 0.005 F(17,199)=0.2253 0.1

Supplementary Table 1. Report of ANOVA statistics.
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