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Rapid learning confers significant advantages to animals in ecological environ-10

ments. Despite the need for speed, animals appear to only slowly learn to as-11

sociate rewarded actions with predictive cues1–4. This slow learning is thought12

to be supported by a gradual expansion of predictive cue representation in the13

sensory cortex2,5. However, evidence is growing that animals learn more rapidly14

than classical performance measures suggest6–8, challenging the prevailing model15

of sensory cortical plasticity. Here, we investigated the relationship between16

learning and sensory cortical representations. We trained mice on an auditory17

go/no-go task that dissociated the rapid acquisition of task contingencies (learn-18

ing) from its slower expression (performance)7. Optogenetic silencing demon-19

strated that the auditory cortex (AC) drives both rapid learning and slower20

performance gains but becomes dispensable at expert. Rather than enhance-21

ment or expansion of cue representations9, two-photon calcium imaging of AC22

excitatory neurons throughout learning revealed two higher-order signals that23

were causal to learning and performance. First, a reward prediction (RP) sig-24

nal emerged rapidly within tens of trials, was present after action-related errors25

only early in training, and faded at expert levels. Strikingly, silencing at the26

time of the RP signal impaired rapid learning, suggesting it serves an associa-27

tive and teaching role. Second, a distinct cell ensemble encoded and controlled28

licking suppression that drove the slower performance improvements. These two29

ensembles were spatially clustered but uncoupled from underlying sensory rep-30

resentations, indicating a higher-order functional segregation within AC. Our31

results reveal that the sensory cortex manifests higher-order computations that32

separably drive rapid learning and slower performance improvements, reshaping33
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our understanding of the fundamental role of the sensory cortex.34

Despite the value of rapid learning in ecological environments, most laboratory models of35

rodent learning show that linking sensory cues with reinforced actions is a slow, gradual36

process1–4,10. An alternative view suggests that animals, including humans, rapidly infer37

relationships between cues, actions, and reinforcement (i.e. learning)6 even if they continue38

to make ongoing performance errors7,8,11. Recent behavioral studies in rodents have begun to39

reconcile these views, arguing that latent task knowledge (i.e. discriminative contingencies)40

can emerge rapidly even though behavioral performance appears to improve only gradually7.41

How are these two dissociable behavioral processes—rapid acquisition of contingencies versus42

slower performance improvements—implemented in the brain?43

An attractive brain region to consider is the sensory cortex as it is thought to subserve44

instrumental learning by enhancing or attenuating the representation of sensory cues that45

drive behavior. Plasticity of cue-related responses in the sensory cortex is thought to subserve46

learning as it mirrors the slow and gradual improvements in behavioral performance1,2,5,10.47

This raises a fundamental challenge: if animals learn discriminative contingencies rapidly but48

cue representations in the sensory cortex change slowly1,2,9, the causal model linking cue-49

related plasticity to learning becomes problematic. One possible solution is that the sensory50

cortex plays a role beyond cue-related representational plasticity and directly represents high-51

order signals that associate reinforced actions with predictive cues. Here we focus on the52

auditory cortex (AC) and asked whether and how it plays a higher-order role in cue-guided53

learning.54

We trained head-fixed, water-restricted mice to lick to a target tone (S+) for water reward55

and to withhold licking to a foil tone (S−) to avoid a timeout (auditory go/no-go task,56

Fig.1a). We used simple pure tones to prevent the AC from being recruited for complex57

sensory processing. To confirm this, two-photon imaging of AC excitatory neurons showed58

that stimulus identity could accurately be decoded from AC activity from the first training59

day with no subsequent improvement throughout training (Supplementary Figure 1), sug-60

gesting that the AC was indeed not needed for perceptual sharpening in the task and thereby61

allowing us to identify possible associative functions. Performance was evaluated in each ses-62

sion in reinforced and non-reinforced (‘probe’) trials (Fig.1b). Performance in probe trials63

revealed a rapid acquisition of task contingency knowledge which was only expressed much64

later in reinforced trials (Fig.1c)7. Reinforcement feedback, although critical for learning,65

paradoxically masked the underlying task knowledge. By combining this behavioral proce-66

dure with optogenetics and longitudinal two-photon imaging, we aimed to determine how67

quickly animals learn stimulus-action contingencies and to define the fundamental role of the68

auditory cortex in sound-guided learning.69
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Fig.1. Auditory cortex silencing impairs sound-guided learning and performance during
learning.
continued →
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Fig.1 (continued).
a, Head-fixed mice were trained on an auditory go/no-go task with 3

4 -spaced pure tones. H: hit, M:
miss, FA: false alarm, CR: correct reject. b, Every day during training, task knowledge is probed
by omitting reinforcement for 20 trials. c, Two distinct learning trajectories are revealed: a fast
acquisition of task contingencies (measured in probe trials; green) and a slower knowledge expression
(measured in reinforced trials; black). d, Probabilistic optogenetic silencing of the auditory cortex
over learning. e, Testing conditions. f, Accuracy in reinforced light-on trials (two-way ANOVA,
p < 10−8). g, Action rate in reinforced light-on trials (HIT, p = 0.07; FA, p < 10−33). See
also Supplementary Figure 4. h, Accuracy in probe light-off trials (two-way ANOVA, p < 10−4).
i, Tone response index in S+ trials (see Methods; two-way ANOVA, p < 10−101). Black and gray
lines are individual mice and dots indicate change points (see Methods). j, Maximal difference
between hit and FA rates in probe light-off trials over the first 6 days (t-test, p < 10−3). k, Hit
lick latency in probe light-off trials (median ± s.e.median; Wilcoxon test, p = 0.007). l, Accuracy
in reinforced light-off trials (two-way ANOVA, p < 10−8). m, Action rate in reinforced light-off
trials (two-way ANOVA, HIT: p = 0.57, FA: p < 10−8). n, Accuracy in reinforced light-off trials
with inter-subject alignment to the day where probe accuracy ≥ 0.65 (green triangle) (two-way
ANOVA, p < 10−5). Supplementary Figure 3a-c. o, Comparison of light-off versus light-on trials to
measure auditory cortex silencing effect on on-line performance. p, Session density plot of accuracy
in reinforced light-on against light-off. Top, control; bottom, PV-ChR2. See also Supplementary
Figure 3d-g. q, Within subject accuracy difference in reinforced light-on and light-off trials, aligned
to the day where FA rate < 0.3 in reinforced light-off (two-way ANOVA, p < 10−15). r, Within
subject accuracy difference in reinforced light-on and light-off when silencing started at expert level
(n = 4; t-test, p = 0.58). See also Supplementary Figure 6. mean ± s.e.m.; *p < 0.05; **p < 0.01;
***p < 0.001, n.s.: not significant.
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The auditory cortex is the default pathway for sound-guided learning70

Lesion studies have suggested that the AC may not be essential to learn or execute cue-71

guided tasks with simple sensory stimuli12–15. However, permanent lesions cannot determine72

whether the AC is normally used for, or causally produces16, learning in an intact brain.73

To address this, we exploited a transient silencing approach to prevent the recruitment of74

alternative pathways15,17–20 while also using a probabilistic design to allow assessment of75

learning as distinct from performance by measuring behavior on non-silenced trials, thereby76

avoiding direct effects of silencing on performance.77

We examined the impact of bilateral cortical silencing of the AC throughout learning (Fig.1a).78

We probabilistically silenced the AC on 90% of reinforced trials throughout learning (‘light-on79

reinforced’, Fig.1d), leaving 10% of reinforced (‘light-off reinforced’) and 100% of probe trials80

(‘light-off probe’) with intact AC activity. Silenced trials were pseudo-randomly sequenced81

and equally split between S+ and S−. Silencing was achieved by shining blue light bilaterally82

through cranial windows implanted above the AC of double transgenic mice (n=8) expressing83

channel rhodopsin (ChR2) in parvalbumin (PV) interneurons14,21 (Fig.1d). We confirmed84

that the excitatory network was effectively silenced using this approach by combining two-85

photon calcium imaging of excitatory neurons and full-field optogenetic stimulation in PV-86

ChR2 mice (Supplementary Figure 2). Control mice (n=8) received the same light stimulation87

but did not express ChR2. This experimental design allowed us to assay the impact of cortical88

silencing on performance (control vs PV-ChR2 performance on light-on reinforced trials)89

versus acquisition learning (control vs PV-ChR2 performance on light-off probe trials) and90

expression learning (control vs PV-ChR2 performance on light-off reinforced trials) (Fig.1e).91

We first compared performance in light-on reinforced trials between PV-ChR2 and control92

mice (Fig.1e) and observed a large performance impairment in PV-ChR2 mice (Fig.1f,g).93

To address whether this performance reduction was accompanied by an impairment in rapid94

learning, we compared performance in PV-ChR2 and control animals in light-off probe trials95

(Fig.1e,h-k) when the AC was not silenced and knowledge acquisition can be accurately96

measured7. Accuracy was lower during probe trials in PV-ChR2 mice (Fig.1h), with delayed97

S+-response learning (Fig.1i), lower discrimination (Fig.1j), and longer lick latency on hit98

trials (Fig.1k). Rapid acquisition of task knowledge was therefore impaired in PV-ChR299

mice.100

Accuracy was also lower in reinforced light-off trials in PV-ChR2 mice (Fig.1l,m). This101

remained true even after controlling for their slower task acquisition (Figs.1n, Supplementary102

Figure 3a-c). These impairments were also apparent in response latency and response vigor103

(Supplementary Figure 4). Together, these results suggest that the AC is the default pathway104

for sound-guided reward learning, even when not needed for perceptual sharpening.105
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The auditory cortex is used during learning but becomes dispensable at expert106

levels107

We next sought to understand the contribution of AC activity for the expression of the learned108

behavior as animals transitioned to expert performance. Transient inactivation of auditory109

cortex in expert animals has led to conflicting results, with some reports showing degrada-110

tion of sound-guided behavior14,17,22,23 and others not14,24,25. We exploited our probabilistic111

silencing strategy and compared performance in light-on (AC silenced) versus light-off (AC112

functional) reinforced trials within subjects (Fig.1o). Performance on these two trial types113

was similar at early periods of training, as performance was poor overall (Fig.1p). As train-114

ing progressed, performance remained poor on light-on trials but improved on light-off trials115

(Fig.1p), demonstrating that the AC is used for task performance at early and intermediate116

time-point during learning. Surprisingly, this deficit in performance on light-on trials grad-117

ually waned (Fig.1p,q), suggesting that while the AC was used during learning, it became118

dispensable once the mice had mastered the task.119

These results could be explained by three alternative explanations. First, the optogenetic120

manipulation per se may not be interfering with a task-relevant process but instead could be121

‘distracting’ the animal, necessitating more time to increase performance in light-on trials.122

We reasoned that bilateral silencing of another cortical region that is nominally unrelated123

to the task would serve as an important control. We bilaterally silenced the visual cortex124

throughout learning in PV-ChR2 mice and found no evidence of performance impairment in125

light-on trials (Supplementary Figure 5), demonstrating that the performance impairment126

was specific to AC silencing. Second, it is possible that AC silencing altered tone perception,127

increasing task difficulty at the perceptual level in light-on trials. Third, the reduction of128

impairment during light-on trials could be driven by a reduction of the silencing effect with129

time due, for example, to brain damage induced by repeated silencing. To address the130

second and third possibilities, we trained a separate cohort of PV-ChR2 mice without daily131

inactivation and, instead, inactivated the AC only after they reached expert performance132

(see Methods). We observed no impact from AC silencing (Figs.1r, Supplementary Figure133

6)14.134

Altogether, these results show that the AC is engaged during learning but is dispensable at135

expert levels, potentially tutoring subcortical structures that take over once the associations136

are learned.137

Unsupervised discovery of learning-related dynamics by low-rank tensor decom-138

position139

We next sought to understand the nature and dynamics of auditory cortical activity under-140

lying learning and performance. To do so, we performed longitudinal, two-photon calcium141

imaging of thousands of excitatory neurons in mice learning the auditory go/no-go task142

(n = 5). A separate group of water-restricted mice was passively exposed to two pure tones143
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over the same duration but with no association with reinforcement (n = 3, see Methods;144

Supplementary Figure 7). This design allowed us to use the passive network as a base-case145

model to isolate learning-related neural dynamics.146

We expressed the genetically encoded calcium indicator GCaMP6f under the CaMKII pro-147

moter, targeting AC layer 2/3 pyramidal neurons. We imaged two planes ∼50µm apart148

(Fig.2a), allowing us to record simultaneously hundreds of neurons per animal (n=7,137 neu-149

rons in 8 mice). All mice were passively presented with a series of pure tones (4 to 64kHz,150

quarter-octave spaced) to characterize auditory tuning properties within the local area of ex-151

pression. We computed single-neuron tuning curves and then constructed a ‘best frequency’152

map confirming the location in the AC (Fig.2b). For each mouse, we chose two stimuli that153

were similarly represented in the recorded population and were 3/4 octaves apart (Fig.2c).154

We used a custom head-fixation system that allowed for kinematic registration and tracked155

the activity of the same neurons across weeks, including pre- and post-learning tuning curve156

sessions (n = 4, 643 neurons in 8 mice, see Methods; Fig.2d-g).157

From this high-dimensional dataset, we sought to identify single neurons and neuronal ensem-158

bles carrying learning-related information, resolve stimulus and non-stimulus related activity159

within a given trial, identify changes in representation across trials, and determine outcome-160

specific dynamics. To do so, we organized our data into a 4-dimensional array containing161

neurons × time in trial × trials across learning × trial outcome (Fig.2h). To identify shared162

and distinct variability in neuronal populations recorded in passive mice (n = 2, 339, ‘passive163

network’) and in learning mice (n = 2, 304, ‘learning network’), we created a ‘megamouse’ by164

combining data from all mice and aligning neural activity to learning phase (n=4,643 neurons,165

see Methods; Fig.2i; Supplementary Figure 8). We then used low-rank tensor decomposi-166

tion to allow unsupervised identification of demixed, low-dimensional neural dynamics across167

multiple (> 2) dimensions26,27 (Supplementary Figure 9 and Supplementary Figure 10a,b;168

see Methods). The tensor decomposition revealed six neuronal dynamics, each characterized169

by the four factors of the original tensor (see Methods; Figs.2j, Supplementary Figure 10c,d,170

Supplementary Figure 11d). These six dynamics represented independent computations per-171

formed by the auditory cortical networks.172

Projecting the product of the decomposition into principal component subspace showed that173

learning and passive networks exhibit almost orthogonal dynamics (Fig.2k; Supplementary174

Figure 10f,g) and that the neural dynamics of different trial types evolved further apart in175

the learning network than in the passive network (Supplementary Figure 10h,i). Importantly,176

we ensured that the identified dynamics were not driven by isolated mice (Supplementary177

Figure 10e). Therefore, decomposition of the megamouse tensor discovered distinct dynamics178

exhibited by passive versus learning networks.179

For further analyses, we attributed each dynamic to individual neurons based on the neuron’s180

maximum weight (‘unique participation’; Fig.2l; see Methods and Supplementary Figure 11).181

This allowed us to map the six dynamics onto six distinct cell ensembles, i.e. groups of neu-182
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Fig.2. Low-rank tensor decomposition reveals learning-related network dynamics.
a, Multi-plane, longitudinal two-photon calcium imaging of layer 2/3 excitatory network in the
auditory cortex during learning (n = 5 mice) or passive exposure (n = 3 mice; see Methods).
b, Tonotopic organization of the field of view of one example mouse before learning (left). Cells
are colored according to their best frequency and tone-evoked responses of example cells circled in
black to 17 pure tones ranging from 4 to 64 kHz are displayed on the right. c, Tone-evoked activity
(top) and proportion of responsive cells (bottom) to pure tones. S+ and S− (filled and unfilled
triangles, respectively) are chosen for training in the task based on their equal representation in the
field of view in b. d, Six example cells tracked everyday across weeks. e, Two planes recorded in one
example mouse. Cells are colored according to the number of days tracked among the 19 recording
sessions in this mouse. f, Distribution of number of tracked days per cells in e. g, Cumulative
distribution of tracked cells according to the percentage of recording sessions. Data for mouse in
e is the light blue line. h, Calcium data is arranged by neurons × time within trial (−1 to +4s
relative to tone onset, vertical line) × trials over time × trial outcomes. continued →
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Fig.2 (continued).
i, Activity from all Learning and Passive cells are concatenated together to create a fourth-order
tensor (megamouse; left). In the 3rd, ‘across trials’ dimension, data is aligned across mice according
to learning phases: Acquisition (performance increases in probe trials), Expression (performance
increases in reinforced trials), and Expert (high, stable performance in reinforced trials; see Methods
and Supplementary Figure 8). j, Megamouse tensor decomposition identifies six neuronal dynamics
(numbered; see Methods) that are characterized by a set of four factors: Neuron, Within trial, Across
trial, and Outcome (see also Supplementary Figure 10). k, Projection of the tensor decomposition
output onto principal subspace. WNr , WW r and WAr indicate neuronal, within trial and across
trial weights for a component r, respectively. l, t-distributed stochastic neighbor embedding (t-
SNE) projections of neuronal weights. Each dot represents a cell, colored according to the neuronal
dynamic it contributed in the most. Bars (right) display the proportion of learning and passive
cells among the highest contributors for each dynamic. Dynamics 1 and 2 are driven by the passive
network (burgundy), while Dynamics 3 to 6 are driven by the learning network (blue). m, In the
passive network, the highest contributing cells in Dynamic 1 define cell ensemble 1, and highest
contributing cells in Dynamic 2 define cell ensemble 2. Similarly, in the learning network, cell
ensembles 3 to 6 are constituted of the highest contributing cells to Dynamics 3 to 6, respectively.
n, Absolute weights of cell ensembles across the six identified dynamics. Neurons can participate
in more than one dynamic.

rons maximally encoding a particular network-specific dynamic (Fig.2m and Supplementary183

Figure 11d). It is important to note that individual neurons (and corresponding ensembles)184

could exhibit mixed selectivity for the six dynamics, which allows an individual neurons to185

contribute to multiple, independent computations (Fig.2n).186

Learning counteracts tone-evoked habituation by maintaining stimulus selectivity187

in distinct cell populations188

A prevailing view in sensory systems holds that sensory cortices subserve associative learning189

through plasticity of the cue representation5,28–36. This model posits that individual neurons190

(via changes in sensory tuning) and neural populations (via cortical map expansion) enhance191

the representation of behaviorally relevant cues for use by downstream regions37–39. These192

studies, however, measure neural tuning and map expansion outside of the task context in193

a ‘pre’ and ‘post’ learning design and infer that plasticity of cue representations reflects the194

mechanistic role of the sensory cortex. To assess this model, we initially focused on the cell195

ensembles that exhibited classical stimulus-evoked activity (Fig.2j), namely cell ensembles196

1-4.197

We observed a prominent signature of stimulus-evoked habituation over hundreds to thou-198

sands of trials. This habituation dominated activity in passive networks, as seen in cell en-199

sembles 1 and 2 which represented ∼77% (1, 803/2, 339) of all passive cells (Fig.3a,d). These200

neurons exhibited stimulus-evoked activation (cell ensemble 1) or suppression (cell ensemble201

2), both of which decreased in amplitude over time (Fig.3b-c,e-f). These cell ensembles were202
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not stimulus selective and displayed the same dynamic in both stimulus 1 (S1) and stimu-203

lus 2 (S2) trials (Fig.3b,e). These ensembles thus reflected the broad-based suppression of204

non-selective neurons after long-term repeated presentation of the same sounds.205

Stimulus-evoked responses in learning networks were observed in cell ensembles 3 and 4206

(Fig.3g-j). This includes a high selectivity for the S− (cell ensemble 3) or S+ (cell ensemble 4)207

cues (Fig.3g-j). Cell ensemble 3 consisted of 19% of the Learning cell population (Fig.3g), and208

displayed a slight habituation but mainly a strong preference for the S− throughout learning209

(Fig.3h), while cell ensemble 4 (12% of total learning cells; Fig.3j) exhibited S+ selectivity210

throughout learning (Fig.3j). Cell ensembles 3 and 4 were more tone responsive and tone211

selective than cell ensembles 1 and 2 (Fig.3k,l). Stimulus-evoked activity analyses across212

days of all recorded neurons (n = 7, 137) also support these results (Supplementary Figure213

12, Supplementary Figure 13). Therefore, learning counteracted tone-evoked habituation by214

maintaining distinct ensembles that encoded either the S+ or S− selectively.215

Learning was not associated with cortical map expansion216

To directly test representational expansion and tuning shifts, we conducted a series of anal-217

yses focusing on stimulus-evoked responses before (pre-task) and after (post-task) learning,218

akin to classical measures of tuning and tonotopy. We computed the change in surface area219

occupied by S+ and S− preferring cells in tuning curve sessions, outside the task (Fig.3m).220

Surprisingly, we observed no increase in the map-level representation of the S+ or S− af-221

ter learning, and instead, observed a modest decrease (Fig.3m-n). In addition to the best222

frequency representation, the fraction of neurons responding to the S+ and S− decreased223

(Fig.3o) and the response amplitude of neurons that were initially tuned to the S+ and S−224

was lower after learning (Fig.3p). Interestingly, while we observed no increase in representa-225

tion to the S+ and S−, learning networks favored the representation of frequencies in between226

S+ and S−, but not higher or lower as seen in passive networks (Fig.3n). Finally, using our227

passive networks as a base-case comparison, we calculated the local changes in the tonotopic228

map structure (Fig.3q). Learning networks were surprisingly stable and exhibited less local229

changes than passive networks (Fig.3r). These pre- vs post-learning changes in responsiveness230

and tonotopy thus mirrored the responsiveness observed online during learning (in dynamics231

1 and 2) in a stable, tracked network (n=4,643 neurons, Fig.3a-l), as well as when we include232

all neurons from each session (n=7,137 neurons) (Supplementary Figure 13). Altogether, our233

results suggest that cortical map expansion and changes in single-neuron tuning are unlikely234

to be the substrate for associative learning40,41.235

Tone-restricted silencing only partially impairs learning and performance236

We next sought to understand the extent to which the maintenance of stimulus-selectivity237

by learning networks was important to learning and performing the task. We performed238

daily bilateral silencing of AC during stimulus presentation throughout learning (Supple-239
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Fig.3. Learning counteracts tone-evoked habituation by maintaining stimulus selectiv-
ity in distinct populations.
a, Representation of cell ensemble 1 in the Passive network. b, Average activity of cell ensemble
1 in S1 (black) and S2 (gray) trials across time in 80-trial blocks. Black triangles indicate tone
onset, gray lines delimit averaged trial blocks. Black dashed lines separate time phases indicated
by light to dark gray rectangles at the top: early, middle and late (see Methods). c, Cell ensemble
1 tone-evoked calcium responses across time phases for S1 and S2 trials combined (Friedman test,
p = 1.26.10−291). d, Representation of cell ensemble 2 in the Passive network. e, Average activity
of cell ensemble 2 in S1 and S2 trials across time. f, Cell ensemble 2 tone-evoked calcium responses
across time phases for S1 and S2 trials combined (Friedman test, p = 7.32.10−121). g, Representa-
tion of cell ensemble 3 in the Learning network. h, Average activity of cell ensemble 3 in hit (green)
and CR (yellow) trials across learning in 80-trial blocks. Black triangles indicate tone onset, gray
lines delimit averaged trial blocks. Black dashed lines separate learning phases indicated by colored
rectangles at the top: Acquisition, Expression and Expert (see Methods). i, Representation of cell
ensemble 4 in the Learning network. j, Average activity of cell ensemble 4 in hit and CR trials across
learning. k, Response index (response probability over learning; see Methods) of cell ensembles 1
and 2 (red) vs cell ensembles 3 and 4 (blue) (Wilcoxon test, p = 1.23.10−30). continued →
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Fig.3 (continued).
l, Selectivity index (see Methods) of cell ensembles 1 and 2 (red) vs cell ensembles 3 and 4 (blue)
(Wilcoxon test, p = 1.37.10−94). m, Pre (top raw) and post (bottom raw) learning tonotopic maps
(left), after spatial binning (middle) and restricted to surface with S+ (filled triangle) and S− (open
triangle) best frequency (right) of one example mouse. n, Change in surface representation of S+
and S− pre- vs post-task learning (Learning) or pre- vs post-passive exposure (Passive) (binomial
proportion tests). o, Pre vs post-learning change in percentage of neurons responsive to S+ and S−
(binomial proportion tests). p, Pre vs post-learning change in tone-evoked responses of pre-task S+
and S− responsive neurons (KW test, p = 2.77.10−5). q, Pre- vs post-learning comparison of local
best frequency differences in tonotopic maps. r, Distribution of local differences (from difference
maps in q) in Learning versus Passive. median ± s.e.median; *p < 0.05; **p < 0.01; ***p < 0.001,
n.s.: not significant.

mentary Figure 14a). Tone-restricted AC silencing impaired task performance throughout240

learning (Supplementary Figure 14b-e), task acquisition (Supplementary Figure 14f-i), and241

online performance during learning, with gradual fading of the effect at expert performance242

(Supplementary Figure 14n-q). Accuracy and action rate were not affected in reinforced243

light-off trials (Supplementary Figure 14j-k), but PV-ChR2 mice lick more and faster to the244

S− (Supplementary Figure 14l-m), suggesting that tone-restricted AC silencing also impaired245

expression, but to a lesser extent than full-trial silencing. Altogether, these results showed246

that information carried by the AC network in the tone-evoked window is used during learn-247

ing. Interestingly, tone-restricted silencing impacted learning less than full trial silencing248

across nearly all measures (Fig.1, Supplementary Figure 14), suggesting that activity af-249

ter the tone-evoked window was critical for rapid contingency acquisition and performance250

during learning.251

Rapid emergence of reward prediction activity in the auditory cortex252

The sensory cortex is widely considered to be specialized for perception by interpreting com-253

plex sensory objects42,43 or adjusting representations of behaviorally-relevant stimuli2,33,37,44,45.254

Recent evidence, however, suggests that sensory cortical neurons directly encode non-sensory255

variables such as movement46–49, reward timing50–53, expectation54,55, and context23,45,56–63.256

Conjoint representations of sensory and non-sensory variables in the same network could257

further hone perception or, alternatively, subserve more integrative associative processes.258

Inspection of the within-trial dynamics of learning-driven cell ensembles 5 and 6 suggested259

that these neurons exhibited non-canonical activity in the form of a signal that occurred260

late in the trial, delayed from the tone-evoked response (Fig.2j). This late-in-trial signal261

increased over learning and was trial type selective (Fig.2j). We next sought to further262

explore the encoding properties of these two cell ensembles. Cell ensemble 5 (n = 155 cells263

from the learning network), exhibited late-in-trial activity on hit trials (licking to the S+)264

that increased with learning (Fig.4a). This delayed activity was not apparent on correct S−265
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Fig.4. Rapid emergence of reward prediction encoding drives learning.
a, Heat map of cell ensemble 5 activity (n = 155 cells) across learning phases (delimited by horizontal
white dashed lines) in hit trials (20-trial blocks). White trace represents the average trial trace.
Inserts (right) show average activity at time indicated by black triangles. Colored rectangles indicate
learning phases: Acquisition (green), Expression (black) and Expert (blue). b, Heat map of cell
ensemble 5 activity across learning phases (delimited by horizontal white dashed lines) in CR trials
(20-trial blocks). c, Heat map of the activity of a fraction of cells from cell ensemble 5 (n = 20 cells)
from one example mouse across consecutive S+ trials. Black dots indicate licks. Trial outcome is
represented on the right (green circle: hit; blue stars: miss). d, Cell ensemble 5 activity in hit
vs miss trials (time and number matched, see Methods and Supplementary Figure 15a). e, Area
under the curve (AUC) quantification of data in gray rectangle in d (Wilcoxon signed rank test,
p = 6.78.10−21). f, Procedure of reinforced and probe hit trial (H) matching. g, Average cell
ensemble 5 activity in reinforced hit trials immediately before (black) or after (gray) probe hit trials
(green). h, AUC quantification of data in h (Friedman test, p = 0.3071). i, Lick PSTHs in reinforced
hit trials immediately before (black) or after (gray) probe hit trials (green). j, Quantification of
number of licks in 1-s window post-tone (KW test, p = 3.18.10−56). continued →
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Fig.4 (continued).
k, Average activity of cell ensemble 5 over the first five blocks of 40-reinforced hit trials in learn-
ing. l, Late peak activity in HIT trials across learning phases of cell ensemble 5 (green) and low
weighted cells (null, black). m, Procedure of reinforced and probe FA trial (fa) matching (top) and
corresponding local accuracy quantification (bottom; see Methods; repeated measures ANOVA,
p = 3.16.10−4). n, Average cell ensemble 5 activity in FA trials in the probe, non-reinforced con-
text (orange). AUC late-in-trial (gray rectangle) compared to zero (Wilcoxon signed rank test,
p = 1.46.10−8). o, Average activity of cell ensemble 5 (n = 51 cells) from one example mouse in
FA trials in the reinforced context (n = 423) after classification based on the detection of a reward
prediction signal. Bottom, average activity of FA trials with (RP+, n = 101) or without (RP-,
n = 322) reward prediction signal, and activity during FA trials in the probe context (n = 19
trials, orange) reflecting ‘knowledge’ errors (see also Supplementary Figure 16). p, Heat map of
the activity of a fraction of cells from cell ensemble 5 (n = 51 cells) from the same example mouse
in o across consecutive FA trials in the reinforced context. Identification of a RP signal is repre-
sented by a black dot (right). q, Distribution of RP+ and RP− FA trials over learning in learning
mice (binomial proportion tests, Acquisition, p = 1.65.10−7, Expression, p = 3.32.10−10, Expert,
p = 0.22). r, Trial-specific closed-loop optogenetic AC inactivation over learning. s, Performance
index (left, see Methods; two-way ANOVA, p = 2.11.10−21) and hit lick latency (right; two-way
ANOVA, p = 0.013) in probe context in post-hit silencing experiments. t, Performance index
(left, see Methods; two-way ANOVA, p = 6.36.10−5) and hit lick latency (right; two-way ANOVA,
p = 0.008) in probe context in post-FA silencing experiments.

trials (correct reject, CR), where neurons exhibited classical stimulus-evoked response that266

habituated over learning (Fig.4b).267

To understand the nature of the late-in-trial activity, we exploited our multiple trial types to268

disambiguate the contribution of sensory, motor, and reward signals. To assess whether the269

late-in-trial signal was a delayed form of sensory activity, we compared activity in hit trials to270

activity in trials where the same stimulus was presented but the mice did not lick and did not271

get rewarded (miss trials, Figs.1a and 4c-e). To ensure an appropriate comparison between272

hit and miss trials, we generated a balanced set of trials that were matched in number (given273

that miss trials were less frequent) and occurred within the same time period (given that274

the signal amplitude evolved with learning) (Supplementary Figure 15a). Cell ensemble 5275

did not exhibit late-in-trial activity on miss trials (Fig.4c-e), discarding the possibility that276

it reflected a delayed sensory response. We then asked whether this activity reflected reward277

consumption. We compared cell ensemble activity during hit trials in the reinforced context278

to the activity during hit trials in the probe context (Fig.4f), where the mice expected reward279

and thus correctly licked to the S+ but the reward was omitted (Fig.1b). We matched the280

number of trials between reinforced and probe contexts and controlled for within-session281

and across-session changes by comparing probe hit trials to reinforced hit trials immediately282

before and after the probe block (Fig.4f). Strikingly, late-in-trial activity was preserved283

in probe trials (Fig.4g,h), indicating that it did not reflect reward consumption. Finally,284

although movement has been reported to decrease auditory cortical activity46,64–66, we sought285
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to understand the degree to which this late-in-trial signal could be driven by licking itself. To286

do this, we first exploited probe hit trials where the lick rate was strongly reduced compared287

to reinforced hit trials (Fig.4i,j). We observed no difference in the late-in-trial neural signal288

and could thus conclude that the signal was not due to ongoing licking (Fig.4i,j). Second, we289

tested the possibility that this late-in-trial signal was driven by the initiation of a lick bout290

as compared to the ongoing licking activity. We isolated spontaneous lick bouts in between291

training blocks and observed that the cell ensemble was not lick-responsive (Supplementary292

Figure 15b,c). In addition, if lick initiation drove this activity, we would also expect to293

see it on false alarm trials (incorrect licking to the S−). For this analysis, we focused on294

false alarms that occurred after task acquisition, as these errors are unlikely to be errors295

due to imperfect task knowledge. We observed no systematic late-in-trial activity on these296

trials (Supplementary Figure 15d) even though the licking pattern in false alarm trials was297

similar to that during probe hit trials (Supplementary Figure 15e). Taken together, the298

late-in-trial activity did not reflect stimulus, reward consumption, licking, nor lick initiation.299

Instead, these results showed that cell ensemble 5 encoded the higher-order process of reward300

prediction (RP).301

We next sought to identify the precise moment when a contingency is formed by identify-302

ing the trials when this reward prediction signal emerged. Initially, these neurons exhibited303

classical tone-evoked responses but then abruptly and within only 40 hit trials, developed a304

robust reward prediction activity (Fig.4k, Supplementary Figure 15f). This reward predic-305

tion signal continued to develop over Acquisition, strengthened during Expression, and then306

surprisingly receded at Expert level when learning is nominally complete (Fig.4a,l, Supple-307

mentary Figure 15g). This longitudinal temporal dynamic mirrored our optogenetic results308

which demonstrates that the AC is the default pathway for learning but then becomes dis-309

pensable at expert levels. Altogether, these results show that a reward prediction signal310

rapidly emerges at the timescale of Acquisition in auditory cortical networks.311

Revealing the underlying cognitive drivers of errors312

Identifying the cognitive drivers of errors is particularly challenging during learning4. Errors313

during learning are typically considered ‘mistakes’ while discriminative contingencies (task314

knowledge) are still forming. However, errors arise not only from knowledge-related mistakes315

(for which animals incorrectly expect reward), but also from factors such as impulsivity,316

disengagement, and exploration (for which animals do not expect reward). While detailed317

behavioral inspection has been a promising route to uncover the nature of errors11, an al-318

ternative approach is to use neural activity itself. Given our findings of reward prediction319

encoding on correct trials, we hypothesized that the same signal would be present when an-320

imals make ‘knowledge-related’ errors, when animals incorrectly ‘expected’ rewards on S−321

trials. To address this, we first focused on the occasional false alarms (FA) that occurred322

during probe trials, as they reflected errors of task knowledge (Fig.4m)7. Strikingly, we ob-323

served a robust reward prediction activity in these trials (Fig.4n), strongly suggesting that324
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animals were indeed expecting reward. We next reasoned that such knowledge errors should325

be present not only on probe trials, but also in a subset of reinforced trials, interspersed with326

non-knowledge errors. We classified individual FA trials in the reinforced context based on327

the presence of a reward prediction signal (see Methods; Supplementary Figure 16a). We328

identified a significant proportion of trials that exhibited robust reward prediction activity,329

but also many that did not (Fig.4o, Supplementary Figure 16b). The reward prediction330

signal was identical to that observed in probe trials (Fig.4o, Supplementary Figure 16d),331

providing further confidence that these were indeed knowledge errors. These data suggest332

that we could isolate knowledge errors using neural data, which was not possible from behav-333

ioral inspection alone (Supplementary Figure 16c). Interestingly, we found that knowledge334

errors were interspersed with errors that did not elicit reward prediction activity (Fig.4p).335

Finally, we hypothesized that knowledge errors should predominantly occur during the Ac-336

quisition phase of behavior, when animals are still learning the discriminative contingencies.337

We computed the fraction of RP+ (knowledge-related errors) and RP- (non-knowledge er-338

rors) over time and found that RP+ errors peaked during the Acquisition phase of learning,339

and rarely occurred during Expression or Expert phases of behavior (Fig.4q, Supplementary340

Figure 15d). These results demonstrate that the internal cognitive drivers of errors may be341

accessible from neural data, which is particularly striking when behavior alone is insufficient.342

Reward prediction activity provides the core teaching signal343

Learning theory proposes that animals learn from correct actions that are rewarded but also344

from incorrect actions that are not rewarded67. This allows animals to select the appropriate345

action after reward-predictive (S+) versus non-predictive (S−) cues. Given the presence of346

the reward prediction activity on correct S+ trials (throughout learning) and incorrect S−347

trials (early in learning), we reasoned that silencing auditory cortical activity during the348

post-response period could impact learning and/or performance. To test this, we performed349

closed-loop probabilistic optogenetic silencing of the AC whereby light was delivered upon350

lick detection in 90% of either S+ reinforced trials (n = 5 control, n = 8 PV-ChR2 mice) or,351

in a separate cohort, S− reinforced trials (n = 7 control, n = 8 PV-ChR2 mice; see Methods;352

Fig.4r, Supplementary Figure 17a, Supplementary Figure 18a). No light was delivered in353

10% of S+ reinforced trials and 100% of probe trials. Given that the light was delivered after354

the instrumental lick response, the effect of the manipulation could not affect the instrumen-355

tal behavior on the current trial, only on subsequent ones. To confirm this, we calculated356

the difference in performance between light-on and light-off trials and observed no differ-357

ence (Supplementary Figure 17b-d and Supplementary Figure 18b-d). In the S+ cohort,358

post-hit silencing weakened the stimulus-action association (Fig.4s), delayed cue-response359

discrimination (Figs.4s), but did not impact probe accuracy over the first 6 days (Supple-360

mentary Figure 17e-g). Importantly, the same silencing protocol above the visual cortex361

(n = 6 PV-ChR2 mice) had no effect on behavior, confirming that these effects were specific362

to the auditory cortex (Supplementary Figure 17k,l). In the S− cohort, post-FA silencing363
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weakened the stimulus-action association as measured on hit trials (Fig.4t), robustly de-364

layed cue-response discrimination (Fig.4t, Supplementary Figure 17g), and impaired probe365

accuracy over the first 6 days (Supplementary Figure 17e,f). Accuracy of PV-ChR2 mice366

was lower than control in the reinforced context in both experiments (Supplementary Figure367

17h and Supplementary Figure 18h), with lower hit rate and higher FA rate (Supplemen-368

tary Figure 17i and Supplementary Figure 18i), and longer response latencies on hit trials369

(Supplementary Figure 17j and Supplementary Figure 18j), suggesting an impairment of ex-370

pression. Overall, these closed-loop manipulations showed that AC activity at the time of371

the reward prediction signal in both hit and FA trials was used by the animal for the task372

acquisition and expression. These data also demonstrate that learning is sensitive to cortical373

silencing on mistakes (FA trials) suggesting that in a go/no-go paradigm, reward feedback on374

error trials is crucial to the learning process. Altogether, these results suggest that reward375

prediction activity in auditory cortical networks is used as a teaching signal during learning.376
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Fig.5. Action suppression signals in the AC induce suppression of licking.
a, Representation of cell ensemble 6 (n = 704 cells) in the Learning network. b, Average activity
of cell ensemble 6 (yellow) versus cells that do not contribute to this dynamic (null, black) in CR
trials in Expert phase (Wilcoxon test, p = 7.44.10−17). c, Average activity of cell ensemble 6 in
CR trials (top) and CR rate (bottom) during Acquisition (green), Expression (black) and Expert
(blue) phases (KW test, p = 0.09). d, Heat map of cell ensemble 6 activity in hit, FA and CR trials.
FA trials are binned according to lick latencies (white dots, latency range extrema; white cross,
mean latency). e, Heat map of cell ensemble 6 activity in hit and FA trials significantly different
from CR trials (Wilcoxon tests, red, higher; blue, lower; white, n.s.). f, Average cell ensemble 6
activity in miss and CR trials (time and number matched, see Methods; middle). Quantifications
of tone-evoked activity (bottom left; Wilcoxon signed rank test, p = 0.84) and late-in-trial AUC
(bottom right; Wilcoxon signed rank test, p = 5.24.10−26). g, Procedure of reinforced and probe
CR trial matching (top) and corresponding calcium activity (middle; Friedman test, p = 1.36.10−11)
and local hit rate (bottom; Friedman test, p = 3.45.10−11). h, FA rate difference between light-on
and light-off trials in PV-ChR2 mice (two-way ANOVA, p = 7.20.10−16; t-tests compared to 0,
p = 4.96.10−4, p = 0.96, p = 0.002). Auditory or visual cortex were inhibited during the full trial
(AC trial, n = 8; VC trial, n = 8) or AC was silenced during tone presentation only (AC tone,
n = 4). i, Average lick probability in FA light-on versus FA light-off trials (two-way ANOVA,
p = 1.18.10−5; t-tests compared to 0, p = 1.94.10−6, p = 0.10, p = 0.68).
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Encoding of action suppression enables task performance377

A critical requirement in a go/no-go task is the ability to suppress responding to the non-378

rewarded, S− cue. In our task, we demonstrate that mice have the capacity to withhold379

licking to the S− very early in learning (as shown in probe trials during the acquisition380

phase) but continue to lick for hundreds to thousands of trials when being reinforced and381

throughout Expression. Here, we ask the extent to which the AC mediates this form of action382

suppression. Neurons in cell ensemble 6 (n = 704, 31% of learning networks; Fig.5a), but383

not non-member cells, exhibited late-in-trial activity when animals correctly withheld from384

licking on S− trials (correct rejects, CR; Fig.5b, Supplementary Figure 19a-b). This signal385

was stable throughout training despite the strong increase of CR rate over learning (Fig.5c,386

Supplementary Figure 19c-d). This all-or-none attribute suggested that this late-in-trial387

activation was tied to performance rather than being a signal used for learning. Once mice388

acquired the task contingencies, they essentially learned to inhibit a licking response to the389

S− tone. We therefore thought to test the hypothesis that late-in-trial activation in CR trials390

reflected action suppression. First, we reasoned that activity in FA and CR trials should be391

similar until the moment of suppression failure (i.e. first lick). We compared the activity392

of cell ensemble 6 in CR vs FA trials, i.e. when mice fail to withhold licking (see Methods)393

exploiting the different first lick latencies in FA trials (Fig.5d). We observed that calcium394

activity dropped abruptly in FA trials at the time of the first lick compared to CR trials395

(Fig.5d,e, Supplementary Figure 19e). Second, if lick suppression is an active contingency-396

specific process, the late-in-trial activation should be specific for correct rejections for the397

S− tone, and not observed when the animal did not lick in response to the S+ tone (miss398

trials). Given that miss trials were rare and sporadic, we controlled for the effect of time399

over learning and difference in the number of trials for each outcome type (see Methods) and400

did not observe late-in-trial activation on miss trials despite similar peak activity after tone401

onset in miss and CR trials (Fig.5f). Third, we reasoned that if this activity reflects the402

active process of action suppression, the signal should decrease when the animal disengaged403

from the task. We therefore compared late-in-trial activity in CR trials immediately before,404

during and after short blocks of disengagement (see Methods) and observed that the activity405

dropped significantly when mice transiently disengaged from the task (Fig.5g). These data406

suggest that the auditory cortex integrates a higher-order action suppression signal.407

Finally, we wondered whether the action suppression activity in the AC was causal to perfor-408

mance during learning. To test this, we reasoned that silencing the AC network throughout409

S− trials should increase the FA rate but also the lick probability (since the action suppres-410

sion neurons are silenced during this period). In contrast, silencing the AC network only411

during the stimulus period should increase the FA rate but not impact the lick probability412

when the light is off (Supplementary Figure 19f). We first compared the FA rate between413

light-on and light-off trials in PV-ChR2 mice during full trial silencing (Fig.5h) and observed414

a marked increase in FA rate and lick probability (Fig.5h,i). Importantly, this effect was not415

the result of the perception of optogenetic manipulation per se as suppression of the visual416
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Fig.6. Reward prediction and action suppression signals emerged in segregated neu-
ronal populations and do not rely on underlying stimulus selectivity
a, Spatial distribution of reward prediction (purple circles) and behavioral inhibition (orange cir-
cles) cell ensembles in an example mouse. Color scale indicates neuronal weights in Dynamics 5
(purple) and 6 (orange). b, Median of cell distance between cell ensembles compared to shuffle
distribution (n = 500) for example mouse in a. The null hypothesis is that the distance between
the two ensembles is no different than chance (i.e. no spatial organization). c, Z-scored distances
between clusters per mouse (blue: significant; gray: non-significant). Red arrow points to example
mouse in a. d, Neuronal weights in Dynamics 5 and 6 of cells from learning mice (n = 1, 216, left)
and their pre-task stimulus selectivity index (right). e, Distributions of pre-task stimulus selectivity
of cell ensembles 5 and 6 (KS test, p = 0.25, Wilcoxon test, p = 0.18). f, Pre-task tonotopic map of
the example mice in a. Cells are colored according to their best frequency (BF). Frequencies used
as S+ and S− for training are indicated by full and empty triangles, respectively. g, Distribution of
BF distance from S+ for reward prediction cell ensemble (purple). Null hypothesis is that reward
prediction cells have a BF as close to S+ as possible (black; see Methods; KS test, p = 3.81.10−9).
h, Distribution of BF distance from S− for action suppression cell ensemble (orange). Null hypoth-
esis is that action suppression cells had a BF as close to S− as possible (black; see Methods; KS
test, p = 9.21.10−16). i, Proportions of S+ and S−-preferring cells in reward prediction and action
suppression cell ensembles (binomial proportion tests, S+, p = 0.17, S−, p = 0.53)
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cortex in PV-ChR2 mice did not have this effect (Fig.5h,i). In contrast, restricting silenc-417

ing to the stimulus period increased FA rate while not affecting lick probability (Fig.5h,i),418

suggesting that the late-in-trial activity in CR trials was critical for the maintenance of ac-419

tion suppression. Altogether, these results showed that action suppression is encoded in the420

auditory cortex and is instrumental for performance during learning.421

Higher-order contingency ensembles are spatially clustered and uncoupled from422

sensory representations423

We next asked the extent to which reward prediction and action suppression ensembles424

mapped onto the underlying stimulus properties of the AC. We exploited the spatial res-425

olution of two-photon imaging to characterize the spatial distribution of reward prediction426

and action suppression neurons in the AC network. Strikingly, we observed that the two cell427

ensembles were spatially clustered (Fig.6a-c). To determine whether this organization was428

driven by the neuron’s pre-learning stimulus selectivity, we calculated the selectivity index429

(SI) of each neuron before training to test whether neurons selective for the S+ preferentially430

became reward prediction neurons and S− selective neurons preferentially became action431

suppression neurons. We observed no difference in SI distribution between reward predictive432

and action suppression neurons (Fig.6d,e), suggesting that pre-task stimulus selectivity was433

not predictive of either reward prediction or action suppression. We then asked whether the434

spatial location of reward prediction and action suppression neurons aligned with the under-435

lying tonotopic map. In other words, did action suppression neurons have S− tone for best436

frequency, and were reward prediction neurons preferentially responsive to S+ tone (Fig.6f;437

see Methods)? We found that this was not the case (Fig.6g,h), with similar proportion438

of S+- and S−-preferring neurons in reward prediction and action suppression cell ensem-439

bles (Fig.6i). Therefore, contingency-related ensembles clustered into spatial domains that440

were uncoupled from underlying stimulus selectivity and tonotopy, indicating a higher-order441

functional segregation within the AC.442

Discussion443

Learning-related neural dynamics are traditionally defined as task-specific neural activity444

changes that occur at the timescale of an animal’s performance improvements in the learn-445

ing, i.e. a reinforced context8. Using this conceptual and experimental framework, perceptual446

and instrumental (reward-based) learning and their underlying neural dynamics have been447

described as slow and gradual e.g2,44, with animals requiring thousands of trials to learn448

low information-content tasks3,4. We took advantage of a recent behavioral paradigm7 that449

uses non-reinforced probe trials to show that task knowledge emerges more rapidly and ear-450

lier than behavioral performance improvement in the learning, reinforced context. Using this451

powerful behavioral manipulation to quantitatively assess when the animals acquired the task452

contingencies, we aligned our neuronal recordings to learning stages between animals while453
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preserving trial-based resolution, and took advantage of an unsupervised, dimensionality re-454

duction method across multiple timescales26 to identify learning-specific neural dynamics.455

We observed that reward prediction activity emerged remarkably fast - within tens of trials456

and on the first day of training - in the AC, hundreds to thousands of trials before noticeable457

performance improvements. The AC thus exhibits latent knowledge of the task (encoded in458

the network but not behaviorally apparent) with animals experiencing periods when knowl-459

edge of environmental contingencies (between cues, actions, and rewards) becomes rapidly460

encoded in the brain, perhaps reflecting an insight-like moment. The latent task knowledge461

was manifested not as changes in sensory representations, but as the emergence of discrete462

ensembles encoding reward prediction (needed for identifying that a particular cue signals463

reward availability) and action suppression (needed for suppressing licking on S− trials).464

These computations were spatially clustered and developed in a manner that was uncoupled465

from the underlying stimulus-related processing that takes place in the AC, suggesting a466

higher-order functional organization. Overall, we find that AC contains separable and causal467

neural dynamics for both learning and performance.468

Our results call for a revision of the classical view of the sensory cortex, according to which469

its primary role is to process and interpret sensory stimuli. We propose instead that the sen-470

sory cortex is better described as a sensory-enriched associative cortex, driving rapid forms471

of associative learning and where sensory and associative functions are intrinsically inter-472

mingled (i.e. co-exist within the same network) but computationally separable (Fig.6). This473

function of the sensory cortex may have thus far been obscured by the use of complex sensory474

objects that recruit the sensory cortex for object-level processing, making it difficult to iso-475

late non-perceptual learning computations. Finally, it is important to note that our results476

do not contradict studies that demonstrate single-neuron tuning curve shifts and tonotopic477

map plasticity when animals learn perceptually challenging tasks. Our revised model of the478

sensory cortex would suggest that perceptual sharpening and complex object processing can479

be subserved by stimulus-related plasticity while the higher-order computations related to480

associative learning and performance occur in parallel. We expect this view will apply beyond481

rodents, as rich encoding of non-sensory and task-relevant variables has also been described482

in human and non-human primate sensory cortical areas68–70.483

The detailed input-output circuit that enables reward prediction and action suppression484

computations remains an important area for future exploration. One possibility is that485

ascending neuromodulatory inputs23,29,71–75 and top-down projections from motor and frontal486

regions44,76–78 serve as critical non-sensory inputs to the sensory cortex. The sensory cortex487

may then integrate and generate higher-order computations that are incorporated by broader488

decision-related circuits (e.g. frontal cortex, striatum and amygdala) to enable rapid learning489

and ongoing performance.490
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Methods756

Animals757

All procedures were approved by Johns Hopkins University Animal Care and Use Committee758

(MO20A272). Male and female double (PV-ChR2; test mice) or single (PV-cre or flox-ChR2;759

control mice) transgenic mice between 6 and 12 weeks at the start of experiments were used for760

the optogenetic experiments. PV-cre (Jackson laboratory, strain #017320), flox-ChR2 (Ai32,761

Jackson laboratory, strain #012569) and PV-ChR2 mice were bred in-house. PV-ChR2 mice762

were obtained by crossing male PV-cre+/− mice with female flox-ChR2+/+ or by crossing763

male flox-ChR2+/+ with female PV-cre+/−. To obtain PV-cre+/− line, we bred female PV-764

cre+/+ with male C57BL/6J (Jackson laboratory, strain #000664). Offspring genotypes were765

confirmed by PCR (Lucigen EconoTaq Plus GREEN 2X) and using two-photon imaging to766

observe expression of the reporter protein (GFP, see subsection ‘Optogenetic experiments’).767

Male C57BL/6J (Jackson laboratory, strain #000664) aged between 6 and 12 weeks at the768

start of experiments were used for two-photon calcium imaging experiments. Animals were769

group housed in standard plastic cages with food available ad libitum and maintained on a770

12-hour reversed light-dark cycle at stable temperature (19.5-22◦C) and humidity (35-38%).771

Experiments took place during the dark phase. Mice were kept on a mild water restriction772

diet (>85% of body weight) after surgery and throughout task training.773

Surgical procedures774

Mice were anesthetized with isoflurane (5% at induction and maintained at 2% during775

surgery) and their body temperature was maintained at ∼35◦C throughout the surgery.776

Calcium imaging experiments777

Mice were injected (34 gauge, 25.4 mm, 12-degree bevel needle; Hamilton Company) with778

1µl of AAV9-CaMKII-GCaMP6f (Addgene, #100834-AAV9, dilution 1/15) at 0.75µl.min−1
779

(microinjection pump, Harvard Apparatus) in the left primary auditory cortex (centered at780

1.75 mm anterior to the intersection of the lambdoid and interparietal-occipital sutures, DV:-781

200µm). Above the injection coordinates, a cranial window was implanted replacing a circular782

piece of skull by a 3-mm diameter cover glass slip (Warner Instruments) that was secured in783

place using a mix of dental cement and Krazy Glue. A custom-made, three-point stainless784

steel headpost was secured to the skull with C&B Metabond dental cement (Parkell). The785

headpost consisted on a two-point kinematic fixation on the right side of the head, prolonged786

by a rod encircling the cranial window and descending at ∼45◦ ventrally on the left. Mice787

were given a two-week recovery period to allow weight recovery and viral expression.788
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Optogenetic experiments789

3-mm diameter cover glass slips were implanted bilaterally over the auditory cortex (centered790

at 1.75 mm anterior to the intersection of the lambdoid and interparietal-occipital sutures,791

on the ridge line of the temporal bone). Custom-made aluminum funnels were implanted792

above each cranial window. The role of these funnels was threefold: 1) to precisely center the793

end of the patch cord on the cranial windows, 2) to hold the patch cord perpendicular to the794

cranial window (optimizing in-depth light diffusion), and 3) to fix the distance between the795

patch cord and the cranial window to allow identical light delivery across days. A custom-796

made, two-point stainless steel headpost was fixed onto the skull with C&B metabond dental797

cement (Parkell) and dental cement. Mice were allowed to recover for at least one week798

following surgery.799

Optogenetic silencing verification experiments800

For silencing verification experiments (Supplementary Figure 2, n=2), PV-ChR2 mice were801

injected with 1µl of AAV-CaMK2-GCaMP6f (Addgene, #100834-AAV9, dilution 1/15) at802

0.75µl.min−1 in the left primary auditory cortex (centered at 1.75 mm anterior to the inter-803

section of the lambdoid and interparietal-occipital sutures, DV:-200µm) and implanted with804

a 3-mm cover glass slip and a custom-made, two-point stainless steel headpost. Mice were805

given a two-week recovery period to allow weight recovery and viral expression.806

Auditory Go/No-go task807

All mice (optogenetic and two-photon imaging) underwent the same habituation and training808

procedures. After recovery from surgery, mice were water restricted for at least 5 days so809

that their weight stabilized at 85% of their ad libitum weight. During this period, mice were810

handled daily. Mice were then head-fixed and placed in the experimental context, where they811

were trained to lick from a lick tube or water cup to receive a drop of water (3µl). No tone812

was presented during lick training. Lick training session ended after 30 min or when 1 ml813

of water was consumed. After two days of lick training, mice were trained on the auditory814

Go/No-go task for at least 15 days.815

Mice were trained to lick to a target (S+) tone to receive a water drop (3µl) and with-816

hold licking to the foil (S−) tone to avoid a timeout. Auditory stimuli were three quarter817

octave-spaced pure tones. Target and foil tones were presented pseudo-randomly and coun-818

terbalanced every 20 trials. Each trial consisted of a no lick period (1 s), tone presentation819

(100 ms), dead period (200 ms), response period (2.5 s) and a delay period: hit: 4 s (to820

enable full licking of the reward), miss and correct reject: 2 s, false alarm: 7 s (timeout).821

In this learning context, called the ‘reinforced’ context, the lick-tube delivering water was822

positioned within reach of the tongue. In contrast, in the ‘probe context’, the lick-tube was823

moved out of tongue and whisker reach by an automated actuator. The blocks of probe trials824

were interspersed between reinforced trials and no additional delay was introduced by lick-825
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tube movement. Importantly, we have shown that the performance gap observed between826

probe and reinforced trials early in learning is not driven by the change in the sensory context827

induced by the absence of the lick-tube in the probe context7.828

Optogenetic experiments829

Mice were trained in the Go/No-go task for 300 trials every day: 280 trials in the rein-830

forced context interspersed with a short block of 20 non-reinforced (probe) trials starting831

at trial #141. Head-fixation habituation, lick training and Go/No-go task training took832

place in custom-made, sound-attenuated behavioral boxes (ambient noise level ∼53 dB SPL)833

controlled with custom-written MATLAB programs interfacing with Bpod State Machines834

(Sanworks). Pure tones (4,757 and 8,000 Hz) were delivered through an electrostatic speaker835

driver (TDT) to a free field electrostatic speaker (TDT) at an intensity of 70 dB SPL and836

licks were detected through an infrared beam. Blue light (453nm, DPSS laser, Opto-Engine837

LLC) was delivered in a 20-Hz sinewave generated by Arduino. The power recorded at the838

end of the patch cord (splitter branching fiber-optic patch cords, Doric Lenses) was 6-8mW.839

When dispersed over a diameter of 3mm, that yields a light intensity of 0.85-1.13 mw/mm2
840

at the cortical surface. Sound amplitude, water drop size, and laser power were calibrated at841

the beginning of each experiment. To dissociate the effect of AC silencing on behavior from842

its consequence on the learning process, we used a probabilistic approach whereby no light843

was delivered during probe trials and a subset of reinforced trials. These light-off trials were844

critical to assess behavior when the auditory cortex was available again.845

Full trial experiment (n = 8 PV-ChR2, n = 8 control mice, n = 8 PV-ChR2 visual cortex): light846

was turned on on 90% of reinforced trials pseudo-randomly (18 trials – 9 S+ and 9 S− –847

every 20-trial block). In light-on trials, the light was turned on 100 ms before tone onset and848

stayed on for ∼2.5 s for all trial types (hit: 2.5 s post operant lick, CR and miss: stop at the849

end of response window, FA: 2.5 s post first lick).850

Expert only full trial experiment (n = 4 PV-ChR2 mice): Mice were trained for 18 days with-851

out light. Afterward and for 5 days, from day 19 to 23, the light was turned on following the852

‘full trial experiment’ protocol or on 90% of reinforced trials consecutively.853

Tone experiment (n = 4 PV-ChR2, n = 3 control mice): light was turned on on 90% of re-854

inforced trials pseudo-randomly (18 trials – 9 S+ and 9 S− – were light-on every 20-trial855

block). In light-on trials, the light was turned on 100 ms before tone onset and turned off at856

tone offset.857

Post hit experiment (n = 8 PV-ChR2, n = 5 control mice, n = 6 PV-ChR2 visual cortex): we858

used a closed-loop lick-triggered stimulation approach, whereby light was turned on after a859

rewarded lick on 90% of reinforced trials pseudo-randomly (light could be turned on on 9860

over 10 S+ trials every 20-trial block). In light-on trials, the light was turned on 70 ms after861

the first lick detection (to allow the lick cycle to complete and the tongue to retract) and862
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100 ms before reward delivery and stayed on for 2.5 s.863

Post false alarm experiment (n = 8 PV-ChR2, n = 7 control mice): we used a closed-loop864

lick-triggered stimulation approach, whereby light was turned on after a non-rewarded lick865

on 90% of reinforced trials pseudo-randomly (light could be turned on on 9 over 10 S- trials866

every 20-trial block). In light-on trials, the light was turned on 70 ms after the first lick867

detection (to allow the lick cycle to complete and the tongue to retract) for 2.5 s.868

At the end of the experiments, mice were anesthetized (isoflurane 5% at induction and 2%869

during surgery; body temperature maintained at ∼35◦C) and the left funnel was drilled out.870

Mice were then put under the two-photon microscope and the field of view was excited at871

980nm. Green fluorescence was detected in test mice (ChR2-EYFP) but not in control mice.872

This procedure allowed to confirm mice genotypes and to assess cell health. Z-stacks were873

collected (unidirectional, 30.98 Hz; magnification 1.7 or 2.0X; range: 450µm, step: 10 µm,874

50 frames per step; depth from brain surface 420-445 µm) to generate 3D reconstruction875

(ImageJ).876

Longitudinal two-photon calcium imaging during learning877

Two-photon fluorescence of GCaMP6f was excited at 980nm using a mode locked Ti:Sapphire878

laser (Spectra-Physics) and detected in the green channel (GFP emission). Imaging was879

performed with a two-photon resonant-scanning microscope (Neurolabware) equipped with880

a water immersion objective (16x, 0.8NA, Nikon) tilted to an angle of 40-50◦ to image the881

auditory cortex. The arm of the microscope was enclosed in a custom-made sound-attenuated882

box. An electronically tunable lens was used to record near-simultaneously two planes in883

layer 2/3 (150-250µm below dura, 50µm spaced, 312x192µm2, at 15.96Hz per plane, with a884

laser power of ≤40 mW). Images were collected at 1.7x or 2x magnification using ScanBox885

(Neurolabware) and task events (sounds, rewards, licks and frames) were recorded using a886

digitizer (Digidata 1550b). Pure tones were delivered through an electrostatic speaker driver887

(RZ6, TDT) to a free field electrostatic speaker (TDT) located at ∼5cm from the right ear888

at intensity of 70dB SPL. Licks were detected through an infrared beam. Scanner noise889

(8kHz) was attenuated using a custom-made foam sound enclosure directly surrounding the890

animal and the resonant scanner was set to continuous throughout the recording session (to891

avoid any scanning onset-related activity). Custom-written MATLAB program interfaced892

with RPvdsEx to control task events. Mice were placed in a plastic tube and head-fixed893

via a two-point pneumatic clamp on the right and a one-point, 360◦-rotational clamp on the894

left (at 45-50◦ in the horizontal plane). The whole behavioral platform was installed on a895

rotation platform so that the field of views could be precisely retrieved one day to the next.896

Imaging fields were retrieved every day before task training by visual inspection (see also897

‘Pre- and post- task tonotopic mappings’). Typically, mice were trained for three blocks898

of 80-100 trials, with either two blocks of 10 probe trials interleaved in two of these three899

blocks, or one block of 20 probe trials. The field of view was adjusted in between blocks900
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to compensate for z-drift, if necessary. An additional 10,000 frames of spontaneous activity901

were recorded in a separate block at the end of each behavior session.902

Pre- and post- task tonotopic mapping903

One day before lick training, mice were placed under the microscope and were presented904

with a set of 17 pure tones (duration 100ms), three-quarter octave spaced, in a pseudo-905

random order ranging from 4 to 64 kHz at 70 dB SPL. Target and foil tones were selected906

for the Go/No-go task as pure tones that were similarly represented in the recorded neuronal907

population. The same mapping procedure took place immediately after or one day after the908

last behavior session, and 7 and 14 days later.909

Two-photon calcium imaging and one-photon blue light stimulation for silencing910

verification911

To validate our optogenetic silencing protocol and determine light power to use for efficient912

and reliable silencing of cortical networks, we recorded calcium activity of layer 2/3 pyramidal913

cells while stimulating ChR2-expressing PV interneurons with blue light (Supplementary914

Figure 2a,b). Two-photon imaging was performed as indicated in ‘Longitudinal two-photon915

calcium imaging during learning’, except that only one plane was recorded (15.49Hz, 150-916

250µm below dura, 312x192µm2, x1.7 or x2 magnification, laser power ≤40 mW). A mounted917

LED (490nm, M490L4, Thorlabs) and a LED driver (Thorlab, LEDD1B) were used to deliver918

blue light at six different power levels over the AC. Pure tones (4-64kHz, 80dB SPL) and919

complex sounds were played (100-ms duration each, 100-frame intervals) and blue light was920

delivered in a counterbalanced manner. On a silencing trial, a trigger command is sent 100ms921

before sound onset from Clampex to the Tower electronics (Scanbox) that generates control922

signals for the LED and the PMT shutter (LED on for 1ms, PMTs off for 9ms, repeat for923

5 frames; Supplementary Figure 2c). The first pulse was triggered 68ms before the onset of924

the sound, and the stimulation continued for a total of 320ms (Supplementary Figure 2c).925

To estimate the LED powers at the cortical surface (in mW/mm2), we measured the LED926

power coming out of the objective and estimated the cortical surface illuminated to be 2 mm927

(16X Nikon objective), leading to LED powers ranging from 0 to 3.15 mW/mm2.928

Non-rigid registration and cell segmentation were performed using suite2p79 (https://github.929

com/MouseLand/suite2p). Fluorescence of each putative neuron (n = 454) was extracted930

and converted into ∆F/F by taking the mean activity as the baseline. We aligned neural931

responses to tone presentation, and quantified the effect of optogenetic silencing by compar-932

ing the mean activity of each neuron across all repetitions of sound presentations at different933

light powers (Supplementary Figure 2d,e). Only ∆F/F in frames immediately following light934

presentation were considered for quantification to avoid light contamination of the signal.935
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Calcium imaging preprocessing936

Upon acquisition, images were cropped (to remove artifact bands on plane 1 due to the

electronically tunable lens) and converted to HDF5 files. Non-rigid registration (suite2p,79

https://github.com/MouseLand/suite2p) was run on the concatenated movie of all files

recorded for a given mouse. All motion-corrected movies were visually inspected. Because

recordings were made over weeks for a given dataset, our dataset could contain cells only

weakly active overall. We, therefore, opted for manual detection of regions of interest (ROIs)

rather than a semi-automatic one that uses cell activity to detect ROIs (e.g. suite2p cell

registration). Manual ROI drawing was done in ImageJ using mean enhanced and maximum

projection images. We identified 7,137 ROIs in 8 mice, with an average of 892±109 ROIs per

mouse. The stability of each ROI throughout the entire recording was then assessed using

a custom-written GUI in Matlab (MathWorks, Natick, MA). Overall, 2,332/3,935 cells were

tracked every day of the task training in Learning mice (mean proportion of 67.3±7.5% of

total ROIs per mouse), and 2,321/3,202 cells were tracked every day of passive exposure in

Passive mice (mean proportion of 87.6±6.2% of total ROIs per mouse). Fluorescence activity

from the ROIs was extracted using custom functions (Matlab). Raw fluorescence of each cells

was then normalized as:

∆F/F = Fall − ηall

where

Fall = F⌢
1 F⌢

2 ...Fn

where the symbol ⌢ represents a concatenation, n is the number of files, Fi =
F−F0

F0
with F the937

raw fluorescence extracted from recording file i and F0 the median of this time series. ηall is938

the median of Fall over a sliding window of ∼3 minutes. To compare calcium activity across939

trials, baseline fluorescence (activity during the inter-trial interval, before tone onset) was940

subtracted from the trial activity, so the ∆F/F reflected changes of intensity to the original941

intensity before trial onset.942

Data analysis943

Statistics944

Analyses were performed in Matlab (MathWorks, Natick, MA), using custom written pro-945

grams, FMAToolbox (M. Zugaro, http://fmatoolbox.sourceforge.net), and Tensor Tool-946

box for MATLAB (https://www.tensortoolbox.org/). Descriptive statistics are reported947

as mean ± standard error of the mean when the underlying distribution is Gaussian-shaped948

(Jarque-Bera test) or median ± standard error of the median otherwise. Unless indicated949

otherwise, bars represent median ± standard error of the median, box-plots represent median950

(center line), upper and lower quartiles (box limits) and 1.5x interquartile range (whiskers),951

and all statistical tests were two-sided. Student’s t-test was used for two group comparisons952

of Gaussian distributions, paired t-test for paired Gaussian distributions. For non-Gaussian953
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distributions of independent data, two group comparisons were made using Wilcoxon rank954

sum tests. Wilcoxon sign rank tests were used for two group comparisons of non-Gaussian955

paired data or to compare medians of non-Gaussian distributions to single values. Two-way956

ANOVAs were performed to evaluate the effects of two independent variables on data and957

their interaction. All ANOVA statistics are reported in Supplementary Table 1. Proportions958

were compared using the binomial proportion test. Distributions were compared using the959

Kolmogorov-Smirnov test. No statistical methods were used to pre-determine sample sizes,960

but our sample sizes are similar to those generally employed in the field. Data collection and961

analysis were not performed blind to the conditions of the experiments.962

Behavior analysis963

Rare non-learner mice were excluded and massive drops in performance after reaching high964

performance (accuracy > 0.7) were not analyzed. Accuracy in probe and reinforced context965

was computed as (nHIT + nCR)/(nS+ + nS−), where nHIT , nCR , nS+, and nS− are the number966

of hit, correct reject, S+ and S− trials, respectively. To have trial-resolution assessment of967

behavior, we also computed response index curves (Fig.1i), which reflected the latency to968

respond to the cues compared to local, spontaneous licking rate6,80. Response index curves969

were computed for the two cues (S+ and S− trials) separately as the latency to lick in a970

2.5s window before the cue onset minus the latency to lick in the response window (2.5s971

after cue onset). If no lick was detected in either of these windows, the latency was set to972

the window duration, i.e. 2.5s. Therefore, for a given trial, the response index ranges from973

−2.5 to +2.5, with positive values indicating that the response to the cue was shorter than974

the local spontaneous licking rate of the animal, negative values indicating a decrease of975

licking in response to the cue, and values around 0 indicated that the cue did not impact the976

response rate. Performance index (Fig.4s,t) was computed as the difference between S+ and977

S− cumulative response index curves. From the S+ response index, we identified the ‘change978

point’ (CP)6,80, i.e. the trial after which there is a consistent expression of cued behavior979

(Fig.1i). We used the method described here80, itself a variation of the method used in6.980

Briefly, a recursive algorithm successively run over each data point i of the cumulative S+981

response index curve and performs the following steps: 1) draws a straight line from trial982

i to trial 0 or the previous true CP, whatever is the closest to i and identifies the point983

that deviates maximally from this line as a putative CP; 2) calculates the strength of the984

evidence that it is a true CP, i.e. the log of the odds against the null hypothesis of no change985

(the logit). If logit > 1.36,80, the putative CP becomes a true CP. As multiple CPs can be986

identified on a single curve, we reported in Fig.1i only the first CP associated with a positive987

change of the slope of the cumulative behavioral responses80.988

Best frequency989

Single cell responses to the 17 tones presented were evaluated with paired t-test comparing990

pre- vs post-tone mean activity (over 10 frames, ∼626ms). Bonferroni correction for the991
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number of sounds (n = 17) was applied. For each cell, the peak amplitude response to each992

tone was determined as the maximum value of the averaged traces in the 10-frame post-tone993

window. A neuron’s best frequency was determined as the pure tone for which the peak994

amplitude response was the highest among significant responses only.995

Tone-evoked responses across days996

Evolution of tone-evoked responses in the reinforced context was analyzed using all cells997

recorded (Supplementary Figure 12 and Supplementary Figure 13) but the conclusions held998

when restricted to cells tracked every day. Response to S+ and S−, or stimulus 1 (S1) and999

stimulus 2 (S2) for Passive mice, were analyzed separately with paired t-tests comparing1000

pre- vs post-tone mean activity (in 11-frame windows, ∼688ms). A cell was considered tone-1001

responsive in a given day if it significantly responded to either S+/S1 or S−/S2. Given that1002

response profiles were identical to S1 and S2, responses to the two tones were sometimes1003

represented together (Supplementary Figure 13).1004

Tone-evoked responses, responsiveness, response index and stimulus selectivity index1005

Tone-evoked responses were defined as the mean ∆ F/F in a 11-frame window (∼688ms)

post tone onset. Responsiveness was defined as the proportion of cells exhibiting a signifi-

cant tone response (paired t-tests; Supplementary Figure 13). To compute response indices

(Fig.3k), the peak of the average ∆ F/F for hit and S− trials (FA trials until mid-expression,

CR trials after that) in 80-trial blocks was calculated, followed by the proportion of blocks

with significant (peak ∆ F/F > 2% of baseline) response throughout learning. The response

index of a neuron was computed as the average response probability in hit and S− trials over

learning. Stimulus selectivity was computed for each neuron in 80-trial blocks over learning

and defined as:

SI =
|S+ − S−|
|S+|+ |S−|

,

where S+ is the peak ∆ F/F in the tone-evoked response window on hit trials, S− is the peak1006

∆ F/F in the tone-evoked response window on S− trials. SI could therefore ranged from 01007

to 1, with 1 indicating maximal selectivity for either the S+ or the S−. Values of S+ and S−
1008

< 2% were set to zero, and SI in blocks where S+ and S− were both equal to zero was set to1009

zero. The selectivity index of a neuron was its average SI over learning (Fig.3l).1010

Stimulus decoding1011

For each mouse, cue identity was decoded across trial frames from activity of cells tracked1012

across all days using linear discriminant analysis with 5-fold cross-validation (Supplementary1013

Figure 1). Tone decoding accuracy in the tone-evoked window referred to the mean accuracy1014

in the tone-evoked window (11 frames post-tone onset; Supplementary Figure 1e). Chance1015
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accuracy level was estimated by decoding cue identity across trial after randomly shuffling1016

cue identity across trials (n = 20 shuffles/day/mouse).1017

Data organization and tensor decomposition1018

To analyze our high dimensional dataset, we took advantage of tensor decomposition81–83, a1019

method that enables unbiased and interpretable descriptions of dynamic changes at multiple1020

timescales, also referred as ‘tensor component analysis’ or TCA26. Here we used it not only to1021

reveal within and across trial dynamics26, but also to identify shared and distinct variability1022

in cell networks recorded from Learning and Passive mice. We organized calcium traces into1023

a fourth-order tensor (or four-dimensional array) with four axes corresponding to individual1024

neurons (recorded in Learning and Passive mice), time within trial, trials over time, and trial1025

types. We then fit a tensor CANDECOMP/PARAFAC (CP) decomposition model83–85 to1026

identify in an unsupervised way a set of low-dimensional components describing variability1027

along each of these four axes (also referred here as factors; Supplementary Figure 9).1028

Data organization. We first built two arrays for learning and passive data separately and1029

combined them afterwards. Only data from the reinforced context was taken for Learning1030

mice. We filtered out disengagement periods (hit rate ≤ 0.5 in a 20-trial block), sometimes1031

occurring during the last dozens of trials of the day and associated with significant changes1032

in neuronal dynamics compared to engaged state23,45,56–63. For both Learning and Passive1033

data, ∆F/F of each trial was selected from −1s to +4s relative to tone onset (2nd tensor1034

dimension). With 4,643 cells tracked all days, 75 frames/trials, ∼300 trials/day over 15 days,1035

our dataset approximated 1,567,000,000 data points. To reduce computation time, trials1036

of identical types (hit, miss, FA or CR) within 20-trial blocks were averaged together. In1037

other words, from a given 20-trial block, up to four trial traces could be obtained (4th tensor1038

dimension). Because of the exclusion of disengaged periods and the tendency of the animals1039

to lick, miss trials were too rare in the Learning group to be considered without adding sig-1040

nificant noise and were excluded. As a result, the 4th tensor dimension dissociated S+ (hit1041

trials for Learning data, miss trials for Passive data), FA and CR trials. Finally, a crucial1042

goal of this analysis was to be able to identify neural dynamics associated with task learn-1043

ing, and more precisely to isolate any dynamics associated with task contingency acquisition1044

(measured in the probe context) or performance improvement (measured in the reinforced1045

context). To this end, we aligned the trial traces to learning phases (3rd tensor dimension).1046

First, we identified Acquisition, Expression and Expert phases in our 5 learning mice (see1047

Supplementary Figure 8). The Acquisition phase started at the first trial of training and1048

continued until maximum accuracy was reached in probe or when accuracy was ≥ 0.65 in1049

probe and ≤ 0.70 in reinforced trials. This marked the beginning of Expression phase, which1050

continued until Expert phase started at the second day of high and stable performance. Data1051

in between Acquisition and Expert phases was part of the Expression phase. Evolution of1052

individual mouse performance per identified phases is quantified in Supplementary Figure 8f.1053

Resultant mega-mouse performance (i.e. pooled performance in 20-trial block across mice) is1054
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shown in Supplementary Figure 8d,e. Second, because these phases varied in duration across1055

animals, we identified the mouse with the minimum number of trial traces in a given phases1056

and downsampled the number of trial traces of the other mice to match this number. Down-1057

sampling was performed by preserving the duration/performance range in each mouse (i.e.1058

keeping first and last trial traces) and removing trial traces at consistent intervals in-between,1059

such as the overall learning evolution of the phase was preserved. Third, each Passive mouse1060

was assigned with the learning phases of a Learning mouse, and the same downsampling1061

procedure was used. Finally, the two four-dimensional arrays containing Learning and Pas-1062

sive data, respectively, were concatenated in the first (neurons) dimension (referred as the1063

‘mega-mouse’ tensor) and ∆ F/F traces were z-scored. Because Passive mice essentially did1064

not lick, any data for FA trials for Passive cells were zeroed out. Any missing entries of the1065

mega-mouse tensor were also zeroed out.1066

Tensor decomposition. To deal with incomplete data (absence of FA trials in Passive mice

and possible missing CR early in learning or missing FA at expert level for Learning mice),

we fitted an R-component weighted CP model27 to our mega-mouse tensor. Briefly, CP

decomposition decomposes a tensor into a sum of rank-one tensors. For a third-order tensor

X ∈ RI×J×K , we wish to write it as:

X ≈
R∑

r=1

ar ⊗ br ⊗ cr ,

where ⊗ represents the vector outer product, ar ∈ RI , ar ∈ RI and ar ∈ RI for R = 1, . . .R ,

and ar ⊗ br ⊗ cr is a rank-one tensor. With perfect data we would obtain equality; however,

in practice the presence of noise prevents it. We can use the Kruskal operator to simplify the

previous expression86,87:
R∑

r=1

ar ⊗ br ⊗ cr ≡ JA,B ,CK,

where factor matrices A ∈ RI×R , B ∈ RJ×R and C ∈ RK×R , with

A(n) = [a
(n)
1 . . . a

(n)
R for n = 1, . . . , 3

To fit the CP decomposition model to data, we used the CP-WOPT (CP Weighted OPTi-

mization) algorithm27 that uses a first-order optimization approach to solve the weighted

least squares problem, i.e. minimize the error function

f (A,B ,C ) =
1

2
∥W (X − JA,B ,CK)∥2,

where W is a nonnegative weight tensor with same size as X defined as

wi jk =

{
1 if xi jk is known,

0 if xi jk is missing,
for all i = 1, . . . , I , j = 1, . . . , J , k = 1, . . . ,K
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The weighted least squares objective function is solved over all the factor matrices simulta-

neously.

In practice, the rank R of a tensor is generally not known and is not easily determined88. To

fit the CP models and choose the number of components, we closely followed the pipeline

detailed in26. Briefly, we ran models 20 times with different random initializations for differ-

ent numbers of low-dimensional components R = 1, . . . , 6. We used two metrics to compare

and assess models: 1) the (normalized) weighted squared reconstruction error, computed for

each fitted model, defined as:

1

2

(
∥W (X − JA,B ,CK)∥2

∥WX∥2

)
and 2) a similarity score26,89, quantifying the match between two fitted models i.e. how

similar are the components resulting from two different runs. Let’s consider the Kruskal

form of the tensor X (or ktensor)

X =
R∑

r=1

λrar ⊗ br ⊗ cr ,

where λr is the scaling factor after rescaling ar , br and cr to be unit length. Considering two

tensors JA,B ,CK and JD,E ,F K,

max
ω∈Ω

1

R

R∑
r=1

penalty × (a′rdω(r) ⊗ b′reω(r) ⊗ c ′r fω(r)),

with

penalty = 1−
|λr − λω(r)|

max(λr ,λω(r))

where Ω is the set of all permutations of the R components, and ω a particular permutation.1067

With increasing number of components R , considering all possible matches is exponentially1068

expensive and can be computationally prohibitive and factors were matched in a greedy fash-1069

ion to identify good alignment (although not necessarily optimal). Similarity for each model1070

fit was computed with respect to the best-fit model with the same number of components.1071

Adding more components caused models to be less reliably identified (lower similarity score).1072

For a given number of components R , the model fits were also visually inspected and com-1073

pared. With our dataset, models with similarity scores above 0.8 were qualitatively similar1074

while consistency dropped for values closed to 0.5. Therefore, a decomposition into 4 com-1075

ponents was chosen for our dataset. The output of our decomposition was therefore a set of1076

four components, each composed of four factors (i.e. weight vectors): 1) neuron factor (WN),1077

reflecting cell ensembles, 2) within trial factor (WW ), indicating when the activity occur in1078

the trial, 3) across trial factor (WA), reflecting the evolution profile over learning/time at1079

trial resolution, and 4) outcomes factor (WO), reflecting contribution of sensory, motor and1080

cognitive variables. When R is small, increasing number of components demixed the activity1081
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until providing redundant information (when R > 4 for this tensor). Importantly, other types1082

of decomposition were run, and other tensors (individual mouse, Passive and Learning data1083

separately) were decomposed, and they all converged into the same description of the data.1084

Identification of learning-related dynamics1085

Quantification. To determine whether the low-dimensional dynamics described by the tensor1086

decomposition were selectively attributed to the cells from Learning or Passive mice, we1087

analyzed the neuronal factor, i.e. the neuronal weigths (WN) of the four components. We1088

first compared the contribution of Learning and Passive networks to the highest (absolute)1089

neuronal weights across components (Fig.10c, Supplementary Figure 11c). Given that no1090

constraint was applied on the sign of the weights, a given component could describe up to1091

two distinct dynamics. We therefore also analyzed positive and negative neuronal weights1092

separately (Supplementary Figure 10d,e, Supplementary Figure 11d) and obtained the same1093

results: components 1 and 2 described dynamics largely driven by the passive network while1094

components 3 and 4 described neural dynamics driven by the learning network. Importantly,1095

we verified that this effect was not driven only by one mouse: for each component, we1096

compared the neuronal weights of cell populations recorded in each mouse of a group (e.g.1097

passive) and compared it to the other group (e.g. learning) (Supplementary Figure 10e).1098

Because the components described different neuronal dynamics, this result therefore implied1099

that learning and passive networks contained different low-dimensional dynamics.1100

Visualization. To visualize how the revealed neural dynamics maps onto our two experimental1101

groups (learning and passive), we used two different dimensionality reduction approaches to1102

project the data into a two- or three-dimensional space. First, we used t-distributed stochastic1103

neighbor embedding (t-SNE) on the neuronal weight matrix WN of size N × R , where N is1104

the number of cells in tensor and R the number of components (Fig.2l,m, Supplementary1105

Figure 10f). Second, we used principal component analysis (PCA) on different combinations1106

of factors: WN⊗WW (Supplementary Figure 10g), WN⊗WW ⊗WA (Fig.2k), WN⊗WW ⊗WO1107

(Supplementary Figure 10h), and WN ⊗WW ⊗WA ⊗WO (Supplementary Figure 10i), and1108

projected learning and passive data separately into the same principal component subspace.1109

Unique participation: defining cell ensembles1110

For visualization and quantification purposes, we attributed each neural dynamic to unique1111

cell ensembles based on neurons’ weights (Supplementary Figure 11a). As indicated earlier,1112

factor weights could be positive or negative and therefore up to two distinct dynamics could1113

be represented per component. With this in mind, each neuron i was associated with a two1114

digit code [ componentID sign], i.e. a unique dynamic, where componentID is the component1115

where the |WN | of the neuron i was maximal. This approach therefore filtered out non-1116

participating (i.e. low weighted) neurons in describing neuronal dynamics, as illustrated in1117

Supplementary Figure 11b. Finally, in order to assess the nature of encoding of these cell1118
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ensembles, cell ensembles 1 and 2 were restricted to cells recorded in the passive mice, while1119

cell ensembles 3 to 6, describing dynamics of components 3 and 4, were restricted to cells1120

recorded in learning mice (Fig.2m).1121

Comparison of calcium responses between trial outcomes with a time-changing signal1122

For each ∆F/F comparison between different trial types, both the number of trials taken1123

(‘how many’) and the trial numbers (‘when’) were matched between group to control for1124

time/learning effect and power/noise difference (Figs. 4d-h,m-n, 5f,g).1125

Analysis of licks outside task events1126

Lick bouts outside task events were defined as lick bouts that preceded the first tone presen-1127

tation at the beginning of each behavioral block. The analysis was restricted to the first day1128

of training, to remove learning confound as much as possible (Supplementary Figure 15b,c).1129

A lick bout was defined as a succession of at least 3 licks with less than 1s interval in-between1130

each lick. In addition, it had to be preceded by a 1s no lick period, used to z-score the traces.1131

Classification of false alarm trials based on reward prediction activity1132

For each learning mouse, we trained a two-class support vector machine (SVM) algorithm1133

to decode trial identity (matched hit and CR trials) from late-in-trial activity (single trial1134

AUCs) of neurons part of cell ensemble 5. This decoding gave us access to a misclassification1135

rate (for each class and global), representing the noise level in the data (Supplementary1136

Figure 16a,b,e). We then used this trained SVM to classify FA trials, reasoning that if a1137

reward prediction signal is present during an FA trial, it will be decoded as a hit trial. In1138

each mouse, the proportion of FA trials with a RP signal was higher than the misclassification1139

rate of the decoder (Supplementary Figure 16e).1140

Isolating brief disengagement periods during behavior1141

Once mice acquire task contingencies and start increasing their correct rejection in the re-1142

inforced context, they generally stop behaving in the probe context (hit rate close to zero;1143

e.g. Supplementary Figure 8)7. We therefore found these periods by looking for probe blocks1144

with hit rate < 0.4 (Fig.5g).1145

Pre- vs post-behavior changes in tonopy1146

To assess how learning and passive exposure affected the cortical tonotopic map, we compared

best frequency surfaces from tuning curve recording sessions before and after learning (see

‘Pre- and post- task tonotopic mapping’). We first split the field of views in 30 × 30 pixels

(∼41 × 41µm) and computed the best frequency mode of the local neuronal population in
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each of those pixel blocks (Fig.3o). We estimated the change in surface before and after

behavior as:

∆surf ace =

[(
nT
nany

)post

−
(

nT
nany

)pre]
× 100,

where nT is the number of pixel block with T best frequency mode and nany the number1147

of pixel block with any best frequency. In our analysis, T could be the S+, S−, tones in1148

between S+ and S−, and tones with lower or higher frequency than S+ or S− (Fig.3n).1149

We also evaluated best frequency mode differences before and after behavior in pixel blocks1150

(Fig.3q).1151

Spatial clustering of contingency-related cell ensembles1152

To assess the spatial distribution of reward prediction and action suppression cell ensembles1153

(referred to here as ‘clusters’), we compared the distance between the two ensembles to a1154

random spatial organization (Fig.6a,b). To do so, we computed the median of between-1155

cluster cell distances and compared it to a median distribution obtained with cell ensemble1156

identity shuffles (n = 500). This allowed us to assess the clustered nature of these two cell1157

ensembles while preserving the spatial cell distribution in the fields of view. We considered1158

the cell ensembles significantly clustered if the median distance of the cell ensembles was1159

> 97.5% of the shuffle distribution. Because of the different statistics of cell distribution1160

inside a field of view for each mouse, comparing raw cell ensembles distances between mice1161

was prohibited. Instead, we computed a z-scored distance for each mouse by subtracting the1162

mean and dividing by the standard deviation of the shuffle distribution to the data median1163

distance (Fig.6c).1164

Pre-task stimulus selectivity index1165

For cells with positive tone-evoked responses to both S+ and S− in pre-task tuning curve

session, pre-task stimulus index (SI, (Fig.6d,e) was computed as:

SI =
S+ − S−

S+ + S− ,

where S+ is the peak ∆F/F in the tone-evoked response window to the S+ tone and S− is the1166

peak ∆F/F in the tone-evoked response window to the S− tone. SI could therefore ranged1167

from −1 to 1, with 1 indicating total selectivity for the S+, −1 indicating total selectivity1168

for the S−, and zero an absence of selectivity (similar response to both tone).1169

Assessing the relationship between tonotopic map and contingency organization1170

To assess whether reward prediction cells were S+ preferring cells and action suppression1171

cells were S− preferring cells before training started, we generated two separate statistical1172

tests (Fig.6g,h). First, we tested the hypothesis that the reward prediction cell ensemble1173

14

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 10, 2024. ; https://doi.org/10.1101/2024.06.10.597946doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.10.597946
http://creativecommons.org/licenses/by-nc-nd/4.0/


emerged from S+ preferring cells. We constructed a distribution of best-frequency distance1174

to S+ if H0 was true, i.e. if reward prediction cells were to have a best frequency the closest1175

to S+ given the field of view statistics (Fig.6g). Separately, we tested the hypothesis that1176

the action suppression cell ensemble emerged from S− preferring cells. We constructed a1177

distribution of best-frequency distance to S- if H0 was true, i.e. if action suppression cells1178

were to have a best frequency the closest to S- given the field of view statistics (Fig.6h).1179

Finally, we compared the proportion of S+ and S- preferring cells among reward prediction1180

and action suppression cell ensembles and observed no differences (Fig.6i).1181

Data availability1182

The data that support the findings of this study are available from the corresponding authors1183

upon request.1184
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Supplementary Figure 1. Stimulus decoding in the auditory cortex is at ceiling from
Day 1 of learning.
a, Stimulus decoding is at ceiling on Day 1 and remains high throughout learning (example mouse)
Only the cells tracked across all days were used to decode tone identity. b, Stimulus decoding is
at ceiling on day 1 and remains high throughout passive exposure over 15 days (example mouse).
c, Average decoding accuracy for all Learning mice (n = 5). d, Average decoding accuracy for all
Passive mice (n = 3). e, Evolution of tone decoding accuracy in the tone-evoked window across
days for Learning and Passive mice compared to chance level (trial shuffle, see Methods).
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Supplementary Figure 2. Activating PV+ neurons in the auditory cortex robustly
suppresses stimulus-evoked activity of excitatory neurons.
a, PV-ChR2 mice (n = 2) were injected with AAV-CaMKII-GCaMP6f to allow simultaneous one-
photon excitation of PV cells and two-photon recordings of pyramidal cell population. b, Schematic
of simultaneous widefield optogenetics and two-photon imaging. c, Optogenetic activation was
locked to frame acquisition. d, Trial-averaged ∆F/F aligned to tone onset (black vertical line) of an
example neuron at different intensity of LED power (blue scale). Yellow rectangle indicates period
of light delivery. mean ± s.e.m. e, Effect of optogenetic silencing as a function of LED power
(n = 454 neurons; Friedman test, p ∼ 0). ∆F/F at powers 0-0.26 mW/mm2 are all significantly
different from ∆F/F at powers 0.84-3.15 mW/mm2 (post hoc comparisons with Tukey-Kramer
test, ***p < 0.001). Black line is the logistic fit. median ± s.e.median. f, Immunostaining of PV-
ChR2 mice auditory cortex showing ChR2 expression in PV cells (PV+ and ChR2+ colocalization).
g, Post-task imaging of a representative control (top) and a representative test (PV-ChR2, bottom)
mouse used in AC silencing experiments. Note that no fluorescence below the dura is detected in
control mice.
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Supplementary Figure 3. AC full trial silencing impairs expression and on-line perfor-
mance
a, Assessment of the impact of AC full trial silencing over learning on Expression by controlling
for the delay in Acquisition. b, Cumulative distribution function (CDF) of mice as function of the
day to reach an accuracy ≥0.65 in probe trials. c, Cumulative distribution function (CDF) of mice
as function of the relative number of days to reach accuracy (acc.) criteria of >0.7 (left), >0.8
(middle), and >0.9 (right) in reinforced light-off trials after reaching an accuracy ≥0.65 in probe
trials. Black and dark gray vertical lines correspond to when CDF was reach for acc.>0.7 and >0.8,
respectively. d, Comparing action rate and accuracy between reinforced light-off versus reinforced
light-on trials to assess the impact of AC silencing on on-line performance. e, Hit (solid line) and
FA (dashed line) of an example control mouse (top) and an example PV-ChR2 mouse (bottom) in
reinforced light-off (black) and reinforced light-on (blue) trials across learning. f, Averaged action
rate in reinforced light-off (black) and reinforced light-on (blue) trials per day for control (top) and
PV-ChR2 (bottom) groups. g, Accuracy in light-on reinforced trials from the day when FA<0.3 in
light-off reinforced trials. Note how PV-ChR2 mice (gray lines) increase accuracy (positive slopes)
with light-on, showing that performance impairment fades away.

18

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 10, 2024. ; https://doi.org/10.1101/2024.06.10.597946doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.10.597946
http://creativecommons.org/licenses/by-nc-nd/4.0/


a

c

Example Ctl mouse

Example ChR2 mouse

0 5 10 15 20
Days

0.4

0.6

0.8

1

A
cc

u
ra

cy

Days

A
cc

u
ra

cy

0 5 10 15 20
0.4

0.6

0.8

1

probe
reinf. light-off
reinf. light-on

Probe, light-off Reinf., light-off Reinf., light-on

Ta
rg

e
t 
tr

ia
ls

1

10

1

10

F
o

il 
tr

ia
ls

0 2 4 0 2 4
Time from tone onset (s)

0 2 4 0 2 4
Time from tone onset (s)

Ta
rg

e
t 
tr

ia
ls

1

10

1

10

F
o

il 
tr

ia
ls

Ta
rg

e
t 
tr

ia
ls

1

14

F
o

il 
tr

ia
ls

1

14

0 2 4 0 2 4
Time from tone onset (s)

Ta
rg

e
t 
tr

ia
ls

1

14

F
o

il 
tr

ia
ls

1

14

0 2 4 0 2 4
Time from tone onset (s)

Ta
rg

e
t 
tr

ia
ls

1

126

F
o

il 
tr

ia
ls

1

126

Ta
rg

e
t 
tr

ia
ls

1

126

F
o

il 
tr

ia
ls

1

126

0 2 4 0 2 4
Time from tone onset (s)

0 2 4 0 2 4
Time from tone onset (s)

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 D17 D18 D19 D20 D21
Ctl mice

ChR2 mice

Ctl mice ChR2 mice

e Reinf., light-off Reinf., light-on

H
IT

 li
ck

 la
te

nc
y 

(s
)

H
IT

 li
ck

 la
te

nc
y 

(s
)

FA
 li

ck
 la

te
nc

y 
(s

)

FA
 li

ck
 la

te
nc

y 
(s

)

** **
*

**
*

Ctl
ChR2

Days
0 5 10 15 20

Days
0 5 10 15 20

Days
0 5 10 15 20

Days
0 5 10 15 20

**

**
*

H
IT

 li
ck

 r
at

e 
(H

z)

0

2

4

6

8

H
IT

 li
ck

 r
at

e 
(H

z)

0

2

4

6

8

FA
 li

ck
 r

at
e 

(H
z)

0

2

4

6

8

FA
 li

ck
 r

at
e 

(H
z)

0

2

4

6

8

Days
0 5 10 15 20

Days
0 5 10 15 20

Days
0 5 10 15 20

Days
0 5 10 15 20

Probe, light-offg

**
*

H
IT

 li
ck

 r
at

e 
(H

z)

0

2

4

6

8

FA
 li

ck
 r

at
e 

(H
z)

0

2

4

6

8

Days
0 2 4 6

Days
0 2 4 6

Days
0 2 4 6

Days
0 2 4 6

*

Target
Foil
Reinf., light-off
Reinf., light-on

Ctl
ChR2

Ctl
ChR2

b

d

f

0

0.5

1.0

1.5

2.0

2.5

0

0.5

1.0

1.5

2.0

2.5

0

0.5

1.0

1.5

2.0

2.5

0

0.5

1.0

1.5

2.0

2.5

H
IT

 li
ck

 la
te

nc
y 

(s
)

FA
 li

ck
 la

te
nc

y 
(s

)

0

0.5

1.0

1.5

2.0

2.5

0

0.5

1.0

1.5

2.0

2.5

Supplementary Figure 4. Effect of AC full trial silencing on lick patterns
a, Example control (top) and ChR2 (bottom) mice accuracy in probe light-off, reinforced light-
off and reinforced light-on trials across day. Dashed rectangle indicates day where licks in b are
extracted from. continued →
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Supplementary Figure 4 (continued).
b, Lick raster plots from day 4 from the example mouse from A in probe light-off (left), reinforced
light-off (middle) and reinforced light-on (right) trials, split into target (black, left) and foil (red,
right) trials. Green and red dots indicates correct and incorrect trials, respectively. Note the
difference in discrimination in all contexts between control and PV-ChR2 mice. c, Average lick
probability across training days for control (n = 8) and ChR2 (n = 8) mice in response to target
(vertical green line) and foil (vertical red line) tones, in reinforced light-off (black) and light-on
(blue) trials. d, Insets showing faster lick latencies (red arrow heads) in response to both tones and
higher lick probability in response to the foil (incorrect licking) in reinforced light-on compared to
light-off in ChR2 mice (right). Light has no effect on lick structure in control mice (left). e, Lick
latencies (top) and lick rate (bottom) in response to target (HIT trials; left) and foil (false alarm
(FA) trials; right) tones in reinforced light-off trials (HIT lick latencies, Days: F (20, 256) = 8.2738,
p < 10−17, Groups: F (1, 256) = 8.1568, p = 0.0046, Days*Groups: F (20, 256) = 0.9176, p = 0.56;
FA Lick latencies, Days: F (20, 190) = 2.2393, p = 0.0027, Groups: F (1, 190) = 1.8422, p = 0.18,
Days*Group: F (20, 190) = 1.5563, p = 0.067; HIT lick rate, Days: F (20, 256) = 4.3619, p < 10−8,
Groups: F (1, 256) = 2.9549, p = 0.087, Days*Groups: F (20, 256) = 0.2927, p = 0.99; FA lick rate,
Days: F (20, 190) = 4.04477, p < 10−6, Groups: F (1, 190) = 7.4070, p = 0.0071, Days*Groups:
F (20, 190) = 1.1944, p = 0.26). f, Lick latencies (top) and lick rate (bottom) in response to target
(HIT trials; left) and foil (false alarm (FA) trials; right) tones in reinforced light-on trials (HIT
lick latencies, Days: F (20, 256) = 10.5303, p < 10−22, Groups: F (1, 256) = 11.2328, p < 10−3,
Days*Groups: F (20, 256) = 0.6211, p = 0.90; FA Lick latencies, Days: F (20, 254) = 3.9111,
p < 10−6, Groups: F (1, 254) = 450.4358, p < 10−57, Days*Group: F (20, 254) = 2.1947, p = 0.0029;
HIT lick rate, Days: F (20, 256) = 2.6372, p < 10−3, Groups: F (1, 256) = 3.7748, p = 0.0531,
Days*Groups: F (20, 256) = 0.4520, p = 0.98; FA lick rate, Days: F (20, 254) = 6.4469, p < 10−13,
Groups: F (1, 254) = 301.2679, p < 10−44, Days*Groups: F (20, 254) = 0.6326, p = 0.89). g, Lick
latencies (left) and lick rate (right) in response to target (HIT) and foil (FA) tones in probe light-
off trials (HIT lick latencies, Days: F (5, 83) = 6.4522, p < 10−4, Groups: F (1, 83) = 11.7734,
p < 10−3, Days*Groups: F (5, 83) = 0.2878, p = 0.92; FA Lick latencies, Days: F (5, 58) = 2.9217,
p = 0.020, Groups: F (1, 58) = 0.9337, p = 0.338, Days*Group: F (5, 58) = 2.1909, p = 0.068; HIT
lick rate, Days: F (5, 83) = 2.0103, p = 0.086, Groups: F (1, 83) = 5.9422, p = 0.017, Days*Groups:
F (5, 83) = 0.5721, p = 0.72; FA lick rate, Days: F (5, 58) = 5.6386, p < 10−3, Groups: F (1, 58) =
0.0192, p = 0.89, Days*Groups: F (5, 58) = 1.6182, p = 0.17).
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Supplementary Figure 5. Silencing of the visual cortex does not impair performance
throughout learning
a, Silencing of the visual cortex in 90% of the reinforced trials throughout learning (n = 8 PV-ChR2
mice). b, Comparison of reinforced light-off versus light-on trials shows no deficit when silencing the
VC demonstrating the specificity of the effects of AC silencing. c, Accuracy in reinforced light-off
and light-on trials across days (two-way repeated measures ANOVA, Group: F (1, 140) = 0.5093,
p = 0.50). d, Accuracy in reinforced light-off and light-on trials (n = 168 sessions; Wilcoxon signed
rank, p = 0.41). e, Difference in accuracy in reinforced light-on versus light-off trials per session.
f, Difference in accuracy in reinforced light-on versus light-off trials across days in visual cortex PV-
ChR2 mice (dashed line) versus auditory cortex control mice (solid line) (two-way ANOVA, Days:
F (20, 271) = 1.5547, p = 0.06, Groups: F (1, 271) = 2.3072, p = 0.13, Days*Groups: F (20, 271) =
1.1540, p = 0.2950).
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Supplementary Figure 6. AC full trial silencing at expert level
a, Probabilistic optogenetic silencing of the auditory cortex at expert level. Silencing starts once
stable performance is reached. b, Accuracy in probe light-off (green), reinforced light-off (black)
and reinforced light-on (blue) trials. Silencing is performed from day 19 to 23. c, Accuracy in
reinforced light-off and light-on trials (paired t-test, p = 0.602).
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Supplementary Figure 7. Experimental design and timeline of imaging experiments.
a, After surgery, animals underwent a 10-day recovery period after which water restriction started.
Tonotopic mapping (tuning curve session) of the auditory cortex took place 5 days later under the
two-photon microscope, followed by two days of lick training under the two-photon microscope.
These two sessions also allowed for habituation to head fixation and context. Behavior sessions
started the following day for 15 or 16 days, after which tonotopic mapping sessions took place at
day +1, +7 and +15 post learning. b, One behavioral session consisted of three blocks of 80 or
100 trials, and a baseline session (no tone presented). Two groups of mice were imaged under the
two-photon microscope: the Passive group (top; n = 3) was presented with two pure tones but was
never rewarded (lick tube out), and the Learning group (n = 5) was rewarded (3µl water drop) if
licking in the response window after the S+ tone. Two probe blocks of 10 trials each were introduced
in two of the three reinforced blocks. c, Trial structure. After a no-lick period of 1s, a 100-ms tone
was played, followed by a 200-ms dead period and a ≤2.5s response period. The length of the delay
period was of 2s after a miss (M, no lick after S+) or a correct reject (CR, no lick after S-), 4s after
a hit (H, lick after S+) and 7s after a false alarm (FA, lick after S-).
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Supplementary Figure 8. Inter-subject performance alignment for megamouse tensor.
a, Accuracy in probe and reinforced contexts across days of all Learning mice. b, Action rate
in reinforced context across days of all Learning mice. c, Action rate in probe context across
days of all Learning mice. Please note that we fixed the probe performance at the maximum
discrimination that was followed by a decrease in hit rate do to extinction. d, After the alignment
procedure, action rate from the megamouse (all learning mice pooled) in reinforced context across
learning phases. e, Megamouse accuracy in reinforced context across learning phases. f, Accuracy
difference between the start and the end of the three learning phases in probe (green) and reinforced
(black) contexts. Acquisition is characterized by an increase of accuracy in probe trials (paired t-
test, p = 5.47.10−4) but not in reinforced trials (paired t-test, p = 0.07), Expression corresponds to
an increase of accuracy in reinforced trials (paired t-test, p = 0.008) and Expert is when accuracy
in reinforced trials is high and stable (paired t-test, p = 0.27).
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Supplementary Figure 9. Tensor representation of neural data.
a, Data are organized into a fourth-order tensor with dimensions N×W×A×O. Tensor decom-
position approximates the data as a sum of outer products of four vectors. Each outer product
contains a neuron factor (green rectangles), within trial factor (pink rectangles), across trial factor
(blue rectangles) and outcome factor (purple rectangles). Each set of low-dimensional factors (i.e.
component) describes the activity of group of neurons within and across trials according to trial
outcomes.
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Supplementary Figure 10. Low-rank tensor decomposition.
a, Similarity score as a function of model components. Each dot shows the similarity of a single
optimization run compared to the best-fit model within each category. continued →
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Supplementary Figure 10 (continued).
b, Model reconstruction error as a function of the number of components, where each dot corre-
sponds to a different optimization run. c, Neuronal contribution (Learning vs Passive cells) per
components (binomial proportion tests, all p < 0.001). d, Positive and negative neuronal weights
across components in cell population recorded in learning mice (Learning) or in passive mice (Pas-
sive) (Wilcoxon tests). e, Positive and negative neuronal weights across components and individual
mice. f, t-SNE of neuronal weights. Note how Learning and Passive cell populations are largely
non-overlapping. g, Projection of neuronal × within trial weights of Learning and Passive network
activity into principal component space. h, Projection of neuronal × within trial × trial outcome
weights of Learning and Passive network activity into principal component space. i, Projection of
neuronal × within trial × across trials × trial outcome (H/M and CR only) weights of Learning
and Passive network activity into principal component space.

C
om

po
ne

nt
s

1

2

3

4

w
e

ig
ht

s 
(a

.u
.)

Neurons

-0.1

0

0.1

1,000

unique participation
a b

1 3 4
0

0.2

0.4

C
el

l p
ro

po
rt

io
n

2
Components

c

W
N

0.5

0

0.5

1 3 42
Components

C
el

l p
ro

po
rt

io
n +

-

d

P
ro

b
ab

ili
ty

-0.05 0 0.05
0

0.02

0.04

0.06
raw
unique participation

WN

***

*** ***
***

***

***
***

*** ***
***

Learning
Passive

n.s.

# Dynamics

Supplementary Figure 11. Defining unique cell ensembles based on neuronal weights.
a, Neuronal weights in the four components. Each neuron is attributed to a given dynamic accord-
ing to its highest absolute weights, i.e. highest contribution. As a result, each dynamic is attributed
to a unique cell ensemble (gray rectangles). b, Neuronal weights distribution before (raw, black)
and after unique contribution attribution (gray). c, Learning and Passive cell proportion among
components after unique attribution (binomial proportion tests). d, Learning and Passive cell
proportion among components and given neuronal weight sign after unique attribution. In other
words, proportion of cells from Learning and Passive networks describing the tensor-revealed neu-
ronal dynamics (binomial proportion tests). ***p < 0.001, n.s.: not significant.
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Supplementary Figure 12. Evolution of tone-evoked responses across days.
a, Tone-evoked responses to S+ and S− in Learning mice across days for all cells recorded. b, Tone-
evoked responses to S1 and S2 in Passive mice across days for all cells recorded.
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Supplementary Figure 13. Learning counteracts tone-evoked habituation.
a, Proportion of tone-responsive cells across days among Passive and Learning cells. b, Averaged
proportion of tone-responsive cells in Passive and Learning networks (mean ± s.e.m.; t-test, p =
3.89.10−5). c, Proportion of tone-responsive cells in days 1-5 versus days 11-15 in Learning and
Passive networks (mean ± s.e.m.; two-way ANOVA, Time × Group, p = 1.73.10−7). d, Proportion
of cells responsive to S+ and S− in Learning network and S1, S2 or S1 or S2 (S) in Passive network.
e, Averaged proportion of cells responsive to S+, S− or S (mean ± s.e.m.; ANOVA, p = 1.93.10−6).
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Supplementary Figure 14. AC silencing restricted to sound presentation impairs au-
diomotor learning and on-line performance during learning.
a, Probabilistic optogenetic silencing of the auditory cortex during learning. Light-on periods
were restricted to sound presentation only (see Methods). b, Accuracy in reinforced light-on trials
(two-way ANOVA, Days: F (17, 86) = 5.4950, p < 10−7; Groups: F (1, 86) = 50.5343, p < 10−9;
Days*Groups: F (17, 86) = 0.70700, p = 0.79). c, Action rate in reinforced light-on trials (HIT,
two-way ANOVAs, HIT, Days: F (17, 86)10.68010, p < 10−14; Groups: F (1, 86) = 0.0200, p = 0.89;
Days*Groups: F (17, 86) = 1.0647, p = 0.40; FA, Days: F (17, 86) = 2.7330, p = 0.0012; Groups:
F (1, 86) = 41.5010, p < 10−8; Days*Groups: F (17, 86) = 0.7255, p = 0.77). continued →
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Supplementary Figure 14 (continued).
d, False alarm lick rate in reinforced light-on trials (two-way ANOVA, Days: F (17, 86) = 0.8663,
p = 0.6140; Groups: F (1, 86) = 89.3004, p < 10−14; Days*Groups: F (17, 86) = 3.2285, p < 10−3).
e, False alarm lick latency in reinforced light-on trials (two-way ANOVA, Days: F (17, 86) = 2.0216,
p = 0.018; Groups: F (1, 86) = 251.7387, p < 10−26; Days*Groups: F (17, 86) = 4.8600, p < 10−6).
f, Accuracy in probe light-off trials (two-way ANOVA, Days: F (5, 30) = 8.3041, p < 10−4; Groups:
F (1, 30) = 4.7288, p = 0.038; Days*Groups: F (5, 30) = 0.7288, p = 0.619). g, Action rate in probe
light-off trials (two-way ANOVAs, HIT, Days: F (5, 30) = 5.4632, p = 0.0011; Groups: F (1, 30) =
6.3510, p = 0.017; Days*Groups: F (5, 30) = 1.2158, p = 0.33; FA, Days: F (5, 30) = 5.5019,
p = 0.0010; Groups: F (1, 30) = 0, p = 1; Days*Groups: F (5, 30) = 1.1320, p = 0.37). h, HIT
lick latency in probe light-off trials (two-way ANOVA, Days: F (5, 29) = 6.0308, p < 10−3; Groups:
F (1, 29) = 10.3058, p = 0.0032; Days*Groups: F (5, 29) = 0.1542, p = 0.98). i, Maximal difference
between hit and false alarm rates in probe light-off trials over the first 6 days (t-test, p = 0.40).
j,Accuracy in reinforced light-off trials (two-way ANOVA, Days: F (17, 86) = 8.3579, p < 10−11;
Groups: F (1, 86) = 1.6832, p = 0.20; Days*Groups: F (17, 86) = 0.2356, p = 1).
k, Action rate in reinforced light-off trials (two-way ANOVAs, HIT, Days: F (17, 86) = 11.1314,
p < 10−14; Groups: F (1, 86) = 2.1423, p = 0.15; Days*Groups: F (17, 86) = 0.9107, p = 0.56;
FA, Days: F (17, 86) = 4.2760, p < 10−5; Groups: F (1, 86) = 0.5043, p = 0.48; Days*Groups:
F (17, 86) = 0.3026, p = 1). l, FA lick latency in reinforced light-off trials (two-way ANOVA,
Days: F (17, 78) = 1.7364, p = 0.053; Groups: F (1, 78) = 9.0848, p = 0.0035; Days*Groups:
F (17, 78) = 1.3749, p = 0.17). m, FA lick rate in reinforced light-off trials (two-way ANOVA, Days:
F (17, 78) = 0.7983, p = 0.69; Groups: F (1, 78) = 13.4564, p < 10−3; Days*Groups: F (17, 78) =
1.4494, p = 0.14). n, Comparison of light-off versus light-on trials to measure auditory cortex
silencing effect on on-line performance. o, Session density plot of accuracy in reinforced light-on
against light-off. Top, control; bottom, PV-ChR2. p, Accuracy in light-on reinforced trials from
day where FA< 0.3 in light-off reinforced trials. Note the general trend for ChR2 mice (gray lines)
to increase accuracy (positive slopes), i.e. performance impairment fades away. q, Within subject
difference between accuracy in reinforced light-on and light-off aligned to the day where false alarm
rate < 0.3 in reinforced light-off.
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Supplementary Figure 15. Emergence of reward prediction signal.
a, Procedure of hit and miss trial matching. b, Heat map of members of cell ensemble 5 (n = 105)
activity aligned to lick bout onset outside task events in day 1 of training. Lick PSTH is represented
above. c, Quantification of z-scored calcium activity 1s pre- vs 1s post- lick bout onset (Wilcoxon
test, p = 0.11). d, Average cell ensemble 5 activity in reinforced hit (green) and FA (orange) trials
over Expression phase. e, Lick PSTHs aligned to tone onset of FA trials in Expression and hit
trials in probe context. f, Cell ensemble 5 activity over the first 300 hit trials (20-trial blocks).
Only significant activity (and higher than null population, see Methods) is represented. Note the
emergence of a stable late-on-trial signal after 40 hit trials onwards. g, Quantification of Fig.4l, i.e.
evolution of late-in-trial signal of cell ensemble 5 across learning, taking first and last two 40-hit
trial blocks (KW test, p = 1.05.10−23). *p < 0.05, **p < 0.01, ***p < 0.001, n.s.: not significant.
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Supplementary Figure 16. Reward prediction signal on error trials.
a, Classification of hit versus CR trials in the reinforced context from the AUC post-tone of a
fraction of cell ensemble 5 (n = 51) recorded in the example mouse showed in Fig.4p,q. Right:
posterior probability of being part of CR class. b, Proportion of RP+ and RP− FA trials from the
example mouse showed in Fig.4o,p. c, No difference in lick latency was observed between RP+ and
RP− FA trials (Wilcoxon test, p = 0.83). d, AUC quantification of RP+, RP− and probe FA trials
(KW, p = 9.76.10−28). e, Proportion of RP+ among all FA trials and misclassification rate in each
learning mice. *p < 0.05, **p < 0.01, ***p < 0.001, n.s.: not significant.
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Supplementary Figure 17. Post-hit silencing over learning.
a, Experimental design of optogenetic silencing of AC activity throughout learning post hit only.
b, Hit rate across days in control (Ctl) and test (ChR2) mice in reinforced light-on or light-off
trials across days. c, Difference in hit rate in reinforced light-on versus light-off trials across days.
d, Difference in hit rate in reinforced light-on versus light-off trials (Wilcoxon test, p = 0.13).
e, Accuracy in probe light-off trials. f, Action rate (hit, H; false alarm, FA) in probe light-off trials.
g, Maximum difference between hit and false alarm trials over the first 6 days in probe light-off
trials. h, Accuracy in reinforced light-off trials. i, Action rate in reinforced light-off trials. j, Hit lick
latency in reinforced light-off trials. k, Silencing of visual cortex (VC) activity throughout learning
post hit only. l, Performance index in probe trials for AC control (n = 5), AC PV-ChR2 (n = 8)
and VC PV-ChR2 (n = 6) (two-way ANOVA, p = 1.90.10−32).
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Supplementary Figure 18. Post-FA silencing over learning.
a, Experimental design of optogenetic silencing of AC activity throughout learning post false alarm
(FA) only. b, False alarm rate across days in control (Ctl) and test (ChR2) mice in reinforced
light-on or light-off trials across days. c, Difference in false alarm rate in reinforced light-on versus
light-off trials across days. d, Difference in false alarm rate in reinforced light-on versus light-off
trials (t-test, p = 0.76). e, Accuracy in probe light-off trials. f, Action rate (hit, H; false alarm, FA)
in probe light-off trials. g, Maximum difference between hit and false alarm trials over the first 6
days in probe light-off trials. h, Accuracy in reinforced light-off trials. i, Action rate in reinforced
light-off trials. j, Hit lick latency in reinforced light-off trials. j, Hit lick rate in reinforced light-off
trials.
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Supplementary Figure 19. A signal for action suppression in Learning network.
a, Average activity of cell ensemble 6 or low weighted cells (null, black) in CR and FA trials in
Expert phase. b, Quantification of late-in-trial activity (KW test, p = 4.76.10−44). c, Average
cell ensemble 6 activity across learning phases. CR trials were split into 6, 9 and 4 quantiles over
Acquisition, Expression and Expert phases, respectively. d, Quantification of late-in-trial activity
(left axis) and CR rate (right axis) over learning phases. e,Averaged ensemble 6 activity in FA and
CR trials. FA trials are split according to lick latencies (white dashed line, mean latency; graded
rectangles, latency range extrema). f, Silencing protocols compared in Fig.5h,i.
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Name F statistic p-value Name F statistic p-value F statistic p-value

2-way ANOVA 1f
Accuracy in reinf. 

Light-on trials
Days  F (20, 256) = 17.5118  < 10-36 Groups F (1, 256) = 195.4231  < 10-32 F (20, 256) = 1.8215 0.02

HIT reinf. Light-on 
trials

Days F (20, 256) = 6.9034  < 10-14 Groups  F (1, 256) = 3.3036 0.07 F (20, 256) = 0.7914 0.72

FA reinf. Light-on 
trials

Days  F (20, 256) = 10.2452  < 10-22 Groups F (1, 256) = 197.5210  < 10-33 F (20, 256) = 1.1138 0.33

2-way ANOVA 1h Accuracy probe Days  F (5, 84) = 17.5637  < 10-11 Groups  F (1, 84) = 20.7994  < 10-4 F (5, 84) = 2.1360 0.07
2-way ANOVA 1i S+ response index Days F (119, 1680) = 8.8  < 10-108 Groups F (1, 1680) = 532.07  < 10-101  F (119, 1680) = 1.85  < 10-6

2-way ANOVA 1l
Accuracy in reinf. 

Light-off trials
Days F (20, 256) = 21.8381  < 10-43 Groups F (1, 256) = 39.9729  < 10-8 F (20, 256) = 1.1202 0.33

HIT reinf. Light-off 
trials

Days F (20, 256) = 5.6985  < 10-11 Groups F (1, 256) = 0.3266 0.57 F (20, 256) = 0.4733 0.97

FA reinf. Light-off 
trials

Days F (20, 256) = 14.1390  < 10-30 Groups F (1, 256) = 38.8122  < 10-8 F (20, 256) = 0.8034 0.71

2-way ANOVA 1n
Aligned accuracy in 
reinf. Light-off trials

Days F (20, 232) = 23.00  < 10-43 Groups F (1, 232) = 20.43  < 10-3 F (20, 232) = 1.4462 0.1

2-way ANOVA 1q
Aligned light-on-light-

off reinf. Accuracy
Days F (17, 181) = 1.91 0.02 Groups F (1, 181) = 80.72  < 10-15

rm ANOVA 4m Accuracy Groups F(2,66)=9.13  3.16.10-4

Performance index Days F(119,1320)=47.7299 0 Groups F(1,1320)=93.4275  2.11.10-21 F(119,1320)=0.9718 0.57
HIT lick latency Days F(8,95)=0.5799 0.79 Groups F(1,95)=6.4473 0.013 F(8,95)=0.4567 0.8833

Performance index Days F(119,1140)=3.8374 5.51.10-34 Groups F(1,1440)=16.0877  6.36.10-5 F(119,1440)=0.5461 1
HIT lick latency Days F(8,104)=0.9029 0.5172 Groups F(1,104)=11.1571 0.0012 F(8,104)=0.8896 0.53

2-way ANOVA 5h FA rate Days F(16,279)=1.4149 0.13 Groups F(2,279)=39.6122  7.20.10-16 F(32,279)=1.1953 0.22
2-way ANOVA 5i Av. Lick probability Days F(16,253)=1.1327 0.32 Groups F(2,253)=11,8720  1.18.10-5 F(32,253)=1.4887 0.05

rm 2-way ANOVA
Extended Data 

Fig.5c
Accuracy Days F (20, 140) = 15.6714  1.47.10-26 Groups F (1, 140) = 0.5093 0.51

2-way ANOVA
Extended Data 

Fig.5f
Accuracy light-on - 

light-off
Days F (20, 271) = 1.5547 0.06 Groups F (1, 271) = 2.3072 0.13 F (20, 271) =1.154 0.295

2-way ANOVA
Extended Data 

Fig.13c
Proportion responsive 

cells
Time F(1,16)=57.9347  1.05.10-6 Groups F(1,16)=68.3328  3.62.10-7 F(1,16)=76.3993 1.73.10-7

1-way ANOVA
Extended Data 

Fig.13e
Proportion responsive 

cells
Groups F(2,57)=16.7209 1.93.10-6

2-way ANOVA
Extended Data 

Fig.14b
Accuracy light-on 

trials
Days F (17, 86) = 5.4950  < 10-7 Groups  F (1, 86) = 50.5343  < 10-9  F (17, 86) = 0.70700 0.79

HIT light-on trials Days  F (17, 86)10.68010  < 10-14 Groups  F (1, 86) = 0.0200 0.89 F (17, 86) = 1.0647 0.4
FA light-on trials Days F (17, 86) = 2.7330 0.0012 Groups F (1, 86) = 41.5010  < 10-8 F (17, 86) = 0.7255 0.77

Extended Data 
Fig.14d

FA lick rate light-on 
trials

Days F (17, 86) = 0.8663 0.61 Groups F (1, 86) = 89.3004  < 10-14 F (17, 86) = 3.2285  < 10-3

Extended Data 
Fig.14e

FA lick latency light-on 
trials

Days  F (17, 86) = 2.0216 0.018 Groups F (1, 86) = 251.7387  < 10-26 F (17, 86) = 4.8600  < 10-6

2-way ANOVA
Extended Data 

Fig.14f
Accuracy probe Days F (5, 30) = 8.3041  < 10-4 Groups F (1, 30) = 4.7288 0.038 F (5, 30) = 0.7288 0.62

HIT probe Days  F (5, 30) = 5.4632 0.0011 Groups F (1, 30) =6.351 0.017  F (5, 30) = 1.2158 0.33
FA probe Days  F (5, 30) = 5.5019 0.001 Groups F (1, 30) = 0 1  F (5, 30) = 1.1320 0.37

2-way ANOVA
Extended Data 

Fig.14h
HIT lick latency Days  F (5, 29) = 6.0308  < 10-3 Groups F (1, 29) = 10.3058 0.0032 F (5, 29) = 0.1542 0.98

2-way ANOVA
Extended Data 

Fig.14j
Accuracy light-off 

trials
Days F (17, 86) = 8.3579  < 10-11 Groups F (1, 86) = 1.6832 0.2  F (17, 86) = 0.2356 1

HIT light-off trials Days F (17, 86) = 11.1314  < 10-14 Groups F (1, 86) = 2.1423 0.15  F (17, 86) = 0.9107 0.56
FA light-off trials Days F (17, 86) = 4.2760  < 10-5 Groups F (1, 86) = 0.5043 0.48 F (17, 86) = 0.3026 1

2-way ANOVA
Extended Data 

Fig.14l
FA lick latency light-off 

trials
Days  F (17, 78) = 1.7364 0.053 Groups F (1, 78) = 9.0848 0.0035 F (17, 78) = 1.3749 0.17

2-way ANOVA
Extended Data 

Fig.14m
FA lick rate light-off 

trials
Days F (17, 78) = 0.7983 0.69 Groups  F (1, 78) = 13.4564  < 10-3 F (17, 78) =1.4494 0.14

2-way ANOVA
Extended Data 

Fig.17e
Accuracy probe Days F(5,66)=28.4499 2.96.10-15 Groups F(1,66)=1.1059 0.3 F(5,66)=1.6693 0.15

HIT probe Days F(5,66)=3.7418 0.0048 Groups F(1,66)=0.3151 0.58 F(5,66)=0.9120 0.48
FA probe Days F(5,66)=10.0172 3.66.10-7 Groups F(1,66)=0.5165 0.47 F(5,66)=1.6770 0.1524

2-way ANOVA
Extended Data 

Fig.17h
Accuracy reinf. trials Days F(17,196)=21.3723 8.07.10-36 Groups F(1,196)=16.4149 7.33.10-5 F(17,196)=0.6588 0.84

HIT reinf. trials Days F(17,196)=3.0906 7.78.10-5 Groups F(1,196)=7.4877 0.0068 F(17,196)=0.7175 0.78
FA reinf. trials Days F(17,196)=19.3955 2.70.10-33 Groups F(1,196)=5.2646 0.023 F(17,196)=1.2621 0.22

2-way ANOVA
Extended Data 

Fig.17j
HIT lick latency Days F(17,196)=1.0782 0.38 Groups F(1,196)=9.9595 0.0019 F(17,196)=0.9034 0.57

2-way ANOVA
Extended Data 

Fig.17l
Performance index Days F(119,1920)=73.4277 0 Groups F(2,1920)=75.8901 1.90.10-32 F(238,1920)=0.7307 0.999

2-way ANOVA
Extended Data 

Fig.18e
Accuracy probe Days F(5,78)=4.7464 7.74.10-4 Groups F(1,78)=4.9199 0.03 F(5,78)=1.2012 0.32

HIT probe Days F(5,78)=1.0833 0.38 Groups F(1,78)=16.6632 1.07.10-4 F(5,78)=0.1594 0.98
FA probe Days F(5,78)=2.7704 0.02 Groups F(1,78)=2.7111 0.1 F(5,78)=2.6530 0.029

2-way ANOVA
Extended Data 

Fig.18h
Accuracy reinf. trials Days F(17,199)=7.7483 1.19.10-14 Groups F(1,199)=68.0233 2.17.10-14 F(17,199)=1.3683 0.16

HIT reinf. trials Days F(17,199)=2.0458 0.011 Groups F(1,199)=32.4866 4.28.10-8 F(17,199)=0.2519 0.1
FA reinf. trials Days F(17,199)=4.1289 4.34.10-7 Groups F(1,199)=19.9782 1.31.10-5 F(17,199)=1.5640 0.077

2-way ANOVA
Extended Data 

Fig.18j
HIT lick latency Days F(17,199)=1.8158 0.028 Groups F(1,199)=11.5978 7.99.10-4 F(17,199)=0.2495 0.1

2-way ANOVA
Extended Data 

Fig.18k
HIT lick rate Days F(17,199)=0.9297 0.54 Groups F(1,199)=8.1477 0.005 F(17,199)=0.2253 0.1

Test

4s

4t

Factor 2
Figure Variable

Factor 1 Interaction

2-way ANOVA

2-way ANOVA

2-way ANOVA

2-way ANOVA

1g

1m

Extended Data 
Fig.14k

2-way ANOVA

Extended Data 
Fig.17f

2-way ANOVA

Extended Data 
Fig.14c

2-way ANOVA

2-way ANOVA

Extended Data 
Fig.14g

2-way ANOVA

Extended Data 
Fig.18i

Extended Data 
Fig.17i

2-way ANOVA

2-way ANOVA
Extended Data 

Fig.18f

2-way ANOVA

Supplementary Table 1. Report of ANOVA statistics.
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