

1 **Title: Easy-to-set-up image analysis characterizes phenotypic diversity in the**
2 **growth of mushroom-forming fungus *Schizophyllum commune***

3

4 Authors: Hiromi Matsumae^{1,*}, Megumi Sudo², Tadashi Imanishi^{1,2}, Tsuyoshi Hosoya³.

5

6 Affiliations:

7 1. Department of Molecular Lifesciences, School of Medicine, Tokai University

8 2. Graduate School of Medicine, Tokai University

9 3. National Museum Nature and Science (Kahaku), Japan

10 Corresponding author: * matsumae.hiromi.g@tokai.ac.jp

11

12

13 Abstract

14

15 *Schizophyllum commune*, a common wood-decay mushroom known for its extremely
16 high genetic diversity and as a rare cause of human respiratory diseases, could be a
17 promising model fungus contributing to both biology and medicine. To better
18 understand its phenotypic diversity, we developed an image analysis system that
19 quantifies whole morphological traits of mycelia in Petri dishes. This study evaluated
20 growth of six wild and one clinical isolates of Japanese *S. commune*, subjected to
21 different temperatures and glucose concentrations, including a condition mimicking
22 the human respiratory environment. Our analysis revealed that combinations of two
23 growth indices, area and whiteness, highlighted strain-specific responses, with
24 profiling growth patterns using clustering algorithms. Notably, the clinical isolate
25 exhibited the strongest whiteness under the respiratory-like condition. We also found
26 that the growth rate was strongly determined by glucose concentration, while the
27 effects of temperature on growth varied among the strains, suggesting that while
28 glucose preference is common in this species, responses to temperature differ
29 between strains. Our results suggest that the system possesses sufficient sensitivity
30 to detect growth traits of mycelia. This study provides a key to unravelling unknown
31 traits behind the high polymorphisms in *S. commune*, including the ability to colonize
32 the human respiratory tract.

33

34

35 Introduction

36

37 Although the fungal kingdom harbours phylogenetically six to eight major phyla (Li et
38 al., 2021) and is estimated to host approximately six times the number of species
39 found in terrestrial plants(Kew, 2018), current genomic and molecular biology
40 research has predominantly concentrated on a narrow selection of model organisms
41 in fungi within the Ascomycota phylum. This selection includes yeasts, *Neurospora*,
42 and *Aspergillus*, which exhibit systematic and trait-based biases compared to the
43 diverse model organisms in animal and plant research(McCluskey & Baker, 2017).
44 For example, plant research utilizes a broader range of model organisms, from
45 *Arabidopsis* to rice and poplar trees, tailored to specific study objectives such as
46 breeding, development, ecology, and evolution(Cesarino et al., 2020). Recent
47 advancements in omics and genome editing technologies have accelerated research
48 on a revisit of non-model plants(Cesarino et al., 2020). However, the diversification of
49 fungal studies using these advanced technologies is notably lagging.

50 Our understanding of the fungal kingdom might be underrepresented,
51 necessitating the integration of various fungal models for both fundamental and
52 applied research into the molecular mechanisms and evolution of fungal traits.
53 *Schizophyllum commune* is a classic model organism in fungal biology(McCluskey &
54 Baker, 2017; MILES, TAKEMARU, & KIMURA, 2006; Raper, Krongelb, & Baxter,
55 1958) and is known to be distributed throughout the world(Cooke, 1961; Raper et al.,
56 1958; Taylor, Turner, Townsend, Dettman, & Jacobson, 2006). *Schizophyllum*
57 *commune* is a common wood-decay mushroom, which prefers fresh logs and is also
58 a weak pathogen for living trees(TAKEMOTO, NAKAMURA, IMAMURA, &

59 SHIMANE, 2012). A draft genome of *S. commune* has been sequenced with a size
60 typical for fungi, approximately 38.5-40 Mb(Mohanta & Bae, 2015; Ohm et al., 2010).
61 Population genomics analysis shows that the genetic diversity within the species is
62 extremely high, with a sequence identity of 75-92% between strains from North
63 America, Europe and East Asia(Marian et al., 2024). On average, 14.5 amino acid
64 substitutions per gene were observed within a U.S. population of *S. commune*, which
65 is equivalent to ten times that observed in *Drosophila melanogaster*, making it the
66 most polymorphic species in known eukaryotes(Baranova et al., 2015). The high
67 amino acid level genetic diversity in *S. commune* suggests that there could similarly
68 be high phenotypic diversity to adapt to global environments. Despite the known high
69 genetic diversity within *S. commune*, its diversity of phenotypic traits have been
70 studied under limited conditions such as the development of fruit bodies(Marian et
71 al., 2024), and the link between genes and phenotypes remains poorly understood.

72 The broad environmental adaptability of *S. commune* might be demonstrated
73 by its pathogenicity towards humans. This species is known to occasionally colonize
74 the human respiratory tract and cause a disease known to be Allergic
75 Bronchopulmonary Mycosis (ABPM)(Amitani et al., 1996; Chowdhary et al., 2013;
76 Oguma et al., 2024, 2018). Among fungi identified as causes of ABPM, Japan has
77 the highest number of cases attributed to *S. commune* in a global clinical
78 survey(Chowdhary et al., 2013). In Japan, *S. commune* is the second most common
79 cause, following only the genus *Aspergillus*(Oguma et al., 2024, 2018) . Although not
80 an infectious agent, *S. commune* can colonize the mucosal surfaces of the bronchi
81 and sinuses for long periods(Amitani et al., 1996). Identification of *S. commune* from
82 clinical samples such as mucus can be achieved through serodiagnosis, culture
83 tests, and DNA testing targeting the ITS region(Asano et al., 2021; Buzina, Lang-

84 Loidolt, Braun, Freudenschuss, & Stammberger, 2001; Chowdhary et al., 2013; Won
85 et al., 2012). For most fungi, optimal growth temperatures are between 25-30°C(Dix &
86 Webster, 1995); however, the internal temperature of the human body is 37°C. The
87 ability to survive in relatively high temperatures may cause fungal diseases in
88 humans(Leach & Cowen, 2013). Much remains unknown about the pathogenesis
89 and treatment of ABPM caused by *S. commune* (Oguma et al., 2024), necessitating
90 verification *in vitro* (Chowdhary et al., 2013). Many strains have been isolated from
91 ABPM patients and are provided as a culture collection of clinical isolates by The
92 Research Center for Medical Mycology at Chiba University and are now available
93 through the National BioResorce Project, Japan. If a method to measure fungal traits
94 *in vitro* can be developed, it could provide insights into the molecular mechanisms of
95 ABPM caused by *S. commune*.

96 Among the life cycle of *S. commune*, mycelial stages could be technically the
97 easiest to capture its traits. The life cycle of *S. commune* consists of spores, primary
98 mycelium, secondary mycelium, and the reproductive organ, the fruit body
99 (Nieuwenhuis & Aanen, 2018; Palmer & Horton, 2006). As a target for measurement
100 of morphological traits, fruit bodies are not practical for analysis in the current
101 techniques since they have complex three-dimensional shapes and alter their shapes
102 when dried. Once a single spore can be isolated from a fruiting body in the
103 laboratory, it allows for the establishment of genetically clonal mycelial cultures as
104 strains similar to other microbial studies. The development of image analysis
105 methods in microbiological research has been remarkably advanced, with many
106 studies that target counting the number of cells or areas and diameters of colonies
107 and biofilm in microbes(Khalil, Legin, Kurek, Perre, & Taidi, 2021; Ryan et al., 2012;
108 Takeuchi et al., 2014; Zhang et al., 2022). The growth of the mycelia of fungi is more

109 difficult to capture than the growth of unicellular microbes because a mycelium forms
110 complex structure on a solid medium(Khalil et al., 2021). Some experimental
111 systems measure the growth patterns of mycelia proliferating from spores through
112 live imaging systems(Khalil et al., 2021; Ulzurrun, Huang, Chang, Lin, & Hsueh,
113 2019; Zhang et al., 2022). However, live imaging systems require single-spore
114 isolation for each experiment (i.e., the necessity to induce sexual reproduction and
115 cycle generations), and live imaging involves expensive equipment, making it
116 impractical for routine clinical testing. Therefore, simpler methods are needed to
117 explore strain-specific morphological traits in multicellular fungal cultures.

118 This study aims to develop an image analysis system to easily detect the
119 whole morphological traits of *Schizophyllum commune*'s mycelia *in vitro* for
120 contributing to biological and medical studies. We prepared four environmental
121 conditions by varying temperature and glucose concentrations, including one
122 condition considered to be closest to the human bronchial surface at 37°C with low
123 glucose. Under these four conditions, mycelia of one clinical isolate and six wild
124 strains from Japan were cultivated on Petri dishes. Images of the Petri dishes were
125 taken on the fist day of transplantation of mycelia and on the fourth day post-
126 transplantation. From these images, two indices of mycelial growth, area and
127 whiteness were measured and growth rates between day 0 and day 4 were
128 calculated. Through statistical analysis and clustering of the growth rates, strain-
129 specific and common growth patterns were captured among the seven Japanese
130 strains of *S. commune*.

131 Results

132 We collected fruit bodies from five geographically distinct locations across Japan and
133 established fungal strains (Fig. 1a-b). These five locations span three of the Köppen
134 climate classifications(Beck et al., 2018) : Akita (FC8125) belongs to the humid
135 continental climate (Df), while Minami-Torishima in the Ogasawara Islands (FC8191-
136 8192) belongs to the savanna climate (Aw), and the remaining three locations belong
137 to the humid subtropical climate (Cfa). Additionally, we included a clinical isolate (IFM
138 65656) from the Research Center for Medical Mycology at Chiba University, bringing
139 the total to seven strains, which were then cultivated under four conditions and
140 observed on day four (Fig. 1b). The four conditions consisted of two temperature
141 conditions (room temperature and 37°C, which is similar to human body temperature)
142 and two glucose concentration conditions (3.9% PDA and 0.1% PDA) (Experimental
143 Procedures).

144 In all strains, the mycelia were thin and spread out under low glucose
145 conditions, whereas under high glucose conditions, the mycelia densely spread and
146 became whiter (Fig. 1b). From this observation, whiteness was also suggested as an
147 index of growth, while area and/or diameter have been traditionally used as a growth
148 index in fungal studies (Khalil et al., 2021; Ryan et al., 2012). We observed clear
149 differences between strains in terms of area and whiteness of mycelial growth even
150 on the same glucose concentration (for instance, see 37°C-High in Fig. 1b). Despite
151 both FC8191 and FC8192 being collected from the same 1.51 km² Pacific island,
152 Minami-Torishima, their growth patterns differed remarkably; FC8191 had the largest
153 area among the seven strains, while FC8192 had the smallest (see, for example,

154 37°C-High and RT-High in Fig. 1b). This suggests that there is no direct relationship
155 between the geographical origin of strains and its growth pattern.

156 To quantify the observed differences between strains and cultivated
157 conditions, we established an experimental system to compare the growth of mycelia
158 through images (Fig. 1c, Experimental Procedures). Petri dishes were captured from
159 above with a digital camera on the day of inoculation and on day 4. After
160 preprocessing the original images, we obtained an area of the mycelium and average
161 whiteness within that area for each image (Experimental Procedures; Table S1).

162 Growth rates, defined as the ratio of day 4 to day 0, were compared for both area
163 and whiteness across strains and culture conditions (Fig. 2, Table S2). Among the
164 seven strains, FC8172 did not show a statistically significance difference in area
165 across four culture conditions (ANOVA, $F(3, 16) = 0.498$, p-value = 0.689), whereas
166 the six strains showed significant differences in area under the four
167 conditions(ANOVA, p-value < 0.05)(Fig 2a, Table S3). Additionally, subsequent
168 Tukey's honestly significant different (HSD) post-hoc comparisons indicated that
169 there were no significant differences in pairwise comparisons among the different
170 conditions in FC8172 (adjusted p-values > 0.05 in all six comparisons, Table S4-5).
171 Of the six strains that showed differences in growth across culture conditions, all but
172 FC8192 tended to have greater areas on high-glucose media (grey shadow in Fig. 2)
173 compared to low-glucose media. The changes in area with temperature were mixed,
174 with some strains growing better at 37°C compared to room temperature. For
175 example, FC8152, collected from Akita, had the largest area at 37°C.

176 Whiteness, on the other hand, generally tended to be lower on day 4
177 compared to day 0, meaning the mycelium turned greyer over time (Fig. 2b). Unlike

178 area, no strain showed the same growth pattern across all cultivation conditions
179 (ANOVA, p-value < 0.05, shown in Table S2). Notably, FC8172, which showed no
180 significant differences in area across conditions, exhibited clear differences in
181 whiteness (Fig. 2b). Both FC8191 and FC8192, obtained from Minami-Torishima,
182 reflected differences in area in response to changes in cultivation conditions but
183 exhibited similar trends in whiteness. Interestingly, the clinical isolate IFM65656 had
184 the highest whiteness among all strains in the low glucose at 37°C (Fig. 2b). An
185 analysis of the differences between strains across culture conditions using Tukey's
186 HSD test revealed that IFM65656 and FC8125 exhibited different levels of whiteness
187 in all combinations (adjusted p-values < 0.05; Table S4). For the other five strains, no
188 significant influence of temperature on whiteness was observed within the same
189 medium concentration (Table S4). Taken together, these results yielded different
190 mycelial responses in terms of area and whiteness.

191 In order to focus on characteristics of mycelia, we examined the relationship
192 between area and whiteness, separated by strain, temperature, and glucose
193 concentration (Fig. 3). Replicates for each strain and culture conditions tended to be
194 in close proximity to each other (Fig. 3a, Fig. S1). The lack of a proportional
195 relationship between area and whiteness suggests that these two indices may reflect
196 different aspects of growth. Area and whiteness were distinctively split based on the
197 glucose level, but temperature did not explain the two indices (Fig. 3b-c). These
198 results suggest that the glucose concentration strongly reflects *S. commune*'s
199 preference for nutrinants, while temperature may reflect traits differences between
200 strains.

201 Next, we classified the area and whiteness by combining information on strain,
202 temperature, and glucose concentration using two clustering methods (Fig. 3d-e,
203 Experimental Procedures). The scatter plot in Figure 3a should be able to classify the
204 data into 28 clusters, representing the combinations of 7 strains and 4 culture
205 conditions. In hierarchical clustering, all biological replicates for each combination of
206 strain and condition formed a single cluster (Fig. 3d). The dendrogram initially split
207 perfectly by glucose level, reflecting the observed data (Fig. 3b). Although the
208 dendrogram tended to split at the second tier by temperature, the strains FC8172
209 and FC8192 (purple and pink in Fig. 3d), which showed little change in area at high
210 glucose (Fig. 2a), could not be differentiated based on their responses to
211 temperature. The accuracy of classification was reduced when information on strain
212 ID was removed from the dataset (Fig. S2), suggesting that including information
213 about biological replicates leads to improved clustering. Applying the K-means
214 method with K=28 to the same data, replicates tended to be labelled the same colour
215 (Fig. 3e). For example, it successfully classified FC6141 and FC8152 under 37°C and
216 high glucose (grey and red triangles in Fig 3a) into clusters 2 and 6, respectively.
217 The clustering was also reconstructed under room temperature and low glucose;
218 FC8152 (red diamond in Fig. 3a) was mapped into cluster 23 (orange diamond in
219 Fig. 3e). When K-means clustering with K=2 was applied, it yielded a different
220 classification result compared to hierarchical clustering, which initially split the data
221 based on glucose level (Figure S3).

222 Discussion

223 In this study, we developed the image analyzing system to capture the
224 characteristics of mycelial growth using seven strains of Japanese *Schizophyllum*

225 *commune*, aiming to utilize this species as a fungal model in molecular biology and
226 medical research. Although the shape of the fruit bodies is three-dimensionally
227 complex, capturing the overall image of the mycelia in two dimensions allowed us to
228 highlight the differences in growth among the strains. This method, which uses the
229 common digital camera and culture media, is cost-effective and straightforward as it
230 does not require specialized equipment or experimental procedures (Fig. 1c). We
231 believe this method is suitable for screening the morphological traits of *S. commune*
232 when incorporating genomic science and molecular biological techniques.

233 While our system captures macroscopic features of the mycelia, enhancing its
234 quantitativeness requires capturing microscopic-level characteristics. For instance,
235 mycelia that are translucent and difficult to automatically detect in terms of area may
236 have low cell density, which can be verified by counting cell numbers under a
237 microscope. In fungi, some methods that quantify proliferation from a single spore
238 have already been reported (Khalil et al., 2021; Ulzurrun et al., 2019; Zhang et al.,
239 2022). However, we could not use these previous methods since we transplanted
240 sections of mycelium that had proliferated from a single spore and thus took
241 replicates from clones. Cell counting in mycelium is challenging because, unlike
242 bacteria, fungal mycelium grows in a three-dimensional manner, like a ball of yarn,
243 making it difficult to count the number of cells from two-dimensional images. Future
244 development of microscopic methods that enable the counting of both initially
245 transplanted and subsequently grown mycelial cells would capture exact growth
246 rates at the cellular level.

247 Our study shows that whiteness could be the new index to measure the
248 growth of mycelium as well as conventional indices like area and diameters in fungal

249 studies(Khalil et al., 2021; Ryan et al., 2012). The proportional relationship was not
250 observed between area and whiteness and combinations of area and whiteness
251 identified strain-specific growth, suggesting that area and whiteness may serve as
252 distinct indices of *S. commune* growth. By combining these two measures with
253 cultivation conditions such as temperature and glucose concentration, it may be
254 possible to automatically identify strain-specific profiles (Fig. 3d-e). Interestingly,
255 while the area of FC8172 remained constant across different cultivation conditions,
256 its whiteness varied with glucose level (Fig. 2), suggesting that whiteness may reflect
257 a strain-specific trait for FC8172. The biological replicates indicated the presence of
258 strains like IFM65656, which showed little variation in area and whiteness, and
259 different types of strains like FC8191, which exhibited a large variety (Fig. S1).
260 Whether these observed variations among strains are due to biological or technical
261 reasons will need to be investigated further. Furthermore, the opposite growth
262 patterns were displayed by FC8191 and FC8192, obtained from Minami-Torishima
263 (Fig. 2a), suggesting that morphological growth patterns may not reflect
264 phylogeographic distinctions within the Japanese archipelago.

265 The common response among the strains was observed in relation to the
266 glucose concentration in the media, which affected both the area and whiteness
267 (Fig. 3b). This observation may reflect the ecological preference of *S. commune* in
268 natural environments, which is known to colonize sugar-rich early decaying wood or
269 to invade living tree bark (Marian et al., 2024; TAKEMOTO et al., 2012). This trait is
270 supported at the genetic level, as the species have a set of specific enzymes for
271 decomposing the bark of living trees, —a defense system of the trees—as well as a
272 set of enzymes for degrading dead wood(Almási et al., 2019). Thus, genes related to

273 the response to glucose might be evolutionary more conservative than those related
274 to other responses within the species.

275 In contrast to glucose concentration, the temperature-induced changes in
276 growth response to temperature varied among strains. It might be a key to
277 understanding whether *S. commune* can colonize within the human body. Under low
278 glucose at 37°C, IFM65656, isolated from an ABPM patient, exhibited the strongest
279 whiteness among the seven strains tested. This result may indicate that *S. commune*
280 populations harbour high genetic diversity *in natura*, with strains capable of
281 responding to various environments, including some that may easily colonize the
282 human body. However, this analysis compared only one clinical isolate, IFM65656,
283 against six wild strains, which is a limited sample size. Future studies should
284 increase the number of clinical isolates compared to provide a comprehensive
285 analysis of the phenotypic diversity of *S. commune*. While the draft genome of a
286 strain *S. commune* isolated from North America has been sequenced(Ohm et al.,
287 2010) and the global genetic diversity has been studied(Baranova et al., 2015;
288 Marian et al., 2024; Taylor et al., 2006), the genetic diversity of Japanese
289 populations, including amino acid polymorphisms, is still not well understood. In the
290 future, by analyzing the relationship between genetic diversity and phenotypic
291 diversity, it may be possible to contribute to elucidating the pathogenesis and
292 treatment methods of ABPM caused by *S. commune*, which occurs most frequently
293 in Japan (Asano et al., 2021; Chowdhary et al., 2013; Oguma et al., 2024, 2018).

294 Our analysis would also contribute to understanding the relationships between
295 genetic and phenotypic diversity in nature. The recent report illuminates how
296 intraspecific variation in animals, plants, and also fungus affects ecosystems(Roches

297 et al., 2018). *Schizophyllum commune* is a common wood decomposer across
298 continents, and it is well-represented in the world's largest public biodiversity
299 database, the Global Biodiversity Information Facility (GBIF)(GBIF, 2024), with over
300 70,000 observation records as of April 17, 2024. The role of *S. commune*'s high
301 genetic diversity in its phenotypic diversity in the wild, such as altering the amount
302 and speed of wood decomposition, or its impact on forest biomass, remains unclear.
303 Investigating the intraspecific diversity of *S. commune* could be intriguing not only
304 from a medical standpoint but also in terms of understanding the evolution of its
305 diverse genome and its impact on ecosystems.

306 Experimental procedures

307 Fungal Culture:

308 We used seven strains of *S. commune*, including a clinical strain isolated from an
309 ABPM patient stored in the Research Center for Medical Mycology, Chiba University
310 (ID: IFM 65656, managed in this study as FC6170) and six wild isolates from
311 different geographic origins archived in the fungal collection of the National Museum
312 of Nature and Science (Kahaku), Japan (Fig. 1). The wild strains were cultured as
313 single-spore isolates from fruiting bodies, either as primary or secondary mycelia.
314 *Schizophyllum commune* has a life cycle that includes both primary and secondary
315 mycelial states, distinguishable by the presence or absence of a characteristic
316 cellular structure called clamp connections. Among the seven strains used in this
317 study, FC8125 was identified as a secondary mycelium due to the presence of clamp
318 connections upon microscopic observation, while the remaining six strains were

319 considered primary mycelia due to the absence of clamp connections. All the wild
320 isolates can be provided upon request.

321 Cultivated conditions were designed to create both human-like and non-
322 human-like environments by varying the concentration of the medium and the
323 incubation temperature. Potato dextrose agar (PDA, Nissui Pharmaceutical Co.) was
324 prepared at high (3.9%) and low (0.1%) concentrations, and 10 ml of each was
325 dispensed into 90 mm sterile Petri dishes. *Schizophyllum commune* favours fresh
326 wood in its natural habitat(Almási et al., 2019; TAKEMOTO et al., 2012), while the
327 respiratory tract (on the bronchial surface) may lack sufficient major nutrients for
328 fungi, like glucose. We employed 0.1% of PDA as a “low” glucose medium to mimic
329 fasting blood glucose levels of 0.1%. A fragment of mycelia with the medium was
330 extracted by An 8 mm cork borer, and then it was inoculated at the centre of a new
331 dish for each experiment. As the human interior (such as the sinuses and bronchi) is
332 a dark environment, all cultures were grown in dark conditions. Incubation
333 temperatures were set at room temperature (to simulate a natural environment) and
334 37°C (to simulate human body temperature). Therefore, the combination of a low-
335 concentration glucose medium and 37°C incubation was deemed the closest
336 approximation to a human body-like environment in four possible combinations of
337 medium and temperature. For image analysis, 3-5 replicates per condition were
338 prepared, utilising mycelia from both day 0 and day 4.

339 **Image Analysis:**

340 A digital camera was mounted directly above a Petri dish at a distance of about
341 44 cm from the lens to the desk, and a black paper was placed over the top to prevent
342 reflections from the dish lid (Fig. 2). To maintain safety, photos of the whole dishes

343 were taken with the lid on, under the black paper. All the original images are available
344 from 10.5281/zenodo.11180775.

345 Image J 1.53k (Schneider et al., *Nature Methods*, 2012) was used to preprocess
346 the images to control for lighting effects. First, background correction was performed
347 using the rolling ball algorithm (ball radius = 1500 pixels) to subtract the background.
348 Then, the background-subtracted images were converted to 8-bit grayscale, reducing
349 them from colour images to 256-level grayscale images, where values closer to 0
350 indicate dark and 255 indicate white. The camera and subject positions were fixed,
351 ensuring that the scale did not change between images, with the scale set at
352 approximately 26.5 pixels per millimetre.

353 Next, to detect growth indices specific to each strain, namely area and
354 whiteness, the mycelial outline was detected in one of the following ways. The area of
355 the outline (in mm²) was computed by ImageJ. The whiteness level was defined by the
356 mean grey value (0-255) within the outline. Area and whiteness for all samples were
357 shown in Table S1.

358 1. In the cases of mycelia that grew entirely white, the region was detected
359 automatically (particle size 50 pixels, circularity 0-1) (Fig. 2).
360 2. For mycelia that were generally faint and showed little change between day 0
361 and day 4, the outline was obtained by subtracting the day 0 image from the
362 day 4 image by Image Calculator. The subtracted image was then converted
363 to 8-bit grayscale, scaled, and thresholded with the mean dark algorithm for
364 particle analysis. Dishes were then encircled with an ellipse, and particle
365 analysis was conducted to detect outlines.

366 3. For the remaining images where neither of these methods worked, freehand
367 tools were used to outline the mycelium manually.

368

369 **Statistical Analysis:**

370 Data visualisation, statistical analyses, and clustering of area and whiteness were
371 carried out in R 4.3.1(Team, 2023) using the `ggplot2`(Wickham, 2016),
372 `dplyr`(Wickham, François, Henry, Müller, & Vaughan, 2023), `tidyverse`(Wickham,
373 Vaughan, & Girlich, 2023), and `broom`(Robinson, Hayes, & Couch, 2023)
374 packages. Some parts of the source codes were written by ChatGPT v4(AI, 2023). The
375 in-house R scripts can be accessed on GitHub,
376 https://github.com/mhiromi/scom_mycelial_growth_2024.

377 For map rendering, the `rnaturalearth`(Massicotte & South, 2023) and
378 `ggrepel`(Slowikowski, 2024) packages were used. Growth rates were defined as
379 the ratio of day 4 to day 0 in terms of area and whiteness (Table S2), and these rates
380 were utilised in subsequent statistical analyses.

381 The differences in area and whiteness across four culture conditions
382 (temperature and medium) for each strain were tested using ANOVA and Tukey's
383 honestly significant difference (HSD) test from the `car`(Fox & Weisberg, 2019) and
384 `agricolae`(Mendiburu, 2023) packages (Table S3-4). Given the clear differences
385 in area and whiteness based on the medium (Fig 3b), F-statistics and T-statistics were
386 calculated. Mean values and standard deviations between replicates under the same
387 culture conditions for each strain were computed (Fig. S1).

388 We performed clustering of the data, including the two indices and cultivated
389 information. The data contained both numerical (area and whiteness) and categorical
390 data (temperature, medium, and strain ID), and thus preprocessing was necessary
391 before clustering. Categorical data were converted into binary information using one-
392 hot vector encoding with the `fastDummies` (Kaplan, 2023) package in R (Table S6).
393 Area and whiteness were then scaled using the `scale` function to address differing
394 scales. Hierarchical clustering was performed using the `hclust` function with the
395 Manhattan distance and Ward.D2 method (Fig. 3, Fig. S2). The obtained dendrograms
396 were rendered using the `ape` (Paradis & Schliep, 2019) and `ggtree` (Yu, 2023)
397 packages. K-means clustering was performed using the `kmeans` function (Fig. 3, Fig.
398 S3). K=28 was set as the optimal cluster number to combine all strain, medium, and
399 temperature conditions.

400
401

402 Acknowledgements

403
404 The authors thank Kentaro Hosaka (Kahaku) for providing fruit bodies from Minami-
405 Torishima island. The authors thank Katsuhiko Kamei (Chiba Univ), Yoshiki Shiraishi
406 (Tokai Univ), Takeru Nakazato (DBCLS), and Mika Sakamoto (NIG) for the
407 discussion. Clinical isolate IFM 65656 was provided by Medical Mycology Research
408 Center, Chiba University, with support in part by National BioResource Project
409 (NBRP), AMED, Japan (<https://nbrp.jp/>). A part of this work was performed using the
410 facilities of the Medical Science College Office, Tokai University.

411 This work was partly supported by MEXT KAKENHI Numbers 20K16254, 21H04358
412 to H.M, ROIS-DS-JOINT-GRANT (029RP2019) to H.M, Joint Usage/Research
413 Program of Medical Mycology Research Center, Chiba University (19-11) to H.M,
414 2019-2020 Tokai University School of Medicine Research Aid to H.M.
415 Author contributions: HM and TI designed the research. TH isolated strains from fruit
416 bodies. TH and MS cultured *S. commune*. MS captured images. HM and MS
417 processed image data and performed statistical analyses. All authors reviewed the
418 final manuscript.

419 Figure legends

420
421 **Fig. 1. Detecting whole morphological traits of seven strains in *Schizophyllum***
422 ***commune* by image analysis**
423 (a) Geographic origins of the six wild strains. Each color represents a geographic area,
424 except for IFM65656(FC6170) which was isolated from an anonymized patient and,
425 therefore, lacks location. (b) Mycelia cultures observed on Day 4. The horizontal axis lists the
426 strain IDs and locations, and the vertical axis shows combinations of temperature and
427 medium concentration. 'RT' indicates Room Temperature. Medium concentration is
428 categorized as Low (0.1% PDA) or High (3.9% PDA). (c) Workflow of image analysis system
429 in this study. Images of mycelia cultured on plastic dishes were captured using a digital
430 camera and processed by ImageJ. The data preprocessing includes color-to-grayscale
431 conversion and background correction. An area of the mycelia (a green section) was
432 separated from the dish and media (a pink section) and measured in square millimeters
433 (mm^2). Whiteness is average of grayscale levels ranging from 0 to 255 within the detected
434 area (green). Growth ratios compare areas and whiteness on day 4 to day 0.
435

436 **Fig. 2. Growth rates of seven strains under four culture conditions.**

437 Boxplots show (a) ratios of sizes and (b) whiteness on Day 4 relative to Day 0. Dots are
438 replicates under a specific culture condition. Colors indicate temperature conditions, with
439 orange representing 37°C and blue indicating room temperature (RT). Gray shaded areas
440 denote high-concentration medium (3.9% PDA), while white areas indicate low-concentration
441 medium (0.1% PDA).

442

443 **Fig. 3. Relationships between areas and whiteness as growth indices in *S. commune*.**

444 The Y-axis indicates areas of mycelia, while the X-axis represents mean whiteness within an
445 area. (a) Colors correspond to different strains. Shapes denote combinations of culture
446 conditions, specifically temperature and medium concentration: temperature is either 37°C or
447 room temperature (RT), and medium concentration is categorized as low (0.1% PDA) or high
448 (3.9% PDA). (b) The plot from (a) is differentiated by medium concentration; orange for high
449 concentration and blue for low concentration. (c) The plot from (a) is distinguished based on
450 culture temperature; orange for 37°C, and blue for room temperature. (f) Hierarchical
451 clustering with information on area, whiteness, strain, temperature, and glucose level was
452 provided. A dendrogram was constructed by the Manhattan distance and Ward's method.
453 The color bars on the right side of the dendrogram categorize the samples by strain, medium
454 concentration, and temperature. (g) K-means clustering with 28 clusters for the same data
455 from (f). The color and shape of each point correspond to its unique cluster number.

456

457

458

459 References

460

461 AI, O. (2023). ChatGPT v4. Retrieved 2024, from ChatGPT v4 website:

462 <https://www.openai.com/chatgpt>

463 Almási, É., Sahu, N., Krizsán, K., Bálint, B., Kovács, G. M., Kiss, B., ... Nagy, L. G.

464 (2019). Comparative genomics reveals unique wood-decay strategies and fruiting

465 body development in the Schizophyllaceae. *New Phytologist*, 224(2), 902–915. doi:

466 10.1111/nph.16032

467 Amitani, R., Nishimura, K., Niimi, A., Kobayashi, H., Nawada, R., Murayama, T., ...

468 Kuze, F. (1996). Bronchial Mucoid Impaction Due to the Monokaryotic Mycelium of

469 *Schizophyllum commune*. *Clinical Infectious Diseases*, 22(1), 146–148. doi:

470 10.1093/clinids/22.1.146

471 Asano, K., Hebisawa, A., Ishiguro, T., Takayanagi, N., Nakamura, Y., Suzuki, J., ...

472 Program, J. A. R. (2021). New clinical diagnostic criteria for allergic

473 bronchopulmonary aspergillosis/mycosis and its validation. *Journal of Allergy and*

474 *Clinical Immunology*, 147(4), 1261-1268.e5. doi: 10.1016/j.jaci.2020.08.029

475 Baranova, M. A., Logacheva, M. D., Penin, A. A., Seplyarskiy, V. B., Safonova, Y. Y.,

476 Naumenko, S. A., ... Kondrashov, A. S. (2015). Extraordinary Genetic Diversity in a

477 Wood Decay Mushroom. *Molecular Biology and Evolution*, 32(10), 2775–2783. doi:

478 10.1093/molbev/msv153

479 Beck, H. E., Zimmermann, N. E., McVicar, T. R., Vergopolan, N., Berg, A., & Wood,

480 E. F. (2018). Present and future Köppen-Geiger climate classification maps at 1-km

481 resolution. *Scientific Data*, 5(1), 180214. doi: 10.1038/sdata.2018.214

482 Buzina, W., Lang-Loidolt, D., Braun, H., Freudenschuss, K., & Stammberger, H.

483 (2001). Development of Molecular Methods for Identification of *Schizophyllum*
484 *commune* from Clinical Samples. *Journal of Clinical Microbiology*, 39(7), 2391–2396.
485 doi: 10.1128/jcm.39.7.2391-2396.2001

486 Cesarino, I., Iorio, R. D., Kirschner, G. K., Ogden, M. S., Picard, K. L., Rast-
487 Somssich, M. I., & Somssich, M. (2020). Plant Science's Next Top Models. *Annals of*
488 *Botany*, 126(1), 1–23. doi: 10.1093/aob/mcaa063

489 Chowdhary, A., Randhawa, H. S., Gaur, S. N., Agarwal, K., Kathuria, S., Roy, P., ...
490 Meis, J. F. (2013). *Schizophyllum commune* as an emerging fungal pathogen: a
491 review and report of two cases. *Mycoses*, 56(1), 1–10. doi: 10.1111/j.1439-
492 0507.2012.02190.x

493 Cooke, W. B. (1961). The Genus *Schizophyllum*. *Mycologia*, 53(6), 575. doi:
494 10.2307/3756459

495 Dix, N. J., & Webster, J. (1995). *Fungal Ecology*. 322–340. doi: 10.1007/978-94-011-
496 0693-1_12

497 Fox, J., & Weisberg, S. (2019). *An R Companion to Applied Regression*. Retrieved
498 from <https://socialsciences.mcmaster.ca/jfox/Books/Companion/>

499 GBIF. (2024). <https://www.gbif.org>. Retrieved from <https://www.gbif.org>

500 Kaplan, J. (2023). fastDummies: Fast Creation of Dummy (Binary) Columns and
501 Rows from
502 Categorical Variables. Retrieved from [https://CRAN.R-
503 project.org/package=fastDummies](https://CRAN.R-project.org/package=fastDummies)

504 Kew, R. B. G. (2018). *State of the World's Fungi 2018* ("Willis & Katherine"), Eds.).
505 Royal Botanic Gardens, Kew.

506 Khalil, H., Legin, E., Kurek, B., Perre, P., & Taidi, B. (2021). Morphological growth
507 pattern of *Phanerochaete chrysosporium* cultivated on different *Miscanthus* x

508 giganteus biomass fractions. *BMC Microbiology*, 21(1), 318. doi: 10.1186/s12866-
509 021-02350-8

510 Leach, M. D., & Cowen, L. E. (2013). Surviving the Heat of the Moment: A Fungal
511 Pathogens Perspective. *PLoS Pathogens*, 9(3), e1003163. doi:
512 10.1371/journal.ppat.1003163

513 Li, Y., Steenwyk, J. L., Chang, Y., Wang, Y., James, T. Y., Stajich, J. E., ... Rokas,
514 A. (2021). A genome-scale phylogeny of the kingdom Fungi. *Current Biology*, 31(8),
515 1653-1665.e5. doi: 10.1016/j.cub.2021.01.074

516 Marian, I. M., Valdes, I. D., Hayes, R. D., LaButti, K., Duffy, K., Chovatia, M., ...
517 Ohm, R. A. (2024). High phenotypic and genotypic plasticity among strains of the
518 mushroom-forming fungus *Schizophyllum commune*. *BioRxiv*, 2024.02.21.581338.
519 doi: 10.1101/2024.02.21.581338

520 Massicotte, P., & South, A. (2023). *rnaturrearth: World Map Data from Natural*
521 *Earth*. Retrieved from <https://CRAN.R-project.org/package=rnaturrearth>

522 McCluskey, K., & Baker, S. E. (2017). Diverse data supports the transition of
523 filamentous fungal model organisms into the post-genomics era. *Mycology*, 8(2), 67–
524 83. doi: 10.1080/21501203.2017.1281849

525 Mendiburu, F. de. (2023). *agricolae: Statistical Procedures for Agricultural Research*.
526 Retrieved from <https://CRAN.R-project.org/package=agricolae>

527 MILES, P. G., TAKEMARU, T., & KIMURA, K. (2006). Incompatibility Factors in the
528 Natural Population of *Schizophyllum commune*. *Shokubutsugaku Zasshi*, 79(940–
529 941), 693. doi: 10.15281/jplantres1887.79.693

530 Mohanta, T. K., & Bae, H. (2015). The diversity of fungal genome. *Biological*
531 *Procedures Online*, 17(1), 8. doi: 10.1186/s12575-015-0020-z

532 Nieuwenhuis, B. P. S., & Aanen, D. K. (2018). Nuclear arms races: Experimental

533 evolution for mating success in the mushroom-forming fungus *Schizophyllum*
534 *commune*. *PLoS ONE*, 13(12), e0209671. doi: 10.1371/journal.pone.0209671

535 Oguma, T., Ishiguro, T., Kamei, K., Tanaka, J., Suzuki, J., Hebisawa, A., ... Program,
536 J. A. R. (2024). Clinical characteristics of allergic bronchopulmonary mycosis caused
537 by *Schizophyllum commune*. *Clinical and Translational Allergy*, 14(1), e12327. doi:
538 10.1002/ct2.12327

539 Oguma, T., Taniguchi, M., Shimoda, T., Kamei, K., Matsuse, H., Hebisawa, A., ...
540 Asano, K. (2018). Allergic bronchopulmonary aspergillosis in Japan: A nationwide
541 survey. *Allergology International*, 67(1), 79–84. doi: 10.1016/j.alit.2017.04.011

542 Ohm, R. A., Jong, J. F. de, Lugones, L. G., Aerts, A., Kothe, E., Stajich, J. E., ...
543 Wösten, H. A. B. (2010). Genome sequence of the model mushroom *Schizophyllum*
544 *commune*. *Nature Biotechnology*, 28(9), 957–963. doi: 10.1038/nbt.1643

545 Palmer, G. E., & Horton, J. S. (2006). Mushrooms by magic: making connections
546 between signal transduction and fruiting body development in the basidiomycete
547 fungus *Schizophyllum commune*. *FEMS Microbiology Letters*, 262(1), 1–8. doi:
548 10.1111/j.1574-6968.2006.00341.x

549 Paradis, E., & Schliep, K. (2019). ape 5.0: an environment for modern phylogenetics
550 and evolutionary analyses in R. *Bioinformatics*, 35, 526–528. doi:
551 10.1093/bioinformatics/bty633

552 Raper, J. R., Krongelb, G. S., & Baxter, M. G. (1958). The Number and Distribution
553 of Incompatibility Factors in *Schizophyllum*. *The American Naturalist*, 92(865), 221–
554 232. doi: 10.1086/282030

555 Robinson, D., Hayes, A., & Couch, S. (2023). *broom: Convert Statistical Objects into*
556 *Tidy Tibbles*. Retrieved from <https://CRAN.R-project.org/package=broom>

557 Roches, S. D., Post, D. M., Turley, N. E., Bailey, J. K., Hendry, A. P., Kinnison, M. T.,

558 ... Palkovacs, E. P. (2018). The ecological importance of intraspecific variation.

559 *Nature Ecology & Evolution*, 2(1), 57–64. doi: 10.1038/s41559-017-0402-5

560 Ryan, O., Shapiro, R. S., Kurat, C. F., Mayhew, D., Baryshnikova, A., Chin, B., ...

561 Boone, C. (2012). Global Gene Deletion Analysis Exploring Yeast Filamentous

562 Growth. *Science*, 337(6100), 1353–1356. doi: 10.1126/science.1224339

563 Slowikowski, K. (2024). *ggrepel: Automatically Position Non-Overlapping Text Labels*

564 with “ggplot2.” Retrieved from <https://CRAN.R-project.org/package=ggrepel>

565 TAKEMOTO, S., NAKAMURA, H., IMAMURA, Y., & SHIMANE, T. (2012).

566 *Schizophyllum commune* as a Ubiquitous Plant Parasite. *Japan Agricultural*

567 *Research Quarterly: JARQ*, 44(4), 357. doi: 10.6090/jarq.44.357

568 Takeuchi, R., Tamura, T., Nakayashiki, T., Tanaka, Y., Muto, A., Wanner, B. L., &

569 Mori, H. (2014). Colony-live — a high-throughput method for measuring microbial

570 colony growth kinetics—reveals diverse growth effects of gene knockouts in

571 *Escherichia coli*. *BMC Microbiology*, 14(1), 171. doi: 10.1186/1471-2180-14-171

572 Taylor, J. W., Turner, E., Townsend, J. P., Dettman, J. R., & Jacobson, D. (2006).

573 Eukaryotic microbes, species recognition and the geographic limits of species:

574 examples from the kingdom Fungi. *Philosophical Transactions of the Royal Society*

575 *B: Biological Sciences*, 361(1475), 1947–1963. doi: 10.1098/rstb.2006.1923

576 Team, R. C. (2023). *R: A Language and Environment for Statistical Computing*.

577 Retrieved from <https://www.R-project.org/>

578 Ulzurrun, G. V.-D. de, Huang, T.-Y., Chang, C.-W., Lin, H.-C., & Hsueh, Y.-P. (2019).

579 Fungal feature tracker (FFT): A tool for quantitatively characterizing the morphology

580 and growth of filamentous fungi. *PLoS Computational Biology*, 15(10), e1007428.

581 doi: 10.1371/journal.pcbi.1007428

582 Wickham, H. (2016). *ggplot2: Elegant Graphics for Data Analysis*. Retrieved from

583 <https://ggplot2.tidyverse.org>

584 Wickham, H., François, R., Henry, L., Müller, K., & Vaughan, D. (2023). *dplyr: A*

585 *Grammar of Data Manipulation*. Retrieved from <https://CRAN.R-project.org/package=dplyr>

586 Wickham, H., Vaughan, D., & Girlich, M. (2023). *tidyr: Tidy Messy Data*. Retrieved

587 from <https://CRAN.R-project.org/package=tidyr>

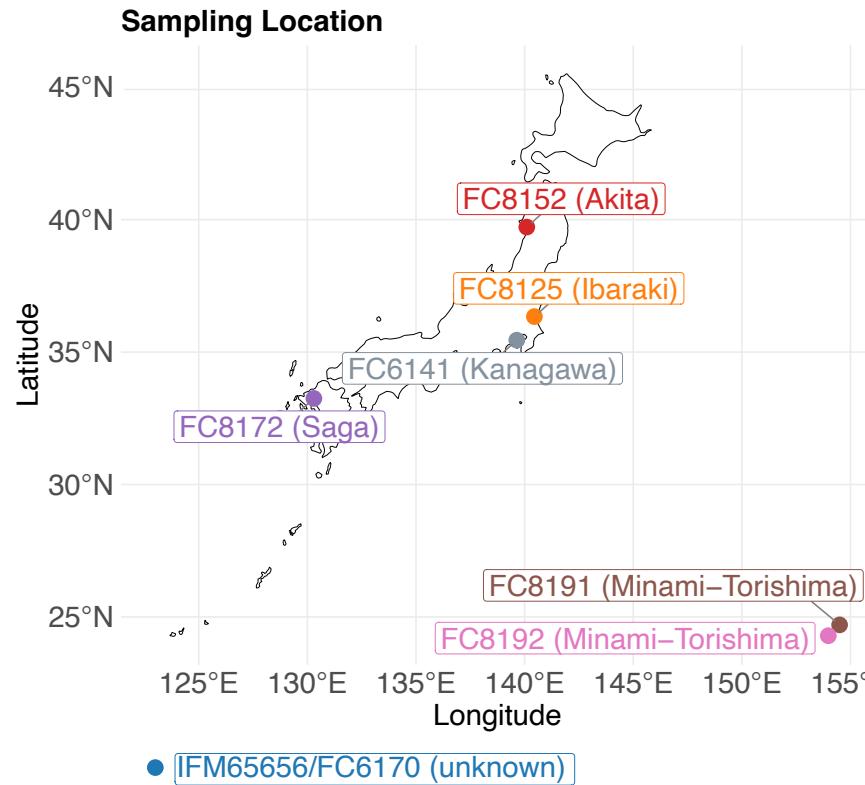
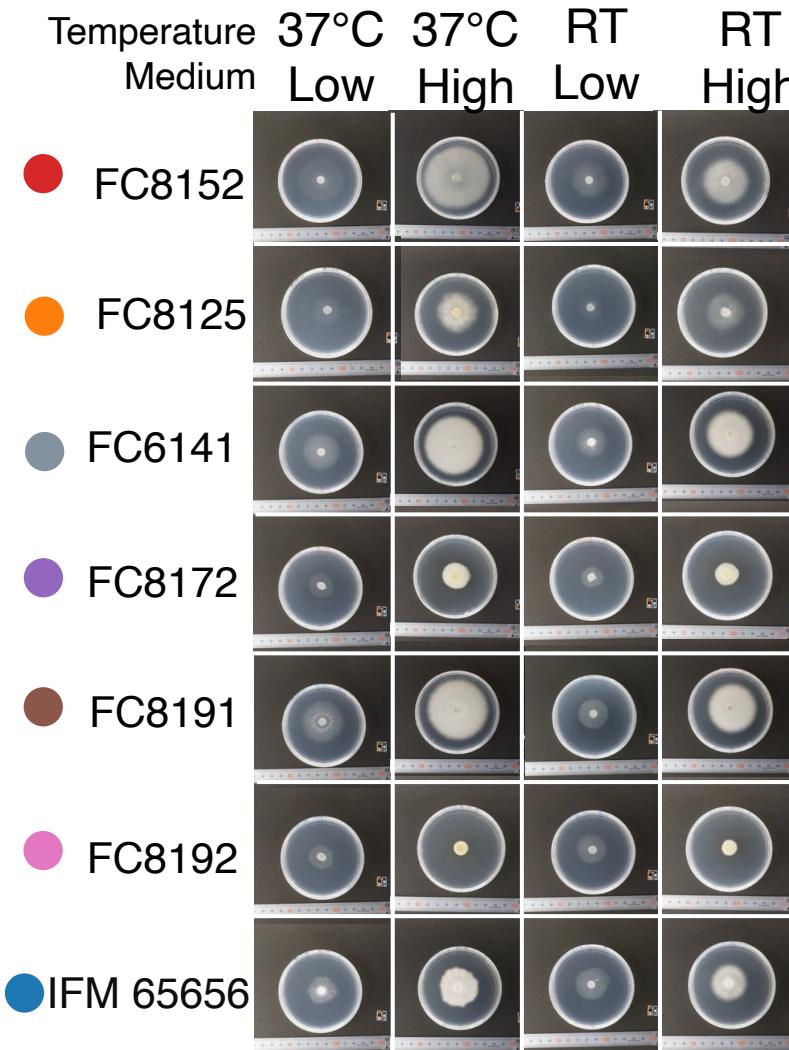
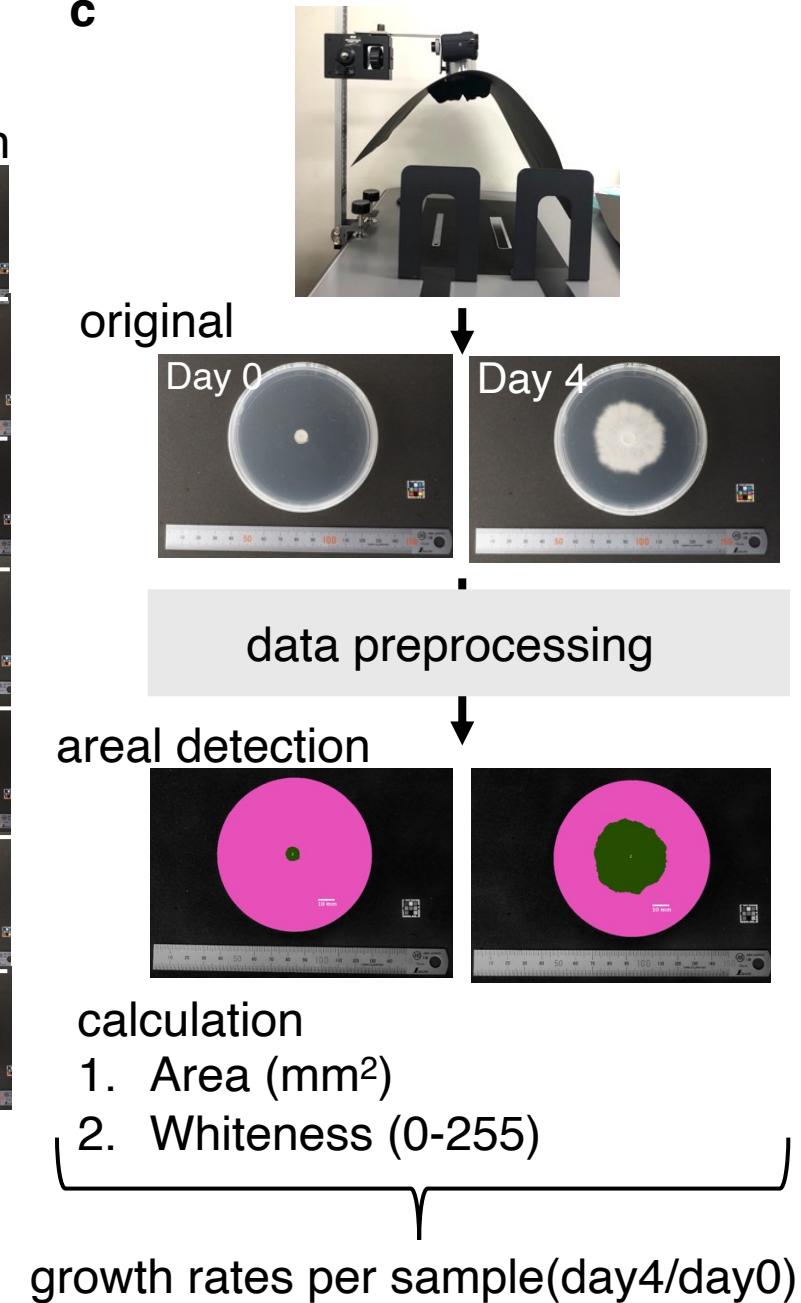
588 Won, E. J., Shin, J. H., Lim, S. C., Shin, M. G., Suh, S. P., & Ryang, D. W. (2012).

589 Molecular Identification of *Schizophyllum commune* as a Cause of Allergic Fungal

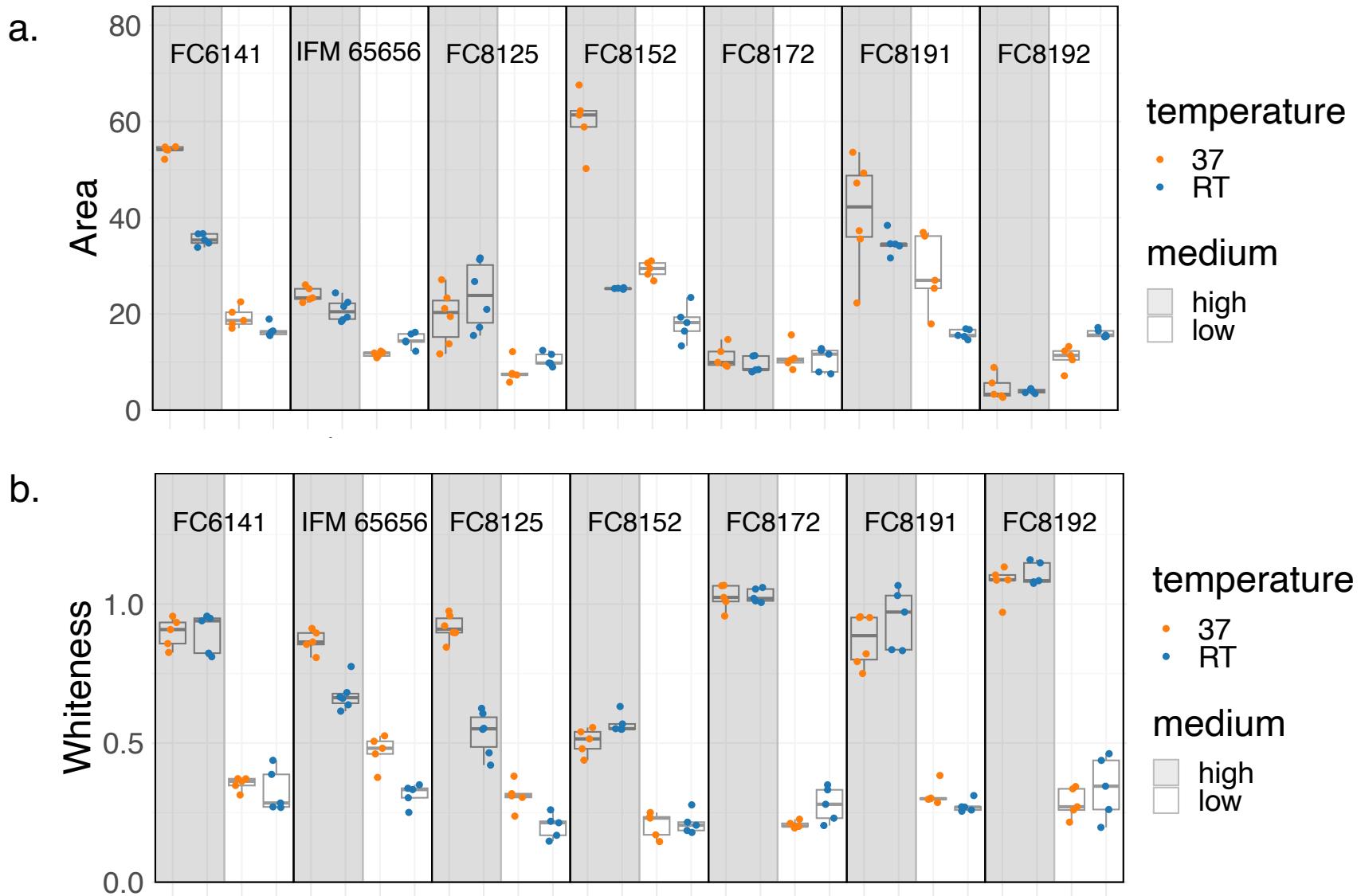
590 Sinusitis. *Annals of Laboratory Medicine*, 32(5), 375–379. doi:

591 [10.3343/alm.2012.32.5.375](https://doi.org/10.3343/alm.2012.32.5.375)

592 Yu, G. (2023). *Data Integration, Manipulation and Visualization of Phylogenetic*




593 *Trees*. doi: [10.1201/9781003279242](https://doi.org/10.1201/9781003279242)

594 Zhang, J., Li, C., Rahaman, M. M., Yao, Y., Ma, P., Zhang, J., ... Grzegorzek, M.


595 (2022). A comprehensive review of image analysis methods for microorganism

596 counting: from classical image processing to deep learning approaches. *Artificial*

597 *Intelligence Review*, 55(4), 2875–2944. doi: [10.1007/s10462-021-10082-4](https://doi.org/10.1007/s10462-021-10082-4)

Fig. 1**a****b****c**

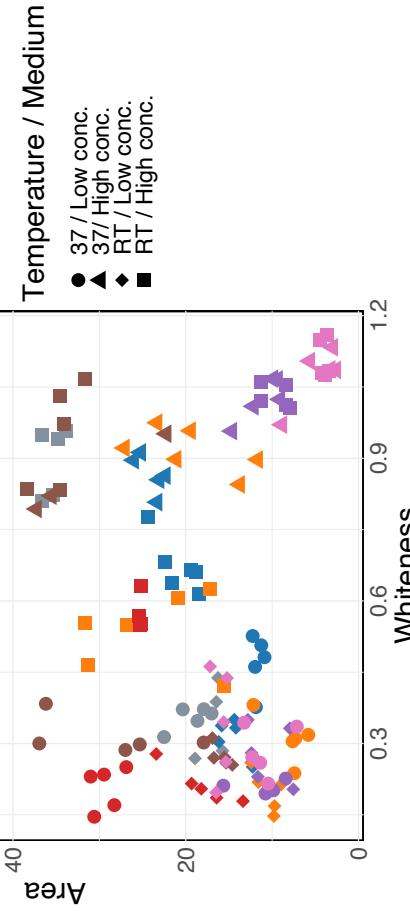
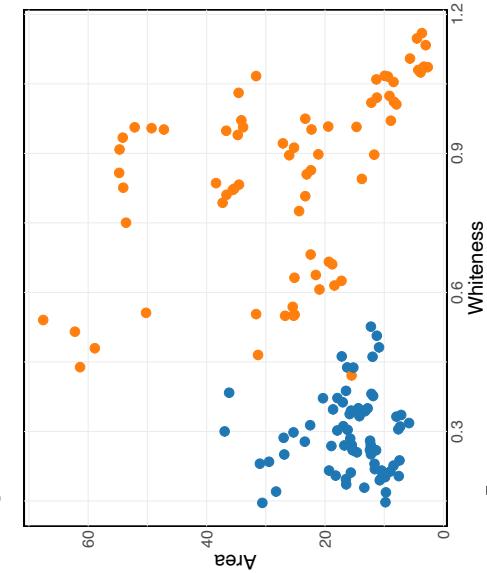
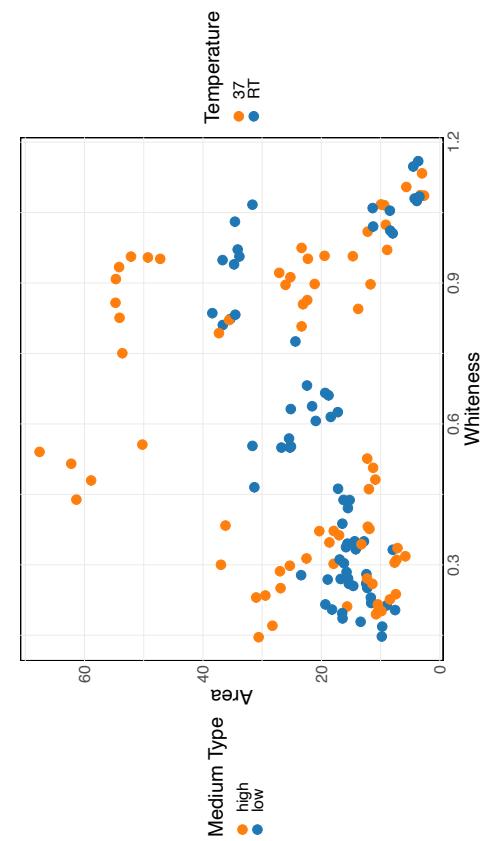
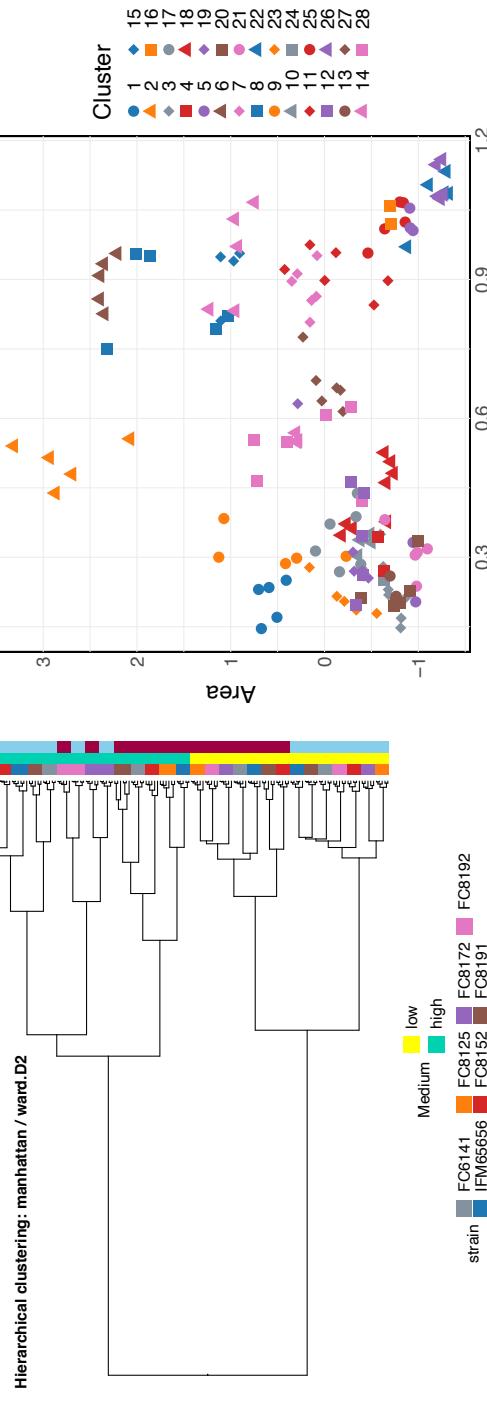




Fig. 2

Fig. 3

strain

FC6141
IFM65656
FC8125
FC8152
FC8172
FC8191
FC8192

b**c****d**