

1 **Systematic identification of secondary bile acid production genes in global**
2 **microbiome**

3
4 Yuwei Yang^{1, \$}, Wenxing Gao^{1, \$}, Ruixin Zhu^{1, *}, Liwen Tao¹, Wanning Chen¹, Xinyue Zhu¹,
5 Mengping Shen¹, Tingjun Xu^{1, 2}, Tingting Zhao^{1, 3}, Xiaobai Zhang¹, Lixin Zhu^{4, *}, Na Jiao^{5, *}

6
7 1. Putuo People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai
8 200060, P. R. China

9 2. Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Ling Ling Road,
10 Shanghai 200032, P. R. China

11 3. Research Institute, GloriousMed Clinical Laboratory Co, Ltd, Shanghai 201318, P. R. China

12 4. Department of General Surgery, The Six Affiliated Hospital, Guangdong Institute of
13 Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases,
14 Biomedical Innovation Center, Sun Yat-Sen University, Guangzhou 510655, P. R. China

15 5. State Key Laboratory of Genetic Engineering, Fudan Microbiome Center, School of Life
16 Sciences, Fudan University, Shanghai 200438, P. R. China

17

18 **Corresponding authors:** Ruixin Zhu (rxzhu@tongji.edu.cn), Lixin Zhu
19 (zhulx6@mail.sysu.edu.cn) and Na Jiao (najiao@fudan.edu.cn)

20

21 **Abstract**

22 Microbial metabolism of bile acids (BAs) is crucial for maintaining homeostasis in
23 vertebrate hosts and environments. Although certain organisms involved in BA
24 metabolism have been identified, a global, comprehensive elucidation of the microbes,
25 metabolic enzymes, and BA remains incomplete. To bridge this gap, we employed
26 hidden Markov models to systematically search in a large-scale and high-quality
27 search library comprising 28,813 RefSeq multi-kingdom microbial complete genomes,
28 which enabled us to construct a secondary bile acid (SBA)-production gene catalog.
29 This catalog greatly expanded the distribution of SBA-production genes across 11
30 phyla, encompassing bacteria, archaea and fungi, and extended to 14 habitats
31 spanning hosts and environmental contexts. Furthermore, we highlighted the
32 associations between SBAs and gastrointestinal and hepatic disorders, including
33 inflammatory bowel disease, colorectal cancer and nonalcoholic fatty liver disease,
34 further elucidating disease-specific alterations in SBA-production genes. Additionally,
35 we proposed the pig as a particularly suitable animal model for investigating SBA
36 production in humans, given its closely aligned SBA-production gene composition.
37 This gene catalog provides a comprehensive and reliable foundation on microbial BA
38 metabolism for future studies, offering new insights into the microbial contributions
39 to health and disease.

40

41 **Keywords**

42 Secondary bile acid, Microbiome, Gene catalog, Microbial metabolism,
43 Gastrointestinal and hepatic pathophysiology

44

45 **Introduction**

46 Microbial-derived secondary bile acids (SBAs) exert multifaceted influence on
47 vertebrate hosts through various mechanisms. These mechanisms include direct
48 cytotoxicity¹, direct DNA damage², and activation of receptors distributed across
49 multiple tissues, including the liver, intestine, brain and breast³⁻⁵. SBAs originate from
50 intestinal⁶ microbial enzymatic transformations on primary bile acids (PBAs)
51 synthesized from cholesterol by host liver⁷. The principle microbial transformations
52 of bile acids (BAs) comprise several key processes: deconjugation by bile salt
53 hydrolases (BSHs)⁸, dehydroxylation by proteins encoded by bile acid-inducible (bai)
54 genes⁹⁻¹⁵, oxidation and epimerization by position-specific hydroxysteroid
55 dehydrogenases (α/β -HSDHs)¹⁶.

56 Disruption of BA microbial metabolism affects BA production and transport¹⁷,
57 lipid and glucose metabolism¹⁸, as well as innate and adaptive immunity¹⁹, thereby
58 contributing to the pathogenesis of a broad spectrum of diseases^{20,21}. For instance,
59 elevated deoxycholic acid (DCA) levels in the liver can facilitate hepatocellular
60 carcinoma development by promoting the secretion of pro-inflammatory and
61 tumor-promoting mediators²². In digestive tract, DCA also exacerbates intestinal
62 inflammation by upregulating hepatic de novo BA synthesis²³. Furthermore, certain
63 animal-derived SBAs, such as hyodeoxycholic acid in pigs and ursodeoxycholic acid
64 (UDCA) in bears, serve as therapeutic agents for conditions like nonalcoholic fatty
65 liver disease (NAFLD)²⁴ and fatal veno-occlusive disease²⁵, respectively. Besides
66 their important roles in the host, approximately 5% of BAs are released into the
67 environment by vertebrate feces and urine^{8,26}, serving as carbon- and energy-rich
68 growth substrates for microorganisms in soil and water²⁷. The isolation of
69 environmental BA metabolizing microorganisms^{28,29} reveals the ubiquity of microbial
70 BA metabolism and highlights how BAs and microorganisms from various hosts and
71 environments can interconnect through food webs³⁰. Microorganisms form complex
72 ecological relationships³¹ and complement each other's BA pathways, broadening the
73 BA production repertoire³². Thus, both bottom-up control mediated by food and
74 top-down control triggered by the impact of predation on prey in the ecosystem³³,
75 have the potential to influence the cycle and diversity of BAs.

76 Several microorganisms capable of BA metabolism have been reported, mainly
77 including *Bifidobacterium*³⁴, *Enterococcus*³⁵ and *Listeria*³⁶ for deconjugation;
78 *Clostridium*³⁷ for dehydroxylation; *Eggerthella*³⁸ and *Ruminococcus*¹⁶ for oxidation
79 and epimerization. Initially, the identification of BA metabolism enzymes in
80 microorganisms relied primarily on biochemical analyses like enzyme activity assay³⁹
81 and immunoblot analysis⁴⁰, which were relatively inefficient. However, advancements
82 in sequencing technologies and bioinformatics have revolutionized this field,
83 facilitating the identification of specific BA metabolism processes within microbial
84 genomes of single host gut through methods like BLAST and MUSCLE. For instance,
85 BSH was identified in human fecal metagenomic datasets⁴¹, BaiE in whole-genome
86 shotgun assembly sequences of human gut microbiomes⁴², and 7 α /7 β -HSDH in black
87 bear fecal metagenomic datasets.⁴³ Almut Heinken *et al.* expanded the scope of

88 research by systematically identifying microbial BA deconjugation and
89 biotransformation in the human gut with MUSCLE. However, their study only
90 considered 693 human gut microbial genomes³², far fewer than the human gut
91 microbiome reference set of 3,594 high-quality species genomes reported in 2022⁴⁴.
92 Despite these advances, most studies have focused on specific BA metabolism
93 functions and limited sets of microbial genomes from single sources, which hinders
94 our comprehensive understanding of the intricate global ecological network of
95 microbial BA metabolism.

96 In response to these challenges, we aimed to expand the knowledge of BA
97 microbial metabolism in the global microbiome. Utilizing a comprehensive database
98 of 28,813 multi-kingdom microbial complete genomes from RefSeq database and
99 employing hidden Markov models (HMMs), we constructed an SBA-production gene
100 catalog. This catalog encompassed key genes from major pathways, including BSHs,
101 Bai genes and HSDHs. This function-rich catalog, derived from a diverse array of
102 cultured microorganisms not limited to specific habitats, can serve as a reliable
103 reference for annotating SBA-production genes in global metagenomic sequencing
104 data, and further assist us in systematically exploring the BA metabolism between
105 species or communities.

106

107 **Results**

108 **Global map of secondary bile acid-metabolic gene-microorganism**

109 *Overview of secondary bile acid production gene catalog*

110 To construct a more comprehensive gene catalog associated with SBA metabolism,
111 we generated HMMs for 13 gene families involved respectively, and performed a
112 systematic search across 28,813 complete genomes of bacteria, archaea, and fungi in
113 the RefSeq database. Rigorous screening criteria, based on the significance (e-value)
114 and similarity (HMM score) of each hit (additional details are in Methods), ensured
115 the reliability and accuracy of our findings. Ultimately, the SBA-production gene
116 catalog contained a total of 1668 BSH genes, 241 Bai genes, 159 3 α HSDH genes, 136
117 3 β HSDH genes, 2770 7 α HSDH genes, 7 7 β HSDH genes, and 386 12 α HSDH genes
118 (Supplementary Figure 1, Figure 1a).

119

120 Further analysis revealed variability in the copy number of these genes (Figure 1a).
121 Notably, 3 α HSDH, 3 β HSDH, and 7 β HSDH were typically single-copy genes in these
122 genomes. By contrast, BSH, 7 α HSDH, and 12 α HSDH exhibited multi-copy in certain
123 genomes. BSH gene duplication was particularly prevalent, appearing in up to 271
124 genomes across 28 species of the Firmicutes phylum, with some genomes, such as
125 eight from *Enterococcus faecium*, containing up to four copies. Additionally,
126 multi-copy expression of BSH was relatively common in *E. faecium* genomes (Figure
127 1b), with 77.3% (194 of 251 genomes) exhibiting this trait. Regarding 7 α HSDH, only
128 two copies were identified within the Proteobacteria phylum, across one genome
129 belonging to the *Acinetobacter* genus: GCF_020912005.1 (*Acinetobacter baumannii*)
130 and three genomes from *Mesorhizobium* genus: GCF_013170825.1 (*Mesorhizobium*
sp. NZP2298), GCF_016756635.1 (*Mesorhizobium* sp. L-8-10), and

131 GCF_016756615.1 (*Mesorhizobium* sp. L-8-3) (Figure 1c). Notably, genomes with
132 multi-copy 12 α HSDH were distributed in three phyla: Actinobacteria, Firmicutes, and
133 Proteobacteria. *Denitratisoma oestradiolicum* genome (GCF_902813185.1) within the
134 Proteobacteria phylum had three copies, while the remaining 23 genomes had two
135 (Figure 1d). *Prescottella equi*, a member of the Actinobacteria phylum, was the
136 primary source of genomes with two copies of 12 α HSDH. These findings shed light
137 on differences in the copy number distribution of genes related to SBA production in
138 microorganisms, which could enhance our understanding of the varied metabolic
139 capabilities and ecological competitiveness of microorganisms involved in this
140 process.

141

142 **Taxonomic distribution of secondary bile acid production genes**

143 The broad coverage of microbial genomes and metabolic gene types allowed us to
144 investigate the distribution range of SBA-production genes and further gain insights
145 into the BA metabolism capabilities of various microbial species and even different
146 strains. Leveraging the lineage information from the RefSeq database, we explored
147 the taxonomic distribution of SBA production genes across various ranks.

148 BSH genes were predominantly present in Firmicutes (1374 genes, 82.4%) and
149 Actinobacteria (248 genes, 14.9%). At more specific taxonomic ranks, the majority of
150 BSH genes within Firmicutes were distributed among genera, such as *Enterococcus*
151 (655 genes, 39.3%), *Listeria* (281 genes, 16.8%), and *Lactiplantibacillus* (157 genes,
152 9.4%) (Figure 2a). Notably, among these, 273 genes were identified in 98.9% (273
153 genomes) of all *Listeria monocytogenes* genomes for research, and 156 genes were
154 found in 87.6% (156 genomes) of all *Lactiplantibacillus plantarum* genomes
155 (Supplementary Table 5). This indicated that these species generally possessed a
156 single copy of BSH, not limited to specific strains. Additionally, our findings also
157 expanded the distribution of BSH in archaea. Apart from the previously reported
158 species *Methanobrevibacter smithii* and *Methanospaera stadtmanae*³², BSH genes
159 were also discovered in species such as *Methanobrevibacter millerae* and
160 *Methanobrevibacter olleyae* of the Euryarchaeota phylum, as well as *Candidatus*
161 *Methanomethylophilus alvus* of the *Candidatus* Thermoplasmata phylum
162 (Supplementary Table 2). Intrigued by the multi-kingdom distribution of BSH genes,
163 we conducted a phylogenetic analysis revealing similarities between the BSH enzyme
164 sequences in archaea Euryarchaeota and specific bacterial Firmicutes enzymes
165 (Supplementary Figure 2a), suggesting potential horizontal gene transfer (HGT) event
166 across the widespread distribution of BSH.

167 Bai genes, previously reported to be sparsely distributed⁴⁵, were found in only 22
168 species, originating from phylum Firmicutes (176 genes, 73.0%) and Actinobacteria
169 (65 genes, 27.0%) (Figure 2a). Due to the cooperation nature of BA dehydroxylation
170 involving multiple Bai genes, we further explored the taxonomic distribution of
171 genomes encompassing all types of the Bai genes contained in our gene catalog
172 simultaneously. We identified three genomes from the *Eggerthella* genus of the
173 Actinobacteria phylum and 15 genomes primarily in the *Lachnoclostridium* genus

174 (*Clostridium scindens*: 8 genomes, *Clostridium hylemonae*: 3 genomes)
175 (Supplementary Table 2).

176 The taxonomic distribution of HSDHs varied depending on the subtype (Figure
177 2a). 3 α HSDH predominantly existed in the *Clostridium* genus (47 genes, 29.6%) of
178 Firmicutes phylum, the *Mycobacterium* genus (34 genes, 21.4%) of Actinobacteria
179 phylum, and the *Mesorhizobium* genus (20 genes, 12.6%) of Proteobacteria phylum.
180 Predominantly, *Clostridium perfringens* and *Mycobacterium avium* were the major
181 carriers, with 88.5% and 97.1% of their genomes containing this gene, respectively
182 (Supplementary Table 5). In contrast, 3 β HSDH genes demonstrated a broader and
183 distinctive distribution, predominantly within phylum Bacteroidetes (77 genes, 56.6%)
184 and Spirochaetota (20 genes, 14.7%). Notably, *Elizabethkingia anophelis* emerged as
185 a significant carrier, all 50 genomes of whom produced 3 β HSDH (Supplementary
186 Table 5), which suggested a core metabolic function of this species. 7 α HSDHs
187 displayed extensive distribution across seven bacterial phyla, with a staggering 95.4%
188 (2642 genes) in Proteobacteria phylum, mainly concentrated in the species
189 *Escherichia coli*, which accounted for 97.9% of the cases (2203 genomes) in our
190 study (Supplementary Table 5). Interestingly, this gene was also found in the fungus
191 *Rhizoctonia solani* of Basidiomycota phylum, which displayed phylogenetic
192 similarity with enzymes in Proteobacteria (Supplementary Figure 2b), indicating a
193 possible origin of fungi 7 α HSDH. Conforming to previous research⁴⁵, 7 β HSDH
194 enzymes were less prevalent, found primarily in *Ruminococcus gnavus* (4 genes) and
195 *Ruminococcus torques* (1 gene) from Firmicutes phylum, and *Collinsella aerofaciens*
196 (2 genes) from Actinobacteria phylum. In addition, 12 α HSDH was predominantly
197 synthesized by species within phylum Actinobacteria (183 genes, 47.4%) and
198 Firmicutes (156 genes, 40.4%), with genes mainly distributed in the genus
199 *Rhodococcus* (84 genes, 21.8%). There was also a sparse distribution of 12 α HSDH in
200 three species of Euryarchaeota archaea: *Methanobrevibacter smithii* (4 genes),
201 *Methanobrevibacter sp. TLL-48-HuF1* (1 gene), and *Methanospaera stadtmanae* (2
202 genes). In line with the potential HGT of BSH, these enzyme sequences in
203 Euryarchaeota were also phylogenetically close to those of Firmicutes
204 (Supplementary Figure 2c).

205 Our study uncovered 55 genomes from 37 species exhibited the simultaneous
206 possession of the BSH and either the Bai genes or HSDHs, indicative of a more
207 independent capability for SBA production. These genomes were primarily
208 distributed among phylum Firmicutes (28 genomes, 50.9%), Actinobacteria (19
209 genomes, 34.5%) in bacteria, and Euryarchaeota in archaea (7 genomes, 12.7%).
210 Among these, species like *Ruminococcus gnavus*, *Clostridium perfringens*
211 (Firmicutes), *Rhodococcus pyridinivorans*, *Rhodococcus ruber* (Actinobacteria), and
212 *Methanobrevibacter smithii* (Euryarchaeota), displayed up to four genomes capable of
213 multifunctional SBA metabolism. Notably, *Devosia sp. 1566* was the only
214 multi-functional genome identified in the Proteobacteria phylum. From the
215 perspective of the diversity of SBA metabolism enzymes, multi-functional
216 microorganisms demonstrated the tendency of simultaneously possessing both BSH

217 and 12 α HSDH synthesis capabilities, with 43 genomes in 31 species displaying this
218 trait. Moreover, genomes of Firmicutes showcased a more diverse range of SBA
219 metabolism enzymes. Apart from the BSH-7 α HSDH and BSH-12 α HSDH
220 combinations shared with other genomes, the Firmicutes genomes possessed six
221 additional combinations involving other genes (Figure 2b). These functionally-rich
222 genomes may play a significant role in the process of SBA metabolism and provide
223 new insights for future research on biotechnological production of SBA using these
224 microorganisms.

225 Altogether, our findings demonstrated that microorganisms with BA metabolism
226 capabilities were widely distributed across different kingdoms, spanning bacteria,
227 archaea, and fungi. However, the functions and distributions of these metabolic genes
228 varied significantly, underscoring the importance of considering taxonomic
229 characteristics when studying microbial bile acid metabolism.
230

231 ***Mammalian and environmental microbiota both served as reservoirs for secondary bile
232 acid production genes***

233 In order to obtain a comprehensive understanding of the distribution of genes
234 involved in SBA metabolism across various hosts and environments, we conducted a
235 thorough analysis using the Global Microbial Gene Catalogue (GMGC), a
236 global-scale gene catalog constructed from worldwide metagenomes covering 14
237 habitats⁴⁶. By leveraging this resource, we examined the habitats and geographical
238 locations of these genes to provide a global perspective on their distribution.

239 The findings underscored the widespread distribution of SBA-production genes
240 across a variety of global habitats. Notably, these genes were present not only in
241 mammal hosts like humans, pigs, and mice, but also in diverse environmental settings
242 such as wastewater, marine, and soil (Figure 3a). A comparative analysis of the
243 proportions of these SBA-production genes in different habitats revealed intriguing
244 variations in both prevalence and composition (Figure 3b). For instance, the gut
245 microbiome of dogs exhibited the highest proportion of SBA-production genes,
246 accounting for 0.02158% (793 genes), while marine displayed the lowest, as just
247 0.00003% (27 genes). Within mammal hosts, SBA-production gene prevalence varied
248 notably among organs, reflecting the primary sites of bile acid metabolism. The gut
249 displayed significantly higher proportions compared to less metabolically active sites
250 such as the oral and nasal cavities. Specifically, the human gut contained 0.01126%
251 (5,914 genes) of the total gene set, whereas the human oral cavity had only 0.00152%
252 (203 genes). The environmental proportion of SBA-production genes appeared to be
253 influenced significantly by the human activities. Wastewater environments showed a
254 higher proportion of these genes (404 genes, 0.01471%) compared to built
255 environments (281 genes, 0.00346%), freshwater (10 genes, 0.00036%), soil (230
256 genes, 0.00030%), and marine settings (27 genes, 0.00003%). This suggested a
257 potential increase in microbial BA metabolism capacity where human impact is
258 prevalent. Additionally, we observed differences in the proportional composition of
259 specific bile acid metabolism genes, such as BSH, Bai genes, and HSDHs across these

260 habitats. In guts of humans and pigs, BSH genes were more abundant, while HSDH
261 genes were more prevalent in other environments.

262 This investigation highlighted that microbial BA metabolism was not restricted to
263 specific organisms or ecosystems but rather a ubiquitous process across diverse hosts
264 and environments. The variations in gene prevalence and composition likely reflected
265 the adaptation of microbial communities to the available substrates or favored
266 metabolic products in each habitat.

267

268 **Disease-specific alterations in the composition of secondary bile acid production genes**

269 Considering the important role of BA metabolism in gastrointestinal and hepatic
270 pathophysiology, we comprehensively elucidated the profiles of SBA production
271 among inflammatory bowel disease (IBD), colorectal cancer (CRC) and NAFLD
272 based on gut microbial genes and species.

273 We compared the overall disruption levels of SBA metabolism across different
274 diseases utilizing the defined SBA metabolism differential score, which incorporated
275 the proportion of each gene type and the significance of their differences between
276 disease and control group. In general, disruptions of SBA metabolism showed
277 significant alterations in intestinal diseases such as IBD and CRC, particularly in
278 Crohn's disease (CD) and CRC, followed by ulcerative colitis (UC), while adenomas
279 exhibited relatively smaller changes. Moreover, due to the gut-liver axis, NAFLD was
280 also found to be associated with changes in SBA metabolism (Figure 4).

281 We further detailed the distinct differences in metabolic gene profiles across
282 various diseases, providing insights into how each condition uniquely influences SBA
283 metabolism (Figure 4). BSH genes serve as gateways for SBA metabolism, and their
284 gene abundances were significantly downregulated in patients with CD and CRC.
285 Notable BSH-possessing microorganisms such as *Roseburia intestinalis*,
286 *Anaerobutyricum hallii*, *Blautia* sp. SC05B48 showed a consistent
287 decrease(Supplementary Table 8). In CD, *R.intestinalis* exhibited a higher relative
288 abundance weighted by copy number (Supplementary Figure 3b), while in CRC it
289 was *A.hallii* (Supplementary Figure 3e).

290 Next, we considered the subsequent biotransformation of dehydroxylation,
291 oxidation and epimerization as a whole, and compared the proportional composition
292 of the Bai genes and various HSDH genes. Notably, we observed significant
293 proportion changes specific to different diseases. The proportion of Bai genes, crucial
294 for the generation of DCA and LCA through dehydroxylation, showed significant
295 variation. In comparison to the control group, it significantly increased in CD,
296 whereas notably decreased in NAFLD. *Ruminococcus gnavus* was predominantly
297 increased in CD (Supplementary Figure 3c), while *Eggerthella lenta* showed a
298 significant decrease in NAFLD (Supplementary Figure 3g). α -HSDHs carry out the
299 oxidation of the hydroxyl group at the 3-, 7-, and 12-carbons of cholic acid (CA) or
300 chenodeoxycholic acid (CDCA), a significant increase in 3 α HSDH was observed in

301 NAFLD, notably consistent with the alteration in weighted relative abundance of
302 *Mesorhizobium opportunistum* (Supplementary Figure 3h). The 7 α HSDH,
303 significantly decreased in UC, primarily affected by the producer *Bacteroides*
304 *xylanisolvans* (Supplementary Figure 3a), but in CRC with a rise in the proportion of
305 this gene, aligning with a significant increase of the high-abundance
306 7 α HSDH-possessing species *Escherichia coli* (Supplementary Figure 3f). The
307 12 α HSDH, exclusively altered in CD, showed a decrease correlating with a drop in
308 the weighted relative abundance of *Faecalibacterium prausnitzii* producing
309 12 α HSDH (Supplementary Figure 3d). Additionally, no significant changes were
310 observed in these diseases regarding the proportions of 3 β HSDH and 7 β HSDH, which
311 catalyze reduction after the oxidation by α -HSDH.

312 We further explored the species composition of different genes based on the
313 weighted relative abundance of species possessing SBA-production genes
314 (Supplementary Figure 4). Species of Firmicutes phylum emerged as the primary
315 SBA producers in the gut, with the highest proportion in BSH, Bai genes, and
316 12 α HSDH. Furthermore, Actinobacteria primarily synthesized 3 α HSDH, while
317 Bacteroidetes were the main source of 3 β HSDH and 7 α HSDH genes. Notably,
318 *Ruminococcus gnavus*, *Ruminococcus torques*, and *Collinsella aerofaciens* with
319 7 β HSDH synthesis ability were found in the gut. Additionally, the archaea producing
320 BSH and 12 α HSDH, as well as fungus producing 7 α HSDH identified in the gut also
321 play roles in BA metabolism, contributing to the diversity and functionality of the
322 microbial community.

323 Taken together, we systematically elucidated the profiles of SBA production in
324 different diseases from the perspectives of both metabolic genes and species, and
325 further identified disease-specific alterations in SBA-production genes. The findings
326 emphasized the important role of SBAs and their microbial metabolism in
327 gastrointestinal and hepatic diseases.

328

329 **The metabolic process of secondary bile acids in pigs was more similar to that in**
330 **humans**

331 Animal models are critical in human medical research. To evaluate the feasibility of
332 utilizing animal models for studying human SBA metabolism, we devised a score that
333 quantified the resemblance between the intestinal microbial SBA production genes of
334 various animals and humans. This score reflected not only the direct match of key
335 SBA metabolism genes but also their relative contributions to the overall metabolic
336 process.

337 Among the evaluated animal models, pigs displayed the greatest overall similarity
338 to humans in terms of SBA metabolism, followed by cats, while mice and dogs
339 exhibited lower similarity scores (Figure 5). Specifically, the resemblance between
340 pigs and humans in terms of SBA-production genes in the intestines was primarily
341 observed in BSH, 3 α HSDH, 7 β HSDH, and 12 α HSDH, with 764, 200, 24, and 132
342 same genes respectively, which represented 35.2%, 31.7%, 49.0%, and 13.3% of the

343 corresponding genes in humans. Conversely, the number of unique genes in humans
344 was relatively small, including only 146 (6.7%) BSH, 32 (5.1%) 3 α HSDH, 1 (2.0%)
345 7 β HSDH, and 64 (6.4%) 12 α HSDH. However, cats' microbiome showed higher
346 similarity scores for Bai genes and 7 α HSDH. Of the 1627 Bai genes in humans, 302
347 were identical to those found in cats, and 1192 showed similarity. For the 304
348 7 α HSDH genes, 51 were identical and 206 were similar. It was worth noting that the
349 similarity of 3 β HSDH between the animal models and humans was low. Only 56
350 genes were shared across the four animal models (41 in pigs, 33 in cats, 3 in mice, and
351 32 in dogs), and 32.6% (46 genes) of human intestinal 3 β HSDH was unique.

352 These findings underscored the variable degree of similarity in SBA-production
353 genes between human and common animal models. Pigs exhibiting the highest
354 similarity score, emerged as particularly suitable for modeling human SBA
355 metabolism. This also highlighted the importance of selecting animal models that
356 closely mimic human metabolic processes for other studies, which is crucial for the
357 translational relevance of biomedical research.

358

359 Discussion

360 Accurate and comprehensive gene definition is essential for the analysis of functional
361 and ecological roles of microbial communities. In this study, we systematically
362 identified genes involved in BA deconjugation, dehydroxylation, oxidation, and
363 epimerization among 28,813 complete multi-kingdom microbial genomes sourced
364 from the RefSeq database. Our expanded SBA-production gene catalog builds upon
365 and refines previous studies^{8-16,32,34-41,43,47-51}, filling the gap in limited microbial and
366 enzymatic resources. This enhancement allows for a more thorough exploration of the
367 SBA metabolism from both microbial species and functional perspectives across
368 diverse habitats, enriching our understanding of the ecological impact of these
369 processes globally.

370 Our gene catalog revealed a broad taxonomic distribution of SBA-production
371 genes across multi-kingdom microorganisms, with a distinct tendency for
372 microorganisms to participate in specific stages of SBA metabolism. This suggests
373 that effective SBA metabolism often requires inter-microbial cooperation. Notably, 55
374 genomes from 37 species demonstrated multifunctionality in SBA metabolism, with
375 *Peptacetobacter hiranonis* from the Firmicutes phylum exhibiting the most enriched
376 functionality. It simultaneously possessed the synthesis potential of BSH, Bai genes,
377 7 α HSDH, and 12 α HSDH. This species, already identified as a biomarker for
378 gastrointestinal functionality in dogs⁵², and showed strong and significant correlations
379 with BaiCD, and the relative concentration of SBA in dogs⁵³. Future research can
380 concentrate on these multifunctional SBA-production microorganisms, as they hold
381 potential for deeper investigation due to their central role within microbial
382 communities.

383

384 The varying frequency and composition of SBA-production genes across different
habitats, underscored the critical interplay between microbial communities, host

385 physiology, and environmental factors. The widespread distribution of
386 SBA-production genes across various habitats, notably in mammalian hosts and
387 human-impacted environments, highlights the influence of environmental factors on
388 microbial BA metabolism patterns, which may, in turn, impact disease pathogenesis.
389 Mass spectrometry reanalyses²¹ have detected microbe-derived BAs in organs beyond
390 the liver and intestines, such as the skin⁵⁴, suggesting broader systemic roles.
391 Therefore, the comparative analysis of SBA-production genes in different organs can
392 facilitate a better understanding of the diverse physiological functions of BAs.
393 Microbial BA metabolism in the environment can produce hormone-like metabolites²⁷,
394 suggesting that variations in SBA-production genes composition may have ecological
395 effects.

396 With the comprehensive knowledge of the species and genes involved in BA
397 metabolism, we could explore the related issues from a fresh perspective. One of the
398 applications was to systematically analyze the alterations in microbial BA metabolism
399 that occur under various conditions like diseases. In our study involving multiple
400 gastrointestinal and hepatic disease cohorts from Europe, we specifically analyzed the
401 profiles of SBA-production genes to investigate their role in various diseases. Our
402 findings uncovered disease-specific changes in SBA metabolism profiles. For patients
403 with IBD, the capability of their gut microbiota in synthesizing hydrophilic and less
404 toxic SBAs through α -HSDHs was weakened in both UC and CD. However, distinct
405 differences were found between these two subtypes, with CD showing a greater
406 overall change. Specifically, CD was characterized by a substantial decrease in the
407 BSH gene abundance and an increase in the Bai genes proportion. This pattern is
408 consistent with previous findings of reduced SBAs^{55,56} and elevated Bai genes
409 abundance⁵⁷ in CD, supporting theories of inflammation-associated and CD-specific
410 metabolic disruptions⁵⁵. These insights enhance our understanding of IBD
411 pathogenesis and may inform more targeted research into the metabolic underpinnings
412 of UC and CD. Furthermore, our study highlighted the importance of SBA
413 metabolism in the progression from health to adenoma and ultimately to CRC. While
414 adenomas did not show significant changes, CRC cases exhibited a reduced capacity
415 to synthesize SBAs, yet an increased proportion of hydrophilic SBA like UDCA
416 produced by 7 α /βHSDH. This may be linked to elevated supraphysiological
417 hydrophilicity levels and potentially increasing the risk of developing CRC⁵⁸. In
418 contrast to gastrointestinal diseases, NAFLD exhibited an increase in BSH genes,
419 although this change was not statistically significant. Microbe-derived BAs weakly
420 induced FXR activation and notably reduced CDCA-induced FXR activation⁵⁹. Thus,
421 the result above corresponded to our previous study that highlighted the suppression
422 of FXR-mediated signaling in NAFLD²⁰. Additionally, we noted a trend within the
423 NAFLD gut microbiome toward producing more SBAs with enhanced hydrophilicity,
424 driven by significant alterations in the proportion of Bai genes and 3 α HSDH. Overall,
425 alterations in SBA-production genes can potentially impact disease development and
426 progression by altering the abundance of SBAs and their overall hydrophobicity,
427 toxicity, and receptors interactions. This highlight the potential of SBAs and their
428 metabolic pathways as targets for therapeutic intervention. Beyond merely examining

429 the overall content of SBAs, it is crucial to explore the compositional changes in
430 different types of SBAs to understand their roles in various diseases fully. Analyses
431 based on fecal metagenomic sequencing provide insights into these changes but only
432 offer a partial view. Therefore, the establishment of additional metabolomics cohorts
433 is essential for a more comprehensive understanding of how disruptions in SBA
434 metabolism affect different diseases.

435 Our gene catalog could also facilitate the comparison of SBA-production genes
436 across different habitats. This comparative study, particularly among common animal
437 models, namely pig, mouse, cat, and dog, assessed their suitability for BA research.
438 Pigs were found to be the more suitable animal model due to their close resemblance
439 to human microbial BA profiles. The microbial composition of pig feces shares
440 similarities with human⁶⁰, with 96% of the functional pathways identified in the
441 human gut microbiome gene reference catalog are present in the pig catalog⁶¹.
442 Moreover, pigs exhibit comparable physiological characteristics in gastrointestinal
443 tract development and digestive function⁶², mirroring human dietary, digestive
444 patterns⁶³. These findings support the adoption of pigs as a valuable model for human
445 biological and disease study. Future research should expand the comparative scope to
446 more animals like bears, addressing our limitation in using GMGC. Additionally,
447 considering variations in types and proportions of PBAs among different mammalian
448 species⁶⁴ could fully capture the complexity of BA metabolism.

449 While our catalog significantly advances the field, it does not encompass the
450 complete diversity of microbial-derived BAs recently revealed⁶⁵. Emerging findings
451 have discovered novel functionalities of known enzymes involved in BA
452 transformations, such as BSH for conjugating various amino acids to BAs⁶⁶, as well
453 as the discovery of previously unknown enzymes like BAS-suc, responsible for
454 producing 3-succinylated cholic acid⁶⁷, which suggests a vast uncharted territory of
455 microbial metabolism. Future efforts should aim to uncover these new metabolic
456 pathways and integrate them into our existing frameworks to provide a more
457 comprehensive view of microbial contributions to health and disease.

458 In conclusion, this systematic gene catalog derived from abundant microbial
459 genomes highly enriches microbial SBA production resources and further promotes
460 the identification of related genes in the global microbiome. providing valuable
461 context for further research in this field. By applying our findings to various disease
462 contexts and animal models, we offer new perspectives on the potential roles of
463 microbial metabolism in health and disease, paving the way for innovative therapeutic
464 approaches based on microbial and metabolic manipulation.

465

466 **Methods**

467 **Constructing the secondary bile acid production gene catalog**

468 To better identify the target genes, HMM, an exhaustive algorithm based on dynamic
469 programming⁶⁸, was used for its greater sensitivity compared to heuristic algorithms
470 and capability to capture position-specific alignment information⁶⁹. HMM seed

471 protein sequences of BSH, Bai genes and HSDHs derived from different species
472 (Supplementary Table 1) were obtained from the PubSEED database^{70,71}, and then
473 aligned in Clustal Omega v1.2.4⁷² to construct HMMs on full-length proteins via
474 hmmbuild (default mode, HMMER 3.3.2, hmmer.org) respectively. These model seed
475 sequences were realigned to the models using hmmlalign (default mode) before
476 rebuilding models based on the alignments, and this iterative process was repeated
477 three times to ensure the robustness of models. Subsequently, these HMMs were used
478 to search for orthologs (hmmsearch (-tblout)) in the protein sequences of all 28,813
479 complete microbial genomes (bacteria: 28,324 genomes; archaea: 466 genomes; fungi:
480 23 genomes) provided by the National Center for Biotechnology Information Refseq
481 database (accessed in July 2022). Hits with e-value less than $1e^{-65}$ were selected as
482 candidates. To ensure high-quality sequences, further sorting was done based on
483 HMM score from hmmsearch results, and cutoffs (BSH: 400; BaiA: 390; BaiB: 1000;
484 BaiCD: 1090; BaiE: 360; BaiF: 1000; BaiG: 950; BaiH: 1400; 3 α HSDH: 300;
485 3 β HSDH: 340; 7 α HSDH: 325; 7 β HSDH: 580; 12 α HSDH: 250) at obvious HMM
486 score drops were set to define secondary bile acid production genes. For Bai genes
487 and 7 β HSDH, due to limited high-score results, genes from the PubSEED database
488 were included as part of the secondary bile acid production gene catalog
489 (Supplementary Table 2). The DNA sequences corresponding to the SBA-production
490 gene catalog were in Supplementary Table 3. Due to the redundancy in the protein
491 sequences encoded by these genes, we constructed a non-redundant protein catalog
492 based on their protein accession numbers (BSH: 416 sequences; Bai genes: 146
493 sequences; 3 α HSDH: 70 sequences; 3 β HSDH: 62 sequences; 7 α HSDH: 319
494 sequences; 7 β HSDH: 3 sequences; 12 α HSDH: 265 sequences, Supplementary Table
495 4). This non-redundant protein catalog served as comprehensive and high-quality
496 reference sequences for subsequent analysis of SBA-production microbial enzymes in
497 metagenomic data.

498

499 **Phylogenetic analyses of BSH, 7 α HSDH and 12 α HSDH genes**

500 To understand the evolution of BSH, 7 α HSDH and 12 α HSDH distributed across
501 different microbial kingdoms, multiple sequence alignments were performed by
502 Clustal Omega v1.2.4 with non-redundant protein sequences of BSH, 7 α HSDH and
503 12 α HSDH and trimmed with trimAl v1.4⁷³ on automated1 mode. Next,
504 maximum-likelihood phylogenetic trees were inferred by IQ-TREE v2.2.6⁷⁴ using the
505 suggested best-fit model (BSH: LG + R6; 7 α HSDH: Q.pfam + R6; 12 α HSDH:
506 Q.pfam + R7) with 1000 ultrafast bootstrap replicates and visualized and annotated
507 using iTOL⁷⁵.

508

509 **Analyzing the habitat distribution of secondary bile acid production gene catalog**

510 For the distribution of SBA-production genes at the global scale, DNA sequences of
511 302,655,267 unigenes from GMGC v1⁴⁶ were used as the query for BLASTX⁷⁶
512 searches against the non-redundant protein catalog of SBA-production. Only blast hits
513 with at least 70% identity and less than $1e^{-50}$ e-value were considered quality hits
514 (Supplementary Table 6). By combining the habitat and geographic location

515 information provided by the GMGC database for the sources of these unigenes, we
516 analyzed the habitat and geographic distribution of genes involved in SBA
517 metabolism.

518

519 **Metagenomic data processing**

520 Raw sequencing data were downloaded from the Sequence Read Archive (SRA)
521 using the following identifiers: PRJEB1220 (IBD) for Nielsen et al.⁷⁷, ERP008729
522 (CRC) for Feng et al.⁷⁸ and PRJNA420817(NAFLD) for Mardinoglu et al.⁷⁹ (in this
523 study, paired ‘NAFLD’ and ‘Control’ samples were obtained from fecal samples
524 collected on day 0 and day 14 of participants followed an isocaloric low-carbohydrate
525 diet with increased protein content for 14 days). Firstly, KneadData v.0.6 was utilized
526 to remove low-quality and contaminant reads including host-associated ((hg38,
527 felCat8, canFam3, mm10, rn6, susScr3, galGal4 and bosTau8 from UCSC Genome
528 Browser) and laboratory-associated sequences by Trimmomatic v0.39⁸⁰
529 (SLIDINGWINDOW:4:20 MINLEN:50 LEADING:3 TRAILING:3) and bowtie2
530 v.2.3.5⁸¹. Thereafter, filtered reads were used to generate taxonomic and functional
531 profiles. Taxonomic classification of bacteria, archaea, fungi and viruses was
532 performed against our pre-built reference database using Kraken2⁸². The pre-built
533 database comprises 32,875 bacterial, 489 archaeal, 11,694 viral reference genomes
534 from the National Center for Biotechnology Information (NCBI) RefSeq database
535 (accessed in August 2022), and 1,256 fungal reference genomes from the National
536 Center for Biotechnology Information Refseq database, FungiDB (<http://fungidb.org>)
537 and Ensembl (<http://fungi.ensembl.org>) (accessed in August 2022). It was built using
538 the Jellyfish program by counting distinct 31-mer in the reference libraries, with each
539 k-mer in a read mapped to the lowest common ancestor of all reference genomes with
540 exact k-mer matches. And we used Bracken v.2.5.0⁸³ to accurately count taxonomic
541 abundance. The read counts of species were converted into relative abundance for
542 further analysis. For function profiles, reads were assembled into contigs via Megahit
543 v.1.2.9⁸⁴ with ‘meta-sensitive’ parameters, and Prodigal v.2.6.3 on the metagenome
544 mode (-p meta) was then used to predict genes. Subsequently, we utilized CoverM
545 V.4.0 to estimate gene abundance (-m rpkm) by mapping reads to the non-redundant
546 reference constructed with CD-HIT using a sequence identity cutoff of 0.95, and a
547 minimum coverage cutoff of 0.9 for the shorter sequences.

548

549 **Estimating the abundance of secondary bile acid production species and genes**

550 Owing to the presence of multi-copy SBA production genes in certain genomes, to
551 mitigate the bias caused by the multiple copies, we weighted the abundance of
552 SBA-production species by the average copy number (Supplementary Table 7) of the
553 genomes within each species(equation (1)(2)). And we compared the weighted
554 relative abundance of these SBA-production microorganisms between diseases and
555 control using two-tailed Mann-Whitney U-test (UC, CD, adenoma, CRC) or paired t
556 test (NAFLD) to find out the differential SBA-production microorganisms.

$$\text{Average copy number} = \frac{\sum_{\text{Genomes of this species}} \text{copy number}}{\text{No. of genome}} \quad \#(1)$$

$$\begin{aligned} & \text{Weighted relative abundance} \\ & = \text{Average copy number} * \text{Relative species abundance} \#(2) \end{aligned}$$

557 Based on BLASTX searches of genes in the non-redundant reference from
558 metagenomic data against the non-redundant protein catalog of SBA-production, we
559 classified genes from metagenomes as SBA production genes if they exhibited at least
560 70% identity and an e-value of less than $1e^{-50}$. The abundance of a certain type of
561 gene was estimated by the sum of the reads per kilobase per million mapped reads
562 (RPKM) calculated by CoverM. Considering the entire metabolic process, we
563 calculated the proportion of Bai genes and HSDHs genes by considering their
564 abundances as a whole. The abundance of BSH and proportion of Bai genes or
565 HSDHs between diseases and control were compared using two-tailed Mann-Whitney
566 U-test (UC, CD, adenoma, CRC) or paired t test (NAFLD) to calculate the p value for
567 determining the significance. Subsequently, combining the importance of various
568 genes and the significance level of their differences (SL in equation (3)), we defined a
569 difference score (equation (3)) to assess the overall dysregulation of BA metabolism
570 from a microbial perspective in diverse diseases.

$$\begin{aligned} \text{Difference score} & = 0.5 * \text{SL}_{\text{BSH}} + \sum_{\text{Other SBA-production genes}} \text{SL} * \text{proportion} \\ & \quad \#(3) \\ p \geq 0.05 \text{ and Rate of change} & > 10\%: \text{SL} = 0.5; p < 0.05: \text{SL} = 1; \\ p < 0.01: \text{SL} & = 2; p < 0.001: \text{SL} = 3; p < 0.0001: \text{SL} = 4 \end{aligned}$$

571
572 **Comparing secondary bile acid production genes in humans and other animal models**
573 To compare microbial SBA metabolism, the DNA sequences of GMGC unigenes
574 potential for SBA metabolism in the gut of humans and other animal models were
575 compared using BLASTN. For SBA-production unigenes in human, those shared with
576 other animal models were categorized as 'Same'; for the remaining unigenes, if they
577 had hits with at least 70% identity and less than $1e^{-50}$ e-value, they were labeled as
578 'Similar', while the rest were classified as 'Unique'. Then, with the proportions of
579 these three gene categories, scores representing the similarity of specific types of SBA
580 metabolic genes between animal models and humans were estimated using the
581 defined scoring rules based on the match quality (equation (4)). By further assigning
582 different weights on these scores to reflect the contribution of each gene type to the
583 overall metabolic process, we calculated the overall similarity score (equation (5)) for
584 a comprehensive assessment of the similarity.

$$\begin{aligned} & \text{Single similarity score} \\ & = \text{Proportion}_{\text{Same}} * 1 + \text{Proportion}_{\text{Similar}} * 0.7 - \text{Proportion}_{\text{Unique}} \#(4) \end{aligned}$$

$$\begin{aligned} \text{Overall similarity score} & = \sum_{\text{Different SBA-production genes}} \text{W} * \text{score} \\ & \quad \#(5) \end{aligned}$$

$$W_{\text{BSH}} = 0.5, W_{\text{Bai genes}} = 0.125, W_{12\alpha\text{HSDH}} = 0.125, W_{\text{others}} = 0.0625$$

586 **Data Availability**

587 The comprehensive SBA-production gene catalog of BSHs, Bai genes and HSDHs
588 built based on RefSeq microbiome and its associated data including raw data, the
589 taxonomic and habitat distribution, ect., are available within the paper and its
590 Supplementary Table, as well as on GitHub
591 (<https://github.com/ywyang1/SBA-production-gene-catalog/>).

592 Genomes analyzed are available in the RefSeq database
593 (<https://ftp.ncbi.nlm.nih.gov/genomes/refseq/>, accessed in July 2022). The sequence
594 and metadata of Unigene can be downloaded from GMGC v1.0
595 (<https://gmgc.embl.de/download.cgi>). The raw sequencing reads of metagenomic
596 samples were downloaded from SRA of the NCBI database under accession numbers
597 ERP008729, PRJEB1220 and PRJNA420817.

598

599 **Code Availability**

600 The scripts for SBA-production gene catalog construction and further analyses are
601 available on GitHub (<https://github.com/ywyang1/SBA-production-gene-catalog/>).

602

603 **References**

- 604 1 Radominska, A., Treat, S. & Little, J. Bile acid metabolism and the pathophysiology of
605 cholestasis. *Semin Liver Dis* **13**, 219-234 (1993).
606 <https://doi.org/10.1055/s-2007-1007351>
- 607 2 Kulkarni, M. S., Heidepriem, P. M. & Yielding, K. L. Production by lithocholic acid of
608 DNA strand breaks in L1210 cells. *Cancer Res* **40**, 2666-2669 (1980).
- 609 3 Makishima, M. *et al.* Identification of a nuclear receptor for bile acids. *Science* **284**,
610 1362-1365 (1999). <https://doi.org/10.1126/science.284.5418.1362>
- 611 4 Xing, C. *et al.* Roles of bile acids signaling in neuromodulation under physiological and
612 pathological conditions. *Cell Biosci* **13**, 106 (2023).
613 <https://doi.org/10.1186/s13578-023-01053-z>
- 614 5 Alasmael, N., Mohan, R., Meira, L. B., Swales, K. E. & Plant, N. J. Activation of the
615 Farnesoid X-receptor in breast cancer cell lines results in cytotoxicity but not
616 increased migration potential. *Cancer Lett* **370**, 250-259 (2016).

- 617 <https://doi.org/10.1016/j.canlet.2015.10.031>
- 618 6 Dawson, P. A., Lan, T. & Rao, A. Bile acid transporters. *J Lipid Res* **50**, 2340-2357
(2009). <https://doi.org/10.1194/jlr.R900012-JLR200>
- 620 7 Axelson, M. *et al.* Bile acid synthesis in cultured human hepatocytes: support for an
621 alternative biosynthetic pathway to cholic acid. *Hepatology* **31**, 1305-1312 (2000).
<https://doi.org/10.1053/jhep.2000.7877>
- 623 8 Ridlon, J. M., Kang, D. J. & Hylemon, P. B. Bile salt biotransformations by human
624 intestinal bacteria. *J Lipid Res* **47**, 241-259 (2006).
<https://doi.org/10.1194/jlr.R500013-JLR200>
- 626 9 Mallonee, D. H. & Hylemon, P. B. Sequencing and expression of a gene encoding a
627 bile acid transporter from *Eubacterium* sp. strain VPI 12708. *J Bacteriol* **178**,
628 7053-7058 (1996). <https://doi.org/10.1128/jb.178.24.7053-7058.1996>
- 629 10 Mallonee, D. H., Adams, J. L. & Hylemon, P. B. The bile acid-inducible *baiB* gene from
630 *Eubacterium* sp. strain VPI 12708 encodes a bile acid-coenzyme A ligase. *J Bacteriol*
631 **174**, 2065-2071 (1992). <https://doi.org/10.1128/jb.174.7.2065-2071.1992>
- 632 11 Bhowmik, S. *et al.* Structural and functional characterization of BaiA, an enzyme
633 involved in secondary bile acid synthesis in human gut microbe. *Proteins* **82**, 216-229
634 (2014). <https://doi.org/10.1002/prot.24353>
- 635 12 Kang, D. J., Ridlon, J. M., Moore, D. R., 2nd, Barnes, S. & Hylemon, P. B. *Clostridium*
636 *scindens* *baiCD* and *baiH* genes encode stereo-specific
637 7alpha/7beta-hydroxy-3-oxo-delta4-cholenoic acid oxidoreductases. *Biochim Biophys
638 Acta* **1781**, 16-25 (2008). <https://doi.org/10.1016/j.bbapap.2007.10.008>

- 639 13 Ridlon, J. M. & Hylemon, P. B. Identification and characterization of two bile acid
640 coenzyme A transferases from *Clostridium scindens*, a bile acid
641 7alpha-dehydroxylating intestinal bacterium. *J Lipid Res* **53**, 66-76 (2012).
642 <https://doi.org/10.1194/jlr.M020313>
- 643 14 Bhowmik, S. *et al.* Structure and functional characterization of a bile acid 7alpha
644 dehydratase BaiE in secondary bile acid synthesis. *Proteins* **84**, 316-331 (2016).
645 <https://doi.org/10.1002/prot.24971>
- 646 15 Funabashi, M. *et al.* A metabolic pathway for bile acid dehydroxylation by the gut
647 microbiome. *Nature* **582**, 566-570 (2020). <https://doi.org/10.1038/s41586-020-2396-4>
- 648 16 Doden, H. L. & Ridlon, J. M. Microbial Hydroxysteroid Dehydrogenases: From Alpha
649 to Omega. *Microorganisms* **9** (2021). <https://doi.org/10.3390/microorganisms9030469>
- 650 17 Gadaleta, R. M., Cariello, M., Sabba, C. & Moschetta, A. Tissue-specific actions of
651 FXR in metabolism and cancer. *Biochim Biophys Acta* **1851**, 30-39 (2015).
652 <https://doi.org/10.1016/j.bbapap.2014.08.005>
- 653 18 Zhang, Y. *et al.* Activation of the nuclear receptor FXR improves hyperglycemia and
654 hyperlipidemia in diabetic mice. *Proc Natl Acad Sci U S A* **103**, 1006-1011 (2006).
655 <https://doi.org/10.1073/pnas.0506982103>
- 656 19 Hang, S. *et al.* Bile acid metabolites control T(H)17 and T(reg) cell differentiation.
657 *Nature* **576**, 143-148 (2019). <https://doi.org/10.1038/s41586-019-1785-z>
- 658 20 Jiao, N. *et al.* Suppressed hepatic bile acid signalling despite elevated production of
659 primary and secondary bile acids in NAFLD. *Gut* **67**, 1881-1891 (2018).
660 <https://doi.org/10.1136/gutjnl-2017-314307>

- 661 21 Mohanty, I. *et al.* The changing metabolic landscape of bile acids - keys to metabolism
662 and immune regulation. *Nat Rev Gastroenterol Hepatol* (2024).
663 <https://doi.org/10.1038/s41575-024-00914-3>
- 664 22 Yoshimoto, S. *et al.* Obesity-induced gut microbial metabolite promotes liver cancer
665 through senescence secretome. *Nature* **499**, 97-101 (2013).
666 <https://doi.org/10.1038/nature12347>
- 667 23 Xu, M. *et al.* Deoxycholic Acid-Induced Gut Dysbiosis Disrupts Bile Acid Enterohepatic
668 Circulation and Promotes Intestinal Inflammation. *Dig Dis Sci* **66**, 568-576 (2021).
669 <https://doi.org/10.1007/s10620-020-06208-3>
- 670 24 Zhong, J. *et al.* Hyodeoxycholic acid ameliorates nonalcoholic fatty liver disease by
671 inhibiting RAN-mediated PPARalpha nucleus-cytoplasm shuttling. *Nat Commun* **14**,
672 5451 (2023). <https://doi.org/10.1038/s41467-023-41061-8>
- 673 25 Ruutu, T. *et al.* Ursodeoxycholic acid for the prevention of hepatic complications in
674 allogeneic stem cell transplantation. *Blood* **100**, 1977-1983 (2002).
675 <https://doi.org/10.1182/blood-2001-12-0159>
- 676 26 Tyagi, P., Edwards, D. R. & Coyne, M. S. Use of Sterol and Bile Acid Biomarkers to
677 Identify Domesticated Animal Sources of Fecal Pollution. *Water, Air, and Soil Pollution*
678 **187**, 263-274 (2007). <https://doi.org/10.1007/s11270-007-9514-x>
- 679 27 Feller, F. M., Holert, J., Yücel, O. & Philipp, B. Degradation of Bile Acids by Soil and
680 Water Bacteria. *Microorganisms* **9** (2021).
681 <https://doi.org/10.3390/microorganisms9081759>
- 682 28 Philipp, B., Erdbrink, H., Suter, M. J. & Schink, B. Degradation of and sensitivity to

- 683 cholate in *Pseudomonas* sp. strain Chol1. *Arch Microbiol* **185**, 192-201 (2006).
- 684 <https://doi.org/10.1007/s00203-006-0085-9>
- 685 29 Holert, J. *et al.* Evidence of distinct pathways for bacterial degradation of the steroid
686 compound cholate suggests the potential for metabolic interactions by interspecies
687 cross-feeding. *Environ Microbiol* **16**, 1424-1440 (2014).
<https://doi.org/10.1111/1462-2920.12407>
- 688
- 689 30 Zhu, Y. G. *et al.* Ecosystem Microbiome Science. *mLife* **2**, 2-10 (2023).
<https://doi.org/10.1002/mlf2.12054>
- 690
- 691 31 Faust, K. & Raes, J. Microbial interactions: from networks to models. *Nat Rev Microbiol* **10**, 538-550 (2012). <https://doi.org/10.1038/nrmicro2832>
- 692
- 693 32 Heinken, A. *et al.* Systematic assessment of secondary bile acid metabolism in gut
694 microbes reveals distinct metabolic capabilities in inflammatory bowel disease.
695 *Microbiome* **7**, 75 (2019). <https://doi.org/10.1186/s40168-019-0689-3>
- 696
- 697 33 Power, M. E. Top-Down and Bottom-Up Forces in Food Webs: Do Plants Have
Primacy. *Ecology* **73**, 733-746 (1992). <https://doi.org/10.2307/1940153>
- 698
- 699 34 Kim, G. B., Miyamoto, C. M., Meighen, E. A. & Lee, B. H. Cloning and characterization
of the bile salt hydrolase genes (bsh) from *Bifidobacterium bifidum* strains. *Appl Environ Microbiol* **70**, 5603-5612 (2004).
<https://doi.org/10.1128/AEM.70.9.5603-5612.2004>
- 700
- 701
- 702 35 Wijaya, A. *et al.* Cloning of the bile salt hydrolase (bsh) gene from *Enterococcus*
703 *faecium* FAIR-E 345 and chromosomal location of bsh genes in food enterococci. *J Food Prot* **67**, 2772-2778 (2004). <https://doi.org/10.4315/0362-028x-67.12.2772>
- 704

- 705 36 Dussurget, O. *et al.* *Listeria monocytogenes* bile salt hydrolase is a PrfA-regulated
706 virulence factor involved in the intestinal and hepatic phases of listeriosis. *Mol*
707 *Microbiol* **45**, 1095-1106 (2002). <https://doi.org/10.1046/j.1365-2958.2002.03080.x>
- 708 37 Kitahara, M., Takamine, F., Imamura, T. & Benno, Y. *Clostridium hiranonis* sp. nov., a
709 human intestinal bacterium with bile acid 7alpha-dehydroxylating activity. *Int J Syst*
710 *Evol Microbiol* **51**, 39-44 (2001). <https://doi.org/10.1099/00207713-51-1-39>
- 711 38 Harris, S. C. *et al.* Bile acid oxidation by *Eggerthella lenta* strains C592 and DSM
712 2243(T). *Gut* *Microbes* **9**, 523-539 (2018).
713 <https://doi.org/10.1080/19490976.2018.1458180>
- 714 39 Macdonald, I. A., Meier, E. C., Mahony, D. E. & Costain, G. A. 3alpha-, 7alpha- and
715 12alpha-hydroxysteroid dehydrogenase activities from *Clostridium perfringens*.
716 *Biochim Biophys Acta* **450**, 142-153 (1976).
717 [https://doi.org/10.1016/0005-2760\(76\)90086-2](https://doi.org/10.1016/0005-2760(76)90086-2)
- 718 40 Coleman, J. P. & Hudson, L. L. Cloning and characterization of a conjugated bile acid
719 hydrolase gene from *Clostridium perfringens*. *Appl Environ Microbiol* **61**, 2514-2520
720 (1995). <https://doi.org/10.1128/aem.61.7.2514-2520.1995>
- 721 41 Jones, B. V., Begley, M., Hill, C., Gahan, C. G. & Marchesi, J. R. Functional and
722 comparative metagenomic analysis of bile salt hydrolase activity in the human gut
723 microbiome. *Proc Natl Acad Sci U S A* **105**, 13580-13585 (2008).
724 <https://doi.org/10.1073/pnas.0804437105>
- 725 42 Kim, K. H. *et al.* Identification and Characterization of Major Bile Acid
726 7alpha-Dehydroxylating Bacteria in the Human Gut. *mSystems* **7**, e0045522 (2022).

- 727 <https://doi.org/10.1128/msystems.00455-22>
- 728 43 Song, C., Wang, B., Tan, J., Zhu, L. & Lou, D. Discovery of tauroursodeoxycholic acid
729 biotransformation enzymes from the gut microbiome of black bears using
730 metagenomics. *Sci Rep* **7**, 45495 (2017). <https://doi.org/10.1038/srep45495>
- 731 44 Leviatan, S., Shoer, S., Rothschild, D., Gorodetski, M. & Segal, E. An expanded
732 reference map of the human gut microbiome reveals hundreds of previously unknown
733 species. *Nat Commun* **13**, 3863 (2022). <https://doi.org/10.1038/s41467-022-31502-1>
- 734 45 Guzior, D. V. & Quinn, R. A. Review: microbial transformations of human bile acids.
735 *Microbiome* **9**, 140 (2021). <https://doi.org/10.1186/s40168-021-01101-1>
- 736 46 Coelho, L. P. *et al.* Towards the biogeography of prokaryotic genes. *Nature* **601**,
737 252-256 (2021). <https://doi.org/10.1038/s41586-021-04233-4>
- 738 47 Vital, M., Rud, T., Rath, S., Pieper, D. H. & Schluter, D. Diversity of Bacteria Exhibiting
739 Bile Acid-inducible 7alpha-dehydroxylation Genes in the Human Gut. *Comput Struct
740 Biotechnol J* **17**, 1016-1019 (2019). <https://doi.org/10.1016/j.csbj.2019.07.012>
- 741 48 Kim, G. B., Yi, S. H. & Lee, B. H. Purification and characterization of three different
742 types of bile salt hydrolases from *Bifidobacterium* strains. *J Dairy Sci* **87**, 258-266
743 (2004). [https://doi.org/10.3168/jds.S0022-0302\(04\)73164-1](https://doi.org/10.3168/jds.S0022-0302(04)73164-1)
- 744 49 Lee, J. Y. *et al.* Contribution of the 7beta-hydroxysteroid dehydrogenase from
745 *Ruminococcus gnavus* N53 to ursodeoxycholic acid formation in the human colon. *J
746 Lipid Res* **54**, 3062-3069 (2013). <https://doi.org/10.1194/jlr.M039834>
- 747 50 Liu, L., Aigner, A. & Schmid, R. D. Identification, cloning, heterologous expression,
748 and characterization of a NADPH-dependent 7beta-hydroxysteroid dehydrogenase

- 749 from *Collinsella aerofaciens*. *Appl Microbiol Biotechnol* **90**, 127-135 (2011).
- 750 <https://doi.org/10.1007/s00253-010-3052-y>
- 751 51 Doden, H. *et al.* Metabolism of Oxo-Bile Acids and Characterization of Recombinant
752 12alpha-Hydroxysteroid Dehydrogenases from Bile Acid 7alpha-Dehydroxylating
753 Human Gut Bacteria. *Appl Environ Microbiol* **84**, (2018).
754 <https://doi.org/10.1128/AEM.00235-18>
- 755 52 Félix, A. P., Souza, C. M. M. & de Oliveira, S. G. Biomarkers of gastrointestinal
756 functionality in dogs: A systematic review and meta-analysis. *Animal Feed Science
757 and Technology* **283** (2022). <https://doi.org/10.1016/j.anifeedsci.2021.115183>
- 758 53 Correa Lopes, B. *et al.* Correlation between *Peptacetobacter hiranonis*, the *baiCD*
759 Gene, and Secondary Bile Acids in Dogs. *Animals (Basel)* **14** (2024).
760 <https://doi.org/10.3390/ani14020216>
- 761 54 Clark, V. C. *et al.* An endogenous bile acid and dietary sucrose from skin secretions of
762 alkaloid-sequestering poison frogs. *J Nat Prod* **75**, 473-478 (2012).
763 <https://doi.org/10.1021/np200963r>
- 764 55 Franzosa, E. A. *et al.* Gut microbiome structure and metabolic activity in inflammatory
765 bowel disease. *Nat Microbiol* **4**, 293-305 (2019).
766 <https://doi.org/10.1038/s41564-018-0306-4>
- 767 56 Lloyd-Price, J. *et al.* Multi-omics of the gut microbial ecosystem in inflammatory bowel
768 diseases. *Nature* **569**, 655-662 (2019). <https://doi.org/10.1038/s41586-019-1237-9>
- 769 57 Hogan, S. P. *et al.* Bacterial Bile Metabolising Gene Abundance in Crohn's, Ulcerative
770 Colitis and Type 2 Diabetes Metagenomes. *PLoS ONE* **9** (2014).

- 771 <https://doi.org/10.1371/journal.pone.0115175>
- 772 58 Eaton, J. E. *et al.* High-dose ursodeoxycholic acid is associated with the development
773 of colorectal neoplasia in patients with ulcerative colitis and primary sclerosing
774 cholangitis. *Am J Gastroenterol* **106**, 1638-1645 (2011).
- 775 <https://doi.org/10.1038/ajg.2011.156>
- 776 59 Lindner, S. *et al.* Altered microbial bile acid metabolism exacerbates T cell-driven
777 inflammation during graft-versus-host disease. *Nature Microbiology* **9**, 614-630 (2024).
- 778 <https://doi.org/10.1038/s41564-024-01617-w>
- 779 60 Lunney, J. K. *et al.* Importance of the pig as a human biomedical model. *Sci Transl
780 Med* **13**, eabd5758 (2021). <https://doi.org/10.1126/scitranslmed.abd5758>
- 781 61 Xiao, L. *et al.* A reference gene catalogue of the pig gut microbiome. *Nat Microbiol* **1**,
782 16161 (2016). <https://doi.org/10.1038/nmicrobiol.2016.161>
- 783 62 Guilloteau, P., Zabielski, R., Hammon, H. M. & Metges, C. C. Nutritional programming
784 of gastrointestinal tract development. Is the pig a good model for man? *Nutr Rev*
785 **23**, 4-22 (2010). <https://doi.org/10.1017/S0954422410000077>
- 786 63 Baker, D. H. Animal models in nutrition research. *J Nutr* **138**, 391-396 (2008).
- 787 <https://doi.org/10.1093/jn/138.2.391>
- 788 64 Spinelli, V. *et al.* Influence of Roux-en-Y gastric bypass on plasma bile acid profiles: a
789 comparative study between rats, pigs and humans. *Int J Obes (Lond)* **40**, 1260-1267
790 (2016). <https://doi.org/10.1038/ijo.2016.46>
- 791 65 Mohanty, I. *et al.* The underappreciated diversity of bile acid modifications. *Cell* (2024).
- 792 <https://doi.org/10.1016/j.cell.2024.02.019>

- 793 66 Guzior, D. V. *et al.* Bile salt hydrolase acyltransferase activity expands bile acid
794 diversity. *Nature* **626**, 852-858 (2024). <https://doi.org/10.1038/s41586-024-07017-8>
- 795 67 Nie, Q. *et al.* Gut symbionts alleviate MASH through a secondary bile acid biosynthetic
796 pathway. *Cell* (2024). <https://doi.org/10.1016/j.cell.2024.03.034>
- 797 68 Krogh, A., Brown, M., Mian, I. S., Sjolander, K. & Haussler, D. Hidden Markov models
798 in computational biology. Applications to protein modeling. *J Mol Biol* **235**, 1501-1531
799 (1994). <https://doi.org/10.1006/jmbi.1994.1104>
- 800 69 Meng, X. & Ji, Y. Modern Computational Techniques for the HMMER Sequence
801 Analysis. *ISRN Bioinform* **2013**, 252183 (2013). <https://doi.org/10.1155/2013/252183>
- 802 70 Disz, T. *et al.* Accessing the SEED genome databases via Web services API: tools for
803 programmers. *BMC Bioinformatics* **11**, 319 (2010).
804 <https://doi.org/10.1186/1471-2105-11-319>
- 805 71 Overbeek, R. *et al.* The subsystems approach to genome annotation and its use in the
806 project to annotate 1000 genomes. *Nucleic Acids Res* **33**, 5691-5702 (2005).
807 <https://doi.org/10.1093/nar/gki866>
- 808 72 Sievers, F. *et al.* Fast, scalable generation of high-quality protein multiple sequence
809 alignments using Clustal Omega. *Mol Syst Biol* **7**, 539 (2011).
810 <https://doi.org/10.1038/msb.2011.75>
- 811 73 Capella-Gutierrez, S., Silla-Martinez, J. M. & Gabaldon, T. trimAl: a tool for automated
812 alignment trimming in large-scale phylogenetic analyses. *Bioinformatics* **25**,
813 1972-1973 (2009). <https://doi.org/10.1093/bioinformatics/btp348>
- 814 74 Nguyen, L. T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and

- 815 effective stochastic algorithm for estimating maximum-likelihood phylogenies. *Mol Biol*
816 *Evol* **32**, 268-274 (2015). <https://doi.org/10.1093/molbev/msu300>
- 817 75 Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic
818 tree display and annotation. *Nucleic Acids Res* **49**, W293-W296 (2021).
819 <https://doi.org/10.1093/nar/gkab301>
- 820 76 Camacho, C. *et al.* BLAST+: architecture and applications. *BMC Bioinformatics* **10**,
821 421 (2009). <https://doi.org/10.1186/1471-2105-10-421>
- 822 77 Nielsen, H. B. *et al.* Identification and assembly of genomes and genetic elements in
823 complex metagenomic samples without using reference genomes. *Nat Biotechnol* **32**,
824 822-828 (2014). <https://doi.org/10.1038/nbt.2939>
- 825 78 Feng, Q. *et al.* Gut microbiome development along the colorectal adenoma-carcinoma
826 sequence. *Nat Commun* **6**, 6528 (2015). <https://doi.org/10.1038/ncomms7528>
- 827 79 Mardinoglu, A. *et al.* An Integrated Understanding of the Rapid Metabolic Benefits of a
828 Carbohydrate-Restricted Diet on Hepatic Steatosis in Humans. *Cell Metab* **27**,
829 559-571 e555 (2018). <https://doi.org/10.1016/j.cmet.2018.01.005>
- 830 80 Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina
831 sequence data. *Bioinformatics* **30**, 2114-2120 (2014).
832 <https://doi.org/10.1093/bioinformatics/btu170>
- 833 81 Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. *Nat*
834 *Methods* **9**, 357-359 (2012). <https://doi.org/10.1038/nmeth.1923>
- 835 82 Wood, D. E., Lu, J. & Langmead, B. Improved metagenomic analysis with Kraken 2.
836 *Genome Biol* **20**, 257 (2019). <https://doi.org/10.1186/s13059-019-1891-0>

837 83 Lu, J., Breitwieser, F. P., Thielen, P. & Salzberg, S. L. Bracken: estimating species
838 abundance in metagenomics data. *PeerJ Computer Science* **3** (2017).

839 <https://doi.org/10.7717/peerj-cs.104>

840 84 Li, D., Liu, C. M., Luo, R., Sadakane, K. & Lam, T. W. MEGAHIT: an ultra-fast
841 single-node solution for large and complex metagenomics assembly via succinct de
842 Bruijn graph. *Bioinformatics* **31**, 1674-1676 (2015).

843 <https://doi.org/10.1093/bioinformatics/btv033>

844

845 **Acknowledgements**

846 This work was supported by the National Natural Science Foundation of China (grant
847 number 92251307 to RZ, 82170542 to RZ, 82000536 to NJ), the National Key
848 Research and Development Program of China (grant number
849 2021YFF0703700/2021YFF0703702 to RZ), and Guangdong Province “Pearl River
850 Talent Plan” Innovation and Entrepreneurship Team Project (grant number
851 2019ZT08Y464 to LZ). The funders had no role in study design, data collection and
852 analysis, decision to publish, or preparation of the manuscript.

853

854 **Author contributions**

855 NJ, RZ and LZ conceived and designed the study. YY and WG drafted the manuscript.
856 RZ, LT, WC, XZ, MS, TX, TZ, XZ, LZ and NJ reviewed and edited the manuscript.
857 All authors read and approved the final manuscript.

858

859 **Competing interests**

860 The authors declare no competing interests.

861

862 **Supplementary information**

863 Supplementary Figure 1

864 Supplementary Figure 2

865 Supplementary Figure 3

866 Supplementary Figure 4

867 Supplementary Table 1

868 Supplementary Table 2

869 Supplementary Table 3

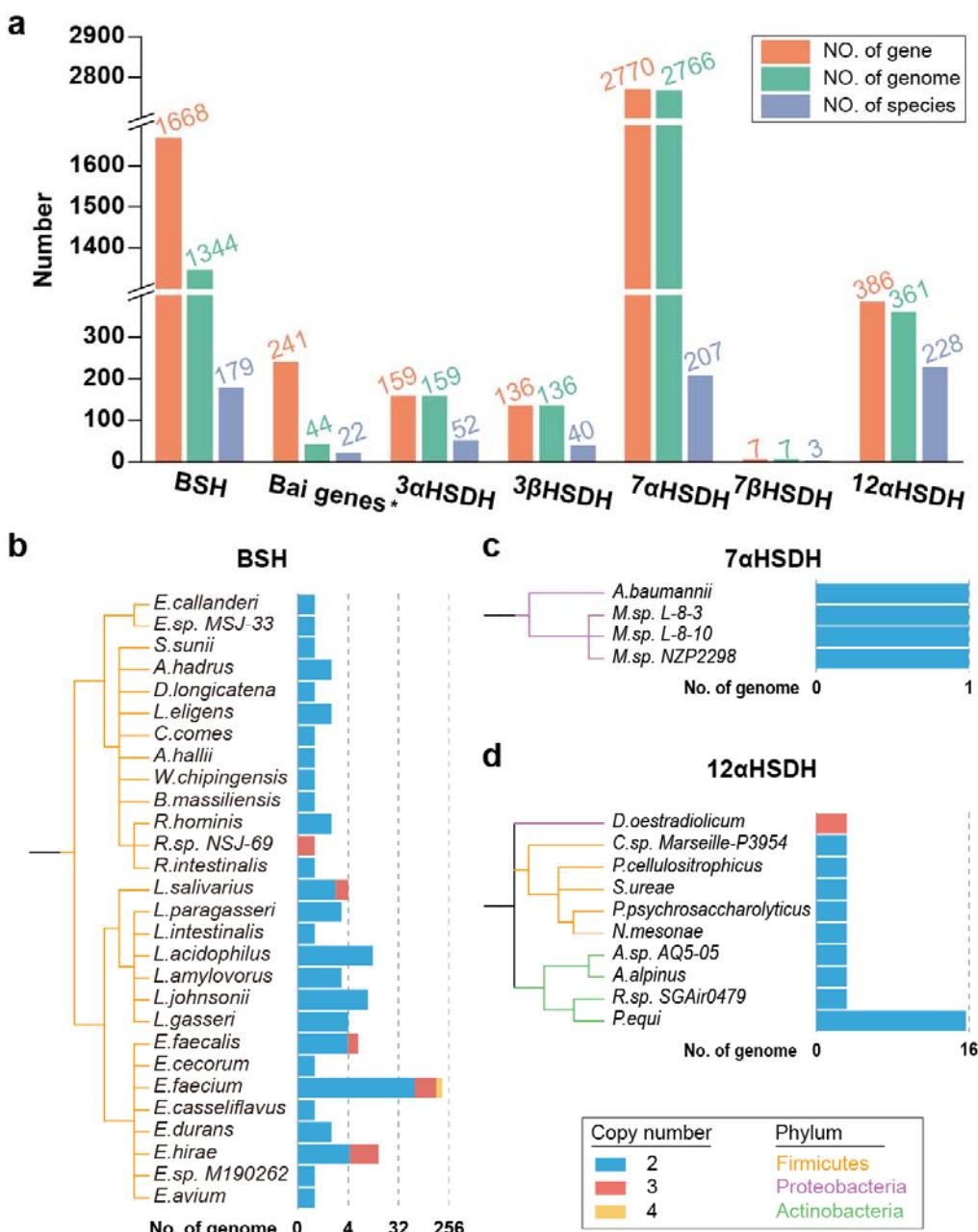
870 Supplementary Table 4

871 Supplementary Table 5

872 Supplementary Table 6

873 Supplementary Table 7

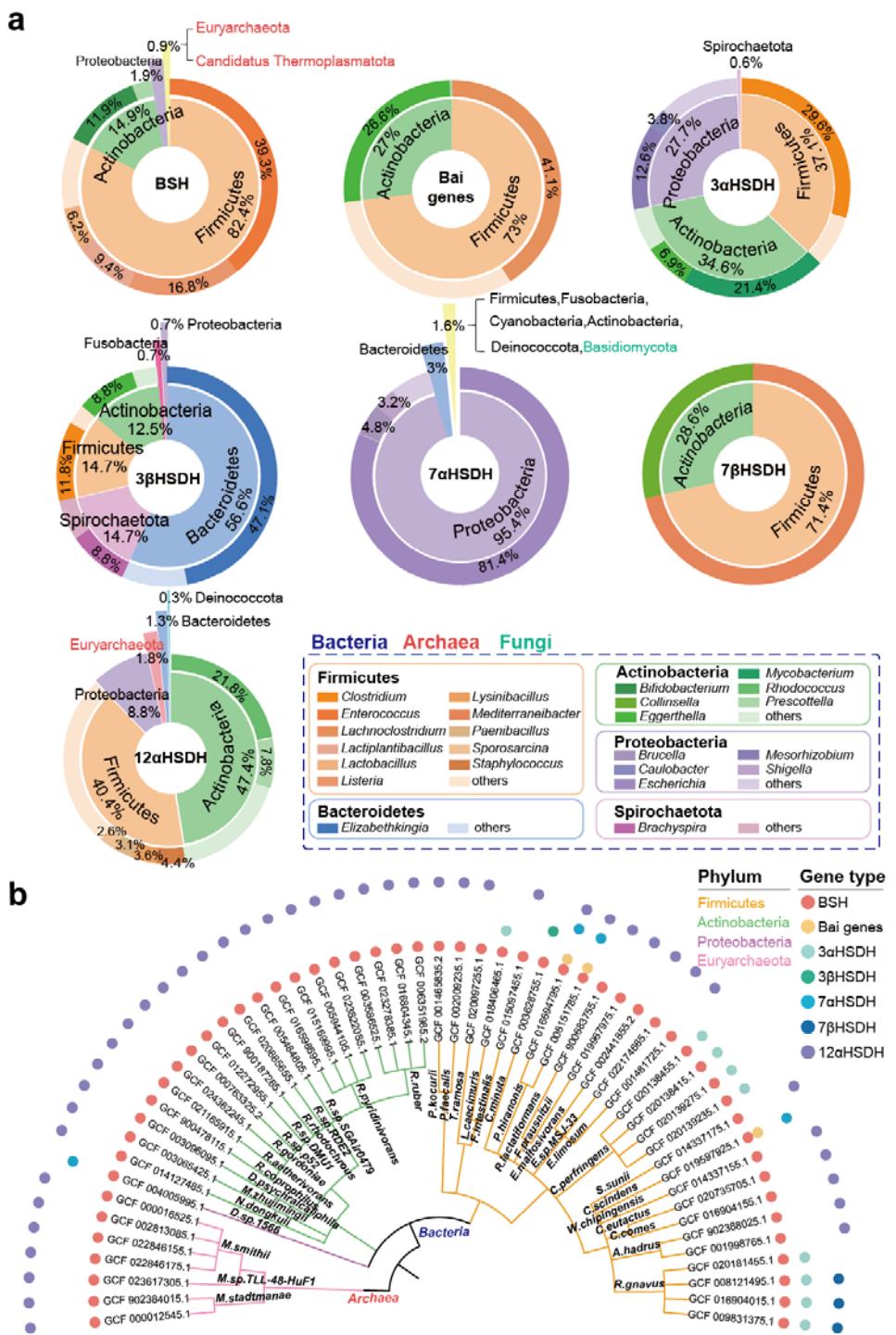
874 Supplementary Table 8


875

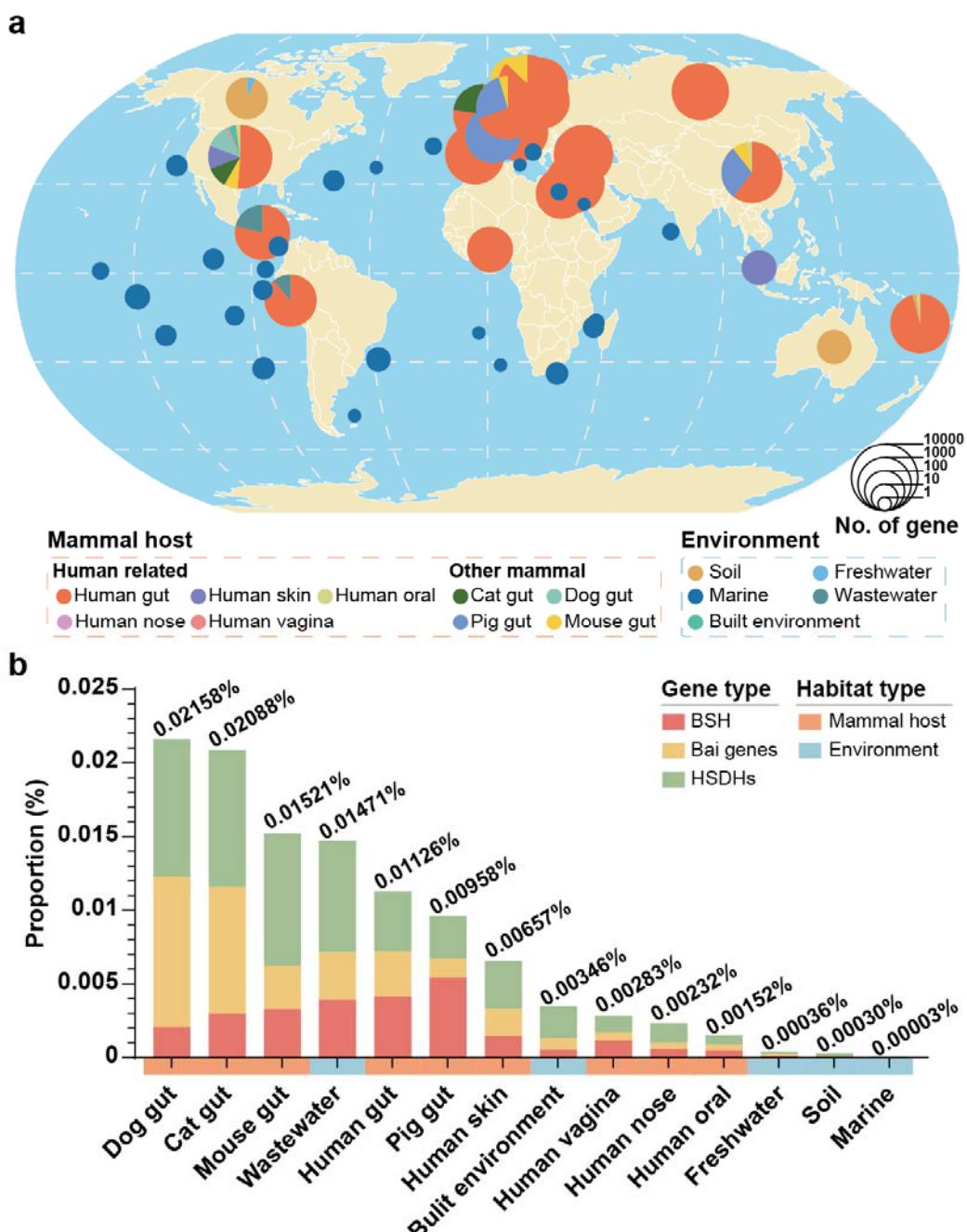
876

877

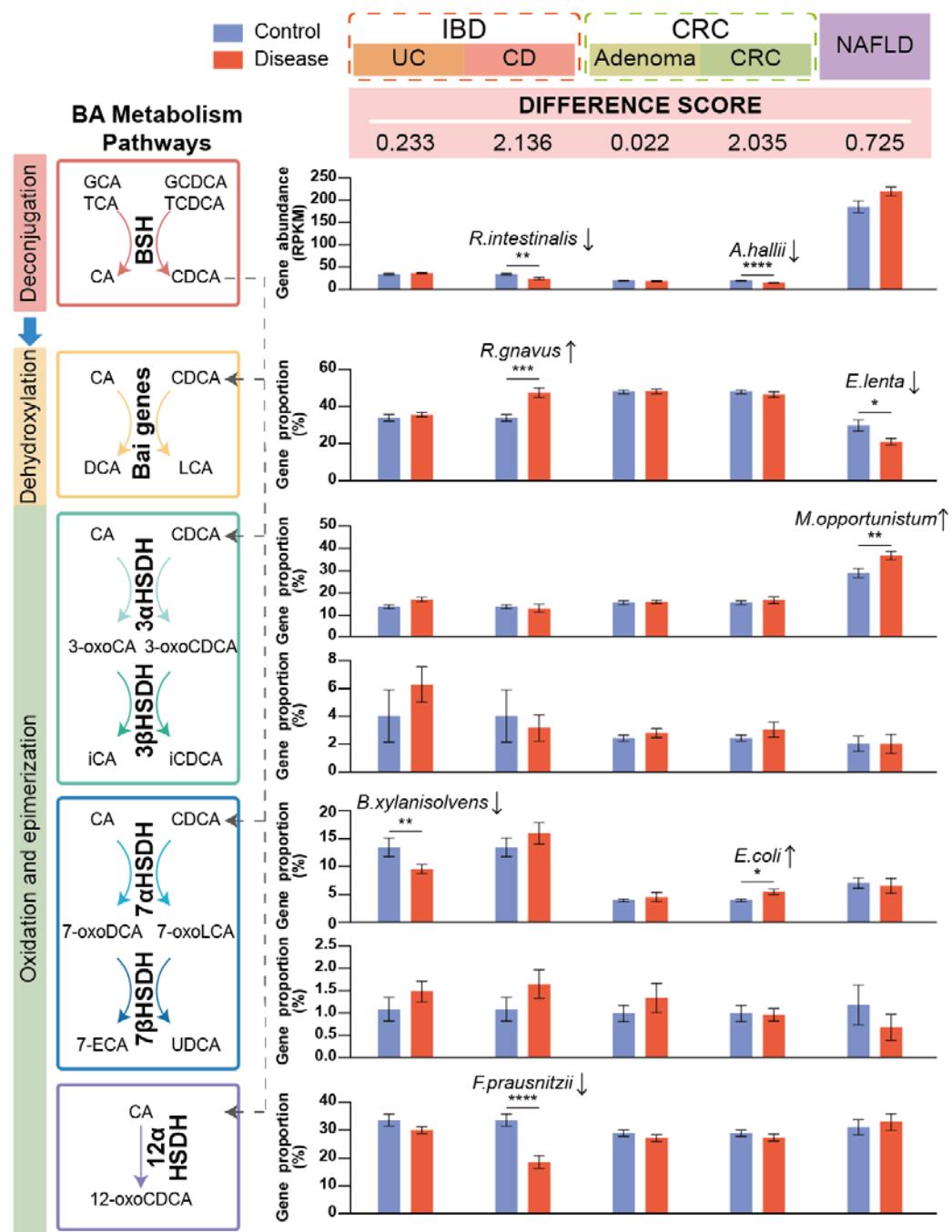
878 **Figures**


879

880


881 **Figure 1. Overview of secondary bile acid production gene catalog.** (a) The
882 number of SBA-production genes (orange) as well as microbial genomes (green) and
883 species (purple) carrying SBA-production genes. Phylogenetic trees of species with
884 genome carrying duplicate (b) BSH, (c) 12 α HSDH and (d) 7 α HSDH genes. The

branch colors represent different phyla. Stacked bar charts aligned to tree tips represent the number of genomes with duplicate genes. The blue, pink and yellow bar indicate the number of genomes with different copy number.



888
889 **Figure 2. Taxonomy distribution of SBA-production genes.** (a) Composition of
890 different SBA-production genes. The pie charts show the proportions of genes across
891 different phyla. The outer rings show the proportions of some main genera. (b)

892 Phylogenetic tree of genomes carrying BSH and at least one Bai genes/HSDHs. The
893 branch colors represent different phyla. Symbols aligned to tree tips represent
894 different types of SBA-production genes.

895
896 **Figure 3. Habitat distribution of SBA-production genes.** (a) Global map
897 representing SBA-production genes in GMGC. The size of the pie chart represents the
898 number of SBA-production unigenes. Different colors represent different habitats. (b)
899 SBA-production genes composition in GMGC. Stacked bar chart shows proportions
900 of BSH (red), Bai genes (yellow) and HSDHs (green) in total genes of different
901 habitats.

902

903

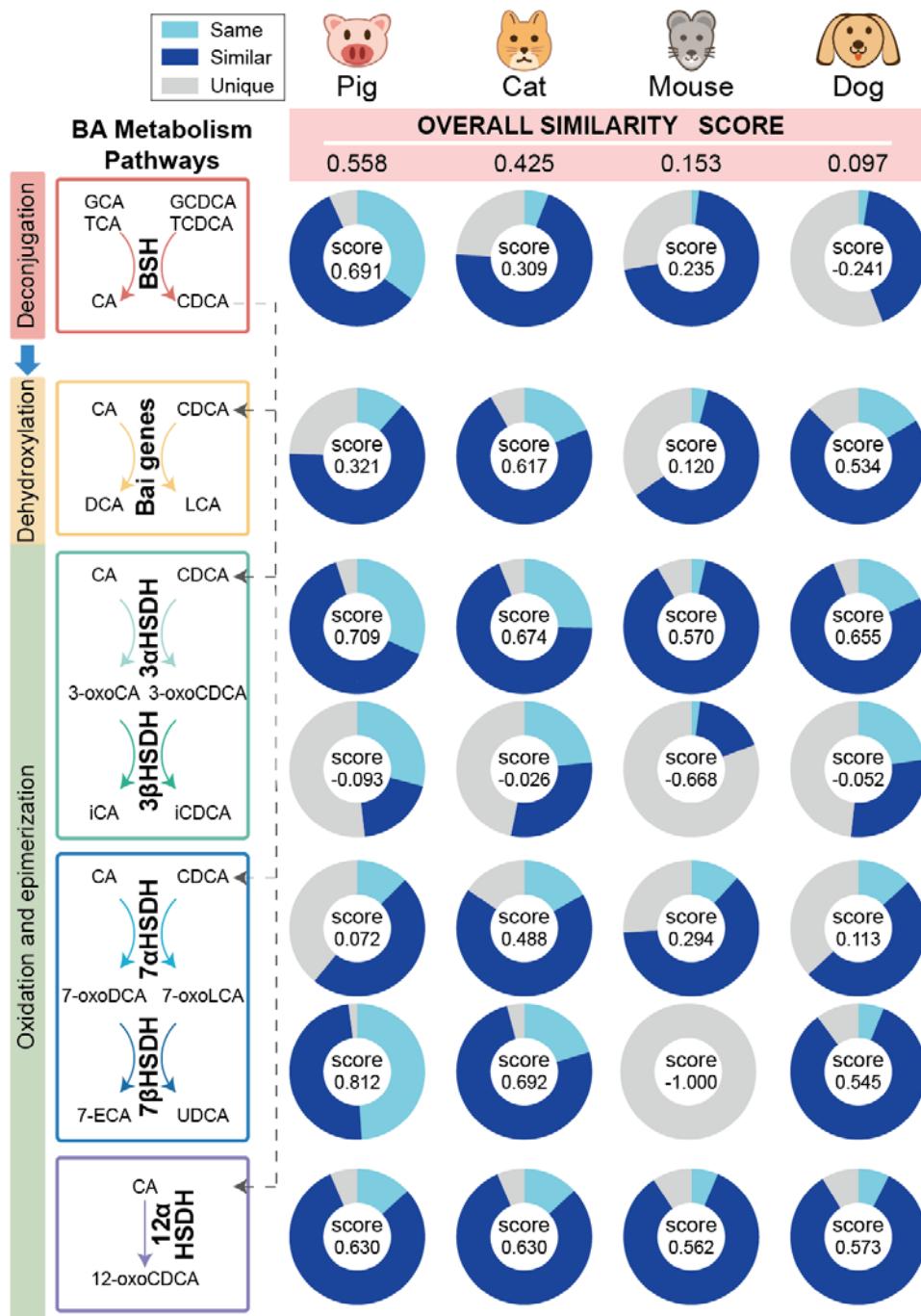
904

905

906

907

908


909

910

911

Figure 4. Profiles of SBA-production genes in intestinal and liver diseases. The bar plots show the gut microbial gene abundance of BSH as well as proportions of Bai genes and HSDHs in different disease states. The microorganisms located above the bar plot are the major differential species possessing this gene and are consistent with the gene alteration. The definition of 'Difference score' is in equation (3). Data are shown as mean with SE. The statistical differences between groups were determined by two-tailed Mann-Whitney U-test (UC, CD, adenoma, CRC) or paired t test (NAFLD), the p values were converted to asterisks(* for $p < 0.05$; ** for $p < 0.01$; *** for $p < 0.001$ and **** for $p < 0.0001$). Number of samples by disease state for

912 each study were: IBD: control = 23, UC = 124, CD = 21; CRC: control = 63, adenoma
913 = 47, CRC = 46; NAFLD: control = 10, NAFLD = 10.

914
915 **Figure 5. Comparison of SBA-production genes between humans and different**
916 **animal models.** The pie charts show the proportions of different kinds of
917 SBA-production genes in total human genes across four animal models. ‘score’ in pie
918 charts is the ‘Single similarity score’ defined in equation (4). The definition of three
919 kinds of genes is in Methods, and ‘Overall similarity score’ in equation (5).
920