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Abstract. Next-generation sequencing technology has created many new opportunities for clinical
diagnostics, but it faces the challenge of functional annotation of identified mutations. Various
algorithms have been developed to predict the impact of missense variants that influence oncogenic
drivers. However, computational pipelines that handle biological data must integrate multiple
software tools, which can add complexity and hinder non-specialist users from accessing the pipeline.
Here, we have developed an online user-friendly web server tool PredictONCO that is fully automated
and has a low barrier to access. The tool models the structure of the mutant protein in the first step.
Next, it calculates the protein stability change, pocket level information, evolutionary conservation,
and changes in ionisation of catalytic amino acid residues, and uses them as the features in the
machine-learning predictor. The XGBoost-based predictor was validated on an independent subset of
held-out data, demonstrating areas under the receiver operating characteristic curve (ROC) of 0.95
and 0.94, and the average precision from the precision-recall curve 0.98 and 0.94 for structure-based
and sequence-based predictions, respectively. Finally, PredictONCO calculates the docking results of
small molecules approved by regulatory authorities. We demonstrate the applicability of the tool by
presenting its usage for variants in two cancer-associated proteins, cellular tumour antigen p53 and
fibroblast growth factor receptor FGFR1. Our free web tool will assist with the interpretation of data
from next-generation sequencing and navigate treatment strategies in clinical oncology:
https://loschmidt.chemi.muni.cz/predictonco/.

Introduction. In the last two decades, we have witnessed substantial technological
advancements in human genomics attributed mainly to the implementation of next-generation
sequencing (NGS). With its ability to simultaneously analyse a large amount of genetic information,
increasing availability, and decreasing costs, NGS has already been adopted by multiple academic and
clinical laboratories and is getting to the forefront of medical diagnostics. This considerable progress
and the resulting impact on clinical management is especially apparent in oncology, where
comprehensive genomic profiling brings valuable information on the presence of acquired somatic
alterations that can be utilised for therapeutic planning within the paradigm of precision medicine
[1], with further augmentation of predictive capabilities by artificial intelligence [2].

Several knowledge bases that gather published data from preclinical experiments and real-life
clinical data are used to assess the potential impact of identified alterations on protein function.
However, it is impossible to keep up with the amount of data generated with high-throughput


mailto:on.slaby@gmail.com
mailto:222755@mail.muni.cz
https://doi.org/10.1101/2024.06.08.598056
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.08.598056; this version posted June 11, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

technologies, and many variants lack the functional annotation necessary to distinguish oncogenic
drivers from passenger events with little to no significant diagnostic, prognostic, or predictive impact.
While the effect of some types of genetic variants, such as frameshift and nonsense variants, is quite
definite, it is particularly challenging to predict the outcome of missense variants. This issue was soon
recognized and resulted in the development of several algorithms that mainly employ information
about evolutionary conservation and sequential or physicochemical properties, which might prove
helpful for Mendelian disorders [3]. However, for cancer-associated proteins, a robust prediction
requires a more comprehensive assessment that also employs structural data or binding properties of
known inhibitors to reliably sort variants that should be pursued in preclinical studies or even clinical
scenarios.

Minimal information for job submission. Computational pipelines that handle biological data
can string together multiple software tools, each with its own settings and parameters. This can add
multiple layers of complexity barring non-specialist users with little background in bioinformatics to
access such a pipeline. Thus, it is important for a clinically relevant tool to have a low barrier to
access. Making the tool available as an online web server would make access easier. Therefore, we
have developed the new web server PredictONCO, which can become a valuable tool for routine
analysis of the data from next-generation sequencing experiments. The tool is designed keeping in
view the urgency of oncologically relevant analysis, hence it was made fully automated, with very
little input required from a user’s side. Effectively, the only two pieces of information required to start
a job on the web server are the target protein’s name and the associated mutation. Inputting this
information is done via the easy-to-use graphical user interface of the web server (Figure 1). Once the
job has started, it can take about a day to complete, but it can be longer with a load of the server.
However, if the calculation for that protein and mutation combination has been made previously, the
results are provided immediately from the jobs database. All completed calculations are added to the
results page as soon as they are available, regardless of the status of the other calculations. An email
alert is also sent to the user upon initiation and completion of the calculations, providing
identification of the calculation and the hyperlink to the web page with results.
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Figure 1. The graphical user interface of PredictONCO web server’s job submission page. (A)
Protein selection window, (B) Mutation selection window via textual input, and (C) Alternative
mutation selection window via the selection on the sequence table.

Output information and interpretation of results. The results page is an easy to use
collection of calculations, organised in separate fields (Figure 2). The wild type structures are used by
the pipeline to calculate the stability changes using FoldX [4] and Rosetta [5]. The pipeline also
models structures of the mutant proteins, and these modelled structures have pocket level
information calculated using P2Rank [6] as well as information about essential residues from M-CSA
[7] and UniProt databases [8]. The pKa values of ionizable groups, indicative of changes in reactivity
between the wild type and mutant proteins are calculated using PropKa [9]. The newly developed
XGBoost-based predictor uses all obtained values as features to return the probability of a mutation's
oncogenic effect. To create the predictor, we used a dataset of 464 oncogenic and 449 non-oncogenic
mutations compiled from the ClinVar [10] and OncoKB [11] databases. All mutations were annotated
with a clinically verified effect based on available information from precision oncology databases
[12-15] and primary literature. The predictor was validated on an independent subset of held-out
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data, demonstrating areas under the receiver operating characteristic curve (ROC AUC) of 0.95 and
0.94 for structure-based and sequence-based predictions, respectively. The average precision from
the Precision-Recall curve was 0.98 and 0.94 for structure-based and sequence-based predictions,
respectively.

The results page also contains docking results of 4380 small molecules approved by the Food
and Drug Administration and European Medicines Agency, docked onto both the wild type and the
mutant structure using Autodock Vina [16]. Changes in the binding affinity of the drugs associated
with the target protein upon mutation can support decisions on treatments (Figure 2). The structure
visualisation page allows users to inspect the tertiary structure of the wild type and mutant protein,
along with the mutated residue, essential residues, and bound top-scoring drugs, in various
visualisation formats. Furthermore, the results page contains information from other useful tools and
databases such as UniProt [8] and HOPE [17], as well as pathogenicity scores based on the PredictSNP
server [18]. The most important bits from the results page are available at the top in the ‘Summary’
field, along with the PredictONCO oncogenicity score. This score utilises multiple outputs of the
pipeline to predict the mutation's result on the target protein's oncogenicity in a single value. To
demonstrate the tool's usage, results for variants in two cancer-associated proteins, cellular tumour
antigen p53, and fibroblast growth factor receptor FGFR1, are presented as case studies.
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Figure 2. The graphical user interface of PredictONCO web server’s results page. (A) An ‘at a
glance’ style Summary window, which compiles the most important calculations, (B) Various other
analyses detailed in their own windows, such as Mutant description, Known mutants, and
Conservation analysis from the HOPE server, as well as a window reporting changes in pKa for the
catalytic residue, (C) Inhibitors window for showing binding energies of inhibitors in the wild type and
the mutant protein, (D) Protein structure visualisation window for viewing the wild type and mutant
protein structures with various settings. This window also allows for the visualisation of inhibitors and
other protein features such as pockets and essential residues, and (E) The Top scoring inhibitor chart
which compares the top 100 binding energies for individual inhibitors as a bar chart.

Case study with R175H and K139M variants of cellular tumour antigen p53. For p53, the
R175H and K139M variants were submitted for analysis, with R175H being a notoriously known
inactivating variant and K139M being an unknown alteration identified by comprehensive genomic
profiling. Input data consisted only of the respective protein selection and selection of a particular
mutation through either textual or sequence entry using a nomenclature corresponding with the
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canonical transcript. For R175H, the PredictONCO results showed a deleterious prediction on both
the stability level and by the PredictSNP consensus classifier. Taking all calculations into account, the
variant is predicted to be deleterious with a 100% confidence score, which is in agreement with the
variant being a well-known cancer-associated event leading to a loss of protein function. Its
occurrence in many tumour types, of both germline and somatic origin, is also shown in the “Known
mutants” section, which makes the data interpretation-related literature search easier by providing
the user with relevant references.

The K139M variant of cellular tumour antigen p53, on the other hand, is a variant that lacks
proper functional characterization and requires careful assessment for subsequent clinical
management, especially when of germline origin, which makes it suitable for PredictONCO
evaluation. PredictSNP consensus classifier predicted a deleterious effect with a moderate confidence
score of 61%, while both stability predictors predicted a neutral effect. However, differences in
physicochemical properties and reported occurrence of different mutants in identical residues
suggest a functional impact. The overall prediction indicates a deleterious effect with a 98%
confidence score. Therefore, by not relying just on the results of widely used sequence-based
prediction algorithms, we were able to significantly increase the confidence in protein effect
prediction, by 37 p.p. specifically. With such increased confidence, the clinical management of
patients harbouring this germline variant would support further studies of incidence in the family and
potential co-segregation with the disease.

Case study for N546K variant of fibroblast growth factor receptor FGFR1. A similar example
can be applied to known protooncogenes with the added benefit of inhibitor binding data.
Demonstrated by the example of the FGFR1 N546K variant, we got an overall deleterious prediction
with a 100% confidence score. Similar to the p53 R175H mutant, several literature references
showing causality in cancers and an activating effect on protein function were available. Most
importantly, as multiple inhibitors (e.g., Nintedanib, Stivarga, Ponatinib, etc.) can target FGFR1, their
comprehensive overview was provided. Inhibitors were accompanied by calculated changes in
binding energies, whose decreased values suggest better binding capability, which can help in the
selection process if multiple options can be considered. All calculations were performed in a
reasonably timely manner, under 2 hours for p53 and 6 hours for FGFR1, with the difference being
explained by inhibitor docking and binding energy calculations.

Conclusions. PredictONCO is a web-based tool that uses computational algorithms to predict
the effect of somatic alterations in cancer-associated proteins. It employs several algorithms and
database searches that assess the impact of a mutation on protein stability, functionality, and
oncogenicity. Importantly, PredictONCO also quantifies the effect of mutations on protein-drug
interactions. The input for the web server is straightforward, with only the name of the target protein
and associated mutation required. The results page contains several fields with different calculated
properties of the mutant protein, including structure, stability change, pocket level information, and
essential residues. The web server is fully automated, with email alerts sent to users upon initiation
and completion of calculations, and all completed calculations are added to the results page as soon
as they become available.

Web tool availability
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The service PredictONCO is available free of charge to all users at the website
https://loschmidt.chemi.muni.cz/predictonco/.
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