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Abstract. Next-generation sequencing technology has created many new opportunities for clinical

diagnostics, but it faces the challenge of functional annotation of identified mutations. Various

algorithms have been developed to predict the impact of missense variants that influence oncogenic

drivers. However, computational pipelines that handle biological data must integrate multiple

software tools, which can add complexity and hinder non-specialist users from accessing the pipeline.

Here, we have developed an online user-friendly web server tool PredictONCO that is fully automated

and has a low barrier to access. The tool models the structure of the mutant protein in the first step.

Next, it calculates the protein stability change, pocket level information, evolutionary conservation,

and changes in ionisation of catalytic amino acid residues, and uses them as the features in the

machine-learning predictor. The XGBoost-based predictor was validated on an independent subset of

held-out data, demonstrating areas under the receiver operating characteristic curve (ROC) of 0.95

and 0.94, and the average precision from the precision-recall curve 0.98 and 0.94 for structure-based

and sequence-based predictions, respectively. Finally, PredictONCO calculates the docking results of

small molecules approved by regulatory authorities. We demonstrate the applicability of the tool by

presenting its usage for variants in two cancer-associated proteins, cellular tumour antigen p53 and

fibroblast growth factor receptor FGFR1. Our free web tool will assist with the interpretation of data

from next-generation sequencing and navigate treatment strategies in clinical oncology:

https://loschmidt.chemi.muni.cz/predictonco/.

Introduction. In the last two decades, we have witnessed substantial technological

advancements in human genomics attributed mainly to the implementation of next-generation

sequencing (NGS). With its ability to simultaneously analyse a large amount of genetic information,

increasing availability, and decreasing costs, NGS has already been adopted by multiple academic and

clinical laboratories and is getting to the forefront of medical diagnostics. This considerable progress

and the resulting impact on clinical management is especially apparent in oncology, where

comprehensive genomic profiling brings valuable information on the presence of acquired somatic

alterations that can be utilised for therapeutic planning within the paradigm of precision medicine

[1], with further augmentation of predictive capabilities by artificial intelligence [2].

Several knowledge bases that gather published data from preclinical experiments and real-life

clinical data are used to assess the potential impact of identified alterations on protein function.

However, it is impossible to keep up with the amount of data generated with high-throughput
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technologies, and many variants lack the functional annotation necessary to distinguish oncogenic

drivers from passenger events with little to no significant diagnostic, prognostic, or predictive impact.

While the effect of some types of genetic variants, such as frameshift and nonsense variants, is quite

definite, it is particularly challenging to predict the outcome of missense variants. This issue was soon

recognized and resulted in the development of several algorithms that mainly employ information

about evolutionary conservation and sequential or physicochemical properties, which might prove

helpful for Mendelian disorders [3]. However, for cancer-associated proteins, a robust prediction

requires a more comprehensive assessment that also employs structural data or binding properties of

known inhibitors to reliably sort variants that should be pursued in preclinical studies or even clinical

scenarios.

Minimal information for job submission. Computational pipelines that handle biological data

can string together multiple software tools, each with its own settings and parameters. This can add

multiple layers of complexity barring non-specialist users with little background in bioinformatics to

access such a pipeline. Thus, it is important for a clinically relevant tool to have a low barrier to

access. Making the tool available as an online web server would make access easier. Therefore, we

have developed the new web server PredictONCO, which can become a valuable tool for routine

analysis of the data from next-generation sequencing experiments. The tool is designed keeping in

view the urgency of oncologically relevant analysis, hence it was made fully automated, with very

little input required from a user’s side. Effectively, the only two pieces of information required to start

a job on the web server are the target protein’s name and the associated mutation. Inputting this

information is done via the easy-to-use graphical user interface of the web server (Figure 1). Once the

job has started, it can take about a day to complete, but it can be longer with a load of the server.

However, if the calculation for that protein and mutation combination has been made previously, the

results are provided immediately from the jobs database. All completed calculations are added to the

results page as soon as they are available, regardless of the status of the other calculations. An email

alert is also sent to the user upon initiation and completion of the calculations, providing

identification of the calculation and the hyperlink to the web page with results.
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Figure 1. The graphical user interface of PredictONCO web server’s job submission page. (A)

Protein selection window, (B) Mutation selection window via textual input, and (C) Alternative

mutation selection window via the selection on the sequence table.

Output information and interpretation of results. The results page is an easy to use

collection of calculations, organised in separate fields (Figure 2). The wild type structures are used by

the pipeline to calculate the stability changes using FoldX [4] and Rosetta [5]. The pipeline also

models structures of the mutant proteins, and these modelled structures have pocket level

information calculated using P2Rank [6] as well as information about essential residues from M-CSA

[7] and UniProt databases [8]. The pKa values of ionizable groups, indicative of changes in reactivity

between the wild type and mutant proteins are calculated using PropKa [9]. The newly developed

XGBoost-based predictor uses all obtained values as features to return the probability of a mutation's

oncogenic effect. To create the predictor, we used a dataset of 464 oncogenic and 449 non-oncogenic

mutations compiled from the ClinVar [10] and OncoKB [11] databases. All mutations were annotated

with a clinically verified effect based on available information from precision oncology databases

[12-15] and primary literature. The predictor was validated on an independent subset of held-out
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data, demonstrating areas under the receiver operating characteristic curve (ROC AUC) of 0.95 and

0.94 for structure-based and sequence-based predictions, respectively. The average precision from

the Precision-Recall curve was 0.98 and 0.94 for structure-based and sequence-based predictions,

respectively.

The results page also contains docking results of 4380 small molecules approved by the Food

and Drug Administration and European Medicines Agency, docked onto both the wild type and the

mutant structure using Autodock Vina [16]. Changes in the binding affinity of the drugs associated

with the target protein upon mutation can support decisions on treatments (Figure 2). The structure

visualisation page allows users to inspect the tertiary structure of the wild type and mutant protein,

along with the mutated residue, essential residues, and bound top-scoring drugs, in various

visualisation formats. Furthermore, the results page contains information from other useful tools and

databases such as UniProt [8] and HOPE [17], as well as pathogenicity scores based on the PredictSNP

server [18]. The most important bits from the results page are available at the top in the ‘Summary’

field, along with the PredictONCO oncogenicity score. This score utilises multiple outputs of the

pipeline to predict the mutation's result on the target protein's oncogenicity in a single value. To

demonstrate the tool's usage, results for variants in two cancer-associated proteins, cellular tumour

antigen p53, and fibroblast growth factor receptor FGFR1, are presented as case studies.
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Figure 2. The graphical user interface of PredictONCO web server’s results page. (A) An ‘at a

glance’ style Summary window, which compiles the most important calculations, (B) Various other

analyses detailed in their own windows, such as Mutant description, Known mutants, and

Conservation analysis from the HOPE server, as well as a window reporting changes in pKa for the

catalytic residue, (C) Inhibitors window for showing binding energies of inhibitors in the wild type and

the mutant protein, (D) Protein structure visualisation window for viewing the wild type and mutant

protein structures with various settings. This window also allows for the visualisation of inhibitors and

other protein features such as pockets and essential residues, and (E) The Top scoring inhibitor chart

which compares the top 100 binding energies for individual inhibitors as a bar chart.

Case study with R175H and K139M variants of cellular tumour antigen p53. For p53, the

R175H and K139M variants were submitted for analysis, with R175H being a notoriously known

inactivating variant and K139M being an unknown alteration identified by comprehensive genomic

profiling. Input data consisted only of the respective protein selection and selection of a particular

mutation through either textual or sequence entry using a nomenclature corresponding with the
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canonical transcript. For R175H, the PredictONCO results showed a deleterious prediction on both

the stability level and by the PredictSNP consensus classifier. Taking all calculations into account, the

variant is predicted to be deleterious with a 100% confidence score, which is in agreement with the

variant being a well-known cancer-associated event leading to a loss of protein function. Its

occurrence in many tumour types, of both germline and somatic origin, is also shown in the “Known

mutants” section, which makes the data interpretation-related literature search easier by providing

the user with relevant references.

The K139M variant of cellular tumour antigen p53, on the other hand, is a variant that lacks

proper functional characterization and requires careful assessment for subsequent clinical

management, especially when of germline origin, which makes it suitable for PredictONCO

evaluation. PredictSNP consensus classifier predicted a deleterious effect with a moderate confidence

score of 61%, while both stability predictors predicted a neutral effect. However, differences in

physicochemical properties and reported occurrence of different mutants in identical residues

suggest a functional impact. The overall prediction indicates a deleterious effect with a 98%

confidence score. Therefore, by not relying just on the results of widely used sequence-based

prediction algorithms, we were able to significantly increase the confidence in protein effect

prediction, by 37 p.p. specifically. With such increased confidence, the clinical management of

patients harbouring this germline variant would support further studies of incidence in the family and

potential co-segregation with the disease.

Case study for N546K variant of fibroblast growth factor receptor FGFR1. A similar example

can be applied to known protooncogenes with the added benefit of inhibitor binding data.

Demonstrated by the example of the FGFR1 N546K variant, we got an overall deleterious prediction

with a 100% confidence score. Similar to the p53 R175H mutant, several literature references

showing causality in cancers and an activating effect on protein function were available. Most

importantly, as multiple inhibitors (e.g., Nintedanib, Stivarga, Ponatinib, etc.) can target FGFR1, their

comprehensive overview was provided. Inhibitors were accompanied by calculated changes in

binding energies, whose decreased values suggest better binding capability, which can help in the

selection process if multiple options can be considered. All calculations were performed in a

reasonably timely manner, under 2 hours for p53 and 6 hours for FGFR1, with the difference being

explained by inhibitor docking and binding energy calculations.

Conclusions. PredictONCO is a web-based tool that uses computational algorithms to predict

the effect of somatic alterations in cancer-associated proteins. It employs several algorithms and

database searches that assess the impact of a mutation on protein stability, functionality, and

oncogenicity. Importantly, PredictONCO also quantifies the effect of mutations on protein-drug

interactions. The input for the web server is straightforward, with only the name of the target protein

and associated mutation required. The results page contains several fields with different calculated

properties of the mutant protein, including structure, stability change, pocket level information, and

essential residues. The web server is fully automated, with email alerts sent to users upon initiation

and completion of calculations, and all completed calculations are added to the results page as soon

as they become available.

Web tool availability
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The service PredictONCO is available free of charge to all users at the website

https://loschmidt.chemi.muni.cz/predictonco/.
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