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18 Abstract

19  Regional heritability mapping (RHM) is a method that estimates the heritability of genomic segments
20  that may contain both common and rare variants affecting a complex trait. We compared three RHM
21 methods: SNP-RHM, which uses genomic relationship matrices (GRMs) based on SNP genotypes;

22 Hap-RHM, which uses GRMs based on haplotypes; and SNHap-RHM, which uses both SNP-based and
23 haplotype-based GRMs jointly. We applied these methods to data from a wild population of sheep,
24  analysed eleven polygenic morphometric traits and compared the results with previous genome

25  wide association analyses (GWAS). We found that whilst the inclusion of the regional matrix did not
26  explain significant variation for all regions that were associated with trait variation using GWAS, it

27  did for several regions that were not previously associated with trait variation.


https://doi.org/10.1101/2024.06.08.598050
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.08.598050; this version posted June 10, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

28 Introduction

29 Genome-wide association studies (GWAS) are commonly used to identify genotyped SNPs in linkage
30 disequilibrium (LD) with causal loci. The regions around the SNPs associated with the focal trait can
31  then be examined as these SNPs serve as markers for the causal loci. For example, the function of
32  nearby genes can be investigated to see if they are involved in biological pathways related to the

33 trait, or fine-mapping can be performed to narrow down the relevant region and pinpoint the causal
34  variant. However, GWAS has some limitations and challenges that prevent it from finding all the

35  genetic factors that contribute to complex traits. One of these limitations is the power of GWAS,

36  whichis the ability to detect true associations. The power of GWAS depends on several factors, such
37  asthe sample size, the variant effect size, whether genotyped SNPs are in LD with causal SNPs, and
38 the allele frequency of the causal variant.

39  To overcome the limitations of GWAS, especially when a trait is influenced by multiple independent
40  effects and/or rare variants in a region, regional heritability mapping (RHM) methods have been

41  developed (Nagamine et al. 2012; Shirali et al. 2018; Oppong et al. 2021). RHM is a technique that
42  estimates the heritability of a trait that is explained by a specific region of the genome. To estimate
43  the heritability of a region, RHM uses a genomic relationship matrix (GRM), which is a matrix that
44  captures the genetic similarity between individuals based on their SNP genotypes in that region.

45 RHM also corrects for the genetic similarity across the whole genome by fitting another GRM that
46 includes all the SNPs in the genome (or a leave-one-chromosome-out (LOCO) GRM that excludes the
47  chromosome where the region of interest is located). By comparing the model fit with and without
48  theregional GRM (rGRM), RHM can identify regions that contain causal variants for the trait, and by
49  using the variance estimate for the rGRM, RHM can estimate how much heritability that region

50  contributes.

51 RHM can be performed using different types of rGRMs and region sizes, depending on the

52 assumptions and goals of the analysis. There are three main types of RHM that have been proposed.
53  The first type is SNP-RHM, which uses rGRMs that are based on the sharing of SNP alleles across a
54  region. The regions are usually defined as windows that contain a fixed number of SNPs (Nagamine
55  etal. 2012). SNP-RHM aims to identify regions with multiple SNPs that are in LD with the multiple
56  causal variants that have too small an effect on the trait individually to be detected by GWAS.

57  However, SNP-RHM only captures effects associated with genotyped SNPs. The second type is Hap-
58  RHM, which uses rGRMs that are based on the sharing of haplotype alleles across a region. The

59  regions are defined as haplotype blocks (Shirali et al. 2018). Hap-RHM aims to identify regions where
60  the causal variant is in LD with the haplotype allele, but not necessarily with any specific genotyped
61  SNPs, which allows for detection of variance that is not captured by genotyped SNPs. This method
62 can capture the effect of rare causal variants due to rare haplotype alleles being more likely to be in
63 LD with rare variants than individual, genotyped SNPs. In addition, haplotype effects may reflect the
64 interaction effects of closely linked causal variants. The third method, SNHap-RHM, simultaneously
65 fits two rGRMs: one SNP-based and one haplotype-based, and defines regions as haplotype blocks
66  (Oppong et al. 2021). This combines the advantages of both SNP-RHM and Hap-RHM to increase

67  power to detect regions containing variants influencing the phenotype. On occasions where SNP-

68 RHM and Hap-RHM can detect genetic variance in the same haplotype block, SNHap-RHM can also
69  be used to give more insight into the underlying genetic architecture.

70  Here, we evaluate the three RHM methods for their ability to identify regions containing potentially
71  causal lociin a sample of wild Soay sheep. In this study, we analysed 11 polygenic morphometric

72 traitsin the Soay sheep population using RHM. These traits include the same traits measured at

73  different ages, as they are affected by different non-genetic factors (and potentially different genetic
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74  factors) and vary in heritability across different stages of life. Despite using various methods to

75 search for the genetic variants that affect these traits, such as GWAS (Bérénos et al. 2015; James et
76  al. 2022), genomic prediction (Ashraf et al. 2021) and chromosome partitioning (Bérénos et al.

77  2015), most of the genetic variation in these traits remains unexplained by the genotyped and

78  imputed SNPs. Moreover, for some of these traits, there are no SNPs that show significant

79  association with the trait variation to date.

80 Our aims were as follows:

81 1) To determine the suitability of RHM methods for the Soay sheep data given the smaller

82 sample sizes, lower density SNP data and more potential for missing data in comparison to
83 the human data for which these methods were developed.

84 2) To compare the results of RHM with those of GWAS to determine the extent to which RHM
85 recovers known associations and identifies new associations.

86 3) To investigate regions for which including regional matrices in the RHM framework improves
87 model fit, to better characterise the underlying genetic architecture of the focal traits and
88 identify potential causal genes based on known functional data.

89
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90 Methods

91 Phenotypic data

92  The Soay sheep (Ovis aries) is a primitive breed of sheep that lives on the St. Kilda archipelago. Since
93 1985, a long-term, individual-based study has been conducted on the population residing on the

94 island of Hirta (Clutton-Brock and Pemberton 2003). Each individual is sampled for DNA analysis and
95  ear-tagged when it is first captured (usually within ten days of birth) so that it can be re-identified
96 later. The study involves regular recaptures to measure various traits throughout an individual’s life,
97 and collection and measurement of skeletal remains after death.

98  We focused on 11 age-specific morphometric traits which have been repeatedly analysed by

99  different approaches and are known to be polygenic (Bérénos et al. 2015; Ashraf et al. 2021; Hunter
100 et al. 2022; James et al. 2022). We analysed these traits separately by age class (neonate, lamb and
101  adult). Birth weight was the only trait analysed in neonates, defined as individuals who were caught
102 and weighed between two and ten days after birth. In August, lambs (aged approximately 4 months)
103 and adults were caught and measured for weight, foreleg length and hindleg length. Due to adults
104  being recaptured across multiple years, the adult live traits included repeated measurements.
105  Metacarpal length and jaw length were measured from the skeletons after death. We classified
106  “lambs” asindividuals who had live trait data recorded in the August of their birth year, or who died
107  before 14 months of age for post mortem measures. We classified “adults” as individuals who had
108 live trait data recorded at least two years after birth, or who died after 26 months of age for post
109  mortem measures. Birth and August weights are recorded to the nearest 0.1kg, whilst the length
110  traits are measured to the nearest mm (Beraldi et al. 2007). We did not analyse yearlings due to low
111  sample size.

112 See Table 1 for the number of individuals and records per trait.
113  Genetic data

114 8557 sheep have been genotyped on the Ovine SNP50 lllumina BeadChip, of which 38,130 SNPs are
115  autosomal and polymorphic in the population. 188 individuals have additionally been genotyped on
116  the Ovine Infinium HD SNP BeadChip which genotypes 600K SNPs — this allowed for imputation of
117 the remaining genotyped individuals to this higher density. Alphalmpute v1.98 (Hickey et al. 2012)
118  was used for the imputation as it combines shared haplotype and pedigree information to increase
119  imputation accuracy (see Stoffel et al. 2021 for details on our imputation). Genotypes with a

120 probability of < 0.99 were excluded, resulting in 419,281 autosomal SNPs remaining for 8557

121  individuals (4035 females, 4452 males). Imputed genotype “hard” calls were used instead of

122 genotype probabilities in the analyses detailed in this manuscript. Locus positions for both sets of
123  genetic data were based on the OAR_v3.1 genome assembly.

124 Regional heritability mapping

125  Prior to regional heritability mapping, the traits were pre-corrected to account for genome-wide

126  genetic diversity by fitting a LOCO GRM, constructed from all autosomes with the exception of the
127  chromosome containing the focal region. We also fitted fixed and non-genetic random effects during
128  pre-correction (see Table 1 for a full list of fixed and non-genetic random effects fitted). Pre-

129 correction for the non-repeated measures traits was performed in DISSECT (Canela-Xandri et al.

130  2015) using the following model:

y= Xp + erur + Wgroco + €
s
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131  wherey is the vector of phenotypic values; X is a design matrix linking individual records with the
132 vector of fixed effects B, Z: is an incidence matrix that relates a random effect to the individual

133 records; u; is the associated vector of non-genetic random effects; g oco is the vector of additive
134  genetic random effects from all autosomes except for that containing the focal region with W the
135 incidence matrix linking individual phenotypes with the genetic effect; and ¢ is the vector of

136 residuals. It is assumed that g.oco ~ MVN(O, Mchocoz), where ogLocozis the additive genetic variance
137  explained by all autosomes except the excluded one, and M is the LOCO GRM.

138  The GRMs (VanRaden 2008) were computed using DISSECT, and the genetic relationship between
139  individualsiand jis computed as:

A = 1 (sik— 2pi) (Sjk- 2Pk )
YN 2pr (1 — py)

k=1

140

141 where s; is the number of copies of the reference allele for SNP k of the individual i, pi is the
142 frequency of the reference allele for the SNP k, and N is the number of SNPs.

143  The residual for each individual was then taken as the phenotype for RHM. Pre-correction for the
144  three repeated measures traits (adult August weight, adult foreleg length and adult hindleg length)
145  was performed using ASReml-R (version 4.1, Butler et al. 2017) using the same model as given

146  above, and the mean of the residuals summed with the permanent environment effect for each
147  individual was taken as the phenotype for RHM.

148  For all three regional heritability methods, we used the same regions to allow for direct comparisons
149  between the methods. Due to Hap-RHM and SNHap-RHM requiring regions to be defined as

150  haplotype blocks, we used haplotype blocks for all three methods. Haplotype blocks were estimated
151  with Plink v1.90 using the --blocks, --blocks-max-kb 500 (which allows pairs of variants within 500kb
152  of each other to be considered within the same block) and --blocks-min-maf 0.01 options (which

153  instructs Plink to include all SNPs with a MAF higher than 0.01 when estimating the haplotype blocks
154 (Purcell et al. 2007; Purcell 2014)). Using a higher max kb threshold or lower MAF threshold did not
155  alter the haplotype block boundaries estimated. No haplotype block was allowed to have only one
156  SNP, due to the SNP-based GRM and haplotype-based GRM being identical for such blocks. Any

157  block containing only one SNP was therefore omitted from the analysis. Blocks were determined
158  using all 8557 individuals with imputed genotypes to ensure consistency across phenotypes.

159  Phased data is required for Hap-RHM and SNHap-RHM; genotypes were phased using SHAPEIT v4.2
160 (Delaneau et al. 2019).

161  Regional heritability mapping was performed using the following models:
Ypre—corrected = Wrgyp + €

ypre—corrected = WrHap + €

Ypre—corrected = Wrenp +WrHap + €

162  for SNP-RHM, Hap-RHM and SNHap-RHM respectively, where Ypre-corrected iS the vector of pre-
163 corrected phenotypic values, rgyp is the vector of individual additive genetic random effects from all
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164  SNPs contained within the focal haplotype block and ry,, is the vector of individual additive genetic
165 random effects from the haplotype alleles for the focal haplotype block. It is assumed that rsye ™
166 MVN(0, Maosxe?) and Mhap ~ MVN(O, McrHapz), where as\pis the additive genetic variance from all
167  SNPsin the haplotype block, 6,410 is the additive genetic variance from the haplotype alleles and M
168  isthe respective GRM. The GRMs were computed using DISSECT (Canela-Xandri et al. 2015). The
169  SNP-based GRMs were calculated using the same method as the LOCO GRMs, except they were
170  constructed from the SNPs located in the focal haplotype block. For the haplotype-based GRMs, the
171  geneticrelationship for individuals i and j is calculated as follows

h

oo = 1 (dik_zpk)(djk_zpk )
Y h 2p(1—py)

k=1

172 where diis the diplotype code (coded as the number of copies of haplotype k ) for individual / and
173  takesthe values 0, 1, and 2, pk is the frequency of haplotype k and h is the number of haplotypes in
174  theregion (see Oppong et al. 2021 for further information and examples).

175  To test whether the regional heritability models explained significant variation for each region, we
176  compared them against the null model:

Yprecorrected = €

177 using loglikelihood ratio testing (LRT). We performed five comparisons; SNP-RHM, Hap-RHM and
178  SNHap-RHM were all compared with the null model, and SNHap-RHM was additionally compared to
179  each of SNP-RHM and Hap-RHM individually. LRTs were performed with 1 degree of freedom, with
180  the exception of the comparison of SNHap-RHM to the null model, which was performed with 2
181  degrees of freedom. P values were calculated as 0.5x the p-value of a chi-squared distribution with
182  one degree of freedom for the 1 degree of freedom tests. For the 2 degrees of freedom tests, the p
183  values were calculated as 0.25x the p-value of a chi-squared distribution with two degrees of

184  freedom plus 0.5x the p-value of a chi-squared distribution with one degree of freedom (Self and
185  Liang 1987). Model fit was considered to be significantly improved if the resulting p value was less
186  than 1.04e™* (0.05 divided by 48,125, the total number of haplotype blocks).

187 Comparison with GWAS

188  To determine how well the different RHM methods detected previously discovered loci, we

189 identified which haplotype blocks contained the top SNP from each peak significantly associated
190  with phenotypic variation for each trait when performing GWAS. GWAS and conditional GWAS
191  analysis has recently been performed using the high density genotype data (James et al. 2022), so
192  we used the results from that analysis. The significance threshold used in the GWAS analysis was
193 1.03e™® (0.05/48635), which accounted for multiple testing using the SimpleM method (Gao et al.
194  2008). This method accounts for linkage disequilibrium between markers in order to calculate the
195  effective number of independent tests.

196 Identification of candidate genes

197  We extracted a list of genes overlapping any haplotype block for which model fit was improved by at
198 least one RHM model, using the R biomaRt package (Durinck et al. 2005; Durinck et al. 2009) from
199  the OAR_v3.1 genome assembly. Each gene was then reviewed against the Ensembl (Howe et al.
200  2020) and NCBI Gene (Bethesda (MD): National Library of Medicine (US) 2004 - 2023) databases to
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201  examine expression and functional annotations. Human and mouse orthologues were also used to
202  characterise gene function due to the high level of genetic annotation in these two species.
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203 Results

204 Soay sheep haplotype blocks

205  Setting the maximum kb between any two variants within the same haplotype block to 500Kb and
206  the minimum minor allele frequency (MAF) for variants to be considered to 0.01 resulted in 48,125
207  haplotype blocks being estimated across the 26 Soay sheep autosomes. The maximum number of
208  SNPsin a given haplotype block was 111, the minimum was 2 (as blocks with one SNP were omitted),
209 and the average number of SNPs per haplotype was 8.19. 75% of haplotype blocks contained 10 or
210 less SNPs, and 99% of blocks contained 50 or less. Block statistics for each chromosome are shown in
211 Table 2.

212 Across the whole sample of genotyped individuals, haplotype allele frequency ranged from

213  0.00005843 to 0.9895992, with 0.00005843 being the most commonly observed haplotype

214  frequency (28.95% of haplotype alleles). A frequency of 0.00005843 equates to a haplotype allele
215 being present on one chromosome in the entire sample. 75% of haplotype alleles had a frequency
216  lower than 0.072 (present on less than 1232 chromosomes in the entire sample), and 90% had a
217  frequency lower than 0.316 (present on less than 5408 chromosomes in the entire sample) (Figure
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Figure 1: Proportion of haplotype alleles at each haplotype frequency over all regions.
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220 Comparison of RHM
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221 A summary of results for the RHM analyses are shown in Table 3, whilst detailed results are shown in
222 Supplementary Tables 1 —-10.

223 There were two traits for which none of the RHM models significantly improved model fit for any
224 haplotype blocks: birth weight and lamb August weight, meaning that no regions of the genome
225  were found to significantly explain additional genetic variance not accounted for during pre-

226 correction.

227 For lamb foreleg length and lamb hindleg length, Hap-RHM was the only model which significantly
228  improved model fit in comparison to the null model. Hap-RHM improved model fit for one haplotype
229 block on chromosome 1 (haplotype number 1717) and one on chromosome 11 (726) for lamb

230 foreleg length, and one on chromosome 2 (4160) and chromosome 3 (3432) for lamb hindleg length
231 (Supplementary Tables 1 — 3).

232 For lamb metacarpal length, SNP-RHM significantly improved model fit for 16 haplotype blocks on
233 chromosome 16. Model fit was improved for 14 of these blocks using Hap-RHM, with the other two
234 being non-significant. 10 of the blocks for which model fit was improved by both SNP-RHM and Hap-
235  RHM were also improved by SNHap-RHM when compared to the null model, however no blocks

236  showed improved model fit when using SNHap-RHM when compared to either single-GRM model.
237  For the same trait, SNP-RHM also improved model fit for 23 haplotype blocks on chromosome 19,
238  whilst Hap-RHM improved model fit for 11 of the same blocks. When compared to the null model,
239  SNHap-RHM improved model fit for 20 of these haplotype blocks on chromosome 19, and four

240  haplotype blocks on chromosome 19 when compared to Hap-RHM. SNHap-RHM did not improve
241  model fit for any blocks when compared to SNP-RHM (Supplementary Tables 1 and 4).

242 For lamb jaw length, model fit was only significantly improved by Hap-RHM and SNHap-RHM when
243  compared to SNP-RHM. Hap-RHM improved model fit for one haplotype block on chromosome 3
244  (270), two blocks on chromosome 13 (1025 and 1041), one block on chromosome 14 (762) and one
245  on chromosome 17 (923). When compared to SNP-RHM, SNHap-RHM significantly improved model
246  fit for the same two blocks on chromosome 13 for which model fit was improved by Hap-RHM

247  (Supplementary Tables 1 and 5).

248  For adult August weight, Hap-RHM significantly improved model fit for 83 haplotype blocks over 22
249  chromosomes. In comparison to the null model, SNHap-RHM improved model fit for 35 haplotype
250  blocks over 21 chromosomes, whilst in comparison to SNP-RHM, model fit was improved for 56
251  haplotype blocks over 17 chromosomes. The blocks for which model fit was significantly improved
252 by SNHap-RHM in comparison to either the null model or SNP-RHM were all ones that were also
253  significantly improved by Hap-RHM, with the exception of one on chromosome 9 (1898), for which
254  model fit was only significantly improved by SNHap-RHM in comparison to the null model. SNHap-
255 RHM did not improve model fit for any haplotype blocks in comparison to Hap-RHM, nor did SNP-
256 RHM when compared to the null model (Supplementary Tables 1 and 6).

257  For adult foreleg length, Hap-RHM significantly improved model fit for six haplotype blocks; one on
258 chromosome 1 (1284), one on chromosome 6 (1064), one on chromosome 11 (113), one on

259 chromosome 12 (23), one on chromosome 23 (1020) and one on chromosome 26 (259). Model fit
260  was also improved for these same six haplotype blocks when comparing SNHap-RHM to the model
261 and against SNP-RHM. SNHap-RHM did not improve model fit for any haplotype blocks in

262 comparison to Hap-RHM, nor did SNP-RHM when compared to the null model (Supplementary

263  Tables 1and 7).
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264  For adult hindleg length, SNP-RHM significantly improved model fit for four haplotype blocks on

265  chromosome 16. Hap-RHM improved model fit for 25 haplotype blocks over 15 chromosomes,

266  including two of the blocks for which model fit was significantly improved by SNP-RHM. SNHap-RHM
267  improved model fit for 14 haplotype blocks over 11 chromosomes when compared to the null

268  model, and 17 blocks over 12 chromosomes when compared to SNP-RHM. SNHap-RHM did not

269  significantly improve model fit for any blocks when compared to Hap-RHM (Supplementary Tables 1
270  and8).

271  For adult metacarpal length, SNP-RHM significantly improved model fit for 15 haplotype blocks on
272 chromosome 16. Hap-RHM significantly improved model fit for 12 of these blocks. When compared
273  tothe null model, SNHap-RHM improved model fit for 12 haplotype blocks on chromosome 16 — all
274  of which were blocks that experienced significant improvement in model fit by SNP-RHM. In

275  addition, SNP-RHM and SNHap-RHM improved model fit for the same four blocks on chromosome
276 19 when compared to the null model. When compared to the single GRM RHM models, SNHap-RHM
277 did not improve model fit for any haplotype blocks (Supplementary Tables 1 and 9).

278  For adult jaw length, Hap-RHM improved model fit for six haplotype blocks; one on chromosome 1
279 (3843), one on chromosome 3 (2046), one on chromosome 11 (1027), one on chromosome 18 (665)
280  and two on chromosome 23 (342 and 434). Model fit was improved for the same haplotype blocks
281 on chromosome 1 and 3 when comparing SNHap-RHM against both the null model and against SNP-
282 RHM, with the haplotype block on chromosome 23 (434) also showing improved model fit when
283  compared against SNP-RHM. SNHap-RHM did not improve model fit for any haplotype blocks in

284 comparison to Hap-RHM, nor did SNP-RHM (Supplementary Tables 1 and 10).

285 Comparison with GWAS results

286  Of the 11 traits, lamb August weight and lamb jaw length were the only two to have no previously
287  associated genetic loci (Bérénos et al. 2014; James et al. 2022). Of the traits for which GWAS has
288  previously identified SNP-trait associations, RHM only significantly improved model fit for blocks
289  containing top SNPs associated with lamb metacarpal length, adult hindleg length, and adult

290  metacarpal length on chromosomes 16 and 19.

291  The underlying causal variant on chromosome 16 influencing lamb metacarpal length is presumed to
292  be the same variant influencing adult hindleg length and adult metacarpal length —the top GWAS
293  SNP on chromosome 16 for adult hindleg length and lamb metacarpal length is the same (James et
294  al. 2022), adult hindleg and metacarpal length have been shown to have a genetic correlation of

295  0.827 (S.E. 0.232) (Bérénos et al. 2014), and SNP-leg trait associations in this region have been

296  shown to be dependent on each other; when a SNP genotype from this region is fitted during

297  conditional analyses, no new SNP associations appear in this region. We can therefore combine the
298  RHM results for these three traits to characterise the architecture of genetic variance in this region.
299  Whilst SNP-RHM significantly improved model fit for blocks on chromosome 16 that Hap-RHM did
300 not, there were no blocks on chromosome 16 for which Hap-RHM improved model fit but SNP-RHM
301 did not (Supplementary Tables 1, 4, 8 and 9). In fact, in the case of adult hindleg length, Hap-RHM
302  did not improve model fit for any blocks on chromosome 16 (Supplementary Table 8). This suggests
303 that the additive genetic variance being attributed to the regional GRMs is due to individual SNP

304  genotypes, rather than due to a specific haplotype allele. Block 1363 (which contains s22142.1, the
305  top GWAS SNP for lamb metacarpal length and adult hindleg length) contains 17 SNPs and has 18
306  haplotype alleles in the population. The minor allele for s22142.1 appears in 3 haplotype alleles, with
307  two of these haplotype alleles being relatively rare (each appearing on 17 chromosomes in the

308 genotyped population).
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309  Again, the underlying causal variant on chromosome 19 influencing lamb metacarpal length is

310 presumed to be the same variant influencing adult metacarpal length — whilst the top GWAS SNPs
311  are different for these two traits, they still fall in the same haplotype block (Supplementary Table
312  11), and when the genotype of the top SNP is fitted during conditional analysis, no new SNP-trait
313  associations appear (James et al. 2022). Again, we can combine the RHM results for both lamb

314  metacarpal length and adult metacarpal length to characterise the underlying architecture. For both
315  traits, model fit for the block containing the top GWAS SNPs was only significantly improved by SNP-
316  RHM and SNHap-RHM when compared to the null model (and SNHap-RHM compared to Hap-RHM
317 in the case of lamb metacarpal length). This suggests that this association is being driven by the SNP
318 alleles in this region, rather than the haplotype alleles. Block 952, which contains both top GWAS
319  SNPs, has 37 SNPs and 52 haplotype alleles in the genotyped population. The minor alleles for each
320 of the top SNPs each appear in two haplotype alleles, with one haplotype allele containing both

321  minor SNP alleles. The haplotype alleles each containing one of the minor SNP alleles for the top
322  GWAS SNPs were both rare in the population (appearing on one and 50 chromosomes in the

323  population).

324 Novel associations

325  Novel block-trait associations were identified using at least one RHM method for all but four traits —
326 birth weight, lamb August weight, lamb metacarpal length and adult metacarpal length. In the case
327 of the former two traits, RHM did not improve model fit for any haplotype blocks in comparison to
328  the null model, whilst in the case of the latter two, RHM only significantly improved model fit in the
329  sameregions as previously identified QTL for these traits.

330  Across the lamb traits, at least one RHM method significantly improved model fit for a total of nine
331  haplotype blocks; two blocks for lamb foreleg length (on chromosomes 1 and 11), two blocks for

332  lamb foreleg length (on chromosomes 2 and 3), and five blocks for lamb jaw length (one on

333 chromosome 3, two on chromosome 13, one on chromosome 14 and one on chromosome 17). For
334  all of these trait-block associations, Hap-RHM was the only model to significantly improve model fit —
335  with the exception of the two blocks on chromosome 13 for lamb jaw length, for which SNHap-RHM
336  alsoimproved model fit when compared to SNP-RHM.

337 At least one RHM method significantly improved model fit for adult August weight for 85 haplotype
338 blocks that did not contain previously identified QTL across a total of 22 chromosomes. For the adult
339 leg traits, at least one RHM method significantly improved model fit for multiple blocks that had not
340  previously been identified via GWAS; six blocks across six chromosomes for adult foreleg length, and
341 23 blocks across 14 chromosomes for adult hindleg length respectively. For adult jaw length, model
342  fit was significantly improved by at least one RHM method for six blocks across five chromosomes
343  that had not previously been identified by GWAS. For all of these blocks, model fit was improved by
344  amixture of Hap-RHM, and SNHap-RHM when compared to either the null model or SNP-RHM.

345 Genes in QTL regions

346  Across all haplotype blocks for which model fit was improved by at least one RHM method for at

347  least one of the 11 focal traits, there were 351 genes overlapping these blocks. 91 of these genes are
348  completely uncharacterised in sheep and classed as “novel genes”, and a further 14 genes were RNA
349  genes. Of the 246 characterised protein coding genes, 13 genes had functional annotations that

350 related to the traits for which model fit was improved (Table 4). One of these genes wasin a

351 haplotype block associated with lamb jaw length, four in haplotype blocks associated with adult

352  August weight, one associated with adult foreleg and adult hindleg length, one in haplotype blocks
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associated only with adult hindleg length and eight in haplotype blocks associated with lamb
metacarpal length (one of which was also associated with adult metacarpal length). One of these
genes — PTH1R — was previously identified as a putative causal gene due to its functional data and
proximity to top GWAS SNPs for multiple Soay sheep leg length measures (James et al. 2022).
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357 Discussion
358 RHM overview

359 Intotal, there were 169 haplotype blocks for which model fit was improved for at least one trait by
360 atleast one RHM model. We found that Hap-RHM improved model fit more often than SNP-RHM,
361  whichis due in part to the fact that Hap-RHM improved model fit for more traits than SNP-RHM.
362 Hap-RHM also improved model fit more often than SNHap-RHM when SNHap-RHM was compared
363  to either the null model or either of the single regional GRM models. Additionally, SNP-RHM only
364  improved model fit for haplotype blocks in regions surrounding QTL previously identified by GWAS.

365  We found that there were some trait associated regions identified via GWAS for which none of the
366 RHM methods improved model fit — for instance, the regions on chromosomes 1 and 7 associated
367  with birth weight, and the region on chromosome 16 associated with lamb foreleg length and

368  hindleg length. There are two main differences between GWAS and RHM that may be contributing
369 tothe observed differences in results: firstly, SNP genotypes are fitted as fixed effects in GWAS,

370  which confers more power than random effects. Secondly, we performed pre-correction of fixed and
371  random effects prior to performing RHM but fitted them during the GWAS step.

372  We have previously shown that pre-correcting for fixed and random effects reduces power of GWAS
373  to detect variant-trait associations. When pre-correction is performed for the adult traits, the only
374  significant GWAS associations are those between SNPs on chromosome 16 and adult foreleg, hindleg
375 and metacarpal lengths, and SNPs on chromosome 19 and adult metacarpal length (James et al.

376  2022). This mirrors our RHM results; the only haplotype blocks for which model fit was improved by
377 the RHM methods were those two regions on chromosomes 16 and 19, with model fit for the latter
378  region only improving for metacarpal length. Pre-correction may therefore explain why we did not
379  see the RHM methods improving model fit for all of the haplotype blocks containing previously

380 identified variants. Currently pre-correction is a necessary step when performing RHM with DISSECT
381  due to DISSECT being unable to fit all of the necessary fixed and random effects during RHM. It

382  would be interesting to rerun this analysis when suitable software is developed for single-step RHM,
383  to determine whether single-step RHM improved model fit for all haplotype blocks containing

384 significant GWAS associations.

385  The significance threshold used during GWAS in James et al. (2022) was similar to the threshold used
386  during the RHM analyses (1.03e™ and 1.04e™® respectively). This is because we used SimpleM (Gao
387  etal. 2008) to calculate the number of independent tests during GWAS — this was estimated to be
388 48,635, whilst the number of haplotype blocks estimated by Plink (Purcell et al. 2007; Purcell 2014)
389  was 48,125. This is therefore not a major difference and won’t contribute to explaining why we

390 obtained different results from GWAS and RHM.

391 RHM did, however, improve model fit for some regions associated with trait variation using GWAS;
392  RHM improved model fit for haplotype blocks in regions previously found to be associated with lamb
393  metacarpal length, adult hindleg length and adult metacarpal length on chromosome 16, and lamb
394  metacarpal length and adult metacarpal length on chromosome 19.

395  SNP-RHM has previously been performed in a smaller sample of this same population, focusing on
396  only adult morphometric traits (Bérénos et al. 2015). 37K autosomal SNPs were split into 150 SNP
397  windows with a 75 SNP overlap. When comparing the results of (Bérénos et al. 2015) to our results
398  for the same traits, we find six regions for which SNP-RHM improved model fit for (Bérénos et al.
399  2015) and at least one RHM method improved model fit in our own analyses; two regions on

400  chromosome 1 and one region on chromosome 6 were associated with adult August weight
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401  (1:119,553,142 —1:139,871,327, 1:163,370,112 — 1:173,759,083, 6:38,952,950 — 6:48762234), one
402  region on chromosome 6 was associated with adult hindleg length (6:32,615,209 — 6:43,798,415), a
403  region on chromsome 16 associated with adult hindleg and metacarpal length (16:64,064,879 —
404  16:71,555,691), and a region on chromosome 19 associated with adult metacarpal length

405  (19:41,742,622 —19:58,334,807).

406 Genetic architecture of traits

407  As previously mentioned, RHM failed to significantly improve model fit for some haplotype blocks in
408  regions previously associated with our focal traits by GWAS. However, RHM also identified some
409 novel block-trait associations — for instance, at least one RHM method improved model fit for 85
410  haplotype blocks across a total of 22 chromosomes for adult August weight. None of these blocks
411 were within 1Mb of a previously identified GWAS association. Interestingly, neither SNP-RHM

412  compared to the null model nor SNHap-RHM when compared to Hap-RHM improved model fit for
413  any haplotype blocks for adult August weight. This suggests that the majority of genetic variance
414  contributing to variation in adult August weight is not due to small effect causal variants in LD with
415  genotyped SNPs, but instead due to rare SNPs in LD with rare haplotype alleles or due to multiple
416  SNPsin the same region interacting epistatically. We have previously shown that family-associated
417  non-additive genetic variance such as dominance and epistasis may be making up 37.1% of previous
418  narrow-sense heritability estimations for this trait (James et al. 2023). This finding would be

419  consistent with Hap-RHM detecting regions in which multiple variants are acting in an epistasic

420  manner. We found three genes with functional data suggesting an association with adult August
421  weight that overlapped with haplotype blocks for which model fit was significantly improved by at
422  least one RHM method: LEPR, TBX15 and EPHX2. For the blocks overlapping all three genes, model
423  fitis significantly improved by the presence of the haplotype GRM; Hap-RHM significantly improved
424  model fit for all of the overlapping blocks, and SNHap-RHM significantly improved model fit when
425  compared to the null model and to SNP-RHM for the blocks overlapping LEPR and EPHX2. This may
426  explain why these regions were not identified as being associated with adult August weight when
427  performing GWAS (James et al. 2022), as the variance influencing adult August weight in those

428  regions is likely due to specific haplotype alleles, rather than individual SNP effects.

429  When performing RHM on lamb foreleg and hindleg lengths, only two blocks showed significantly
430  improved model fit for each trait — none of which had previously been indicated to be associated
431  with leg lengths in the Soay population. For all four blocks, Hap-RHM was the only model that

432  significantly improved model fit, suggesting any variance being contributed by these blocks to their
433  respective traits is due to the haplotypes, rather than individual SNPs within the blocks.

434  RHM improved model fit for a block on each of six chromosomes for adult foreleg length and 27

435  blocks across 15 chromosomes for adult hindleg length — of these only the blocks on chromosome 16
436  were close to top GWAS SNPs from any previous leg length GWAS results (Bérénos et al. 2014; James
437  etal. 2022). Blocks on chromosome 16 overlapping top GWAS hits also showed improved model fit
438  for both lamb and adult metacarpal length. It is hard to separate whether the variance being

439  contributed by this region is due to individual SNP effects or an overall haplotype effect, as SNP-

440  RHM, Hap-RHM and SNHap-RHM all significantly improved model fit when compared to the null

441  model, but SNHap-RHM did not significantly improve model fit when compared to either of the

442  single-GRM models. This does suggest, however, that the variance is not due to independent SNP
443  and haplotype effects in the same block.

444 Blocks overlapping the top GWAS SNPs on chromosome 19 also showed significant improvement in
445  model fit for lamb and adult metacarpal lengths when performing SNP-RHM and when comparing
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SNHap-RHM against the null model (and when compared to Hap-RHM for lamb metacarpal length).
This suggests that the variance contributing to these traits is solely due to SNP genotypes, rather
than haplotype alleles. Conditional analyses fitting the top GWAS SNP have shown that there are no
secondary SNP-trait associations on chromosome 19 independent of the top SNP (James et al. 2022),
implying that the variance is being contributed entirely by a single SNP.

RHM identified five block-trait associations for lamb jaw length. For all of these blocks, Hap-RHM
was the only RHM model that improved model fit, with the exception of two blocks on chromosome
13 for which SNHap-RHM also improved model fit when compared to SNP-RHM. Similarly, six trait-
block associations were identified for adult jaw length (none of which overlapped with lamb jaw
length). Hap-RHM improved model fit for all six blocks, and SNHap-RHM improved model fit for two
and three of these blocks when compared to the null model and SNP-RHM respectively. This
suggests that these regions either contain a rare variant that influences jaw length that is only in LD
with a low number of haplotype alleles, or they contain multiple variants interacting in an epistatic
manner. It also implies that variation in lamb and adult jaw length are influenced by different genetic
factors, which corroborates previous GWAS findings (James et al. 2022).

Concluding remarks

We have demonstrated that RHM methods are a useful tool for detecting regions that contribute
genetic variation to traits in a wild population and complement other analyses such as GWAS. We
found that Hap-RHM and SNHap-RHM improved model fit for more haplotype blocks than SNP-RHM,
but all three can be used together to better characterise the underlying genetic architecture within a
region. Using these methods, we detected multiple haplotype blocks that improved model fit with at
least one RHM method. From these regions, we characterised the genetic regions influencing trait
variation and identified 13 potential genes that influence trait variation that have not previously
been associated with variation in these traits in the Soay population.
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Age Trait Number of | Number of | Fixed effects Random effects
individuals | records
Neonate Birth 2975 2975 Sex Year of birth
weight Litter size Mother ID
Population size year
before birth
Age of mother (quadratic)
Ordinal date of birth
Age (days)
Lamb Weight 2424 2424 Sex Year of birth
Litter size Mother ID
Population size
Age (days)
Foreleg 2512 2512 Sex Year of birth
Litter size Mother ID
Population size
Age (days)
Hindleg 2577 2577 Sex Year of birth
Litter size Mother ID
Population size
Age (days)
Metacarpal | 2117 2117 Sex Year of birth
Litter size Mother ID
Age at death (months)
Jaw 2172 2172 Sex Year of birth
Litter size Mother ID
Age at death (months)
Adult Weight 2092 3860 Sex Year of capture
Population size Permanent
environment
Age (years)
Foreleg 1936 3594 Sex Year of capture
Population size Permanent
environment
Age (years)
Hindleg 2027 3481 Sex Year of capture
Population size Permanent
environment
Age (years)
Metacarpal | 987 987 Sex Year of birth
Age at death (years)
Jaw 1057 1057 Sex Year of birth
Age at death (years)

Table 1 Number of individuals and records, fixed and random effects fitted in each trait and age class
model during RHM pre-correction, alongside the LOCO GRM.
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Chromosome Number of SNPs Number of haplotype | Mean number of SNPs
blocks per haplotype block

1 47318 5466 8.66
2 41917 4426 9.47
3 38265 4081 9.38
4 20659 2259 9.15
5 18545 2132 8.70
6 19205 1908 10.07
7 17647 2267 7.78
8 15815 2029 7.79
9 16517 2177 7.59
10 15517 2223 6.98
11 11567 1371 8.44
12 13909 1665 8.35
13 13626 1427 9.55
14 10785 1205 8.95
15 13897 1537 9.04
16 11992 1400 8.57
17 12598 1694 7.44
18 11718 1357 8.64
19 10230 1058 9.67
20 9074 1115 8.14
21 7879 813 9.69
22 9352 1246 7.51
23 10004 1062 9.42
24 6362 492 12.93
25 7530 842 8.94
26 7353 873 8.42

Table 2 Number of SNPs per chromosome, number of haplotype blocks per chromosome, and
average number of SNPs per haplotype block.
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Trait SNP-RHM | Hap-RHM | SNHap-RHM | SNHap-RHM vs Hap- | SNHap-RHM vs SNP-
RHM RHM
Birth weight 0 0 0 0 0
Lamb August weight | 0 0 0 0 0
Lamb foreleg length | O 2 0 0 0
Lamb hindleg length | O 2 0 0 0
Lamb metacarpal 40 25 30 4 2
length
Lamb jaw length 0 5 0 0 2
Adult August weight | 0 83 35 0 56
Adult foreleg length | 0 6 6 0 6
Adult hindleg length | 4 25 14 0 17
Adult metacarpal 19 12 16 0 0
length
Adult jaw length 0 6 2 0 3

Table 3 Number of haplotype blocks for which inclusion of regional GRMs improved model fit. SNP-
RHM column compares the SNP-RHM model against the null model to see if the inclusion of the
regional SNP GRM improves model fit. Hap-RHM column compares the Hap-RHM model against the
null model to see if the inclusion of the regional haplotype GRM improves model fit. SNHap-RHM
column compares the SNHap-RHM model against the null model to see if the simultaneous inclusion
of both the regional SNP GRM and the regional haplotype GRM improves model fit. SNHap-RHM vs
Hap-RHM column compares the SNHap-RHM model against the Hap-RHM model to see if the
additional inclusion of the regional SNP GRM improves model fit. SNHap-RHM vs SNP-RHM column
compares the SNHap-RHM model against the SNP-RHM model to see if the additional inclusion of
the regional haplotype GRM improves model fit.
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Models with improved

Haplotype or SNP

Trait fit Chromosome location(s) (bp) Gene Functional annotation
Codes for the leptin receptor, an adipocyte-specific hormone
that regulates body weight. Repeatedly associated with body
Adult Hap-RHM, weight and physiological factors contributing to body weight
SNHap-RHM vs null, 40773086 — 40841455, L. . .
August SNHap-RHM vs SNP- 1 40847219 — 40872161 LEPR variation across multiple species (Chagnon et al. 1999;
weight RHM Yiannakouris et al. 2001; Israel and Chua 2010; Ros-Freixedes
et al. 2016; Solé et al. 2021), including sheep (Macé et al.
2022). o
Identified as a potential causal gene for birth weight in Barki %
sheep (Abousoliman et al. 2021). Found to be a master 2
transcriptional regulator in human adipose tissue and has 5
Adult downstream effects on abdominal obesity (Pan et al. 2021) g
August Hap-RHM 1 95596363 — 95600207 TBX15 . . . . M
weight correlates with BMI and hlp—to-w.alst ratio in humans (Heid et(lc
al. 2010) and TBX15 knock-out mice are shown to have s
increased body weight gain in comparison to control mice 3
(Sun et al. 2019). <
Adult ?;a—RHQ/}I-;M ! Link:ed with obesity i|: hrl:madns (Khad;rhet al. ZO(ZLO) End affdectsg
ap- vs null, insulin sensitivity in both rodents and humans (Luther an 3
alfgu;: SNHap-RHM vs SNP- 2 38080434 — 38081124 EPHX2 Brown 2016). é
RHM 5
Humans: his gene encodes a protein that functions in bone §
formation and skeletal development. Mutations in this gene 3
cause Ellis-van Creveld syndrome (characteristics include %
A_dult Hap-RHM 6 103234187 — 103331382 | EVC2 small stature and sh_ort limbs) (I?aaujat and L(_e I\_/Ier_rer 2007) ®
hindleg and Weyers acrofacial dysostosis (characteristics include
short limbs) (Ye et al. 2006). Deletion within EVC2 causes
chondrodysplastic (short-legged) dwarfism in cattle
(Murgiano et al. 2014).
Adult Hap-RHM, Missense mutation in PPP1R15B causes a disease in humans
foreleg SNHap-RHM vs null, resulting in short stature (Abdulkarim et al. 2015)
length SNHap-RHM vs SNP- 12 1315546 — 1498521 PPP1R15B
Adult RHM
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hindleg

length

Adult Hap-RHM, Mutations res.ult i.n Bardet-Biedl Syndrome (characterisa'Fion

August SNHap-RHM vs null, 1 31886985 - 32003794 SDCCAGS m_cludes o_bef,lty) in huma_ns (Schaefer et al. 2011). Associated

weight SNHap-RHM vs SNP- with obesity in human children and adolescents (Scherag et
RHM al. 2012)

Lamb jaw Hap-RHM, Expressed in mouse lower jaw mesenchyme (Diez-Roux et al.
SNHap-RHM vs SNP- 13 53300575 -53763103 LOC101112800 | 2011)

length
RHM ©

Lamb SNP-RHM Mutations in this gene result in SOFT syndrome %

metacarpal ! 19 48699277 — 48839372 POC1A (characterisation includes short stature) in humans (Min Ko 3|
SNHap-RHM vs null s

length et al. 2016). S

Lamb SNP-RHM, Induces osteoclastogenesis (Kotake et al. 2009) g

metacarpal | Hap-RHM, 19 50594654 — 50934237 TCTA G

length SNHap-RHM vs null e

Lamb SNP-RHM, ELO(TAO::;UT;C:ZEESL?TMSIS-(Wanf ekt I?I. IC2)02;_). |nth|ItI0n ofq;

metacarpal | Hap-RHM, 19 50594654 — 50934237 RHOA 1 genesisin chick limbs (Kim etal. 2

length SNHap-RHM vs null 2012). Inhibits bone formation by suppressing IGF1 (Negishi- =

Koga et al. 2011). 3

SNHap-RHM vs null, Involved in negative regulation of osteoblast proliferation. g

Lamb SNHap-RHM vs Hap- Activates RHOA. (Negishi-Koga et al. 2011) %

metacarpal | RHM, 19 51192408 - 51582246 PLXNB1 3

length SNHap-RHM vs SNP- g
RHM ?
SNHap-RHM vs null, Previously identified as potential causal gene for multiple leg -

Lamb SNHap-RHM vs Hap- length measures in Soay sheep via GWAS (James et al. 2022).

metacarpal | RHM, Involved in osteoblast development in mice (Qiu et al. 2015),

length SNHap-RHM vs SNP- associated with skeletal disorders such as EKNS (Duchatelet
RHM 19 52376602 ~ 52543759 PTHIR et al. 2005), JMC, and BLC (Schipani and Provot 2003) in

Adult humans.

metacarpal | SNHap-RHM vs null

length
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Lamb
metacarpal
length

SNP-RHM

19

53372619 — 53548690

LIMD1

Influences osteoblast differentiation and function in mice
(Luderer et al. 2008)

Table 4 - Potential candidate genes for future analyses. From left to right: associated trait, method that resulted in the gene being identified, chromosome,

haplotype block, gene name, and evidence for association in sheep and other species.
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