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Abstract 18 

Regional heritability mapping (RHM) is a method that estimates the heritability of genomic segments 19 

that may contain both common and rare variants affecting a complex trait. We compared three RHM 20 

methods: SNP-RHM, which uses genomic relationship matrices (GRMs) based on SNP genotypes; 21 

Hap-RHM, which uses GRMs based on haplotypes; and SNHap-RHM, which uses both SNP-based and 22 

haplotype-based GRMs jointly. We applied these methods to data from a wild population of sheep, 23 

analysed eleven polygenic morphometric traits and compared the results with previous genome 24 

wide association analyses (GWAS). We found that whilst the inclusion of the regional matrix did not 25 

explain significant variation for all regions that were associated with trait variation using GWAS, it 26 

did for several regions that were not previously associated with trait variation.   27 
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Introduction 28 

Genome-wide association studies (GWAS) are commonly used to identify genotyped SNPs in linkage 29 

disequilibrium (LD) with causal loci. The regions around the SNPs associated with the focal trait can 30 

then be examined as these SNPs serve as markers for the causal loci. For example, the function of 31 

nearby genes can be investigated to see if they are involved in biological pathways related to the 32 

trait, or fine-mapping can be performed to narrow down the relevant region and pinpoint the causal 33 

variant. However, GWAS has some limitations and challenges that prevent it from finding all the 34 

genetic factors that contribute to complex traits. One of these limitations is the power of GWAS, 35 

which is the ability to detect true associations. The power of GWAS depends on several factors, such 36 

as the sample size, the variant effect size, whether genotyped SNPs are in LD with causal SNPs, and 37 

the allele frequency of the causal variant.  38 

To overcome the limitations of GWAS, especially when a trait is influenced by multiple independent 39 

effects and/or rare variants in a region, regional heritability mapping (RHM) methods have been 40 

developed (Nagamine et al. 2012; Shirali et al. 2018; Oppong et al. 2021). RHM is a technique that 41 

estimates the heritability of a trait that is explained by a specific region of the genome. To estimate 42 

the heritability of a region, RHM uses a genomic relationship matrix (GRM), which is a matrix that 43 

captures the genetic similarity between individuals based on their SNP genotypes in that region. 44 

RHM also corrects for the genetic similarity across the whole genome by fitting another GRM that 45 

includes all the SNPs in the genome (or a leave-one-chromosome-out (LOCO) GRM that excludes the 46 

chromosome where the region of interest is located). By comparing the model fit with and without 47 

the regional GRM (rGRM), RHM can identify regions that contain causal variants for the trait, and by 48 

using the variance estimate for the rGRM, RHM can estimate how much heritability that region 49 

contributes. 50 

RHM can be performed using different types of rGRMs and region sizes, depending on the 51 

assumptions and goals of the analysis. There are three main types of RHM that have been proposed. 52 

The first type is SNP-RHM, which uses rGRMs that are based on the sharing of SNP alleles across a 53 

region. The regions are usually defined as windows that contain a fixed number of SNPs (Nagamine 54 

et al. 2012). SNP-RHM aims to identify regions with multiple SNPs that are in LD with the multiple 55 

causal variants that have too small an effect on the trait individually to be detected by GWAS. 56 

However, SNP-RHM only captures effects associated with genotyped SNPs. The second type is Hap-57 

RHM, which uses rGRMs that are based on the sharing of haplotype alleles across a region. The 58 

regions are defined as haplotype blocks (Shirali et al. 2018). Hap-RHM aims to identify regions where 59 

the causal variant is in LD with the haplotype allele, but not necessarily with any specific genotyped 60 

SNPs, which allows for detection of variance that is not captured by genotyped SNPs. This method 61 

can capture the effect of rare causal variants due to rare haplotype alleles being more likely to be in 62 

LD with rare variants than individual, genotyped SNPs. In addition, haplotype effects may reflect the 63 

interaction effects of closely linked causal variants. The third method, SNHap-RHM, simultaneously 64 

fits two rGRMs: one SNP-based and one haplotype-based, and defines regions as haplotype blocks 65 

(Oppong et al. 2021). This combines the advantages of both SNP-RHM and Hap-RHM to increase 66 

power to detect regions containing variants influencing the phenotype. On occasions where SNP-67 

RHM and Hap-RHM can detect genetic variance in the same haplotype block, SNHap-RHM can also 68 

be used to give more insight into the underlying genetic architecture. 69 

Here, we evaluate the three RHM methods for their ability to identify regions containing potentially 70 

causal loci in a sample of wild Soay sheep. In this study, we analysed 11 polygenic morphometric 71 

traits in the Soay sheep population using RHM. These traits include the same traits measured at 72 

different ages, as they are affected by different non-genetic factors (and potentially different genetic 73 
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factors) and vary in heritability across different stages of life. Despite using various methods to 74 

search for the genetic variants that affect these traits, such as GWAS (Bérénos et al. 2015; James et 75 

al. 2022), genomic prediction (Ashraf et al. 2021) and chromosome partitioning (Bérénos et al. 76 

2015), most of the genetic variation in these traits remains unexplained by the genotyped and 77 

imputed SNPs. Moreover, for some of these traits, there are no SNPs that show significant 78 

association with the trait variation to date.  79 

Our aims were as follows: 80 

1) To determine the suitability of RHM methods for the Soay sheep data given the smaller 81 

sample sizes, lower density SNP data and more potential for missing data in comparison to 82 

the human data for which these methods were developed. 83 

2) To compare the results of RHM with those of GWAS to determine the extent to which RHM 84 

recovers known associations and identifies new associations. 85 

3) To investigate regions for which including regional matrices in the RHM framework improves 86 

model fit, to better characterise the underlying genetic architecture of the focal traits and 87 

identify potential causal genes based on known functional data. 88 

  89 
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Methods 90 

Phenotypic data 91 

The Soay sheep (Ovis aries) is a primitive breed of sheep that lives on the St. Kilda archipelago. Since 92 

1985, a long-term, individual-based study has been conducted on the population residing on the 93 

island of Hirta (Clutton-Brock and Pemberton 2003). Each individual is sampled for DNA analysis and 94 

ear-tagged when it is first captured (usually within ten days of birth) so that it can be re-identified 95 

later. The study involves regular recaptures to measure various traits throughout an individual’s life, 96 

and collection and measurement of skeletal remains after death. 97 

We focused on 11 age-specific morphometric traits which have been repeatedly analysed by 98 

different approaches and are known to be polygenic (Bérénos et al. 2015; Ashraf et al. 2021; Hunter 99 

et al. 2022; James et al. 2022). We analysed these traits separately by age class (neonate, lamb and 100 

adult). Birth weight was the only trait analysed in neonates, defined as individuals who were caught 101 

and weighed between two and ten days after birth. In August, lambs (aged approximately 4 months) 102 

and adults were caught and measured for weight, foreleg length and hindleg length. Due to adults 103 

being recaptured across multiple years, the adult live traits included repeated measurements. 104 

Metacarpal length and jaw length were measured from the skeletons after death. We classified 105 

“lambs” as individuals who had live trait data recorded in the August of their birth year, or who died 106 

before 14 months of age for post mortem measures. We classified “adults” as individuals who had 107 

live trait data recorded at least two years after birth, or who died after 26 months of age for post 108 

mortem measures. Birth and August weights are recorded to the nearest 0.1kg, whilst the length 109 

traits are measured to the nearest mm (Beraldi et al. 2007). We did not analyse yearlings due to low 110 

sample size. 111 

See Table 1 for the number of individuals and records per trait. 112 

Genetic data 113 

8557 sheep have been genotyped on the Ovine SNP50 Illumina BeadChip, of which 38,130 SNPs are 114 

autosomal and polymorphic in the population. 188 individuals have additionally been genotyped on 115 

the Ovine Infinium HD SNP BeadChip which genotypes 600K SNPs – this allowed for imputation of 116 

the remaining genotyped individuals to this higher density. AlphaImpute v1.98 (Hickey et al. 2012) 117 

was used for the imputation as it combines shared haplotype and pedigree information to increase 118 

imputation accuracy (see Stoffel et al. 2021 for details on our imputation). Genotypes with a 119 

probability of < 0.99 were excluded, resulting in 419,281 autosomal SNPs remaining for 8557 120 

individuals (4035 females, 4452 males). Imputed genotype “hard” calls were used instead of 121 

genotype probabilities in the analyses detailed in this manuscript. Locus positions for both sets of 122 

genetic data were based on the OAR_v3.1 genome assembly. 123 

Regional heritability mapping 124 

Prior to regional heritability mapping, the traits were pre-corrected to account for genome-wide 125 

genetic diversity by fitting a LOCO GRM, constructed from all autosomes with the exception of the 126 

chromosome containing the focal region. We also fitted fixed and non-genetic random effects during 127 

pre-correction (see Table 1 for a full list of fixed and non-genetic random effects fitted). Pre-128 

correction for the non-repeated measures traits was performed in DISSECT (Canela-Xandri et al. 129 

2015) using the following model:  130 

y �  Xβ �  � Z�
�

u�  �  W�����  �  ε 
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where y is the vector of phenotypic values; X is a design matrix linking individual records with the 131 

vector of fixed effects β, Zr is an incidence matrix that relates a random effect to the individual 132 

records; ur is the associated vector of non-genetic random effects; gLOCO is the vector of additive 133 

genetic random effects from all autosomes except for that containing the focal region with W the 134 

incidence matrix linking individual phenotypes with the genetic effect; and ε is the vector of 135 

residuals. It is assumed that gLOCO ~ MVN(0, MσgLOCO
2), where σgLOCO

2
 is the additive genetic variance 136 

explained by all autosomes except the excluded one, and M is the LOCO GRM.  137 

The GRMs (VanRaden 2008) were computed using DISSECT, and the genetic relationship between 138 

individuals i and j is computed as:  139 

��� � 1� � ����– 2���
���– 2�� �
2���1 � ���

�

��1

  
 140 

where sik is the number of copies of the reference allele for SNP k of the individual i, pk is the 141 

frequency of the reference allele for the SNP k, and N is the number of SNPs. 142 

The residual for each individual was then taken as the phenotype for RHM. Pre-correction for the 143 

three repeated measures traits (adult August weight, adult foreleg length and adult hindleg length) 144 

was performed using ASReml-R (version 4.1, Butler et al. 2017) using the same model as given 145 

above, and the mean of the residuals summed with the permanent environment effect for each 146 

individual was taken as the phenotype for RHM. 147 

For all three regional heritability methods, we used the same regions to allow for direct comparisons 148 

between the methods. Due to Hap-RHM and SNHap-RHM requiring regions to be defined as 149 

haplotype blocks, we used haplotype blocks for all three methods. Haplotype blocks were estimated 150 

with Plink v1.90 using the --blocks, --blocks-max-kb 500 (which allows pairs of variants within 500kb 151 

of each other to be considered within the same block) and --blocks-min-maf 0.01 options (which 152 

instructs Plink to include all SNPs with a MAF higher than 0.01 when estimating the haplotype blocks 153 

(Purcell et al. 2007; Purcell 2014)). Using a higher max kb threshold or lower MAF threshold did not 154 

alter the haplotype block boundaries estimated. No haplotype block was allowed to have only one 155 

SNP, due to the SNP-based GRM and haplotype-based GRM being identical for such blocks. Any 156 

block containing only one SNP was therefore omitted from the analysis. Blocks were determined 157 

using all 8557 individuals with imputed genotypes to ensure consistency across phenotypes.  158 

Phased data is required for Hap-RHM and SNHap-RHM; genotypes were phased using SHAPEIT v4.2 159 

(Delaneau et al. 2019).  160 

Regional heritability mapping was performed using the following models: 161 


	�
��
��
��
� �   W����  �  ε 


	�
��
��
��
� �   W���	  �  ε 


	�
��
��
��
� �   W����  � W���	  �   ε 

for SNP-RHM, Hap-RHM and SNHap-RHM respectively, where ypre-corrected is the vector of pre-162 

corrected phenotypic values, rSNP is the vector of individual additive genetic random effects from all 163 
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SNPs contained within the focal haplotype block and rHap is the vector of individual additive genetic 164 

random effects from the haplotype alleles for the focal haplotype block. It is assumed that rSNP ~ 165 

MVN(0, MσrSNP
2) and rHap ~ MVN(0, MσrHap

2), where σrSNP
2

 is the additive genetic variance from all 166 

SNPs in the haplotype block, σrHap
2 is the additive genetic variance from the haplotype alleles and M 167 

is the respective GRM. The GRMs were computed using DISSECT (Canela-Xandri et al. 2015). The 168 

SNP-based GRMs were calculated using the same method as the LOCO GRMs, except they were 169 

constructed from the SNPs located in the focal haplotype block. For the haplotype-based GRMs, the 170 

genetic relationship for individuals i and j is calculated as follows 171 

��� � 1
� � ����– 2�������– 2�� �

2���1 � ���
�

���

 

where dik is the diplotype code (coded as the number of copies of haplotype k ) for individual i and 172 

takes the values 0, 1, and 2, pk is the frequency of haplotype k and h is the number of haplotypes in 173 

the region (see Oppong et al. 2021 for further information and examples). 174 

To test whether the regional heritability models explained significant variation for each region, we 175 

compared them against the null model: 176 


	�
�
��
��
� �  ε 

using loglikelihood ratio testing (LRT). We performed five comparisons; SNP-RHM, Hap-RHM and 177 

SNHap-RHM were all compared with the null model, and SNHap-RHM was additionally compared to 178 

each of SNP-RHM and Hap-RHM individually. LRTs were performed with 1 degree of freedom, with 179 

the exception of the comparison of SNHap-RHM to the null model, which was performed with 2 180 

degrees of freedom. P values were calculated as 0.5× the p-value of a chi-squared distribution with 181 

one degree of freedom for the 1 degree of freedom tests. For the 2 degrees of freedom tests, the p 182 

values were calculated as 0.25× the p-value of a chi-squared distribution with two degrees of 183 

freedom plus 0.5× the p-value of a chi-squared distribution with one degree of freedom (Self and 184 

Liang 1987). Model fit was considered to be significantly improved if the resulting p value was less 185 

than 1.04e
-06

 (0.05 divided by 48,125, the total number of haplotype blocks). 186 

Comparison with GWAS 187 

To determine how well the different RHM methods detected previously discovered loci, we 188 

identified which haplotype blocks contained the top SNP from each peak significantly associated 189 

with phenotypic variation for each trait when performing GWAS. GWAS and conditional GWAS 190 

analysis has recently been performed using the high density genotype data (James et al. 2022), so 191 

we used the results from that analysis. The significance threshold used in the GWAS analysis was 192 

1.03e
−06

 (0.05/48635), which accounted for multiple testing using the SimpleM method (Gao et al. 193 

2008). This method accounts for linkage disequilibrium between markers in order to calculate the 194 

effective number of independent tests.  195 

Identification of candidate genes 196 

We extracted a list of genes overlapping any haplotype block for which model fit was improved by at 197 

least one RHM model, using the R biomaRt package (Durinck et al. 2005; Durinck et al. 2009) from 198 

the OAR_v3.1 genome assembly. Each gene was then reviewed against the Ensembl (Howe et al. 199 

2020) and NCBI Gene (Bethesda (MD): National Library of Medicine (US) 2004 - 2023) databases to 200 
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examine expression and functional annotations. Human and mouse orthologues were also used to 201 

characterise gene function due to the high level of genetic annotation in these two species.  202 
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Results 203 

Soay sheep haplotype blocks 204 

Setting the maximum kb between any two variants within the same haplotype block to 500Kb and 205 

the minimum minor allele frequency (MAF) for variants to be considered to 0.01 resulted in 48,125 206 

haplotype blocks being estimated across the 26 Soay sheep autosomes. The maximum number of 207 

SNPs in a given haplotype block was 111, the minimum was 2 (as blocks with one SNP were omitted), 208 

and the average number of SNPs per haplotype was 8.19. 75% of haplotype blocks contained 10 or 209 

less SNPs, and 99% of blocks contained 50 or less. Block statistics for each chromosome are shown in 210 

Table 2. 211 

Across the whole sample of genotyped individuals, haplotype allele frequency ranged from 212 

0.00005843 to 0.9895992, with 0.00005843 being the most commonly observed haplotype 213 

frequency (28.95% of haplotype alleles). A frequency of 0.00005843 equates to a haplotype allele 214 

being present on one chromosome in the entire sample. 75% of haplotype alleles had a frequency 215 

lower than 0.072 (present on less than 1232 chromosomes in the entire sample), and 90% had a 216 

frequency lower than 0.316 (present on less than 5408 chromosomes in the entire sample) (Figure 217 

1). 218 

 219 

Comparison of RHM 220 

Figure 1: Proportion of haplotype alleles at each haplotype frequency over all regions. 
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A summary of results for the RHM analyses are shown in Table 3, whilst detailed results are shown in 221 

Supplementary Tables 1 – 10. 222 

There were two traits for which none of the RHM models significantly improved model fit for any 223 

haplotype blocks: birth weight and lamb August weight, meaning that no regions of the genome 224 

were found to significantly explain additional genetic variance not accounted for during pre-225 

correction. 226 

For lamb foreleg length and lamb hindleg length, Hap-RHM was the only model which significantly 227 

improved model fit in comparison to the null model. Hap-RHM improved model fit for one haplotype 228 

block on chromosome 1 (haplotype number 1717) and one on chromosome 11 (726) for lamb 229 

foreleg length, and one on chromosome 2 (4160) and chromosome 3 (3432) for lamb hindleg length 230 

(Supplementary Tables 1 – 3).  231 

For lamb metacarpal length, SNP-RHM significantly improved model fit for 16 haplotype blocks on 232 

chromosome 16. Model fit was improved for 14 of these blocks using Hap-RHM, with the other two 233 

being non-significant. 10 of the blocks for which model fit was improved by both SNP-RHM and Hap-234 

RHM were also improved by SNHap-RHM when compared to the null model, however no blocks 235 

showed improved model fit when using SNHap-RHM when compared to either single-GRM model. 236 

For the same trait, SNP-RHM also improved model fit for 23 haplotype blocks on chromosome 19, 237 

whilst Hap-RHM improved model fit for 11 of the same blocks. When compared to the null model, 238 

SNHap-RHM improved model fit for 20 of these haplotype blocks on chromosome 19, and four 239 

haplotype blocks on chromosome 19 when compared to Hap-RHM. SNHap-RHM did not improve 240 

model fit for any blocks when compared to SNP-RHM (Supplementary Tables 1 and 4). 241 

For lamb jaw length, model fit was only significantly improved by Hap-RHM and SNHap-RHM when 242 

compared to SNP-RHM. Hap-RHM improved model fit for one haplotype block on chromosome 3 243 

(270), two blocks on chromosome 13 (1025 and 1041), one block on chromosome 14 (762) and one 244 

on chromosome 17 (923). When compared to SNP-RHM, SNHap-RHM significantly improved model 245 

fit for the same two blocks on chromosome 13 for which model fit was improved by Hap-RHM 246 

(Supplementary Tables 1 and 5). 247 

For adult August weight, Hap-RHM significantly improved model fit for 83 haplotype blocks over 22 248 

chromosomes. In comparison to the null model, SNHap-RHM improved model fit for 35 haplotype 249 

blocks over 21 chromosomes, whilst in comparison to SNP-RHM, model fit was improved for 56 250 

haplotype blocks over 17 chromosomes. The blocks for which model fit was significantly improved 251 

by SNHap-RHM in comparison to either the null model or SNP-RHM were all ones that were also 252 

significantly improved by Hap-RHM, with the exception of one on chromosome 9 (1898), for which 253 

model fit was only significantly improved by SNHap-RHM in comparison to the null model. SNHap-254 

RHM did not improve model fit for any haplotype blocks in comparison to Hap-RHM, nor did SNP-255 

RHM when compared to the null model (Supplementary Tables 1 and 6). 256 

For adult foreleg length, Hap-RHM significantly improved model fit for six haplotype blocks; one on 257 

chromosome 1 (1284), one on chromosome 6 (1064), one on chromosome 11 (113), one on 258 

chromosome 12 (23), one on chromosome 23 (1020) and one on chromosome 26 (259). Model fit 259 

was also improved for these same six haplotype blocks when comparing SNHap-RHM to the model 260 

and against SNP-RHM. SNHap-RHM did not improve model fit for any haplotype blocks in 261 

comparison to Hap-RHM, nor did SNP-RHM when compared to the null model (Supplementary 262 

Tables 1 and 7). 263 
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For adult hindleg length, SNP-RHM significantly improved model fit for four haplotype blocks on 264 

chromosome 16. Hap-RHM improved model fit for 25 haplotype blocks over 15 chromosomes, 265 

including two of the blocks for which model fit was significantly improved by SNP-RHM. SNHap-RHM 266 

improved model fit for 14 haplotype blocks over 11 chromosomes when compared to the null 267 

model, and 17 blocks over 12 chromosomes when compared to SNP-RHM. SNHap-RHM did not 268 

significantly improve model fit for any blocks when compared to Hap-RHM (Supplementary Tables 1 269 

and 8). 270 

For adult metacarpal length, SNP-RHM significantly improved model fit for 15 haplotype blocks on 271 

chromosome 16. Hap-RHM significantly improved model fit for 12 of these blocks. When compared 272 

to the null model, SNHap-RHM improved model fit for 12 haplotype blocks on chromosome 16 – all 273 

of which were blocks that experienced significant improvement in model fit by SNP-RHM. In 274 

addition, SNP-RHM and SNHap-RHM improved model fit for the same four blocks on chromosome 275 

19 when compared to the null model. When compared to the single GRM RHM models, SNHap-RHM 276 

did not improve model fit for any haplotype blocks (Supplementary Tables 1 and 9). 277 

For adult jaw length, Hap-RHM improved model fit for six haplotype blocks; one on chromosome 1 278 

(3843), one on chromosome 3 (2046), one on chromosome 11 (1027), one on chromosome 18 (665) 279 

and two on chromosome 23 (342 and 434). Model fit was improved for the same haplotype blocks 280 

on chromosome 1 and 3 when comparing SNHap-RHM against both the null model and against SNP-281 

RHM, with the haplotype block on chromosome 23 (434) also showing improved model fit when 282 

compared against SNP-RHM. SNHap-RHM did not improve model fit for any haplotype blocks in 283 

comparison to Hap-RHM, nor did SNP-RHM (Supplementary Tables 1 and 10). 284 

Comparison with GWAS results 285 

Of the 11 traits, lamb August weight and lamb jaw length were the only two to have no previously 286 

associated genetic loci (Bérénos et al. 2014; James et al. 2022). Of the traits for which GWAS has 287 

previously identified SNP-trait associations, RHM only significantly improved model fit for blocks 288 

containing top SNPs associated with lamb metacarpal length, adult hindleg length, and adult 289 

metacarpal length on chromosomes 16 and 19. 290 

The underlying causal variant on chromosome 16 influencing lamb metacarpal length is presumed to 291 

be the same variant influencing adult hindleg length and adult metacarpal length – the top GWAS 292 

SNP on chromosome 16 for adult hindleg length and lamb metacarpal length is the same (James et 293 

al. 2022), adult hindleg and metacarpal length have been shown to have a genetic correlation of 294 

0.827 (S.E. 0.232) (Bérénos et al. 2014), and SNP-leg trait associations in this region have been 295 

shown to be dependent on each other; when a SNP genotype from this region is fitted during 296 

conditional analyses, no new SNP associations appear in this region. We can therefore combine the 297 

RHM results for these three traits to characterise the architecture of genetic variance in this region. 298 

Whilst SNP-RHM significantly improved model fit for blocks on chromosome 16 that Hap-RHM did 299 

not, there were no blocks on chromosome 16 for which Hap-RHM improved model fit but SNP-RHM 300 

did not (Supplementary Tables 1, 4, 8 and 9). In fact, in the case of adult hindleg length, Hap-RHM 301 

did not improve model fit for any blocks on chromosome 16 (Supplementary Table 8). This suggests 302 

that the additive genetic variance being attributed to the regional GRMs is due to individual SNP 303 

genotypes, rather than due to a specific haplotype allele. Block 1363 (which contains s22142.1, the 304 

top GWAS SNP for lamb metacarpal length and adult hindleg length) contains 17 SNPs and has 18 305 

haplotype alleles in the population. The minor allele for s22142.1 appears in 3 haplotype alleles, with 306 

two of these haplotype alleles being relatively rare (each appearing on 17 chromosomes in the 307 

genotyped population).  308 
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Again, the underlying causal variant on chromosome 19 influencing lamb metacarpal length is 309 

presumed to be the same variant influencing adult metacarpal length – whilst the top GWAS SNPs 310 

are different for these two traits, they still fall in the same haplotype block (Supplementary Table 311 

11), and when the genotype of the top SNP is fitted during conditional analysis, no new SNP-trait 312 

associations appear (James et al. 2022). Again, we can combine the RHM results for both lamb 313 

metacarpal length and adult metacarpal length to characterise the underlying architecture. For both 314 

traits, model fit for the block containing the top GWAS SNPs was only significantly improved by SNP-315 

RHM and SNHap-RHM when compared to the null model (and SNHap-RHM compared to Hap-RHM 316 

in the case of lamb metacarpal length). This suggests that this association is being driven by the SNP 317 

alleles in this region, rather than the haplotype alleles. Block 952, which contains both top GWAS 318 

SNPs, has 37 SNPs and 52 haplotype alleles in the genotyped population. The minor alleles for each 319 

of the top SNPs each appear in two haplotype alleles, with one haplotype allele containing both 320 

minor SNP alleles. The haplotype alleles each containing one of the minor SNP alleles for the top 321 

GWAS SNPs were both rare in the population (appearing on one and 50 chromosomes in the 322 

population). 323 

Novel associations 324 

Novel block-trait associations were identified using at least one RHM method for all but four traits – 325 

birth weight, lamb August weight, lamb metacarpal length and adult metacarpal length. In the case 326 

of the former two traits, RHM did not improve model fit for any haplotype blocks in comparison to 327 

the null model, whilst in the case of the latter two, RHM only significantly improved model fit in the 328 

same regions as previously identified QTL for these traits.  329 

Across the lamb traits, at least one RHM method significantly improved model fit for a total of nine 330 

haplotype blocks; two blocks for lamb foreleg length (on chromosomes 1 and 11), two blocks for 331 

lamb foreleg length (on chromosomes 2 and 3), and five blocks for lamb jaw length (one on 332 

chromosome 3, two on chromosome 13, one on chromosome 14 and one on chromosome 17). For 333 

all of these trait-block associations, Hap-RHM was the only model to significantly improve model fit – 334 

with the exception of the two blocks on chromosome 13 for lamb jaw length, for which SNHap-RHM 335 

also improved model fit when compared to SNP-RHM. 336 

At least one RHM method significantly improved model fit for adult August weight for 85 haplotype 337 

blocks that did not contain previously identified QTL across a total of 22 chromosomes. For the adult 338 

leg traits, at least one RHM method significantly improved model fit for multiple blocks that had not 339 

previously been identified via GWAS; six blocks across six chromosomes for adult foreleg length, and 340 

23 blocks across 14 chromosomes for adult hindleg length respectively. For adult jaw length, model 341 

fit was significantly improved by at least one RHM method for six blocks across five chromosomes 342 

that had not previously been identified by GWAS. For all of these blocks, model fit was improved by 343 

a mixture of Hap-RHM, and SNHap-RHM when compared to either the null model or SNP-RHM. 344 

Genes in QTL regions 345 

Across all haplotype blocks for which model fit was improved by at least one RHM method for at 346 

least one of the 11 focal traits, there were 351 genes overlapping these blocks. 91 of these genes are 347 

completely uncharacterised in sheep and classed as “novel genes”, and a further 14 genes were RNA 348 

genes. Of the 246 characterised protein coding genes, 13 genes had functional annotations that 349 

related to the traits for which model fit was improved (Table 4). One of these genes was in a 350 

haplotype block associated with lamb jaw length, four in haplotype blocks associated with adult 351 

August weight, one associated with adult foreleg and adult hindleg length, one in haplotype blocks 352 
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associated only with adult hindleg length and eight in haplotype blocks associated with lamb 353 

metacarpal length (one of which was also associated with adult metacarpal length). One of these 354 

genes – PTH1R – was previously identified as a putative causal gene due to its functional data and 355 

proximity to top GWAS SNPs for multiple Soay sheep leg length measures (James et al. 2022). 356 
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Discussion 357 

RHM overview 358 

In total, there were 169 haplotype blocks for which model fit was improved for at least one trait by 359 

at least one RHM model. We found that Hap-RHM improved model fit more often than SNP-RHM, 360 

which is due in part to the fact that Hap-RHM improved model fit for more traits than SNP-RHM. 361 

Hap-RHM also improved model fit more often than SNHap-RHM when SNHap-RHM was compared 362 

to either the null model or either of the single regional GRM models. Additionally, SNP-RHM only 363 

improved model fit for haplotype blocks in regions surrounding QTL previously identified by GWAS. 364 

We found that there were some trait associated regions identified via GWAS for which none of the 365 

RHM methods improved model fit – for instance, the regions on chromosomes 1 and 7 associated 366 

with birth weight, and the region on chromosome 16 associated with lamb foreleg length and 367 

hindleg length. There are two main differences between GWAS and RHM that may be contributing 368 

to the observed differences in results: firstly, SNP genotypes are fitted as fixed effects in GWAS, 369 

which confers more power than random effects. Secondly, we performed pre-correction of fixed and 370 

random effects prior to performing RHM but fitted them during the GWAS step.  371 

We have previously shown that pre-correcting for fixed and random effects reduces power of GWAS 372 

to detect variant-trait associations. When pre-correction is performed for the adult traits, the only 373 

significant GWAS associations are those between SNPs on chromosome 16 and adult foreleg, hindleg 374 

and metacarpal lengths, and SNPs on chromosome 19 and adult metacarpal length (James et al. 375 

2022). This mirrors our RHM results; the only haplotype blocks for which model fit was improved by 376 

the RHM methods were those two regions on chromosomes 16 and 19, with model fit for the latter 377 

region only improving for metacarpal length. Pre-correction may therefore explain why we did not 378 

see the RHM methods improving model fit for all of the haplotype blocks containing previously 379 

identified variants. Currently pre-correction is a necessary step when performing RHM with DISSECT 380 

due to DISSECT being unable to fit all of the necessary fixed and random effects during RHM. It 381 

would be interesting to rerun this analysis when suitable software is developed for single-step RHM, 382 

to determine whether single-step RHM improved model fit for all haplotype blocks containing 383 

significant GWAS associations. 384 

The significance threshold used during GWAS in James et al. (2022) was similar to the threshold used 385 

during the RHM analyses (1.03e-06 and 1.04e-06 respectively). This is because we used SimpleM (Gao 386 

et al. 2008) to calculate the number of independent tests during GWAS – this was estimated to be 387 

48,635, whilst the number of haplotype blocks estimated by Plink (Purcell et al. 2007; Purcell 2014) 388 

was 48,125. This is therefore not a major difference and won’t contribute to explaining why we 389 

obtained different results from GWAS and RHM. 390 

RHM did, however, improve model fit for some regions associated with trait variation using GWAS; 391 

RHM improved model fit for haplotype blocks in regions previously found to be associated with lamb 392 

metacarpal length, adult hindleg length and adult metacarpal length on chromosome 16, and lamb 393 

metacarpal length and adult metacarpal length on chromosome 19. 394 

SNP-RHM has previously been performed in a smaller sample of this same population, focusing on 395 

only adult morphometric traits (Bérénos et al. 2015). 37K autosomal SNPs were split into 150 SNP 396 

windows with a 75 SNP overlap. When comparing the results of (Bérénos et al. 2015) to our results 397 

for the same traits, we find six regions for which SNP-RHM improved model fit for (Bérénos et al. 398 

2015) and at least one RHM method improved model fit in our own analyses; two regions on 399 

chromosome 1 and one region on chromosome 6 were associated with adult August weight 400 
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(1:119,553,142 – 1:139,871,327, 1:163,370,112 – 1:173,759,083, 6:38,952,950 – 6:48762234), one 401 

region on chromosome 6 was associated with adult hindleg length (6:32,615,209 – 6:43,798,415), a 402 

region on chromsome 16 associated with adult hindleg and metacarpal length (16:64,064,879 – 403 

16:71,555,691), and a region on chromosome 19 associated with adult metacarpal length 404 

(19:41,742,622 – 19:58,334,807). 405 

Genetic architecture of traits 406 

As previously mentioned, RHM failed to significantly improve model fit for some haplotype blocks in 407 

regions previously associated with our focal traits by GWAS. However, RHM also identified some 408 

novel block-trait associations – for instance, at least one RHM method improved model fit for 85 409 

haplotype blocks across a total of 22 chromosomes for adult August weight. None of these blocks 410 

were within 1Mb of a previously identified GWAS association. Interestingly, neither SNP-RHM 411 

compared to the null model nor SNHap-RHM when compared to Hap-RHM improved model fit for 412 

any haplotype blocks for adult August weight. This suggests that the majority of genetic variance 413 

contributing to variation in adult August weight is not due to small effect causal variants in LD with 414 

genotyped SNPs, but instead due to rare SNPs in LD with rare haplotype alleles or due to multiple 415 

SNPs in the same region interacting epistatically. We have previously shown that family-associated 416 

non-additive genetic variance such as dominance and epistasis may be making up 37.1% of previous 417 

narrow-sense heritability estimations for this trait (James et al. 2023). This finding would be 418 

consistent with Hap-RHM detecting regions in which multiple variants are acting in an epistasic 419 

manner. We found three genes with functional data suggesting an association with adult August 420 

weight that overlapped with haplotype blocks for which model fit was significantly improved by at 421 

least one RHM method: LEPR, TBX15 and EPHX2. For the blocks overlapping all three genes, model 422 

fit is significantly improved by the presence of the haplotype GRM; Hap-RHM significantly improved 423 

model fit for all of the overlapping blocks, and SNHap-RHM significantly improved model fit when 424 

compared to the null model and to SNP-RHM for the blocks overlapping LEPR and EPHX2. This may 425 

explain why these regions were not identified as being associated with adult August weight when 426 

performing GWAS (James et al. 2022), as the variance influencing adult August weight in those 427 

regions is likely due to specific haplotype alleles, rather than individual SNP effects.  428 

When performing RHM on lamb foreleg and hindleg lengths, only two blocks showed significantly 429 

improved model fit for each trait – none of which had previously been indicated to be associated 430 

with leg lengths in the Soay population. For all four blocks, Hap-RHM was the only model that 431 

significantly improved model fit, suggesting any variance being contributed by these blocks to their 432 

respective traits is due to the haplotypes, rather than individual SNPs within the blocks. 433 

RHM improved model fit for a block on each of six chromosomes for adult foreleg length and 27 434 

blocks across 15 chromosomes for adult hindleg length – of these only the blocks on chromosome 16 435 

were close to top GWAS SNPs from any previous leg length GWAS results (Bérénos et al. 2014; James 436 

et al. 2022). Blocks on chromosome 16 overlapping top GWAS hits also showed improved model fit 437 

for both lamb and adult metacarpal length. It is hard to separate whether the variance being 438 

contributed by this region is due to individual SNP effects or an overall haplotype effect, as SNP-439 

RHM, Hap-RHM and SNHap-RHM all significantly improved model fit when compared to the null 440 

model, but SNHap-RHM did not significantly improve model fit when compared to either of the 441 

single-GRM models. This does suggest, however, that the variance is not due to independent SNP 442 

and haplotype effects in the same block.  443 

Blocks overlapping the top GWAS SNPs on chromosome 19 also showed significant improvement in 444 

model fit for lamb and adult metacarpal lengths when performing SNP-RHM and when comparing 445 
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SNHap-RHM against the null model (and when compared to Hap-RHM for lamb metacarpal length). 446 

This suggests that the variance contributing to these traits is solely due to SNP genotypes, rather 447 

than haplotype alleles. Conditional analyses fitting the top GWAS SNP have shown that there are no 448 

secondary SNP-trait associations on chromosome 19 independent of the top SNP (James et al. 2022), 449 

implying that the variance is being contributed entirely by a single SNP.  450 

RHM identified five block-trait associations for lamb jaw length. For all of these blocks, Hap-RHM 451 

was the only RHM model that improved model fit, with the exception of two blocks on chromosome 452 

13 for which SNHap-RHM also improved model fit when compared to SNP-RHM. Similarly, six trait-453 

block associations were identified for adult jaw length (none of which overlapped with lamb jaw 454 

length). Hap-RHM improved model fit for all six blocks, and SNHap-RHM improved model fit for two 455 

and three of these blocks when compared to the null model and SNP-RHM respectively. This 456 

suggests that these regions either contain a rare variant that influences jaw length that is only in LD 457 

with a low number of haplotype alleles, or they contain multiple variants interacting in an epistatic 458 

manner. It also implies that variation in lamb and adult jaw length are influenced by different genetic 459 

factors, which corroborates previous GWAS findings (James et al. 2022). 460 

Concluding remarks 461 

We have demonstrated that RHM methods are a useful tool for detecting regions that contribute 462 

genetic variation to traits in a wild population and complement other analyses such as GWAS. We 463 

found that Hap-RHM and SNHap-RHM improved model fit for more haplotype blocks than SNP-RHM, 464 

but all three can be used together to better characterise the underlying genetic architecture within a 465 

region. Using these methods, we detected multiple haplotype blocks that improved model fit with at 466 

least one RHM method. From these regions, we characterised the genetic regions influencing trait 467 

variation and identified 13 potential genes that influence trait variation that have not previously 468 

been associated with variation in these traits in the Soay population.   469 
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Table 1 Number of individuals and records, fixed and random effects fitted in each trait and age class 

model during RHM pre-correction, alongside the LOCO GRM. 

 

Age Trait Number of 

individuals 

Number of 

records 

Fixed effects Random effects 

Neonate Birth 

weight 

2975 2975 Sex Year of birth 

Litter size Mother ID 

Population size year 

before birth 

  

Age of mother (quadratic)   

Ordinal date of birth   

Age (days)  

Lamb Weight 2424 2424 Sex Year of birth 

Litter size Mother ID 

Population size  

Age (days)   

Foreleg 2512 2512 Sex Year of birth 

Litter size Mother ID 

Population size  

Age (days)   

Hindleg 2577 2577 Sex Year of birth 

Litter size Mother ID 

Population size  

Age (days)   

Metacarpal 2117 2117 Sex Year of birth 

Litter size Mother ID 

Age at death (months)   

Jaw 2172 2172 Sex Year of birth 

Litter size Mother ID 

Age at death (months)   

Adult Weight  2092  3860 Sex Year of capture 

Population size Permanent 

environment 

Age (years)   

Foreleg 1936 3594 Sex Year of capture 

Population size Permanent 

environment 

Age (years)   

Hindleg 2027 3481 Sex Year of capture 

Population size Permanent 

environment 

Age (years)   

Metacarpal 987 987 Sex Year of birth 

Age at death (years)  

Jaw 1057 1057 Sex Year of birth 

Age at death (years)  
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Chromosome Number of SNPs Number of haplotype 

blocks 

Mean number of SNPs 

per haplotype block 

1 47318 5466 8.66 

2 41917 4426 9.47 

3 38265 4081 9.38 

4 20659 2259 9.15 

5 18545 2132 8.70 

6 19205 1908 10.07 

7 17647 2267 7.78 

8 15815 2029 7.79 

9 16517 2177 7.59 

10 15517 2223 6.98 

11 11567 1371 8.44 

12 13909 1665 8.35 

13 13626 1427 9.55 

14 10785 1205 8.95 

15 13897 1537 9.04 

16 11992 1400 8.57 

17 12598 1694 7.44 

18 11718 1357 8.64 

19 10230 1058 9.67 

20 9074 1115 8.14 

21 7879 813 9.69 

22 9352 1246 7.51 

23 10004 1062 9.42 

24 6362 492 12.93 

25 7530 842 8.94 

26 7353 873 8.42 

Table 2 Number of SNPs per chromosome, number of haplotype blocks per chromosome, and 

average number of SNPs per haplotype block. 
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Trait SNP-RHM Hap-RHM SNHap-RHM SNHap-RHM vs Hap-

RHM  

SNHap-RHM vs SNP-

RHM 

Birth weight 0 0 0 0 0 

Lamb August weight 0 0 0 0 0 

Lamb foreleg length 0 2 0 0 0 

Lamb hindleg length 0 2 0 0 0 

Lamb metacarpal 

length 

40 25 30 4 2 

Lamb jaw length 0 5 0 0 2 

Adult August weight 0 83 35 0 56 

Adult foreleg length 0 6 6 0 6 

Adult hindleg length 4 25 14 0 17 

Adult metacarpal 

length 

19 12 16 0 0 

Adult jaw length 0 6 2 0 3 

Table 3 Number of haplotype blocks for which inclusion of regional GRMs improved model fit. SNP-

RHM column compares the SNP-RHM model against the null model to see if the inclusion of the 

regional SNP GRM improves model fit. Hap-RHM column compares the Hap-RHM model against the 

null model to see if the inclusion of the regional haplotype GRM improves model fit. SNHap-RHM 

column compares the SNHap-RHM model against the null model to see if the simultaneous inclusion 

of both the regional SNP GRM and the regional haplotype GRM improves model fit. SNHap-RHM vs 

Hap-RHM column compares the SNHap-RHM model against the Hap-RHM model to see if the 

additional inclusion of the regional SNP GRM improves model fit. SNHap-RHM vs SNP-RHM column 

compares the SNHap-RHM model against the SNP-RHM model to see if the additional inclusion of 

the regional haplotype GRM improves model fit.  

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 10, 2024. ; https://doi.org/10.1101/2024.06.08.598050doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.08.598050
http://creativecommons.org/licenses/by-nc-nd/4.0/


Trait 
Models with improved 

fit 
Chromosome 

Haplotype or SNP 

location(s) (bp) 
Gene Functional annotation 

Adult 

August 

weight  

Hap-RHM,  

SNHap-RHM vs null,  

SNHap-RHM vs SNP-

RHM 

1 
40773086 – 40841455, 

40847219 – 40872161 
LEPR 

Codes for the leptin receptor, an adipocyte-specific hormone 

that regulates body weight. Repeatedly associated with body 

weight and physiological factors contributing to body weight 

variation across multiple species (Chagnon et al. 1999; 

Yiannakouris et al. 2001; Israel and Chua 2010; Ros-Freixedes 

et al. 2016; Solé et al. 2021), including sheep (Macé et al. 

2022). 

Adult 

August 

weight 

Hap-RHM 1 95596363 – 95600207 TBX15 

Identified as a potential causal gene for birth weight in Barki 

sheep (Abousoliman et al. 2021). Found to be a master 

transcriptional regulator in human adipose tissue and has 

downstream effects on abdominal obesity (Pan et al. 2021), 

correlates with BMI and hip-to-waist ratio in humans (Heid et 

al. 2010) and TBX15 knock-out mice are shown to have 

increased body weight gain in comparison to control mice 

(Sun et al. 2019).  

Adult 

August 

weight 

Hap-RHM,  

SNHap-RHM vs null,  

SNHap-RHM vs SNP-

RHM 

2 38080434 – 38081124  EPHX2 

Linked with obesity in humans (Khadir et al. 2020) and affects 

insulin sensitivity in both rodents and humans (Luther and 

Brown 2016). 

Adult 

hindleg  

Hap-RHM 

 
6 103234182 – 103331382 EVC2 

Humans: his gene encodes a protein that functions in bone 

formation and skeletal development. Mutations in this gene 

cause Ellis-van Creveld syndrome (characteristics include 

small stature and short limbs) (Baujat and Le Merrer 2007) 

and Weyers acrofacial dysostosis (characteristics include 

short limbs) (Ye et al. 2006). Deletion within EVC2 causes 

chondrodysplastic (short-legged) dwarfism in cattle 

(Murgiano et al. 2014). 

Adult 

foreleg 

length  

Adult 

Hap-RHM,  

SNHap-RHM vs null,  

SNHap-RHM vs SNP-

RHM 

12 1315546 – 1498521 PPP1R15B  

Missense mutation in PPP1R15B causes a disease in humans 

resulting in short stature (Abdulkarim et al. 2015) 
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hindleg 

length 

Adult 

August 

weight 

Hap-RHM,  

SNHap-RHM vs null,  

SNHap-RHM vs SNP-

RHM 

12 31886985 - 32003794 SDCCAG8 

Mutations result in Bardet-Biedl Syndrome (characterisation 

includes obesity) in humans (Schaefer et al. 2011). Associated 

with obesity in human children and adolescents (Scherag et 

al. 2012) 

Lamb jaw 

length  

Hap-RHM,  

SNHap-RHM vs SNP-

RHM 

13 53300575 – 53763103  LOC101112800 

Expressed in mouse lower jaw mesenchyme (Diez-Roux et al. 

2011) 

Lamb 

metacarpal 

length  

SNP-RHM, 

SNHap-RHM vs null 
19 48699277 – 48839372  POC1A 

Mutations in this gene result in SOFT syndrome 

(characterisation includes short stature) in humans (Min Ko 

et al. 2016).  

Lamb 

metacarpal 

length  

SNP-RHM,  

Hap-RHM,  

SNHap-RHM vs null 

19 50594654 – 50934237  TCTA 

Induces osteoclastogenesis (Kotake et al. 2009) 

Lamb 

metacarpal 

length 

SNP-RHM,  

Hap-RHM,  

SNHap-RHM vs null 

19 50594654 – 50934237 RHOA 

Promotes osteoclastogenesis (Wang et al. 2023). Inhibition of 

RHOA induces chondrogenesis in chick limbs (Kim et al. 

2012). Inhibits bone formation by suppressing IGF1 (Negishi-

Koga et al. 2011). 

Lamb 

metacarpal 

length  

SNHap-RHM vs null,  

SNHap-RHM vs Hap-

RHM,  

SNHap-RHM vs SNP-

RHM 

19 51192408 - 51582246 PLXNB1 

Involved in negative regulation of osteoblast proliferation. 

Activates RHOA. (Negishi-Koga et al. 2011) 

Lamb 

metacarpal 

length  

SNHap-RHM vs null,  

SNHap-RHM vs Hap-

RHM,  

SNHap-RHM vs SNP-

RHM 
19 52376602 – 52543759  PTH1R 

Previously identified as potential causal gene for multiple leg 

length measures in Soay sheep via GWAS (James et al. 2022). 

Involved in osteoblast development in mice (Qiu et al. 2015), 

associated with skeletal disorders such as EKNS (Duchatelet 

et al. 2005), JMC, and BLC (Schipani and Provot 2003) in 

humans. Adult 

metacarpal 

length 

SNHap-RHM vs null 
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Lamb 

metacarpal 

length  

SNP-RHM 19 53372619 – 53548690  LIMD1 

Influences osteoblast differentiation and function in mice 

(Luderer et al. 2008) 

Table 4 - Potential candidate genes for future analyses. From left to right: associated trait, method that resulted in the gene being identified, chromosome, 

haplotype block, gene name, and evidence for association in sheep and other species. 
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