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Abstract 
 
Many biomedical research projects produce large-scale datasets that may serve as resources for 
the research community for hypothesis generation, facilitating diverse use cases. Towards the 
goal of developing infrastructure to support the findability, accessibility, interoperability, and 
reusability (FAIR) of biomedical digital objects and maximally extracting knowledge from data, 
complex queries that span across data and tools from multiple resources are currently not easily 
possible. By utilizing existing FAIR application programming interfaces (APIs) that serve 
knowledge from many repositories and bioinformatics tools, different types of complex queries 
and workflows can be created by using these APIs together. The Playbook Workflow Builder 
(PWB) is a web-based platform that facilitates interactive construction of workflows by enabling 
users to utilize an ever-growing network of input datasets, semantically annotated API endpoints, 
and data visualization tools contributed by an ecosystem. Via a user-friendly web-based user 
interface (UI), workflows can be constructed from contributed building-blocks without technical 
expertise. The output of each step of the workflows are provided in reports containing textual 
descriptions, as well as interactive and downloadable figures and tables. To demonstrate the 
ability of the PWB to generate meaningful hypotheses that draw knowledge from across multiple 
resources, we present several use cases. For example, one of these use cases sieves novel 
targets for individual cancer patients using data from the GTEx, LINCS, Metabolomics, GlyGen, 
and the ExRNA Communication Consortium (ERCC) Common Fund (CF) Data Coordination 
Centers (DCCs). The workflows created with the PWB can be published and repurposed to tackle 
similar use cases using different inputs. The PWB platform is available from: https://playbook-
workflow-builder.cloud/. 
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Introduction 
 
High throughput measurements of myriad biomolecules in biological systems have led to 
generation of large volumes of data creating a paradigm shift in biomedical research. While these 
large and diverse data spanning a significant dynamic range of length, time scales, and granularity 
they are highly valuable for deriving new biological knowledge. The ability to discover, access, 
interoperate, integrate, and analyze these data pose challenges to researchers. As bioinformatics 
data analyses become increasingly complex and customized, and at the same time more 
standardized, workflow engines and workflow languages that combine analyses for multiple 
datasets with a combination of tools are increasing in usage, application, and availability. Hence, 
a wide array of bioinformatics workflow engines and languages exist (Table S1). Each of these 
resources has advantages and disadvantages. Broadly, a bioinformatics data analysis workflow 
platform modularizes data analysis tasks into steps which can be performed in isolation. Capturing 
dependencies between each step enables stringing them into workflows. Many bioinformatics 
workflow engines and workflow languages are task-agnostic and operate at the command-line 
interface (CLI) or within a programming language such as Python. Some of the first generation 
workflow platforms geared towards bioinformatics were Ruffus [1], Anduril [2,3], Bioconductor 
workflows [4], and Taverna [5,6]. Ruffus and Anduril are Python libraries that make it easier to 
combine analysis from multiple tools. Taverna was a larger project that was initially called Taverna 
Workbench and later Apache Taverna. It could be operated as a desktop application, by CLI, or 
via a remote execution server and it was coupled with a catalog of workflows called BioCatalogue 
[7]. With the arrival of the cloud and due to rapid expansion in the availability of bioinformatics 
tools, the original platforms such as Ruffus and Taverna were superseded with platforms that 
offered more features and flexibility. These platforms are led by Galaxy [8–11] an internationally 
large-scale well-funded project that offers many features including a user interface (UI), a library 
of components, and extensive user training. Alternatives to Galaxy include platforms such as 
Snakemake [12,13] and NextFlow [14].  
 
These newer platforms rely on community standards that are used to code information about each 
workflow in a way that enables executing workflows across platforms. The two leading standards 
are Common Workflow Language (CWL) [15] and Workflow Description Language (WDL) [16]. 
CWL can be executed by cloud workspaces that implement the Global Alliance for Genomics and 
Health (GA4GH) Workflow Execution Service (WES) API specification [17], for example, 
CAVATICA [18] and Terra [19]. Other examples of community standards developed to encode 
the metadata about workflows include BioCompute Objects, a JavaScript Object Notation (JSON) 
Schema validatable IEEE standard (IEEE 2791-2020) [20], and WorkflowHub [21] which 
describes workflows by adopting the Research Object Crate (RO-Crate) standard [22] and 
leveraging schema entities from BioSchemas [23]. 
 
The growing collection of thousands of publicly available bioinformatics tools with APIs also gave 
rise to another class of system tangentially related to workflow systems. These are federated 
knowledge graphs (KGs). Examples of such systems include the BioThings Explorer [24] which 
invokes APIs documented and registered with the SmartAPI registry [25] to dynamically resolve 
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edges between two destination data types. BioThings Explorer is related to NCATS’ Translator 
project [26,27] which operates similarly but with a UI that looks like a typical search engine. 
Another class of system tangentially related to workflow engines are UIs that enable the user to 
upload their data into a cloud environment and then select the tools and other aspects of their 
desired workflow, and then, once pressing submit, the workflow is executed in the cloud and the 
results are delivered as a report. For example, BioJupies [28] is a platform for enabling 
researchers to perform RNA-seq analysis in the cloud. The user can start with a data matrix, or a 
collection of FASTQ files. After these files are uploaded, the user can pick from a collection of 
tools that will be executed to produce the data analysis report resembling a Jupyter Notebook 
[29]. The BioJupies platform was later extended to enable quick analysis of many other data types 
with Appyters [30]. Appyters are parameterized Jupyter Notebooks converted into full-stack web-
based applications. Other similar platforms include GenePattern [31] and iLINCS [32]. Several of 
the platforms in this category interoperate with other workflow languages, especially with CWL 
and WDL. 
 
Since its inception in 2004, the US National Institutes of Health (NIH) Common Fund (CF) has 
funded more than 50 CF programs. CF programs have generated large and diverse datasets with 
the aim of having these datasets propel biomedical research forward by serving as resources for 
hypothesis generation and integrative systems level analyses. These datasets include various 
omics profiling from across thousands of human subjects, cell lines, organoids, and animal 
models. Each CF program typically has a Data Coordination Center (DCC) that is tasked with 
managing these datasets and serving them to the community via bioinformatics tools, workflows, 
and interactive web-based UIs. DCC portals often go beyond serving the raw data from their 
respective CF program by providing more distilled information and knowledge extracted from such 
data. To accomplish this, DCCs have in many cases designed tools that enable users to 
interactively explore datasets via user interfaces as well as via well-documented API. However, 
enabling knowledge discovery by combining data and tools from multiple CF programs remains 
both a challenge and an opportunity. To address this challenge, the NIH established the Common 
Fund Data Ecosystem (CFDE) consortium. In its first phase, the CFDE consortium established 
common data elements and harmonized descriptors for biological and biomedical entities such 
as genes, tissues, drugs, and diseases across centers and programs [33]. These harmonized 
descriptors can be used to describe raw files produced by each KF program but fall short of 
directly enabling cross-program hypotheses generation. 
 
Here we demonstrate how by leveraging data, tools, and well-documented FAIR representational 
state transfer (REST) APIs from multiple CF programs, and other sources, we constructed a visual 
user-friendly web-based workflow construction platform called the Playbook Workflow Builder 
(PWB). In contrast with other interactive workflow platforms, PWB requires stricter annotations 
and specifications of workflow components that we term metanodes. Such extensive descriptions 
of metanodes provide users with a richer, more focused, user experience that enables advanced 
and complex data analyses, data harmonization, and data integration. Specifically, users can 
interactively and visually create workflows by exploring all possible available options at each 
workflow construction step. The PWB consists of a growing network of connected metanodes, 
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and it is demonstrated via 12 published workflows that are served as reports that resemble 
parameterized publications.  
 
Methods 
 
To dynamically develop workflows that draw knowledge from across CF programs and other key 
bioinformatics tools and databases, we synthesize information stored in multiple CF DCCs to 
accumulate evidence about a specific hypothesis. To achieve this, we integrated several CF DCC 
tools and databases accessible via well-documented APIs into an integrative network of DCC 
microservices. odes in the network represent semantic types, for example, gene sets, gene 
expression signatures, diseases, metabolites, glycans, and drugs. Edges in the network represent 
transformations, or operations, performed by various tools on these semantic types, for example, 
enrichment analysis applied to a set of genes or a set of metabolites, principal component analysis 
(PCA) applied to a data matrix, or a PubMed search applied to a search term that describes a 
disease. Nodes and edges are characterized in a strict type-safe manner forming a 
programmatically defined data structure we term a knowledge resolution graph (KRG). In contrast 
to a KG, a KRG encodes the capacity of obtaining knowledge by means of some computational 
or manual process; instead of subjects connected via predicates, as in a KG, a KRG has functions 
connected via common data types. Knowledge obtained from one tool or database may be 
augmented, compared, or supplemented with knowledge from another. The KRG can be used to 
help users find compatible processes with instantiated knowledge at any step in a chain of steps, 
forming a complete workflow. The tools collected are largely REST API-driven microservices 
providing complementary interoperability across CF DCCs and other relevant biomedical 
databases and tools. The APIs are documented with OpenAPI [34] and deposited into the 
SmartAPI [25] repository. Such compliance with these standards eases implementation. 
 
The assembled metanodes are then used to facilitate a collection of use cases and use case 
templates. Use case templates are defined as workflows with the same structural components 
but with application to different data instances. For example, gathering information about a gene 
or a variant from several CF DCCs databases can be done for a single gene, but also as a 
template that supports the querying of other genes by changing the input query. The collected 
use cases are geared toward accumulation of evidence from transcriptomics, metabolomics, 
glycomics, proteomics, epigenomics, genomics, imaging, and other assay types. The workflows 
that are generated for realizing these use cases are reusable and extendible. To enable access 
to the system, a user-friendly interface (UI) was developed. The UI is geared to experimental 
biologists with no programming background. The PWB system is set up in a way that other 
developers can contribute to the system, and/or reuse components of the PWB for enhancing 
their own web portals and bioinformatics data analysis workflows. Metanodes are accessible via 
a uniform REST API that supports multi-step workflow executions via CWL. Thus, the KRG graph 
can be queried programmatically. 
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Metanode Specifications 
 
Metanodes are specified with TypeScript. The specification captures common identifiable 
metadata elements about each component. These include human readable labels, descriptions, 
icons, authors, license, and versioning information. The specification then couples these 
semantics with type-safe implementations which inherit types from dependent components. The 
set of components is compile-time checked and can be queried and operated-on at runtime in a 
type-safe manner through runtime-based type checking. A metanode can be a data type, a 
resolver, or a view (Fig. 1). A view function renders the visualization of an instance of the type of 
interface. A resolver function accepts one or many data types as inputs and produces a single 
data type as an output. A prompt is a React component that can accept input data types to 
facilitate decisions made by the user for transforming the inputs into a single output data type, for 
example, selecting a gene from a list, or submitting a gene set for enrichment analysis. With these 
three metanode types, we can construct workflows. A prompt with no inputs can inject an initial 
instance of a data type object, and that instance can be used as an input argument to compatible 
resolvers or prompts to yield other data type instances, or figures, tables, and charts. Metanodes 
also specify parts of a story. This is a parameterized sentence about what that component is doing 
as it might appear in the methods section of a research paper. These sentences are stacked 
together to construct a human-readable description of the entire workflow. The paragraph can be 
further reorganized and copyedited using an LLM like GPT-4 [35]. 
 
Knowledge Resolution Graph (KRG) 
 
Because of the metanode specification, PWB metanodes can be developed, tested, and operated 
independently from the PWB codebase. All the implemented metanodes are collected and 
assembled into a unified KRG database (Fig. 2). The PWB system queries and utilizes this 
database to construct the data-driven UI (Fig. 3). As such, the PWB web-based application is a 
product of the contents of the KRG database, and thus, extending the functionality of the PWB 
web-based application only requires creating and registering additional metanodes. By 
modularizing the PWB processes we can mix, match, and stack PWB metanodes to construct 
parameterizable workflows. PWB metanodes and workflows have consistent interfaces and can 
thus be exposed in consistent ways such as over API, in CWL workflows, or through visual 
interfaces. 
 
Fully Persistent Process Resolution Graph (FPPRG) 
 
While the KRG can be used to construct arbitrary workflow templates, a workflow is an instance 
of that template operating on a unique dataset that has the same structure but different contents. 
To store data from a workflow, an additional database is established. This additional database 
stores the data that flows through workflows. As such, the database ensures collision-free 
updates and a self-deduplication. Another feature of this additional database is the decoupling of 
workflow templates from the actual data that flows through those workflows, providing further 
deduplication. Workflows are stored across four independent tables (Fig. S1). The first table is a 
dependency graph of each constructed step of a workflow. This information is stored in a record 
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called a Process. This record is tightly coupled with the Component, it stores the Component ID, 
a JSON object for Prompt configuration, and back references to any other Process whose output 
is used by this record. The second table is a fully persistent list (FPL). It stores sequential order 
of a workflow through a linked list. A singular list can be resolved with the ID of the last element 
of the list, and each intermediary state has a unique ID. Importantly, elements of the lists need 
only be stored once even if used in multiple lists. The third table is a Result record. It has a one-
to-one relationship with a Process record and is constructed by performing the execution using 
the function from the Component type referenced in the Prompt. Finally, the 4th table is a Data 
record. This table contains arbitrary JSON Binary Large Objects (BLOBs), used to store data in 
the Process and Result tables. All IDs are created by hashing the content of the record. A unique 
series of user steps can be stored and accessed by a single ID through the FPL, while the 
dependency graph ensures deduplication of the workflows regardless of order. Finally, the actual 
results of any given workflow step are stored. Requests for the output of any Process are sent to 
a queue of workers if the Result does not already exist. Hence, steps are executed simultaneously 
if there are enough workers, and equivalent execution results are deduplicated.  Altering an earlier 
step in a workflow can be done with a git-style rebase. A new FPL and dependency graph starting 
from the parent of the modified node are created and expanded to the previous tail. Result records 
would then be computed as required to obtain the new output for the entire workflow. 
 
Developing the PWB Website 
 
The PWB website is developed in TypeScript with NextJS, a full-stack framework that uses React 
and offers isomorphic server-side and client-side rendering. TailwindCSS-based DaisyUI and 
BlueprintJS are used for styling the site and data tables. NextAuth.JS is used for managing user 
accounts via ORCID or e-mail. The FPPRG which stores workflow executions can operate entirely 
in memory or with a PostgreSQL database in a production setting. Workers run in the main 
process or execute independently on different machines. Message passing is achieved through 
PostgreSQL's listen/notify feature. The website’s navigation and metanode rendering are driven 
by queries to the in-memory KRG over REST API or WebSocket. The UI is decoupled from the 
metanodes facilitating the independent development of the website and the metanodes. This also 
means that a completely new set of metanodes can be used for a platform with a different focus. 
All metanode TypeScript, Python, and other dependencies are assembled and installed into a 
single Docker container. This container is used to run the PWB workers. A smaller Docker 
container with only JavaScript dependencies runs the UI. 
 
Cloud Agnostic File Storage 
 
A Python library was developed to help with managing files in a storage system that is agnostic 
to the cloud provider. All files uploaded to the PWB are stored and accessed using an abstract 
layer provided by this library. In development, files are stored on the local disk, while in production, 
the files are stored in an S3 bucket. Alternatively, users can have their files in a CAVATICA 
workspace [18] when CAVATICA sessions are established. Once uploaded, files are stored by 
their sha-256 checksum which provides content-based addressing for deduplication. An entry is 
added to the database and is associated with the user who uploaded the file. These records 
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receive universally unique identifiers (UUID) and are served by the PWB platform using GA4GH’s 
Data Repository Service (DRS) protocol [36]. Files on the platform are then treated as DRS URIs 
which can be resolved anywhere in the system. Files can also be provided to the platform directly 
from external DRS hosting platforms. Functional helpers are available to obtain the contents of 
the DRS files/bundles or for uploading new files from within PWB metanodes. 
 
Workflow Format Translations 
 
The FPPRG format encodes the workflows along with the data that flows through these workflows. 
The steps of the workflow are encoded in the KRG where metadata about the steps can be 
resolved. These can thus be translated to other community developed workflow description 
formats for the purpose of interoperability with other platforms. Hence, the PWB platform provides 
users with the ability to export constructed workflow into several workflow specification standards. 
 
BioCompute Objects 
 
There has been a need in bioinformatics for establishing better conceptual descriptions of 
workflows [37]. For example, a bioinformatician may wish to reproduce a pipeline using tools or 
platforms that they are familiar with and which they trust. Workflow languages – machine-readable 
files that confer portability of execution – are usually insufficient when context and a conceptual 
underpinning is needed. For this, the BioCompute objects standard was developed [20] IEEE 
2791-2020. BioCompute is a rigorously defined standard for bioinformatics analysis workflow 
documentation that is flexible enough to accommodate any pipeline, but rigid enough to define a 
structure for computable metadata to annotate workflows. There is an ecosystem of tools for 
working with the BioCompute standard, including large cloud genomics platforms like Seven 
Bridges Genomics, CAVATICA, and DNAnexus. The BioCompute Portal is part of this ecosystem, 
and acts as a repository of published BioCompute Objects (BCOs), as well as a place to manually 
build BCOs, and has been used in two published examples [38,39]. On the PWB, A BCO can be 
constructed from any given FPPRG, containing full provenance about the workflow including the 
individual steps and authorship information. These serialized BCO specifications can be 
downloaded or directly sent to the BioCompute Portal via API where they can be inspected, 
modified with additional annotation, or extended to other schemas, and ultimately published. 
 
Common Workflow Language (CWL) 
 
Common Workflow Language (CWL) is an open standard for describing how to run command line 
tools and connect them to create workflows [15]. A command line interface (CLI) was developed 
from the KRG to invoke any Process metanode, providing inputs in JSON-serialized files, and 
writing the output to a JSON-serialized file. Using this CLI, a CWL CommandLineTool 
specification can be constructed out of any Process metanode, and a CWL workflow specification 
and input variables file can be constructed out of a FPPRG. All Prompt data which would have 
been captured by the user via a UI are instead specified in the input variable file. Every step of 
the workflow is exposed as an output. Hence, the PWB platform metanodes are fully compatible 
with CWL, and CWL workflows can be exported from the PWB interface. 
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Research Object Crate (RO-Crate) 
 
RO-Crate is a community-based specification for research data packaging of Research Objects 
(RO) with rich metadata, based on open standards and vocabularies including JSON Linked Data 
(JSON-LD) and schema.org [40]. Adopting a similar structure to describing workflows as 
WorkflowHub [41], an RO-Crate can be created from an FPPRG. The RO-Crate can then be used 
for registering PWB workflows in WorkflowHub and for minting citable Digital Object Identifiers 
(DOIs) for published workflows. 
 
Constructing Workflows from Prompts with GPT 
 
The user interface of the PWB facilitates construction of workflows by presenting to the user all 
possible next steps compatible with the current step. This functionality is also presented as a 
prompt to a large language model (LLM) Assistant, such as generative pre-trained transformer 
(GPT), capable of making decisions about the best next step to take when presented with a 
prompt from the user. Using a few-shot prompt, we direct the assistant to choose from a set of 
possible next steps based on user messages. We accept single suggestions automatically and 
present multiple suggestions to the user. Selected suggestions are included in an incrementally 
constructed workflow and rendered in a chat box-style interface along with LLM Assistant 
messages. Because we use the assistant to only help build a PWB workflow based on the 
constrained KRG, the risk of hallucination is mitigated. In the worst case, users receive a self-
documented workflow that may perform an analysis that is not intended. By collecting feedback 
from the user in the form of thumbs up or thumbs down, we can fine-tune the model in the future 
to build more accurate workflows based on user prompts. 
 

Results 
 
Implemented Metanodes 
 
The PWB platform provides users with the ability to perform a wide variety of analyses powered 
by the network of metanodes. These metanodes are used as steps in workflows. So far, we 
have developed 561 such metanodes (Table S2). Below we describe some of the currently 
implemented metanodes. 
 
RNA-Seq Data Analysis and Visualization 
 
Beginning from a user-uploaded count matrix of gene expression, where each row represents a 
gene, and each column is a sample with associated metadata, data is uploaded to the PWB and 
encoded with AnnData [42]. From the gene expression matrix, several metanodes enable different 
normalization and data visualizations via PCA [43], UMAP [44], or t-SNE [45]. These metanodes 
are supported by the Scanpy Python package [46]. The data matrix can also be used for 
computing differential expression to produce gene expression signatures. Differential expression 
analysis is performed by methods such as the Characteristic Direction [47], limma-voom [48,49], 
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or DESeq2 [50]. Differentially expressed genes can be used as input for downstream analysis 
such as enrichment analysis. 
 
Enrichment Analysis 
 
Enrichment Analysis can be performed within the PWB using the Enrichr API [51]. The gene sets 
data type in the PWB can be enriched against many gene set libraries stored within Enrichr. For 
example, the GTEx [52] and ARCHS4 [53] libraries can be used to obtain a prioritized ranking of 
tissues, KEGG [54] and WikiPathways [55] libraries can be used to prioritize most relevant 
pathways. Enrichr also provides an API to search for metadata terms across the gene set libraries. 
For example, a disease term search can be used to construct a consensus gene set from GEO 
disease signatures [56]. Another way to build such gene sets is through literature search based 
on term-gene co-mentions in publications. This functionality is supported by PWB components 
that utilize the Geneshot API [57]. 
 
Gene Set Manipulation 
 
The gene matrix transpose (GMT) file format is commonly used to serialize gene set libraries. 
GMT files contain lists of terms followed by sets of genes for each term. GMT files are loaded and 
manipulated in the PWB. A common way to interrogate the overlap between several gene sets 
through UpSet plots [58] or with a SuperVenn diagram [59]. The PWB has a metanode to display 
interactive versions of both, enabling users to inspect regions of overlapping and unique genes 
and gene sets. Additionally, several operations were implemented to transform data types from 
one to another. For example, turning ranked lists of genes into gene sets by choosing a cutoff, 
turning multiple gene sets into a GMT, or collapsing a GMT into a single gene set by applying a 
consensus or a union set operation. 
 
Healthy Human Tissue Expression Atlases 
 
The NIH GTEx CF program has profiled gene expression data from healthy human tissues [52]. 
The GTEx API can be used to find median tissue expression levels for all human genes for each 
one of 54 profiled tissues. Similarly, the ARCHS4 resource [53] was created by uniformly aligning 
approximately 2 million publicly available RNA-seq samples collected from human and mouse. 
The ARCHS4 API can also be used to find median tissue expression across over 200 tissues and 
cell types. The PWB enables users to obtain summary statistics from these APIs which can be 
visualized as bar graphs. It is also possible to use these data resources as a baseline to identify 
novel drug targets. For example, gene expression data collected by RNA-seq from tumor 
samples, can be compared to all normal tissue to identify genes that are only highly expressed in 
the tumor using the TargetRanger API [60].  
 
 
Metanodes Created from LINCS Resources 
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The Library of Integrated Network-Based Cellular Signatures (LINCS) NIH CF program [61] 
profiled the response of human cells to thousands of chemical and genetic perturbations followed 
by omics profiling. The PWB provides several components related to prioritizing drugs and 
preclinical small molecules for targeting individual genes and gene expression signatures. Several 
metanodes can be used to perform LINCS L1000 reverse search queries for a given gene, 
producing visualizations and tables of significant LINCS L1000 chemical perturbagen signatures 
which maximally increase or decrease the expression level of the single human gene. Similar 
metanodes were implemented to provide search against the L1000 CRISPR KO signatures. Other 
metanodes enable users to query the SigCom LINCS database [62] with gene expression 
signatures. Such signatures may be in the form of a vector of differential gene expression, or up- 
and down-regulated gene sets. Both types of input signature queries can yield ranked lists of 
chemical perturbations and CRISPR KOs. 
 
Metanodes Created from GlyGen Resources 
 
GlyGen is an international initiative funded by the NIH to promote research about glycoscience 
[63]. The GlyGen consortium developed a web-based portal that brings together glycan and 
protein specific data from major resources such as UniProt [64], GlyConnect [65], Protein Data 
Bank (PDB) [66], UnicarbKB [67], ChEBI [68] and PubChem [69] and other resources [70]. These 
datasets are presented to users through a standardized data model [71] via the GlyGen data 
portal (https://data.glygen.org). The GlyGen API endpoints (https://api.glygen.org) facilitate the 
same functionality provided by the user interface, providing the PWB with several GlyGen 
metanodes that can be integrated in various workflows. The GlyGen metanodes also support data 
visualization and kinase enrichment analysis. Furthermore, the GlyGen metanodes operate 
several core data types such as, glycans, proteins, and glycoproteins. For other glycoconjugate 
species, such as glycolipids, GlyGen metanodes implement the passthrough search APIs to the 
GlySpace alliance [72] and other resources. In addition, uploaded mass spectrographic glycan 
files are analyzed with various GlyGen specific metanodes, and then knowledge is extended with 
other PWB metanodes. 
 
Metanodes Created from Metabolomics Resources 
 
The Metabolomics Workbench (MW) is another resource supported by the NIH CF [73]. MW 
contributed several metanodes to the PWB including those from the bioinformatics tools 
MetGENE [74], MetENP [75], and a gene ID conversion tool. These tools, originally designed to 
be stand-alone web applications, provide REST APIs to obtain relevant information for analyses 
related to profiled metabolites within the PWB. MetGENE is a hierarchical, knowledge-driven tool 
designed for gene-centered information retrieval. By entering a single gene, or a set of genes, 
users can access information related to the gene such as pathways, reactions, metabolites, and 
studies from metabolomics in MW. To refine searches, MetGENE incorporates filtering options 
based on organism, tissue or anatomy, and disease or phenotype. This feature provides tailored 
and context-specific search experience. Several metanodes using MetGENE are implemented 
that take as input either a gene, or a gene set, for downstream analyses. The relevant functionality 
from MetENP is provided via a REST API called MetNet. Briefly, given a list of metabolites, e.g., 
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metabolites with significant change between two conditions such as disease/normal or 
treatment/control in a metabolomics study obtained by using MetENP or another tool, a 
researcher may want to find what are the pathways and functions affected. MetENP/MetNet 
facilitates metabolite name harmonization using RefMet [76], metabolite class enrichment, 
metabolic pathway enrichment and visualization, and identification of reactions related to the 
given metabolites and genes coding for enzymes catalyzing these reactions. In MetNet, the list of 
these genes can be used to develop their protein-protein interaction (PPI) subnetwork using the 
STRING database APIs [77]. Each of these metanodes have an associated table that renders the 
information obtained from the API.  
 
The Connect the Dots (CTD) Metanode 
 
The Connect the Dots (CTD) metanode takes as input a set of genes or proteins and identifies a 
subset of genes or proteins that are highly connected within either knowledge graphs or networks 
derived from gene expression, metabolomic or other omic datasets [78].  CTD algorithm has 
previously discovered multi-gene biomarkers of drug response to breast cancer therapies based 
on mouse PDX models [79], and metabolomic signatures of rare inborn errors of metabolism 
[78,80]. While CTD has been previously deployed as independent R and python packages 
(https://github.com/BRL-BCM/CTD), its deployment on the Playbook will allow for its use by a 
wider scientific audience. The CTD workflow starts with an input set of genes. The user then has 
the option of identifying significant connections within this set in the STRING protein-protein 
interaction network [77], WikiPathways [55], or a network derived from user-supplied data. The 
networks represented as weighted graphs, can be derived from expression data, proteomic data, 
metabolomics, or any other normalized omic dataset. This allows for users to identify highly 
connected sets of genes within their specific disease, treatment, or condition of interest. Given a 
weighted graph and a set of graph nodes as an input, CTD identifies significant highly connected 
subsets. An optional “guilt by association” feature identifies neighboring nodes using probability 
diffusion. CTD also returns a visual display of the nodes and connections. 
 
Metanodes Created from ERCC Resources 
 
The ExRNA Communication Consortium (ERCC) Common Fund (CF) Data Coordination Center 
created a framework and toolset for FAIR data, information, and knowledge that delineate the 
regulatory relationship between genes, regulatory elements, and variants, and made them 
available to PWB via metanodes. We have implemented the ClinGen Allele Registry (CAR) and 
Genomic Location (GL) Registry [81], variant and genomic region on demand naming services, 
respectively. The CAR canonical identifiers (CAid) or Genomic Location identifiers (GLid) 
provided are reference genome-agnostic, stable, and globally unique. The ERCC metanodes 
enable the retrieval and mapping of unique identifiers and other commonly used identifiers, such 
as dbSNP ids [96], connected through the Allele Registry and GL Registry using the Allele 
Registry RESTful APIs. Moreover, we have created the CFDE Linked Data Hub (LDH) [82], a 
graph-based database, to extract and link tissue and cell type-specific regulatory information from 
SCREEN [83], GTEx [52], and other CF projects, including Roadmap Epigenome [84] and EN-
TEx [85]. Each excerpt on the CFDE LDH is created in a machine-readable format and contains 
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a link to the original data source for provenance tracking. The CFDE LDH RESTful APIs provide 
read and write capabilities for both accessing and contributing gene regulatory information. This 
enables the CFDE LDH to connect more than 800 million regulatory data and information 
documents, which can be quickly retrieved by PWB through the API endpoints given any variant, 
regulatory region, or gene as input. 
 
The Book of Use Cases 
 
The PWB currently contains a collection of implemented and published workflows. These 
workflows were first designed by drawing the workflow as workflow diagrams in a Google 
Slideshow (Fig. S2). Each slide represents a unique workflow contributed by members of the 
project. In these diagrams each node represents a metanode. The slide representing a workflow 
also lists the name of the workflow and the resources used to obtain the data needed to run the 
workflow. The color of each metanode was used to track the status of implementation of the 
metanode and the overall workflow. The plots were used as a guide to capture ideas about 
potential workflow. Thus, not all these use cases are fully implemented and in some cases that 
actual implemented workflow does not match exactly the diagram that is associated with it. 
 
Use Case Workflow Templates and Workflow Instances 
 
The PWB implemented published workflows are listed on a dedicated area on the PWB site (Fig. 
4). Each published workflow has a title, a short description, a description of the inputs and outputs, 
the data resources used, the authors, version, license, the date of publication, and a button to 
launch the workflow. Since each workflow is parameterized, we consider these workflows as 
playbooks. These playbooks can be executed with different inputs to produce a new workflow. 
Below we describe several selected published PWB workflows in detail.  
 
Use Case 13: Cell Surface Targets for Individual Cancer Patients Analyzed with Common Fund 
Datasets 
 
The input to this workflow is a data matrix of gene expression that was collected from a pediatric 
tumor from the Kids First CF program [18]. The RNA-seq samples are the columns of the matrix, 
and the rows are the raw expression gene counts for all human coding genes. This data matrix is 
fed into TargetRanger [60] to screen for targets that are highly expressed in the tumor but lowly 
expressed across most healthy human tissues based on gene expression data collected from 
postmortem patients with RNA-seq by the GTEx CF program [52]. Based on this analysis, the 
gene Insulin-like growth factor II m-RNA-binding protein 3 (IMP3) was selected because it was 
the top candidate returned from the TargetRanger analysis (Table 1). Next, we leveraged unique 
knowledge from various other CF programs to examine knowledge related to IMP3. First, we 
queried the LINCS L1000 data [86] from the LINCS program [61] converted into RNA-seq-like 
LINCS L1000 Signatures [87] using the SigCom LINCS API [62] to identify mimickers or reversers 
small molecules and CRISPR KOs that maximally impact the expression of IMP3 in human cell 
lines. These potential drugs and targets were filtered using the CF IDG program's list of 
understudied proteins [88] to produce a set of additional targets. Next, IMP3 was searched for 
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knowledge provided by the Metabolomics Workbench MetGENE tool [74]. MetGENE aggregates 
knowledge about pathways, reactions, metabolites, and studies from the Metabolomics 
Workbench CF supported resource [73]. The Metabolomics Workbench was searched to find 
associated metabolites linked to IMP3. Furthermore, we leveraged the Linked Data Hub (LDH) 
API [82] to list knowledge about regulatory elements associated with IMP3. Finally, the GlyGen 
database [63] was queried to identify relevant sets of proteins that are the product of the IMP3 
genes, as well as known post-translational modifications discovered on IMP3. The discovery of 
IMP3 is not completely novel, IMP3 has been previously reported to be aberrantly expressed in 
several cancer types and its high expression is associated with poor prognosis [89].  
 
Use Case 1: Explaining Drug-Drug Interactions 
 
This workflow takes as input an adverse event term and two drugs. The adverse event is identified 
in several databases that contain gene sets already associated with the adverse events and 
mammalian phenotypes related to the adverse event. Namely, matching adverse events and 
mammalian phenotypes are identified from the GWAS Catalog [90],  MGI Mammalian Phenotype 
ontology [91], and from the Human Phenotype Ontology (HPO) [92]. A set of consensus genes 
associated with the matching terms is assembled. Then, the workflow queries the LINCS L1000 
chemical perturbation signatures [62] with the two input drugs to find gene sets that are 
consistently up- or down-regulated by the treatment of human cell lines with these drugs. The 
consensus gene sets impacted by the drugs, and the gene set related to the adverse events are 
then compared and visualized using a SuperVenn diagram to highlight overlapping genes 
between these sets. Genes of interest are those affected by both drugs and are associated with 
the phenotype. Such overlapping genes can be further interrogated individually for evidence in 
the literature, or as a gene set using enrichment and network analyses. 
 
To demonstrate the workflow for a specific instance, we start with the adverse event “bleeding” 
and the drugs warfarin and aspirin. It is known that these drugs interact to increase the risk of 
internal bleeding [93] but the exact intracellular mechanism of such interaction is still not fully 
understood. The workflow starts with selecting “bleeding” as the search term. Gene sets with set 
labels containing the word bleeding were queried from Enrichr [1]. Identified matching terms from 
the GWAS Catalog 2019 [2], MGI Mammalian Phenotype Level 4 2019 [3] and the Human 
Phenotype Ontology [4] libraries are then assembled into a collection of gene sets. A GMT file is 
extracted from the Enrichr results for all the identified gene sets from each library and then these 
are combined using the union set operation. Gene sets with set labels containing the terms 
warfarin and aspirin were next identified from the LINCS L1000 Chem Pert Consensus Sigs [5] 
library. The gene sets collected for each drug were combined into one gene set library. The 
collection of gene sets was then visualized with a SuperVenn diagram (Fig. 5). This analysis 
identified 243 genes up-regulated and 245 genes down-regulated by warfarin; 249 genes up-
regulated and 244 genes down-reguklated by aspirin, 85 genes associated with bleeding from 
MGI, and 35 from HPO. Only one gene, namely THBS2, is up regulated by both drugs, and is 
also associated with bleeding related phenotype in MGI. While the gene SLC7A11 is 
downregulated by both drugs and is linked to an MGI bleeding phenotype. THBS2 is a member 
of the thrombospondin family, and as such it plays a critical role in coagulation. It was shown that 
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knockout mice of THBS2 have an increased bleeding time phenotype (MP:0005606) [94] and 
THBS2 is a potent inhibitor of tumor growth and angiogenesis [95]. It is difficult to explain why 
both drugs are found to up-regulate this gene. The expected effect is that these drugs would 
reduce the expression of the genes to reduce coagulation. At the same time, both drugs are also 
found to down-regulate the expression of the amino acid transporter SLC7A11. SLC7A11 
knockout mice also have an increased bleeding time phenotype (MP:0005606), and mutations in 
this gene have been implicated in many acute human diseases through induction of ferroptosis 
[96,97]. Hence, for SLC7A11 the direction of the impact of the drugs on its expression is consistent 
with other prior evidence.  
 
Use Case 11: Related Proteins/Metabolites across DCCs 
 
The enzyme ribulose-5-phosphate epimerase (RPE) participates in the catalysis of the 
interconversion of ribulose-5-phosphate (Ru5P) to xylulose-5-phosphate (Xu5P) in the pentose 
phosphate pathway. A recent study [98] focused on the biophysical and enzymatic 
characterization of RPE in several organisms. Interestingly, the study suggested that RPE may 
play a crucial role in protection against oxidative stress. Towards integrative analysis to further 
elucidate the roles of RPE in various pathways and mechanisms of human disease, we collected 
knowledge about PRE from various NIH CF programs and other sources. The collected 
information about PRE includes: 1) Associated metabolites from the Metabolomics Workbench 
[73]; 2) Expression across human tissues from GTEx [52]; 3) Small molecules and single gene 
knockouts that maximally induce the expression of PRE from LINCS [62]; 4) Associated variants 
from ClinGen via LDH [99]; 5) Protein-protein interactions from STRING [77]; and 6) Regulation 
of PRE by transcription factors from ChEA3 [100]. In addition, the use case converts PRE into a 
gene set using the Geneshot API [57]. The Geneshot API returns a set of 100 genes that mostly 
correlate with PRE based on thousands of human RNA-seq uniformly processed from GEO [101]. 
Co-expression correlations computed from the data processed by ARCHS4 [53]. The 
comprehensive approach to find knowledge about a single gene is also applied to the generated 
gene set with all six resources. The final report provides a mechanistic understanding of how RPE 
can affect various pathways and functions despite not being involved in the pathways and 
processes directly.  
 
 
Use Case 27: Identifying Gene Regulatory Relationships between Genes, Regulatory Elements, 
and Variants 
 
This workflow takes as input one or more genes, regulatory elements, or variants. One may then 
query for regulatory relations of the selected entity type with other entity types. In one application, 
we may ask what genomic regions regulate a gene of interest and what evidence supports that 
regulatory relationship. We start the workflow by providing the gene of interest as input. We first 
focus on regulatory elements that are in the vicinity of the gene body identified using the 
epigenomic data from NIH Roadmap Epigenomics [94] and ENCODE projects stored in the 
ENCODE SCREEN database [83]. Regulatory evidence associated with the SCREEN regulatory 
elements was connected to genes and variants using CFDE LDH [82], a graph-based database 
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that facilitates the linking of findable, accessible, interoperable, and reusable (FAIR) [102] 
information about genes, regulatory elements, and variants retrieved through well-documented 
RESTful APIs. The available regulatory information includes: 1) Variants associated with 
regulatory elements from the ClinGen Allele Registry [81]; 2) Allele-specific epigenomic 
signatures, such as DNA methylation, histone modifications, and transcription factor binding, from 
Roadmap Epigenomics [84] and EN-TEx [85] projects; 3) Quantitative trait loci information from 
GTEx [52] and other studies; and 4) Regulatory element activity, all presented in a tissue- and 
cell-type-specific manner. The workflow also provides users with commonly used identifiers for 
variants that fall within a regulatory element of interest, including those from dbSNP [103], ClinVar 
[104], and the ClinGen Allele Registry [81]. 
 

Conclusions 
 
Here we describe a new web-based interactive workflow construction platform called the 
Playbook Workflow Builder (PWB). The workflow engine facilitates user traversal through a 
network of microservices stored in a knowledge resolution graph (KRG). The metanodes are 
wrappers to external APIs that are executed on-demand with the inputs of the previous step to 
produce the outputs for the next. The user-friendly web-based interface enables users to extend, 
branch, and merge a workflow which is executed while it is constructed. Users can construct 
workflows manually and via a chatbot interface. Notably, the system provides the means to modify 
decisions at an earlier stage of a workflow and have the workflow following that point re-evaluated 
to reflect those changes. This makes any given user session a reusable workflow template. 
 
Besides constructing their own workflows, users can also reuse published workflows created by 
other users. The published workflows contain detailed descriptions of each step, and this provides 
the ability to construct reports that resemble research publications. These public workflows can 
be re-executed by interacting with a chatbot via prompts and inject user data or user decisions 
into the original published workflow. Once the user makes an adjustment, a new workflow is 
created and executed by the platform and the results presented as they become ready. The 
automatic description about the workflow may also be adjusted to reflect the user’s specific 
changes. This newly modified workflow automatically becomes persistent with a unique citable 
and publishable URL. Some features of the platform require users to log in, such as for uploading 
files, saving, and publishing workflows, contributing suggestions, and using several features such 
as publishing workflows as BioCompute Objects or operating the playbook within CAVATICA’s 
cloud resources. 
 
So far, most of the metanodes and use cases implemented by the PWB platform are related to 
systems biology, molecular networks, and the analysis of genes, variants, metabolites, and post-
translational modifications. The platform is extendible and could be applied to other areas of 
biomedical research domains such as structural biology, cheminformatics, genomics, and clinical 
research. In addition, the PWB platform can be applied in other domains besides biomedical 
research. The chat interface of the PWB also opens opportunities for applications that may 
enhance the functionality of chat bots and other bots by executing workflows on demand to 
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produce knowledge and understanding that is deeper that would be achieved by large language 
models (LLMs) and other currently available state-of-the-art AI models.  
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Figure Legends 
 
Fig. 1 The different PWB metanode types and how they are strung together to form workflows. 
A. In this example, the prompt type of metanode takes a gene as the input; then the resolver 
metanode uses the GTEx API to obtain the expression of the input gene from across human 
tissues. Finally, a view metanode visualizes the contents returned from the API as a bar chart. 
B. Screenshot from the executed workflow in the PWB platform. 
 
Fig. 2 Network visualization of the PWB knowledge resolution graph (KRG). The network of 
connected metanode is interactive and can be explored from the user interface. 
 
Fig. 3 The landing page of the PWB UI provides access to a collection of prompt metanodes to 
begin constructing workflows. 
 
Fig. 4 Published workflows are curated workflows that are listed on a dedicated page that lists 
these in a table. Each workflow entry can be expanded to obtain more information about the 
workflow and launch the workflow within the PWB platform in report mode.  
 
Fig. 5 SuperVenn diagram to visualize the overlap between sets of genes that are up and down 
regulated by aspirin and warfarin based on LINCS L1000 signatures as well as knockout 
mouse, HPO, and GWAS phenotypes associated with the term “bleeding”. The permanent URL 
for accessing the workflow in the PWB platform is:  
https://playbook-workflow-builder.cloud/report/d94b8b0a-81cc-708c-e200-e00ef3451da0  
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Tables and Table Legends 
 

Gene Z-score 

IMP3 inf 

ARHGDIA inf 

GPRIN1 7.23 

CARM1 6.98 

JSRP1 6.70 

SLC7A6 6.60 

NBPF15 5.78 

RABGEF1 5.76 

HPS4 5.64 

ANKRD39 5.21 

 
Table 1 Ranked list of targets identified by TargetRanger to be highly expressed in the tumor 
sample and lowly expression across normal tissues from GTEx. 
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