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Abstract 14 

Cell type-specific actions of disease genes add a significant layer of complexity to the genetic 15 

architecture underlying diseases, obscuring our understanding of disease mechanisms. Single-cell 16 

omics have revealed the functional roles of genes at the cellular level, identifying cell types critical 17 

for disease progression. Often, a gene impact on disease through its altered network within specific 18 

cell types, rather than mere changes in expression levels. To explore the cell type-specific roles of 19 

disease genes, we developed HCNetlas (human cell network atlas), a resource cataloging cell type-20 

specific gene networks (CGNs) for various healthy tissue cells. We also devised three network 21 

analysis methods to investigate cell type-specific functions of disease genes. These methods 22 

involve comparing HCNetlas CGNs with those derived from disease-affected tissue samples. 23 

These methods find that systemic lupus erythematosus genes predominantly function in myeloid 24 

cells, and Alzheimer's disease genes mainly play roles in inhibitory and excitatory neurons. 25 

Moreover, they show many lung cancer genes exert their roles in immune cells. These findings 26 

suggest that HCNetlas has the potential to link disease-associated genes to cell types of action, 27 

facilitating development of cell type-resolved diagnostics and therapeutic strategies for complex 28 

human diseases. 29 

 30 

Introduction 31 

Human tissues comprise a mosaic of cell types, each with distinctive functional roles that affect 32 

how genes associated with diseases contribute to their onset and progression. Grasping how 33 

specific cell types influence the action of disease-related genes is a complex and as-yet unresolved 34 

aspect of human genetics (1,2). The Human Cell Atlas (HCA) project (3), which compiles 35 
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extensive single-cell RNA-sequencing (scRNA-seq) data from healthy tissues, seeks to illuminate 36 

the relationship between cell types and disease through gene expression profiles (4).  37 

However, the role of a disease gene within a specific cell type often extends beyond expression 38 

levels to its position and influence within a gene network, known as network centrality. To address 39 

this, we need a network-focused approach for mapping disease genes to their functional landscapes 40 

within specific cell types. In response, we have crafted scHumanNet (5), leveraging HumanNet (6) 41 

as the foundational interactome, refining connections based on cell-to-cell variation in gene 42 

expression (7). This framework allows us to discern the network topologies of disease genes by 43 

contrasting cell type-specific gene networks (CGNs) (8) from healthy versus diseased tissues, 44 

leading to the identification of the cell types wherein disease genes are influential. Typically, this 45 

involves creating CGNs for both healthy and diseased tissue samples.  46 

Identifying altered cellular states in diseases typically requires comparisons with matched control 47 

samples, which can entail additional costs, efforts, and sometimes may even be unavailable. This 48 

challenge can be mitigated if there is access to a comprehensive collection of reference cells from 49 

healthy individuals, like a cell atlas. Such a resource could potentially eliminate the need to 50 

generate control samples. In a similar vein, a network atlas that offers reference CGNs for a diverse 51 

array of cell and tissue types from healthy individuals could significantly streamline the 52 

investigation of disease-state network alterations. Moreover, while individual gene expression 53 

values are prone to aggregate according technical origins across different batches confounding 54 

biological variations, the inference of gene associations with adequate cell number is generally 55 

less affected by such variances especially when large number of samples are used (e.g. cells) (9). 56 

This is because co-expression signals are intrinsically normalized within each batch, making them 57 

more reliable for network comparison. Therefore, we propose that an integrated collection of 58 
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CGNs, derived from a cell atlas, would constitute a robust framework for cell type-specific 59 

analysis of disease genes. This approach would circumvent the need for matched control samples, 60 

offering a more efficient route to understanding disease mechanisms. 61 

Here, we introduce HCNetlas (human cell network atlas), a collection of reference CGNs from a 62 

wide array of healthy tissue cells, which parallels the HCA in its potential impact on disease 63 

research. By utilizing these reference CGNs, it becomes feasible to uncover associations between 64 

disease genes and specific cell types, relying solely on the availability of disease sample data. This 65 

approach also bypasses the necessity to infer CGNs from matched control samples, streamlining 66 

the process of identifying disease-specific gene interactions within a specific cell type. HCNetlas 67 

currently includes 198 CGNs covering 61 cell types across 25 organs. We clustered the CGNs 68 

based on their disease profiles and observed the formation of groups comprising similar cell types. 69 

This clustering pattern indicates the potential of these CGNs to effectively resolve the cell type 70 

specificity of disease gene functions. Additionally, we implemented three network-based methods 71 

for assessing the cell type-specific functions of disease genes. Utilizing this analytical framework 72 

on both reference CGNs and those derived from diseased tissues enabled us to pinpoint cell types 73 

implicated in various diseases, thereby validating the effectiveness of our approach in cell type-74 

resolved disease genetics. Consequently, HCNetlas holds great promise in expediting the 75 

discovery of biomarkers and therapeutic targets that are specifically tailored to the cellular context 76 

of disease genes, offering a refined perspective on the intricate web of cell type-specific gene 77 

actions in human diseases. 78 

 79 

Methods  80 
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Single-cell and single-nucleus transcriptomic data used for HCNetlas construction 81 

We employed both single-cell and single-nucleus RNA sequencing (scRNA-seq and snRNA-seq) 82 

data from multiple sources to reconstruct HCNetlas CGNs. We acquired scRNA-seq data for 83 

329,762 immune cells spanning 16 tissues from 12 deceased donors in a cross-tissue immune cell 84 

atlas (10). This dataset was pre-annotated with CellTypist and subjected to manual curation. 85 

Additionally, we integrated data from Tabula Sapiens  (11), which included the human 86 

transcriptome reference for 249,961 immune cells across 24 tissues from 15 donors. For 87 

constructing brain CGNs, we utilized snRNA-seq data of Allen Brain Atlas (http://www.brain-88 

map.org) (12), derived from 76,533 nuclei in the primary motor cortex (M1) and 166,868 nuclei 89 

in the middle temporal gyrus (MTG) using 10x Genomics Chromium platform. All data were 90 

processed through alignment, quantification by Cell Ranger, and cell type annotation. 91 

We harmonized pre-annotated cell types across all datasets and applied scHumanNet (v. 1.0.0) (5) 92 

to the single-cell transcriptomic data to generate CGNs for various tissues and cell types. To 93 

construct CGNs for major cell types, we aggregated sub-cell types into broader categories, such as 94 

T cells, B cells, and myeloid cells. In total, 198 CGNs were generated, encompassing 25 tissues 95 

and 61 cell types. 96 

 97 

Evaluating the cell-type-specificity of CGNs 98 

We performed dimension reduction analysis with uniform manifold approximation and projection 99 

(UMAP) to visualize interrelationships among HCNetlas CGNs. Utilizing scHumanNet for CGN 100 

construction, which references the HumanNet (6) comprising 18,593 human genes, we generated 101 

binary profile vectors indicating the presence (1) or absence (0) of each gene in the network for 102 
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every CGN. For visualizations, we employed the UMAP package in R (v. 0.2.10), setting min_dist 103 

to 0.5 to balance the trade-off between local and global structure in the data. 104 

To determine the cell-type-specific functionality of the HCNetlas CGNs, we explored the 105 

enrichment of cell-type-associated genes, particularly for B cells and T cells. We collated cell-106 

type-associated genes from three authoritative databases: Gene Ontology biological process 107 

(GOBP), CellMarker, and the Azimuth cell type database (13-15). We postulated that genes 108 

functionally connected within a CGN reflect the properties of their respective cell type, thus we 109 

considered the interconnectivity within genes for each cell type as a measure of the cell-type 110 

specificity. 111 

Additionally, we identified hub genes within each CGN, which are likely to play pivotal roles in 112 

the function of their corresponding cell type. We profiled the top 15 hub genes, ranked by degree 113 

centrality, for each major cell type across various tissues using the FindAllHub() function of the 114 

scHumanNet. This profiling helped to ascertain the relative importance of these hub genes within 115 

the network. 116 

 117 

Overall assessment of the association between CGNs and diseases 118 

We assessed whether HCNetlas CGNs can discern connections between diseases and cell types by 119 

profiling CGNs with disease-association scores. Within each CGN, we ranked the 18,593 genes 120 

from the HumanNet reference interactome by degree centrality, utilizing the GetCentrality() 121 

function of the scHumanNet. Disease gene sets, totaling 5,763, were compiled from DisGeNET 122 

(16) and  GWAS Catalog (17) for the analysis. Assessment of disease gene set association with 123 
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each CGN was performed with ssGSEA (v. 2.0) (18) and GSVA (19), the latter via the gsva() 124 

function from the GSVA package (v. 1.38.2). 125 

Furthermore, we conducted differential compactness analysis on the HCNetlas CGNs using the 126 

same disease gene sets. For each gene set, we calculated the within-group connectivity across all 127 

198 networks to gauge network compactness. To accommodate variations in network size, we 128 

normalized the within-group connectivity by the number of nodes in each network and then scaled 129 

these normalized values by multiplying them by 10,000 to ensure a consistent basis for comparison 130 

across all networks. 131 

 132 

Cell type-resolved genetic analysis of systemic lupus erythematosus (SLE) with HCNetlas 133 

We acquired scRNA-seq data for peripheral blood mononuclear cells (PBMCs) from 41 patients 134 

with SLE and 15 healthy controls as reported by Nehar-Belaid et al. (20). To ensure a consistent 135 

analysis, we excluded two SLE patient samples lacking SLEDAI scores. Following quality control 136 

measures, including the removal of doublets using the DoubletFinder (v. 2.0.0) (21) package and 137 

the exclusion of cells with fewer than 400 transcripts or over 5% mitochondrial gene content, the 138 

dataset was narrowed to approximately 276,000 cells. After normalization and scaling with Seurat 139 

package (v. 4.1.1), we identified 3,000 variable genes using the vst() and FindVariableFeatures() 140 

functions. Batch effects were mitigated by applying principal component analysis (PCA) and 141 

Harmony (v. 1.0) (22) (dims = 40), and cellular clustering was performed using the Louvain 142 

method (resolution = 1.5), followed by UMAP visualization with 40 dimensions. Cell types were 143 

manually annotated using canonical markers after optimizing the number of principal components 144 

and clustering resolution. 145 
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For constructing SLE-specific CGNs, we focused on the curated data from SLE patients. We built 146 

networks for B cells, CD4+ T cells, CD8+ T cells, myeloid cells, and NK cells. Using the 147 

Compactness() function, we performed differential compactness analysis. We referenced 184 148 

SLE-associated genes from KEGG pathway (I05322) and KEGG disease (H00080) databases, 149 

comparing connectivity within disease CGNs and HCNetlas CGNs, and visualized the networks 150 

in Cytoscape (v 3.9.1) (23). 151 

Node centrality within these networks was computed using the GetCentrality() function from the 152 

scHumanNet package. We compared the percentile ranks of centrality for disease CGNs against 153 

the reference CGNs of HCNetlas using the DiffPR.HCNetlas() function. Genes showing 154 

differential hubness were pinpointed with FindDiffHub.HCNetlas(), with significance defined by 155 

a q-value < 0.05 after Benjamini-Hochberg correction to control false discovery rate (FDR).  156 

We compiled interferon-stimulated genes (ISGs) from hallmark gene sets of the molecular 157 

signature database (MSigDB) and the Immunological Genome Project (ImmGen) (24), resulting 158 

in a total of 423 ISGs. The efficacy of prediction for ISGs by hubness within SLE-associated CGNs 159 

was assessed using receiver operating characteristic (ROC) curve analysis. The ROC curve was 160 

generated using the roc() function from the pROC package (v. 1.18.0).  161 

To explore the diagnostic potential of gain-of-hubness genes, we computed an expression score 162 

for the genes in myeloid cells via AddModuleScore() of the Seurat package and evaluated the 163 

differences in distribution of expression values between patients and healthy controls using the 164 

Wilcoxon signed-rank test. 165 

DEG analysis was performed by merging Seurat objects containing HCNetlas healthy tissue data 166 

with disease scRNA-seq data. After normalization and scaling by a factor of 10,000, we identified 167 
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2,000 variable genes. DEGs were pinpointed for key cell types using Seurat's FindMarkers() 168 

function, considering genes with an adjusted p-value < 0.05 and an absolute log2-fold change > 169 

0.5, focusing solely on coding genes. 170 

 171 

Cell type-resolved genetic analysis of Alzheimer’s disease (AD) with HCNetlas  172 

In our study of AD, we used snRNA-seq data with annotated cell types from Morabito et al. (25). 173 

Since the data were derived from the prefrontal cortex of brain tissues, the generated CGNs for 174 

AD were compared with reference CGNs for the primary motor cortex (M1) from the HCNetlas. 175 

We grouped the cell type annotations into four main categories: astrocytes, inhibitory neurons, 176 

excitatory neurons, and oligodendrocytes. The identification of differential hubness genes and 177 

DEGs within these cell types was carried out using the same methodology applied in the analyses 178 

of SLE. To ascertain the relevance of AD-associated genes predicted by our differential hubness 179 

analysis, we referenced genes linked to AD in the KEGG pathway (M16024), MSigDB (M35868), 180 

and Wightman et al. (26).  181 

Considering the association of gain-of-hubness and loss-of-hubness genes with AD in inhibitory 182 

and excitatory neurons, we constructed network-ranked signatures for both reference and AD-183 

specific CGNs for the cell types. The signature genes were based on the top ten hub genes by 184 

degree centrality within each CGN. The networks of these top-tier hub genes were visualized using 185 

the Cytoscape software (23). Furthermore, we conducted gene set enrichment analysis (GSEA) on 186 

these network-ranked signatures using the enrichR package (27). To evaluate the pathways 187 

differentially associated between disease CGNs and reference CGNs, we introduced a metric 188 

called diffQ, calculated as follows: 189 
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diffQ = -log10(
𝑞𝑞−value of association with disease CGN
𝑞𝑞−value of association with reference CGN

) 190 

In this formula, a positive diffQ value signifies that a pathway is more strongly associated with the 191 

cell type in its diseased state than in its healthy state (gain-of-pathway). Conversely, a negative 192 

diffQ value indicates greater association with the cell type in its healthy state as compared to its 193 

diseased state (loss-of-pathway). To emphasize the most significantly altered pathways, we 194 

focused on the top ten KEGG pathways with the highest absolute diffQ values. This approach 195 

effectively pinpoints the key molecular pathways involved in the pathogenesis of AD. 196 

 197 

Cell type-resolved genetic analysis of lung cancer using HCNetlas 198 

To create lung cancer-specific CGNs, we used scRNA-seq data from tumor tissues provided by 199 

Qian et al. (28). We retained the pre-annotated cell-type identifications from the datasets. For 200 

comparison with reference CGNs derived from paired normal tissues, we constructed networks 201 

from both the lung cancer and healthy control data. Following the scHumanNet protocol, we 202 

generated networks and defined differential hubness genes using FindDiffHub(). The process of 203 

identifying differential hubness genes within each cell type was conducted using the same 204 

methodology employed in the SLE analyses. Similarly, the identification of DEGs followed the 205 

methodology used in the SLE studies, with the exception that genes exhibiting an absolute log2-206 

fold change < −1.5 were categorized as down-regulated DEGs. 207 

To validate the lung cancer relevance of the identified genes, we referenced the Cancer Gene 208 

Census, CancerMine, and IntOGen databases (29-31). We assessed the proportion of lung cancer-209 

associated genes detected uniquely through differential hubness, uniquely through DEGs, and by 210 

the intersection of both methods. Furthermore, we analyzed 42 immune checkpoint molecules 211 
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listed by Auslander et al. (32) to determine if cell-type-specific genes vital for cancer immunity 212 

are discernible through both expression-based and network-based analyses. 213 

We investigated the prognostic potential of genes identified by cell-type-specific differential 214 

hubness and differential expression using survival analysis on TCGA lung cancer datasets (TCGA-215 

LUSC, TCGA-LUAD). Initially, we identified a total of 379 gain-of-hubness genes and 211 up-216 

regulated DEGs from three major cell types: B cells, T cells, and myeloid cells. Subsequently, 217 

genomic and clinical data for 1,017 lung cancer samples were acquired from the GDC portal (33). 218 

The STAR-Counts data underwent preprocessing, log-normalization, and variance stabilization 219 

using the vst() function in the DESeq2 R package (v. 1.30.1). With the application of GSVA (19), 220 

we evaluated the association of both gain-of-hubness genes and up-regulated DEGs with each 221 

tumor expression profile of the patients. Patients were then classified into upper and lower quartile 222 

groups based on their GSVA scores. These groups were further examined through Kaplan-Meier 223 

survival curves. To ensure the reliability of our findings, we adjusted all p-values obtained from 224 

the survival analysis using the Benjamini-Hochberg method to control the FDR. 225 

 226 

Results 227 

HCNetlas: A catalog of reference CGNs for various healthy human tissues 228 

To build reference CGNs, we utilized scRNA-seq data from the HCA project (3) and single-229 

nucleus RNA-sequencing (snRNA-seq) data from the Allen Brain Atlas (12). Our single-cell 230 

transcriptomic dataset comprised 763,559 cells from 28 donors. We generated gene networks for 231 

each predefined cell type using the scHumanNet framework (5) (Figure 1A), providing a 232 

comprehensive baseline for identifying disease-associated genes and cell types. 233 
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When constructing CGNs, the number of cells used can influence the efficacy of network inference. 234 

To investigate this aspect, we conducted an analysis of CGNs derived from HCA data, specifically 235 

examining how the number of cells used for network inference correlates with the overall network 236 

size. Our findings indicated a clear trend: as the number of cells increases, there is a corresponding 237 

rise in both the node and edge counts within the inferred CGNs. However, this growth in network 238 

complexity tends to plateau once the cell count reaches approximately 1,000 (Supplementary 239 

Figure S1A). The observed saturation point suggests that the inference of CGNs becomes 240 

substantially robust to the effects of sample size when the number of cells exceeds 1,000. Based 241 

on this insight, we focused our study on networks inferred from datasets comprising a minimum 242 

of 1,000 cells. This led to the generation of 198 CGNs, covering 25 tissues and including 61 distinct 243 

cell types (Supplementary Table S1). These networks form our newly established resource, 244 

HCNetlas, a catalog of human CGNs for healthy tissues. 245 

To examine the interrelationships among the CGNs in our HCNetlas, we analyzed each CGN based 246 

on network gene profiles, subsequently visualizing these profiles in a reduced dimensional space. 247 

This analysis demonstrated a clear trend where CGNs corresponding to the same cell types 248 

exhibited a tendency to cluster together (Figure 1B), reinforcing the concept that these networks 249 

accurately capture and reflect the specificity inherent to each cell type. Notably, CGNs within the 250 

myeloid and B cell lineages showed remarkable coherence, in contrast to the T cell lineage CGNs, 251 

which exhibited greater heterogeneity. An interesting observation was the close proximity of 252 

innate lymphoid cell (ILC) and natural killer (NK) CGNs (Supplementary Figure S1B), 253 

underscoring their lineage correlations (34). However, CGNs related to the same tissue types 254 

generally did not demonstrate strong clustering with the exception brain tissue network nodes that 255 

displayed high similarity (Figure 1C), suggesting that cell type identity is a stronger determinant 256 
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of network structure than tissue environment. This was further evidenced in the T cell lineage, 257 

including ILCs, NK cells, CD4+ T cells, and CD8+ T cells, where subsets exhibited coherence 258 

within cell types but not necessarily within tissue types (Supplementary Figure S1B-C). This 259 

aligns with recent studies that emphasize tissue or sub-cell type dependent variability in T cells 260 

(35-37). These findings highlight the utility of HCNetlas as a potentially powerful tool for 261 

investigating cell type-specific gene functions.  262 

 263 

Assessing the cell type-specific functionality of HCNetlas CGNs 264 

To evaluate whether the reference CGNs of HCNetlas accurately reflect cell type-specific 265 

functions, we conducted tests using two distinct immune cell types from different lineages: B cells 266 

and T cells. The premise of this test was that if the HCNetlas CGNs are effective in representing 267 

cellular functions unique to each cell type, then genes for maintaining the identity and function of 268 

each cell type should demonstrate interconnectedness within their respective networks. As 269 

anticipated, our analysis showed that genes specifically annotated for either B cells or T cells by 270 

the Gene Ontology biological process (GOBP) (38) exhibited the highest within-group 271 

connectivity in their respective CGNs across various tissues (Figure 2A-B). This pattern of 272 

connectivity was further validated by comparing it with cell type marker genes as identified in the 273 

Azimuth database (13) and the CellMarker database (14) (Supplementary Figure S2A). These 274 

findings underscore the ability of HCNetlas CGNs to capture and represent the unique functional 275 

characteristics inherent to specific cell types.  276 

Moreover, we investigated the network hub genes within each CGN, identified based on degree 277 

centrality (Figure 2C). For instance, in spleen CGNs, CD86, which is pivotal in B cell activation 278 
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(39), emerged as top hub genes in the B cell CGN. Similarly, genes essential for T cell identity 279 

like CD2, CD4, and CD28 were among the top 15 hub genes in the T cell CGN (40). Additionally, 280 

S100A8, S100A9, CD14, markers for monocytic myeloid-derived suppressor cells were prominent 281 

hubs in the monocyte CGNs (41). These patterns of hub genes, significant due to their high degree 282 

centrality, were consistent across various tissues (Supplementary Figure S2B), underlining the 283 

functional interpretability of these hub genes in the context of their respective cell types. 284 

Lastly, to assess the tissue dependency of the HCNetlas CGNs, we compared CGN genes for each 285 

major cell type across different tissues. We observed limited overlap in CGN genes among 286 

different tissues within major cell types (Figure 2D-E, Supplementary Figure S3), suggesting a 287 

convergence of networks across tissues within major cell lineages, aligning with findings from 288 

previous studies (10,35). These observations indicate that while there are core gene networks 289 

characteristic of each cell type, tissue adaptation of CGNs is also evident, underscoring the 290 

complexity and diversity of cellular functions across different biological contexts. 291 

 292 

HCNetlas as a tool for unraveling cell type specificity of disease genes 293 

The HCNetlas, with its collection of reference CGNs, presents a promising resource for dissecting 294 

the cellular specificity of disease genes. The majority of disease-associated genes identified to date 295 

have been derived from bulk tissue data, which often fails to specify the exact cell types involved 296 

in disease onset and progression. In this scenario, HCNetlas CGNs become instrumental in 297 

pinpointing the critical cell types at play. To ascertain the effectiveness of HCNetlas CGNs in 298 

disease-oriented research, we embarked on an investigation to determine if these CGNs capture 299 

and reflect the cell type specificity of various diseases. This involved conducting enrichment 300 
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analyses on the CGNs using disease-associated genes sourced from two distinct databases: 301 

DisGeNET (16) and  GWAS Catalog (17). We began by ranking genes within each CGN based on 302 

network degree centrality, and then applied single-sample gene set enrichment analysis (ssGSEA) 303 

(18) and gene set variation analysis (GSVA) (19) to profile degree of association with each set of 304 

disease genes. Our analysis revealed a distinct pattern of congregation among CGNs corresponding 305 

to shared cell types, as determined by disease-association profiles (Figure 3A, Supplementary 306 

Figure S4A). This finding was particularly notable within cell types, whereas the convergence of 307 

networks corresponding to the same tissue types was less pronounced, indicating the specificity of 308 

cell types in the context of disease genetics. 309 

We next evaluated the connectivity among genes associated with the same disease within CGNs 310 

across different tissues. Our hypothesis was that genes would exhibit more interconnectedness in 311 

the relevant cell types and tissues primarily responsible for  diseases. This analysis aimed to 312 

elucidate the relationships between specific diseases and their associated cell types or tissues. 313 

While not all diseases we considered manifests cell-type specificity, we noticed that CGNs 314 

predicted similar disease gene enrichment patterns in tissues such as the intestine and the liver (Fig. 315 

3a). A case in point is hepatitis-related terms, where genes associated with this condition showed 316 

the most significant within-group connectivity in liver CGNs of most major immune cell types 317 

(Fig. 3b). Noteworthy was the pronounced within-group connectivity observed in both myeloid 318 

cell and T cell CGNs, highlighting the integral role of T cells in viral infectious diseases and the 319 

contribution of Kupffer cells (resident liver macrophages) to hepatitis (42). This finding indicates 320 

that HCNetlas effectively identifies relevant cell types and tissues implicated in hepatitis. 321 

Furthermore, genes related to schizophrenia showed increased within-group connectivity across 322 

brain tissues, particularly in the primary motor cortex (M1) and middle temporal gyrus (MTG) 323 
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CGNs (Supplementary Figure S4B). These observations underscore the potential of HCNetlas 324 

CGNs as a valuable resource for uncovering intricate relationships between diseases and specific 325 

cell types or tissues, thereby enhancing our understanding of disease pathology at a cellular level. 326 

HCNetlas, having proven its functional and biological relevance, is posited to be an effective 327 

reference for network analyses in disease studies. To enhance their utility, we have developed a 328 

suite of network analysis methodologies (Figure 3C) and applied them to investigate various 329 

diseases, showcasing the adaptability of HCNetlas CGNs.  330 

Firstly, if we have a set of disease genes, determining the specific cell type where these genes 331 

predominantly influence disease progression is crucial. To evaluate the functional role of these 332 

disease genes in a targeted cell type, we have developed an approach known as differential 333 

compactness analysis. This method compares the degree of interconnectivity among disease genes 334 

between the reference CGNs in HCNetlas and their corresponding disease CGNs derived from 335 

disease samples. In this framework, ‘gain-of-compactness’ denotes an enhanced interconnectivity 336 

of disease genes within disease CGNs, suggesting an increased functional role in the disease 337 

context. Conversely, ‘loss-of-compactness’ implies a reduced interconnectivity. Through this 338 

analysis, we can gain insights into which cell type the disease genes are actively involved and 339 

determine whether their impact on the disease state is characterized by a gain or loss of function. 340 

Secondly, to identify disease genes and ascertain the cell type implicated in the disease, focusing 341 

on genes exhibiting significant differences in network centrality between diseased and healthy 342 

states can be insightful. Therefore, we prioritize genes based on differential hubness between 343 

disease CGNs and reference CGNs. This methodology involves categorizing genes into two 344 

distinct groups: ‘gain-of-hubness’ and ‘loss-of-hubness.’ Genes in the ‘gain-of-hubness’ category 345 

show increased centrality in disease CGNs compared to reference CGNs, indicating a heightened 346 
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role in the disease state. Conversely, genes in the ‘loss-of-hubness’ category demonstrate 347 

decreased centrality in disease CGNs, suggesting a reduced or altered function in the disease 348 

context. This approach effectively distinguishes genes that are central to disease mechanisms in 349 

specific cell types. 350 

Lastly, examining pathways that show differential associations between diseased and healthy 351 

states in cell types associated with the disease can provide insights into the molecular mechanisms 352 

underlying pathogenesis. To conduct the differential pathway analysis, we initially select signature 353 

genes representative of both diseased and healthy states for each cell type. This selection is based 354 

on identifying the top-ranked hub genes (for example, the top 10 hub genes) within both the disease 355 

CGN and the corresponding reference CGN. Subsequently, through gene set enrichment analysis, 356 

we aim to identify and prioritize pathways that are differentially associated between the disease 357 

and healthy states. In this context, ‘gain-of-pathways’ refers to those pathways that show an 358 

increased association with the disease state in comparison to the healthy control. Conversely, ‘loss-359 

of-pathways’ denotes pathways that have a reduced association in the disease state compared to 360 

the healthy state. Identifying these differentially associated pathways enables us to formulate 361 

hypotheses that delve deeper into the molecular basis of pathogenesis in disease-associated cell 362 

types.  363 

 364 

Cell type-resolved genetic analysis of an autoimmune disease using HCNetlas 365 

Given that the majority of the CGNs provided by HCNetlas are derived from immune cells, this 366 

resource would be particularly valuable for studying immune disorders such as autoimmune 367 

diseases. To evaluate capability of HCNetlas to identify the specific immune cell types where 368 
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disease genes have an impact on pathogenesis, we focused our research on systemic lupus 369 

erythematosus (SLE) which is a chronic autoimmune disorder characterized by elusive 370 

pathogenesis, genetic susceptibility, and clinical heterogeneity (43). For constructing disease 371 

CGNs for SLE, we manually annotated scRNA-seq data from 38 SLE patients (20) using canonical 372 

markers (Figure 4A). These disease CGNs were then compared with the blood cell CGNs from 373 

HCNetlas, providing insights into the cell type specificity underlying SLE pathogenesis. 374 

Leveraging the principle that increased network compactness among disease-associated genes 375 

within a CGN indicates their significant role in the pathogenesis for that cell type, we assessed the 376 

involvement of major immune cell types in SLE. We applied a set of SLE-susceptible genes 377 

(Supplementary Table S2), gathered from the KEGG pathway database, to both disease CGNs 378 

and reference CGNs. Our analysis revealed that network compactness in myeloid cells and B cells 379 

is significantly greater in the disease CGN compared to the reference CGN (Figure 4b). This 380 

suggests that SLE-susceptible genes are critically involved in the disease progression primarily 381 

through myeloid cells and B cells. 382 

Considering that genes associated with SLE predominantly exert their effects through myeloid 383 

cells, we prioritized genes for SLE based on network centrality within both disease and reference 384 

CGNs specifically pertaining to myeloid cells. Aligning with previous studies that emphasize the 385 

increased expression of type 1 interferon (IFN) and interferon-stimulated genes (ISGs) in SLE 386 

patients (20,44,45), we evaluate the prediction of SLE-associated genes based on retrieval rate of 387 

ISGs (Supplementary Table S3) using the receiver operating characteristic (ROC) curve. 388 

Consistent with the greater network compactness of SLE-susceptible genes in the disease myeloid 389 

CGN relative to the reference myeloid CGN, our results showed a significantly improved 390 

prediction of ISGs in the disease myeloid CGN when compared to the reference myeloid CGN 391 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 9, 2024. ; https://doi.org/10.1101/2024.06.07.597878doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.07.597878
http://creativecommons.org/licenses/by/4.0/


19 

 

(Figure 4C). Likewise, for other cell types, disease CGNs demonstrated improved predictions of 392 

ISGs compared to the reference CGNs (Figure 4D, Supplementary Table S4). Taken together, 393 

these findings underscore the critical role of myeloid cells in the initiation and progression of SLE, 394 

corroborating previous research that highlights the link between SLE and myeloid cells (46-48). 395 

Next, we hypothesized that gain-of-hubness genes for myeloid cells could effectively differentiate 396 

diseased myeloid cells from their healthy counterparts. To test this hypothesis, we initially 397 

identified a set of 131 gain-of-hubness genes with statistical significance (Supplementary Table 398 

S5a). We then examined the distribution of their expression level between disease-state myeloid 399 

cells and their corresponding healthy controls. Our observations revealed a significant disparity 400 

between these two distributions, affirming the potential of these 131 gain-of-hubness genes to 401 

distinguish diseased myeloid cells (Figure 4E left panel). Furthermore, we observed a positive 402 

correlation between the expression levels of these gain-of-hubness genes and the Systemic Lupus 403 

Erythematosus Disease Activity Index (SLEDAI) scores, albeit with limited statistical power due 404 

to the small sample size (Figure 4E right panel). This correlation indicates that the expression 405 

patterns of these 131 gain-of-hubness genes are not only distinctive of diseased states but may also 406 

reflect the severity of SLE in patients. In contrast, the up-regulated DEGs in disease-state myeloid 407 

cells (SupplementaryTable S5b) did not demonstrate the capability to either differentiate 408 

diseased myeloid cells (Figure 4F left panel) or correlate with SLEDAI scores (Figure 4F right 409 

panel). These outcomes imply that collections of CGNs for healthy tissues, such as those provided 410 

by HCNetlas, are apt references for identifying disease states. 411 

 412 

Cell type-resolved genetic analysis of a brain disease using HCNetlas  413 
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HCNetlas offers an extensive collection of CGNs for brain tissue, making it a valuable resource 414 

for investigating neurological disorders. Alzheimer’s disease (AD), a widespread 415 

neurodegenerative condition known for its progressive impact on behavior and cognitive functions, 416 

is one such area where HCNetlas can be particularly useful. To study AD more closely, we have 417 

developed disease CGNs using single-nucleus RNA sequencing (snRNA-seq) data from the 418 

prefrontal cortex of AD patients (25). These disease CGNs were compared with HCNetlas CGNs, 419 

which were derived from the primary motor cortex (M1). This comparison enables a detailed 420 

analysis of alterations in the gene network that is associated with AD, facilitating a deeper 421 

understanding of the disease progression and its impact on brain function. 422 

To identify the primary cell types impacted by AD-associated genes compiled from various 423 

sources (Methods, Supplementary Table S6), we employed differential compactness analysis. 424 

This analysis revealed that AD-associated genes exhibit a high degree of interconnectivity within 425 

the reference CGNs for both inhibitory and excitatory neurons (Figure 5A), suggesting that these 426 

genes predominantly function in these neuron types. Interestingly, we observed that the disease 427 

CGNs for inhibitory and excitatory neurons displayed notably lower network compactness scores 428 

compared to their reference counterparts (i.e., loss-of-compactness). This significant decrease in 429 

network compactness within the diseased neurons points to a loss of connections among AD-430 

associated genes. Such a loss in the diseased state of inhibitory and excitatory neurons could be a 431 

critical factor in the pathogenesis of AD, indicating a disruption in the intricate gene networks that 432 

underlie normal neuronal function. 433 

We then focused on prioritizing genes for AD by either differential expression or differential 434 

hubness between healthy and diseased states across each cell type (Supplementary Table S7). In 435 

alignment with the identified cell type specificity for AD, both inhibitory and excitatory neurons 436 
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demonstrated a more accurate prediction of AD-related genes when analyzed for differential 437 

hubness rather than differential expression (Figure 5B, hypergeometric Test P-value < 0.001). 438 

Interestingly, the predictive capacity using differential expression in these neuron types was lower 439 

compared to that achieved through differential hubness analysis. Additionally, this capacity was 440 

akin to what was observed in other cell types. This finding suggests that a network-based approach 441 

is more effective for predicting AD genes than methods solely based on expression, which tend to 442 

be less specific to AD-associated cell types. Notably, the overlap between gene predictions made 443 

using differential hubness and differential expression was minimal (Supplementary Figure S5A), 444 

indicating that these two approaches are complementary to each other in identifying key genes 445 

associated with AD. 446 

To delve into the molecular mechanisms implicated in AD pathogenesis within inhibitory and 447 

excitatory neurons, we carried out a differential pathway analysis. This analysis was based on CGN 448 

signatures of these neurons, focusing on the top ten genes ranked by hubness (Supplementary 449 

Figure S5B). As anticipated, our analysis revealed that pathways associated with AD and other 450 

related neurodegenerative diseases, such as Parkinson’s disease and Huntington’s disease, were 451 

among those most prominently exhibiting a reduced association, or ‘loss-of-pathway’, in inhibitory 452 

neurons (Figure 5C). In addition to these, we identified several other pathways that exhibited loss-453 

of-pathway in inhibitory neurons, and these findings were validated through a literature survey. 454 

The pathways that were validated to be associated with AD included oxidative phosphorylation 455 

(49), thermogenesis (50), non-alcoholic fatty liver disease (51,52), diabetic cardiomyopathy 456 

(53,54), amyotrophic lateral sclerosis (55), and prion disease (56). Significantly, our analysis 457 

identified that the pathway related to the cholinergic synapse was the most notably increased in 458 

diseased inhibitory neurons. This finding is also relevant given the known involvement of the 459 
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cholinergic signaling in AD (57). We also performed our analysis using an expanded CGN 460 

signature that includes their network neighbors, which confirmed the initial list of top loss-of-461 

pathways (Figure 5D). This reaffirms the importance of these pathways in the pathogenesis of AD, 462 

highlighting their potential roles in the disease’s progression and impact within inhibitory neurons. 463 

In our differential pathway analysis using CGN signatures for excitatory neurons, we 464 

predominantly observed gain-of-pathways. These are pathways showing increased activity in AD 465 

compared to the healthy state, findings which are substantiated by literature evidence (Figure 5E). 466 

For instance, the ErbB signaling pathway is known to mediate amyloid-β (Aβ)-induced 467 

neurotoxicity (58), and HIF-1 (hypoxia-inducible factor-1) signaling has been found to increase 468 

Aβ generation (59). Additionally, a similar analysis with expanded CGN signatures for excitatory 469 

neurons revealed loss-of-pathways akin to those identified in inhibitory neurons (Figure 5F). 470 

Among these findings, the MAPK signaling pathway emerged as the most prominent gain-of-471 

pathway. This is in alignment with previous research demonstrating that MKP-1, a crucial negative 472 

regulator of MAPKs, can reduce Aβ generation and alleviate cognitive impairments in AD models 473 

(60), thereby validating our observation. 474 

 475 

Investigating cell type-resolved lung cancer genetics using HCNetlas  476 

The tumor immune microenvironment has become increasingly recognized as a key hallmark of 477 

cancer. Considering this, we hypothesized that HCNetlas CGNs for immune cells could be 478 

instrumental in identifying cancer-associated genes that primarily function within the immune 479 

microenvironment. Focusing on lung cancer, we constructed disease CGNs for major immune cell 480 

types using single-cell transcriptome data derived from tumor tissues of lung cancer patients (28). 481 
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Through differential hubness analysis, compared to reference CGNs of corresponding cell types, 482 

we pinpointed gain-of-hubness genes predominantly in T cells and myeloid cells, many of which 483 

are known to be associated with lung cancer (Figure 6A, SupplementaryTable S8a). 484 

Interestingly, only a few gain-of-hubness genes were common across multiple immune cell types, 485 

suggesting a specific functional role of cancer-associated genes in T cells and myeloid cells. This 486 

analysis also revealed that differential hubness was more effective in identifying lung cancer-487 

associated genes than the traditional differentially expressed genes (DEGs) analysis (Figure 6B, 488 

Supplementary Table S8b). Notably, many up-regulated DEGs shared among all immune cell 489 

types included very few validated lung cancer genes. When assessing loss-of-hubness genes, a 490 

similar trend was observed: fewer candidates but with more specificity to cell types compared to 491 

down-regulated expression in disease (Figure 6C-D). T cell-specific loss-of-hubness particularly 492 

retrieved a significant number of known lung cancer genes. Additionally, we found supportive 493 

literature evidence for the proposed cell type of action for these validated cancer-associated genes 494 

identified through differential hubness analysis (Supplementary Table S8c). This suggests that 495 

HCNetlas is effective in predicting genes associated with cancer specifically within immune cell 496 

types. 497 

Further evaluation focused on immune checkpoint molecules (ICMs), which are pivotal in 498 

antitumor immunity (61,62). We anticipated an increase in network centrality and expression of 499 

ICMs in tumor-derived immune cells. Confirming our hypothesis, genes identified through 500 

differential hubness analysis were more effective in detecting ICMs, particularly within T cells 501 

and myeloid cells, compared to differential expression analysis (Figure 6E). This finding 502 

underscores the advantage of network-based analyses in pinpointing crucial genes in cancer 503 

immunology. Additionally, using The Cancer Genome Atlas (TCGA) lung cancer data, we 504 
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explored the prognostic value of these genes. We found that the gene expression profile association 505 

score, calculated using GSVA (19), for the set of gain-of-hubness genes in each tumor sample was 506 

predictive of clinical outcomes (Figure 6F), unlike up-regulated DEGs (Figure 6G). 507 

 508 

Discussion 509 

In this study, we have demonstrated the efficacy of a network biology approach for delineating the 510 

genetics of disease at the cellular level, making use of HCNetlas—a compendium of reference 511 

CGNs derived from a single-cell expression atlas of healthy individuals. By comparing these 512 

reference CGNs against their diseased counterparts, which are constructed from single-cell 513 

transcriptomic data of the same cell types in a disease context, we could measure the alterations in 514 

network topology that distinguish healthy from diseased states. We incorporated three analytical 515 

methods within HCNetlas: differential compactness, differential hubness, and differential pathway 516 

analysis. These methods were applied in three distinct case studies addressing diseases of the 517 

immune system, neurological disorders, and cancer, thereby confirming the extensive applicability 518 

of HCNetlas for investigating disease genes in relation to cell type specificity. Our differential 519 

compactness analysis pinpointed cell types associated with diseases. We showed that identifying 520 

differential hub genes between reference and disease CGNs for a disease-associated cell type is an 521 

effective method to predict cell type-specific disease genes. Moreover, by examining differential 522 

pathways associated with top hub genes between reference and disease CGNs, we gained insights 523 

into the molecular mechanisms potentially driving pathogenesis in the disease-relevant cell types. 524 

Consequently, HCNetlas proves to be a robust framework for identifying the specific cell types, 525 
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genes, and molecular pathways involved in diseases, thus significantly advancing our 526 

understanding of how diseases manifest in a cell type-specific manner. 527 

Our study underscores the effectiveness of network-based analysis over conventional expression-528 

based methods in discerning the cell type specificity of disease genes. In our lung cancer case 529 

study, for example, the finding that only a few gain-of-hubness genes were shared across multiple 530 

immune cell types underscores that it is the alterations in network configuration, rather than just 531 

changes in gene expression, that more accurately reflect the cell type-specific functions of genes. 532 

Further, our findings reveal that differential hubness offers greater predictive capacity for cancer-533 

associated genes compared to differential expression analysis. A noteworthy observation was that 534 

while numerous genes were differentially expressed across various immune cell types, only a 535 

limited subset of these genes were validated to be involved in lung cancer. This highlights that 536 

gene properties unique to a cell type, such as differential hubness, can significantly enhance the 537 

accuracy of disease gene prediction. Additionally, even though they were not identified through 538 

expression-level prioritization, the association of gain-of-hubness genes with expression profiles 539 

of tumor samples was found to have prognostic value, unlike the up-regulated DEGs. This implies 540 

that the expression levels of genes that influence disease through interactions with other genes in 541 

specific cell types are more relevant and indicative of the disease context. Thus, our approach not 542 

only identifies disease-relevant genes but also provides insights into the functional significance of 543 

these genes within specific cellular environments. 544 

Despite the promising findings, HCNetlas has some limitations. A significant limitation is the 545 

current scarcity of “control” single-cell gene expression data for a broad spectrum of cell types 546 

and tissues. This lack of data limits the scope and applicability of HCNetlas, as comprehensive 547 

mapping of CGNs is contingent on the availability of extensive transcriptomic data. Consequently, 548 
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our endeavor to create compendium of true reference CGNs was limited by the availability of atlas 549 

level resources with varying health conditions (not necessarily diseased). However, this limitation 550 

is expected to diminish as the field of single-cell transcriptomics continues to grow. As more data 551 

are generated, particularly for healthy tissues, it will become feasible to construct a more 552 

comprehensive array of CGNs, covering a wider variety of cell types. Consequently, the 553 

progression of the HCA project is likely to significantly enhance the utility of HCNetlas, extending 554 

its applicability to a broader range of diseases and deepening our understanding of cellular 555 

behaviors in various pathological states. 556 

Another challenge with HCNetlas stems from the inherent limitations of our network inference 557 

methodology, which is dependent on a reference interactome. The reference interactome is mapped 558 

predominantly using data from a control state, rather than from a disease state. Consequently, this 559 

approach may overlook interactions that are unique to the disease state, as these might be 560 

underrepresented or entirely absent in the reference interactome. Such omissions can limit the 561 

analytical capacity of HCNetlas, particularly in accurately portraying disease-specific network 562 

dynamics. Moreover, low number of cells (below approximately 1000 cells) often models 563 

incomplete network structure, and thus may hinder disease analysis depending on the data input. 564 

For example, this has prevented us from observing microglia with our input AD scRNA-seq data, 565 

an important celltype known to be associated with the disease. To address this issue, future 566 

developments of HCNetlas may need to include the de novo inference of gene networks directly 567 

from disease sample data. Integrating these disease-specific networks into HCNetlas would 568 

provide a more comprehensive view of the gene interactions occurring in various diseases. This 569 

enhancement would not only overcome the current limitations but also enrich the platform 570 
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capability to provide more nuanced and accurate insights into disease mechanisms at the molecular 571 

level. 572 

 573 

 574 
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The edge information of CGNs for HCNetlas and codes for the presented network analysis are 576 
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Figure 1. Overview of Human Cell Network Atlas (HCNetlas) 

A. Schematic representation of the workflow from single-cell transcriptomic data collection to the 

construction of the HCNetlas. Single-cell RNA sequencing data preannotated for cell type were 

used to build cell type-specific gene networks (CGNs) using the scHumanNet framework. 

HCNetlas is comprised of a comprehensive collection of these gene networks, representing various 

human tissues and cell types. B. Uniform Manifold Approximation and Projection (UMAP) 

visualization of CGNs based on gene profiles, highlighting the major cell lineages, with node size 

representing the number of genes in each network. Major celltype “Other” in grey (Major cell type 

abbreviations; B; B cells, Br; Brain cells, My; Myeloid cells, T; T cells) C. UMAP plot displaying 

the interrelationship among the CGNs based on network gene profiles for major organs or tissue 

types. Each point represents a gene network associated with a specific organ or tissue type colored 

distinctly. 
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Figure 2. Cell type-specific functionality of HCNetlas CGNs 

A-B. Bar graph illustrating the within-group connectivity of B cell-related (A) or T cell-related (B) 

Gene Ontology biological process (GOBP) genes in the respective CGNs. Connectivity is 

normalized by each CGN’s total node number. All tissues with over 0 value of normalized 

connectivity for both B and T cells are included. C. Heatmap displaying the percentile rank of the 

top 15 hub genes in spleen CGNs, with values scaled per row, with color intensity indicating the 

expression level from low (blue) to high (red). D-E. UpSet plots for two major CGNs, B cell CGN 

(D) and T cell CGN (E), representing the intersection of network genes across different tissues.  
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Figure 3. Overview of cell type-resolved disease genetics using HCNetlas 

A. Heatmap displaying the disease profiles of various cell types across different tissues, conducted 

with single-sample gene set enrichment analysis (ssGSEA). Each column represents a CGN of 

HCNetlas, while each row corresponds to a disease gene set sourced from either DisGeNET or 

GWAS Catalog. Color intensity indicates the degree of association of the CGN signature genes 

with each disease gene set. B. Bar graphs showing the within-group connectivity of genes 

associated with toxic hepatitis across different cell lineages, in various tissues. The bars are color-

coded to represent different cell lineages. 15 terms and their combined genes were assessed from 

DisGeNET terms based on the key word search “hepatitis”. C. Schematic representation and 

summary of the analytical framework used for comparing disease CGNs with reference CGNs 

from HCNetlas. The workflow illustrates the process of CGN inference from single-cell 

transcriptomes of disease samples and contrasts disease CGNs for specific immune cells against 

reference CGNs. The analysis includes (i) differential compactness, highlighting the difference in 

interconnectivity within disease-associated genes; (ii) differential hubness, showing the changes 

in hubness; and (iii) differential pathways, contrasting pathway associations between disease and 

healthy states based on enrichment for CGN signature genes. 
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Figure 4. Cell type-resolved disease genetics for systemic lupus erythematosus (SLE) 

A. Uniform Manifold Approximation and Projection (UMAP) plot representing the 

interrelationship among immune cells. B. Bar chart showing normalized interconnectivity among 

SLE-susceptible genes in both reference and disease cell type-specific gene networks (CGNs) for 

various cell types. C. Receiver Operating Characteristic (ROC) curves for retrieval of interferon 

stimulating genes (ISGs) by network hubness in disease myeloid CGN and reference myeloid CGN. 

D. Comparison of area under the ROC curve (AUROC) values with CGNs for various cell types, 

contrasting the reference and disease CGNs to assess prediction capability. E. Left panel: 

Distribution of expression levels for 131 gain-of-hubness genes in myeloid cells. Right panels: 

Correlation analysis of expression levels of the 131 gain-of-hubness genes with the Systemic 

Lupus Erythematosus Disease Activity Index (SLEDAI). F. Same as for (E) except using up-

regulated differential expression genes (DEGs).  
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Figure 5. Cell type-resolved disease genetics for Alzheimer’s disease (AD) 

A. Bar graph depicting the normalized edge count among AD-associated genes in reference and 

disease cell type-specific gene networks (CGNs) for various neurological cell types. B. Bar graph 

showing the number of validated AD genes predicted by differential expression or differential 

hubness across the four neurological cell types. Statistical significance of overlap is shown for 

each gene sets (*P < 0.05, ** P < 0.01, *** P < 0.01 by one-sided hypergeometric test) C-F. Ten 

most differentially associated KEGG pathways with CGN signature genes: Differentially 

associated pathways for inhibitory neuron CGN signature (C), inhibitory neuron expanded CGN 

signature (D), excitatory neuron CGN signature (E) and excitatory neuron expanded CGN 

signature (F).  
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Figure 6. Identifying genes that contribute to lung cancer through immune cells using 

HCNetlas. 

A-D. UpSet plots for predicted genes for lung cancer by gain-of-hubness (A), up-regulated 

differential expressed genes (DEGs) (B), loss-of-hubness (C) or down-regulated DEGs (D), 

representing the intersection of predictions across different cell types. Orange bar indicates the 

number of lung cancer genes validated by various databases such as CancerMine, IntOGen, and 

cancer gene consensus. E. Bar graph showing the number of immune checkpoint molecules (ICMs) 

retrieved by both gain-of-hubness genes and up-regulated DEGs across different immune cell 

types. Statistical significance of overlap is shown for each gene sets (*P < 0.05, ** P < 0.01, *** 

P < 0.01 by one-sided hypergeometric test) F-G. Kaplan-Meier survival curve analysis for cancer 

patients from TCGA cohort (TCGA-LUSC and TCGA-LUAD), stratified by the enrichment score 

of gain-of-hubness genes (F) or up-regulated DEGs (G). The graph shows the overall survival 

probability over time, with patients categorized into high and low quantiles based on the gene set 

variation analysis (GSVA) score. Significance of survival rate difference between the upper and 

lower quantile expression groups were evaluated using the log-rank test. 
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Supplementary Table Legends 

Supplementary Table S1. HCNetlas cell type, abbreviation, and cell count. 

 

Supplementary Table S2. SLE susceptible gene list. 184 SLE-associated genes are obtained 

from KEGG pathway (hsa05322) and KEGG disease (H00080) databases. 

 

Supplementary Table S3. The list of interferon-stimulated genes. We compiled interferon-

stimulated genes (ISGs) from hallmark gene sets of the molecular signature database (MSigDB) 

and the Immunological Genome Project (ImmGen) (24), resulting in a total of 423 ISGs. 

 

Supplementary Table S4. Area under ROC for prediction of interferon-stimulated genes 

(ISGs) by network centrality. AUROC were computed with 423 ISGs from Supplementary Table 

S3 were applied to genes sorted based on degree centrality. 

 

Supplementary Table S5. Gain-of-hubness genes and up-regulated genes in SLE myeloid 

network. Gain-of-hubness genes were defined by differential percentile rank > 0.5 and q-value < 

0.05. DEGs were genes with an adjusted p-value < 0.05 and an log2-fold change > 0.5, focusing 

solely on coding genes.  
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Supplementary Table S6. Genes associated with Alzheimer’s disease. AD-associated genes 

were obtained from the KEGG pathway (M16024), MSigDB (M35868), and Wightman et al. 

Supplementary Table S7. Gain-of-hubness genes, loss-of-hubness genes, up-regulated DEGs, 

and down-regulated DEGs in AD CGNs. Gain/loss-of-hubness genes were defined by absolute 

differential percentile rank > 0.5 and q-value < 0.05. DEGs were genes with an adjusted p-value < 

0.05 and an absolute log2-fold change > 0.5, focusing solely on coding genes. 

Supplementary Table S8. Gain-of-hubness genes, loss-of-hubness genes, up-regulated 

DEGs, and down-regulated DEGs in lung cancer CGNs. Gain/loss-of-hubness genes were 

defined by absolute differential percentile rank > 0.5 and q-value < 0.05. Up-regulated DEGs 

were genes with an adjusted p-value < 0.05 and log2-fold change > 0.5, and down-regulated 

DEGs were genes with adjusted p-value < 0.01 and log2-fold change < -1.5. 
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