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Abstract

Cell type-specific actions of disease genes add a significant layer of complexity to the genetic
architecture underlying diseases, obscuring our understanding of disease mechanisms. Single-cell
omics have revealed the functional roles of genes at the cellular level, identifying cell types critical
for disease progression. Often, a gene impact on disease through its altered network within specific
cell types, rather than mere changes in expression levels. To explore the cell type-specific roles of
disease genes, we developed HCNetlas (human cell network atlas), a resource cataloging cell type-
specific gene networks (CGNs) for various healthy tissue cells. We also devised three network
analysis methods to investigate cell type-specific functions of disease genes. These methods
involve comparing HCNetlas CGNs with those derived from disease-affected tissue samples.
These methods find that systemic lupus erythematosus genes predominantly function in myeloid
cells, and Alzheimer's disease genes mainly play roles in inhibitory and excitatory neurons.
Moreover, they show many lung cancer genes exert their roles in immune cells. These findings
suggest that HCNetlas has the potential to link disease-associated genes to cell types of action,
facilitating development of cell type-resolved diagnostics and therapeutic strategies for complex

human diseases.

Introduction

Human tissues comprise a mosaic of cell types, each with distinctive functional roles that affect
how genes associated with diseases contribute to their onset and progression. Grasping how
specific cell types influence the action of disease-related genes is a complex and as-yet unresolved

aspect of human genetics (1,2). The Human Cell Atlas (HCA) project (3), which compiles
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extensive single-cell RNA-sequencing (scRNA-seq) data from healthy tissues, seeks to illuminate

the relationship between cell types and disease through gene expression profiles (4).

However, the role of a disease gene within a specific cell type often extends beyond expression
levels to its position and influence within a gene network, known as network centrality. To address
this, we need a network-focused approach for mapping disease genes to their functional landscapes
within specific cell types. In response, we have crafted scHumanNet (5), leveraging HumanNet (6)
as the foundational interactome, refining connections based on cell-to-cell variation in gene
expression (7). This framework allows us to discern the network topologies of disease genes by
contrasting cell type-specific gene networks (CGNs) (8) from healthy versus diseased tissues,
leading to the identification of the cell types wherein disease genes are influential. Typically, this

involves creating CGNs for both healthy and diseased tissue samples.

Identifying altered cellular states in diseases typically requires comparisons with matched control
samples, which can entail additional costs, efforts, and sometimes may even be unavailable. This
challenge can be mitigated if there is access to a comprehensive collection of reference cells from
healthy individuals, like a cell atlas. Such a resource could potentially eliminate the need to
generate control samples. In a similar vein, a network atlas that offers reference CGNs for a diverse
array of cell and tissue types from healthy individuals could significantly streamline the
investigation of disease-state network alterations. Moreover, while individual gene expression
values are prone to aggregate according technical origins across different batches confounding
biological variations, the inference of gene associations with adequate cell number is generally
less affected by such variances especially when large number of samples are used (e.g. cells) (9).
This is because co-expression signals are intrinsically normalized within each batch, making them

more reliable for network comparison. Therefore, we propose that an integrated collection of
3
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CGNs, derived from a cell atlas, would constitute a robust framework for cell type-specific
analysis of disease genes. This approach would circumvent the need for matched control samples,

offering a more efficient route to understanding disease mechanisms.

Here, we introduce HCNetlas (human cell network atlas), a collection of reference CGNs from a
wide array of healthy tissue cells, which parallels the HCA in its potential impact on disease
research. By utilizing these reference CGNss, it becomes feasible to uncover associations between
disease genes and specific cell types, relying solely on the availability of disease sample data. This
approach also bypasses the necessity to infer CGNs from matched control samples, streamlining
the process of identifying disease-specific gene interactions within a specific cell type. HCNetlas
currently includes 198 CGNs covering 61 cell types across 25 organs. We clustered the CGNs
based on their disease profiles and observed the formation of groups comprising similar cell types.
This clustering pattern indicates the potential of these CGNs to effectively resolve the cell type
specificity of disease gene functions. Additionally, we implemented three network-based methods
for assessing the cell type-specific functions of disease genes. Utilizing this analytical framework
on both reference CGNs and those derived from diseased tissues enabled us to pinpoint cell types
implicated in various diseases, thereby validating the effectiveness of our approach in cell type-
resolved disease genetics. Consequently, HCNetlas holds great promise in expediting the
discovery of biomarkers and therapeutic targets that are specifically tailored to the cellular context
of disease genes, offering a refined perspective on the intricate web of cell type-specific gene

actions in human diseases.

Methods
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81  Single-cell and single-nucleus transcriptomic data used for HCNetlas construction

82  We employed both single-cell and single-nucleus RNA sequencing (scRNA-seq and snRNA-seq)
83  data from multiple sources to reconstruct HCNetlas CGNs. We acquired scRNA-seq data for
84 329,762 immune cells spanning 16 tissues from 12 deceased donors in a cross-tissue immune cell
85 atlas (10). This dataset was pre-annotated with CellTypist and subjected to manual curation.
86  Additionally, we integrated data from Tabula Sapiens (11), which included the human
87  transcriptome reference for 249,961 immune cells across 24 tissues from 15 donors. For

88  constructing brain CGNs, we utilized snRNA-seq data of Allen Brain Atlas (http://www.brain-

89  map.org) (12), derived from 76,533 nuclei in the primary motor cortex (M1) and 166,868 nuclei
90 in the middle temporal gyrus (MTG) using 10x Genomics Chromium platform. All data were

91  processed through alignment, quantification by Cell Ranger, and cell type annotation.

92  We harmonized pre-annotated cell types across all datasets and applied scHumanNet (v. 1.0.0) (5)
93  to the single-cell transcriptomic data to generate CGNs for various tissues and cell types. To
94  construct CGNs for major cell types, we aggregated sub-cell types into broader categories, such as
95 T cells, B cells, and myeloid cells. In total, 198 CGNs were generated, encompassing 25 tissues

96 and 61 cell types.

97

98  Evaluating the cell-type-specificity of CGNs

99  We performed dimension reduction analysis with uniform manifold approximation and projection
100 (UMAP) to visualize interrelationships among HCNetlas CGNs. Utilizing scHumanNet for CGN
101  construction, which references the HumanNet (6) comprising 18,593 human genes, we generated
102  binary profile vectors indicating the presence (1) or absence (0) of each gene in the network for

5
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103  every CGN. For visualizations, we employed the UMAP package in R (v. 0.2.10), setting min_dist

104  to 0.5 to balance the trade-off between local and global structure in the data.

105 To determine the cell-type-specific functionality of the HCNetlas CGNs, we explored the
106  enrichment of cell-type-associated genes, particularly for B cells and T cells. We collated cell-
107  type-associated genes from three authoritative databases: Gene Ontology biological process
108 (GOBP), CellMarker, and the Azimuth cell type database (13-15). We postulated that genes
109  functionally connected within a CGN reflect the properties of their respective cell type, thus we
110  considered the interconnectivity within genes for each cell type as a measure of the cell-type

111 specificity.

112 Additionally, we identified hub genes within each CGN, which are likely to play pivotal roles in
113 the function of their corresponding cell type. We profiled the top 15 hub genes, ranked by degree
114  centrality, for each major cell type across various tissues using the FindA//Hub() function of the
115  scHumanNet. This profiling helped to ascertain the relative importance of these hub genes within

116  the network.
117
118 Overall assessment of the association between CGNs and diseases

119  We assessed whether HCNetlas CGNs can discern connections between diseases and cell types by
120  profiling CGNs with disease-association scores. Within each CGN, we ranked the 18,593 genes
121 from the HumanNet reference interactome by degree centrality, utilizing the GetCentrality()
122 function of the scHumanNet. Disease gene sets, totaling 5,763, were compiled from DisGeNET

123 (16) and GWAS Catalog (17) for the analysis. Assessment of disease gene set association with
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124  each CGN was performed with ssGSEA (v. 2.0) (18) and GSVA (19), the latter via the gsva()

125  function from the GSVA package (v. 1.38.2).

126  Furthermore, we conducted differential compactness analysis on the HCNetlas CGNs using the
127  same disease gene sets. For each gene set, we calculated the within-group connectivity across all
128 198 networks to gauge network compactness. To accommodate variations in network size, we
129  normalized the within-group connectivity by the number of nodes in each network and then scaled
130  these normalized values by multiplying them by 10,000 to ensure a consistent basis for comparison

131  across all networks.

132

133 Cell type-resolved genetic analysis of systemic lupus erythematosus (SLE) with HCNetlas

134  We acquired scRNA-seq data for peripheral blood mononuclear cells (PBMCs) from 41 patients
135  with SLE and 15 healthy controls as reported by Nehar-Belaid et al. (20). To ensure a consistent
136  analysis, we excluded two SLE patient samples lacking SLEDAI scores. Following quality control
137  measures, including the removal of doublets using the DoubletFinder (v. 2.0.0) (21) package and
138  the exclusion of cells with fewer than 400 transcripts or over 5% mitochondrial gene content, the
139  dataset was narrowed to approximately 276,000 cells. After normalization and scaling with Seurat
140  package (v. 4.1.1), we identified 3,000 variable genes using the vst() and FindVariableFeatures()
141  functions. Batch effects were mitigated by applying principal component analysis (PCA) and
142  Harmony (v. 1.0) (22) (dims = 40), and cellular clustering was performed using the Louvain
143 method (resolution = 1.5), followed by UMAP visualization with 40 dimensions. Cell types were
144  manually annotated using canonical markers after optimizing the number of principal components

145  and clustering resolution.
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146  For constructing SLE-specific CGNs, we focused on the curated data from SLE patients. We built
147  networks for B cells, CD4" T cells, CD8" T cells, myeloid cells, and NK cells. Using the
148  Compactness() function, we performed differential compactness analysis. We referenced 184
149  SLE-associated genes from KEGG pathway (I05322) and KEGG disease (H00080) databases,
150  comparing connectivity within disease CGNs and HCNetlas CGNs, and visualized the networks

151  in Cytoscape (v 3.9.1) (23).

152  Node centrality within these networks was computed using the GetCentrality() function from the
153  scHumanNet package. We compared the percentile ranks of centrality for disease CGNs against
154  the reference CGNs of HCNetlas using the DiffPR.HCNetlas() function. Genes showing
155  differential hubness were pinpointed with FindDiffHub. HCNetlas(), with significance defined by

156  ag-value < 0.05 after Benjamini-Hochberg correction to control false discovery rate (FDR).

157  We compiled interferon-stimulated genes (ISGs) from hallmark gene sets of the molecular
158  signature database (MSigDB) and the Immunological Genome Project (ImmGen) (24), resulting
159 inatotal 0f 423 ISGs. The efficacy of prediction for ISGs by hubness within SLE-associated CGNs
160  was assessed using receiver operating characteristic (ROC) curve analysis. The ROC curve was

161  generated using the roc() function from the pROC package (v. 1.18.0).

162  To explore the diagnostic potential of gain-of-hubness genes, we computed an expression score
163  for the genes in myeloid cells via AddModuleScore() of the Seurat package and evaluated the
164  differences in distribution of expression values between patients and healthy controls using the

165  Wilcoxon signed-rank test.

166  DEG analysis was performed by merging Seurat objects containing HCNetlas healthy tissue data

167  with disease scRNA-seq data. After normalization and scaling by a factor of 10,000, we identified
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168 2,000 variable genes. DEGs were pinpointed for key cell types using Seurat's FindMarkers()
169  function, considering genes with an adjusted p-value < 0.05 and an absolute log>-fold change >

170 0.5, focusing solely on coding genes.

171

172 Cell type-resolved genetic analysis of Alzheimer’s disease (AD) with HCNetlas

173 In our study of AD, we used snRNA-seq data with annotated cell types from Morabito et al. (25).
174  Since the data were derived from the prefrontal cortex of brain tissues, the generated CGNs for
175  AD were compared with reference CGNs for the primary motor cortex (M1) from the HCNetlas.
176  We grouped the cell type annotations into four main categories: astrocytes, inhibitory neurons,
177  excitatory neurons, and oligodendrocytes. The identification of differential hubness genes and
178  DEGs within these cell types was carried out using the same methodology applied in the analyses
179  of SLE. To ascertain the relevance of AD-associated genes predicted by our differential hubness
180  analysis, we referenced genes linked to AD in the KEGG pathway (M16024), MSigDB (M35868),

181  and Wightman et al. (26).

182  Considering the association of gain-of-hubness and loss-of-hubness genes with AD in inhibitory
183  and excitatory neurons, we constructed network-ranked signatures for both reference and AD-
184  specific CGNs for the cell types. The signature genes were based on the top ten hub genes by
185  degree centrality within each CGN. The networks of these top-tier hub genes were visualized using
186  the Cytoscape software (23). Furthermore, we conducted gene set enrichment analysis (GSEA) on
187  these network-ranked signatures using the enrichR package (27). To evaluate the pathways
188  differentially associated between disease CGNs and reference CGNs, we introduced a metric

189  called diffQ, calculated as follows:
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g—value of association with disease CGN

190  diffQ = -logio( )

g—value of association with reference CGN

191  In this formula, a positive diffQ value signifies that a pathway is more strongly associated with the
192  cell type in its diseased state than in its healthy state (gain-of-pathway). Conversely, a negative
193  diffQ value indicates greater association with the cell type in its healthy state as compared to its
194  diseased state (loss-of-pathway). To emphasize the most significantly altered pathways, we
195  focused on the top ten KEGG pathways with the highest absolute diffQ values. This approach

196  effectively pinpoints the key molecular pathways involved in the pathogenesis of AD.

197

198  Cell type-resolved genetic analysis of lung cancer using HCNetlas

199  To create lung cancer-specific CGNs, we used scRNA-seq data from tumor tissues provided by
200 Qian et al. (28). We retained the pre-annotated cell-type identifications from the datasets. For
201  comparison with reference CGNs derived from paired normal tissues, we constructed networks
202  from both the lung cancer and healthy control data. Following the scHumanNet protocol, we
203  generated networks and defined differential hubness genes using FindDiffHub(). The process of
204  identifying differential hubness genes within each cell type was conducted using the same
205 methodology employed in the SLE analyses. Similarly, the identification of DEGs followed the
206  methodology used in the SLE studies, with the exception that genes exhibiting an absolute log,-

207  fold change < —1.5 were categorized as down-regulated DEGs.

208  To validate the lung cancer relevance of the identified genes, we referenced the Cancer Gene
209  Census, CancerMine, and IntOGen databases (29-31). We assessed the proportion of lung cancer-
210  associated genes detected uniquely through differential hubness, uniquely through DEGs, and by

211  the intersection of both methods. Furthermore, we analyzed 42 immune checkpoint molecules
10
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212 listed by Auslander et al. (32) to determine if cell-type-specific genes vital for cancer immunity

213 are discernible through both expression-based and network-based analyses.

214  We investigated the prognostic potential of genes identified by cell-type-specific differential
215  hubness and differential expression using survival analysis on TCGA lung cancer datasets (TCGA-
216  LUSC, TCGA-LUAD). Initially, we identified a total of 379 gain-of-hubness genes and 211 up-
217  regulated DEGs from three major cell types: B cells, T cells, and myeloid cells. Subsequently,
218  genomic and clinical data for 1,017 lung cancer samples were acquired from the GDC portal (33).
219  The STAR-Counts data underwent preprocessing, log-normalization, and variance stabilization
220  using the vst() function in the DESeq2 R package (v. 1.30.1). With the application of GSVA (19),
221  we evaluated the association of both gain-of-hubness genes and up-regulated DEGs with each
222 tumor expression profile of the patients. Patients were then classified into upper and lower quartile
223 groups based on their GSVA scores. These groups were further examined through Kaplan-Meier
224  survival curves. To ensure the reliability of our findings, we adjusted all p-values obtained from

225  the survival analysis using the Benjamini-Hochberg method to control the FDR.

226

227  Results

228  HCNetlas: A catalog of reference CGNs for various healthy human tissues

229  To build reference CGNs, we utilized scRNA-seq data from the HCA project (3) and single-
230 nucleus RNA-sequencing (snRNA-seq) data from the Allen Brain Atlas (12). Our single-cell
231  transcriptomic dataset comprised 763,559 cells from 28 donors. We generated gene networks for
232 each predefined cell type using the scHumanNet framework (5) (Figure 1A), providing a

233 comprehensive baseline for identifying disease-associated genes and cell types.

11
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234 When constructing CGNs, the number of cells used can influence the efficacy of network inference.
235  To investigate this aspect, we conducted an analysis of CGNs derived from HCA data, specifically
236  examining how the number of cells used for network inference correlates with the overall network
237  size. Our findings indicated a clear trend: as the number of cells increases, there is a corresponding
238  rise in both the node and edge counts within the inferred CGNs. However, this growth in network
239  complexity tends to plateau once the cell count reaches approximately 1,000 (Supplementary
240  Figure S1A). The observed saturation point suggests that the inference of CGNs becomes
241  substantially robust to the effects of sample size when the number of cells exceeds 1,000. Based
242  on this insight, we focused our study on networks inferred from datasets comprising a minimum
243 0of 1,000 cells. This led to the generation of 198 CGNSs, covering 25 tissues and including 61 distinct
244 cell types (Supplementary Table S1). These networks form our newly established resource,

245  HCNetlas, a catalog of human CGNs for healthy tissues.

246 To examine the interrelationships among the CGNs in our HCNetlas, we analyzed each CGN based
247  on network gene profiles, subsequently visualizing these profiles in a reduced dimensional space.
248  This analysis demonstrated a clear trend where CGNs corresponding to the same cell types
249  exhibited a tendency to cluster together (Figure 1B), reinforcing the concept that these networks
250 accurately capture and reflect the specificity inherent to each cell type. Notably, CGNs within the
251  myeloid and B cell lineages showed remarkable coherence, in contrast to the T cell lineage CGNs,
252 which exhibited greater heterogeneity. An interesting observation was the close proximity of
253  innate lymphoid cell (ILC) and natural killer (NK) CGNs (Supplementary Figure S1B),
254  underscoring their lineage correlations (34). However, CGNs related to the same tissue types
255  generally did not demonstrate strong clustering with the exception brain tissue network nodes that

256  displayed high similarity (Figure 1C), suggesting that cell type identity is a stronger determinant

12
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257  of network structure than tissue environment. This was further evidenced in the T cell lineage,
258 including ILCs, NK cells, CD4" T cells, and CD8" T cells, where subsets exhibited coherence
259  within cell types but not necessarily within tissue types (Supplementary Figure S1B-C). This
260 aligns with recent studies that emphasize tissue or sub-cell type dependent variability in T cells
261  (35-37). These findings highlight the utility of HCNetlas as a potentially powerful tool for

262  investigating cell type-specific gene functions.
263
264  Assessing the cell type-specific functionality of HCNetlas CGNs

265 To evaluate whether the reference CGNs of HCNetlas accurately reflect cell type-specific
266  functions, we conducted tests using two distinct immune cell types from different lineages: B cells
267 and T cells. The premise of this test was that if the HCNetlas CGNs are effective in representing
268  cellular functions unique to each cell type, then genes for maintaining the identity and function of
269 each cell type should demonstrate interconnectedness within their respective networks. As
270 anticipated, our analysis showed that genes specifically annotated for either B cells or T cells by
271  the Gene Ontology biological process (GOBP) (38) exhibited the highest within-group
272 connectivity in their respective CGNs across various tissues (Figure 2A-B). This pattern of
273  connectivity was further validated by comparing it with cell type marker genes as identified in the
274  Azimuth database (13) and the CellMarker database (14) (Supplementary Figure S2A). These
275  findings underscore the ability of HCNetlas CGNs to capture and represent the unique functional

276  characteristics inherent to specific cell types.

277  Moreover, we investigated the network hub genes within each CGN, identified based on degree

278  centrality (Figure 2C). For instance, in spleen CGNs, CD86, which is pivotal in B cell activation

13
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279  (39), emerged as top hub genes in the B cell CGN. Similarly, genes essential for T cell identity
280 like CD2, CD4, and CD28 were among the top 15 hub genes in the T cell CGN (40). Additionally,
281  S10048, S10049, CD14, markers for monocytic myeloid-derived suppressor cells were prominent
282  hubs in the monocyte CGNs (41). These patterns of hub genes, significant due to their high degree
283  centrality, were consistent across various tissues (Supplementary Figure S2B), underlining the

284  functional interpretability of these hub genes in the context of their respective cell types.

285  Lastly, to assess the tissue dependency of the HCNetlas CGNs, we compared CGN genes for each
286  major cell type across different tissues. We observed limited overlap in CGN genes among
287  different tissues within major cell types (Figure 2D-E, Supplementary Figure S3), suggesting a
288  convergence of networks across tissues within major cell lineages, aligning with findings from
289  previous studies (10,35). These observations indicate that while there are core gene networks
290  characteristic of each cell type, tissue adaptation of CGNs is also evident, underscoring the

291  complexity and diversity of cellular functions across different biological contexts.

292

293  HCNetlas as a tool for unraveling cell type specificity of disease genes

294  The HCNetlas, with its collection of reference CGNs, presents a promising resource for dissecting
295 the cellular specificity of disease genes. The majority of disease-associated genes identified to date
296  have been derived from bulk tissue data, which often fails to specify the exact cell types involved
297 in disease onset and progression. In this scenario, HCNetlas CGNs become instrumental in
298  pinpointing the critical cell types at play. To ascertain the effectiveness of HCNetlas CGNs in
299  disease-oriented research, we embarked on an investigation to determine if these CGNs capture

300 and reflect the cell type specificity of various diseases. This involved conducting enrichment

14
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301 analyses on the CGNs using disease-associated genes sourced from two distinct databases:
302 DisGeNET (16) and GWAS Catalog (17). We began by ranking genes within each CGN based on
303 network degree centrality, and then applied single-sample gene set enrichment analysis (ssGSEA)
304  (18) and gene set variation analysis (GSVA) (19) to profile degree of association with each set of
305 disease genes. Our analysis revealed a distinct pattern of congregation among CGNs corresponding
306  to shared cell types, as determined by disease-association profiles (Figure 3A, Supplementary
307 Figure S4A). This finding was particularly notable within cell types, whereas the convergence of
308 networks corresponding to the same tissue types was less pronounced, indicating the specificity of

309 cell types in the context of disease genetics.

310 We next evaluated the connectivity among genes associated with the same disease within CGNs
311  across different tissues. Our hypothesis was that genes would exhibit more interconnectedness in
312  the relevant cell types and tissues primarily responsible for diseases. This analysis aimed to
313  elucidate the relationships between specific diseases and their associated cell types or tissues.
314  While not all diseases we considered manifests cell-type specificity, we noticed that CGNs
315  predicted similar disease gene enrichment patterns in tissues such as the intestine and the liver (Fig.
316  3a). A case in point is hepatitis-related terms, where genes associated with this condition showed
317  the most significant within-group connectivity in liver CGNs of most major immune cell types
318  (Fig. 3b). Noteworthy was the pronounced within-group connectivity observed in both myeloid
319 cell and T cell CGNs, highlighting the integral role of T cells in viral infectious diseases and the
320 contribution of Kupffer cells (resident liver macrophages) to hepatitis (42). This finding indicates
321 that HCNetlas effectively identifies relevant cell types and tissues implicated in hepatitis.
322  Furthermore, genes related to schizophrenia showed increased within-group connectivity across

323  brain tissues, particularly in the primary motor cortex (M1) and middle temporal gyrus (MTG)
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324  CGNs (Supplementary Figure S4B). These observations underscore the potential of HCNetlas
325 CGNs as a valuable resource for uncovering intricate relationships between diseases and specific

326  cell types or tissues, thereby enhancing our understanding of disease pathology at a cellular level.

327  HCNetlas, having proven its functional and biological relevance, is posited to be an effective
328 reference for network analyses in disease studies. To enhance their utility, we have developed a
329  suite of network analysis methodologies (Figure 3C) and applied them to investigate various

330 diseases, showcasing the adaptability of HCNetlas CGNs.

331 Firstly, if we have a set of disease genes, determining the specific cell type where these genes
332  predominantly influence disease progression is crucial. To evaluate the functional role of these
333  disease genes in a targeted cell type, we have developed an approach known as differential
334  compactness analysis. This method compares the degree of interconnectivity among disease genes
335  Dbetween the reference CGNs in HCNetlas and their corresponding disease CGNs derived from
336  disease samples. In this framework, ‘gain-of-compactness’ denotes an enhanced interconnectivity
337 of disease genes within disease CGNs, suggesting an increased functional role in the disease
338  context. Conversely, ‘loss-of-compactness’ implies a reduced interconnectivity. Through this
339 analysis, we can gain insights into which cell type the disease genes are actively involved and

340  determine whether their impact on the disease state is characterized by a gain or loss of function.

341  Secondly, to identify disease genes and ascertain the cell type implicated in the disease, focusing
342  on genes exhibiting significant differences in network centrality between diseased and healthy
343  states can be insightful. Therefore, we prioritize genes based on differential hubness between
344  disease CGNs and reference CGNs. This methodology involves categorizing genes into two
345  distinct groups: ‘gain-of-hubness’ and ‘loss-of-hubness.” Genes in the ‘gain-of-hubness’ category

346  show increased centrality in disease CGNs compared to reference CGNs, indicating a heightened
16
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347 role in the disease state. Conversely, genes in the ‘loss-of-hubness’ category demonstrate
348  decreased centrality in disease CGNs, suggesting a reduced or altered function in the disease
349  context. This approach effectively distinguishes genes that are central to disease mechanisms in

350  specific cell types.

351 Lastly, examining pathways that show differential associations between diseased and healthy
352  states in cell types associated with the disease can provide insights into the molecular mechanisms
353  underlying pathogenesis. To conduct the differential pathway analysis, we initially select signature
354  genes representative of both diseased and healthy states for each cell type. This selection is based
355 onidentifying the top-ranked hub genes (for example, the top 10 hub genes) within both the disease
356  CGN and the corresponding reference CGN. Subsequently, through gene set enrichment analysis,
357 we aim to identify and prioritize pathways that are differentially associated between the disease
358 and healthy states. In this context, ‘gain-of-pathways’ refers to those pathways that show an
359 increased association with the disease state in comparison to the healthy control. Conversely, ‘loss-
360 of-pathways’ denotes pathways that have a reduced association in the disease state compared to
361 the healthy state. Identifying these differentially associated pathways enables us to formulate
362  hypotheses that delve deeper into the molecular basis of pathogenesis in disease-associated cell

363 types.

364

365  Cell type-resolved genetic analysis of an autoimmune disease using HCNetlas

366  Given that the majority of the CGNs provided by HCNetlas are derived from immune cells, this
367 resource would be particularly valuable for studying immune disorders such as autoimmune

368  diseases. To evaluate capability of HCNetlas to identify the specific immune cell types where
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369 disease genes have an impact on pathogenesis, we focused our research on systemic lupus
370  erythematosus (SLE) which is a chronic autoimmune disorder characterized by elusive
371  pathogenesis, genetic susceptibility, and clinical heterogeneity (43). For constructing disease
372  CGNs for SLE, we manually annotated scRNA-seq data from 38 SLE patients (20) using canonical
373  markers (Figure 4A). These disease CGNs were then compared with the blood cell CGNs from

374  HCNetlas, providing insights into the cell type specificity underlying SLE pathogenesis.

375 Leveraging the principle that increased network compactness among disease-associated genes
376  within a CGN indicates their significant role in the pathogenesis for that cell type, we assessed the
377 involvement of major immune cell types in SLE. We applied a set of SLE-susceptible genes
378  (Supplementary Table S2), gathered from the KEGG pathway database, to both disease CGNs
379  and reference CGNs. Our analysis revealed that network compactness in myeloid cells and B cells
380 is significantly greater in the disease CGN compared to the reference CGN (Figure 4b). This
381  suggests that SLE-susceptible genes are critically involved in the disease progression primarily

382  through myeloid cells and B cells.

383  Considering that genes associated with SLE predominantly exert their effects through myeloid
384  cells, we prioritized genes for SLE based on network centrality within both disease and reference
385  CGNs specifically pertaining to myeloid cells. Aligning with previous studies that emphasize the
386 increased expression of type 1 interferon (IFN) and interferon-stimulated genes (ISGs) in SLE
387  patients (20,44,45), we evaluate the prediction of SLE-associated genes based on retrieval rate of
388 ISGs (Supplementary Table S3) using the receiver operating characteristic (ROC) curve.
389  Consistent with the greater network compactness of SLE-susceptible genes in the disease myeloid
390 CGN relative to the reference myeloid CGN, our results showed a significantly improved

391  prediction of ISGs in the disease myeloid CGN when compared to the reference myeloid CGN
18
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392  (Figure 4C). Likewise, for other cell types, disease CGNs demonstrated improved predictions of
393  ISGs compared to the reference CGNs (Figure 4D, Supplementary Table S4). Taken together,
394 these findings underscore the critical role of myeloid cells in the initiation and progression of SLE,

395  corroborating previous research that highlights the link between SLE and myeloid cells (46-48).

396  Next, we hypothesized that gain-of-hubness genes for myeloid cells could effectively differentiate
397 diseased myeloid cells from their healthy counterparts. To test this hypothesis, we initially
398 identified a set of 131 gain-of-hubness genes with statistical significance (Supplementary Table
399  SS5a). We then examined the distribution of their expression level between disease-state myeloid
400 cells and their corresponding healthy controls. Our observations revealed a significant disparity
401  between these two distributions, affirming the potential of these 131 gain-of-hubness genes to
402  distinguish diseased myeloid cells (Figure 4E left panel). Furthermore, we observed a positive
403  correlation between the expression levels of these gain-of-hubness genes and the Systemic Lupus
404  Erythematosus Disease Activity Index (SLEDAI) scores, albeit with limited statistical power due
405  to the small sample size (Figure 4E right panel). This correlation indicates that the expression
406  patterns of these 131 gain-of-hubness genes are not only distinctive of diseased states but may also
407  reflect the severity of SLE in patients. In contrast, the up-regulated DEGs in disease-state myeloid
408 cells (SupplementaryTable SSb) did not demonstrate the capability to either differentiate
409  diseased myeloid cells (Figure 4F left panel) or correlate with SLEDAI scores (Figure 4F right
410  panel). These outcomes imply that collections of CGNs for healthy tissues, such as those provided

411 by HCNetlas, are apt references for identifying disease states.

412

413  Cell type-resolved genetic analysis of a brain disease using HCNetlas
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414  HCNetlas offers an extensive collection of CGNs for brain tissue, making it a valuable resource
415 for investigating neurological disorders. Alzheimer’s disease (AD), a widespread
416  neurodegenerative condition known for its progressive impact on behavior and cognitive functions,
417  is one such area where HCNetlas can be particularly useful. To study AD more closely, we have
418  developed disease CGNs using single-nucleus RNA sequencing (snRNA-seq) data from the
419  prefrontal cortex of AD patients (25). These disease CGNs were compared with HCNetlas CGNss,
420  which were derived from the primary motor cortex (M1). This comparison enables a detailed
421  analysis of alterations in the gene network that is associated with AD, facilitating a deeper

422  understanding of the disease progression and its impact on brain function.

423  To identify the primary cell types impacted by AD-associated genes compiled from various
424  sources (Methods, Supplementary Table S6), we employed differential compactness analysis.
425  This analysis revealed that AD-associated genes exhibit a high degree of interconnectivity within
426  the reference CGNs for both inhibitory and excitatory neurons (Figure SA), suggesting that these
427  genes predominantly function in these neuron types. Interestingly, we observed that the disease
428  CGNs for inhibitory and excitatory neurons displayed notably lower network compactness scores
429  compared to their reference counterparts (i.e., loss-of-compactness). This significant decrease in
430 network compactness within the diseased neurons points to a loss of connections among AD-
431  associated genes. Such a loss in the diseased state of inhibitory and excitatory neurons could be a
432  critical factor in the pathogenesis of AD, indicating a disruption in the intricate gene networks that

433  underlie normal neuronal function.

434  We then focused on prioritizing genes for AD by either differential expression or differential
435  hubness between healthy and diseased states across each cell type (Supplementary Table S7). In

436  alignment with the identified cell type specificity for AD, both inhibitory and excitatory neurons
20
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437  demonstrated a more accurate prediction of AD-related genes when analyzed for differential
438  hubness rather than differential expression (Figure 5B, hypergeometric Test P-value < 0.001).
439 Interestingly, the predictive capacity using differential expression in these neuron types was lower
440  compared to that achieved through differential hubness analysis. Additionally, this capacity was
441  akin to what was observed in other cell types. This finding suggests that a network-based approach
442  is more effective for predicting AD genes than methods solely based on expression, which tend to
443  be less specific to AD-associated cell types. Notably, the overlap between gene predictions made
444  using differential hubness and differential expression was minimal (Supplementary Figure S5A),
445  indicating that these two approaches are complementary to each other in identifying key genes

446  associated with AD.

447  To delve into the molecular mechanisms implicated in AD pathogenesis within inhibitory and
448  excitatory neurons, we carried out a differential pathway analysis. This analysis was based on CGN
449  signatures of these neurons, focusing on the top ten genes ranked by hubness (Supplementary
450  Figure S5B). As anticipated, our analysis revealed that pathways associated with AD and other
451  related neurodegenerative diseases, such as Parkinson’s disease and Huntington’s disease, were
452  among those most prominently exhibiting a reduced association, or ‘loss-of-pathway’, in inhibitory
453  neurons (Figure 5C). In addition to these, we identified several other pathways that exhibited loss-
454  of-pathway in inhibitory neurons, and these findings were validated through a literature survey.
455  The pathways that were validated to be associated with AD included oxidative phosphorylation
456  (49), thermogenesis (50), non-alcoholic fatty liver disease (51,52), diabetic cardiomyopathy
457  (53,54), amyotrophic lateral sclerosis (55), and prion disease (56). Significantly, our analysis
458  identified that the pathway related to the cholinergic synapse was the most notably increased in

459  diseased inhibitory neurons. This finding is also relevant given the known involvement of the
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460  cholinergic signaling in AD (57). We also performed our analysis using an expanded CGN
461  signature that includes their network neighbors, which confirmed the initial list of top loss-of-
462  pathways (Figure 5D). This reaffirms the importance of these pathways in the pathogenesis of AD,

463  highlighting their potential roles in the disease’s progression and impact within inhibitory neurons.

464 In our differential pathway analysis using CGN signatures for excitatory neurons, we
465  predominantly observed gain-of-pathways. These are pathways showing increased activity in AD
466  compared to the healthy state, findings which are substantiated by literature evidence (Figure SE).
467  For instance, the ErbB signaling pathway is known to mediate amyloid-B (A)-induced
468  neurotoxicity (58), and HIF-1 (hypoxia-inducible factor-1) signaling has been found to increase
469 AP generation (59). Additionally, a similar analysis with expanded CGN signatures for excitatory
470  neurons revealed loss-of-pathways akin to those identified in inhibitory neurons (Figure 5F).
471  Among these findings, the MAPK signaling pathway emerged as the most prominent gain-of-
472  pathway. This is in alignment with previous research demonstrating that MKP-1, a crucial negative
473  regulator of MAPKSs, can reduce AP generation and alleviate cognitive impairments in AD models

474  (60), thereby validating our observation.

475

476  Investigating cell type-resolved lung cancer genetics using HCNetlas

477  The tumor immune microenvironment has become increasingly recognized as a key hallmark of
478  cancer. Considering this, we hypothesized that HCNetlas CGNs for immune cells could be
479  instrumental in identifying cancer-associated genes that primarily function within the immune
480  microenvironment. Focusing on lung cancer, we constructed disease CGNs for major immune cell

481  types using single-cell transcriptome data derived from tumor tissues of lung cancer patients (28).
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482  Through differential hubness analysis, compared to reference CGNs of corresponding cell types,
483  we pinpointed gain-of-hubness genes predominantly in T cells and myeloid cells, many of which
484 are known to be associated with lung cancer (Figure 6A, SupplementaryTable S8a).
485 Interestingly, only a few gain-of-hubness genes were common across multiple immune cell types,
486  suggesting a specific functional role of cancer-associated genes in T cells and myeloid cells. This
487  analysis also revealed that differential hubness was more effective in identifying lung cancer-
488  associated genes than the traditional differentially expressed genes (DEGs) analysis (Figure 6B,
489  Supplementary Table S8b). Notably, many up-regulated DEGs shared among all immune cell
490  types included very few validated lung cancer genes. When assessing loss-of-hubness genes, a
491  similar trend was observed: fewer candidates but with more specificity to cell types compared to
492  down-regulated expression in disease (Figure 6C-D). T cell-specific loss-of-hubness particularly
493  retrieved a significant number of known lung cancer genes. Additionally, we found supportive
494 literature evidence for the proposed cell type of action for these validated cancer-associated genes
495 identified through differential hubness analysis (Supplementary Table S8¢). This suggests that
496  HCNetlas is effective in predicting genes associated with cancer specifically within immune cell

497  types.

498  Further evaluation focused on immune checkpoint molecules (ICMs), which are pivotal in
499  antitumor immunity (61,62). We anticipated an increase in network centrality and expression of
500 ICMs in tumor-derived immune cells. Confirming our hypothesis, genes identified through
501 differential hubness analysis were more effective in detecting ICMs, particularly within T cells
502 and myeloid cells, compared to differential expression analysis (Figure 6E). This finding
503 underscores the advantage of network-based analyses in pinpointing crucial genes in cancer

504 immunology. Additionally, using The Cancer Genome Atlas (TCGA) lung cancer data, we
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505 explored the prognostic value of these genes. We found that the gene expression profile association
506  score, calculated using GSVA (19), for the set of gain-of-hubness genes in each tumor sample was

507 predictive of clinical outcomes (Figure 6F), unlike up-regulated DEGs (Figure 6G).

508

509 Discussion

510 In this study, we have demonstrated the efficacy of a network biology approach for delineating the
511  genetics of disease at the cellular level, making use of HCNetlas—a compendium of reference
512 CGNs derived from a single-cell expression atlas of healthy individuals. By comparing these
513  reference CGNs against their diseased counterparts, which are constructed from single-cell
514 transcriptomic data of the same cell types in a disease context, we could measure the alterations in
515 network topology that distinguish healthy from diseased states. We incorporated three analytical
516  methods within HCNetlas: differential compactness, differential hubness, and differential pathway
517 analysis. These methods were applied in three distinct case studies addressing diseases of the
518  immune system, neurological disorders, and cancer, thereby confirming the extensive applicability
519 of HCNetlas for investigating disease genes in relation to cell type specificity. Our differential
520 compactness analysis pinpointed cell types associated with diseases. We showed that identifying
521 differential hub genes between reference and disease CGNs for a disease-associated cell type is an
522  effective method to predict cell type-specific disease genes. Moreover, by examining differential
523  pathways associated with top hub genes between reference and disease CGNs, we gained insights
524  into the molecular mechanisms potentially driving pathogenesis in the disease-relevant cell types.

525  Consequently, HCNetlas proves to be a robust framework for identifying the specific cell types,
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526  genes, and molecular pathways involved in diseases, thus significantly advancing our

527 understanding of how diseases manifest in a cell type-specific manner.

528  Our study underscores the effectiveness of network-based analysis over conventional expression-
529  based methods in discerning the cell type specificity of disease genes. In our lung cancer case
530 study, for example, the finding that only a few gain-of-hubness genes were shared across multiple
531  immune cell types underscores that it is the alterations in network configuration, rather than just
532  changes in gene expression, that more accurately reflect the cell type-specific functions of genes.
533  Further, our findings reveal that differential hubness offers greater predictive capacity for cancer-
534  associated genes compared to differential expression analysis. A noteworthy observation was that
535  while numerous genes were differentially expressed across various immune cell types, only a
536 limited subset of these genes were validated to be involved in lung cancer. This highlights that
537  gene properties unique to a cell type, such as differential hubness, can significantly enhance the
538 accuracy of disease gene prediction. Additionally, even though they were not identified through
539  expression-level prioritization, the association of gain-of-hubness genes with expression profiles
540  of tumor samples was found to have prognostic value, unlike the up-regulated DEGs. This implies
541 that the expression levels of genes that influence disease through interactions with other genes in
542  specific cell types are more relevant and indicative of the disease context. Thus, our approach not
543  only identifies disease-relevant genes but also provides insights into the functional significance of

544  these genes within specific cellular environments.

545  Despite the promising findings, HCNetlas has some limitations. A significant limitation is the
546  current scarcity of “control” single-cell gene expression data for a broad spectrum of cell types
547 and tissues. This lack of data limits the scope and applicability of HCNetlas, as comprehensive

548  mapping of CGNs is contingent on the availability of extensive transcriptomic data. Consequently,
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549  our endeavor to create compendium of true reference CGNs was limited by the availability of atlas
550 level resources with varying health conditions (not necessarily diseased). However, this limitation
551 is expected to diminish as the field of single-cell transcriptomics continues to grow. As more data
552  are generated, particularly for healthy tissues, it will become feasible to construct a more
553  comprehensive array of CGNs, covering a wider variety of cell types. Consequently, the
554  progression of the HCA project is likely to significantly enhance the utility of HCNetlas, extending
555 its applicability to a broader range of diseases and deepening our understanding of cellular

556  behaviors in various pathological states.

557  Another challenge with HCNetlas stems from the inherent limitations of our network inference
558  methodology, which is dependent on a reference interactome. The reference interactome is mapped
559  predominantly using data from a control state, rather than from a disease state. Consequently, this
560 approach may overlook interactions that are unique to the disease state, as these might be
561 underrepresented or entirely absent in the reference interactome. Such omissions can limit the
562 analytical capacity of HCNetlas, particularly in accurately portraying disease-specific network
563  dynamics. Moreover, low number of cells (below approximately 1000 cells) often models
564  incomplete network structure, and thus may hinder disease analysis depending on the data input.
565  For example, this has prevented us from observing microglia with our input AD scRNA-seq data,
566 an important celltype known to be associated with the disease. To address this issue, future
567 developments of HCNetlas may need to include the de novo inference of gene networks directly
568 from disease sample data. Integrating these disease-specific networks into HCNetlas would
569 provide a more comprehensive view of the gene interactions occurring in various diseases. This

570 enhancement would not only overcome the current limitations but also enrich the platform
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capability to provide more nuanced and accurate insights into disease mechanisms at the molecular

level.

Availability of data and materials

The edge information of CGNs for HCNetlas and codes for the presented network analysis are

freely available from https://github.com/netbiolab/HCNetlas.
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Figure 1. Overview of Human Cell Network Atlas (HCNetlas)

A. Schematic representation of the workflow from single-cell transcriptomic data collection to the
construction of the HCNetlas. Single-cell RNA sequencing data preannotated for cell type were
used to build cell type-specific gene networks (CGNs) using the scHumanNet framework.
HCNetlas is comprised of a comprehensive collection of these gene networks, representing various
human tissues and cell types. B. Uniform Manifold Approximation and Projection (UMAP)
visualization of CGNs based on gene profiles, highlighting the major cell lineages, with node size
representing the number of genes in each network. Major celltype “Other” in grey (Major cell type
abbreviations; B; B cells, Br; Brain cells, My; Myeloid cells, T; T cells) C. UMAP plot displaying
the interrelationship among the CGNs based on network gene profiles for major organs or tissue
types. Each point represents a gene network associated with a specific organ or tissue type colored

distinctly.
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Figure 2. Cell type-specific functionality of HCNetlas CGNs

A-B. Bar graph illustrating the within-group connectivity of B cell-related (A) or T cell-related (B)
Gene Ontology biological process (GOBP) genes in the respective CGNs. Connectivity is
normalized by each CGN’s total node number. All tissues with over 0 value of normalized
connectivity for both B and T cells are included. C. Heatmap displaying the percentile rank of the
top 15 hub genes in spleen CGNs, with values scaled per row, with color intensity indicating the
expression level from low (blue) to high (red). D-E. UpSet plots for two major CGNs, B cell CGN

(D) and T cell CGN (E), representing the intersection of network genes across different tissues.
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Figure 3. Overview of cell type-resolved disease genetics using HCNetlas

A. Heatmap displaying the disease profiles of various cell types across different tissues, conducted
with single-sample gene set enrichment analysis (ssGSEA). Each column represents a CGN of
HCNetlas, while each row corresponds to a disease gene set sourced from either DisGeNET or
GWAS Catalog. Color intensity indicates the degree of association of the CGN signature genes
with each disease gene set. B. Bar graphs showing the within-group connectivity of genes
associated with toxic hepatitis across different cell lineages, in various tissues. The bars are color-
coded to represent different cell lineages. 15 terms and their combined genes were assessed from
DisGeNET terms based on the key word search “hepatitis”. C. Schematic representation and
summary of the analytical framework used for comparing disease CGNs with reference CGNs
from HCNetlas. The workflow illustrates the process of CGN inference from single-cell
transcriptomes of disease samples and contrasts disease CGNs for specific immune cells against
reference CGNs. The analysis includes (i) differential compactness, highlighting the difference in
interconnectivity within disease-associated genes; (ii) differential hubness, showing the changes
in hubness; and (ii1) differential pathways, contrasting pathway associations between disease and

healthy states based on enrichment for CGN signature genes.
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Figure 4. Cell type-resolved disease genetics for systemic lupus erythematosus (SLE)

A. Uniform Manifold Approximation and Projection (UMAP) plot representing the
interrelationship among immune cells. B. Bar chart showing normalized interconnectivity among
SLE-susceptible genes in both reference and disease cell type-specific gene networks (CGNs) for
various cell types. C. Receiver Operating Characteristic (ROC) curves for retrieval of interferon
stimulating genes (ISGs) by network hubness in disease myeloid CGN and reference myeloid CGN.
D. Comparison of area under the ROC curve (AUROC) values with CGNs for various cell types,
contrasting the reference and disease CGNs to assess prediction capability. E. Left panel:
Distribution of expression levels for 131 gain-of-hubness genes in myeloid cells. Right panels:
Correlation analysis of expression levels of the 131 gain-of-hubness genes with the Systemic
Lupus Erythematosus Disease Activity Index (SLEDAI). F. Same as for (E) except using up-

regulated differential expression genes (DEGs).


https://doi.org/10.1101/2024.06.07.597878
http://creativecommons.org/licenses/by/4.0/

Figure 5

bitfe&iv preprint doi: https://doi.org/10.1101/2024.06.07.597878; this veaon posted June 9, 2024.-khe copyright holder for this preprint (which

was not dertified by peer revi is the author/funder, who has granted bioRixiv a license to di ay the preprint in H@rBE@I&y It is made
available under aCC-BY 4.(2”Irﬂ@rnat|0nal license. Gain-of-hubness
e 1501 a:’ Down-DEGs
3 2 g s . Loss-of-hubness
O c o) 154
[ONO]
'8) 2 100 g
o 9( ] . Reference CGN %
B o . Disease CGN Tz 101
N & =
= 0 ©
© £ >
E® 50 5
2 s °
z
o 0 . . : —=
7 & % 9 % 4 S 9
‘9&0 +O/,'« 0’5/5 . {’Qo \S);b K 24 'fb,é, {90
(o) e %, % (o) % 7 %
Ly e 2 ) 7 % () S
© 7L <+ ’)O, © £ 7L ')O,
2 %, (€ K: 2 €
%, %, D %, %, D
OO % (S ) OO (]
Inhibitory neuron CGN signatures Inhibitory neuron expanded CGN signatures
Loss-of-pathway | Gain-of-pathway Loss-of-pathway
Oxidative phosphorylation Diabetic cardiomyopathy{ [
% Thermogenesis % Oxidative phosphorylation
= Non-alcoholic fatty liver disease = Non-alcoholic fatty liver disease{
= Diabetic cardiomyopathy s Parkinson disease
E Parkinson disease Q‘? Thermogenesis
) Huntington disease O] Prion disease
o Amyotrophic lateral sclerosis o Huntington disease{
§ Alzheimer disease % Alzheimer disease |
Prion disease Pathways of neurodegeneration
Cholinergic synapse Amyotrophic lateral sclerosis
-10 -5 0 5 -40 -20
—log(g-value) —log(g-value)

m
L

Excitatory neuron CGN signatures Excitatory neuron expanded CGN signatures
Gain-of-pathway Loss-of-pathway | Gain-of-pathway

Pathways in cancer Parkinson disease{

%., Melanogenesis % Prion disease]
= GnRH signaling pathway E Ribosome
ES Long-term potentiation T Alzheimer disease]
g Proteoglycans in cancer O Non-alcoholic fatty liver disease]
0) HIF-1 signaling pathway (O] Huntington disease
(® Neurotrophin signaling pathway (La Diabetic cardiomyopathy-
L CcAMP signaling pathway Y Amyotrophic lateral sclerosis:
< Glioma Proteasome

MAPK signaling pathway:
2 4 6 -30 -20 -10 0 10 20
—log(g-value) -log(g-value)

ErbB signaling pathway



https://doi.org/10.1101/2024.06.07.597878
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.07.597878; this version posted June 9, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Figure 5. Cell type-resolved disease genetics for Alzheimer’s disease (AD)

A. Bar graph depicting the normalized edge count among AD-associated genes in reference and
disease cell type-specific gene networks (CGN5s) for various neurological cell types. B. Bar graph
showing the number of validated AD genes predicted by differential expression or differential
hubness across the four neurological cell types. Statistical significance of overlap is shown for
each gene sets (*P < 0.05, ** P <0.01, *** P <(0.01 by one-sided hypergeometric test) C-F. Ten
most differentially associated KEGG pathways with CGN signature genes: Differentially
associated pathways for inhibitory neuron CGN signature (C), inhibitory neuron expanded CGN
signature (D), excitatory neuron CGN signature (E) and excitatory neuron expanded CGN

signature (F).
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Figure 6. Identifying genes that contribute to lung cancer through immune cells using

HCNetlas.

A-D. UpSet plots for predicted genes for lung cancer by gain-of-hubness (A), up-regulated
differential expressed genes (DEGs) (B), loss-of-hubness (C) or down-regulated DEGs (D),
representing the intersection of predictions across different cell types. Orange bar indicates the
number of lung cancer genes validated by various databases such as CancerMine, IntOGen, and
cancer gene consensus. E. Bar graph showing the number of immune checkpoint molecules (ICMs)
retrieved by both gain-of-hubness genes and up-regulated DEGs across different immune cell
types. Statistical significance of overlap is shown for each gene sets (*P < 0.05, ** P <0.01, ***
P <0.01 by one-sided hypergeometric test) F-G. Kaplan-Meier survival curve analysis for cancer
patients from TCGA cohort (TCGA-LUSC and TCGA-LUAD), stratified by the enrichment score
of gain-of-hubness genes (F) or up-regulated DEGs (G). The graph shows the overall survival
probability over time, with patients categorized into high and low quantiles based on the gene set
variation analysis (GSVA) score. Significance of survival rate difference between the upper and

lower quantile expression groups were evaluated using the log-rank test.


https://doi.org/10.1101/2024.06.07.597878
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.07.597878; this version posted June 9, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Supplementary Table Legends

Supplementary Table S1. HCNetlas cell type, abbreviation, and cell count.

Supplementary Table S2. SLE susceptible gene list. 184 SLE-associated genes are obtained

from KEGG pathway (hsa05322) and KEGG disease (H00080) databases.

Supplementary Table S3. The list of interferon-stimulated genes. We compiled interferon-
stimulated genes (ISGs) from hallmark gene sets of the molecular signature database (MSigDB)

and the Immunological Genome Project (ImmGen) (24), resulting in a total of 423 ISGs.

Supplementary Table S4. Area under ROC for prediction of interferon-stimulated genes
(ISGs) by network centrality. AUROC were computed with 423 ISGs from Supplementary Table

S3 were applied to genes sorted based on degree centrality.

Supplementary Table SS. Gain-of-hubness genes and up-regulated genes in SLE myeloid
network. Gain-of-hubness genes were defined by differential percentile rank > 0.5 and g-value <
0.05. DEGs were genes with an adjusted p-value < 0.05 and an log>-fold change > 0.5, focusing

solely on coding genes.
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Supplementary Table S6. Genes associated with Alzheimer’s disease. AD-associated genes

were obtained from the KEGG pathway (M16024), MSigDB (M35868), and Wightman et al.

Supplementary Table S7. Gain-of-hubness genes, loss-of-hubness genes, up-regulated DEGs,
and down-regulated DEGs in AD CGNs. Gain/loss-of-hubness genes were defined by absolute
differential percentile rank > 0.5 and g-value < 0.05. DEGs were genes with an adjusted p-value <

0.05 and an absolute log>-fold change > 0.5, focusing solely on coding genes.

Supplementary Table S8. Gain-of-hubness genes, loss-of-hubness genes, up-regulated
DEGs, and down-regulated DEGs in lung cancer CGNs. Gain/loss-of-hubness genes were
defined by absolute differential percentile rank > 0.5 and g-value < 0.05. Up-regulated DEGs
were genes with an adjusted p-value < 0.05 and logz-fold change > 0.5, and down-regulated

DEGs were genes with adjusted p-value < 0.01 and log>-fold change < -1.5.
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