

1           **HCNetlas: Human cell network atlas enabling cell type-resolved disease genetics**

2

3       Jiwon Yu<sup>1,†</sup>, Junha Cha<sup>1,†</sup>, Geon Koh<sup>1</sup>, and Insuk Lee<sup>1,2\*</sup>

4       <sup>1</sup>Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University,  
5       Seoul 03722, Republic of Korea

6       <sup>2</sup>POSTECH Biotech Center, Pohang University of Science and Technology (POSTECH), Pohang  
7       37673, Republic of Korea

8       <sup>†</sup>These authors contributed equally to this work

9       \*Corresponding author:

10      Insuk Lee: [insuklee@yonsei.ac.kr](mailto:insuklee@yonsei.ac.kr)

11

12      **Keywords:** network biology, single-cell network, cell type-specific gene network, human cell  
13      network atlas, cell type-resolved disease genetics,

14 **Abstract**

15 Cell type-specific actions of disease genes add a significant layer of complexity to the genetic  
16 architecture underlying diseases, obscuring our understanding of disease mechanisms. Single-cell  
17 omics have revealed the functional roles of genes at the cellular level, identifying cell types critical  
18 for disease progression. Often, a gene impact on disease through its altered network within specific  
19 cell types, rather than mere changes in expression levels. To explore the cell type-specific roles of  
20 disease genes, we developed HCNetlas (human cell network atlas), a resource cataloging cell type-  
21 specific gene networks (CGNs) for various healthy tissue cells. We also devised three network  
22 analysis methods to investigate cell type-specific functions of disease genes. These methods  
23 involve comparing HCNetlas CGNs with those derived from disease-affected tissue samples.  
24 These methods find that systemic lupus erythematosus genes predominantly function in myeloid  
25 cells, and Alzheimer's disease genes mainly play roles in inhibitory and excitatory neurons.  
26 Moreover, they show many lung cancer genes exert their roles in immune cells. These findings  
27 suggest that HCNetlas has the potential to link disease-associated genes to cell types of action,  
28 facilitating development of cell type-resolved diagnostics and therapeutic strategies for complex  
29 human diseases.

30

31 **Introduction**

32 Human tissues comprise a mosaic of cell types, each with distinctive functional roles that affect  
33 how genes associated with diseases contribute to their onset and progression. Grasping how  
34 specific cell types influence the action of disease-related genes is a complex and as-yet unresolved  
35 aspect of human genetics (1,2). The Human Cell Atlas (HCA) project (3), which compiles

36 extensive single-cell RNA-sequencing (scRNA-seq) data from healthy tissues, seeks to illuminate  
37 the relationship between cell types and disease through gene expression profiles (4).

38 However, the role of a disease gene within a specific cell type often extends beyond expression  
39 levels to its position and influence within a gene network, known as network centrality. To address  
40 this, we need a network-focused approach for mapping disease genes to their functional landscapes  
41 within specific cell types. In response, we have crafted scHumanNet (5), leveraging HumanNet (6)  
42 as the foundational interactome, refining connections based on cell-to-cell variation in gene  
43 expression (7). This framework allows us to discern the network topologies of disease genes by  
44 contrasting cell type-specific gene networks (CGNs) (8) from healthy versus diseased tissues,  
45 leading to the identification of the cell types wherein disease genes are influential. Typically, this  
46 involves creating CGNs for both healthy and diseased tissue samples.

47 Identifying altered cellular states in diseases typically requires comparisons with matched control  
48 samples, which can entail additional costs, efforts, and sometimes may even be unavailable. This  
49 challenge can be mitigated if there is access to a comprehensive collection of reference cells from  
50 healthy individuals, like a cell atlas. Such a resource could potentially eliminate the need to  
51 generate control samples. In a similar vein, a network atlas that offers reference CGNs for a diverse  
52 array of cell and tissue types from healthy individuals could significantly streamline the  
53 investigation of disease-state network alterations. Moreover, while individual gene expression  
54 values are prone to aggregate according technical origins across different batches confounding  
55 biological variations, the inference of gene associations with adequate cell number is generally  
56 less affected by such variances especially when large number of samples are used (e.g. cells) (9).  
57 This is because co-expression signals are intrinsically normalized within each batch, making them  
58 more reliable for network comparison. Therefore, we propose that an integrated collection of

59 CGNs, derived from a cell atlas, would constitute a robust framework for cell type-specific  
60 analysis of disease genes. This approach would circumvent the need for matched control samples,  
61 offering a more efficient route to understanding disease mechanisms.

62 Here, we introduce HCNetlas (human cell network atlas), a collection of reference CGNs from a  
63 wide array of healthy tissue cells, which parallels the HCA in its potential impact on disease  
64 research. By utilizing these reference CGNs, it becomes feasible to uncover associations between  
65 disease genes and specific cell types, relying solely on the availability of disease sample data. This  
66 approach also bypasses the necessity to infer CGNs from matched control samples, streamlining  
67 the process of identifying disease-specific gene interactions within a specific cell type. HCNetlas  
68 currently includes 198 CGNs covering 61 cell types across 25 organs. We clustered the CGNs  
69 based on their disease profiles and observed the formation of groups comprising similar cell types.  
70 This clustering pattern indicates the potential of these CGNs to effectively resolve the cell type  
71 specificity of disease gene functions. Additionally, we implemented three network-based methods  
72 for assessing the cell type-specific functions of disease genes. Utilizing this analytical framework  
73 on both reference CGNs and those derived from diseased tissues enabled us to pinpoint cell types  
74 implicated in various diseases, thereby validating the effectiveness of our approach in cell type-  
75 resolved disease genetics. Consequently, HCNetlas holds great promise in expediting the  
76 discovery of biomarkers and therapeutic targets that are specifically tailored to the cellular context  
77 of disease genes, offering a refined perspective on the intricate web of cell type-specific gene  
78 actions in human diseases.

79

80 **Methods**

81 **Single-cell and single-nucleus transcriptomic data used for HCNetlas construction**

82 We employed both single-cell and single-nucleus RNA sequencing (scRNA-seq and snRNA-seq)  
83 data from multiple sources to reconstruct HCNetlas CGNs. We acquired scRNA-seq data for  
84 329,762 immune cells spanning 16 tissues from 12 deceased donors in a cross-tissue immune cell  
85 atlas (10). This dataset was pre-annotated with CellTypist and subjected to manual curation.  
86 Additionally, we integrated data from Tabula Sapiens (11), which included the human  
87 transcriptome reference for 249,961 immune cells across 24 tissues from 15 donors. For  
88 constructing brain CGNs, we utilized snRNA-seq data of Allen Brain Atlas (<http://www.brain-map.org>) (12), derived from 76,533 nuclei in the primary motor cortex (M1) and 166,868 nuclei  
89 in the middle temporal gyrus (MTG) using 10x Genomics Chromium platform. All data were  
90 processed through alignment, quantification by Cell Ranger, and cell type annotation.

92 We harmonized pre-annotated cell types across all datasets and applied scHumanNet (v. 1.0.0) (5)  
93 to the single-cell transcriptomic data to generate CGNs for various tissues and cell types. To  
94 construct CGNs for major cell types, we aggregated sub-cell types into broader categories, such as  
95 T cells, B cells, and myeloid cells. In total, 198 CGNs were generated, encompassing 25 tissues  
96 and 61 cell types.

97

98 **Evaluating the cell-type-specificity of CGNs**

99 We performed dimension reduction analysis with uniform manifold approximation and projection  
100 (UMAP) to visualize interrelationships among HCNetlas CGNs. Utilizing scHumanNet for CGN  
101 construction, which references the HumanNet (6) comprising 18,593 human genes, we generated  
102 binary profile vectors indicating the presence (1) or absence (0) of each gene in the network for

103 every CGN. For visualizations, we employed the UMAP package in R (v. 0.2.10), setting `min_dist`  
104 to 0.5 to balance the trade-off between local and global structure in the data.

105 To determine the cell-type-specific functionality of the HCNetlas CGNs, we explored the  
106 enrichment of cell-type-associated genes, particularly for B cells and T cells. We collated cell-  
107 type-associated genes from three authoritative databases: Gene Ontology biological process  
108 (GOBP), CellMarker, and the Azimuth cell type database (13-15). We postulated that genes  
109 functionally connected within a CGN reflect the properties of their respective cell type, thus we  
110 considered the interconnectivity within genes for each cell type as a measure of the cell-type  
111 specificity.

112 Additionally, we identified hub genes within each CGN, which are likely to play pivotal roles in  
113 the function of their corresponding cell type. We profiled the top 15 hub genes, ranked by degree  
114 centrality, for each major cell type across various tissues using the *FindAllHub()* function of the  
115 scHumanNet. This profiling helped to ascertain the relative importance of these hub genes within  
116 the network.

117

## 118 **Overall assessment of the association between CGNs and diseases**

119 We assessed whether HCNetlas CGNs can discern connections between diseases and cell types by  
120 profiling CGNs with disease-association scores. Within each CGN, we ranked the 18,593 genes  
121 from the HumanNet reference interactome by degree centrality, utilizing the *GetCentrality()*  
122 function of the scHumanNet. Disease gene sets, totaling 5,763, were compiled from DisGeNET  
123 (16) and GWAS Catalog (17) for the analysis. Assessment of disease gene set association with

124 each CGN was performed with ssGSEA (v. 2.0) (18) and GSVA (19), the latter via the *gsva()*  
125 function from the GSVA package (v. 1.38.2).

126 Furthermore, we conducted differential compactness analysis on the HCNetlas CGNs using the  
127 same disease gene sets. For each gene set, we calculated the within-group connectivity across all  
128 198 networks to gauge network compactness. To accommodate variations in network size, we  
129 normalized the within-group connectivity by the number of nodes in each network and then scaled  
130 these normalized values by multiplying them by 10,000 to ensure a consistent basis for comparison  
131 across all networks.

132

### 133 **Cell type-resolved genetic analysis of systemic lupus erythematosus (SLE) with HCNetlas**

134 We acquired scRNA-seq data for peripheral blood mononuclear cells (PBMCs) from 41 patients  
135 with SLE and 15 healthy controls as reported by Nehar-Belaid *et al.* (20). To ensure a consistent  
136 analysis, we excluded two SLE patient samples lacking SLEDAI scores. Following quality control  
137 measures, including the removal of doublets using the DoubletFinder (v. 2.0.0) (21) package and  
138 the exclusion of cells with fewer than 400 transcripts or over 5% mitochondrial gene content, the  
139 dataset was narrowed to approximately 276,000 cells. After normalization and scaling with Seurat  
140 package (v. 4.1.1), we identified 3,000 variable genes using the *vst()* and *FindVariableFeatures()*  
141 functions. Batch effects were mitigated by applying principal component analysis (PCA) and  
142 Harmony (v. 1.0) (22) (dims = 40), and cellular clustering was performed using the Louvain  
143 method (resolution = 1.5), followed by UMAP visualization with 40 dimensions. Cell types were  
144 manually annotated using canonical markers after optimizing the number of principal components  
145 and clustering resolution.

146 For constructing SLE-specific CGNs, we focused on the curated data from SLE patients. We built  
147 networks for B cells, CD4<sup>+</sup> T cells, CD8<sup>+</sup> T cells, myeloid cells, and NK cells. Using the  
148 *Compactness()* function, we performed differential compactness analysis. We referenced 184  
149 SLE-associated genes from KEGG pathway (I05322) and KEGG disease (H00080) databases,  
150 comparing connectivity within disease CGNs and HCNetlas CGNs, and visualized the networks  
151 in Cytoscape (v 3.9.1) (23).

152 Node centrality within these networks was computed using the *GetCentrality()* function from the  
153 scHumanNet package. We compared the percentile ranks of centrality for disease CGNs against  
154 the reference CGNs of HCNetlas using the *DiffPR.HCNetlas()* function. Genes showing  
155 differential hubness were pinpointed with *FindDiffHub.HCNetlas()*, with significance defined by  
156 a *q*-value < 0.05 after Benjamini-Hochberg correction to control false discovery rate (FDR).

157 We compiled interferon-stimulated genes (ISGs) from hallmark gene sets of the molecular  
158 signature database (MSigDB) and the Immunological Genome Project (ImmGen) (24), resulting  
159 in a total of 423 ISGs. The efficacy of prediction for ISGs by hubness within SLE-associated CGNs  
160 was assessed using receiver operating characteristic (ROC) curve analysis. The ROC curve was  
161 generated using the *roc()* function from the pROC package (v. 1.18.0).

162 To explore the diagnostic potential of gain-of-hubness genes, we computed an expression score  
163 for the genes in myeloid cells via *AddModuleScore()* of the Seurat package and evaluated the  
164 differences in distribution of expression values between patients and healthy controls using the  
165 Wilcoxon signed-rank test.

166 DEG analysis was performed by merging Seurat objects containing HCNetlas healthy tissue data  
167 with disease scRNA-seq data. After normalization and scaling by a factor of 10,000, we identified

168 2,000 variable genes. DEGs were pinpointed for key cell types using Seurat's *FindMarkers()*  
169 function, considering genes with an adjusted  $p$ -value  $< 0.05$  and an absolute  $\log_2$ -fold change  $>$   
170 0.5, focusing solely on coding genes.

171

## 172 **Cell type-resolved genetic analysis of Alzheimer's disease (AD) with HCNetlas**

173 In our study of AD, we used snRNA-seq data with annotated cell types from Morabito *et al.* (25).  
174 Since the data were derived from the prefrontal cortex of brain tissues, the generated CGNs for  
175 AD were compared with reference CGNs for the primary motor cortex (M1) from the HCNetlas.  
176 We grouped the cell type annotations into four main categories: astrocytes, inhibitory neurons,  
177 excitatory neurons, and oligodendrocytes. The identification of differential hubness genes and  
178 DEGs within these cell types was carried out using the same methodology applied in the analyses  
179 of SLE. To ascertain the relevance of AD-associated genes predicted by our differential hubness  
180 analysis, we referenced genes linked to AD in the KEGG pathway (M16024), MSigDB (M35868),  
181 and Wightman *et al.* (26).

182 Considering the association of gain-of-hubness and loss-of-hubness genes with AD in inhibitory  
183 and excitatory neurons, we constructed network-ranked signatures for both reference and AD-  
184 specific CGNs for the cell types. The signature genes were based on the top ten hub genes by  
185 degree centrality within each CGN. The networks of these top-tier hub genes were visualized using  
186 the Cytoscape software (23). Furthermore, we conducted gene set enrichment analysis (GSEA) on  
187 these network-ranked signatures using the enrichR package (27). To evaluate the pathways  
188 differentially associated between disease CGNs and reference CGNs, we introduced a metric  
189 called  $diffQ$ , calculated as follows:

190 
$$diffQ = -\log_{10}\left(\frac{q\text{-value of association with disease CGN}}{q\text{-value of association with reference CGN}}\right)$$

191 In this formula, a positive  $diffQ$  value signifies that a pathway is more strongly associated with the  
192 cell type in its diseased state than in its healthy state (gain-of-pathway). Conversely, a negative  
193  $diffQ$  value indicates greater association with the cell type in its healthy state as compared to its  
194 diseased state (loss-of-pathway). To emphasize the most significantly altered pathways, we  
195 focused on the top ten KEGG pathways with the highest absolute  $diffQ$  values. This approach  
196 effectively pinpoints the key molecular pathways involved in the pathogenesis of AD.

197

### 198 **Cell type-resolved genetic analysis of lung cancer using HCNetlas**

199 To create lung cancer-specific CGNs, we used scRNA-seq data from tumor tissues provided by  
200 Qian *et al.* (28). We retained the pre-annotated cell-type identifications from the datasets. For  
201 comparison with reference CGNs derived from paired normal tissues, we constructed networks  
202 from both the lung cancer and healthy control data. Following the scHumanNet protocol, we  
203 generated networks and defined differential hubness genes using *FindDiffHub()*. The process of  
204 identifying differential hubness genes within each cell type was conducted using the same  
205 methodology employed in the SLE analyses. Similarly, the identification of DEGs followed the  
206 methodology used in the SLE studies, with the exception that genes exhibiting an absolute  $\log_2$ -  
207 fold change  $< -1.5$  were categorized as down-regulated DEGs.

208 To validate the lung cancer relevance of the identified genes, we referenced the Cancer Gene  
209 Census, CancerMine, and IntOGen databases (29-31). We assessed the proportion of lung cancer-  
210 associated genes detected uniquely through differential hubness, uniquely through DEGs, and by  
211 the intersection of both methods. Furthermore, we analyzed 42 immune checkpoint molecules

212 listed by Auslander *et al.* (32) to determine if cell-type-specific genes vital for cancer immunity  
213 are discernible through both expression-based and network-based analyses.

214 We investigated the prognostic potential of genes identified by cell-type-specific differential  
215 hubness and differential expression using survival analysis on TCGA lung cancer datasets (TCGA-  
216 LUSC, TCGA-LUAD). Initially, we identified a total of 379 gain-of-hubness genes and 211 up-  
217 regulated DEGs from three major cell types: B cells, T cells, and myeloid cells. Subsequently,  
218 genomic and clinical data for 1,017 lung cancer samples were acquired from the GDC portal (33).  
219 The STAR-Counts data underwent preprocessing, log-normalization, and variance stabilization  
220 using the *vst()* function in the DESeq2 R package (v. 1.30.1). With the application of GSVA (19),  
221 we evaluated the association of both gain-of-hubness genes and up-regulated DEGs with each  
222 tumor expression profile of the patients. Patients were then classified into upper and lower quartile  
223 groups based on their GSVA scores. These groups were further examined through Kaplan-Meier  
224 survival curves. To ensure the reliability of our findings, we adjusted all *p*-values obtained from  
225 the survival analysis using the Benjamini-Hochberg method to control the FDR.

226

## 227 **Results**

### 228 **HCNetlas: A catalog of reference CGNs for various healthy human tissues**

229 To build reference CGNs, we utilized scRNA-seq data from the HCA project (3) and single-  
230 nucleus RNA-sequencing (snRNA-seq) data from the Allen Brain Atlas (12). Our single-cell  
231 transcriptomic dataset comprised 763,559 cells from 28 donors. We generated gene networks for  
232 each predefined cell type using the scHumanNet framework (5) (**Figure 1A**), providing a  
233 comprehensive baseline for identifying disease-associated genes and cell types.

234 When constructing CGNs, the number of cells used can influence the efficacy of network inference.

235 To investigate this aspect, we conducted an analysis of CGNs derived from HCA data, specifically

236 examining how the number of cells used for network inference correlates with the overall network

237 size. Our findings indicated a clear trend: as the number of cells increases, there is a corresponding

238 rise in both the node and edge counts within the inferred CGNs. However, this growth in network

239 complexity tends to plateau once the cell count reaches approximately 1,000 (**Supplementary**

240 **Figure S1A**). The observed saturation point suggests that the inference of CGNs becomes

241 substantially robust to the effects of sample size when the number of cells exceeds 1,000. Based

242 on this insight, we focused our study on networks inferred from datasets comprising a minimum

243 of 1,000 cells. This led to the generation of 198 CGNs, covering 25 tissues and including 61 distinct

244 cell types (**Supplementary Table S1**). These networks form our newly established resource,

245 HCNetlas, a catalog of human CGNs for healthy tissues.

246 To examine the interrelationships among the CGNs in our HCNetlas, we analyzed each CGN based

247 on network gene profiles, subsequently visualizing these profiles in a reduced dimensional space.

248 This analysis demonstrated a clear trend where CGNs corresponding to the same cell types

249 exhibited a tendency to cluster together (**Figure 1B**), reinforcing the concept that these networks

250 accurately capture and reflect the specificity inherent to each cell type. Notably, CGNs within the

251 myeloid and B cell lineages showed remarkable coherence, in contrast to the T cell lineage CGNs,

252 which exhibited greater heterogeneity. An interesting observation was the close proximity of

253 innate lymphoid cell (ILC) and natural killer (NK) CGNs (**Supplementary Figure S1B**),

254 underscoring their lineage correlations (34). However, CGNs related to the same tissue types

255 generally did not demonstrate strong clustering with the exception brain tissue network nodes that

256 displayed high similarity (**Figure 1C**), suggesting that cell type identity is a stronger determinant

257 of network structure than tissue environment. This was further evidenced in the T cell lineage,  
258 including ILCs, NK cells, CD4<sup>+</sup> T cells, and CD8<sup>+</sup> T cells, where subsets exhibited coherence  
259 within cell types but not necessarily within tissue types (**Supplementary Figure S1B-C**). This  
260 aligns with recent studies that emphasize tissue or sub-cell type dependent variability in T cells  
261 (35-37). These findings highlight the utility of HCNetlas as a potentially powerful tool for  
262 investigating cell type-specific gene functions.

263

#### 264 **Assessing the cell type-specific functionality of HCNetlas CGNs**

265 To evaluate whether the reference CGNs of HCNetlas accurately reflect cell type-specific  
266 functions, we conducted tests using two distinct immune cell types from different lineages: B cells  
267 and T cells. The premise of this test was that if the HCNetlas CGNs are effective in representing  
268 cellular functions unique to each cell type, then genes for maintaining the identity and function of  
269 each cell type should demonstrate interconnectedness within their respective networks. As  
270 anticipated, our analysis showed that genes specifically annotated for either B cells or T cells by  
271 the Gene Ontology biological process (GOBP) (38) exhibited the highest within-group  
272 connectivity in their respective CGNs across various tissues (**Figure 2A-B**). This pattern of  
273 connectivity was further validated by comparing it with cell type marker genes as identified in the  
274 Azimuth database (13) and the CellMarker database (14) (**Supplementary Figure S2A**). These  
275 findings underscore the ability of HCNetlas CGNs to capture and represent the unique functional  
276 characteristics inherent to specific cell types.

277 Moreover, we investigated the network hub genes within each CGN, identified based on degree  
278 centrality (**Figure 2C**). For instance, in spleen CGNs, *CD86*, which is pivotal in B cell activation

279 (39), emerged as top hub genes in the B cell CGN. Similarly, genes essential for T cell identity  
280 like *CD2*, *CD4*, and *CD28* were among the top 15 hub genes in the T cell CGN (40). Additionally,  
281 *S100A8*, *S100A9*, *CD14*, markers for monocytic myeloid-derived suppressor cells were prominent  
282 hubs in the monocyte CGNs (41). These patterns of hub genes, significant due to their high degree  
283 of centrality, were consistent across various tissues (**Supplementary Figure S2B**), underlining the  
284 functional interpretability of these hub genes in the context of their respective cell types.  
285 Lastly, to assess the tissue dependency of the HCNetlas CGNs, we compared CGN genes for each  
286 major cell type across different tissues. We observed limited overlap in CGN genes among  
287 different tissues within major cell types (**Figure 2D-E, Supplementary Figure S3**), suggesting a  
288 convergence of networks across tissues within major cell lineages, aligning with findings from  
289 previous studies (10,35). These observations indicate that while there are core gene networks  
290 characteristic of each cell type, tissue adaptation of CGNs is also evident, underscoring the  
291 complexity and diversity of cellular functions across different biological contexts.

292

### 293 **HCNetlas as a tool for unraveling cell type specificity of disease genes**

294 The HCNetlas, with its collection of reference CGNs, presents a promising resource for dissecting  
295 the cellular specificity of disease genes. The majority of disease-associated genes identified to date  
296 have been derived from bulk tissue data, which often fails to specify the exact cell types involved  
297 in disease onset and progression. In this scenario, HCNetlas CGNs become instrumental in  
298 pinpointing the critical cell types at play. To ascertain the effectiveness of HCNetlas CGNs in  
299 disease-oriented research, we embarked on an investigation to determine if these CGNs capture  
300 and reflect the cell type specificity of various diseases. This involved conducting enrichment

301 analyses on the CGNs using disease-associated genes sourced from two distinct databases:  
302 DisGeNET (16) and GWAS Catalog (17). We began by ranking genes within each CGN based on  
303 network degree centrality, and then applied single-sample gene set enrichment analysis (ssGSEA)  
304 (18) and gene set variation analysis (GSVA) (19) to profile degree of association with each set of  
305 disease genes. Our analysis revealed a distinct pattern of congregation among CGNs corresponding  
306 to shared cell types, as determined by disease-association profiles (**Figure 3A, Supplementary**  
307 **Figure S4A**). This finding was particularly notable within cell types, whereas the convergence of  
308 networks corresponding to the same tissue types was less pronounced, indicating the specificity of  
309 cell types in the context of disease genetics.

310 We next evaluated the connectivity among genes associated with the same disease within CGNs  
311 across different tissues. Our hypothesis was that genes would exhibit more interconnectedness in  
312 the relevant cell types and tissues primarily responsible for diseases. This analysis aimed to  
313 elucidate the relationships between specific diseases and their associated cell types or tissues.  
314 While not all diseases we considered manifest cell-type specificity, we noticed that CGNs  
315 predicted similar disease gene enrichment patterns in tissues such as the intestine and the liver (**Fig.**  
316 **3a**). A case in point is hepatitis-related terms, where genes associated with this condition showed  
317 the most significant within-group connectivity in liver CGNs of most major immune cell types  
318 (**Fig. 3b**). Noteworthy was the pronounced within-group connectivity observed in both myeloid  
319 cell and T cell CGNs, highlighting the integral role of T cells in viral infectious diseases and the  
320 contribution of Kupffer cells (resident liver macrophages) to hepatitis (42). This finding indicates  
321 that HCNetlas effectively identifies relevant cell types and tissues implicated in hepatitis.  
322 Furthermore, genes related to schizophrenia showed increased within-group connectivity across  
323 brain tissues, particularly in the primary motor cortex (M1) and middle temporal gyrus (MTG)

324 CGNs (**Supplementary Figure S4B**). These observations underscore the potential of HCNetlas  
325 CGNs as a valuable resource for uncovering intricate relationships between diseases and specific  
326 cell types or tissues, thereby enhancing our understanding of disease pathology at a cellular level.  
327 HCNetlas, having proven its functional and biological relevance, is posited to be an effective  
328 reference for network analyses in disease studies. To enhance their utility, we have developed a  
329 suite of network analysis methodologies (**Figure 3C**) and applied them to investigate various  
330 diseases, showcasing the adaptability of HCNetlas CGNs.

331 Firstly, if we have a set of disease genes, determining the specific cell type where these genes  
332 predominantly influence disease progression is crucial. To evaluate the functional role of these  
333 disease genes in a targeted cell type, we have developed an approach known as differential  
334 compactness analysis. This method compares the degree of interconnectivity among disease genes  
335 between the reference CGNs in HCNetlas and their corresponding disease CGNs derived from  
336 disease samples. In this framework, ‘gain-of-compactness’ denotes an enhanced interconnectivity  
337 of disease genes within disease CGNs, suggesting an increased functional role in the disease  
338 context. Conversely, ‘loss-of-compactness’ implies a reduced interconnectivity. Through this  
339 analysis, we can gain insights into which cell type the disease genes are actively involved and  
340 determine whether their impact on the disease state is characterized by a gain or loss of function.

341 Secondly, to identify disease genes and ascertain the cell type implicated in the disease, focusing  
342 on genes exhibiting significant differences in network centrality between diseased and healthy  
343 states can be insightful. Therefore, we prioritize genes based on differential hubness between  
344 disease CGNs and reference CGNs. This methodology involves categorizing genes into two  
345 distinct groups: ‘gain-of-hubness’ and ‘loss-of-hubness.’ Genes in the ‘gain-of-hubness’ category  
346 show increased centrality in disease CGNs compared to reference CGNs, indicating a heightened

347 role in the disease state. Conversely, genes in the ‘loss-of-hubness’ category demonstrate  
348 decreased centrality in disease CGNs, suggesting a reduced or altered function in the disease  
349 context. This approach effectively distinguishes genes that are central to disease mechanisms in  
350 specific cell types.

351 Lastly, examining pathways that show differential associations between diseased and healthy  
352 states in cell types associated with the disease can provide insights into the molecular mechanisms  
353 underlying pathogenesis. To conduct the differential pathway analysis, we initially select signature  
354 genes representative of both diseased and healthy states for each cell type. This selection is based  
355 on identifying the top-ranked hub genes (for example, the top 10 hub genes) within both the disease  
356 CGN and the corresponding reference CGN. Subsequently, through gene set enrichment analysis,  
357 we aim to identify and prioritize pathways that are differentially associated between the disease  
358 and healthy states. In this context, ‘gain-of-pathways’ refers to those pathways that show an  
359 increased association with the disease state in comparison to the healthy control. Conversely, ‘loss-  
360 of-pathways’ denotes pathways that have a reduced association in the disease state compared to  
361 the healthy state. Identifying these differentially associated pathways enables us to formulate  
362 hypotheses that delve deeper into the molecular basis of pathogenesis in disease-associated cell  
363 types.

364

### 365 **Cell type-resolved genetic analysis of an autoimmune disease using HCNetlas**

366 Given that the majority of the CGNs provided by HCNetlas are derived from immune cells, this  
367 resource would be particularly valuable for studying immune disorders such as autoimmune  
368 diseases. To evaluate capability of HCNetlas to identify the specific immune cell types where

369 disease genes have an impact on pathogenesis, we focused our research on systemic lupus  
370 erythematosus (SLE) which is a chronic autoimmune disorder characterized by elusive  
371 pathogenesis, genetic susceptibility, and clinical heterogeneity (43). For constructing disease  
372 CGNs for SLE, we manually annotated scRNA-seq data from 38 SLE patients (20) using canonical  
373 markers (**Figure 4A**). These disease CGNs were then compared with the blood cell CGNs from  
374 HCNetlas, providing insights into the cell type specificity underlying SLE pathogenesis.

375 Leveraging the principle that increased network compactness among disease-associated genes  
376 within a CGN indicates their significant role in the pathogenesis for that cell type, we assessed the  
377 involvement of major immune cell types in SLE. We applied a set of SLE-susceptible genes  
378 (**Supplementary Table S2**), gathered from the KEGG pathway database, to both disease CGNs  
379 and reference CGNs. Our analysis revealed that network compactness in myeloid cells and B cells  
380 is significantly greater in the disease CGN compared to the reference CGN (**Figure 4b**). This  
381 suggests that SLE-susceptible genes are critically involved in the disease progression primarily  
382 through myeloid cells and B cells.

383 Considering that genes associated with SLE predominantly exert their effects through myeloid  
384 cells, we prioritized genes for SLE based on network centrality within both disease and reference  
385 CGNs specifically pertaining to myeloid cells. Aligning with previous studies that emphasize the  
386 increased expression of type 1 interferon (IFN) and interferon-stimulated genes (ISGs) in SLE  
387 patients (20,44,45), we evaluate the prediction of SLE-associated genes based on retrieval rate of  
388 ISGs (**Supplementary Table S3**) using the receiver operating characteristic (ROC) curve.  
389 Consistent with the greater network compactness of SLE-susceptible genes in the disease myeloid  
390 CGN relative to the reference myeloid CGN, our results showed a significantly improved  
391 prediction of ISGs in the disease myeloid CGN when compared to the reference myeloid CGN

392 (Figure 4C). Likewise, for other cell types, disease CGNs demonstrated improved predictions of  
393 ISGs compared to the reference CGNs (Figure 4D, Supplementary Table S4). Taken together,  
394 these findings underscore the critical role of myeloid cells in the initiation and progression of SLE,  
395 corroborating previous research that highlights the link between SLE and myeloid cells (46-48).

396 Next, we hypothesized that gain-of-hubness genes for myeloid cells could effectively differentiate  
397 diseased myeloid cells from their healthy counterparts. To test this hypothesis, we initially  
398 identified a set of 131 gain-of-hubness genes with statistical significance (Supplementary Table  
399 S5a). We then examined the distribution of their expression level between disease-state myeloid  
400 cells and their corresponding healthy controls. Our observations revealed a significant disparity  
401 between these two distributions, affirming the potential of these 131 gain-of-hubness genes to  
402 distinguish diseased myeloid cells (Figure 4E left panel). Furthermore, we observed a positive  
403 correlation between the expression levels of these gain-of-hubness genes and the Systemic Lupus  
404 Erythematosus Disease Activity Index (SLEDAI) scores, albeit with limited statistical power due  
405 to the small sample size (Figure 4E right panel). This correlation indicates that the expression  
406 patterns of these 131 gain-of-hubness genes are not only distinctive of diseased states but may also  
407 reflect the severity of SLE in patients. In contrast, the up-regulated DEGs in disease-state myeloid  
408 cells (Supplementary Table S5b) did not demonstrate the capability to either differentiate  
409 diseased myeloid cells (Figure 4F left panel) or correlate with SLEDAI scores (Figure 4F right  
410 panel). These outcomes imply that collections of CGNs for healthy tissues, such as those provided  
411 by HCNetlas, are apt references for identifying disease states.

412

413 **Cell type-resolved genetic analysis of a brain disease using HCNetlas**

414 HCNetlas offers an extensive collection of CGNs for brain tissue, making it a valuable resource  
415 for investigating neurological disorders. Alzheimer's disease (AD), a widespread  
416 neurodegenerative condition known for its progressive impact on behavior and cognitive functions,  
417 is one such area where HCNetlas can be particularly useful. To study AD more closely, we have  
418 developed disease CGNs using single-nucleus RNA sequencing (snRNA-seq) data from the  
419 prefrontal cortex of AD patients (25). These disease CGNs were compared with HCNetlas CGNs,  
420 which were derived from the primary motor cortex (M1). This comparison enables a detailed  
421 analysis of alterations in the gene network that is associated with AD, facilitating a deeper  
422 understanding of the disease progression and its impact on brain function.

423 To identify the primary cell types impacted by AD-associated genes compiled from various  
424 sources (**Methods, Supplementary Table S6**), we employed differential compactness analysis.  
425 This analysis revealed that AD-associated genes exhibit a high degree of interconnectivity within  
426 the reference CGNs for both inhibitory and excitatory neurons (**Figure 5A**), suggesting that these  
427 genes predominantly function in these neuron types. Interestingly, we observed that the disease  
428 CGNs for inhibitory and excitatory neurons displayed notably lower network compactness scores  
429 compared to their reference counterparts (i.e., loss-of-compactness). This significant decrease in  
430 network compactness within the diseased neurons points to a loss of connections among AD-  
431 associated genes. Such a loss in the diseased state of inhibitory and excitatory neurons could be a  
432 critical factor in the pathogenesis of AD, indicating a disruption in the intricate gene networks that  
433 underlie normal neuronal function.

434 We then focused on prioritizing genes for AD by either differential expression or differential  
435 hubness between healthy and diseased states across each cell type (**Supplementary Table S7**). In  
436 alignment with the identified cell type specificity for AD, both inhibitory and excitatory neurons

437 demonstrated a more accurate prediction of AD-related genes when analyzed for differential  
438 hubness rather than differential expression (**Figure 5B, hypergeometric Test P-value < 0.001**).  
439 Interestingly, the predictive capacity using differential expression in these neuron types was lower  
440 compared to that achieved through differential hubness analysis. Additionally, this capacity was  
441 akin to what was observed in other cell types. This finding suggests that a network-based approach  
442 is more effective for predicting AD genes than methods solely based on expression, which tend to  
443 be less specific to AD-associated cell types. Notably, the overlap between gene predictions made  
444 using differential hubness and differential expression was minimal (**Supplementary Figure S5A**),  
445 indicating that these two approaches are complementary to each other in identifying key genes  
446 associated with AD.

447 To delve into the molecular mechanisms implicated in AD pathogenesis within inhibitory and  
448 excitatory neurons, we carried out a differential pathway analysis. This analysis was based on CGN  
449 signatures of these neurons, focusing on the top ten genes ranked by hubness (**Supplementary**  
450 **Figure S5B**). As anticipated, our analysis revealed that pathways associated with AD and other  
451 related neurodegenerative diseases, such as Parkinson's disease and Huntington's disease, were  
452 among those most prominently exhibiting a reduced association, or 'loss-of-pathway', in inhibitory  
453 neurons (**Figure 5C**). In addition to these, we identified several other pathways that exhibited loss-  
454 of-pathway in inhibitory neurons, and these findings were validated through a literature survey.  
455 The pathways that were validated to be associated with AD included oxidative phosphorylation  
456 (49), thermogenesis (50), non-alcoholic fatty liver disease (51,52), diabetic cardiomyopathy  
457 (53,54), amyotrophic lateral sclerosis (55), and prion disease (56). Significantly, our analysis  
458 identified that the pathway related to the cholinergic synapse was the most notably increased in  
459 diseased inhibitory neurons. This finding is also relevant given the known involvement of the

460 cholinergic signaling in AD (57). We also performed our analysis using an expanded CGN  
461 signature that includes their network neighbors, which confirmed the initial list of top loss-of-  
462 pathways (**Figure 5D**). This reaffirms the importance of these pathways in the pathogenesis of AD,  
463 highlighting their potential roles in the disease's progression and impact within inhibitory neurons.  
464 In our differential pathway analysis using CGN signatures for excitatory neurons, we  
465 predominantly observed gain-of-pathways. These are pathways showing increased activity in AD  
466 compared to the healthy state, findings which are substantiated by literature evidence (**Figure 5E**).  
467 For instance, the ErbB signaling pathway is known to mediate amyloid- $\beta$  (A $\beta$ )-induced  
468 neurotoxicity (58), and HIF-1 (hypoxia-inducible factor-1) signaling has been found to increase  
469 A $\beta$  generation (59). Additionally, a similar analysis with expanded CGN signatures for excitatory  
470 neurons revealed loss-of-pathways akin to those identified in inhibitory neurons (**Figure 5F**).  
471 Among these findings, the MAPK signaling pathway emerged as the most prominent gain-of-  
472 pathway. This is in alignment with previous research demonstrating that MKP-1, a crucial negative  
473 regulator of MAPKs, can reduce A $\beta$  generation and alleviate cognitive impairments in AD models  
474 (60), thereby validating our observation.

475

#### 476 **Investigating cell type-resolved lung cancer genetics using HCNetlas**

477 The tumor immune microenvironment has become increasingly recognized as a key hallmark of  
478 cancer. Considering this, we hypothesized that HCNetlas CGNs for immune cells could be  
479 instrumental in identifying cancer-associated genes that primarily function within the immune  
480 microenvironment. Focusing on lung cancer, we constructed disease CGNs for major immune cell  
481 types using single-cell transcriptome data derived from tumor tissues of lung cancer patients (28).

482 Through differential hubness analysis, compared to reference CGNs of corresponding cell types,  
483 we pinpointed gain-of-hubness genes predominantly in T cells and myeloid cells, many of which  
484 are known to be associated with lung cancer (**Figure 6A, SupplementaryTable S8a**).  
485 Interestingly, only a few gain-of-hubness genes were common across multiple immune cell types,  
486 suggesting a specific functional role of cancer-associated genes in T cells and myeloid cells. This  
487 analysis also revealed that differential hubness was more effective in identifying lung cancer-  
488 associated genes than the traditional differentially expressed genes (DEGs) analysis (**Figure 6B**,  
489 **Supplementary Table S8b**). Notably, many up-regulated DEGs shared among all immune cell  
490 types included very few validated lung cancer genes. When assessing loss-of-hubness genes, a  
491 similar trend was observed: fewer candidates but with more specificity to cell types compared to  
492 down-regulated expression in disease (**Figure 6C-D**). T cell-specific loss-of-hubness particularly  
493 retrieved a significant number of known lung cancer genes. Additionally, we found supportive  
494 literature evidence for the proposed cell type of action for these validated cancer-associated genes  
495 identified through differential hubness analysis (**Supplementary Table S8c**). This suggests that  
496 HCNetlas is effective in predicting genes associated with cancer specifically within immune cell  
497 types.

498 Further evaluation focused on immune checkpoint molecules (ICMs), which are pivotal in  
499 antitumor immunity (61,62). We anticipated an increase in network centrality and expression of  
500 ICMs in tumor-derived immune cells. Confirming our hypothesis, genes identified through  
501 differential hubness analysis were more effective in detecting ICMs, particularly within T cells  
502 and myeloid cells, compared to differential expression analysis (**Figure 6E**). This finding  
503 underscores the advantage of network-based analyses in pinpointing crucial genes in cancer  
504 immunology. Additionally, using The Cancer Genome Atlas (TCGA) lung cancer data, we

505 explored the prognostic value of these genes. We found that the gene expression profile association  
506 score, calculated using GSVA (19), for the set of gain-of-hubness genes in each tumor sample was  
507 predictive of clinical outcomes (**Figure 6F**), unlike up-regulated DEGs (**Figure 6G**).

508

## 509 **Discussion**

510 In this study, we have demonstrated the efficacy of a network biology approach for delineating the  
511 genetics of disease at the cellular level, making use of HCNetlas—a compendium of reference  
512 CGNs derived from a single-cell expression atlas of healthy individuals. By comparing these  
513 reference CGNs against their diseased counterparts, which are constructed from single-cell  
514 transcriptomic data of the same cell types in a disease context, we could measure the alterations in  
515 network topology that distinguish healthy from diseased states. We incorporated three analytical  
516 methods within HCNetlas: differential compactness, differential hubness, and differential pathway  
517 analysis. These methods were applied in three distinct case studies addressing diseases of the  
518 immune system, neurological disorders, and cancer, thereby confirming the extensive applicability  
519 of HCNetlas for investigating disease genes in relation to cell type specificity. Our differential  
520 compactness analysis pinpointed cell types associated with diseases. We showed that identifying  
521 differential hub genes between reference and disease CGNs for a disease-associated cell type is an  
522 effective method to predict cell type-specific disease genes. Moreover, by examining differential  
523 pathways associated with top hub genes between reference and disease CGNs, we gained insights  
524 into the molecular mechanisms potentially driving pathogenesis in the disease-relevant cell types.  
525 Consequently, HCNetlas proves to be a robust framework for identifying the specific cell types,

526 genes, and molecular pathways involved in diseases, thus significantly advancing our  
527 understanding of how diseases manifest in a cell type-specific manner.

528 Our study underscores the effectiveness of network-based analysis over conventional expression-  
529 based methods in discerning the cell type specificity of disease genes. In our lung cancer case  
530 study, for example, the finding that only a few gain-of-hubness genes were shared across multiple  
531 immune cell types underscores that it is the alterations in network configuration, rather than just  
532 changes in gene expression, that more accurately reflect the cell type-specific functions of genes.

533 Further, our findings reveal that differential hubness offers greater predictive capacity for cancer-  
534 associated genes compared to differential expression analysis. A noteworthy observation was that  
535 while numerous genes were differentially expressed across various immune cell types, only a  
536 limited subset of these genes were validated to be involved in lung cancer. This highlights that  
537 gene properties unique to a cell type, such as differential hubness, can significantly enhance the  
538 accuracy of disease gene prediction. Additionally, even though they were not identified through  
539 expression-level prioritization, the association of gain-of-hubness genes with expression profiles  
540 of tumor samples was found to have prognostic value, unlike the up-regulated DEGs. This implies  
541 that the expression levels of genes that influence disease through interactions with other genes in  
542 specific cell types are more relevant and indicative of the disease context. Thus, our approach not  
543 only identifies disease-relevant genes but also provides insights into the functional significance of  
544 these genes within specific cellular environments.

545 Despite the promising findings, HCNetlas has some limitations. A significant limitation is the  
546 current scarcity of “control” single-cell gene expression data for a broad spectrum of cell types  
547 and tissues. This lack of data limits the scope and applicability of HCNetlas, as comprehensive  
548 mapping of CGNs is contingent on the availability of extensive transcriptomic data. Consequently,

549 our endeavor to create compendium of true reference CGNs was limited by the availability of atlas  
550 level resources with varying health conditions (not necessarily diseased). However, this limitation  
551 is expected to diminish as the field of single-cell transcriptomics continues to grow. As more data  
552 are generated, particularly for healthy tissues, it will become feasible to construct a more  
553 comprehensive array of CGNs, covering a wider variety of cell types. Consequently, the  
554 progression of the HCA project is likely to significantly enhance the utility of HCNetlas, extending  
555 its applicability to a broader range of diseases and deepening our understanding of cellular  
556 behaviors in various pathological states.

557 Another challenge with HCNetlas stems from the inherent limitations of our network inference  
558 methodology, which is dependent on a reference interactome. The reference interactome is mapped  
559 predominantly using data from a control state, rather than from a disease state. Consequently, this  
560 approach may overlook interactions that are unique to the disease state, as these might be  
561 underrepresented or entirely absent in the reference interactome. Such omissions can limit the  
562 analytical capacity of HCNetlas, particularly in accurately portraying disease-specific network  
563 dynamics. Moreover, low number of cells (below approximately 1000 cells) often models  
564 incomplete network structure, and thus may hinder disease analysis depending on the data input.  
565 For example, this has prevented us from observing microglia with our input AD scRNA-seq data,  
566 an important celltype known to be associated with the disease. To address this issue, future  
567 developments of HCNetlas may need to include the *de novo* inference of gene networks directly  
568 from disease sample data. Integrating these disease-specific networks into HCNetlas would  
569 provide a more comprehensive view of the gene interactions occurring in various diseases. This  
570 enhancement would not only overcome the current limitations but also enrich the platform

571 capability to provide more nuanced and accurate insights into disease mechanisms at the molecular  
572 level.

573

574

575 **Availability of data and materials**

576 The edge information of CGNs for HCNetlas and codes for the presented network analysis are  
577 freely available from <https://github.com/netbiolab/HCNetlas>.

578

579 **Funding**

580 This study was supported by the National Research Foundation funded by the Ministry of Science  
581 and ICT (grants 2018R1A5A2025079 and 2019M3A9B6065192). This work was supported in  
582 part by the Brain Korea 21 (BK21) FOUR Program.

583

584 **Author contributions**

585 J.Y., J.C., and I.L. conceived and designed the study. J.Y. and J.C. performed the bioinformatics  
586 analysis of single-cell omics data and formulated the study hypotheses. G.K. assisted with the  
587 bioinformatics analysis. J.C. provided technical advice on single-cell network analysis. I.L.  
588 supervised the bioinformatic analyses. J.Y. and J.C. wrote a draft of the manuscript. All authors  
589 contributed to the editing of the manuscript.

590

591 **Ethics declarations**

592 The authors declare no conflicts of interest.

593

594 **References**

- 595 1. Habermann, A.C., Gutierrez, A.J., Bui, L.T., Yahn, S.L., Winters, N.I., Calvi, C.L., Peter, L., Chung, M.I., Taylor, C.J., Jetter, C. *et al.* (2020) Single-cell RNA sequencing reveals 596 profibrotic roles of distinct epithelial and mesenchymal lineages in pulmonary fibrosis. *Sci 597 Adv*, **6**, eaba1972.
- 599 2. Jagadeesh, K.A., Dey, K.K., Montoro, D.T., Mohan, R., Gazal, S., Engreitz, J.M., Xavier, 600 R.J., Price, A.L. and Regev, A. (2022) Identifying disease-critical cell types and cellular 601 processes by integrating single-cell RNA-sequencing and human genetics. *Nat Genet*, **54**, 602 1479-1492.
- 603 3. Regev, A., Teichmann, S.A., Lander, E.S., Amit, I., Benoist, C., Birney, E., Bodenmiller, 604 B., Campbell, P., Carninci, P., Clatworthy, M. *et al.* (2017) The Human Cell Atlas. *Elife*, 605 **6**.
- 606 4. Rood, J.E., Maartens, A., Hupalowska, A., Teichmann, S.A. and Regev, A. (2022) Impact 607 of the Human Cell Atlas on medicine. *Nat Med*, **28**, 2486-2496.
- 608 5. Cha, J., Yu, J., Cho, J.W., Hemberg, M. and Lee, I. (2023) scHumanNet: a single-cell 609 network analysis platform for the study of cell-type specificity of disease genes. *Nucleic 610 Acids Res*, **51**, e8.
- 611 6. Kim, C.Y., Baek, S., Cha, J., Yang, S., Kim, E., Marcotte, E.M., Hart, T. and Lee, I. (2022) 612 HumanNet v3: an improved database of human gene networks for disease research. *Nucleic 613 Acids Res*, **50**, D632-D639.
- 614 7. Mohammadi, S., Davila-Velderrain, J. and Kellis, M. (2019) Reconstruction of Cell-type- 615 Specific Interactomes at Single-Cell Resolution. *Cell Syst*, **9**, 559-568 e554.
- 616 8. Cha, J. and Lee, I. (2020) Single-cell network biology for resolving cellular heterogeneity 617 in human diseases. *Exp Mol Med*, **52**, 1798-1808.
- 618 9. Ballouz, S., Verleyen, W. and Gillis, J. (2015) Guidance for RNA-seq co-expression 619 network construction and analysis: safety in numbers. *Bioinformatics*, **31**, 2123-2130.
- 620 10. Dominguez Conde, C., Xu, C., Jarvis, L.B., Rainbow, D.B., Wells, S.B., Gomes, T., 621 Howlett, S.K., Suchanek, O., Polanski, K., King, H.W. *et al.* (2022) Cross-tissue immune 622 cell analysis reveals tissue-specific features in humans. *Science*, **376**, eabl5197.

623 11. Tabula Sapiens, C., Jones, R.C., Karkanias, J., Krasnow, M.A., Pisco, A.O., Quake, S.R.,  
624 Salzman, J., Yosef, N., Bulthaup, B., Brown, P. *et al.* (2022) The Tabula Sapiens: A  
625 multiple-organ, single-cell transcriptomic atlas of humans. *Science*, **376**, eabl4896.

626 12. Sunkin, S.M., Ng, L., Lau, C., Dolbeare, T., Gilbert, T.L., Thompson, C.L., Hawrylycz, M.  
627 and Dang, C. (2013) Allen Brain Atlas: an integrated spatio-temporal portal for exploring  
628 the central nervous system. *Nucleic Acids Res*, **41**, D996-D1008.

629 13. Hao, Y., Hao, S., Andersen-Nissen, E., Mauck, W.M., 3rd, Zheng, S., Butler, A., Lee, M.J.,  
630 Wilk, A.J., Darby, C., Zager, M. *et al.* (2021) Integrated analysis of multimodal single-cell  
631 data. *Cell*, **184**, 3573-3587 e3529.

632 14. Hu, C., Li, T., Xu, Y., Zhang, X., Li, F., Bai, J., Chen, J., Jiang, W., Yang, K., Ou, Q. *et al.*  
633 (2023) CellMarker 2.0: an updated database of manually curated cell markers in  
634 human/mouse and web tools based on scRNA-seq data. *Nucleic Acids Res*, **51**, D870-D876.

635 15. Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, A.P.,  
636 Dolinski, K., Dwight, S.S., Eppig, J.T. *et al.* (2000) Gene ontology: tool for the unification  
637 of biology. The Gene Ontology Consortium. *Nat Genet*, **25**, 25-29.

638 16. Pinero, J., Ramirez-Anguita, J.M., Sauch-Pitarch, J., Ronzano, F., Centeno, E., Sanz, F.  
639 and Furlong, L.I. (2020) The DisGeNET knowledge platform for disease genomics: 2019  
640 update. *Nucleic Acids Res*, **48**, D845-D855.

641 17. Sollis, E., Mosaku, A., Abid, A., Buniello, A., Cerezo, M., Gil, L., Groza, T., Gunes, O.,  
642 Hall, P., Hayhurst, J. *et al.* (2023) The NHGRI-EBI GWAS Catalog: knowledgebase and  
643 deposition resource. *Nucleic Acids Res*, **51**, D977-D985.

644 18. Barbie, D.A., Tamayo, P., Boehm, J.S., Kim, S.Y., Moody, S.E., Dunn, I.F., Schinzel, A.C.,  
645 Sandy, P., Meylan, E., Scholl, C. *et al.* (2009) Systematic RNA interference reveals that  
646 oncogenic KRAS-driven cancers require TBK1. *Nature*, **462**, 108-112.

647 19. Hanzelmann, S., Castelo, R. and Guinney, J. (2013) GSVA: gene set variation analysis for  
648 microarray and RNA-seq data. *BMC Bioinformatics*, **14**, 7.

649 20. Nehar-Belaid, D., Hong, S., Marches, R., Chen, G., Bolisetty, M., Baisch, J., Walters, L.,  
650 Punaro, M., Rossi, R.J., Chung, C.H. *et al.* (2020) Mapping systemic lupus erythematosus  
651 heterogeneity at the single-cell level. *Nat Immunol*, **21**, 1094-1106.

652 21. McGinnis, C.S., Murrow, L.M. and Gartner, Z.J. (2019) DoubletFinder: Doublet Detection  
653 in Single-Cell RNA Sequencing Data Using Artificial Nearest Neighbors. *Cell Syst*, **8**, 329-  
654 337 e324.

655 22. Korsunsky, I., Millard, N., Fan, J., Slowikowski, K., Zhang, F., Wei, K., Baglaenko, Y.,  
656 Brenner, M., Loh, P.R. and Raychaudhuri, S. (2019) Fast, sensitive and accurate integration  
657 of single-cell data with Harmony. *Nat Methods*, **16**, 1289-1296.

658 23. Otasek, D., Morris, J.H., Boucas, J., Pico, A.R. and Demchak, B. (2019) Cytoscape  
659 Automation: empowering workflow-based network analysis. *Genome Biol*, **20**, 185.

660 24. Heng, T.S., Painter, M.W. and Immunological Genome Project, C. (2008) The  
661 Immunological Genome Project: networks of gene expression in immune cells. *Nat  
662 Immunol*, **9**, 1091-1094.

663 25. Morabito, S., Miyoshi, E., Michael, N., Shahin, S., Martini, A.C., Head, E., Silva, J., Leavy,  
664 K., Perez-Rosendahl, M. and Swarup, V. (2021) Single-nucleus chromatin accessibility  
665 and transcriptomic characterization of Alzheimer's disease. *Nat Genet*, **53**, 1143-1155.

666 26. Wightman, D.P., Jansen, I.E., Savage, J.E., Shadrin, A.A., Bahrami, S., Holland, D.,  
667 Rongve, A., Borte, S., Winsvold, B.S., Drange, O.K. *et al.* (2021) A genome-wide  
668 association study with 1,126,563 individuals identifies new risk loci for Alzheimer's  
669 disease. *Nat Genet*, **53**, 1276-1282.

670 27. Kuleshov, M.V., Jones, M.R., Rouillard, A.D., Fernandez, N.F., Duan, Q., Wang, Z.,  
671 Koplev, S., Jenkins, S.L., Jagodnik, K.M., Lachmann, A. *et al.* (2016) Enrichr: a  
672 comprehensive gene set enrichment analysis web server 2016 update. *Nucleic Acids Res*,  
673 **44**, W90-97.

674 28. Qian, J., Olbrecht, S., Boeckx, B., Vos, H., Laoui, D., Etlioglu, E., Wauters, E., Pomella,  
675 V., Verbandt, S., Busschaert, P. *et al.* (2020) A pan-cancer blueprint of the heterogeneous  
676 tumor microenvironment revealed by single-cell profiling. *Cell Res*, **30**, 745-762.

677 29. Sondka, Z., Bamford, S., Cole, C.G., Ward, S.A., Dunham, I. and Forbes, S.A. (2018) The  
678 COSMIC Cancer Gene Census: describing genetic dysfunction across all human cancers.  
679 *Nat Rev Cancer*, **18**, 696-705.

680 30. Lever, J., Zhao, E.Y., Grewal, J., Jones, M.R. and Jones, S.J.M. (2019) CancerMine: a  
681 literature-mined resource for drivers, oncogenes and tumor suppressors in cancer. *Nat  
682 Methods*, **16**, 505-507.

683 31. Martinez-Jimenez, F., Muinos, F., Sentis, I., Deu-Pons, J., Reyes-Salazar, I., Arnedo-Pac,  
684 C., Mularoni, L., Pich, O., Bonet, J., Kranas, H. *et al.* (2020) A compendium of mutational  
685 cancer driver genes. *Nat Rev Cancer*, **20**, 555-572.

686 32. Auslander, N., Zhang, G., Lee, J.S., Frederick, D.T., Miao, B., Moll, T., Tian, T., Wei, Z.,  
687 Madan, S., Sullivan, R.J. *et al.* (2018) Robust prediction of response to immune checkpoint  
688 blockade therapy in metastatic melanoma. *Nat Med*, **24**, 1545-1549.

689 33. Zhang, Z., Hernandez, K., Savage, J., Li, S., Miller, D., Agrawal, S., Ortuno, F., Staudt,  
690 L.M., Heath, A. and Grossman, R.L. (2021) Uniform genomic data analysis in the NCI  
691 Genomic Data Commons. *Nat Commun*, **12**, 1226.

692 34. Artis, D. and Spits, H. (2015) The biology of innate lymphoid cells. *Nature*, **517**, 293-301.

693 35. Szabo, P.A., Levitin, H.M., Miron, M., Snyder, M.E., Senda, T., Yuan, J., Cheng, Y.L.,  
694 Bush, E.C., Dogra, P., Thapa, P. *et al.* (2019) Single-cell transcriptomics of human T cells  
695 reveals tissue and activation signatures in health and disease. *Nat Commun*, **10**, 4706.

696 36. Saravia, J., Chapman, N.M. and Chi, H. (2019) Helper T cell differentiation. *Cell Mol*  
697 *Immunol*, **16**, 634-643.

698 37. Zhu, J. and Paul, W.E. (2010) Heterogeneity and plasticity of T helper cells. *Cell Res*, **20**,  
699 4-12.

700 38. The Gene Ontology, C. (2019) The Gene Ontology Resource: 20 years and still GOing  
701 strong. *Nucleic Acids Res*, **47**, D330-D338.

702 39. Suvas, S., Singh, V., Sahdev, S., Vohra, H. and Agrewala, J.N. (2002) Distinct role of  
703 CD80 and CD86 in the regulation of the activation of B cell and B cell lymphoma. *J Biol*  
704 *Chem*, **277**, 7766-7775.

705 40. Green, J.M., Karpitskiy, V., Kimzey, S.L. and Shaw, A.S. (2000) Coordinate regulation of  
706 T cell activation by CD2 and CD28. *J Immunol*, **164**, 3591-3595.

707 41. Zhao, F., Hoechst, B., Duffy, A., Gamrekelashvili, J., Fioravanti, S., Manns, M.P., Greten,  
708 T.F. and Korangy, F. (2012) S100A9 a new marker for monocytic human myeloid-derived  
709 suppressor cells. *Immunology*, **136**, 176-183.

710 42. Boltjes, A., Movita, D., Boonstra, A. and Woltman, A.M. (2014) The role of Kupffer cells  
711 in hepatitis B and hepatitis C virus infections. *J Hepatol*, **61**, 660-671.

712 43. Ghodke-Puranik, Y. and Niewold, T.B. (2015) Immunogenetics of systemic lupus  
713 erythematosus: A comprehensive review. *J Autoimmun*, **64**, 125-136.

714 44. Banchereau, R., Hong, S., Cantarel, B., Baldwin, N., Baisch, J., Edens, M., Cepika, A.M.,  
715 Acs, P., Turner, J., Anguiano, E. *et al.* (2016) Personalized Immunomonitoring Uncovers  
716 Molecular Networks that Stratify Lupus Patients. *Cell*, **165**, 1548-1550.

717 45. Caielli, S., Cardenas, J., de Jesus, A.A., Baisch, J., Walters, L., Blanck, J.P.,  
718 Balasubramanian, P., Stagnar, C., Ohouo, M., Hong, S. *et al.* (2021) Erythroid  
719 mitochondrial retention triggers myeloid-dependent type I interferon in human SLE. *Cell*,  
720 **184**, 4464-4479 e4419.

721 46. Ding, D., Mehta, H., McCune, W.J. and Kaplan, M.J. (2006) Aberrant phenotype and  
722 function of myeloid dendritic cells in systemic lupus erythematosus. *J Immunol*, **177**, 5878-  
723 5889.

724 47. Hubbard, E.L., Catalina, M.D., Heuer, S., Bachali, P., Robl, R., Geraci, N.S., Grammer,  
725 A.C. and Lipsky, P.E. (2020) Analysis of gene expression from systemic lupus  
726 erythematosus synovium reveals myeloid cell-driven pathogenesis of lupus arthritis. *Sci*  
727 *Rep*, **10**, 17361.

728 48. Labonte, A.C., Kegerreis, B., Geraci, N.S., Bachali, P., Madamanchi, S., Robl, R., Catalina,  
729 M.D., Lipsky, P.E. and Grammer, A.C. (2018) Identification of alterations in macrophage  
730 activation associated with disease activity in systemic lupus erythematosus. *PLoS One*, **13**,  
731 e0208132.

732 49. Wang, W., Zhao, F., Ma, X., Perry, G. and Zhu, X. (2020) Mitochondria dysfunction in the  
733 pathogenesis of Alzheimer's disease: recent advances. *Mol Neurodegener*, **15**, 30.

734 50. Tournissac, M., Leclerc, M., Valentin-Escalera, J., Vandal, M., Bosoi, C.R., Planel, E. and  
735 Calon, F. (2021) Metabolic determinants of Alzheimer's disease: A focus on  
736 thermoregulation. *Ageing Res Rev*, **72**, 101462.

737 51. Cheon, S.Y. and Song, J. (2022) Novel insights into non-alcoholic fatty liver disease and  
738 dementia: insulin resistance, hyperammonemia, gut dysbiosis, vascular impairment, and  
739 inflammation. *Cell Biosci*, **12**, 99.

740 52. Kim, D.G., Krenz, A., Toussaint, L.E., Maurer, K.J., Robinson, S.A., Yan, A., Torres, L.  
741 and Bynoe, M.S. (2016) Non-alcoholic fatty liver disease induces signs of Alzheimer's  
742 disease (AD) in wild-type mice and accelerates pathological signs of AD in an AD model.  
743 *J Neuroinflammation*, **13**, 1.

744 53. Luchsinger, J.A., Tang, M.X., Stern, Y., Shea, S. and Mayeux, R. (2001) Diabetes mellitus  
745 and risk of Alzheimer's disease and dementia with stroke in a multiethnic cohort. *Am J  
746 Epidemiol*, **154**, 635-641.

747 54. Tublin, J.M., Adelstein, J.M., Del Monte, F., Combs, C.K. and Wold, L.E. (2019) Getting  
748 to the Heart of Alzheimer Disease. *Circ Res*, **124**, 142-149.

749 55. Vrillon, A., Deramecourt, V., Pasquier, F., Magnin, E., Wallon, D., Lozeron, P., Bouaziz-  
750 Amar, E. and Paquet, C. (2021) Association of Amyotrophic Lateral Sclerosis and  
751 Alzheimer's Disease: New Entity or Coincidence? A Case Series. *J Alzheimers Dis*, **84**,  
752 1439-1446.

753 56. Condello, C., DeGrado, W.F. and Prusiner, S.B. (2020) Prion biology: implications for  
754 Alzheimer's disease therapeutics. *Lancet Neurol*, **19**, 802-803.

755 57. Chen, Z.R., Huang, J.B., Yang, S.L. and Hong, F.F. (2022) Role of Cholinergic Signaling  
756 in Alzheimer's Disease. *Molecules*, **27**.

757 58. Zhang, H., Zhang, L., Zhou, D., Li, H. and Xu, Y. (2021) ErbB4 mediates amyloid beta-  
758 induced neurotoxicity through JNK/tau pathway activation: Implications for Alzheimer's  
759 disease. *J Comp Neurol*, **529**, 3497-3512.

760 59. Wang, Y.Y., Huang, Z.T., Yuan, M.H., Jing, F., Cai, R.L., Zou, Q., Pu, Y.S., Wang, S.Y.,  
761 Chen, F., Yi, W.M. *et al.* (2021) Role of Hypoxia Inducible Factor-1alpha in Alzheimer's  
762 Disease. *J Alzheimers Dis*, **80**, 949-961.

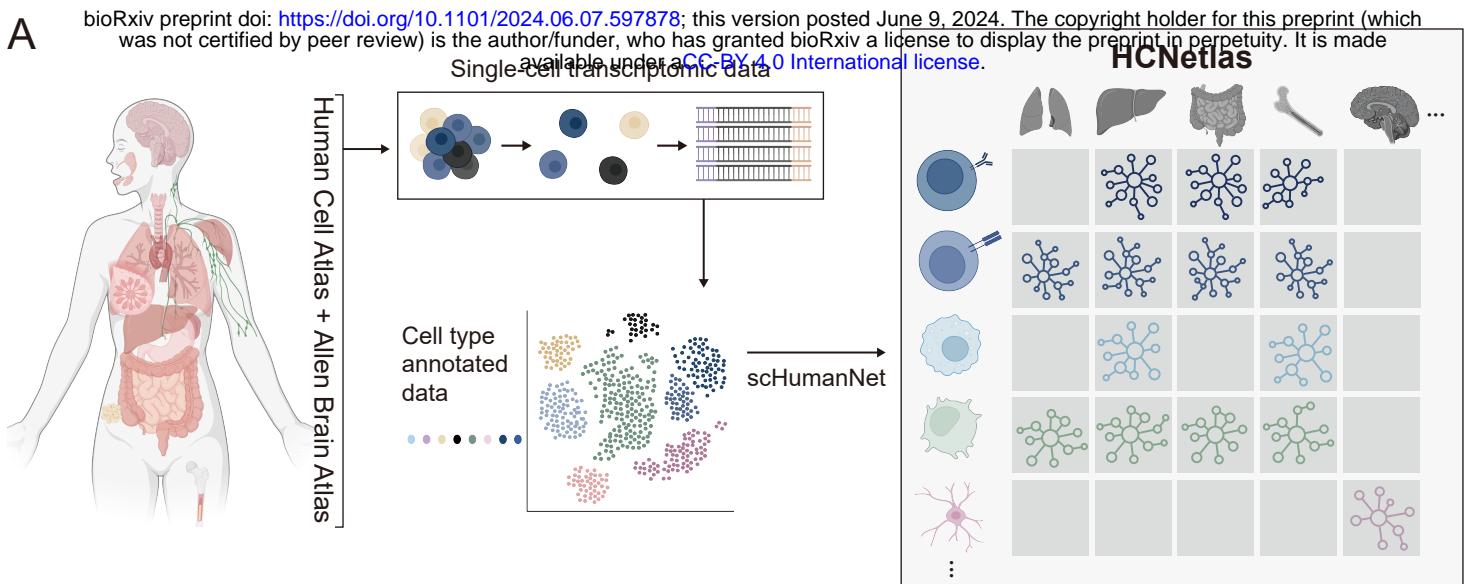
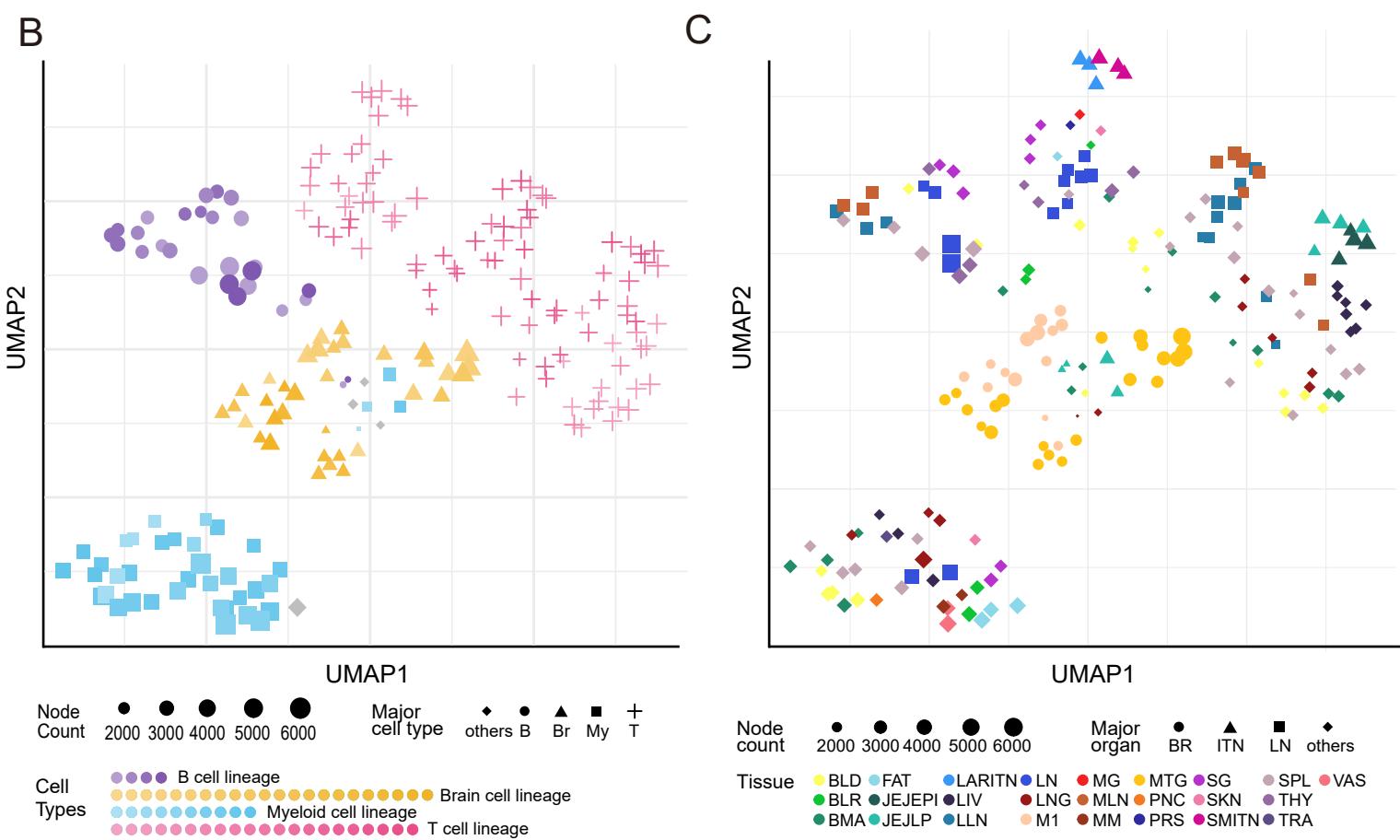
763 60. Du, Y., Du, Y., Zhang, Y., Huang, Z., Fu, M., Li, J., Pang, Y., Lei, P., Wang, Y.T., Song,  
764 W. *et al.* (2019) MKP-1 reduces Abeta generation and alleviates cognitive impairments in  
765 Alzheimer's disease models. *Signal Transduct Target Ther*, **4**, 58.

766 61. Zhang, Y. and Zheng, J. (2020) Functions of Immune Checkpoint Molecules Beyond  
767 Immune Evasion. *Adv Exp Med Biol*, **1248**, 201-226.

768 62. He, X. and Xu, C. (2020) Immune checkpoint signaling and cancer immunotherapy. *Cell*  
769 *Res*, **30**, 660-669.

770

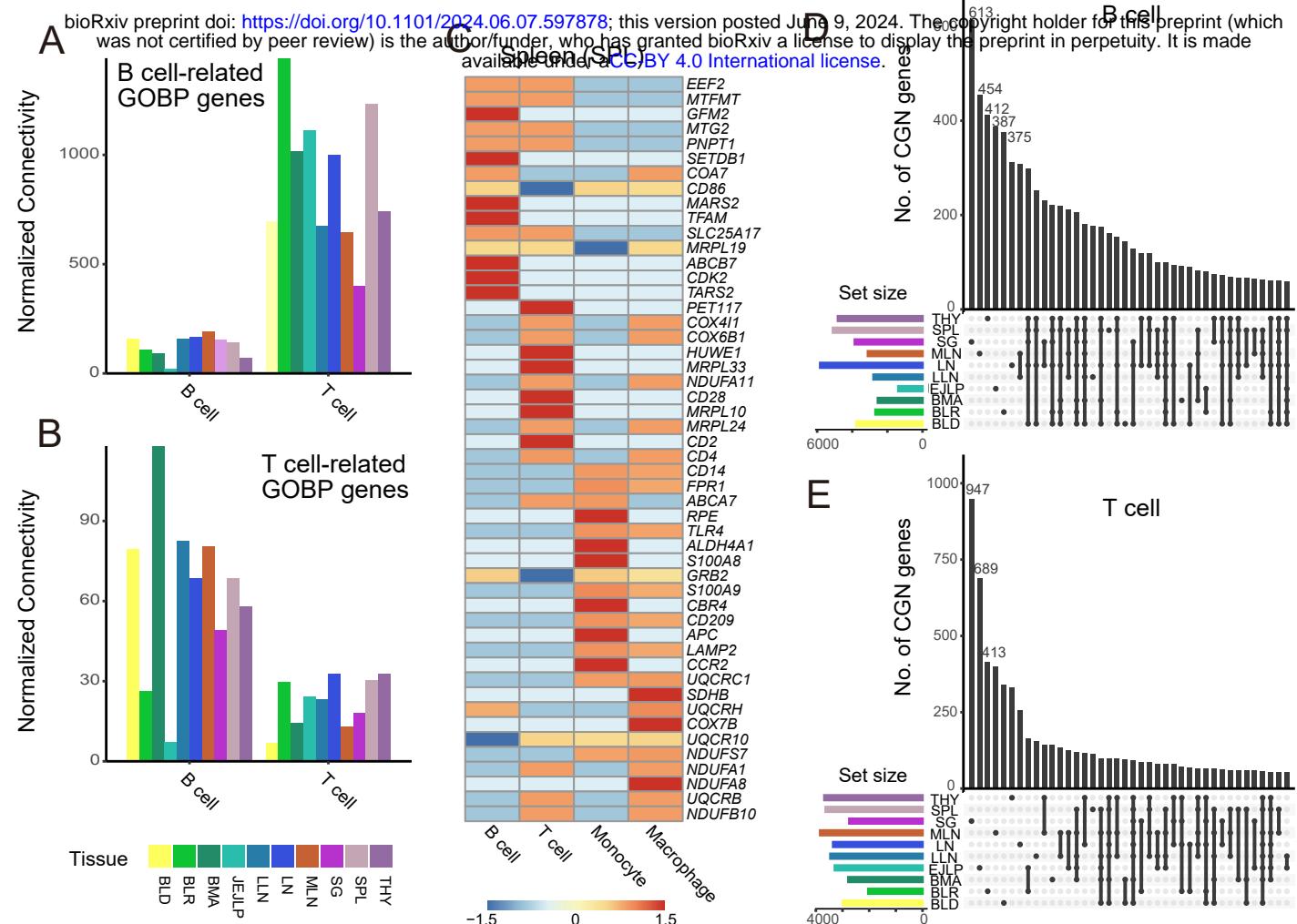
# Figure 1



## Figure 1. Overview of Human Cell Network Atlas (HCNetlas)

**A.** Schematic representation of the workflow from single-cell transcriptomic data collection to the construction of the HCNetlas. Single-cell RNA sequencing data preannotated for cell type were used to build cell type-specific gene networks (CGNs) using the scHumanNet framework. HCNetlas is comprised of a comprehensive collection of these gene networks, representing various human tissues and cell types. **B.** Uniform Manifold Approximation and Projection (UMAP) visualization of CGNs based on gene profiles, highlighting the major cell lineages, with node size representing the number of genes in each network. Major celltype “Other” in grey (Major cell type abbreviations; B; B cells, Br; Brain cells, My; Myeloid cells, T; T cells) **C.** UMAP plot displaying the interrelationship among the CGNs based on network gene profiles for major organs or tissue types. Each point represents a gene network associated with a specific organ or tissue type colored distinctly.

# Figure 2

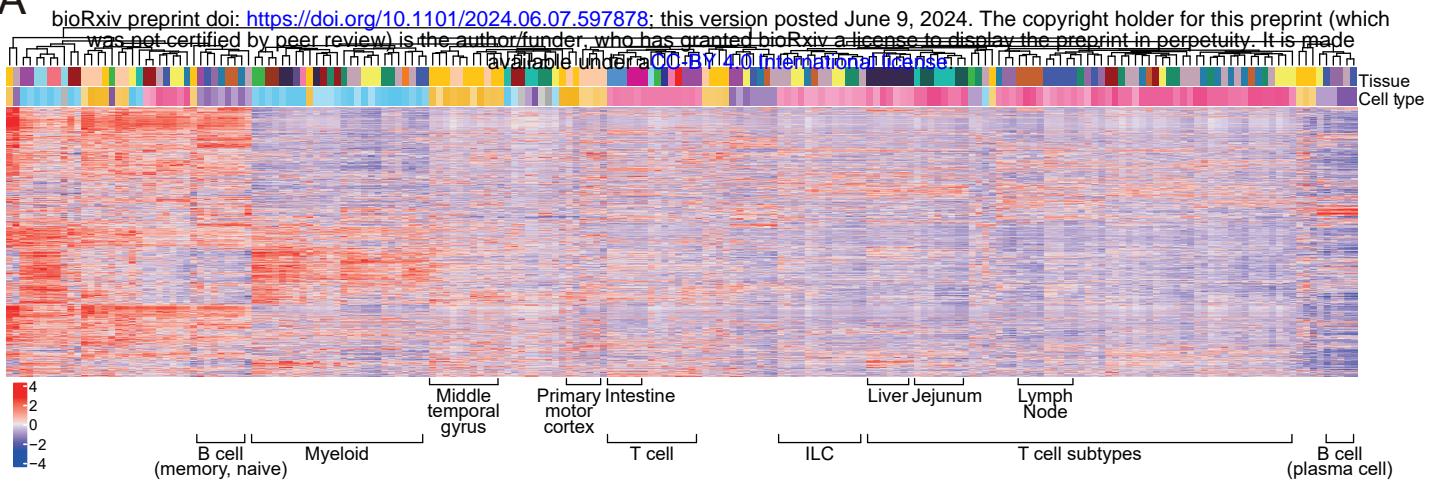


## Figure 2. Cell type-specific functionality of HCNetlas CGNs

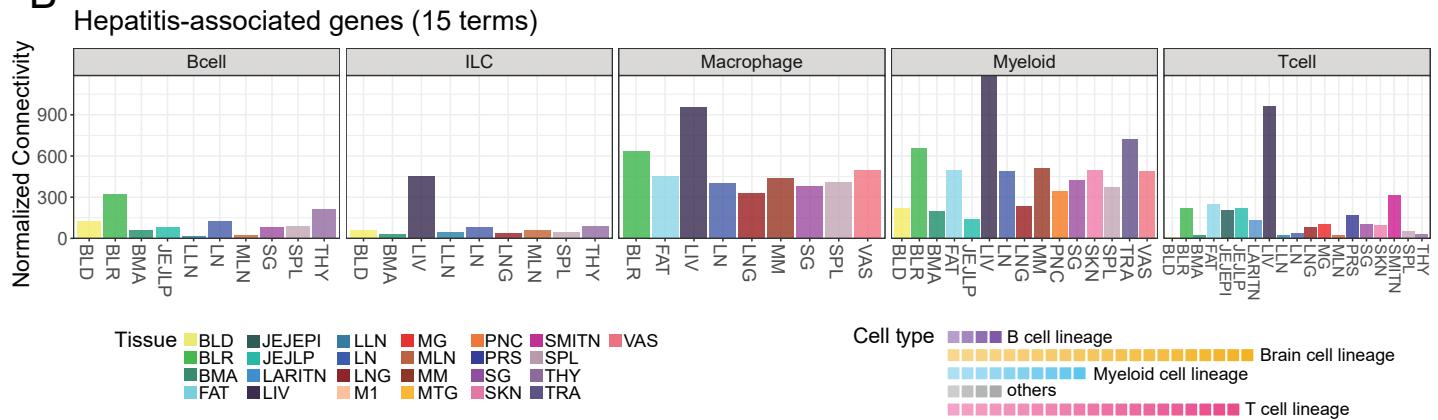
**A-B.** Bar graph illustrating the within-group connectivity of B cell-related (**A**) or T cell-related (**B**) Gene Ontology biological process (GOBP) genes in the respective CGNs. Connectivity is normalized by each CGN's total node number. All tissues with over 0 value of normalized connectivity for both B and T cells are included. **C.** Heatmap displaying the percentile rank of the top 15 hub genes in spleen CGNs, with values scaled per row, with color intensity indicating the expression level from low (blue) to high (red). **D-E.** UpSet plots for two major CGNs, B cell CGN (**D**) and T cell CGN (**E**), representing the intersection of network genes across different tissues.

# Figure 3

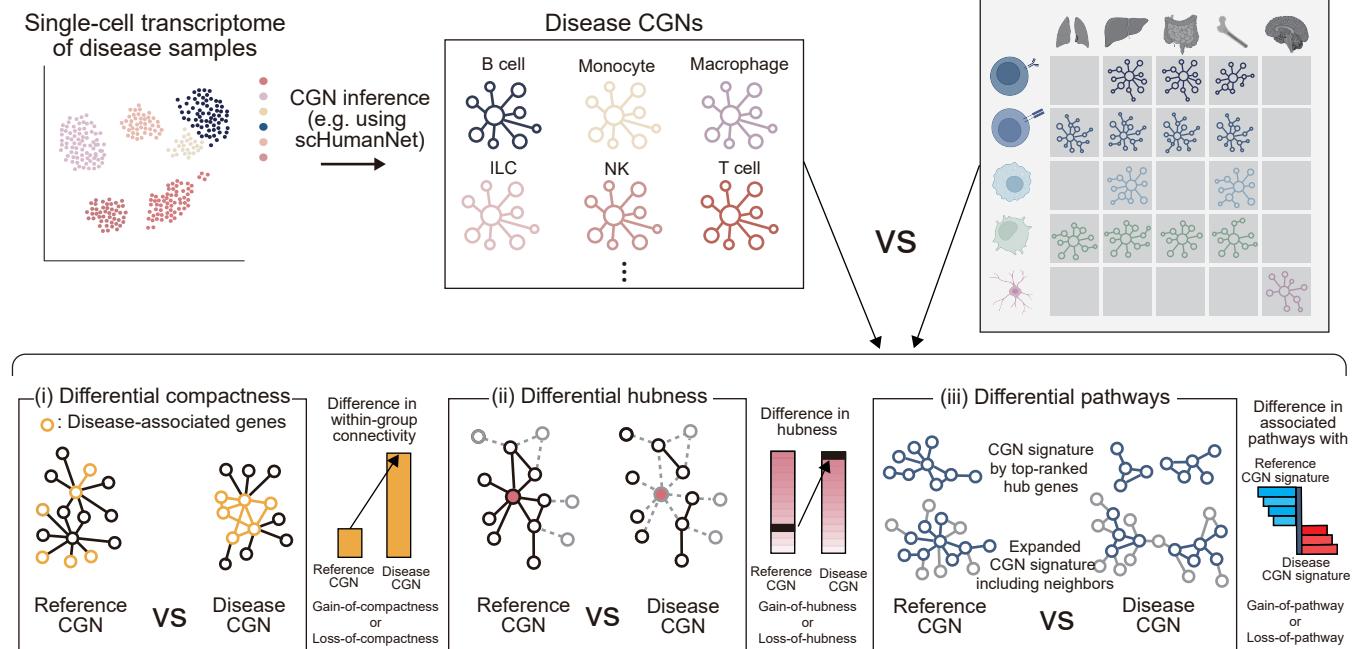
A



B



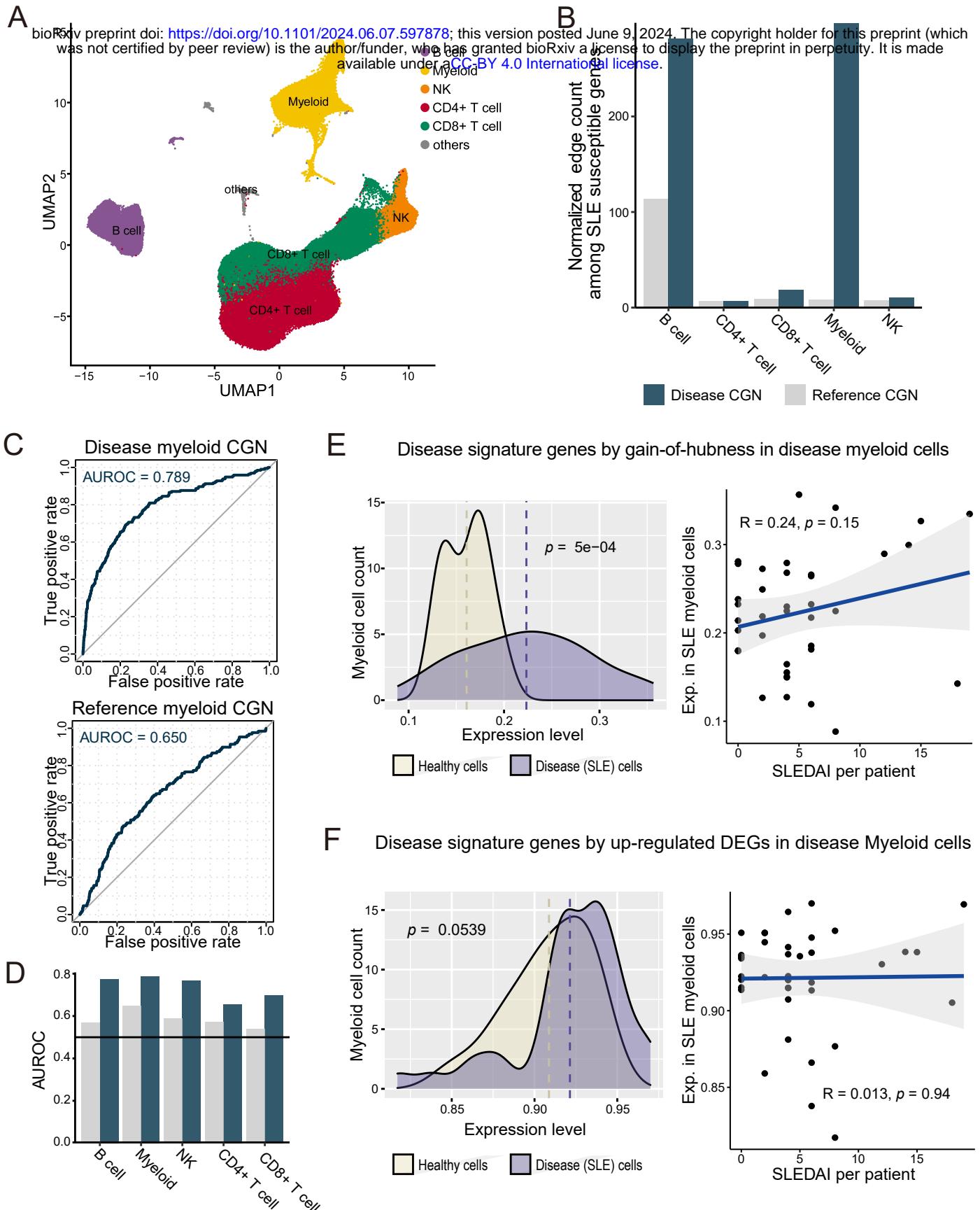
C



### Figure 3. Overview of cell type-resolved disease genetics using HCNetlas

**A.** Heatmap displaying the disease profiles of various cell types across different tissues, conducted with single-sample gene set enrichment analysis (ssGSEA). Each column represents a CGN of HCNetlas, while each row corresponds to a disease gene set sourced from either DisGeNET or GWAS Catalog. Color intensity indicates the degree of association of the CGN signature genes with each disease gene set. **B.** Bar graphs showing the within-group connectivity of genes associated with toxic hepatitis across different cell lineages, in various tissues. The bars are color-coded to represent different cell lineages. 15 terms and their combined genes were assessed from DisGeNET terms based on the key word search “hepatitis”. **C.** Schematic representation and summary of the analytical framework used for comparing disease CGNs with reference CGNs from HCNetlas. The workflow illustrates the process of CGN inference from single-cell transcriptomes of disease samples and contrasts disease CGNs for specific immune cells against reference CGNs. The analysis includes (i) differential compactness, highlighting the difference in interconnectivity within disease-associated genes; (ii) differential hubness, showing the changes in hubness; and (iii) differential pathways, contrasting pathway associations between disease and healthy states based on enrichment for CGN signature genes.

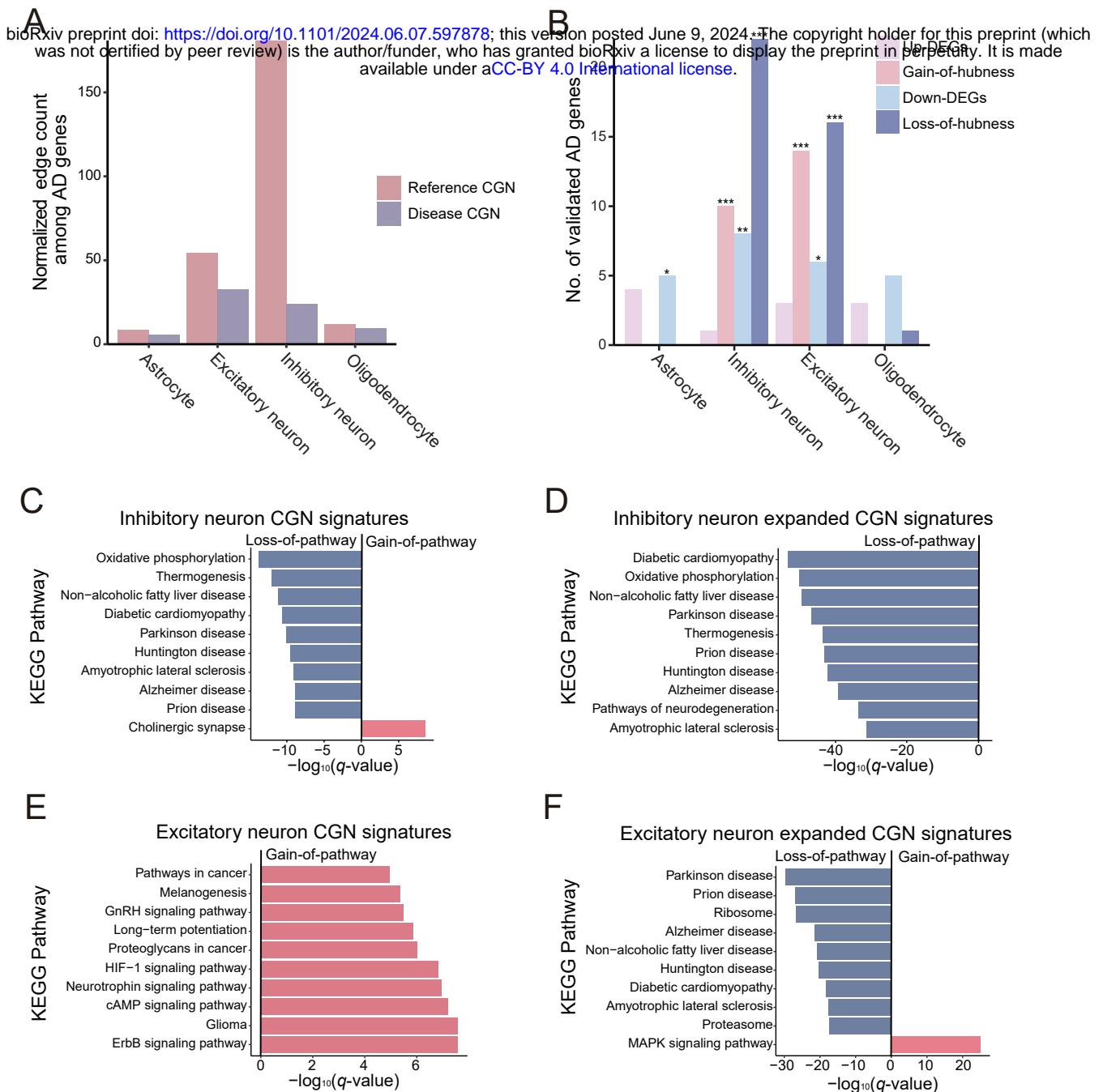
# Figure 4



**Figure 4. Cell type-resolved disease genetics for systemic lupus erythematosus (SLE)**

**A.** Uniform Manifold Approximation and Projection (UMAP) plot representing the interrelationship among immune cells. **B.** Bar chart showing normalized interconnectivity among SLE-susceptible genes in both reference and disease cell type-specific gene networks (CGNs) for various cell types. **C.** Receiver Operating Characteristic (ROC) curves for retrieval of interferon stimulating genes (ISGs) by network hubness in disease myeloid CGN and reference myeloid CGN. **D.** Comparison of area under the ROC curve (AUROC) values with CGNs for various cell types, contrasting the reference and disease CGNs to assess prediction capability. **E.** Left panel: Distribution of expression levels for 131 gain-of-hubness genes in myeloid cells. Right panels: Correlation analysis of expression levels of the 131 gain-of-hubness genes with the Systemic Lupus Erythematosus Disease Activity Index (SLEDAI). **F.** Same as for (E) except using up-regulated differential expression genes (DEGs).

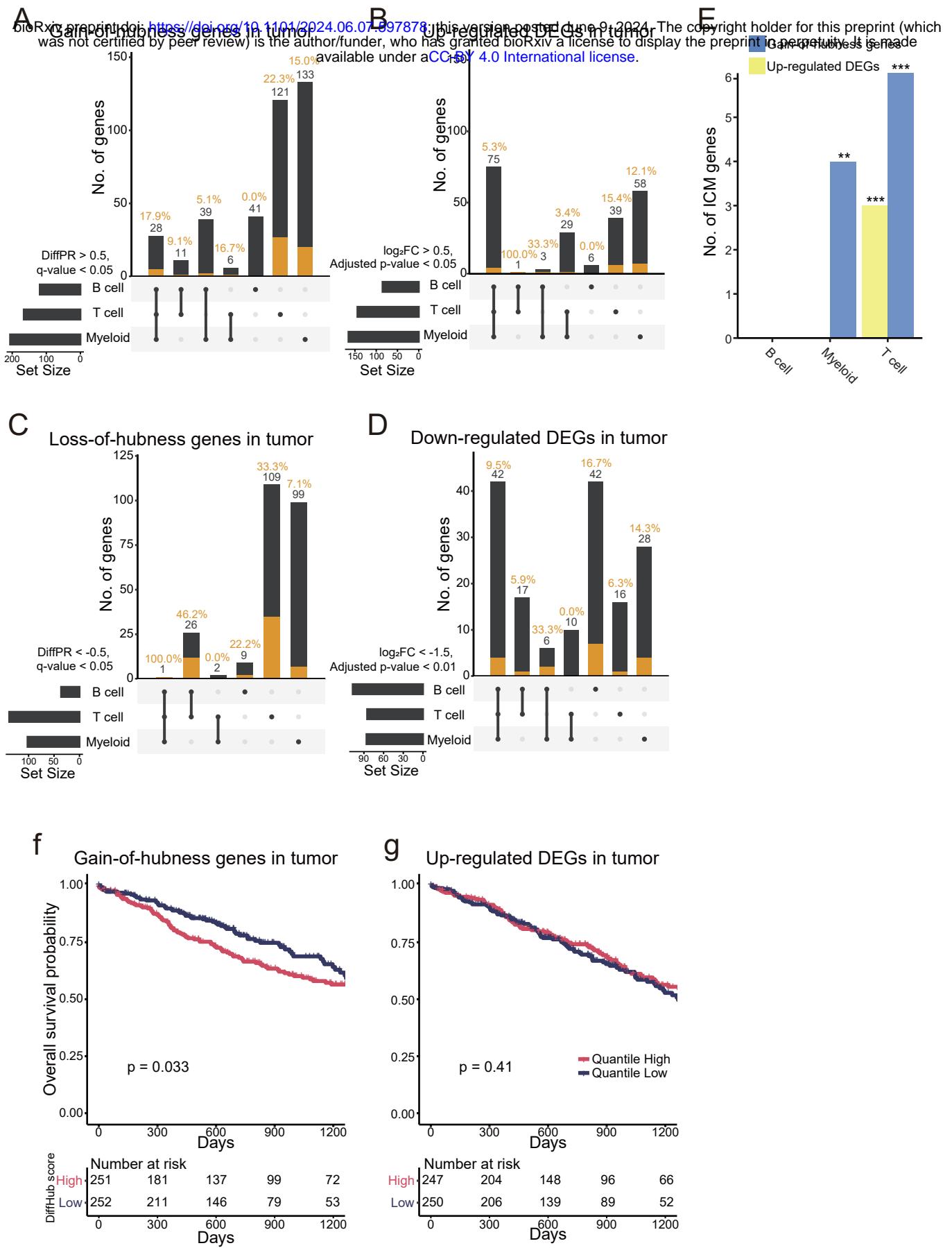
# Figure 5



## Figure 5. Cell type-resolved disease genetics for Alzheimer's disease (AD)

**A.** Bar graph depicting the normalized edge count among AD-associated genes in reference and disease cell type-specific gene networks (CGNs) for various neurological cell types. **B.** Bar graph showing the number of validated AD genes predicted by differential expression or differential hubness across the four neurological cell types. Statistical significance of overlap is shown for each gene sets (\* $P < 0.05$ , \*\*  $P < 0.01$ , \*\*\*  $P < 0.01$  by one-sided hypergeometric test) **C-F.** Ten most differentially associated KEGG pathways with CGN signature genes: Differentially associated pathways for inhibitory neuron CGN signature (**C**), inhibitory neuron expanded CGN signature (**D**), excitatory neuron CGN signature (**E**) and excitatory neuron expanded CGN signature (**F**).

# Figure 6



**Figure 6. Identifying genes that contribute to lung cancer through immune cells using HCNetlas.**

**A-D.** UpSet plots for predicted genes for lung cancer by gain-of-hubness (**A**), up-regulated differential expressed genes (DEGs) (**B**), loss-of-hubness (**C**) or down-regulated DEGs (**D**), representing the intersection of predictions across different cell types. Orange bar indicates the number of lung cancer genes validated by various databases such as CancerMine, IntOGen, and cancer gene consensus. **E.** Bar graph showing the number of immune checkpoint molecules (ICMs) retrieved by both gain-of-hubness genes and up-regulated DEGs across different immune cell types. Statistical significance of overlap is shown for each gene sets (\* $P < 0.05$ , \*\*  $P < 0.01$ , \*\*\*  $P < 0.01$  by one-sided hypergeometric test) **F-G.** Kaplan-Meier survival curve analysis for cancer patients from TCGA cohort (TCGA-LUSC and TCGA-LUAD), stratified by the enrichment score of gain-of-hubness genes (**F**) or up-regulated DEGs (**G**). The graph shows the overall survival probability over time, with patients categorized into high and low quantiles based on the gene set variation analysis (GSVA) score. Significance of survival rate difference between the upper and lower quantile expression groups were evaluated using the log-rank test.

## Supplementary Table Legends

### **Supplementary Table S1. HCNetlas cell type, abbreviation, and cell count.**

**Supplementary Table S2. SLE susceptible gene list.** 184 SLE-associated genes are obtained from KEGG pathway (hsa05322) and KEGG disease (H00080) databases.

**Supplementary Table S3. The list of interferon-stimulated genes.** We compiled interferon-stimulated genes (ISGs) from hallmark gene sets of the molecular signature database (MSigDB) and the Immunological Genome Project (ImmGen) (24), resulting in a total of 423 ISGs.

**Supplementary Table S4. Area under ROC for prediction of interferon-stimulated genes (ISGs) by network centrality.** AUROC were computed with 423 ISGs from Supplementary Table S3 were applied to genes sorted based on degree centrality.

**Supplementary Table S5. Gain-of-hubness genes and up-regulated genes in SLE myeloid network.** Gain-of-hubness genes were defined by differential percentile rank  $> 0.5$  and  $q$ -value  $< 0.05$ . DEGs were genes with an adjusted  $p$ -value  $< 0.05$  and an  $\log_2$ -fold change  $> 0.5$ , focusing solely on coding genes.

**Supplementary Table S6. Genes associated with Alzheimer's disease.** AD-associated genes were obtained from the KEGG pathway (M16024), MSigDB (M35868), and Wightman *et al.*

**Supplementary Table S7. Gain-of-hubness genes, loss-of-hubness genes, up-regulated DEGs, and down-regulated DEGs in AD CGNs.** Gain/loss-of-hubness genes were defined by absolute differential percentile rank  $> 0.5$  and  $q$ -value  $< 0.05$ . DEGs were genes with an adjusted  $p$ -value  $< 0.05$  and an absolute  $\log_2$ -fold change  $> 0.5$ , focusing solely on coding genes.

**Supplementary Table S8. Gain-of-hubness genes, loss-of-hubness genes, up-regulated DEGs, and down-regulated DEGs in lung cancer CGNs.** Gain/loss-of-hubness genes were defined by absolute differential percentile rank  $> 0.5$  and  $q$ -value  $< 0.05$ . Up-regulated DEGs were genes with an adjusted  $p$ -value  $< 0.05$  and  $\log_2$ -fold change  $> 0.5$ , and down-regulated DEGs were genes with adjusted  $p$ -value  $< 0.01$  and  $\log_2$ -fold change  $< -1.5$ .