

1 **A VLP vaccine platform comprising the core protein of hepatitis B virus with**
2 **N-terminal antigen capture.**

3 Kaniz Fatema*, Joseph S. Snowden*, Alexander Watson, Lee Sherry, Neil A.
4 Ranson, Nicola J. Stonehouse[#] and David J. Rowlands[#]

5

6 Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology,
7 Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom

8 *These authors contributed equally to the study.

9 # Address correspondence to David J. Rowlands, D.J.Rowlands@leeds.ac.uk and Nicola J.
10 Stonehouse, N.J.Stonehouse@leeds.ac.uk

11

12 Keywords: vaccine, platform, virus-like particle, ClearColi, HBcAg, Junín virus

13

14 Word count

15 Abstract: 179; Body text: 3,450 (including references)

16 Abstract

17 Nanoparticle presentation systems offer the potential to develop new vaccines rapidly in
18 response to emerging diseases, a public health need that has become increasingly evident in
19 the wake of the COVID-19 pandemic. Previously, we reported a nanoparticle scaffold system
20 termed VelcroVax. This was constructed by insertion of a high affinity SUMO binding protein
21 (Affimer), able to recognise a SUMO peptide tag, into the major immunodominant region of
22 VLPs assembled from a tandem (fused dimer) form of hepatitis B virus (HBV) core protein
23 (HBc). Here we describe a modified form of VelcroVax, comprising monomeric HBc with the
24 Affimer inserted at the N-terminus (termed N-VelcroVax). In contrast to the tandem form of
25 VelcroVax, N-VelcroVax VLPs were expressed well in *E. coli*. The VLPs effectively bound
26 SUMO-tagged Junín virus glycoprotein, gp1 as assessed by structural and serological analyses.
27 Cryo-EM characterisation of N-VelcroVax complexed with a SUMO-Junín gp1 showed
28 continuous density attributable to the fused Affimer, in addition to evidence of target antigen
29 capture. Collectively, these data suggest that N-VelcroVax has potential as a versatile next
30 generation vaccine scaffold.

31 **Introduction**

32 Virus vaccines developed by conventional means, e.g. attenuation or chemical inactivation,
33 have been highly effective in reducing disease burdens in both humans and domesticated
34 animals. Furthermore, advances in molecular biology and immunology in recent decades have
35 expanded the options available for development of novel vaccines against intractable diseases
36 and against newly emerging pathogens. Newer approaches to vaccine development include
37 recombinant expression of protein subunits, recombinant live viral vectors, DNA, mRNA and
38 nanoparticle vaccine platforms [1-3]. The original nanoparticle vaccines were virus-like
39 particles (VLPs) produced by recombinant expression of self-assembling viral structural
40 proteins. The first VLP vaccine to be licenced for human use was the hepatitis B surface antigen
41 vaccine (HBsAg), which has been used to immunise many millions of people since its
42 introduction in the 1980s [4, 5]. More recently, VLP vaccines have been successfully
43 developed to immunise against human papillomavirus. These VLP vaccines provide immunity
44 against the viruses from which the VLPs originated [6]. However, the principle of using VLPs
45 as presentation systems for antigens derived from heterologous pathogens has been exemplified
46 by the licencing of Mosquirix, which comprises HBsAg modified to include antigenic
47 components of the malaria parasite [7]. In addition to viral structural proteins, other self-
48 assembling proteins have been shown to produce nanoparticles suitable for chemical
49 modification to provide candidate vaccine platforms [8, 9].

50 VLPs lack viral genetic material and therefore have no replicative ability and are intrinsically
51 safe. Additionally, due to their structural resemblance to native viruses, VLPs inherently
52 possess “self-adjuvanting” immunogenic properties to elicit a strong immune response.
53 Moreover, VLPs are able to elicit both humoral and cellular immune responses initiating the
54 production of specific antibodies and activating cytotoxic T-cells [10-13]. In addition to acting
55 as antigens themselves, VLPs can be modified to display foreign epitopes [14-16]. A key

56 advantage of using VLP-based vaccine platforms is the ability to present antigens in a dense,
57 highly repetitive manner, which leads to cross-linking of B cell receptors (BCRs) and B cell
58 activation. Many studies have shown that VLP-based vaccines containing multivalent antigens
59 elicit robust B cell activation and signalling and induce more effective immune responses than
60 monovalent antigens [11, 13, 17, 18].

61 The capsid (or core) protein of hepatitis B virus (HBc) readily forms icosahedral VLPs when
62 expressed in a wide range of prokaryotic and eukaryotic systems, which are inherently highly
63 immunogenic. Consequently, the HBc VLP system has long been investigated as a potential
64 vaccine platform [14, 15, 19-21]. HBc protein monomers comprise either 183 or 185 amino
65 acids and dimerise to produce structural subunits which assemble to form icosahedral VLPs with
66 $T = 3$ (90 dimers) or $T = 4$ (120 dimers) morphologies [22]. The dimeric assembly results in
67 the formation of 4 helix bundles (spikes) which project from the particle surface and a sequence
68 at the tips of the spikes comprises the major immunodominant region (MIR). The MIR has
69 been used as a preferred site for insertion of foreign epitopes because of its immunodominance
70 [16, 23, 24] but this also poses challenges. There is a potential for steric clashes when two
71 closely located copies of the inserted sequence are present at the tips of the spikes [23, 25].
72 Furthermore, insertion of large or hydrophobic sequences can interfere with assembly and
73 therefore abrogate VLP formation [26, 27]. We previously addressed this problem by fusing
74 two copies of HBc protein to produce tandem HBc VLPs, which allows the insertion of a
75 foreign sequence into one MIR while leaving the other MIR in the tandem partner unmodified,
76 resulting in the presence of only one foreign epitope per spike [23]. This approach allowed us
77 to develop VelcroVax, incorporating an antigen capture sequence, an Affimer (a non-antibody
78 high affinity artificial binding protein), inserted at a single MIR per spike [16]. Although these
79 constructs form VLPs when expressed in eukaryotic systems, such as yeast or plants, they do
80 not assemble efficiently when expressed in *E.coli*. Consequently, here we have developed an

81 alternative antigen capture platform compatible with expression in *E.coli*. The MIR is the most
82 exposed part of the VLP and consequently is the immunodominant region [19, 23]. Therefore,
83 in order to reduce the inherent anti-hepatitis B virus immunogenicity of the VLPs, we modified
84 the natural HBc protein sequence by inserting 5 additional amino acids within the MIR. This
85 construct (which we refer to as wild type (wt) HBc 190) was modified to include an Affimer
86 fused to the N-terminus and termed N-VelcroVax. The resulting VLPs were able to bind a viral
87 glycoprotein (Junín gp1) bearing the appropriate affinity tag as demonstrated by ELISA,
88 gradient centrifugation and cryo-EM.

89 **Results**

90 **Expression of N-VelcroVax in *E. coli***

91 We previously generated a vaccine platform system termed VelcroVax in which an anti-SUMO
92 Affimer was inserted into the MIR of one of the HBc monomers within a fused HBc dimer.
93 The Affimer was presented on the surface of assembled VLPs and was able to bind SUMO-
94 tagged target antigens [16]. Here, we have modified a monomeric HBc protein containing a 5
95 amino acid insertion into the MIR, termed wt HBc 190 (Fig.1A), by introducing the anti-SUMO
96 Affimer sequence (Fig. 1C) at the N-terminus to produce N-VelcroVax (Fig 1B). This protein
97 was expressed in *E.coli*, using the ClearColi BL21 (DE3) strain to minimise contamination
98 with bacteria-derived pyrogens. Both wt HBc 190 and N-VelcroVax were efficiently
99 expressed, as demonstrated by Western Blot analysis using anti-HBc (10E11) antibodies (Fig.
100 1D), with proteins of 22 kDa and 35 kDa detected, as expected. A minor band apparent in the
101 N-VelcroVax sample is likely to be a degradation product.

102 **N-VelcroVax assembles into VLPs.**

103 After confirmation of expression of N-VelcroVax in ClearColi BL21 (DE3) *E. coli*, cell
104 extracts were purified by differential ultra-centrifugation including separation of assembled
105 VLPs on sucrose gradients. Gradient fractions were then analysed by Coomassie blue staining
106 and Western blot which confirmed the presence of N-VelcroVax VLPs (Fig. 2A) [16]. The
107 purity of the sucrose gradient separated VLPs can be assessed from the lack of visible
108 contaminating proteins in the Coomassie stained gel. Examination of the peak fraction (fraction
109 5) by negative stain transmission electron microscopy (TEM) showed VLPs of the expected
110 morphology (Fig. 2B).

111 **Complexes of SUMO-Junín gp1 and N-VelcroVax VLP co-sediment during sucrose
112 gradient centrifugation.**

113 We examined the SUMO-binding properties of N-VelcroVax VLPs using a SUMO-tagged gp1
114 protein of Junín virus, which we had previously shown to bind to the Affimer when presented
115 at the MIR of tandem VelcroVax [16]. For the initial investigation of binding, N-VelcroVax
116 VLPs were mixed with SUMO-Junín gp1 at a 1:1 molar ratio overnight at 4°C and separated
117 by 15 - 45% sucrose gradient ultracentrifugation. The resulting fractions were analysed by
118 Western blot using anti-HBc (10E11) and anti-Junín antibodies to detect the positions of N-
119 VelcroVax (Fig. 3A) and SUMO-Junín gp1 (Fig. 3B) respectively in the gradients. Both HBc
120 N-VelcroVax (35 kDa) and SUMO-Junín gp1 (54 kDa) were present in the same gradient
121 fractions, indicative of a non-covalent interaction (Fig. 3). As shown in Fig. 3A, the majority
122 of the SUMO-Junín gp1 co-sedimented with the VLPs, although some unbound material
123 (29.8 +/- 3.8 %) was detected in the top gradient fractions.

124 **Evaluation of SUMO-Junín gp1 binding to N-VelcroVax by ELISA.**

125 The SUMO-Junín gp1 interaction with HBc N-VelcroVax was assessed by ELISA. SUMO-
126 Junín gp1 and N-VelcroVax were mixed before loading onto ELISA plates. Molar ratios ranged
127 from 1:1 to 5:1 (HBc monomer:gp1). After washing, the wells were interrogated with anti-HBc
128 or anti-SUMO-Junín gp1 antisera. The results indicated that N-VelcroVax VLPs clearly bound
129 SUMO-Junín gp1 with maximum binding occurring when the components were mixed at a 1:1
130 ratio (Fig. 4). No binding of SUMO-Junín gp1 to wt HBc 190 VLPs was detected, as expected
131 (Fig. 4).

132 **Structural characterisation of N-VelcroVax and N-VelcroVax:SUMO-Junín gp1 particles.**

133 N-VelcroVax samples were vitrified for cryo-EM data collection (Fig. S1, Table S1). This
134 confirmed two different sizes of icosahedral particles. Reconstructions of each particle stack
135 with icosahedral symmetry imposed revealed that these corresponded to $T = 3$ and $T = 4$
136 configurations, as expected.

137 Interestingly, both reconstructions (resolved to ~3.5 Å and ~3.3 Å, respectively) showed
138 continuous densities located between the four-helix bundles on the surface of the VLPs (Fig.
139 5). Each of these densities was of appropriate dimension to accommodate an Affimer and was
140 located close to the residue at the N-terminus of a wt HBc 190 monomer, as expected.
141 Unstructured internal density was also observed, possibly representing non-specific binding of
142 nucleic acid derived from the *E.coli* expression system as reported previously [28] (Fig. 5).

143 Next, we attempted to visualise N-VelcroVax VLPs in complex with a SUMO-tagged antigen,
144 specifically, the gp1 glycoprotein of Junín virus (SUMO-gp1). As initial screening by negative
145 stain TEM of N-VelcroVax:SUMO-gp1 complexes revealed significant aggregation, an
146 alternative on-grid binding approach was pursued (i.e. separate samples of N-VelcroVax and
147 SUMO-gp1 were applied directly to the grid in sequence). This showed no evidence of
148 aggregation of N-VelcroVax particles and visual inspection suggested that the boundaries of
149 the VLPs had become less well defined, indicative of decoration with SUMO-gp1 molecules
150 (Fig. 6A).

151 This on-grid binding approach was subsequently used to prepare samples for cryo-EM analysis
152 of N-VelcroVax:SUMO-gp1 (Fig. S2, Table S1). Processing of cryo-EM data yielded density
153 maps for $T = 3$ and $T = 4$ VLPs resolved to 3.0 Å and 3.5 Å, respectively. Initial inspection of
154 density maps revealed no additional density attributable to bound SUMO-gp1, although there
155 appeared to be a subtle change in the orientations of the Affimers, with these being closer
156 together in the N-VelcroVax:SUMO-gp1 complex map compared to the unliganded N-
157 VelcroVax map (Fig. 6B).

158 Hypothesising that the SUMO-gp1 was perhaps bound at a low occupancy, we attempted to
159 resolve density for the glycoprotein by performing focussed classification, as described
160 previously [29-32]. A mask was applied to a single Affimer including the volume expected to

161 contain SUMO-gp1 for both $T = 3$ and $T = 4$ VLPs (Fig. S3). Interestingly, several focussed
162 classes revealed low resolution density continuous with Affimer density, suggesting that
163 SUMO-gp1 had been captured by N-VelcroVax Affimers but was only present at a low
164 occupancy (Fig. 6C), in contrast to the ELISA and sucrose density gradient data, which
165 suggested that the occupancy by SUMO-gp1 was higher. This is most likely due to the marked
166 differences in the methods used for complex formation for the solution-based and cryo-EM
167 studies. Interestingly, density corresponding to the SUMO-gp1-binding Affimer in asymmetric
168 reconstructions of focussed classes had reoriented upwards, suggesting that movement of the
169 Affimer was necessary to accommodate the size of SUMO-gp1 (Fig. 6D).

170 **Discussion**

171 The development of vaccine platforms suitable for multimeric presentation of antigenic
172 components of important pathogens, so maximising their immune recognition, is an attractive
173 approach toward novel vaccine development. To this end, we produced recombinant HBc
174 VLPs (N-VelcroVax) with an anti-SUMO Affimer genetically fused at the N-terminus of
175 HBc190 protein. Although HBc VLPs have been expressed in a number of expression systems,
176 e.g., insect cells, mammalian cells, plants, yeast [6, 11, 13, 24, 33], using low cost expression
177 systems would make the VLPs accessible more widely, especially for lower-to-middle income
178 countries (LMICs). Hence, we opted for a cost-effective *E. coli* expression system which offers
179 simple, fast and inexpensive production, ease of in-process control and high productivity [6,
180 13, 33-36]. However, contamination with high levels of endotoxin derived from the *E. coli* cell
181 wall is a major drawback of this expression system [35, 37-39]. To address this problem, we
182 used ClearColi BL21 (DE3) *E. coli* cells for expression of N-VelcroVax. A previous study
183 showed that using ClearColi BL21 (DE3) *E. coli* for expression of apolipoprotein A and heat
184 shock protein 70 significantly reduced endotoxin level as measured by LAL assay (10 µg/mL)
185 and did not trigger endotoxic responses in HEK-Blue hTLR4 cells [37]. The endotoxin content
186 of N-VelcroVax expressed in ClearColi BL21 (DE3) *E. coli* was 10.2 EU/mL as assessed by
187 LAL assay, which is half the maximum recommended level of endotoxin acceptable for subunit
188 vaccines [35, 37, 40].

189 Examination by negative stain TEM showed that the morphology of the N-VelcroVax VLPs
190 was as expected [41, 42]. Cryo-EM analysis of the VLPs revealed particles in both $T = 3$ and
191 $T = 4$ configurations, as expected. In our earlier analyses, Affimer density was not visible,
192 likely as a result of the location of the Affimers on flexible linkers at the tips of four-helix
193 bundles at the MIR [16]. However, for N-VelcroVax, in which Affimers are attached at the N-
194 terminus and spatially constrained between the four-helix bundles, Affimer density was

195 resolved. This suggests that the Affimers in the N-VelcroVax system are more rigidly
196 constrained in their position compared to when presented at the MIR region.

197 N-VelcroVax was also visualised in complex with SUMO-gp1. Although SUMO-gp1 density
198 was not resolved in symmetric reconstructions, focussed classification revealed low resolution
199 density continuous with Affimer density. This finding is suggestive of low occupancy, with the
200 majority of unoccupied sites leading to the ‘averaging out’ of SUMO-gp1 density in symmetric
201 reconstructions. Low occupancy is likely a result of the on-grid binding method used during
202 grid preparation to prevent particle aggregation. Indeed, both sucrose density gradient and
203 ELISA assays demonstrated a much more efficient interaction in solution. Interestingly, an
204 asymmetric reconstruction derived from particles belonging to a single focussed class revealed
205 that the corresponding Affimer had undergone a major reorientation in order to accommodate
206 the target antigen, indicative of some steric hindrance.

207 **Conclusion**

208 Together with our earlier report of Affimer presentation at the MIR, these data demonstrate the
209 flexibility of the HBc VLP system as a vaccine scaffold and open the possibility of a dual
210 presentation system using both the N-terminus and the MIR for antigen display.

211

212 **Materials and methods**

213 **Expression constructs**

214 An anti-SUMO-Affimer sequence was genetically fused at the N-terminus of wt HBc 190 to
215 produce N-VelcroVax (Fig. 2). This was subcloned into the pET29b expression vector using
216 *Nde1* and *Xho1* and transformed into *E. coli* DH5 α chemically competent cells for plasmid
217 propagation.

218 For the target protein, Junín gp1, a SUMO-His6 tag [16] was genetically fused to the N-
219 terminus of the Junín virus glycoprotein 1 to form SUMO-Junín GP1 (kindly supplied by
220 Thomas A. Bowden, University of Oxford, UK). This protein was expressed in mammalian
221 cells.

222 **Expression and purification of N-VelcroVax**

223 ClearColi BL21 (DE3) *E. coli* was transformed with the N-VelcroVax plasmid and used for
224 protein expression. N-VelcroVax plasmid was mixed with ClearColi BL21 (DE3) *E. coli* cells
225 and incubated on ice for 30 min before being transferred to a 42°C heat block for 50 seconds.
226 Heat-shock transformed cells were then plated on LB-Agar plates (30 μ g/mL kanamycin) and
227 incubated overnight at 37°C. A single colony was picked and cultured in 10 mL starter LB
228 culture (30 μ g/mL kanamycin) overnight at 37°C and shaking at 200 rpm. The preculture was
229 diluted 1:1000 into 500 mL LB (30 μ g/mL kanamycin) and cultured at 37°C, 200 rpm until
230 OD₆₀₀ ~0.6 – 0.8. Protein expression was induced with isopropyl β -D-1-thiogalactopyranoside
231 (IPTG) (0.1 μ M) and incubated at 18°C, 200 rpm for a further 7 hours. The culture was
232 centrifuged at 4000 \times g for 10 minutes and the pellet was lysed with chemical lysis buffer. N-
233 VelcroVax VLPs were purified by sedimentation through a 30% sucrose cushion followed by
234 15-45% sucrose gradient ultracentrifugation. Fractions (1 mL) were collected manually (top
235 down) and fractions containing the VLPs were analysed by SDS-PAGE 12% gel where the

236 protein bands were visualised by Coomassie blue R250 staining. The presence of HBcAg-
237 reactive proteins was assessed by Western blot with MAb 10E11 using standard protocols. The
238 protein content of fractions was assessed directly by BCA assay (Pierce, ThermoFisher
239 Scientific). The concentration of purified N-VelcroVax was measured using bicinchoninic acid
240 (BCA) assay (Pierce) which revealed a yield of protein ~ 6.5 mg/L and endotoxin content of
241 10.2 EU/mL (Pierce LAL Chromogenic Endotoxin Quantitation kit; Thermo Scientific).
242 Purified N-VelcroVax VLPs were stored at 4°C.

243 **Enzyme-linked immunosorbent assay (ELISA)**

244 A non-competitive indirect ELISA was developed to assess the binding of N-VelcroVax
245 vaccine scaffold to capture SUMO-tagged proteins using 96-well ELISA plates (Greiner
246 Technologies, Bio-One, UK). The plate was coated with N-VelcroVax at 2.5 µg/mL (125
247 ng/well) and incubated overnight at 4 °C. The plate was blocked with blocking buffer (PBS +
248 2% skimmed milk) for 1 h at room temperature (RT) and then incubated with SUMO-tagged
249 Junín gp1 for 1 hour at RT. Specific primary antibodies (mouse monoclonal anti-HBc 1 (10E11,
250 Abcam ab8639), anti-Junín gp1 (NR 2567)) were added and incubated for 1 hour at RT. The
251 bound primary antibodies were detected with HRP-conjugated goat anti-mouse IgG and
252 incubated for 1 hour at RT. Subsequently, chromogenic substrate TMB (ThermoFisher,
253 Waltham, MA, USA) was added and incubated for 20 minutes at RT. The plates were washed
254 with wash buffer (PBS + 1% Tween 20) four times between each step. The reaction was
255 stopped by 2 M H₂SO₄ (50 µL/well) and plates then analysed using a Biotech PowerWave XS2
256 plate reader.

257 **Negative-stain electron microscopy**

258 Samples were prepared for negative-stain transmission EM by application to carbon-coated
259 300-mesh copper grids (Agar Scientific, UK) that had been glow discharged in air at 10 mA

260 for 30 seconds immediately before use. Where N-VelcroVax or SUMO-Junín gp1 was imaged
261 alone, 3 μ L of sample was applied directly to the grid surface for 30 seconds before washing
262 and staining. To probe the interaction of N-VelcroVax with SUMO-Junín gp1, the ligand was
263 applied directly to the grid surface for 30 seconds after first applying N-VelcroVax and blotting
264 away excess fluid. Following sample application, excess fluid was wicked away before grids
265 were washed twice with 10 μ L dH₂O. To stain the sample, 10 μ L 1-2% uranyl acetate solution
266 was applied to the grid and immediately removed by blotting, before an additional 10 μ L 1-2%
267 uranyl acetate solution was applied for 30 seconds. Grids were blotted to leave a thin film of
268 stain and left to air dry.

269 Imaging was performed using an FEI Tecnai F20 transmission EM (operating at 200 kV with
270 a field emission gun), equipped with an FEI CETA camera (Astbury Biostructure Laboratory,
271 University of Leeds). Data were collected at various defocus values (-2.0μ m to -5.0μ m) at a
272 nominal magnification of 25,000 \times giving an object sampling of 0.418 nm/pixel.

273 **Cryo-electron microscopy**

274 N-VelcroVax (in the presence or absence of target antigen) was vitrified using a LEICA EM GP
275 plunge freezing device (Leica Microsystems, Wetzlar, Germany) in preparation for imaging by
276 cryo-EM. Lacey carbon 400-mesh copper grids coated with a <3-nm continuous carbon film
277 (Agar Scientific, UK) were glow discharged in air at 10 mA for 30 seconds prior to the
278 application of 3 μ L N-VelcroVax (or N-VelcroVax:SUMO-gp1). For N-VelcroVax:SUMO-gp1,
279 an on-grid interaction approach was used, such that following the application of VLP, excess
280 fluid was manually blotted away and 3 μ L SUMO-gp1 was applied. The sample was incubated
281 on the grid surface for 30 seconds at 80% relative humidity (8°C) before excess fluid was blotted
282 for a duration between 1 – 4 seconds and the grid vitrified in liquid ethane (cooled to -179° C by
283 liquid nitrogen). Grids were transferred to liquid nitrogen for storage prior to clipping and

284 imaging with an FEI Titan Krios TEM (Astbury Biostructure Laboratory, University of Leeds).
285 Data collection was performed in integrating mode at a magnification of 75,000 \times (calibrated
286 object sampling of 1.065 Å/pixel) with the microscope operating at 300 kV (a full set of data
287 collection parameters is provided in Table S1).

288 **Image Processing**

289 Image processing was performed in Relion-3.0 and Relion-3.1 [43-45]. Following motion
290 correction and CTF estimation of micrographs [45], a subset of manually picked particles was
291 subjected to 2D classification, and class averages were used as templates for automated particle
292 picking. Initial particle stacks generated by automated picking were down-sampled (2 \times for N-
293 VelcroVax, 4 \times or 5 \times for N-VelcroVax:SUMO-gp1) before several rounds of 2D classification
294 to progressively remove junk particles and separate $T = 3$ and $T = 4$ VLPs. To reduce
295 computational load, the first 2D classification was performed with CTFs ignored until the first
296 peak, and maximum signal limited to 200. $T = 3$ and $T = 4$ particles were separately re-extracted
297 without down-sampling for independent 3D refinement (with I1 symmetry imposed) of each VLP
298 configuration, based on initial models generated *de novo* in Relion. For each reconstruction, map
299 quality was improved with iterations of CTF refinement and Bayesian polishing. Final
300 refinements were performed with a solvent-excluding mask and flattened Fourier shell
301 correlation (FSC) calculations. This was followed by mask-based sharpening, determination of
302 nominal resolution using the gold-standard FSC criterion (FSC = 0.143), and calculation of local
303 resolution for each map.

304 Focussed classification was performed using 2 \times down-sampled data to limit the computational
305 load, following a previously described protocol [29]. Briefly, a cylindrical mask was generated
306 in SPIDER [46] and placed manually over a single Affimer and the space distal to it, expected to
307 contain density for SUMO-gp1, using UCSF Chimera [47]. Relion was used to apply a soft edge

308 to the mask, and to generate symmetry-expanded stacks of particles based on the orientational
309 information generated during separate symmetrised 3D refinements for $T = 3$ and $T = 4$ VLPs.
310 Symmetry expanded particle stacks were subjected to 3D classification without alignments, with
311 the focussed mask applied. Asymmetric reconstructions were performed using Relion following
312 focussed classification.

313

314 **Acknowledgments**

315 We thank other members of the Stonehouse/Rowlands group at the University of Leeds for
316 their insightful contributions. We also thank Professor Tom Bowden and Dr Guido Paesen,
317 University of Oxford who provided SUMO-Junín gp1.

318 **Funding**

319 This work was supported by a Wellcome PhD studentship to J.S.S. (102174/B/13/Z). Electron
320 microscopy was performed in the Astbury Biostructure Laboratory, which was funded by the
321 University of Leeds and Wellcome (108466/Z/15/Z).

322 **Conflict of Interest**

323 The authors declare that there is no conflict of interest.

324 **Authors and Contributions**

325 K.F., J.S.S., N.J.S., and D.J.R. conceived and designed the experiments. K.F. and L.S.
326 generated the N-VelcroVax sequence. K.F. introduced this into ClearColi BL21 (DE3) cells,
327 generated material for the characterisation of N-VelcroVax and performed serological
328 characterisation. J.S.S. performed negative stain EM and cryo-EM. J.S.S. and A.W. processed
329 and analysed cryo-EM data. N.A.R., D.J.R. and N.J.S. provided supervision. K.F., J.S.S., L.S.,
330 D.J.R., & N.J.S. wrote and edited the manuscript. Funding was secured for this research by
331 N.A.R and N.J.S.

332 References

- 333 1. Amanna, I. and M. Slifka, *Vaccination Strategies against Highly Variable Pathogens*. Current
334 Topics in Microbiology and Immunology. Springer International Publishing, 2018: p. 1-30.
- 335 2. Delany, I., R. Rappuoli, and E. De Gregorio, *Vaccines for the 21st century*. EMBO molecular
336 medicine, 2014. **6**(6): p. 708-720.
- 337 3. Nandy, A. and S.C. Basak, *Bioinformatics in design of antiviral vaccines*. Encyclopedia of
338 Biomedical Engineering, 2019: p. 280.
- 339 4. Krugman, S. and M. Davidson, *Hepatitis B vaccine: prospects for duration of immunity*. The
340 Yale journal of biology and medicine, 1987. **60**(4): p. 333.
- 341 5. Brenzel, L., et al., *Vaccine-preventable diseases*. Disease control priorities in developing
342 countries, 2006. **2**: p. 389-412.
- 343 6. Gu, Y., et al., *Characterization of an Escherichia coli-derived human papillomavirus type 16 and*
344 *18 bivalent vaccine*. Vaccine, 2017. **35**(35): p. 4637-4645.
- 345 7. Laurens, M.B., *RTS, S/AS01 vaccine (Mosquirix™): an overview*. Human vaccines &
346 immunotherapeutics, 2020. **16**(3): p. 480-489.
- 347 8. Nguyen, B. and N.H. Tolia, *Protein-based antigen presentation platforms for nanoparticle*
348 *vaccines*. npj Vaccines, 2021. **6**(1): p. 70.
- 349 9. Tariq, H., et al., *Virus-like particles: Revolutionary platforms for developing vaccines against*
350 *emerging infectious diseases*. Frontiers in microbiology, 2022. **12**: p. 790121.
- 351 10. Crisci, E., J. Bárcena, and M. Montoya, *Virus-like particles: the new frontier of vaccines for*
352 *animal viral infections*. Veterinary immunology and immunopathology, 2012. **148**(3-4): p. 211-
353 225.
- 354 11. Nooraei, S., et al., *Virus-like particles: preparation, immunogenicity and their roles as*
355 *nanovaccines and drug nanocarriers*. Journal of nanobiotechnology, 2021. **19**(1): p. 1-27.
- 356 12. Ulrich, R., et al., *Core particles of hepatitis B virus as carrier for foreign epitopes*. Advances in
357 virus research, 1998. **50**: p. 141-182.
- 358 13. Huang, X., et al., *Escherichia coli-derived virus-like particles in vaccine development*. npj
359 Vaccines, 2017. **2**(1): p. 1-9.
- 360 14. Gregson, A.L., et al., *Phase I trial of an alhydrogel adjuvanted hepatitis B core virus-like particle*
361 *containing epitopes of Plasmodium falciparum circumsporozoite protein*. PloS one, 2008. **3**(2):
362 p. e1556.
- 363 15. Kutscher, S., et al., *Design of therapeutic vaccines: hepatitis B as an example*. Microbial
364 biotechnology, 2012. **5**(2): p. 270-282.
- 365 16. Kingston, N.J., et al., *VelcroVax: a “Bolt-On” Vaccine Platform for Glycoprotein Display*.
366 MspHERE, 2023. **8**(1): p. e00568-22.
- 367 17. Kushnir, N., S.J. Streatfield, and V. Yusibov, *Virus-like particles as a highly efficient vaccine*
368 *platform: diversity of targets and production systems and advances in clinical development*.
369 Vaccine, 2012. **31**(1): p. 58-83.
- 370 18. Pumpens, P. and E. Grens, *HBV core particles as a carrier for B cell/T cell epitopes*.
371 Intervirology, 2001. **44**(2-3): p. 98-114.
- 372 19. Whitacre, D.C., B.O. Lee, and D.R. Milich, *Use of hepadnavirus core proteins as vaccine*
373 *platforms*. Expert review of vaccines, 2009. **8**(11): p. 1565-1573.
- 374 20. Pang, E.L., et al., *Epitope presentation of dengue viral envelope glycoprotein domain III on*
375 *hepatitis B core protein virus-like particles produced in Nicotiana benthamiana*. Frontiers in
376 Plant Science, 2019. **10**: p. 455.
- 377 21. Ravin, N., et al., *Plant-produced recombinant influenza vaccine based on virus-like HBc*
378 *particles carrying an extracellular domain of M2 protein*. Biochemistry (Moscow), 2012. **77**(1):
379 p. 33-40.
- 380 22. Petrovskis, I., et al., *Production of the HBc Protein from Different HBV Genotypes in E. coli*. Use
381 *of Reassociated HBc VLPs for Packaging of ss-and dsRNA*. Microorganisms, 2021. **9**(2): p. 283.

382 23. Peyret, H., et al., *Tandem fusion of hepatitis B core antigen allows assembly of virus-like*
383 *particles in bacteria and plants with enhanced capacity to accommodate foreign proteins*. PloS
384 one, 2015. **10**(4): p. e0120751.

385 24. Stephen, S.L., et al., *Recombinant expression of tandem-HBc virus-like particles (VLPs)*, in *Virus-Derived Nanoparticles for Advanced Technologies*. 2018, Springer. p. 97-123.

386 25. Wang, W., et al., *Major immunodominant region of hepatitis B virus core antigen as a delivery*
387 *vector to improve the immunogenicity of the fusion antigen ROP2-SAG1 multiepitope from*
388 *Toxoplasma gondii in Mice*. *Viral immunology*, 2017. **30**(7): p. 508-515.

389 26. Shepherd, D.A., et al., *Using ion mobility spectrometry–mass spectrometry to decipher the*
390 *conformational and assembly characteristics of the hepatitis B capsid protein*. *Biophysical*
391 *journal*, 2013. **105**(5): p. 1258-1267.

392 27. Karpenko, L., et al., *Insertion of foreign epitopes in HBcAg: how to make the chimeric particle*
393 *assemble*. *Amino acids*, 2000. **18**: p. 329-337.

394 28. Zlotnick, A., et al., *Localization of the C terminus of the assembly domain of hepatitis B virus*
395 *capsid protein: implications for morphogenesis and organization of encapsidated RNA*.
396 *Proceedings of the National Academy of Sciences*, 1997. **94**(18): p. 9556-9561.

397 29. Scheres, S.H., *Processing of structurally heterogeneous cryo-EM data in RELION*. *Methods in*
398 *enzymology*, 2016. **579**: p. 125-157.

399 30. Conley, M.J., et al., *Calicivirus VP2 forms a portal-like assembly following receptor*
400 *engagement*. *Nature*, 2019. **565**(7739): p. 377-381.

401 31. Snowden, J.S., et al., *Dynamics in the murine norovirus capsid revealed by high-resolution cryo-*
402 *EM*. *PLoS Biology*, 2020. **18**(3): p. e3000649.

403 32. Snowden, J.S., et al., *Structural insight into Pichia pastoris fatty acid synthase*. *Scientific*
404 *Reports*, 2021. **11**(1): p. 9773.

405 33. Naskalska, A. and K. Pyrć, *Virus like particles as immunogens and universal nanocarriers*. *Polish*
406 *journal of microbiology*, 2015. **64**(1).

407 34. Zhu, J., *Mammalian cell protein expression for biopharmaceutical production*. *Biotechnology*
408 *advances*, 2012. **30**(5): p. 1158-1170.

409 35. Schwarz, H., et al., *Residual endotoxin contaminations in recombinant proteins are sufficient*
410 *to activate human CD1c+ dendritic cells*. *PLoS One*, 2014. **9**(12): p. e113840.

411 36. Kniskem, P.J., et al., *Unusually high-level expression of a foreign gene (hepatitis B virus core*
412 *antigen) in Saccharomyces cerevisiae*. *Gene*, 1986. **46**(1): p. 135-141.

413 37. Mamat, U., et al., *Detoxifying Escherichia coli for endotoxin-free production of recombinant*
414 *proteins*. *Microbial cell factories*, 2015. **14**(1): p. 1-15.

415 38. Demain, A.L. and P. Vaishnav, *Production of recombinant proteins by microbes and higher*
416 *organisms*. *Biotechnology advances*, 2009. **27**(3): p. 297-306.

417 39. Khow, O. and S. Suntrarachun, *Strategies for production of active eukaryotic proteins in*
418 *bacterial expression system*. *Asian Pacific journal of tropical biomedicine*, 2012. **2**(2): p. 159-
419 162.

420 40. Brito, L.A. and M. Singh, *Commentary: acceptable levels of endotoxin in vaccine formulations*
421 *during preclinical research*. *Journal of pharmaceutical sciences*, 2011. **100**(1): p. 34-37.

422 41. Lua, L.H., et al., *Bioengineering virus-like particles as vaccines*. *Biotechnology and*
423 *bioengineering*, 2014. **111**(3): p. 425-440.

424 42. Heider, S. and C. Metzner, *Quantitative real-time single particle analysis of virions*. *Virology*,
425 2014. **462**: p. 199-206.

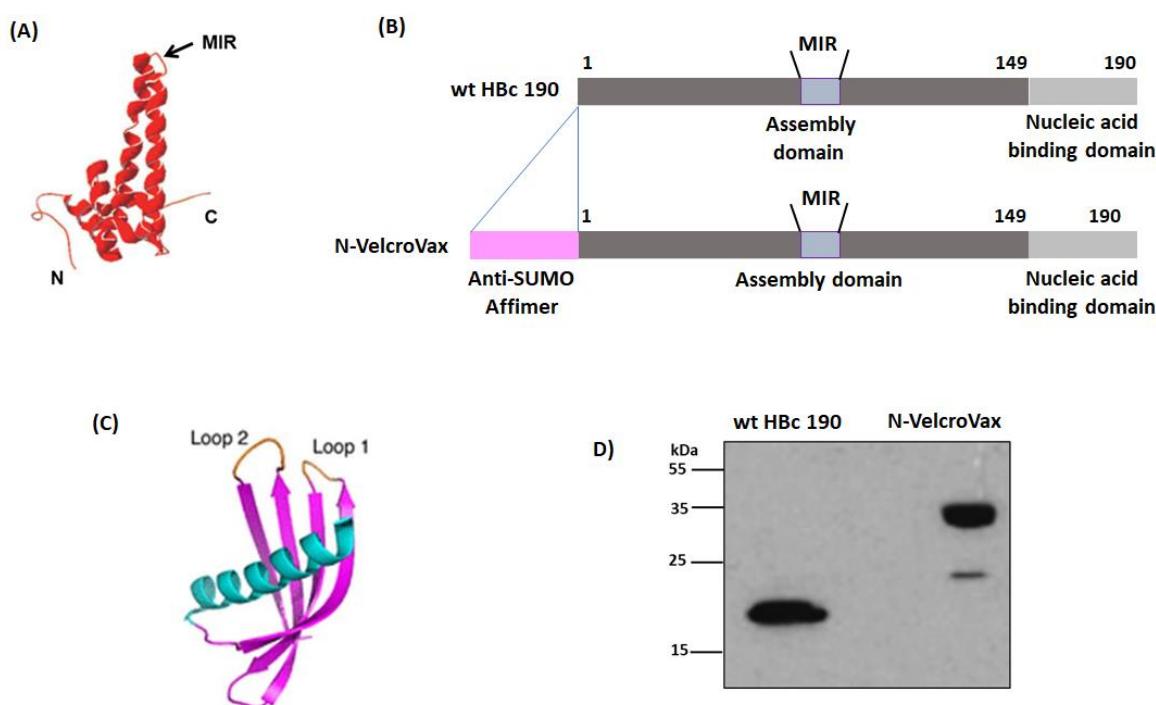
426 43. Scheres, S.H., *RELION: implementation of a Bayesian approach to cryo-EM structure*
427 *determination*. *Journal of structural biology*, 2012. **180**(3): p. 519-530.

428 44. Zivanov, J., et al., *New tools for automated high-resolution cryo-EM structure determination*
429 *in RELION-3*. *Elife* 7. *iCP (E)*. 2018, PA28αβ-iCP-PA28αβ.

430 45. Zheng, S.Q., et al., *MotionCor2: anisotropic correction of beam-induced motion for improved*
431 *cryo-electron microscopy*. *Nature methods*, 2017. **14**(4): p. 331-332.

432

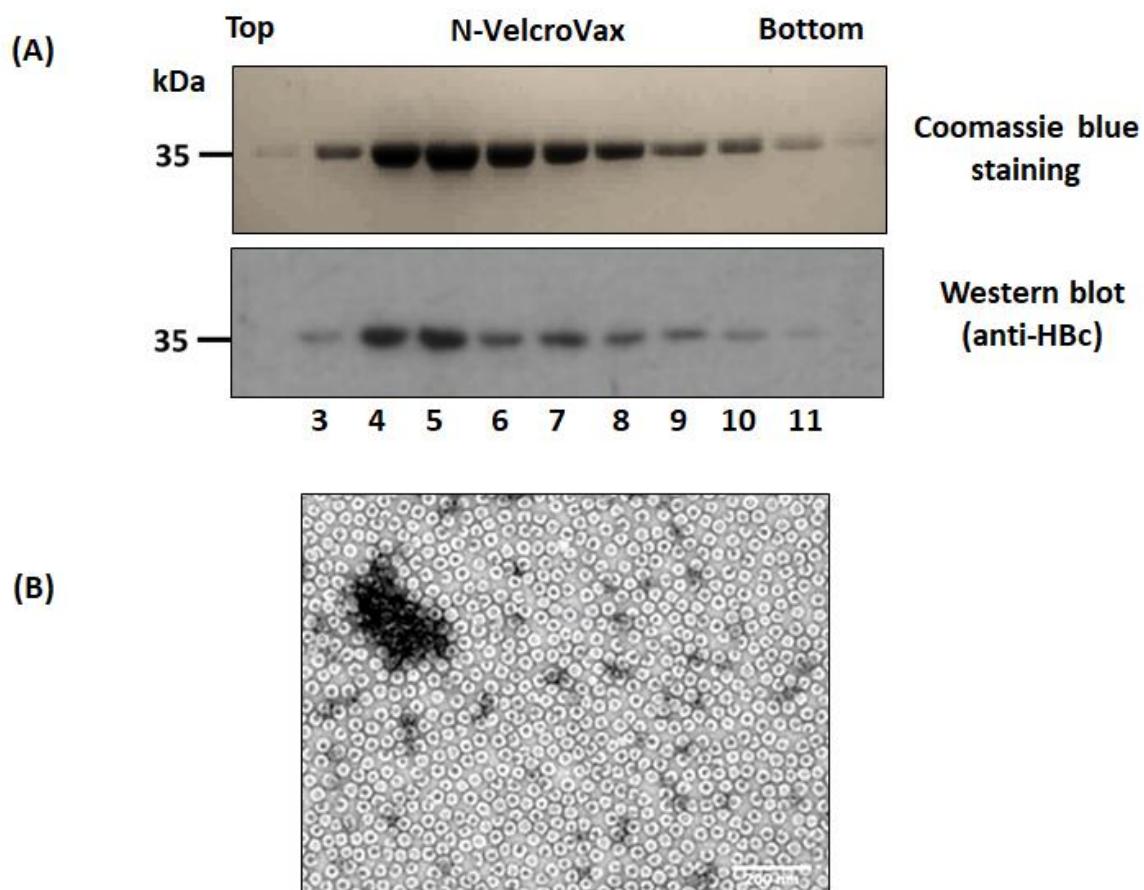
433 46. Frank, J., et al., *SPIDER and WEB: processing and visualization of images in 3D electron*
434 *microscopy and related fields*. *Journal of structural biology*, 1996. **116**(1): p. 190-199.


435 47. Pettersen, E.F., et al., *UCSF Chimera—a visualization system for exploratory research and*
436 *analysis*. *Journal of computational chemistry*, 2004. **25**(13): p. 1605-1612.

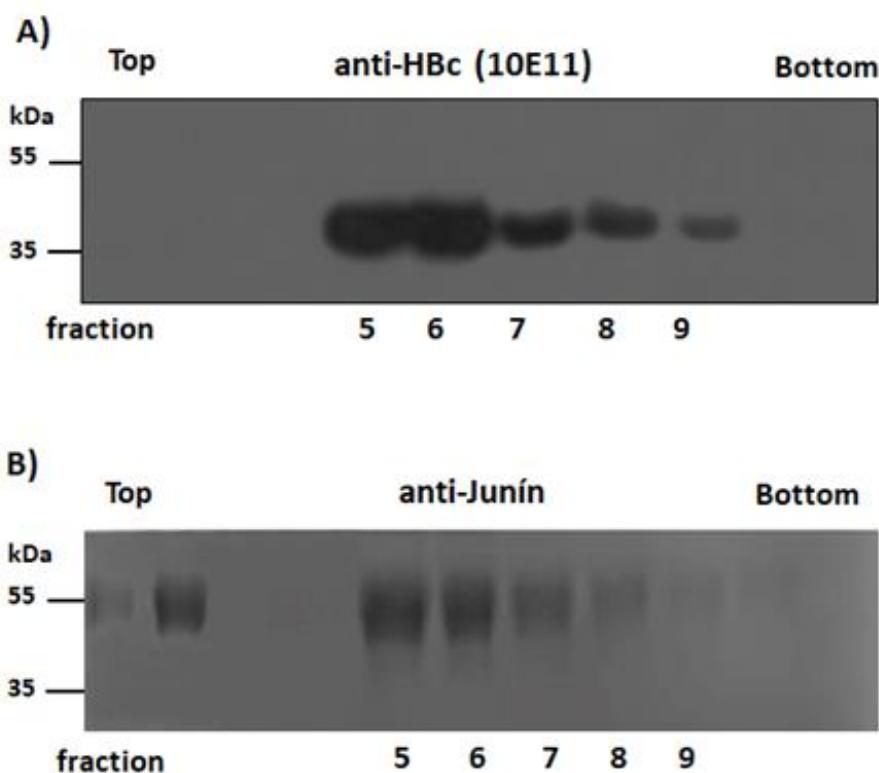
437 48. Wynne, S., R. Crowther, and A. Leslie, *The crystal structure of the human hepatitis B virus*
438 *capsid*. *Molecular cell*, 1999. **3**(6): p. 771-780.

439 49. Tiede, C., et al., *Affimer proteins are versatile and renewable affinity reagents*. *Elife*, 2017. **6**:
440 p. e24903.

441


442 **Figures**

443


444

445 **Figure 1: Characterisation of N-VelcroVax.** (A) X-ray crystal structure of HBc monomer
446 indicating the N-terminus, C-terminus and major immunodominant region (MIR)
447 (PDB: 1QGT; ref. [48]). (B) wt HBc 190 construct (contains no anti-SUMO-Affimer) and N-
448 VelcroVax, indicating the N-terminal insertion of the anti-SUMO-Affimer. (C) X-ray crystal
449 structure of an Affimer selected against human SUMO protein (PDB: 5ELJ). Loop 1 and Loop
450 2 are the variable regions [49]. (D) Small-scale expression of HBc VLPs: Western Blot of wt
451 HBc 190 and N-VelcroVax expressed in ClearColi BL21 (DE3) *E. coli* cells detected with
452 mouse monoclonal anti-HBc (10E11). The figure is a representative example of three separate
453 experiments.

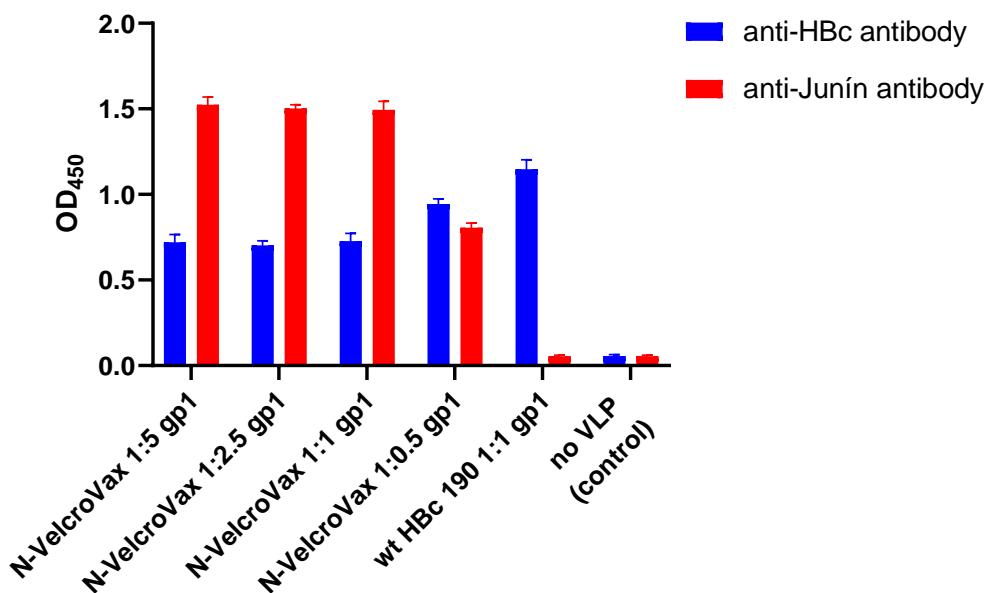
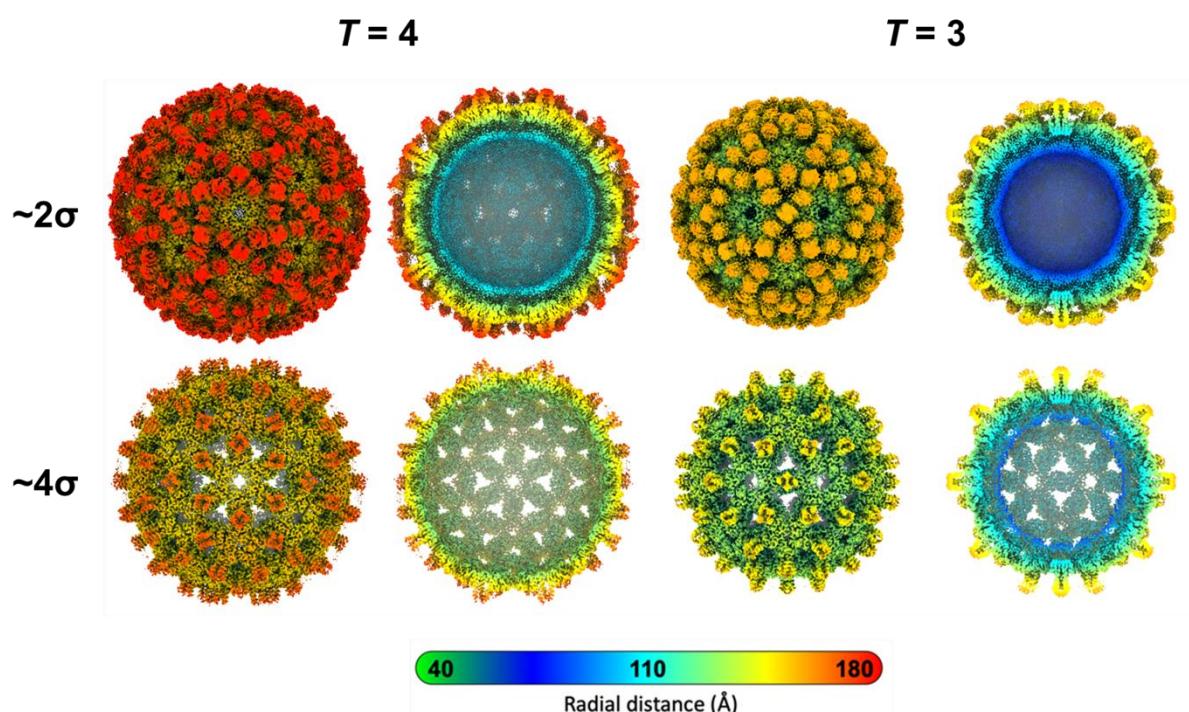

454

Figure 2. Purification and characterisation of N-VelcroVax particles. (A) Coomassie blue staining (upper panel) and Western blot (lower panel) of gradient purified N-VelcroVax particles, expressed in ClearColi BL21 (DE3) *E. coli* cells detected with mouse monoclonal anti-HBc (10E11). (B) Negative stain TEM analysis of N-VelcroVax. The VLPs were stained using 2% uranyl acetate. The scale bar shows 200 nm. The figure is a representative example of three separate experiments.

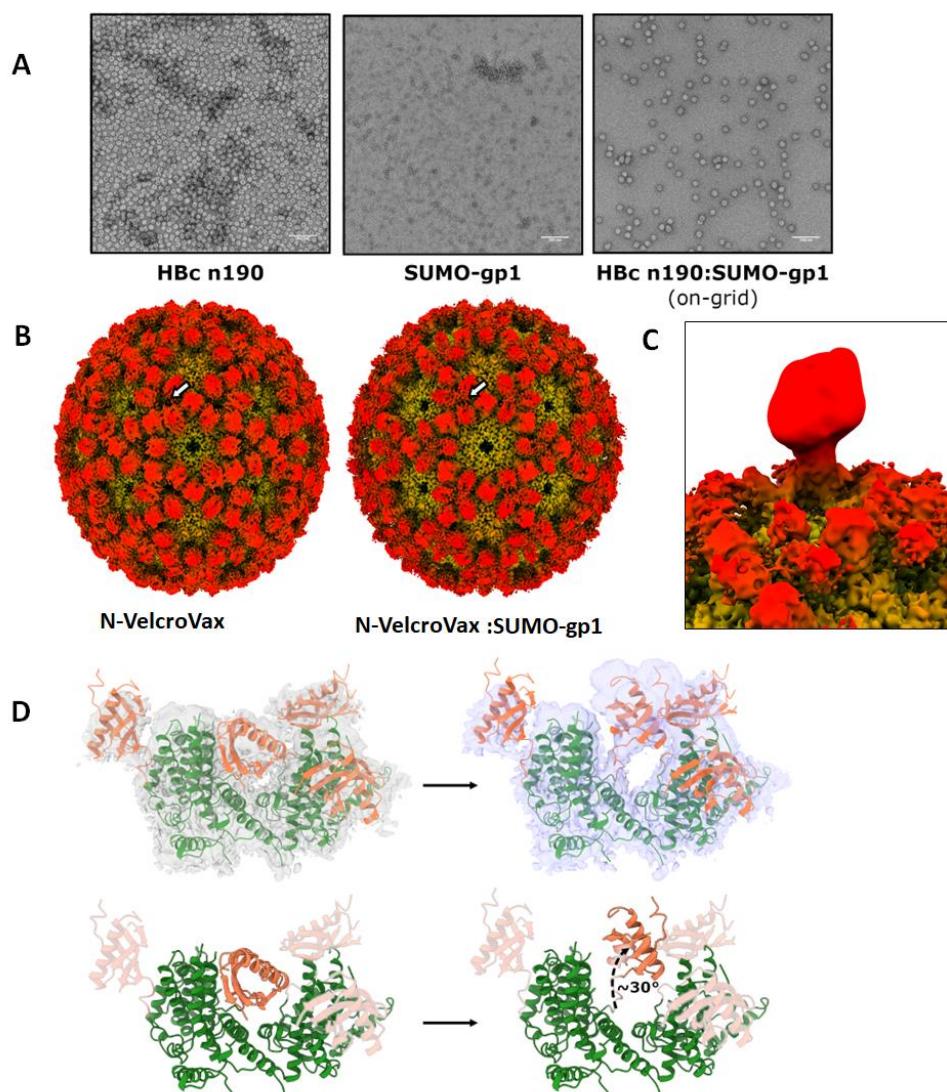
461

462 **Figure 3. Evaluating the binding of N-VelcroVax to SUMO-Junín gp1.** N-VelcroVax and
463 SUMO-Junín gp1 were mixed and incubated overnight before separation on a sucrose density
464 gradient. Gradient fractions were analysed by Western blot using either mouse monoclonal
465 anti-HBc (10E11, A) or anti-Junín gp1 (NR 2567, B). The figure is a representative example
466 of three separate experiments.

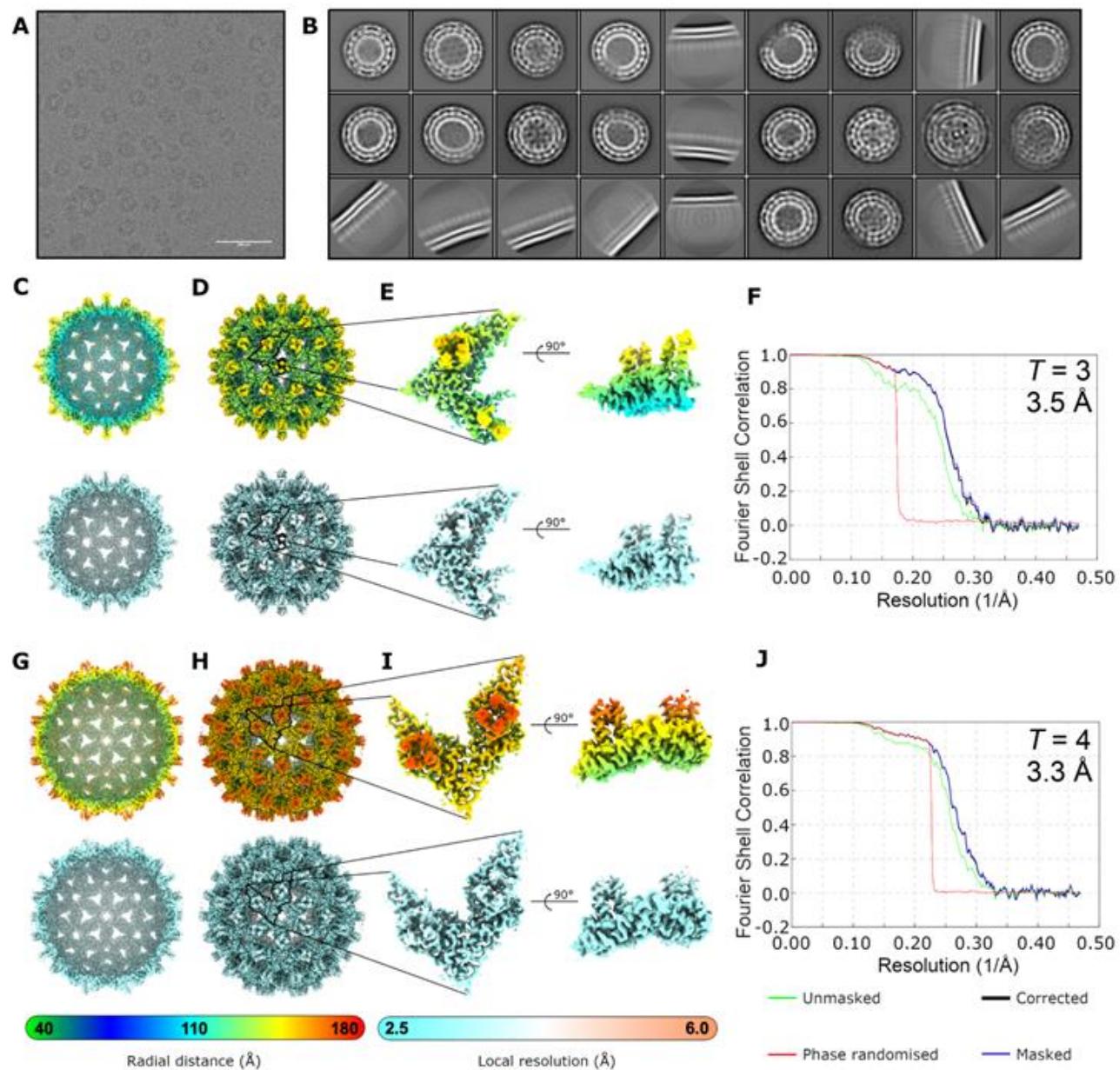


467

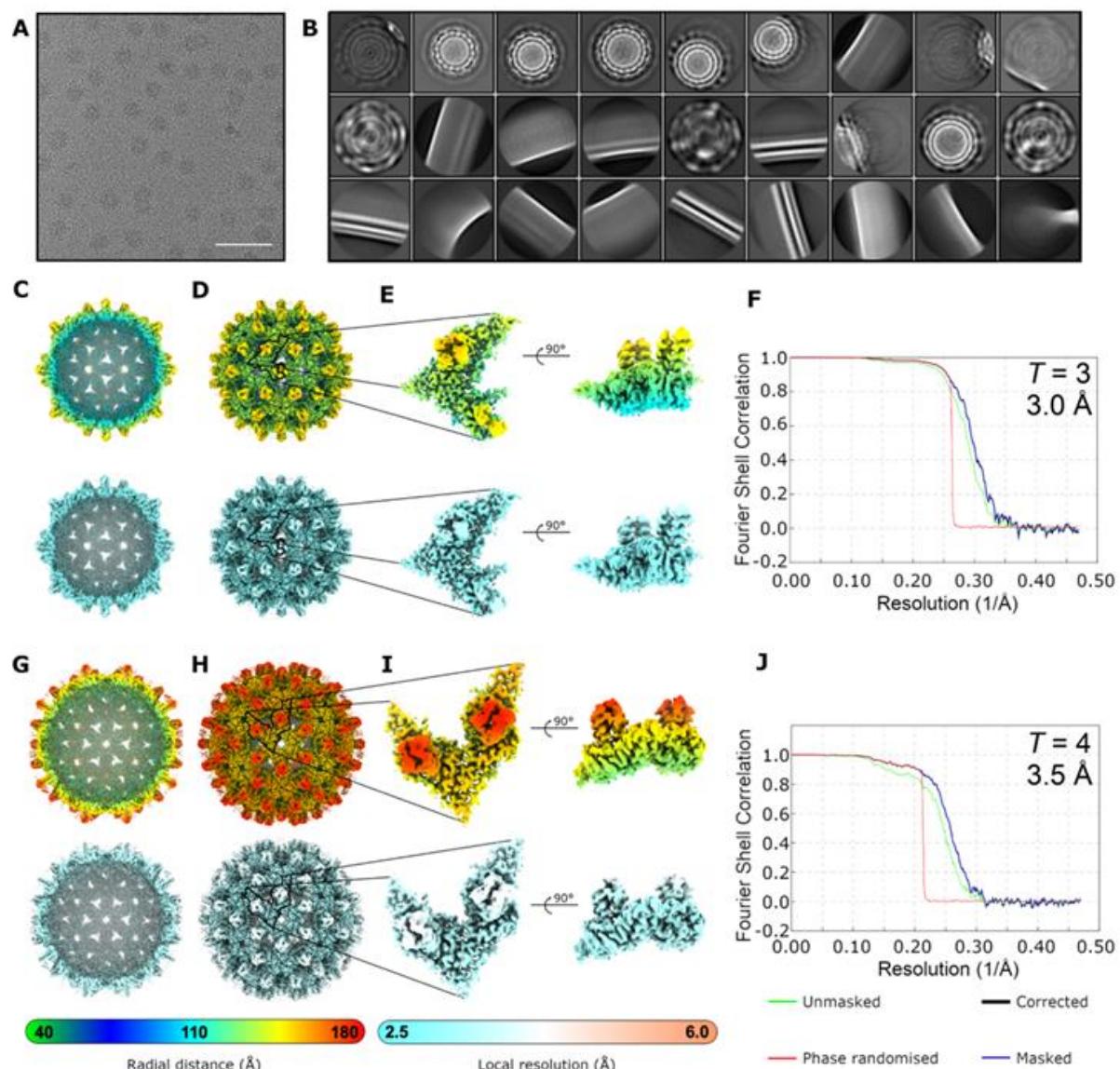
468 **Figure 4. Evaluation of the interaction between N-VelcroVax and SUMO-Junín gp1 by**
469 **ELISA.** N-VelcroVax and SUMO-Junín gp1 were mixed in molecular ratios ranging from 1:1
470 to 1:5 and binding determined by ELISA. Anti-HBc 10E11 (1:1000) and anti-Junín gp1
471 NR 2567 (1:32,000) were used to detect HBc VLPs and SUMO-Junín gp1 respectively. Anti-
472 mouse antibody conjugated with HRP was added as secondary antibody. TMB chromogenic
473 substrate was used to detect HRP. The optical density at 450 nm (OD 450 nm) is represented
474 in arbitrary units ($n = 3$).


475

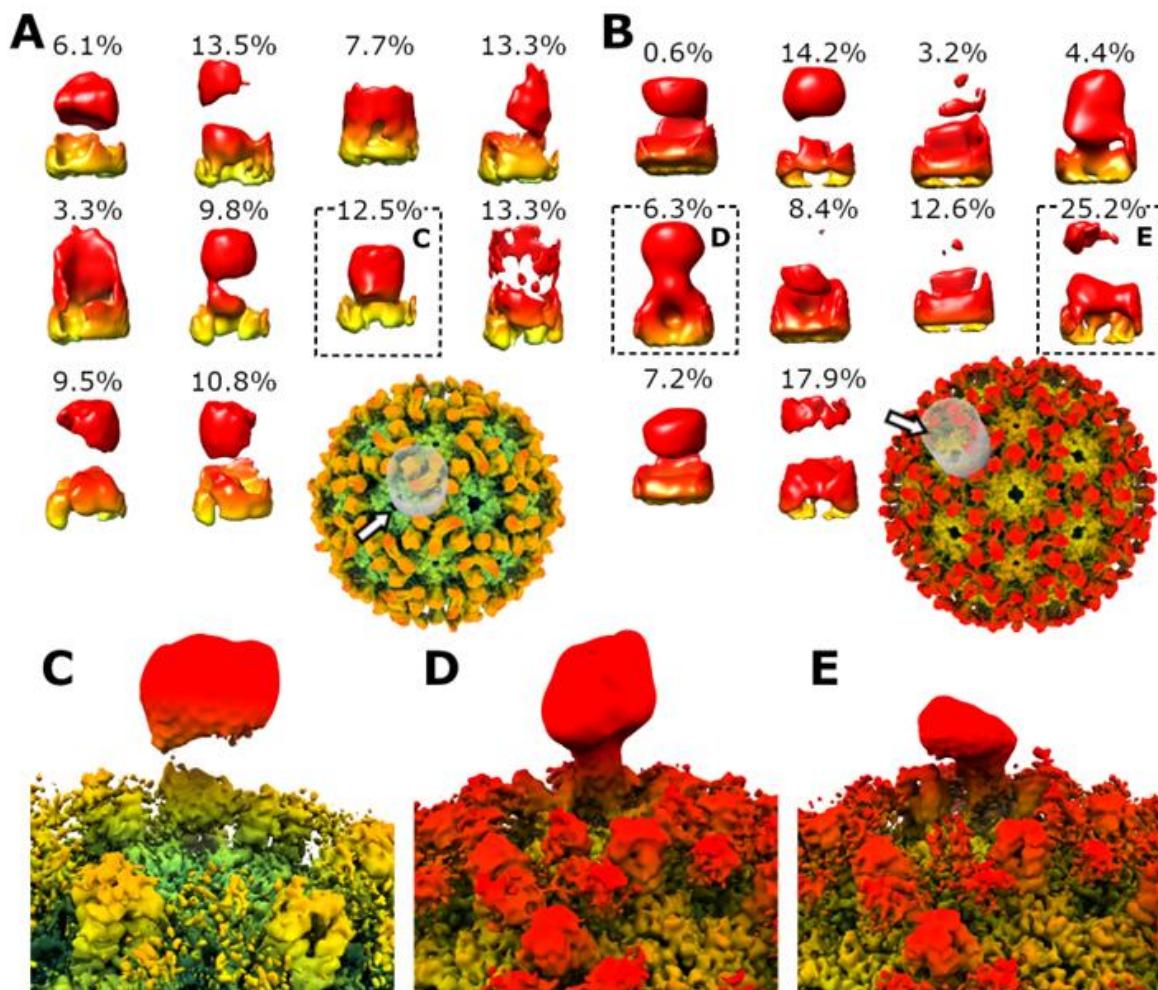
476


477

478 **Figure 5. Characterisation of N-VelcroVax VLPs by cryo-EM.** Density maps for $T = 4$ (left)
479 and $T = 3$ (right) N-VelcroVax reconstructions, filtered according to local resolution. Each
480 density map is shown as a complete isosurface representation and central cross-section at both
481 low (approx. 2σ , Affimer densities visible) and high (approx. 4σ , Affimer densities not visible)
482 contour level. Cross-sectional views show density, potentially nucleic acid bound non-
483 specifically to the interior surface of the VLPs. Maps are coloured by radial distance (Å).


484

485 **Figure 6. Structural characterisation of N-VelcroVax in complex with SUMO-gp1.** (A) 486 Representative micrographs from negative stain TEM analysis of N-VelcroVax alone (left), 487 SUMO-gp1 alone (centre), or N-VelcroVax:SUMO-gp1 following on-grid interaction (right). 488 Scale bars show 200 nm. (B) Isosurface representations of cryo-EM density maps for the $T = 4$ 489 configuration of unliganded N-VelcroVax (left) and N-VelcroVax:SUMO-gp1 (right), shown 490 at $\sim 2 \sigma$ and coloured radially. Affimers show a subtle change in relative positioning, as 491 indicated by the white arrow. (C) Asymmetric reconstruction of particles from a single 492 focussed class following focussed classification of N-VelcroVax:SUMO-gp1 $T = 4$ particles, 493 showing additional low-resolution density corresponding to bound SUMO-gp1. All focussed 494 classes are shown in Fig. S3. (D) Density from an asymmetric reconstruction of $T = 4$ N- 495 VelcroVax:SUMO-gp1 following focussed classification (purple) is suggestive of a 496 reorientation of the Affimer compared to its position in the unliganded N-VelcroVax density 497 map (grey). Fitted atomic models (orange – Affimers, green – remainder of N-VelcroVax) are 498 shown for illustrative purposes.


499

500 **Figure S1. Processing of N-VelcroVax cryo-EM dataset.** (A) Representative micrograph
501 from N-VelcroVax data collection. Scale bar shows 100 nm. (B) 2D classes containing the most
502 particles following automated particle picking. Data were two-fold down-sampled prior to
503 classification. (C-E) Density map for $T = 3$ VLP of N-VelcroVax filtered according to local
504 resolution, including (C) central section (D) whole VLP and (E) enlarged views of the
505 asymmetric unit. (F) FSC plot for $T = 3$ N-VelcroVax reconstruction. (G-I) Density map for T
506 = 4 VLP of N-VelcroVax. (J) FSC plot for $T = 4$ N-VelcroVax reconstruction. All
507 reconstructions shown at $\sim 4\sigma$ and coloured according to radial distance or local resolution, as
508 indicated.

509

510 **Figure S2. Processing of N-VelcroVax:SUMO-gp1 cryo-EM dataset.** (A) Representative
511 micrograph from N-VelcroVax:SUMO-gp1 data collection. Scale bar shows 100 nm. (B) 2D
512 classes containing the most particles following automated particle picking. Data was five-fold
513 down-sampled prior to classification. (C-E) Density map for $T = 3$ VLP filtered according to
514 local resolution, including (C) central section (D) whole VLP and (E) enlarged views of the
515 asymmetric unit. (F) FSC plot for $T = 3$ N-VelcroVax:SUMO-gp1 reconstruction. (G-I)
516 Density map for $T = 4$ VLP. (J) FSC plot for $T = 4$ N-VelcroVax:SUMO-gp1 reconstruction.
517 All reconstructions shown at $\sim 3 \sigma$ and coloured according to radial distance or local resolution,
518 as indicated.

519

520 **Figure S3. Focussed classification of N-VelcroVax:SUMO-gp1 cryo-EM dataset. (A, B)**
521 Density observed in all 10 focussed classes from focussed classification of (A) $T = 3$ N-
522 VelcroVax:SUMO-gp1 and (B) $T = 4$ N-VelcroVax:SUMO-gp1. The number above each class
523 indicates the proportion of sub-particles that were assigned. The position of the mask (grey) is
524 shown for reference. Classes are shown oriented from the viewpoint indicated by the white
525 arrows. (C-E) Asymmetric reconstructions using particles contained in the focussed classes
526 indicated by dashed boxes in (A) and (B), filtered by local resolution.

527 **Table S1: N-VelcroVax and N-VelcroVax:SUMO-Junín gp1 cryo-EM data collection and**
528 **processing parameters.**

Sample	N-VelcroVax		N-VelcroVax:SUMO-gp1	
Microscope	FEI Titan Krios		FEI Titan Krios	
Detector mode	Linear		Linear	
Camera	Falcon III		Falcon IV	
Voltage (kV)	300		300	
Pixel size (Å)	1.065		1.065	
Nominal magnification	75,000×		75,000×	
Exposure time (s)	1.0		1.3	
Total dose (e⁻/Å²)	43		54.7	
Number of fractions	30		40	
Defocus range (μm)	-0.5 to -2.9		-0.5 to -2.9	
Number of micrographs	12,797		23,966	
Acquisition software	Thermo Scientific EPU		Thermo Scientific EPU	
	T = 3	T = 4	T = 3	T = 4
EMDB ID	EMD-50832	EMD-50833	EMD-50834	EMD-50835
PDB ID	PDB-9FWE	PDB-9FWF	N/A	N/A
Number of particles contributing to map	40,254	56,416	298,802	57,537
Map resolution (FSC = 0.143) (Å)	3.5	3.3	3.0	3.5
Map resolution range around atom positions (Å)	3.2 – 4.2	3.1 – 5.4	2.8 – 3.6	3.3 – 6.0
Map sharpening B factor (Å²)	-187	-179	-203	-223

529

530