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Abstract

Investigating the molecular composition across neural compartments such as axons, dendrites, or synapses is critical for our
understanding of learning and memory. State-of-the-art microscopy techniques can now resolve individual molecules and
pinpoint their position with micrometre or even nanometre resolution across tens or hundreds of micrometres, allowing the
labelling of multiple structures of interest simultaneously. Algorithmically, tracking individual molecules across hundreds of
micrometres and determining whether they are inside any cellular compartment of interest can be challenging. Historically,
microscopy images are annotated manually, often using multiple software packages to detect fluorescence puncta (e.g. labelled
mRNAs) and then trace and quantify cellular compartments of interest. Advanced ANN-based automated tools, while
powerful, are often able to help only with selected parts of the data analysis pipeline, may be optimised for specific spatial
resolutions or cell preparations or may not be fully open source and open access to be sufficiently customisable. To address
these challenges, we developed SpyDen. SpyDen is a Python package based upon three principles: i) ease of use for multi-task
scenarios, i) open-source accessibility and data export to a common, open data format, i) the ability to edit any software-
generated annotation and generalise across spatial resolutions. Equipped with a graphical user interface and accompanied
by video tutorials, SpyDen provides a collection of powerful algorithms that can be used for neurite and synapse detection as
well as fluorescent puncta and intensity analysis. We validated SpyDen using expert annotation across numerous use cases
to prove a powerful, integrated platform for efficient and reproducible molecular imaging analysis.

Introduction

Neuronal synapses and other cell compartments contain molecules that are critical for the implementation of information
processing in the brain (Abbott and Regehr, 2004). Moreover, synaptic plasticity, the ability of synapses, especially that of
spines, to change in size and strength based on computational demands, is important for learning and overall brain function
and is synthesised through a complex interaction of different molecular players (Yau, 1976; Rosahl et al., 1993; Zilberter, 2000;
Yuste and Bonhoeffer, 2001; Chevaleyre et al., 2006; Abbott and Regehr, 2004; Liischer and Malenka, 2012; Frémaux and
Gerstner, 2016; Marblestone et al., 2016; Eggl et al., 2023; Wagle et al., 2023). Recent microscopy advances (Van Harreveld
and Fifkova, 1975; Desmond and Levy, 1986; Hosokawa et al., 1995; Matsuzaki et al., 2004; Kwon and Sabatini, 2011; Nagerl
and Bonhoeffer, 2010; Ding et al.; 2009; Schermelleh et al., 2019; Padmanabhan et al.; 2021) have enabled the study of
the complex interactions between synaptic plasticity and neural function and the underlying molecular dynamics taking
place over time across the dendritic tree, axons and synapses at micrometre to nanometre scale. Additionally, these novel
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techniques allow for the quantification of the localisation profiles of mRNAs and different protein species along the dendritic
or axonal tree as well as within individual synapses, thereby providing insight into neuronal synaptic and dendritic dynamics
at unprecedented resolution (Holt and Schuman, 2013; Rangaraju et al., 2017; Helm et al., 2021). One bottleneck to the
analysis of these datasets is manual or semi-manual annotation (commonly W1th Neuronstudw (Rodriguez et al., 2008),
java-based Fiji (Schindelin et al., 2012) (for example Gilles et al., 2024) or python based NAPARI Ahlers et al. (2023)),
which can be a time-consuming and labour-intensive task. The ana1y81s can also be confounded by the observation that even
experienced human annotators show a significant amount of variation (Fe 1‘11i1()i/ et al., 2023; Graves et al., 2021). Additionally,
the variability of neural anatomy (Mishchenko et al., 2010; Mukai et al., 2011; Berry and i\((il\l 2( )l‘, Graves et al., 2021)
and the challenges of tracking structures of interest across space and time (Fe 1nhoiz et al., 2023) indicate the need for more
quantitative and comprehensive analysis tools that can accommodate the diversity of cell compartments.

The increasing amount of high-resolution imaging data, coupled with the above-mentioned challenges, means that auto-
matic approaches are becoming more pragmatic for data analysis (Das et al., 2021; Ghani et al., 2017). With the application
of deep neural networks, the opportunity to perform autornatic and reprodumble anaiys1s at a level similar to human-level

annotation is within reatch(Ton0 et al., 2021; Vogel et al., 2023; Ekaterina et al., 2023). A common approach is to train
artificial neural networks (often U- nets) to segment spines and dendrites in 3D from 2D stacked images and to generate 3D
meshes (Ronneberger et al., 2015; Vidaurre-Gallart et al.; 2022). Other artificial neural net approaches include the Matlab

package SpineS (Argunsah et <11., 2(J22), the DeepD3 Frarnework (Fernholz et al., 2023), or the work of Vogel et al. (2023). All
these approaches represent powerful tools for the analysis of dendritic stretches and offer the ability to utilise a pre-trained
ANN or train a personal network.

However, several challenges can arise when applying these approaches. First, training deep learning models on custom
datasets is time and energy-consuming and requires machine learning knowledge. Second, the resulting segmentations can
require further processing to extract data of interest, e.g. centres and ROIs of spines, distance of spines from soma or the
medial axis path of the dendrite or number of molecules of interest within a cell compartment (Tannella and Tanaka, 2006;
Kastellakis et al., 2015; Chater et al., 2022). Third, the resulting ROIs (dendrite and spines) are often not editable once
calculated by the underlying algorithms. Providing a way to interact with the automatically generated results is critical for
effective and robust analysis if the underlying algorithm produces erroneous results in specific image areas. Fourth, some
of the available tools require continuous, spatial signals, while others work with discrete puncta data and apply different
definitions of cell compartments, making comparisons difficult. This makes a comprehensive and reproducible data analysis
across different molecular data sets challenging.

To close this gap, we present SpyDen, an open-access and open-source package to automatically evaluate and trace
multiple features of interest, including dendrites and spines, as well as mRNA and protein localisations. This work includes
a brief overview of the SpyDen workflow, a description of the underlying algorithms and a set of validations performed on a
variety of datasets. Given this, we believe that SpyDen opens up new avenues for image analysis which are both time-efficient
and reproducible in the study of dendrites and spines as well as beyond.

Data analysis with SpyDen

We designed SpyDen as an integrated platform with the following properties

e Reliable, cross-validated algorithms for the analysis of dendritic segments, somata and spines that provide both the
ROIs and relevant statistics across space and time that are bench-marked across different image resolutions using human
expert performance.

e The integrated analysis of continuous molecular signals as well as discrete puncta that represent individual molecules
across structures of interest means that comparisons between cell compartments and data types are possible within a
single user interface and sets of parameters.

e A graphical user interface (see Fig. S1) that can be used without any prior programming knowledge. By providing
a compiled executable, scientists can utilise SpyDen without the need to read and write computer code. To further
enhance the user experience, we provide video tutorials.

e SpyDen is fully open-source and open-access, containing no proprietary software. Its algorithms can be further cus-
tomised to serve alternative analysis goals both within and outside the neuroscience context.
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Figure 1: Steps of SpyDen’s data analysis pipeline illustrated with an example experimental image. A) Result
of the medial axis calculation. The two red markers depict the user selection and the black line is the path through the
dendrite connecting those points. B) The width of the dendrite, using the medial axis, is calculated and depicted in yellow.
C) The red crosses mark the spine locations, obtained here through the use of a neural network (manual selection can also
be performed). D) Using the spine locations, editable ROIs (depicted by the polygons with the red vertices) are calculated.
E) To obtain statistics on the local background, the user can move the background location (depicted by the red markers
surrounded by the grey). F) Using the dendritic ROI (red points, from B) and ROIs from the spines (yellow points, calculated
in D) puncta can be calculated for fluorescence signal detection.
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e All results from the automatic algorithms can be edited, both at the algorithm level and the local ROI levels. This
means that SpyDen provides a robust, algorithm-provided baseline that can be customised further if necessary, a feature
not available in many current software tools.

SpyDen combines a set of powerful algorithms within a single GUI that is optimised for ease of use across different analysis
scenarios. This allows for efficient and reproducible analysis of neuronal images, avoiding the need to switch to different
programs for different steps, reducing the number of potential errors, and speeding up image analysis. See Fig. 1 for an
example of a complete workflow. Next, we detail the SpyDen workflow to demonstrate the above features and analysis steps,
showing how SpyDen can be employed to tackle complex biological imaging challenges and ensure precision and ease of use.

Analysing the dendritic segments

The first component in the SpyDen analysis pipeline is the generation of medial axis paths using user-provided start and
end points that best describe a set of chosen dendrites. The resulting medial axis path (or paths) are available not only for
dendrite analysis but can also be used for other parts of the analysis pipeline, e.g. spine analysis. An example of a medial
axis path is shown in Fig. 1A, where the horizontal dendrite path has been generated (black line) connecting the two marked
end-points (red crosses).

In line with our goal that all results arising from SpyDen algorithms should be editable, we provide the users the possibility
to modify this path if desired (i) allowing for the selection of the channel that depicts the dendrite most reliably using the
associated SpyDen sliders and (ii) including slider settings determining the level of background noise filtering. An example
of noise filtering can be seen in Fig. 2A or for more details see Supplementary Fig. S2. While the above strategy allows for
the global enhancement of the path, we also offer the users the ability to edit local parts of the path. Thus, we have included
interactable vertices along the medial axis path (see Fig. 2A). These fully editable nodes (nodes can be moved, deleted, or
new ones added) allow for fine adjustments to be made to single points of the path.

With the medial axis path calculation results, SpyDen can then generate the full dendritic segmentation (see yellow
outline in Fig. 1B). Once again, the result of this automatic process can be enhanced by using a set of sliders that alter the
behaviour of the underlying segmentation algorithm. Examples of the segmentation results after altering these sliders can be
seen in Supplementary Fig. S2F-H.

At this point, the results of the dendritic analysis can be saved in .json and .csv files (which are both human and machine-
readable). These files include statistics such as the width of the dendrite, luminosity along the medial axis and luminosity
of the segmentation result (see table S1). The masks for dendritic segmentation for each dendrite are also saved as images.
Additionally, the medial axis and dendrite segmentation ROIs are saved as .png and .roi files that either can be used for
further post-processing or directly loaded into ImagelJ, respectively.

Detecting and analysing spines

Even though it has been demonstrated that even experienced human annotators show significant variation when detecting and
analysing spines (Fernholz et al., 2023; Graves et al., 2021), many experimental labs still rely on manual analysis. To overcome
this challenge and provide a baseline to reduce this variation, SpyDen combines automatic and manual approaches to provide
spine statistics. On the one hand, a neural network-based implementation (see Supplementary Fig. S4 for a schematic) can
be used for initial detection, which is then augmented by directly clicking on the spines (see Fig. 2B). Additional functionality
is provided beyond merely selecting the spines: spine selections (both manual and automatic) can be deleted, and spines
of particular interest (for example, spines previously targeted for stimulation) can also be highlighted. This highlighting
provides additional flexibility with regard to other neuronal structures, such as neuronal somata, that can be selected for
analysis as if they were spines.

Given the set of spine locations, SpyDen then sequentially generates ROIs surrounding those structures. The ROI
generation is based on a set of heuristic rules (for a depiction of these rules applied to an example spine, see Fig. 2C) that
take advantage of the inherent structure of the spines and rely on a set of parameters that can be tuned to achieve results that
better fit the chosen experimental paradigm. We demonstrate the difference in ROI generation when different parameters
are chosen by interacting with the sliders provided by SpyDen in Supplementary Fig. S5. Similarly to the medial axis path
generated for the dendritic branch, the spine ROIs are made up of interactable vertices (see Fig. 2D), which means that the
automatic results can also be edited on a spine-to-spine level, enhancing the results.

SpyDen additionally provides a way to calculate the local background luminosity of each spine. Given that the local
luminosity of the image surrounding the spine may impact its relative brightness and thus affect the resulting analysis,
providing these background values is critical for accurate results. Therefore, SpyDen calculates a location close to each spine
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and uses the associated ROI to calculate the image’s local background luminosity (see Fig. 1E). Within the design philosophy
of SpyDen, the location of this background can be manually adjusted if the algorithm chooses an unsuitable location.

A further challenge when analysing spines in temporal data is that the images may shift both on a global (on an image
level if, for example, the sample was disturbed) or on a local level (the microscopic movements of the spines or dendrites
themselves). To combat this challenge, SpyDen provides both global and local motion correction and allows for accurate
measurements. In the case of the local correction, manual intervention is once more provided by selecting a given timestep
and dragging the associated ROI to the correct location.

Once all the above steps are completed, the spine statistics are stored as .json and .csv files and contain a wide variety of
metrics for further post-processing. Additionally, .png and .roi files are generated of the spine polygons, which can be used
for further analysis or figure generation.

Detecting and analysing fluorescent puncta inside structures of interest

Finally, SpyDen takes advantage of its all-in-one nature to use the previous analysis (spatial image information) to detect
and measure fluorescent puncta (discrete datapoints) inside the generated ROI.

As we have two types of ROIs (polygonal spine ROIs - which also can be used to study soma and other similar structures
- and segmented line ROIs for dendrites), we note that puncta are detected differently for each of them. For polygonal ROISs,
fluorescent puncta are detected inside the area enclosed by the polygon (yellow points, Fig. 1F). For segmented line ROIs,
the fluorescent puncta are detected by considering local rectangles defined by the cross-section and the closest line segments
(red points, Fig. 1F). SpyDen provides the capability to filter out puncta of certain minimum and maximum sizes and omits
puncta whose intensity is below the background noise level. This improves the efficiency of the algorithm and avoids detecting
spurious puncta. The coordinates of the detected puncta are saved in human and machine-readable .json and .csv files.
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Figure 2: Illustrations of the three analysis pipelines of SpyDen with example images A) Analysis pipeline for
generating the dendritic segmentation. From left to right): 1) Input image of the dendrite and the dendritic spines. 2) A
median filter is applied to reduce the salt and pepper noise followed by a chosen threshold (default is the mean) for a rough
segmentation of the fore- and background. 3) Given the start and end point of the dendrite, the medial axis path will be
calculated. 4) For every point on the medial axis path we fit an ellipse that covers the dendrite to determine its width. 5)
Applying a width increase condition, we require continuity in the dendritic width calculation and do not allow large abrupt
changes that can occur due to the presence of spines. B) An example dendritic stretch, where the spine heads have been
marked manually (yellow) as well as using an artificial neural network (red). The red box is additionally shown in a zoomed-in
version in C). C) Using the selected centre of the spine (centre of the red arrows), we project outwards in eight directions
until a certain number of conditions are satisfied. The conditions are depicted with dashed lines in different colours on the
plot. Example conditions are the dendrite rule (spine ROI should not intersect with the dendrite) or the fall-back rule (the
spine ROI should exceed a certain threshold). D) After iterating through all spine centres, and applying the heuristic rules
to generate spine ROIs (white lines), we are left with a set of potential ROIs that can be further altered if necessary. E-F)
Once the ROIs (Soma, dendritic width - in F - and spine - in F') are finalised, puncta detection can be used to find bright
spot puncta in the ROIs and get various measures for each punctum. Dendritic segmentation needs to be performed to obtain
the dendritic puncta.
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SpyDen Methods

Algorithms for dendrite analysis
Medial axis path calculation

To obtain the optimal medial axis that sits in the middle of the selected dendrite, we consider the treatment of the experimental
image as an optimal path problem, i.e., given the start and end points provided, we attempt to find the best path through
the dendrite. The image is transformed into a binary matrix, where the pixels that have luminosity over a given threshold
represent an admissible path, and all other pixels are inaccessible (walls) (see Fig. S2B). Given this formulation, standard
pathing algorithms can be applied to obtain the shortest path calculation. SpyDen utilises the standard Dijkstra algorithm of
NetworkX (Hagberg et al., 2008) and speeds up the calculation time by downsampling the image if it is larger than 512x512
pixels.

However, if we solely applied the algorithm to the matrix described above, the path we generate would not lie within
the middle of the dendrite but instead favour the dendrite edges (especially if the dendrite is curved or angled). Therefore,
we augment the binary matrix, which represents the admissible dendrite pixels, with another factor that represents how far
a given pixel is from the boundary of the dendrite. This factor is calculated by checking how far a given pixel is from an
inadmissible pixel (i.e., a pixel below the luminosity threshold), i.e., a simple approximation of how far a given pixel is from
the edge of the dendrite. This alteration ensures that the algorithm generates the shortest path at the dendrite’s centre. For
an example of this augmented formulation, see Fig. S2C, where the peaks represent the points furthest from the dendrite
edge.

The resulting path consists of all pixels that connect the dendritic endpoints. Retaining all of these pixels, however,
is inefficient, makes saving the dendrite for future use difficult, and complicates the editability of the dendritic path. To
overcome these problems, the full-rank path is compressed by removing redundant pixels and generating a path consisting
of a smaller set of control points. These control points, which define the editable nodes seen in Figure 2A, are major turning
points of the path and are obtained by a curvature-dependent sampling of the original path. By interpolating linearly between
them, the full rank path can be recovered. A pseudo-implementation of the above-described algorithm can be found in the
supplemental material in Algorithm 1.

Dendritic width calculation

Given the full-rank medial axis path, we can then proceed to segment the selected stretch of the dendrite in its entirety. To
determine the exact width of the dendrite at each point, we define an ellipse at each pixel of the full-rank medial axis path.
The semi-minor axis of these ellipses is set to a pre-set small value and points in the direction along the medial axis. In
contrast, the semi-major axis is normal to the medial axis and is iteratively increased until it intersects with the boundary
of the dendrite. An example illustration of an ellipse can be seen in the top panel of Figure 2A. This dendrite boundary is
calculated using the Canny edge detection algorithm (Canny, 1986) applied to the median filtered and thresholded image.
We employ this ellipse-based approach to generate the dendrite segmentation for two reasons: Firstly, directly using the
canny edge detection detects all edges in the image, meaning that synaptic edges are not differentiated from the dendritic
boundary. Secondly, depending on the luminosity profile of the image, certain edges may not be detected, leading to gaps in
the dendritic boundary. By using ellipses and increasing their width iteratively, we are guaranteed to intersect with an edge
at some point, which is not necessarily true if we solely used an outward-pointing ray. Examples of these phenomena can be
seen in Fig. S3.

To ensure that the dendritic width calculation does not include structures growing out of the dendrite (i.e. filopodia,
spines, etc.), the algorithm includes a smoothing condition that avoids abrupt changes in the width. To provide a means
to interact with this algorithm, SpyDen includes two sliders that alter (i) the width-multiplication factor and (ii) the effect
of the smoothing condition. These two sliders allow for significant alterations to the segmentation result, which in turn can
enhance the result of the dendritic width calculation. The full algorithmic description of the dendritic width calculation can
be seen in Algorithm 2.

Synaptic analysis
Neural network-based identification of spine heads

Artificial neural networks are an effective tool to automatically annotate spines along dendritic stretches for further analysis
(Ronneberger et al., 2015; Kashiwagi et al., 2019; Tong et al., 2021; Argunsah et al., 2022; Fernholz et al., 2023; Vogel et al.,
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2023). In most cases, this approach is employed directly for segmentation rather than the localisation of spines along the
dendritic branches. When spines are segmented directly, any additional ones not identified in the segmentation process can
be difficult to include in later steps of the data-analysis pipeline. Additionally, most approaches mentioned above cannot edit
and correct the generated ROIs once they are calculated.

These limitations mean that we opted to use a faster R-CNN architecture (Girshick, 2015) to locate the centre of mass of
spines directly (similar to the approach taken to Vogel et al., 2023) rather than segmenting them. Concretely, the fast R-CNN
architecture takes in an image of variable size and outputs a list of spine-bounding boxes and associated confidences. Given
the centre of these boxes, we can then calculate the spine’s centre. Sets of spines from three different datasets (Helm et al.,
2021; Chater et al., 2022; Fernholz et al.; 2023) were manually labelled and used to train the neural network (pre-trained
on ImageNet). Additional training images were generated by altering the original training set by changing their resolutions
and rotating or mirroring them. For a set of example training images, as well as the schematic of the architecture, see
supplemental figure Fig. S4.

Focusing on locating spines, rather than segmenting them, maximises intractability in SpyDen, as entries can easily be
added or removed from the set of suggested spine centres. Additionally, the faster R-CNN architecture provides a confidence
value for each identified spine that can be used to filter spines. Therefore, we have provided a slider in SpyDen that
determines the minimum confidence the network must have for a given spine suggestion. The final detection can thus be a
mix of automatic and manual spine locations to achieve the best result, as seen in Fig. 2B.

Throughout the development of SpyDen, we trained the underlying neural network on a wide variety of experimental
image types, thus ensuring robustness across a wide variety of experiments (for details of the various experimental images
used, see Table S4). Nonetheless, we acknowledge that our network may not perform at the desired level for all images and
note that this is still an open challenge in the field. However, inspired by the approach of DeepD3 (Fernholz et al., 2023), we
include the ability not to use the default SpyDen network and instead provide a self-trained one that takes a 2D image as its
input and generates a list of locations as its output (confidences can be arbitrarily set). By pressing the “Set NN (default)”
button (see box ii of Fig. S1), SpyDen includes the option to download SpyDen’s default network or provides the path to a
custom implementation. We emphasise that the neural network approach is optional for analysing the spines, and the fully
manual procedure can also be utilised.

Automatic ROI generation

As the above choice of spine identification algorithm only provides the spine centres, SpyDen necessarily includes a separate
algorithm for spine segmentation. This algorithm takes the spine locations and then generates ROIs that can be used to
analyse those spines.

Our approach relies on the inherent features of the spines to generate a polygon with editable vertices and provides three
distinct advantages over common neural network-based approaches:

1. Using our approach leads to an ROI that consists of a polygon with editable vertices. FEach vertex can be moved or
deleted, and new vertices can be added to enhance the ROI, allowing for significant enhancement of the results once
the ROIs are generated. The ROI generation algorithm parameters can also be adjusted to provide better automatic
results.

2. By using a heuristic approach and relying on the spine features themselves, the algorithm is largely independent of image
quality (unlike pre-trained neural network approaches), leading to a fundamentally robust algorithm across different
experimental paradigms.

3. The rules that define the ROI generation are intuitive and can be tweaked, unlike the black-box approach of a pure
neural network approach. Coupled with the open-source nature, this allows for altering the ROI generation algorithm
of SpyDen as part of our inherent design goals.

The ROI generation then proceeds: a point interior to the spine, sp = (2o, yo), is supplied via the manual or automatic
procedure. We then generate eight outward-pointing rays representing the cardinal and ordinal directions (N, S, E, W, and
NW, SW, SE, and NE, respectively). Mathematically, we represent the i** point along each of these rays as

Si,d = So +1 X Vg (1)

where vy is a given direction. An example of these rays can be seen in the red arrows of Fig. 2C. For each ray, we additionally
introduce a counter c¢4. This counter tracks how many times certain rules related to the spine morphology are broken as we
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step along the ray. When ¢4 exceeds a certain value n, we halt the progression in this direction and denote this point as the
edge of our ROI. The counter ¢4 is independent for each ray, so the ROI generation will progress as long as one of the rays
continues to increase.

Examples of the rules we use in SpyDen include the luminosity drop-off rule (when the value of the luminosity at point
si.q falls below a factor of the initial luminosity, ly) or the other spine rule (when the point s; 4 is closer to the centre of
another spine than to its own spine centre). Examples of the locations where these rules are broken can be found plotted in
different colours in Fig. 2C. The exact details of these rules can also be found in the supplemental material.

Once the counters of all the rays have exceeded the value n, i.e., enough rules have been broken for all directions, we
generate an octagonal shape encompassing the chosen spine, sy, where the vertices are given by the final points along each
ray. To increase the robustness of the algorithm, we then repeat this process by generating four additional polygons where
the initial point is perturbed by one pixel in the cardinal directions. The resulting vertices of the five polygons are then
averaged to generate a final polygon that has decreased dependence on the exact location of the initially provided spine
position. The exact details of this algorithm can be seen in the supplemental material and Algorithm 3.

Finally, we comment on the difference between the ROI generation if luminosity mode or area mode is selected. Both these
quantities are reliable proxies for the strength of a synaptic connection and have been used extensively to study synaptic
plasticity (Matsuzaki et al., 2004; Hayashi-Takagi et al., 2015; Eggl et al., 2023; Chater et al.; 2022). Nonetheless, care must
be taken when generating the ROIs to study these quantities with temporal components. When studying the luminosity,
generating an ROI encompassing the maximum extent of the spine over the entire period is critical. This allows for accurate
measurement of the spine dynamics as the luminosity changes within the ROL. On the other hand, when studying the area,
we need to generate an ROI that only encompasses the spine at that timepoint. Then, the areas of those ROIs dynamically
change as the spine shrinks and grows. Therefore, in SpyDen, there is only one ROI in luminosity mode and an ROI for each
snapshot in area mode. Please see tables S2, S3 for a detailed description of the output generated by the synaptic analysis
in luminosity mode and area mode, respectively.

Motion correction

SpyDen also includes the capability of studying the temporal dynamics of dendrites and their spines. However, given that
biological structures inevitably shift in time, be it through their innate motion or the noise of the experimental paradigm, it
is critical to introduce a process to correct these shifts. Additionally, this movement may occur globally when the shifting
is uniform for the entire image or on a local level, where individual sections may move independently from the rest of the
image.

To account for these effects and accurately track the ROIs in time, we employ a phase cross-correlation approach (Foroosh
et al., 2002; Guizar-Sicairos et al., 2008). Unlike spatial-domain algorithms, phase cross-correlation relies on the frequency
representations of the images and, thus, is more robust to noise and occlusions. Furthermore, in comparison to directly
calculating the cross-correlation of the two images, the spectral approach is significantly faster to calculate. This approach
is particularly attractive because it can be applied to images of any size without significantly increasing computational time
and can be used for global and local motion correction. In SpyDen, we find the necessary translations to account for the
global shift and then introduce individual shift corrections via the same algorithm for each individual ROI. This algorithm
is implemented by using skimage (Van der Walt et al., 2014) to correct for both dendritic and synaptic shifting.

Puncta analysis

Localising and calculating the size of fluorescent bright puncta is a crucial component in the analysis performed on images
following hybridisation techniques such as fluorescent in situ hybridisation (FISH) or single molecule FISH (smFISH). Such
techniques result in a fluorescent bright puncta-like signal with a dark background (for example, see Fig. 2E). Thus, given a
dataset of multi-channel and/or multi-time images, SpyDen detects puncta in each of the provided images. This is achieved
by using the Laplacian of Gaussian (LoG) technique (skimage implementation) to automatically detect fluorescent spots
in the experimental images. This method requires a threshold value, defined as the absolute lower bound for scale space
maxima. Nevertheless, the optimal threshold value may differ for distinct neurological structures. As SpyDen provides the
ability to analyse fundamentally different biological structures (for example, spines, dendrites, somata, etc.), we provide two
sliders, labelled “Threshold dendrite” and “Threshold synapse/soma”, respectively, to set the threshold values for each of
the two types of ROIs independently. For example, given the image I(¢,¢,z,y) and an ROI, R(¢,¢,x,y), in image I, the
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threshold, tr(t,c), for R is determined as follows:

v

tr(t,c) = max(R(t,c, j, k)) X 100

Here R(t, ¢, j, k) is the array containing fluorescent intensity value Vj, k € ROI; in channel ¢ and at time ¢ and + represent the
values of the time and channel sliders. Additionally, SpyDen includes the ability to detect puncta of various sizes by changing
the minimum and maximum standard deviation of the Gaussian kernel using the provided puncta size slider. Finally, we
omit puncta detection in ROIs whose intensity is below the background noise level to improve the efficiency of the algorithm
and to avoid detecting erroneous puncta.

Performance evaluation

As SpyDen consists of three fundamental analysis components (dendritic, synaptic, and puncta analysis), we perform three
separate analyses to determine the effectiveness of using this tool. To this end, we take a variety of datasets that represent
realistic experimental use-cases.

Dendritic analysis

The synaptic and dendritic algorithms are evaluated on three distinct datasets to enhance the validity of the verification
and prove the robustness of SpyDen to different experimental paradigms. These three datasets, publicly available and
already published, are the Chater (Chater et al., 2022), Helm (Helm et al., 2021), and Cultured datasets (the last of which
is unpublished and provided as part of this work). The first dataset contains examples of neurons from organotypic slice
culture, while the latter two contain neurons from dissociated cultures, which makes the combination an attractive set of data
for the verification of SpyDen. One key distinction between the datasets is the different experimental resolutions, a feature
that many neural networks rely on to achieve their performance. Additionally, the difference in contrast between background
noise and foreground means that conventional methods may struggle. For example, images from each of these datasets, see
A, B, and C of Fig. 3.

We begin by studying the performance of the dendritic segmentation algorithm and compare this to the results of a
manual expert evaluator. Each dataset comprises 20 dendrites. Natural use of SpyDen includes directly applying the results
arising from the automatic algorithm, adjusting that result by modifying the medial axis path of the dendrite or by altering
the algorithm parameter sliders. To mimic this natural use, we compare the expert to two distinct segmentations:

e Default: the automatic segmentation when the default parameters of SpyDen were used.

e 1 image optimised: the automatic segmentation resulting by altering the algorithm sliders akin to natural use for one
image of the new dataset. These parameters are then used for all other images of that dataset

Examples of dendrites from each dataset and the three different segmentations can be seen in Fig. 3 in green and blue,
respectively.

Using the calculated segmentations, we can then generate metrics that quantify the performance of the SpyDen algorithm
when compared to the ground truth (expert annotation). In our case, the segmentation task is equivalent to a classification
task, as we are trying to classify each pixel as part of the dendrite. Additionally, this is an imbalanced task, as there are
many more non-dendrite pixels than dendrite pixels. Metrics commonly used to evaluate the performance of classification
algorithms in imbalanced datasets are the recall, precision, and Fj scores (Powers, 2020). Recall measures the ability of a
model to correctly identify all relevant instances of the positive class (true positives) out of the total actual positive instances,
precision measures the ability of a model to correctly identify positive instances without including too many false positives,
and the F; Score is the harmonic mean of precision and recall, defined as

P = 2prec%s?on x recall )
precision + recall

and provides a trade-off between these two metrics.

The results calculated for the two SpyDen segmentations can be seen across the Helm, Chater, and Cultured datasets in
Fig. 3D-F. These figures also include the full equations of recall and precision. As each dataset has different characteristics,
we expect to see variations in these metrics as the performance of SpyDen will naturally fluctuate. The algorithm annotations
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Figure 3: The dendritic segmentation in two different datasets reliably obtains performance comparable with
manual expert evaluation. A) Example dendrite segmentation of a dendrite from the Helm dataset (Helm et al., 2021).
From top to bottom: Raw image, showing the dendritic stretch and associated spiny protrusions, manual annotation of of
the dendrite by an expert overlaid in red, segmentation achieved with the SpyDen tool if default values are used in green
and optimal segmentation if the algorithm parameters are augmented (blue). B) As in A), but using a set of data from
the Chater dataset (Chater et al., 2022). Colour scheme remains the same. C) As in A), but using a set of data from
the Cultured dataset. Colour scheme remains the same. D)-F) To measure the performance of dendritic segmentation, we
use calculate the recall (D) (true positive results divided by the number of all samples that should have been identified as
positive), precision (E) (number of true positive results divided by the number of all positive results) and Fj-score (F') which
is a measure of our algorithms accuracy. In each figure, the green and blue refer to the performance of the SpyDen default
and adapted parameters, respectively. Additionally, we calculated a baseline (called the straight dendrite), where a diagonal
chord (2um width) is drawn between the dendritic start and end-points and designated as the dendrite (grey). * refers to

p < 0.05.
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of the Helm dataset have high recall (= 0.9) and precision for both the default and altered parameters (a~ 0.8). This is at
a level where there is little discernible difference between these two segmentations. We attribute this to the fact that the
parameters of the dendrite algorithm were developed and tested with the experimental features of this dataset in mind.
Therefore, altering the algorithm parameters to obtain a better segmentation leads to only a small improvement in the
classification metrics. This leads to an average F1 score of 0.85, indicative of a well-performing model with a good balance
between minimising false positives and false negatives.

To further understand the performance of our model, we design a naive segmentation strategy that conceivably could
generate reasonable dendritic segments, which we call the “straight dendrite” (see grey lines points in Fig. 3D-F). This
naive strategy is defined by taking the provided start and end points and drawing a chord of a certain thickness between
these points. We found that the best average F; metric was achieved when this thickness was =~ 2um, which aligns with
experimentally reported dendritic widths (Stuart et al., 2016). Nevertheless, this baseline performs significantly lower than
both the SpyDen segmentations and only achieves an average F; value of 0.4 and 0.3 for the Helm and Chater datasets,
respectively. As the dendrites are not perfectly straight segments, this strategy is unable to deal with dendrites that may
curve and thus deviate from the chord. This leads to low precision and highly variable recall.

Turning to the Chater dataset, we see that the default SpyDen parameters lead to a worse performance, which can
be primarily attributed to the lower contrast between the background and the dendrite. Thus, the default parameters
(particularly the variance of the Gaussian filter used to detect the edges of the dendrite) tend to overestimate the size of the
dendrite, leading to a high recall rate (all points in the dendrite covered). However, this leads to a low precision rate as the
segmentation includes many points of the background that are not part of the dendrite. Nonetheless, we still outperform
the baseline strategy. With minimal adjustments to the algorithm parameters, we can achieve a performance comparable
to that of the Helm Dataset (Fj score = 0.82). As SpyDen algorithm variables can be saved and transferred to other
experimental images, the alteration of these parameters was only performed on one Chater dataset image and then applied
to all other images. Thus, the dendrite segmentation of SpyDen can reliably obtain a satisfactory result across a wide array
of experimental conditions. We note that the results of the Cultured dataset mirror those of the Chater dataset, i.e., the
default SpyDen values represent an overestimation of the dendritic stretch, with high recall but low precision. Nonetheless,
by augmenting the parameters to correct for this over-estimation, we achieve a reasonable result with an F score of ~ 0.85).
We note that with both approaches using SpyDen (automatic and augmented), the F1 performance is significantly better
than the baseline.

We highlight that augmented segmentation was achieved without altering the path of the dendritic stretch (via the editable
nodes). Therefore, an even higher F; score is possible. Nevertheless, as we aimed to mimic fast and efficient natural user
analysis, we restricted ourselves to only changing the transferable parameters between different experimental images.

Spines

We now turn to verifying the abilities of SpyDen to accurately measure dendritic spines, using the previously employed
datasets as they image both dendrites and spines. The “ground-truth” ROIs are obtained using manual annotation of the
spines by expert evaluators, which are then compared against the results from SpyDen. As mentioned by Fernholz et al.
(2023), using human expert annotators as the ground truth can be problematic as biases due to experience and experimental
expertise can lead to different results. This means that comparing to only one annotator could lead to better or worse
performance based on the results of that expert. To combat this, we used a set of three expert annotators that each worked
on different datasets to hopefully provide the most “accurate” ground truth.

We begin by comparing the average SpyDen ROI luminosities against the ground truth luminosity as evaluated manually.
The luminosity is a measure of the spine head volume which is a proxy for synaptic strength (i.e., the number of AMPA
receptors) and is used in a wide variety of studies to understand synaptic plasticity (Matsuzaki et al., 2004; Hayashi-Takagi
et al., 2015; Eggl et al., 2023; Chater et al.,; 2022). Here, the SpyDen ROIs are generated using the 1-image optimisation
approach mentioned above, i.e., we only change the parameters of the automatic algorithms once for each dataset and then
leave them untouched. Nonetheless, we note that the results presented here could be further improved by taking advantage
of SpyDen’s capability to change the ROIs directly.

We find that the luminosities of the spines, as calculated by SpyDen, are in good agreement with those generated by
the expert annotator, as can be seen in Fig. 4A). When pooling all three datasets, the correlation exceeds 0.9, and the
slope of the linear relationship between is ~ 1. Additionally, we maintain this strong correlation when studying each dataset
individually, albeit with slightly different linear relationships (see Fig. S6 for individual linear fits). Synapses are also dynamic
structures that change constantly, a process known as synaptic plasticity. Therefore, we additionally need to verify that the
algorithms underlying SpyDen can track these structures and provide accurate luminosity values over time. To this end, we
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Figure 4: The synaptic detection and ROI generation of SpyDen achieves reliable performance when compared
to a U-Net approach. A) To verify the results of the SpyDen analysis pipeline, we compare the average luminosity of
the SpyDen ROIs against expert manual evaluation. The ROIs of SpyDen can be used to calculate the luminosity of each
spine and compared against the manually evaluated luminosity. We achieve robust agreement with the expert evaluation (for
the three datasets), as can be seen with the overlaid linear fit. B) Using temporal data from the Chater dataset allows us
to determine the spine tracking capabilities of SpyDen. We note that a good agreement is achieved between the luminosity
calculated by SpyDen and that of the manual annotation of the expert. C) Example ROIs generated manually by the expert
(red), the heuristic SpyDen rules (blue) and a U-Net architecture (green). The white bar refers to 5 pm. D)-E) We can
directly compare these ROI masks to obtain further verification of SpyDen’s capability. From left to right, we present the
recall, precision and Fj arising from SpyDen (blue) and the U-Net (green) while using the manual annotation as the ground

truth. * refers to p < 0.05.
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took advantage of the temporal data provided by the Chater dataset and applied the automatic spine tracking provided by
SpyDen. The results were then compared to those from an expert annotator (see Fig. 4B, where the blue, red and purple
colours refer to three different analysed dendrites). We note that a good agreement is found between the two evaluations
(r=0.79). This good performance was achieved without any manual intervention to further enhance the results, which can
be easily performed in SpyDen.

Next, we compare the ROI masks directly with those generated by the expert (as the luminosity can be obtained even
without accurately covering the spine). Additionally, to see how our technique performs compared to other approaches, we
trained a U-Net on the Helm dataset to output spine ROIs (Ronneberger et al., 2015). The U-Net takes the entire image as
input and provides a binary mask of the same dimensions, highlighting possible spine areas. Given this structure, the U-Net
might mark spines not part of the area we wish to analyse (e.g., lying on another dendritic branch). These extra selections
would then unfairly decrease the accuracy of the U-Net, so all masks that the U-Net provided that lay outside the analysis
region were removed. Nonetheless, we note that generating these extra (possibly erroneous) ROIs may be a problem that
real users can encounter in real-world settings and that SpyDen does not have. Additionally, we note that the performance
we would get by training the U-Net on all three of our test datasets would lead to trivially good results. However, training
the network on this larger data set is computationally intense and not feasible for most end-users. Therefore, to mimic likely
real-life analysis, we take the network and only train it on one dataset (in this case, the Helm dataset) and then apply it to
all three datasets.

SpyDen, on the other hand, is not “trained” on a given dataset or resolution and instead consists of deterministic
algorithms that rely on the biological structure of the spines and, therefore, can generalise beyond the datasets we have
used here. Additional generalisation is achieved by enhancing the automatic results by altering the parameters underlying
the algorithm and then applying these to all other images of the same experiment. This requires no knowledge of coding
or computational resources, unlike retraining the neural network using the U-Net approach. We believe the above U-Net
implementation represents the fairest comparison for SpyDen.

To evaluate the performance of the SpyDen and U-Net ROIs, we use the previously defined recall, precision, and F}
metrics, using the expert annotation as the “ground truth” baseline (Fig. 4D-F). Examples of these three ROIs can be seen
in Fig. 4C, where red, green, and blue refer to the manual, SpyDen, and U-Net implementations, respectively. As expected,
the U-Net and SpyDen perform at similar levels for the Helm dataset. However, SpyDen performs significantly better than
the U-Net for the other two datasets, which follows intuitively as the U-Net is unable to adapt to the new experimental
conditions. SpyDen achieves = 0.8 for the three datasets, which is indicative of a well-performing model that does not rely
on the image’s resolution to generate accurate results, making it a promising tool for evaluating spines across a wide array
of datasets.

We also evaluated the performance of the SpyDen neural network in identifying spine centres in the three datasets (see
Fig. S4I). We note that we obtain a consistent F performance of ~ 0.7 but emphasise that the spine centres provided by
the neural network can be enhanced simply by adding or removing the suggested points with a single click, which can not so
simply done in the U-Net architecture.

Puncta

To test the accuracy and efficiency of the SpyDen puncta analysis, we compared the results of SpyDen on two recently pub-
lished data sets (Ciolli Mattioli et al., 2019; Fonkeu et al., 2019). The first dataset consists of images of mouse primary cortical
neurons, in which two different Cdc42 isoforms were labelled using single molecule mRNA FISH (shown in Fig. 5A). Dataset2
contains images of rat dissociated hippocampal cultured neurons, on which mRNA FISH was performed for CaMKIIa (shown
in Fig. 5C, left). In the original work, quantification of smFISH puncta for both of Cdc42 isoforms (namely, E6 and E7) was
performed using StarSearch (RajLab), which is a well known and frequently used tool for smFISH puncta quantification.
The results from SpyDen’s analysis were comparable to those from the original work in terms of the percentage localisation
of the two isoforms between soma and neurites (see Fig. 5D, E). Similarly, in the original work, dataset 2 was analysed
using Neurobits (Tushev et al., 2018). Again, the quantification of CaMKIIa« mRNA from SpyDen in somatic and dendritic
compartments matched well with the results obtained using Neurobits (see Fig. 5F). Furthermore, we obtained comparable
results in terms of the count of puncta detected in each compartment (soma vs neurites) in both data sets (see Fig. 5G, H, I
and Fig. S7). One of the advantages of using SpyDen puncta detection is that it allows manual enhancements by providing
the option to inspect and alter the underlying algorithm parameters (such as threshold values or puncta size). Additionally,
SpyDen’s approach promotes efficient evaluation of the puncta; instead of identifying puncta in the whole image (as is done
in Neurobits), SpyDen looks for puncta only in designated ROIs. This greatly reduces the time spent analysing each image.
Another advantage of using the SpyDen puncta detection is that we provide video tutorials demonstrating how to use the
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analysis pipeline. This means that learning how to use SpyDen is much easier than learning how to use other tools that only
provide text-based documentation. Moreover, existing tools often do not provide useful statistics which are automatically
output by SpyDen, such as the size of each punctum, their location, and minimum and maximum intensity. For a complete

list of puncta statistics, see Table S5.
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Figure 5: Validation of SpyDen’s puncta detection pipeline on published datasets. A) smFISH of Cddc42E6 (green
channel) and Cdc42E7 isoforms (red channel), cell body is labelled with DAPI (in blue channel). Arrows point to individual
punctum. B) Zoomed-in image of segmented soma and an example dendrite with smFISH puncta for both isofroms (E6
in green,E7 in red) on left and the same pucta detected by SpyDen on right. C) FISH of CaMKIIlae mRNA in red with
fluorescent immunolabeling of MAP2 for neurites (on left) and corrosponding somatic, dendritic and identified mRNA puncta
by SpyDen on the right. D) the ratio of isoform specific to total Cdc42 in somata based on puncta count by StarSearch
and SpyDen. Ratios based on results from SpyDen is comparable to that of StarSearch. E. Same as in D but for neurites.
Isoform E7 has statistically higher localisation that E6. The same is obtained from the results of SpyDen analysis (*: p-value
< 0.05,**: p-value < 0.01, ***: p-value < 0.001). F. Soma vs neurites fraction of total CaMKIIa mRNA with higher
localisation in soma. The analysis using SpyDen is able to replicate the results obtained using Neurobits. G-I Comparison of
smFISH puncta count in by StarSearch vs SpyDen in soma ( in G ), in neurites (in H) and FISH puncta count by Neurobits
vs SpyDen (in I)

Conclusion
With SpyDen, we have presented a robust and versatile tool for studying continuous and discrete molecular localisations

inside dendrites and spine compartments. While we developed SpyDen with dendritic compartments in mind, the algorithms
underlying SpyDen are also readily applicable to other cellular compartments, e.g. fluorescently labelled nuclei within an
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area of interest or the number of molecules of interest inside a specific cellular compartment. To aid the adaptation and ease
of use, we have incorporated into SpyDen three fundamental principles: i) easy-to-use and intuitive operation without prior
knowledge of programming due to a graphical user interface and video tutorials, ) it is fully open-source and open-access,
containing no proprietary software i) results arising from the ANN-based tracing and ROI algorithms are editable.

Finally, we cross-validated and bench-marked SpyDen performance across different experimental datasets and have shown
that SpyDen achieves reliable results when tasked with tracing dendrites, identifying spines, and fluorescent puncta and its
performance is on par with expert manual annotators. On top of the automatic analysis performed by built-in algorithms,
it can enhance the results, leading to even more reliable analysis. Each step of the SpyDen analysis pipeline can be user-
adapted, and the parameters underlying the algorithms can be changed to obtain better performance. Thus, SpyDen provides
a baseline performance that increases reproducibility and allows additional customisation by adapting the algorithmically-
suggested result. Thus, we believe that the SpyDen framework provides a powerful platform for cellular studies to analyse
large neuronal images more efficiently and reproducibly and gain insight into the processes underlying dendrite and synapse
dynamics.
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Data and code availability

Data and code to generate the figures found in this manuscript can be found in the following public github repository Spyden-
PaperFigs . The full code base for SpyDen, including instructions on installation and use, can be found at the github repository
SpyDen while the compiled executables can be found at gin.g-node.org/CompNeuroNetworks/SpyDenTrainedNetwork.

Statistical methods

Comparisons between expert manual and SpyDen results were performed using a Studentized t-test and multiple comparisons
were corrected for using a Bonferroni correction factor.
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Figure S1: Principle analysis window of SpyDen. We highlight the different components of this window in the
red boxes and also show relate the analysis modes seen in Fig. 1 to the buttons that can be selected here.

We emphasise that a full description of the GUI and data analysis pipeline of SpyDen can be seen in a set of video tutorials
that we encourage the readers to watch.

The SpyDen GUI is the primary interaction point the user has with SpyDen. Coupled with a suite of video tutorials,
SpyDen is easy to pick up and does not assume any programming knowledge to analyse experimental images. The primary
analysis window is designed to provide the user with immediate feedback on what they can currently do, as each analysis
step is only unlocked once all prerequisites are filled (green for active, grey for inactive). This step-by-step process leads to
intuitive analysis, as logical and repeatable steps are performed for every data set.

The different components of the analysis are highlighted with red boxes in Fig. S1. Box i determines the meta-parameters
of the data analysis, including the type of z-stack projection, image resolution and whether multiple channels are present.
As the algorithms underlying the different analysis pipelines consist of tunable parameters that can affect the final result, we
have introduced a set of sliders that appear for the relevant step in box ii. To select the different analysis modes, the user
clicks the buttons in box iii. Box iv) provides feedback to the user by depicting the interactable image that can be clicked
on, zoomed in on and analysed. Finally, box v is a text box that tells the user the current status of the analysis and what
possible keyboard shortcuts they can use.

As the user proceeds through the analysis pipeline provided by SpyDen, the image in box iv changes to reflect the current
status of the analysis. Examples of the different states of the image in box iv are depicted in Fig. 1B-G) with the buttons that
lead to this behaviour marked in Fig. S1, iii). These include the dendritic analysis (A, B), synaptic selection and segmentation
(C-E) and the puncta analysis (F). As the image is built on an existing Python package (matplotlib), all the functionality of
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saving, panning and zooming are already implemented.

SpyDen data input

SpyDen takes .tif, .Ism, .png or .jpeg files as possible input. This choice of input formats was driven by the fact that the.tif
format is some of the most widely used image formats in bio-sciences, while .png and .jpeg files are commonly used for general
image files.

SpyDen then provides the option to alter the type of analysis that will be performed, e.g., the type of z-stack projection
or whether to include temporal dynamics (to study such dynamics, the different time points need to be provided as separate
images). SpyDen additionally requires the input of the experimental image’s resolution (a necessary requirement for some of
the subsequent analysis), which, if available, is obtained from the image metadata or provided manually.

Structure of the SpyDen output

Dendrite_Channel_0.csv

Column Name Definition
Dendrite: d pair of x,y coordinates of the point on the medial axis path of dendritic ROI d
Width of ell. width of the calculated ellipse at point x,y

Timestep t (Luminosity (mid.))® | Fluorescent intensity of the point on the medial axis at timestep t
Timestep t (Luminosity (ell.))* | Mean fluorescent intensity of all the pixels within the dendritic width (calcu-
lated using the ellipse approach) at timestep t

Table S1: Output file contains measurements for individual dendritic ROIs. ¢ a separate column is added for each time step.
A separate file is created for each channel as well.

Synapse_I_channel_i.csv
Column Name Definition
Id Unique identification number assigned to each spine.
type 0 for stimulated spine, 1 for unstimulated spine and 2 for soma
location pair of x,y coordinate of the centre of spine/soma on the image
bgloc pair of x,y coordinate of the centre of corresponding background measurement on the image
area area of the spine/soma polygon ROI in um?
distance distance from the start of dendritic ROI along the medial axis path
closest_Dend ROI 1d for the closest dendrite to which the spine belongs
Timestep t (mean)® mean of all pixel intensities inside the spine/soma ROI at timestep t
Timestep t (min)® minimum of all pixel intensities inside the spine/soma ROI at timestep t
Timestep t (max)® maximum of all pixel intensities inside the spine/soma ROI at timestep t
Timestep t (RawIntDen)® sum of all pixel intensities inside the spine/soma ROI at timestep t
Timestep t (IntDen)® mean intensity times area (in um?) of the spine/soma ROI at timestep t
Timestep t (bg mean)® mean of all pixel intensities inside the corresponding background ROI at timestep t

Table S2: Output file structure generated for spine/soma ROIs when analysed using luminosity mode. * a separate column
is added for each time step and one file per channel is created.
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dend_puncta.csv and soma_puncta.csv
Column Name Definition
Id Unique identification of the spine ROI
type 0 for stimulated spine, 1 for unstimulated spine and 2 for soma
location pair of x,y coordinate of the centre of spine/soma on the image
closest_Dend ROI 1d for the closest dendrite to which the spine belongs
Timestep t (area)® area the spine/soma ROI at timestep t in unit?
Timestep t (mean)® mean of all pixel intensities inside the spine/soma ROI at timestep t
Timestep t (min)® minimum of all pixel intensities inside the spine/soma ROI at timestep t
Timestep t (max)® maximum of all pixel intensities inside the spine/soma ROI at timestep t
Timestep t (RawIntDen)® sum of all pixel intensities inside the spine/soma ROI at timestep t
Timestep t (IntDen)® mean intensity times area (in um?) of the spine/soma ROI at timestep t

Table S3: Output file structure generated for spine/soma ROIs when analysed using area mode. * a separate column is added
for each time step and one file per channel is created.
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Effect of the algorithm parameters on the dendritic segmentation

C g D Thresholded dendritic path
h “ ! o ,

m\

Raw Image

Editable path

Altering the smoothness factor Altering the thickness factor

Figure S2: Applying the median threshold to the raw image allows us to generate better medial axis paths
for the dendrites and subsequently better approximations of the dendritic width. A) Example input image that
is provided to the code with start and end points of the dendritic segmented marked in red by the user. B) Given this
image, SpyDen generates a filtered version of the image, where all noise is removed from the image and only key features are
retained. Here, we use the default threshold value. C) Given this filtered image SpyDen generates a weighted matrix (see
3D plot) where it finds the shortest path that traverses the highest points. These highest points represent the centre of the
dendrite. D) By using different threshold values, more or less features are filtered out. This leads to slightly different optimal
dendritic paths (marked with the orange line). Each of the 4 sub-images (i to iv) depicts a slightly higher user-set threshold.
We note that case iv) filtered too much of the dendrite out and so no optimal path was found. E) Once a suitable path is
calculated, the user can make fine corrections to the code by moving editable nodes along the suggested path (highlighted by
the red circles). F) Using the selected threshold and dendritic path a dendritic width can be calculated (red lines on either
side of the dendrite). We note that it was not possible to find the dendritic path and subsequently the dendritic width for
case iv) as the threshold eliminated significant parts of the dendrite. Thus, there is no viable path between the start and end
points. G)-H) A set of tunable parameters allow for user interaction with the dendritic width calculation. These are the
smoothness factor in (G), which determines the amount of pixels that are used to calculate the length of the outward pointing
normal from the medial axis and the width multiplication factor in (H) which multiplies the outward pointing normals by a
set value. Altering these values can have a substantial effect on the calculated width and allow for a significant amount of
flexibility for the user. The threshholded dendritic with from Fiii) was used.

Thresholded dendritic width
i)

i)

No dendritic width
calculation possible

Neural network approach to spine identification

To train the neural network, three separate datasets were employed. Examples of these images can be seen in Figure S4.
More concretely the details of the images can be seen as follows:
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Dataset | Type of cell Resolution Reference Use in network
Helm Hippocampal cultured neurons 0.02021 pm Helm et al. (2021) Training + Testing
Chater Organotypic hippocampal slice 0.66 um Chater et al. (2022) | Training 4+ Testing
culture neurons
Deep3D Organotypic hippocampal slice | 0.094 pm - 0.1245 pm | Fernholz et al. (2023) Training
culture neurons
Cultured | Hippocampal cultured neurons 0.29 pum N/A Testing

Table S4: Experimental details of the network images used in the spine detection ANN

Erroneous width
due to spine

—@

E
Gap in /O

dendritic edge

O/ Spurious edges

Figure S3: Applying the canny-edge detection algorithm to a filtered version of the experimental images provides an acceptable
set of dendritic edges. However, as illustrated by the white circles, several problems preclude using the edges directly. Instead,
we apply the ellipse approach seen in Fig. 2A-E) to enhance the dendritic segmentation.
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Figure S4: Depiction of the neural network approach with example images used in the spine detection in
SpyDen. A) Schematic depicting a simplified view of the neural network that is described in (C-F). Initially, a bounding
box is drawn around the dendritic stretch of interest (also seen in C'). Then, this information is fed to a pre-trained neural
network which outputs a list of bounding boxes within that dendritic and the associated confidence of the neural network.
The user can then choose to filter the output of the network based on the confidence. Here, we have set the confidence
threshold at 0.9, so the suggested points z2 and x5 are excluded from further analysis. B) Example input that is fed into the
neural network. Depicted in black is the medial axis path calculated in the tool as part of the previous step of the analysis.
C) Using this image, the pre-trained neural network (based on a Faster R-CNN architecture (Girshick, 2015), but modified
for our purposes), we are then provided a set of bounding boxes and confidence scores for each proposed identified spine.
The opacity of each box is defined by the confidence of the algorithm. D) When the algorithm suggests multiple overlapping
bounding for the same spine, only the bounding box with the highest confidence is selected. E) As part of the neural network
approach, the user can filter out bounding boxes below a certain confidence score. Here, we have taken the boxes from (c)
and filtered out those that have a confidence level less than 0.9. F) Finally, using the bounding boxes calculated in (d), we
can generate the suggested spine centres (marked with a red cross). These points are then used to generate the bounding
ROIs for the subsequent analysis steps. G, H) Example images (with manually generated bounding boxes) taken from the
two additional datasets used to train the SpyDen spine detection network. These datasets are the Helm dataset (ITelm et al.,
2021) and Deep3D (Fernholz et al., 2023) datasets. I) Evaluation of the spine centre detection of the SpyDen neural network
using the F} metric. We note that the automatic procedure to generate spine centres (and which can be augmented with
manual selection/deletion) leads to reasonable results across the three different test datasets.
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Figure S5: Tuning the parameter settings allows for the automatic ROI generation to adapt to a variety of
experimental images. A)-B) Example experimental spines marked with a red cross from the Chater et al. (2022) and
Helm et al. (2021) datasets, respectively. C-D) Given these spines and the marked locations, the code can generate a set
of different ROI given different values of the tolerance ¢, and ¢ of the canny edge detection filter. We note that certain
parameter combinations work better for certain datasets (e.g., the default setting generates a satisfactory ROI for the Chater
spine, while the ¢t = 30,0 = 10 generates the correct ROI for the Helm spine. All these of ROIs are automatically generated

and have not been edited using the editable nodes.
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Figure S6: SpyDen agrees across a variety of different experimental conditions. A-C) Comparison of the luminosity
calculated using the manual ROIs against the luminosity of the SpyDen ROIs for Helm, Chater and Cultured dataset,

respectively. In each case, a linear fit is overlaid showing good agreement between the two evaluations.

26


https://doi.org/10.1101/2024.06.07.597872
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.07.597872; this version posted June 8, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

dend_puncta.csv and soma_puncta.csv
Column Name Definition
Id Unique identification number assigned to each punctum.
channel Number of channel for which the punctum is located on
Roild Identification number of the dendritic ROI to which the punctum belongs
snapshot Time point in a time series data to which the punctum belongs
location Pair of x,y coordinate on the image for the punctum
radius Radius of the circular punctum
max mMaximum fluorescent intensity of the punctum
min Minimum fluorescent intensity of the punctum
mean Mean fluorescent intensity of the punctum
std Standard deviation of fluorescent intensities of the punctum.
median Median fluorescent intensity of the punctum
distance Distance from the start of dendritic ROI along the ROI

Table S5: output file containing measurements for individual punctum from puncta detection pipeline
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Figure S7: SpyDen puncta detection is in good agreement with other specific-tools across multiple experimental
conditions. A-C) Comparison of the puncta count in smFISH from (Ciolli Mattioli et al. (2019)) for different isoforms of

cdc42 using StarSearch and SpyDen in Neurites (A) and Soma (B) ROIs

. C) Comparison of puncta count in FISH images

from (Fonkeu et al. (2019)) using SpyDen against Neurobits. In each case, a linear fit is overlaid (with 95% confidence
Intervals) showing good agreement between the two evaluations.
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Algorithms

Algorithm 1 Finding of the dendritic medial axis path

Require: : Image of dendrite and spines, I, threshold ¢, start point ps; and end point p,
1: Perform a threshold of I with value ¢ to obtain a binarised image E of dendrite and spines.
2: for each pixel e;; with pixel coordinates ij in I/ do
3 if €jj == 1 then
4: create a node n;; in the Graph G. ij are the preserved coordinates of the nodes.
5 end if
6: end for
Cost map for shortest path
for every node n;; in G' do
8: ng o is nearest neighbour with '3’ € {(i +1)7,i(j + 1), (i + 1)(k + 1), ...}(8 combinations)
9: if ny ;o exists then

=

10: create edge e;;i/;; between nodes n;; and ny ;s with value |(i —i’,j — j')| (1 or v/2) in Graph G
11: end if
12: end for

Cost Map for following boundaries
13: Make a copy G’ of G and set incrementer for every node i;
14: Make a copy G” of G’
15: while nodes nj), ;, exist in G” do

16: for all nodes nj,;, in G” do

17: if number of edges for nj),;, < 8 then remove node n{,,;, and corresponding edges
18: end if

19: if Mg in G” then

20: set 155 = i 5 + 1

21: end if

22: end for

23: end while

24: invert assigned values i, j in G’

25: Cost Graph C = A\G + nG’' with A +n =1

26: Perform Dijkstra algorithm on C' from node ps to p. to obtain medial axis path which penalises walking on boundaries.
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Algorithm 2 Finding of the dendritic width

Require: : Image, I, Set of spatially ordered dendritic points on the medial axis path , CZ; Canny edge variance, o
1: Perform a canny image detection on I and generate a Boolean matrix C' of the contour of the dendrite
2: Create a place holder array W for the width data of size length(d) x 4
3: incrementer ¢ = 0

4: for each point d; in d do

5: Create a boolean matrix F of an ellipse ¢ with the centre d;

6: Minor axis in the direction of the next neighbour d;;; with a fixed radius of 7,,;, = 2 Pixel
7 For the major axis radius we set an incrementer r,,,; = 1 Pixel and a counter ¢ = 0
8: while sum(Intersection(C, E) <1 or ¢ < 30 do

9: Create a new E with 7pqj = 1.2 - T4

10: c=c+1

11: end while

12: The angle of the ellipse can be calculated with a = arcsin((di+1 — di)zrmin/(rmin))
13: W; = (du Tmins Tmayj, a)

14: i=i+1

15: end for

16: A Maximum increase condition of the width within two neighbours of the medial axis path is applied
17: From W the boolean mask of the segmented dendrite can be obtained

Algorithm 3 Finding the region of interest for a spine

Require: : Image, I, Spine point, sy, Canny edge variance, o, Luminosity parameters, a, b, background luminosity lp4, n,
number of rule breaks
1: Perform a canny image detection on I and generate a Boolean matrix E of edges
2: if E[so] is not an edge then
3: Set ¢ = 0 for all directions, k € d

4: Set incrementer ¢ = 1

5: Obtain luminosity, Iy, for point sg

6: while ¢, < n for at least one k£ do

7 Set d' = d where ¢cg < n

8: for k in d’ do

9: Sk, < So +ing

10: Apply the ROI rules to si; adding to ¢ as necessary.
11: end for

12: 14 1+1

13: end while

14: Gather points s as the full octagonal ROI, Ry

15: Generate points s,, Se, Sw, Ss as the offsets of sg (one pixel in each cardinal direction)

16: Restart the algorithm for the new points and obtain ROIs R,,, R, Ry, Rs.
17: Return Average(Ro, Ry, Re, Ruw, Rs)
18: end if

ROI generation rules

The rules used for the generation of the synapse ROIs (and described briefly in the main text and the algorithm above) are
presented here in a detailed manner:

1. Boundary Rule
If sq,; exceeds the boundary of the image, the progression in this direction is immediately halted, i.e., ¢4 is set to be n.

2. Contour Rule
The image is treated with a Canny edge detection algorithm that takes a pre-determined sigma parameter that defines
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the Gaussian kernel and retrieves edges in the subject matter. If the s;; encounters one such edge, this adds a certain
number of strikes to ¢4 depending how far we are from x,

3. Luminosity Fall-off Rule
If the luminosity, lq,; becomes luminosity, ly/a or the luminosity falls below b times the background luminosity I, the
algorithm adds one to ¢g, i.e., you continue while

l
lij =2 EO (3)
I3, = blyg (4)

4. Dendrite Rule
We assume that the spine, on average, is symmetrical and that the user will supply the centre of the spine for (zq, yo).
Therefore, if v; ; is closer to the dendrite centre than the initial point, ¢4 is also incremented.

5. Symmetry Rule
As a direct consequence of the previous assumption, we also introduce the symmetry rule: the ray directly opposite
cannot be more than twice as long before triggering a strike. Assuming that s_g; is a ray that has stopped progressing
(i.e., c_q4 > n), we can mathematically describe the moment that one is added to ¢4

Sd,i > S—di (5)

6. Luminosity Increase Rule
Another assumption of the algorithm is that point s is among the brightest pixels within the spine. Thus, any consistent
increase in luminosity is indicative that we have entered the dendrite or another spine. Therefore, persistent luminosity
strengthening also leads ¢4 being increased by one.

7. Overlap Rule
We note that ROIs of different spines should not overlap, as then some quantities will be counted at least twice.
Therefore, given another spine location s;, the distance between sq; and so must be less than to s;.

This simple set of rules leads to a small set of parameters for the user to use, meaning that robustness and reproducibility
are maintained across a wide array of experimental conditions. These parameters are as follows:

1. The threshold n that defines when the ray progression ends
2. The value of variance, o of the Gaussian filter in the canny edge detection
3. The values a and b of the luminosity thresholds.

The initial values that have worked well for the examples in this article are set to n = 3, 0 = 1.5, a = 3 and b = 4. However,
the option to change these values and turn on and off certain features in the ROI generation allows for a broader use case
where certain assumptions or rules may not be valid.
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