

1 A 20+ Ma old enamel proteome from Canada's High  
2 Arctic reveals diversification of Rhinocerotidae in the  
3 middle Eocene-Oligocene

4 Authors

5 Ryan S. Paterson<sup>1\*</sup>, Meaghan Mackie<sup>1,2</sup>, Alessio Capobianco<sup>3,4</sup>, Nicola S. Heckeberg<sup>3,4</sup>, Danielle  
6 Fraser<sup>5,6,7,8</sup>, Fazeelah Munir<sup>9</sup>, Ioannis Patramanis<sup>1</sup>, Jazmín Ramos-Madrigal<sup>1</sup>, Shanlin Liu<sup>10</sup>, Abigail  
7 D. Ramsøe<sup>1</sup>, Marc R. Dickinson<sup>9</sup>, Chloë Baldreki<sup>9</sup>, Marisa Gilbert<sup>5</sup>, Raffaele Sardella<sup>11</sup>, Luca  
8 Bellucci<sup>12</sup>, Gabriele Scorrano<sup>1,13</sup>, Fernando Racimo<sup>1</sup>, Eske Willerslev<sup>1,14,15</sup>, Kirsty E.H. Penkman<sup>9</sup>,  
9 Jesper V. Olsen<sup>2</sup>, Ross D.E. MacPhee<sup>16</sup>, Natalia Rybczynski<sup>5\*</sup>, Sebastian Höhna<sup>3,4</sup>, Enrico Cappellini<sup>1\*</sup>

10 \* Corresponding authors: Ryan Sinclair Paterson: ryan.paterson@sund.ku.dk; Natalia Rybczynski:  
11 nrybczynski@nature.ca; Enrico Cappellini: ecappellini@sund.ku.dk

12 Affiliations

13 <sup>1</sup>Globe Institute, University of Copenhagen, 5-7 Øster Voldgade, 1350, Copenhagen, Denmark, <sup>2</sup>Novo  
14 Nordisk Foundation Center for Protein Research, University of Copenhagen, Blegdamsvej 3b, 2200,  
15 Copenhagen, Denmark, <sup>3</sup>GeoBio-Center LMU, Ludwig-Maximilians-Universität München, Richard-  
16 Wagner-Str. 10, Munich 80333, Germany, <sup>4</sup>Department of Earth and Environmental Sciences,  
17 Palaeontology & Geobiology, Ludwig-Maximilians-Universität München, Richard-Wagner-Str. 10,  
18 Munich 80333, Germany, <sup>5</sup>Palaeobiology, Canadian Museum of Nature, PO Box 3443 Stn “D”,  
19 Ottawa ON K1P 6P4, Canada, <sup>6</sup>Department of Earth Sciences, Carleton University, 1125 Colonel By  
20 Drive, Ottawa, Ontario K1S 5B6, Canada, <sup>7</sup>Department of Biology, Carleton University, 1125  
21 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada, <sup>8</sup>Department of Paleobiology, Smithsonian  
22 Institution, National Museum of Natural History, 10th and Constitution NW, Washington, DC 20013-

23 7012, <sup>9</sup>Department of Chemistry, University of York, York, YO10 5DD, UK, <sup>10</sup>Department of  
24 Entomology, College of Plant Protection, China Agricultural University, Beijing, China, <sup>11</sup>Sapienza  
25 University of Rome, Department of Earth Sciences (PaleoFactory lab.), Piazzale Aldo Moro 5, 00185,  
26 Rome, Italy, <sup>12</sup>Museo di Geologia e Paleontologia, Sistema Museale di Ateneo, Università di Firenze,  
27 via Giorgio La Pira 4, 50121, Firenze, Italy, <sup>13</sup>Center for Molecular Anthropology for the Study of  
28 Ancient DNA, Department of Biology, University of Rome “Tor Vergata”, via della Ricerca  
29 Scientifica n. 1, 173, Rome, Italy, <sup>14</sup>Department of Zoology, University of Cambridge, 17 Mill Lane,  
30 CB2 1RX, Cambridge, UK, <sup>15</sup>Marum Center for Marine Environmental Sciences and Faculty of  
31 Geosciences, University of Bremen, Leobener Str. 8, 28359, Bremen, Germany, <sup>16</sup>Department of  
32 Mammalogy, American Museum of Natural History, 200 Central Park West, 10024, New York City,  
33 United States.

34

35 **In the past decade, ancient protein sequences have emerged as a valuable source of data**  
36 **for deep-time phylogenetic inference. Still, the recovery of protein sequences providing novel**  
37 **phylogenetic insights does not exceed 3.7 Ma (Pliocene). Here, we push this boundary back to**  
38 **21-24 Ma (early Miocene), by retrieving enamel protein sequences of an early-diverging**  
39 **rhinocerotid (*Epiaceratherium* sp. - CMNF-59632) from the Canadian High Arctic. We recover**  
40 **partial sequences of seven enamel proteins (AHSG, ALB, AMBN, AMELX, AMTN, ENAM,**  
41 **MMP20) and over 1000 peptide-spectrum matches, spanning over at least 251 amino acids.**  
42 **Authentic endogeneity of these sequences is supported by indicators of protein damage,**  
43 **including several spontaneous and irreversible post-translational modifications accumulated**  
44 **during prolonged diagenesis and reaching near-complete occupancy at many sites. Bayesian tip-**  
45 **dating, across 15 extant and extinct perissodactyl taxa, places the divergence time of CMNF-**  
46 **59632 in the middle Eocene-Oligocene, and identifies a later divergence time for**  
47 **Elasmotheriinae in the Oligocene. The finding weakens alternative models suggesting a deep**  
48 **basal split between Elasmotheriinae and Rhinocerotinae. This divergence time of CMNF-59632**  
49 **coincides with a phase of high diversification of rhinocerotids, and supports a Eurasian origin of**

50 **this clade in the late Eocene or Oligocene. The findings are consistent with previous hypotheses**  
51 **on the origin of the enigmatic fauna of the Haughton crater, which, in spite of their considerable**  
52 **degree of endemism, also display similarity to distant Eurasian faunas. Our findings**  
53 **demonstrate the potential of palaeoproteomics in obtaining phylogenetic information from a**  
54 **specimen that is ten times older than any sample from which endogenous DNA has been**  
55 **obtained.**

56 Phylogenetic placement of deep-time (>1 Ma) fossils has typically relied on morphological  
57 observations, as the recovery of sufficiently extensive genetic evidence has not been thought to be  
58 possible beyond the Pleistocene<sup>1</sup>. While ancient DNA (aDNA) sequences are a valuable source of  
59 data for inferring phylogenies and population dynamics in the late Pleistocene<sup>2-5</sup>, the oldest authentic  
60 aDNA from macrofossils has been extracted from Arctic-situated specimens dated to no more than 1.2  
61 Ma<sup>6</sup>. In contrast, palaeoproteomic data have been recovered from late Miocene, Pliocene and early  
62 Pleistocene fossils, even in localities that are warm, humid, and/or at low latitudes<sup>7,8</sup>. Although protein  
63 sequences from the early Pleistocene have been successfully used to infer the phylogenetic placement  
64 of various fossil mammals<sup>9-11</sup>, the precise limit of proteomic survival has not yet been systematically  
65 characterised<sup>12,13</sup>. Currently, the oldest confirmed palaeoproteomic data successfully used to infer sub-  
66 ordinal taxonomic relationships derive from bone collagen of camelids from the 3.7 Ma Fyles Leaf  
67 Bed site of Canada's High Arctic<sup>14,15</sup>. This illustrates how our understanding of evolutionary  
68 relationships is currently limited by the preservation of biomolecules from extinct species.

69 Rhinocerotidae is a family that includes only five extant species, but a wide diversity of fossil  
70 members<sup>16,17</sup>. It remains debated as to where and when the radiation of this group occurred<sup>18</sup>. For most  
71 of the last two decades, the group was defined by a deep 'basal split' between two clades -  
72 Rhinocerotinae and Elasmotheriinae - prior to bursts of rhinocerotid diversification in the late  
73 Eocene<sup>19-23</sup>. This paradigm contrasts earlier hypotheses of a close relationship between two extinct  
74 rhinocerotids that survived into the late Pleistocene – the Siberian unicorn (Elasmotheriinae,  
75 *Elasmotherium sibiricum*) and the woolly rhino (Rhinocerotinae, *Coelodonta antiquitatis*)<sup>24</sup>. Recently,  
76 the sequenced genomes of *Coelodonta* and *Elasmotherium*<sup>25</sup> were used to confirm hypotheses based

77 on morphological data that suggest they have distinct phylogenetic affinities<sup>19</sup>, but also allowed for  
78 the recognition of a relatively-young split between these two groups during the late Eocene (36 Ma).  
79 This suggests that the deep-divergence hypothesis based on the morphological analysis of fossils is  
80 not supported by molecular evidence. However, the lack of available genetic sequence data from other  
81 early-diverging rhinocerotid lineages makes it difficult to assess the timing of the Rhinocerotinae-  
82 Elasmotheriinae split in relation to other radiations that occurred within the group. For these reasons,  
83 the ancient radiations of the group still remain obscured.

84 To investigate the timing of Rhinocerotidae divergence and the potential for evolutionarily  
85 informative protein sequences to persist in deep-time, we targeted vertebrate dental enamel deriving  
86 from the Haughton crater (75°N, Nunavut) in Canada's High Arctic (Figure 1). The Haughton crater  
87 is an impact structure with its stratigraphy including post-impact fossiliferous lacustrine sediments  
88 dated to 21-24 Ma<sup>26</sup>. While their geological age is advanced, fossils from these sediments are found in  
89 a polar landscape, currently characterised by permafrost. This creates a temperature regime favourable  
90 for biomolecular preservation, sparing these fossils from the harshest effects of diagenesis.  
91 Accordingly, specimens from this site serve as promising candidates for biomolecular preservation in  
92 deep-time.

93 The digestion-free palaeoproteomic workflow<sup>9,10</sup> applied to an early Miocene rhinocerotid  
94 (*Epiaceratherium* sp.) specimen of dental enamel<sup>27</sup> from the Haughton Formation (21.8 Ma) allowed  
95 for the recovery of an enamel proteome covering 1163 confident peptide-spectrum matches (PSMs),  
96 at least seven proteins (AHSG, ALB, AMBN, AMELX, AMTN, ENAM, MMP20), and spanning at  
97 least 251 amino acids (Figure 2a) (Ext. Figure 1a). The enamel proteome of CMNF-59632 currently  
98 represents both the oldest mammalian skeletal proteome currently reported, confirming the predicted  
99 deep-time persistence of ancient mammalian proteins from high latitudes<sup>8,10</sup>, and the first  
100 biomolecular characterisation of the extinct genus *Epiaceratherium*. While the survival of a relatively  
101 rich enamel proteome from such ancient deposits is surprising, the age of the specimen belies its  
102 excellent state of preservation.

103 To better appreciate the preservation state of the Haughton Crater enamel proteome, we  
104 compared it to those of two other rhinocerotids, namely the early Pleistocene *Stephanorhinus* from the  
105 site of Dmanisi (Georgia), dated at 1.77 Ma<sup>9</sup>, and a middle Pleistocene *Stephanorhinus* (~0.4 Ma)  
106 from the site of Fontana Ranuccio (Italy). While the set of proteins retrieved from the CMNF-59632  
107 enamel specimen is similar to that of the other two Pleistocene rhinocerotids used for comparison  
108 (Figure 2a), fewer peptides and a shorter reconstructed amino acid sequence were recovered from the  
109 Arctic specimen. In addition to proteins previously found in deep-time enamel samples (AHSG,  
110 AMBN, AMELX, AMTN, ENAM, MMP20), serum albumin was also found in each rhinocerotid  
111 sample. Previously recovered from other fossil enamel specimens<sup>11</sup>, serum albumin is  
112 phylogenetically more informative than enamel-specific proteins due to its higher amino acid  
113 sequence variability<sup>28</sup>. In the present analysis, while some albumin peptides are removed during initial  
114 data filtering (as they are identical to peptide sequences from bovine serum albumin, a potential  
115 laboratory contaminant), several others do not match contaminants. The vast majority of the spectra  
116 that confidently support their identification show post-translational modifications (PTMs) that derive  
117 from prolonged diagenesis, which supports their authenticity.

118 As expected, diagenetic modifications and PTMs are extensive in the enamel proteome of  
119 CMNF-59632 (Figure 2b). Average peptide lengths are similar, though slightly shorter than those of  
120 the Dmanisi early Pleistocene specimen, and further reduced in comparison to the Fontana Ranuccio  
121 middle Pleistocene *Stephanorhinus*, indicating a greater degree of peptide bond hydrolysis (Figure  
122 2b). We also observe high deamidation rates in CMNF-59632, though no more so than in the  
123 Pleistocene rhinocerotids (Ext. Figure 2). While high deamidation rates can be useful for confirming  
124 proteome authenticity, they can be highly variable within samples<sup>29-31</sup>, and can plateau relatively-  
125 quickly in fossil proteomes, reducing their utility in characterising degradation patterns in deep-time  
126 (Figure 2c). Instead, we identify a suite of informative spontaneous PTMs indicative of advanced  
127 diagenesis that are observed at a higher rate in the Arctic Miocene rhinocerotid, providing support for  
128 their utility as markers of advanced diagenesis and authenticity in deep-time (Figure 2c)<sup>9</sup>. These  
129 include arginine to ornithine conversion (Figure 2c) and advanced forms of tryptophan (Ext. Figure

130 2b) and histidine oxidation (Ext. Figure 1c). Intra-crystalline protein decomposition analysis further  
131 confirms the advanced degradation state of CMNF-59632. The concentration of free and total  
132 hydrolysable amino acids (FAA and THAA, respectively) is around half of those in the early  
133 Pleistocene *Stephanorhinus* sample from Dmanisi (Extended Figure 2a), and the percentage of FAA  
134 in CMNF-59632 (~75%) is higher than in the Pleistocene rhino from Dmanisi (~50%) (Ext. Figure  
135 3b), supporting increased peptide bond hydrolysis. Furthermore, the racemisation values for CMNF-  
136 59632 fall along the expected FAA vs THAA trends for both fossil enamel, and the experimentally-  
137 heated samples (Ext. Figure 4), confirming the closed system behaviour of CMNF-59632 enamel  
138 amino acids, and supporting the endogeneity of the peptides retrieved.

139 At least 10 single amino acid polymorphisms (SAPs) support the placement of CMNF-59632  
140 within Rhinocerotidae. A smaller number (2+) of SAPs are shared between CMNF-59632 and other  
141 perissodactyls, to the exclusion of later-diverging rhinocerotids. No novel variants are uncovered in  
142 CMNF-59632, as the aforementioned SAPs represent character states retained from ancestors within  
143 Perissodactyla and Mammalia more broadly. The identification of these SAPs is supported by several  
144 unique PSMs displaying almost complete ion series (e.g., Ext. Figure 5).

145 Peptide sequences recovered from CMNF-59632 derive from similar sequence regions to  
146 those previously identified in the Dmanisi Pleistocene *Stephanorhinus* proteome (Figure 2d),  
147 particularly for the three most abundant enamel matrix proteins (EMPs). ENAM and AMBN present  
148 broadly similar sequence coverage patterns in both specimens, though with fewer PSMs covering  
149 most positions in the Miocene sample. AMELX, the most abundant EMP, is instead covered by a  
150 similar number of PSMs in both the Miocene and Pleistocene samples. The depth of coverage is also  
151 similar for the most abundantly-covered AMELX sequences, including those spanning the deletion  
152 observed in the Leucine-Rich Amelogenin Peptide (LRAP)<sup>9,32</sup>.

153 Regardless of the mechanisms behind preferential mass spectrometric and data analysis  
154 identification of specific sequence regions, biases favouring the recovery<sup>7</sup> and identification<sup>33</sup> of  
155 conserved peptide sequences can ultimately lead to underestimates of divergence times in taxa

156 represented by empirically-derived protein sequences. To accurately estimate the phylogenetic  
157 position of CMNF-59632 and estimate divergence times within the group, we completed a  
158 phylogenetic analysis of a suite of extinct and extant perissodactyls. In addition to the perissodactyl  
159 taxa used in Cappellini et al. (2019)<sup>9</sup>, we incorporated whole-genome sequence data to predict enamel  
160 protein sequences from the Siberian unicorn (*Elasmotherium sibiricum*) and a pair of extant tapirs  
161 (*Tapirus terrestris* and *Tapirus indicus*).

162 The time-calibrated phylogenetic analysis of enamel protein sequences under a Fossilised Birth  
163 Death (FBD) model infers CMNF-59632 as the earliest diverging rhinocerotid in the analysis, with  
164 *Elasmotherium sibiricum* being more closely related to Rhinocerotina (crown rhinoceroses) than to  
165 CMNF-59632 (Figure 4). This phylogenetic hypothesis is also supported by Fraser et al. (2024) in a  
166 total-evidence analysis. Additionally, our FBD analysis resolves the early Pleistocene *Stephanorhinus*  
167 from Dmanisi as a sampled ancestor of the middle Pleistocene *Stephanorhinus* from Fontana Ranuccio.  
168 Divergence time estimates place the split between CMNF-59632 and all other rhinocerotids during the  
169 middle Eocene–Oligocene (around 41–25 Ma). The divergence between *Elasmotherium sibiricum* and  
170 Rhinocerotina is reconstructed to have likely occurred in the Oligocene (around 34–22 Ma), which is  
171 younger than previous molecular clock estimates<sup>25</sup>.

172 The late Eocene and the early Oligocene represent dynamic periods in the evolution of  
173 rhinocerotids, particularly in North America. After appearing in the middle Eocene (37-34 Ma)<sup>34</sup>, North  
174 American rhinocerotids diversify during the late Eocene, evolving a variety of body sizes and ecologies  
175 as several new clades arise, before rhinocerotid diversity experiences a significant drop in the early  
176 Oligocene (34-32 Ma)<sup>35</sup>. During this timeframe, other early-diverging lineages are also appearing in  
177 Asia<sup>18,36,37</sup>, and eventually spreading as far as Western Europe<sup>18</sup>. Morphologically, the Haughton crater  
178 rhinocerotid shares closer affinities with these early-diverging lineages from Eurasia<sup>38</sup>, particularly  
179 those within the genus *Epiaceratherium*<sup>27</sup>. Similarly, some other vertebrates within the highly-endemic  
180 fauna of the Haughton Formation have their closest relatives in Eurasia. These include the transitional  
181 pinniped *Puijila darwini*, sister to the Oligocene *Potamotherium* of Europe<sup>39</sup>, and the swan-like anatid,  
182 a group which is otherwise restricted to the Oligocene and Miocene of Europe<sup>38</sup>. Overall, these patterns,

183 in conjunction with the recovered divergence times, suggest the Haughton crater rhinocerotid represents  
184 a migrant from eastern Asia or western Europe, derived from one of the early-diverging lineages that  
185 arose in the late Eocene or early Oligocene of East Asia.

186 We provide molecular evidence that this lineage falls outside of Rhinocerotinae, as it diverges  
187 before the Rhinocerotinae-Elasmotheriinae split. We also reject a deep-divergence (basal split) between  
188 Elasmotheriinae and Rhinocerotinae<sup>19-23</sup> and find moderate support for their branching event after the  
189 divergence of *Epiaceratherium*. Our analysis disagrees with that of Kosintsev et al. (2019)<sup>23</sup>, who find  
190 a deep divergence for Elasmotheriinae (47.3 Ma), and an early divergence for Rhinocerotinae (almost  
191 30.8 Ma). The later divergence times for these nodes in our analysis are in spite of equivalently old ages  
192 for crown Ceratomorpha (earliest Eocene). Among other timetrees, our dates are generally most  
193 consistent with those of Liu et al. (2021)<sup>25</sup>. Our recovered topologies are also broadly similar to trees  
194 derived from the morphology-based phylogenetic analyses of Tissier et al. (2020)<sup>18</sup> and Lu et al.  
195 (2023)<sup>40</sup>, identifying Elasmotheriinae and Rhinocerotinae as deeply-nested within Rhinocerotidae.  
196 Discrepancies between the genomic<sup>25</sup> and proteomic trees arise likely due to different calibration  
197 points. The more ancient age of Elasmotheriinae in the analysis of Liu et al. (2021)<sup>25</sup> is constrained by  
198 a high minimum bound for the Elasmotheriinae-Rhinocerotinae split (35 Ma). However, this date is  
199 based on the earliest age of *Epiaceratherium naduongense* and its allocation to Rhinocerotinae.  
200 Assuming monophyly of *Epiaceratherium*, the present proteomic evidence refutes the assignment of  
201 this genus to Rhinocerotinae, as it falls as earlier-diverging than Elasmotheriinae without such  
202 topological constraints in our phylogenetic analysis.

203 In sum, these findings highlight the importance of integrating palaeoproteomic sequence data  
204 into phylogenetic analyses to infer topologies and estimate divergence times. Ancient proteomic  
205 sequence data allows for robustly-supported timetrees, and can serve to develop phylogenetic  
206 frameworks in deep-time, particularly from specimens too old to preserve ancient DNA. For example,  
207 the present data allows for firm placement of the Haughton Crater rhinocerotid outside of Rhinocerotina,  
208 and likely outside the Elasmotheriinae-Rhinocerotinae clade, a fact which has significant implications  
209 for both morphological and molecular studies integrating fossil calibration times from the fossil record.

210 Furthermore, we demonstrate the deep-time survival of a rich set of peptides derived from proteins  
211 present in mammalian enamel, well beyond the previously known limits of survival. This work  
212 illustrates the power of palaeoproteomics in elucidating phylogeny and taxonomy of extinct vertebrates  
213 in deep-time. These findings should encourage further vertebrate palaeontological fieldwork in the High  
214 Arctic, and other cold-temperature sites with taphonomic conditions favourable to biomolecular  
215 preservation.

216 References

- 217 1. Kjær, K. H. *et al.* A 2-million-year-old ecosystem in Greenland uncovered by environmental  
218 DNA. *Nature* **612**, 283–291 (2022).
- 219 2. Orlando, L. *et al.* Recalibrating Equus evolution using the genome sequence of an early Middle  
220 Pleistocene horse. *Nature* **499**, 74–78 (2013).
- 221 3. Dabney, J. *et al.* Complete mitochondrial genome sequence of a Middle Pleistocene cave bear  
222 reconstructed from ultrashort DNA fragments. *Proc. Natl. Acad. Sci. U. S. A.* **110**, 15758–15763  
223 (2013).
- 224 4. Meyer, M. *et al.* A mitochondrial genome sequence of a hominin from Sima de los Huesos.  
225 *Nature* **505**, 403–406 (2014).
- 226 5. Barlow, A. *et al.* Middle Pleistocene genome calibrates a revised evolutionary history of extinct  
227 cave bears. *Curr. Biol.* **31**, 1771–1779.e7 (2021).
- 228 6. van der Valk, T. *et al.* Million-year-old DNA sheds light on the genomic history of mammoths.  
229 *Nature* **591**, 265–269 (2021).
- 230 7. Demarchi, B. *et al.* Protein sequences bound to mineral surfaces persist into deep time. *Elife* **5**,  
231 (2016).
- 232 8. Demarchi, B. *et al.* Survival of mineral-bound peptides into the Miocene. *Elife* **11**, (2022).
- 233 9. Cappellini, E. *et al.* Early Pleistocene enamel proteome from Dmanisi resolves Stephanorhinus  
234 phylogeny. *Nature* **574**, 103–107 (2019).
- 235 10. Welker, F. *et al.* Enamel proteome shows that Gigantopithecus was an early diverging pongine.

236        *Nature* **576**, 262–265 (2019).

237        11. Welker, F. *et al.* The dental proteome of *Homo antecessor*. *Nature* **580**, 235–238 (2020).

238        12. Buckley, M., Warwood, S., van Dongen, B., Kitchener, A. C. & Manning, P. L. A fossil protein

239        chimera; difficulties in discriminating dinosaur peptide sequences from modern cross-

240        contamination. *Proc. Biol. Sci.* **284**, (2017).

241        13. Umamaheswaran, R. & Dutta, S. Preservation of proteins in the geosphere. *Nat Ecol Evol* (2024)

242        doi:10.1038/s41559-024-02366-z.

243        14. Rybczynski, N. *et al.* Mid-Pliocene warm-period deposits in the High Arctic yield insight into

244        camel evolution. *Nat. Commun.* **4**, 1550 (2013).

245        15. Buckley, M., Lawless, C. & Rybczynski, N. Collagen sequence analysis of fossil camels,

246        Camelops and c.f. Paracamelus, from the Arctic and sub-Arctic of Plio-Pleistocene North

247        America. *J. Proteomics* **194**, 218–225 (2019).

248        16. Prothero, D. R. Rhinocerotidae. in *Evolution of tertiary mammals of North America* 595 (1998).

249        17. Pandolfi, L. Evolutionary history of Rhinocerotina (Mammalia, Perissodactyla). *Fossilia* **2018**,

250        27–32 (2018).

251        18. Tissier, J., Antoine, P.-O. & Becker, D. New material of *Epiaceratherium* and a new species of

252        *Mesaceratherium* clear up the phylogeny of early Rhinocerotidae (Perissodactyla). *R Soc Open*

253        *Sci* **7**, 200633 (2020).

254        19. Antoine, P. O. & national d'histoire naturelle, M. Phylogénie et évolution des Elasmotheriina

255        (Mammalia, Rhinocerotidae). (2002).

256        20. Antoine, P.-O. Middle Miocene elasmotheriine Rhinocerotidae from China and Mongolia:

257        taxonomic revision and phylogenetic relationships. *Zool. Scr.* **32**, 95–118 (2003).

258        21. Antoine, P.-O. *et al.* A revision of *Aceratherium blanfordi* Lydekker, 1884 (Mammalia:

259        Rhinocerotidae) from the Early Miocene of Pakistan: postcranials as a key. *Zool. J. Linn. Soc.*

260        **160**, 139–194 (2010).

261        22. Becker, D., Antoine, P.-O. & Maridet, O. A new genus of Rhinocerotidae (Mammalia,

262        Perissodactyla) from the Oligocene of Europe. *J. Syst. Palaeontol.* **11**, 947–972 (2013).

263        23. Kosintsev, P. *et al.* Evolution and extinction of the giant rhinoceros *Elasmotherium sibiricum*

264        sheds light on late Quaternary megafaunal extinctions. *Nat Ecol Evol* **3**, 31–38 (2019).

265        24. Cerdeño, E. *Cladistic Analysis of the Family Rhinocerotidae (Perissodactyla)*. (American  
266        Museum of Natural History, 1995).

267        25. Liu, S. *et al.* Ancient and modern genomes unravel the evolutionary history of the rhinoceros  
268        family. *Cell* **184**, 4874–4885.e16 (2021).

269        26. Jessberger, E. K. 40Ar-39Ar Dating of the Haughton Impact Structure. *Meteoritics* (1988).

270        27. Fraser D, Rybczynski N, Gilbert M, Dawson MR. Post-Eocene Rhinocerotid Dispersal via the  
271        North Atlantic. *BioRxiv* (2024) doi:10.1101/2024.06.04.597351.

272        28. Nei, M. *Molecular Evolutionary Genetics*. (Columbia University Press, 1987).

273        29. Simpson, J. P. *et al.* The effects of demineralisation and sampling point variability on the  
274        measurement of glutamine deamidation in type I collagen extracted from bone. *J. Archaeol. Sci.*  
275        **69**, 29–38 (2016).

276        30. Brown, S. *et al.* Examining collagen preservation through glutamine deamidation at Denisova  
277        Cave. *J. Archaeol. Sci.* **133**, 105454 (2021).

278        31. Pal Chowdhury, M. & Buckley, M. Trends in deamidation across archaeological bones, ceramics  
279        and dental calculus. *Methods* **200**, 67–79 (2022).

280        32. Gibson, C. W. *et al.* Identification of the leucine-rich amelogenin peptide (LRAP) as the  
281        translation product of an alternatively spliced transcript. *Biochem. Biophys. Res. Commun.* **174**,  
282        1306–1312 (1991).

283        33. Welker, F. Elucidation of cross-species proteomic effects in human and hominin bone proteome  
284        identification through a bioinformatics experiment. *BMC Evol. Biol.* **18**, 23 (2018).

285        34. Hanson, C. B. Teletaceras Radinskyi, a new primitive Rhinocerotid from the Late Eocene Clarno  
286        Formation of Oregon. in *The evolution of perissodactyls* 379–398 (1989).

287        35. Prothero, D. R. *The Evolution of North American Rhinoceroses*. (Cambridge University Press,  
288        2005).

289        36. Antoine, P.-O. *et al.* Early rhinocerotids (Mammalia: Perissodactyla) from South Asia and a  
290        review of the Holarctic Paleogene rhinocerotid record. *Can. J. Earth Sci.* **40**, 365–374 (2003).

291        37. Böhme, M. *et al.* Na Duong (northern Vietnam)-an exceptional window into Eocene ecosystems

292 from Southeast Asia. *Zitteliana. Reihe A, Mitteilungen der Bayerischen Staatssammlung für*  
293 *Paläontologie und Geologie* **53**, 121–167 (2013).

294 38. Whitlock, C. & Dawson, M. R. Pollen and Vertebrates of the Early Neogene Haughton  
295 Formation, Devon Island, Arctic Canada. *Arctic* **43**, 324–330 (1990).

296 39. Rybczynski, N., Dawson, M. R. & Tedford, R. H. A semi-aquatic Arctic mammalian carnivore  
297 from the Miocene epoch and origin of Pinnipedia. *Nature* **458**, 1021–1024 (2009).

298 40. Lu, X.-K., Deng, T. & Pandolfi, L. Reconstructing the phylogeny of the hornless rhinoceros  
299 Aceratheriinae. *Frontiers in Ecology and Evolution* **11**, (2023).

300

301

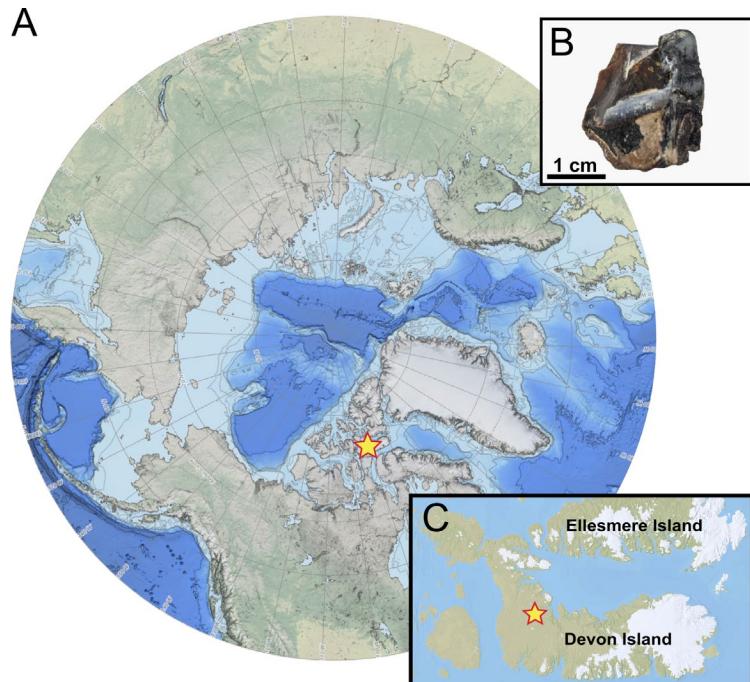
302

303

304

305

306


307

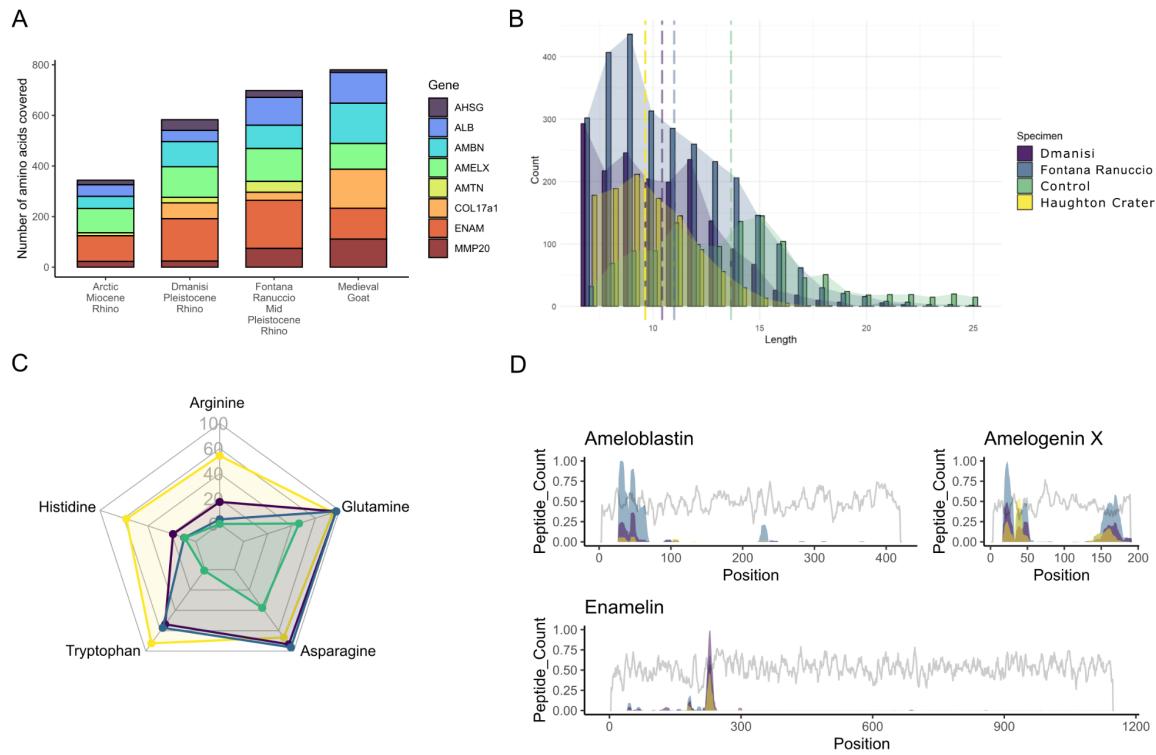
308

309

310

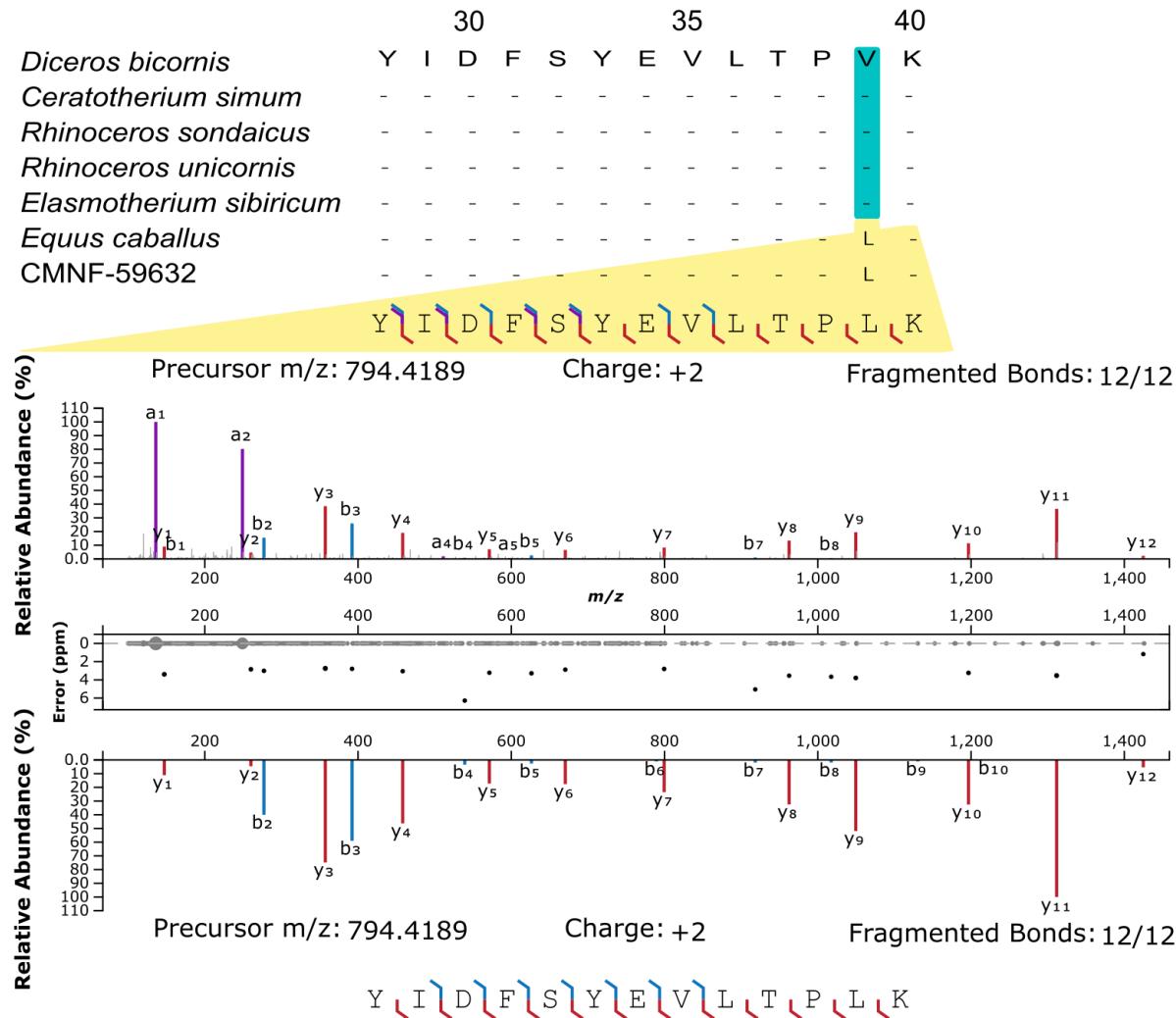
311 Figures




312

313 **Figure 1) The high latitude Haughton crater on Devon Island has produced a highly endemic**  
314 **vertebrate fauna. A) Location of Devon Island within the circumpolar North. B) Anterolingual view**  
315 **of specimen CMNF-59632 after destructive palaeoproteomic analysis. C) Location of Haughton crater**  
316 **on Devon Island.**

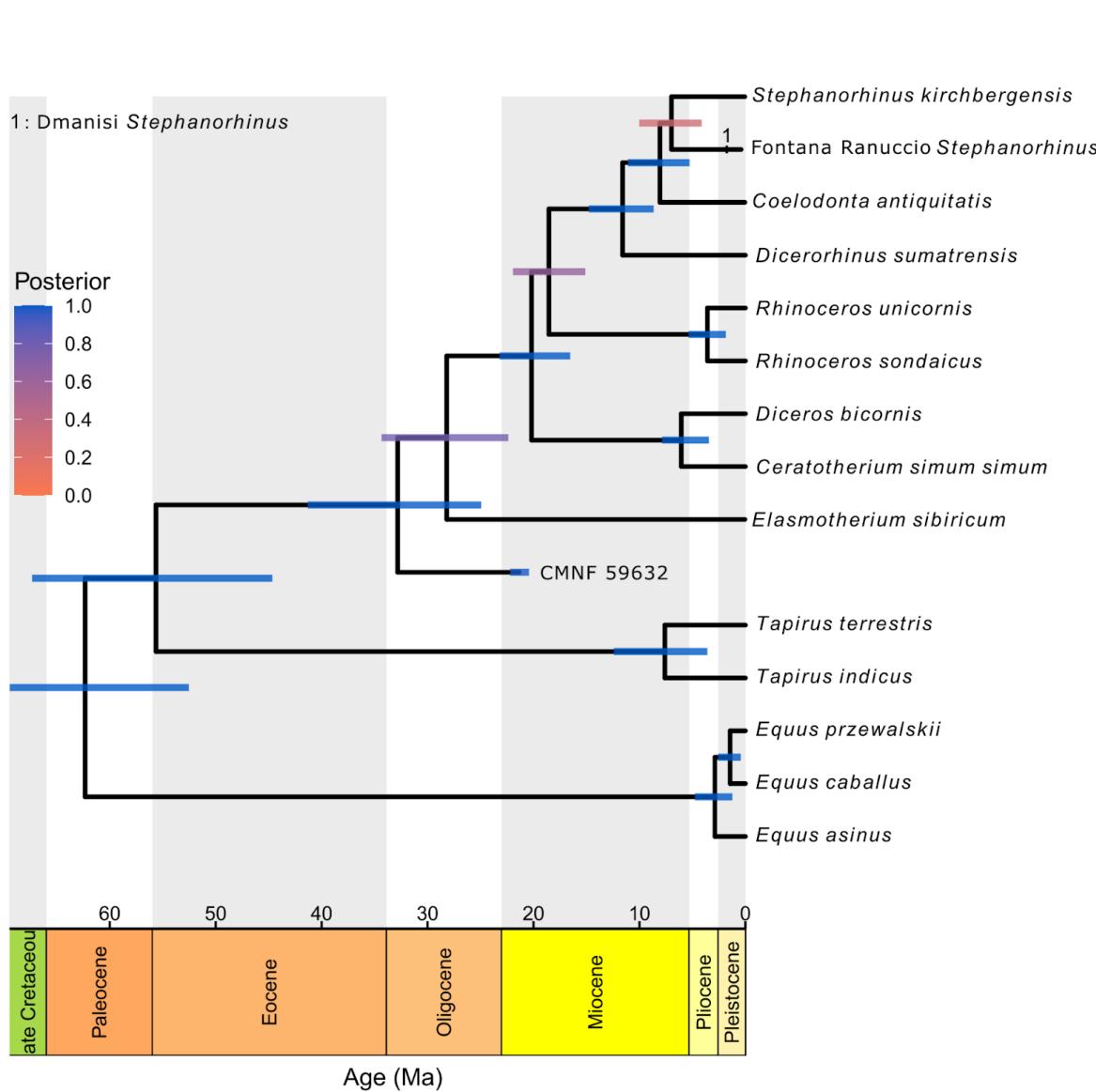
317


318

319



320


321 **Figure 2) Proteome preservation in the enamel specimen of the early Miocene rhinocerotid**  
322 **(CMNF-59632).** Preservation is compared to enamel proteomes from an early Pleistocene (1.77 Ma)  
323 *Stephanorhinus* (DM.5/157), a middle Pleistocene (0.4 Ma) *Stephanorhinus* (CGG 1\_023342) and a  
324 medieval ovicaprine (Control)<sup>9</sup>. All plots exclude contaminants and reverse hits. A) Amino acid  
325 sequence coverage for each identified protein; B) peptide length distributions, dashed bars represent  
326 average peptide length for each specimen; C) proportion of a selected sample of amino acids that are  
327 often modified in ancient enamel proteomes. Results derive from PTM-specific searches described in  
328 methods. ‘Arginine’ includes arginine-to-ornithine conversion, ‘Glutamine’ includes glutamine  
329 deamidation, ‘Asparagine’ includes asparagine deamidation, ‘Tryptophan’ includes advanced  
330 tryptophan oxidation to kynurenine, oxylactone, and tryptophandione, ‘Histidine’ includes oxidation  
331 and dioxidation of histidine, histidine conversion to hydroxyglutamate. D) Sequence coverage plots  
332 for the three most abundant enamel matrix proteins (AMBN, AMELX, ENAM), recording number of  
333 PSMs (coloured areas) and mutability (grey line).



334

335 **Figure 3) Abridged alignment and mirror plots of a phylogenetically-informative single amino**  
 336 **acid polymorphism (SAP) at AMELX-39.** The top spectrum is experimentally-derived, while the  
 337 bottom one is predicted using the ‘Original mode’ with the Prosit tool, available online via the  
 338 Universal Spectrum Explorer<sup>83</sup>. This spectrum is the highest scoring peptide-spectrum match (with  
 339 Andromeda) for AMELX sequence positions spanning the most abundantly-covered SAP  
 340 differentiating between CMNF-59632, and all other rhinocerotids for which sequences are available.

341



342

343 **Figure 4) Time-calibrated phylogeny of Rhinocerotidae enamel proteomes.** The maximum *a posteriori* (MAP) tree was produced using RevBayes v.1.2.1<sup>70</sup>; <https://revbayes.github.io>, with a Fossilized Birth Death (FBD) model. Coloured bars at nodes represent 95% height posterior density (HPD) age interval estimates. Specimen CMNF-59632 represents the early Miocene rhinocerotid from the Haughton Crater.

348

349

350

351 Materials and Methods

352 Site and Specimen

353 Located within the Haughton impact crater (75°N, Nunavut, Canada), the Haughton  
354 Formation comprises the remnants of a large, post-impact lacustrine deposit, dated to the early  
355 Miocene. Previous dating estimates, using fission-track and  $^{40}\text{Ar}$ - $^{39}\text{Ar}$  furnace step-heating dating,  
356 identified an age of 24-21 Ma<sup>26,41</sup>. An early Miocene age has also been corroborated by (U-Th)/He  
357 thermochronology<sup>42</sup>. While older age estimates between 30-40 Ma have also been suggested<sup>43-45</sup>,  
358 there have been no age estimates younger than the early Miocene. Therefore, we conservatively use  
359 the younger early Miocene age estimates in our analysis and interpretation.

360 The highly-endemic fauna of the Haughton formation consists of several vertebrate taxa,  
361 including a transitional pinniped<sup>39</sup>, a pair of salmoniform fishes, a swan-like anatid, a small  
362 artiodactyl, a leporid rabbit, a heteroscid shrew, and a well-preserved rhinocerotid<sup>27,38</sup>. While the  
363 megafloral assemblage is not particularly rich, the palynofloral assemblage is well-characterised,  
364 allowing for reconstruction of local climatic conditions. In the early Miocene, the Haughton crater  
365 lake and its surrounding environs experienced a significantly warmer annual temperature (8-12°C)  
366 than the present day<sup>38,46</sup>.

367 The specimen CMNF-59632 is a nearly complete rhinocerotid skeleton, including skull and  
368 dentition, uncovered 10.8 m above the base of the formation<sup>27</sup>. The present analysis focuses on a  
369 single tooth fragment from a lower left m1 (Figure 1b) that was already separated from the rest of its  
370 tooth row due to the fragmenting effectings of cryoturbation. The dental specimen's rhinocerotid  
371 affinities are further supported by its size and morphology, most notably the presence of vertical  
372 Hunter-Schreger bands on its enamel, a defining feature of rhinocerotids and found in few other  
373 mammals<sup>47</sup>. A single tusk fragment (left i2) derived from CMNF-59632 was also selected for  
374 proteomic extraction. Due to its thin enamel, only limited peptides were recovered from this tusk  
375 fragment, and the sample is thus excluded from further analysis and discussion.

376 Proteomic extraction and LC-MS/MS

377 The laboratory workflow for the CMNF-59632 teeth and the Fontana Ranuccio

378 *Stephanorhinus* tooth (for comparison) generally follows that of Cappellini et al. (2019) and Taurozzi  
379 et al. (2024)<sup>9,48</sup>. Using a sterilised drill, flakes of enamel were removed from the fragmentary teeth,  
380 with care taken to avoid sampling the dentine. The CMNF-59632 tooth enamel sample, 154 mg, was  
381 then ground to a fine powder, and demineralized overnight using 10% HPLC-grade trifluoroacetic  
382 acid (TFA) (Merck, Sigma-Aldrich). The CMNF-59632 tusk enamel sample, weighing 90 mg, was  
383 processed in the same way. The Fontana Ranuccio enamel sample was divided into three subsamples -  
384 FR2, FR3, and FR4 - weighing 202, 243, and 205 mg, respectively. They were similarly ground to a  
385 fine powder, and demineralized using 10% TFA (FR3, FR4) or 10% HCl (hydrochloric acid, FR2).  
386 For each sample, the demineralization step was repeated a second time to ensure complete  
387 demineralization. As enamel peptides are already hydrolysed *in vivo*, no enzymatic digestion was  
388 performed. Subsequently, peptides were collected and desalted on C-18 StageTips<sup>49</sup> produced in-  
389 house. An extraction blank for each sample set was processed alongside the samples for every step, to  
390 control for contamination.

391 Mass spectrometry

392 Stagetips were eluted with 30 µL of 40% acetonitrile (ACN) and 0.1% formic acid (FA) into a  
393 96-well plate. To remove ACN and concentrate the samples, they were vacuum-centrifuged until  
394 approximately 3 µL of sample remained. Next, samples were resuspended in 6 µL of 5% ACN 0.1%  
395 formic acid (FA).

396 Liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) was used to  
397 analyse the samples, based on previously published protocols<sup>9,50</sup>. Samples were separated on a 15 cm  
398 column (75 µm inner diameter in-house laser pulled and packed with 1.9 µm C18 beads (Dr. Maisch,  
399 Germany) on an EASY-nLC 1200 (Proxeon, Odense, Denmark) connected to an Exploris 480  
400 (CMNF-59632) or a Q-Exactive HF-X (Fontana Ranuccio *Stephanorhinus*) mass spectrometer (both  
401 from Thermo Scientific, Bremen, Germany), with an integrated column oven. 4 (CMNF-59632) or 5

402 (FR sd - 295 - *Stephanorhinus*)  $\mu$ L of sample were injected. 0.1% FA in milliQ water was used as  
403 buffer A and the peptides were separated with increasing buffer B (80% ACN 0.1% FA) with a 77  
404 min gradient, increasing from 5% to 30% in 50 min, 30% to 45% in 10 min, 45% to 80% in 2 min,  
405 and maintained at 80% for 5 min before decreasing to 5% in 5 min, and finally held for 5 min at 5%.  
406 Flow rate was 250 nL/min. An integrated column oven was used to maintain the temperature at 40°C.

407 The two mass spectrometers were run with the same parameters except where specified, due  
408 to changes in running software. Spray voltage was set to 2 kV, the S-lens RF level was set to 40%,  
409 and the heated capillary was set to 275°C. Full scan mass spectra (MS1) were recorded at a resolution  
410 of 120,000 at m/z 200 over the m/z range 350-1400. The AGC target value was set to 300% / 3e6  
411 (Exploris / HF-X) with a maximum injection time of 25 ms. HCD-generated product ions (MS2) were  
412 recorded in data-dependent top-10 mode and recorded at a resolution of 60,000. The maximum ion  
413 injection time was 118 / 108 ms (Exploris / HF-X), with an AGC target value of 200% / 2e5 (Exploris  
414 / HF-X). Normalised collision energy was set at 30 / 28% (Exploris / HF-X). The isolation window  
415 was set to 1.2 m/z with a dynamic exclusion of 20 s. A wash-blank, using 5% ACN, 0.5% TFA, was  
416 run between each sample and laboratory blank to limit cross-contamination.

417 Database construction

418 The protein reference alignment used in Cappellini *et al.* (2019)<sup>9</sup> was used as a starting point  
419 to construct a database for sequence reconstruction. Due to the vast evolutionary distance between  
420 CMNF-59632 and any extant taxa (>20 million years), a broader database was constructed to identify  
421 sequence variants that may be known in other mammals. To construct a broader database, we  
422 searched Uniprot and NCBI for each enamel protein, specifying the taxonomic grouping of 'Theria' to  
423 include all therian mammals. To supplement available sequences, additional sequences were manually  
424 extracted from available genomes, following the methodology from<sup>51</sup>.

425 To investigate the relationships at the base of Rhinocerotidae, protein sequences translated  
426 from *Elasmotherium sibiricum* genomic data<sup>25</sup> were generated. To obtain the corresponding amino  
427 acid sequences, we firstly collapsed the Paired-End (PE) reads and masked the conflict bases as "N"

428 using adapterRemoval<sup>52</sup>. Then, we mapped the collapsed reads against the reference genome of the  
429 white rhinoceros (GCF\_000283155.1\_CerSimSim1) using the BWA MEM function<sup>53</sup> with the shorter  
430 split hits being abandoned. After that, we removed duplicates using an in-house Perl script following  
431 Liu et al. (2021)<sup>25</sup>. Finally, we extracted the gene sequences according to their locations on the  
432 reference genome.

433 The remaining steps generally follow that outlined by<sup>9</sup>. To translate relevant genes, we used  
434 ANGSD<sup>54</sup> to create consensus sequences for only those BAM files representing chromosomes with  
435 genes of interest. To reduce the effects of post-mortem aDNA damage, we trimmed the first and last  
436 five nucleotides from each DNA fragment. We formatted each consensus sequence as a blast  
437 nucleotide database. To recover translated protein sequences, we performed a tblastn alignment<sup>55</sup>,  
438 with the corresponding *Ceratotherium simum* sequences as queries. Finally, we used ProSplign to  
439 recover the spliced alignments, and ultimately, the translated protein sequences<sup>56</sup>.

440 Protein identification

441 Thermo .raw files generated by the mass spectrometer were searched with various softwares  
442 using an iterative search strategy to interpret spectra, characterise PTMs, and ultimately, reconstruct  
443 protein sequences. For comparison, .raw files from a mediaeval ovicaprine (control) and an early  
444 Pleistocene *Stephanorhinus* generated by Cappellini et al. (2019)<sup>9</sup> were also analysed. Among  
445 samples from the Fontana Ranuccio *Stephanorhinus*, only FR4 was analysed.

446 We primarily employed MaxQuant<sup>57</sup> for sequence reconstruction and other downstream  
447 aspects of data analysis. We performed two initial runs: 1) a more focussed run using the database we  
448 modified from Cappellini et al. (2019)<sup>9</sup>, and 2) a broad run using the ‘Theria’-wide database we  
449 constructed from publicly-available sequences.

450 In all runs, an Andromeda threshold of 40 and a delta score of 0 were set for both unmodified  
451 and modified peptides. Minimum and maximum peptide lengths were specified as 7 and 25,  
452 respectively. The default peptide false discovery rate (FDR) was used (0.01), while protein FDR was

453 increased to 1 to show possible low-abundance proteins. “Unspecific” digestion was specified. No  
454 fixed post-translational modifications were set. Several PTMs were set as variable modifications in  
455 our initial runs: glutamine and asparagine deamidation, methionine and proline oxidation, N-terminal  
456 pyroglutamic acid from glutamic and aspartic acids, phosphorylation of serine, threonine, and  
457 tyrosine, and the conversion of arginine to ornithine.

458 Proteins included in the database of common contaminants provided by MaxQuant (for  
459 example proteinaceous laboratory reagents and human skin keratins), as well as reverse sequences,  
460 were manually removed and not further examined. In addition, proteins detected in the laboratory  
461 blank were also treated as contaminants, and not considered further.

462 To discover new SAPs and peptide variants not included in our database, we used additional  
463 search tools. Peaks v. 7.0 was used to attempt *de novo* sequencing and homology search was  
464 performed using the SPIDER algorithm<sup>58-60</sup>. The open search capabilities of openPFind<sup>61</sup> and  
465 MSFragger<sup>62</sup> were also used. When possible, the same settings were selected as in the MaxQuant  
466 runs.

467 With our iterative search strategy, we integrated possible sequence variants from the results of  
468 our *de novo*, homology searches, and open searches into hypothetical sequences from closely-related  
469 taxa, to produce artificial sequences. These artificial sequences were included in a subsequent  
470 MaxQuant search, and only incorporated into reconstructed sequences if identified and validated  
471 using MaxQuant.

472 Sequence reconstruction + filtering

473 Prior to sequence reconstruction, all non-redundant PSMs were filtered using three criteria to  
474 reconstruct only those peptide sequences and amino acid residues that we can confidently assign.  
475 Sequences were accepted at two levels, resulting in two different datasets: 1) a minimally-filtered  
476 dataset, and 2) a strictly-filtered dataset. This filtering starts with using Basic Local Alignment Search  
477 Tool (BLAST)<sup>63</sup> to determine if peptides match any contaminants, beyond those included in

478 MaxQuant by default, such as soil bacteria and fungi. Next, MS/MS spectra are manually inspected  
479 for each PSM to examine ion series coverage. At this stage, peptide sequences are accepted for the  
480 strictly-filtered dataset only if each amino acid residue is covered (e.g., at least y-, b-, or a- ion  
481 designates the mass of that specific amino acid, plus any identified PTMs) by at least two spectra,  
482 following the approach outlined by Coutu et al. (2020)<sup>64</sup>. Additionally, for both strict- and minimally-  
483 filtered datasets, poorly-supported spectra are also removed at this stage, and proteins are only  
484 submitted for phylogenetic analysis if they are covered by at least two non-overlapping peptides.  
485 Finally, under the strict-filtering criteria, BLAST is used again on any trimmed sequences, to remove  
486 any that match contaminants.

487 Protein damage analysis

488 Characterization of protein degradation and post-translational modifications roughly follows  
489 that of Cappellini et al. (2019)<sup>9</sup>. In addition to the primary run, three additional runs were performed  
490 on each rhinocerotid sample, alongside the mediaeval control, to assess several different post-  
491 translational modifications: 1) oxidative degradation of tryptophan, and included kynurenone ( $\Delta M =$   
492  $+3.994915$ ), oxolactone ( $\Delta M = +13.979265$ ), tryptophandione ( $\Delta M = +29.974178$ ) as variable  
493 modifications, 2) oxidative degradation of histidine (His), including oxohistidine ( $\Delta M = +15.9949$ ),  
494 dioxohistidine ( $\Delta M = +31.990$ ), His to hydroxyglutamate ( $\Delta M = +7.979$ ), and His -to aspartic acid  
495 ( $\Delta M = -22.032$ ) as variable modifications, and 3) aromatic, including oxidation (WY) ( $\Delta M =$   
496  $+15.9949$ ) and dioxydation (WY) ( $\Delta M = +31.990$ ) as variable modifications. Deamidation (NQ) was  
497 also included as a variable modification for each run. After removing potential contaminants and  
498 reverse hits, we used spectral counting to assess the extent of each PTM. In the case of arginine,  
499 histidine, and tryptophan, we summed the total number of each amino acid residues in each sample,  
500 after filtering for reverse hits and potential contaminants, and the total number of each modified  
501 amino acid residue in each sample (Figure 2C and Ext. Figure 1BC). Deamidation levels were  
502 calculated following the approach described in Mackie *et al.* (2018)<sup>50</sup> (Figure 2C) and site specific  
503 rates were observed using the DeamiDATE algorithm<sup>65</sup>.

504 Intra-crystalline protein decomposition analysis

505 Chiral amino acid analysis was undertaken on CMNF-59632 to evaluate the overall extent of  
506 amino acid degradation in the intra-crystalline fraction of the enamel, enabling comparison to  
507 previously-analysed specimens<sup>9</sup>, and samples that had been experimentally-heated between 60 and  
508 80°C for up to 17520 hours and to samples heated to 200 - 500 °C for up to 25 min. Enamel chips  
509 were drilled using a Dremel ® 4000 (4000-1/45) drill with a diamond wheel point (4.4 mm (7105) by  
510 Dremel ®) to remove any dentine which could be identified under a microscope (ZEISS Stemi 305,  
511 Axiocam 105 R2). Samples were processed following the methods of Dickinson et al. (2019)<sup>66</sup>. To  
512 remove excess powders, enamel chips were washed in deionized water and ethanol (Analytical-grade)  
513 before being powdered with an agate pestle and mortar. Powdered samples were weighed into a single  
514 plastic microcentrifuge tube and bleached (NaOCl-12%, 50  $\mu\text{L mg}^{-1}$  of enamel) for 72 hours to  
515 remove the inter-crystalline amino acids and any contamination. This bleached sample was washed  
516 five times with deionized water, and then once with methanol (HPLC-grade), before being left to dry  
517 overnight.

518 The dried bleached sample was then divided into four subsamples: two for replicate analysis  
519 of the free amino acids (FAA) and two for replicate analysis for the total hydrolysable amino acids  
520 (THAA). The THAA subsamples were dissolved in HCl (7 M, 20  $\mu\text{L mg}^{-1}$ , Analytical grade) in a  
521 sterile 2 mL glass vial (Wheaton), purged with N<sub>2</sub> to reduce oxidation and heated at 110 °C for 24 h in  
522 an oven (BINDER GmbH series). The acid was then removed by centrifugal evaporation (Christ  
523 RVC2-25). Then, THAA and FAA fractions were subjected to a biphasic separation procedure<sup>66,67</sup> to  
524 remove inorganic phosphate from the enamel samples. HCl was added to both FAA (1 M, 25  
525  $\mu\text{L mg}^{-1}$ ) and THAA (1 M, 20  $\mu\text{L mg}^{-1}$ ) fractions in separate 0.5 mL plastic microcentrifuge tubes  
526 (Eppendorf), and KOH (1 M, 28  $\mu\text{L mg}^{-1}$ ) was added into the acidified solutions, which then formed  
527 mono-phasic cloudy suspensions. Samples were agitated and then samples were centrifuged (13,000  
528 rpm for 10 min, Progen Scientific GenFuge 24D) to form a clear supernatant above a gel. The  
529 supernatant was removed, and dried by vacuum centrifugation. The concentration of the intra-

530 crystalline amino acids, and their extent of racemisation (D/L value) were then quantified using RP-  
531 HPLC (Agilent 1100 series HPLC fitted with HyperSil C18 base deactivated silica column (5  $\mu$ m, 250  
532 x 3 mm) and fluorescence detector) following a modified method of Kaufman & Manley (1998)<sup>68</sup>.

533 For the RP-HPLC analysis, samples were rehydrated with an internal standard solution (L-  
534 homo-arginine (0.01 mM), sodium azide (1.5 mM) and HCl (0.01 M)) and run alongside standards  
535 and blanks. A tertiary mobile phase system (HPLC-grade acetonitrile:methanol:sodium buffer (21  
536 mM sodium acetate trihydrate, sodium azide, 1.3  $\mu$ M EDTA, pH adjusted to  $6.00 \pm 0.01$  with 10%  
537 acetic acid and sodium hydroxide)) was used for analysis. D and L peaks of the following amino acids  
538 were separated: aspartic acid and asparagine (Asx); glutamic acid and glutamine (Glx); serine (Ser),  
539 alanine (Ala), valine (Val), phenylalanine (Phe), isoleucine (Ile), leucine (Leu), threonine (Thr),  
540 arginine (Arg), tyrosine (Tyr) and glycine (Gly). During preparation, asparagine and glutamine  
541 undergo rapid irreversible deamination to aspartic acid and glutamic acid respectively<sup>69</sup> and hence  
542 they are reported together as Asx and Glx respectively.

543 Phylogenetic Analysis

544 A time-calibrated phylogenetic tree was inferred with the Bayesian phylogenetic software  
545 RevBayes v.1.2.1<sup>70</sup>; <https://revbayes.github.io/>) under a constant-rate Fossilised Birth Death (FBD)  
546 model<sup>71,72</sup>. The dataset consisted of enamel proteome data for 16 perissodactyl species (10 extant and 6  
547 extinct), totalling 7 proteins and 3446 amino acids. Phylogenetic analyses were performed with both  
548 the strict-filtered and minimally-filtered sequences for CMNF-59632, to observe any topological  
549 differences between the two datasets and assess if filtering is warranted. As no major differences were  
550 observed, only the results from the ‘strictly-filtered’ dataset are discussed. The proteome dataset was  
551 partitioned by protein. A GTR + I (General Time Reversible + Invariant sites) amino acid substitution  
552 model—where stationary frequencies of the 20 amino acids and exchangeability rates among amino  
553 acids are free to vary and estimated from data—was applied to each partition. Preliminary unrooted  
554 phylogenetic analyses performed on each protein showed evidence for within-protein  $\Gamma$ (Gamma)-  
555 distributed rate variation only for MMP20, hence  $\Gamma$ -distributed rate variation was modelled only for the

556 MMP20 partition. A relaxed clock model with uncorrelated lognormal-distributed rates (UCLN) was  
557 applied to allow rate variation across branches. The prior on the average clock rate was set as a  
558 loguniform distribution (min=10<sup>-8</sup>, max=10<sup>-2</sup> substitutions per lineage/million year). The prior on the  
559 clock rate standard deviation was set as an exponential distribution with mean equal to 0.587405,  
560 corresponding to one order of magnitude of clock rate variation among branches. The FBD tree model  
561 allows for placement of extinct species in a phylogenetic tree while simultaneously estimating the rates  
562 of speciation, extinction, and fossilisation (sampling of species in the past). The priors on speciation,  
563 extinction, and fossilisation parameters were set as uniform distributions bounded between 0 and 10.  
564 The sampling probability for extant species was fixed to 0.5882353 (10/17), corresponding to the  
565 fraction of extant perissodactyl species included in the analysis, and assuming uniform sampling of  
566 extant taxa. The three species of Equidae in the analysis (*Equus caballus*, *E. przewalskii*, *E. asinus*)  
567 were constrained as outgroup to other perissodactyls (Tapiridae + Rhinocerotidae). Tip ages of fossil  
568 taxa were given a uniform prior distribution ranging from minimum to maximum age of the deposit  
569 where each fossil has been found. The prior on the origin age of the tree was set as a uniform distribution  
570 with minimum = 54 Ma, corresponding to the oldest fossil that can be unequivocally assigned to crown  
571 Perissodactyla (*Cambaylophus vastanensis* from the early Ypresian Cambay Shale<sup>73</sup>), and maximum =  
572 100 Ma, corresponding to the beginning of the Late Cretaceous and a very lax upper boundary on the  
573 origin of placental mammals<sup>74</sup>. Additional constraints on node ages based on the fossil record of  
574 perissodactyls were set to improve precision of divergence age estimates. Each node calibration was set  
575 up as a soft-bounded uniform distribution with normally distributed tails, with 2.5% of the distribution  
576 younger than the minimum age (allowing for potential misattribution of the oldest fossil of a clade) and  
577 2.5% of the distribution older than the maximum age. Monophyly was not enforced when setting up  
578 these node calibrations. The following age constraints have been applied to five nodes:

579 1) Node = crown Perissodactyla; soft minimum = 54 Ma, with the same justification as the minimum  
580 on the origin age prior; soft maximum = 66 Ma, corresponding to the Cretaceous–Palaeogene boundary,  
581 before which no unambiguous crown placental fossils are known. 2) Node = Rhinocerotina (crown  
582 rhinoceroses); soft minimum = 22.6 Ma, corresponding to the earliest putative appearance of a crown

583 rhinoceros in the fossil record (*Gaindatherium* cf. *browni* from the Aquitanian upper member of the  
584 Chitarwata Formation<sup>75,76</sup>; soft maximum = 44 Ma, corresponding to the minimum age of  
585 Rhinocerotidae as supported by fossil and phylogenetic evidence<sup>25</sup>. 3) Node = Diceroti (*Ceratotherium*  
586 + *Diceros*); soft minimum = 5.3 Ma, corresponding to the minimum age of the oldest deposits yielding  
587 *Diceros bicornis* fossils (Lothagam and Albertine<sup>77,78</sup>; soft maximum = 7.3 Ma, as in Liu et al. (2021)<sup>25</sup>.  
588 4) Node = *Rhinoceros unicornis* + *Rhinoceros sondaicus*; soft minimum = 1.9 Ma, corresponding to the  
589 early Pleistocene appearance of *Rhinoceros unicornis* in the fossil record<sup>79,80</sup>; soft maximum = 5.3 Ma,  
590 as in Liu et al. (2021)<sup>25</sup>. 5) Node = *Dicerorhinus* + *Stephanorhinus* + *Coelodonta*; soft minimum = 13  
591 Ma, corresponding to middle Miocene remains of *Dicerorhinus* from the middle Siwaliks of  
592 Pakistan<sup>25,81</sup>; soft maximum = 22.6 Ma, corresponding to the oldest crown rhinoceros fossil as in the  
593 soft minimum of calibration 2.

594 The Markov chain Monte Carlo (MCMC) was set up as 4 independent runs, running for 50,000  
595 iterations and sampling every 10, averaging between 262.2 and 279.2 moves per iterations.  
596 Convergence between runs was checked by visually inspecting and calculating effective sample sizes  
597 (ESSs) of parameter estimates on Tracer v.1.7.2<sup>82</sup>. A maximum *a posteriori* (MAP) tree was calculated  
598 to summarise the posterior distribution of trees, with 20% burn-in. In the analysis of the minimally-  
599 filtered dataset, one of the 4 runs was discarded from the MAP tree calculation, as it converged only in  
600 the last 10% of the MCMC.

## 601 Methods References

602 41.Omar, G. *et al.* Fission-track dating of haughton astrobleme and included biota, devon island,  
603 Canada. *Science* **237**, 1603–1605 (1987).

604 42.Young, K. E. *et al.* Impact thermochronology and the age of Haughton impact structure,  
605 Canada. *Geophys. Res. Lett.* **40**, 3836–3840 (2013).

606 43.Stephan, T. & Jessberger, E. K. Isotope systematics and shock-wave metamorphism: III. K-  
607 Ar in experimentally and naturally shocked rocks; the Haughton impact structure, Canada.  
608 *Geochim. Cosmochim. Acta* **56**, 1591–1605 (1992).

609 44.Sherlock, S. C. *et al.* Re-evaluating the age of the Haughton impact event. *Meteorit. Planet.*  
610 *Sci.* **40**, 1777–1787 (2005).

611 45.Erickson, T. M. *et al.* Resolving the age of the Haughton impact structure using coupled  
612  $^{40}\text{Ar}/^{39}\text{Ar}$  and U-Pb geochronology. *Geochim. Cosmochim. Acta* **304**, 68–82 (2021).

613 46.Hickey, L. J., Johnson, K. R. & Dawson, M. R. The stratigraphy, sedimentology, and fossils  
614 of the Haughton formation: A post-impact crater-fill, Devon island, N.w.t., Canada. *Meteoritics*  
615 **23**, 221–231 (1988).

616 47.Von Koenigswald, W., Holbrook, L. T. & Rose, K. D. Diversity and Evolution of Hunter-  
617 Schreger Band Configuration in Tooth Enamel of Perissodactyl Mammals. *acpp* **56**, 11–32  
618 (2011).

619 48.Taurozzi, A. J. *et al.* Deep-time phylogenetic inference by paleoproteomic analysis of dental  
620 enamel. *Nat. Protoc.* (2024) doi:10.1038/s41596-024-00975-3.

621 49.Rappaport, J., Mann, M. & Ishihama, Y. Protocol for micro-purification, enrichment, pre-  
622 fractionation and storage of peptides for proteomics using StageTips. *Nat. Protoc.* **2**, 1896–1906  
623 (2007).

624 50.Mackie, M. *et al.* Palaeoproteomic Profiling of Conservation Layers on a 14th Century Italian  
625 Wall Painting. *Angewandte Chemie* vol. 130 7491–7496 Preprint at  
626 <https://doi.org/10.1002/ange.201713020> (2018).

627 51.Rüther, P. L. *et al.* SPIN enables high throughput species identification of archaeological  
628 bone by proteomics. *Nat. Commun.* **13**, 2458 (2022).

629 52.Lindgreen, S. AdapterRemoval: easy cleaning of next-generation sequencing reads. *BMC Res.*  
630 *Notes* **5**, 337 (2012).

631 53.Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM.  
632 *arXiv [q-bio.GN]* (2013).

633 54.Korneliussen, T. S., Albrechtsen, A. & Nielsen, R. ANGSD: Analysis of Next Generation  
634 Sequencing Data. *BMC Bioinformatics* **15**, 356 (2014).

635 55.Altschul, S. F. *et al.* Gapped BLAST and PSI-BLAST: a new generation of protein database  
636 search programs. *Nucleic Acids Res.* **25**, 3389–3402 (1997).

637 56.Kuznetsov, A. & Bollin, C. J. NCBI Genome Workbench: Desktop Software for Comparative  
638 Genomics, Visualization, and GenBank Data Submission. *Methods Mol. Biol.* **2231**, 261–295  
639 (2021).

640 57.Tyanova, S., Temu, T. & Cox, J. The MaxQuant computational platform for mass  
641 spectrometry-based shotgun proteomics. *Nat. Protoc.* **11**, 2301–2319 (2016).

642 58.Han, Y., Ma, B. & Zhang, K. SPIDER: software for protein identification from sequence tags  
643 with de novo sequencing error. *Proc. IEEE Comput. Syst. Bioinform. Conf.* 206–215 (2004).

644 59.Yuen, D., Zhang, W., Zhang, Z., Lajoie, G. A. & Ma, B. PEAKS DB: de novo sequencing  
645 assisted database search for sensitive and accurate peptide identification. *& cellular proteomics*  
646 (2012).

647 60.Ma, B. & Johnson, R. De novo sequencing and homology searching. *Mol. Cell. Proteomics*  
648 **11**, O111.014902 (2012).

649 61.Chi, H. *et al.* Open-pFind enables precise, comprehensive and rapid peptide identification in  
650 shotgun proteomics. *bioRxiv* 285395 (2018) doi:10.1101/285395.

651 62.Kong, A. T., Leprevost, F. V., Avtonomov, D. M., Mellacheruvu, D. & Nesvizhskii, A. I.  
652 MSFragger: ultrafast and comprehensive peptide identification in mass spectrometry–based  
653 proteomics. *Nat. Methods* **14**, 513–520 (2017).

654 63.Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment  
655 search tool. *J. Mol. Biol.* **215**, 403–410 (1990).

656 64.Coutu, A. N. *et al.* Palaeoproteomics confirm earliest domesticated sheep in southern Africa  
657 ca. 2000 BP. *Sci. Rep.* **11**, 6631 (2021).

658 65.Ramsøe, A. *et al.* DeamiDATE 1.0: Site-specific deamidation as a tool to assess authenticity  
659 of members of ancient proteomes. *J. Archaeol. Sci.* **115**, 105080 (2020).

660 66.Dickinson, M. R., Lister, A. M. & Penkman, K. E. H. A new method for enamel amino acid  
661 racemization dating: A closed system approach. *Quat. Geochronol.* **50**, 29–46 (2019).

662 67.Dickinson, M. R. Enamel amino acid racemisation dating and its application to building  
663 Proboscidean geochronologies. (University of York, 2018).

664 68.Kaufman, D. S. & Manley, W. F. A new procedure for determining dl amino acid ratios in

665 fossils using reverse phase liquid chromatography. *Quat. Sci. Rev.* **17**, 987–1000 (1998).

666 69. Hill, R. L. Hydrolysis of proteins. *Adv. Protein Chem.* **20**, 37–107 (1965).

667 70. Höhna, S. *et al.* RevBayes: Bayesian Phylogenetic Inference Using Graphical Models and an  
668 Interactive Model-Specification Language. *Syst. Biol.* **65**, 726–736 (2016).

669 71. Heath, T. A., Huelsenbeck, J. P. & Stadler, T. The fossilized birth–death process for coherent  
670 calibration of divergence-time estimates. *Proceedings of the National Academy of Sciences* **111**,  
671 E2957–E2966 (2014).

672 72. Zhang, C., Stadler, T., Klopstein, S., Heath, T. A. & Ronquist, F. Total-Evidence Dating  
673 under the Fossilized Birth-Death Process. *Syst. Biol.* **65**, 228–249 (2016).

674 73. Kapur, V. V. & Bajpai, S. Oldest South Asian tapiromorph (Perissodactyla, Mammalia) from  
675 the Cambay Shale Formation, western India, with comments on its phylogenetic position and  
676 biogeographic implications. *Palaeobotanist* **64**, 95–103 (2015).

677 74. Carlisle, E., Janis, C. M., Pisani, D., Donoghue, P. C. J. & Silvestro, D. A timescale for  
678 placental mammal diversification based on Bayesian modeling of the fossil record. *Curr. Biol.*  
679 **33**, 3073–3082.e3 (2023).

680 75. Métais, G. *et al.* Lithofacies, depositional environments, regional biostratigraphy and age of  
681 the Chitarwata Formation in the Bugti Hills, Balochistan, Pakistan. *J. Asian Earth Sci.* **34**, 154–  
682 167 (2009).

683 76. Antoine, P.-O. *et al.* Chapter 16. Mammalian Neogene Biostratigraphy of the Sulaiman  
684 Province, Pakistan. in *Fossil Mammals of Asia* 400–422 (Columbia University Press, 2013).

685 77. Pickford, M., Senut, B. & Hadoto, D. Geology and palaeobiology of the Albertine Rift valley,  
686 Uganda-Zaire. Volume I: geology. *Publication occasionnelle-Centre international pour la  
687 formation et les échanges géologiques* (1993).

688 78. Brown, F. H. & McDougall, I. Geochronology of the Turkana depression of northern Kenya  
689 and southern Ethiopia. *Evol. Anthropol.* **20**, 217–227 (2011).

690 79. Tong, H. & Moigne, A.-M. Quaternary rhinoceros of China. *Acta anthropologica sinica* **19**,  
691 257–263 (2000).

692 80. Antoine, P.-O. *et al.* A new rhinoceros clade from the Pleistocene of Asia sheds light on

693 mammal dispersals to the Philippines. *Zool. J. Linn. Soc.* **194**, 416–430 (2022).

694 81. Heissig, K. Palaeontologische und geologische untersuchungen im Tertiaer von Pakistan. V.

695 Rhinocerotidae (Mamm.) aus den unteren und mittleren Siwalik-Schichten. (1972).

696 82. Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior

697 Summarization in Bayesian Phylogenetics Using Tracer 1.7. *Syst. Biol.* **67**, 901–904 (2018).

698 83. Gessulat, S. *et al.* Prosit: proteome-wide prediction of peptide tandem mass spectra by deep

699 learning. *Nat. Methods* **16**, 509–518 (2019).

700

701 **Acknowledgements:** This project has received funding from the European Union's Horizon 2020

702 research and innovation programme under the Marie Skłodowska-Curie grant agreement (No. 861389

703 - PUSHH). EC, FZ, IP, KP, FR, JVO, MM and RP are supported by the European Research Council

704 (ERC) under the European Union's Horizon 2020 research and innovation programme (grant

705 agreement No. 101021361 - BACKWARD). MM was also supported by the Danish National

706 Research Foundation grant PROTEIOS (DNRF128), and MD, KP & CB by the UK NERC

707 (NE/S010211/1 & NE/S00713X/1). DF was supported by the Natural Sciences and Engineering

708 Research Council of Canada (NSERC RGPIN-2018-05305) and a Research Activity Grant through

709 the Canadian Museum of Nature. This work was supported by the Deutsche Forschungsgemeinschaft

710 (DFG) Emmy Noether-Program (Award HO 6201/1-1 to SH) and by the European Union (ERC,

711 MacDrive, GA 101043187). Fieldwork in Canada's High Arctic was supported by a palaeontology

712 permit from the Government of Nunavut, Department of Culture, Language, Elders and Youth (D.R.

713 Stenton, J. Ross), with the permission of the Qikiqtani Inuit Association, particularly Grise Fiord.

714 **Author contributions:** R.P., R.D.E.M, N.R., D.F., and E.C. designed the study. N.R, D.F. and M.G.

715 conducted fieldwork at the Haughton Crater site. R.D.E.M., N.R., D.F., M.G., R.F., and L.B.,

716 provided ancient samples. R.P., M.M, A.B., N.H., I.P., S.L., J.R-M., A.R., F.M., M.R.D., C.B., and

717 G.S. performed data generation and analysed data with support from E.C., S.H., E.W., N.R.,

718 R.D.E.M., and D.F.. R.P., M.M, and E.C. wrote the manuscript with contributions from all authors.

719 **Competing interests:** The authors declare no competing interests.

720 **Corresponding authors:** Correspondence to Ryan Sinclair Paterson, Danielle Fraser, or Enrico

721 Cappellini.

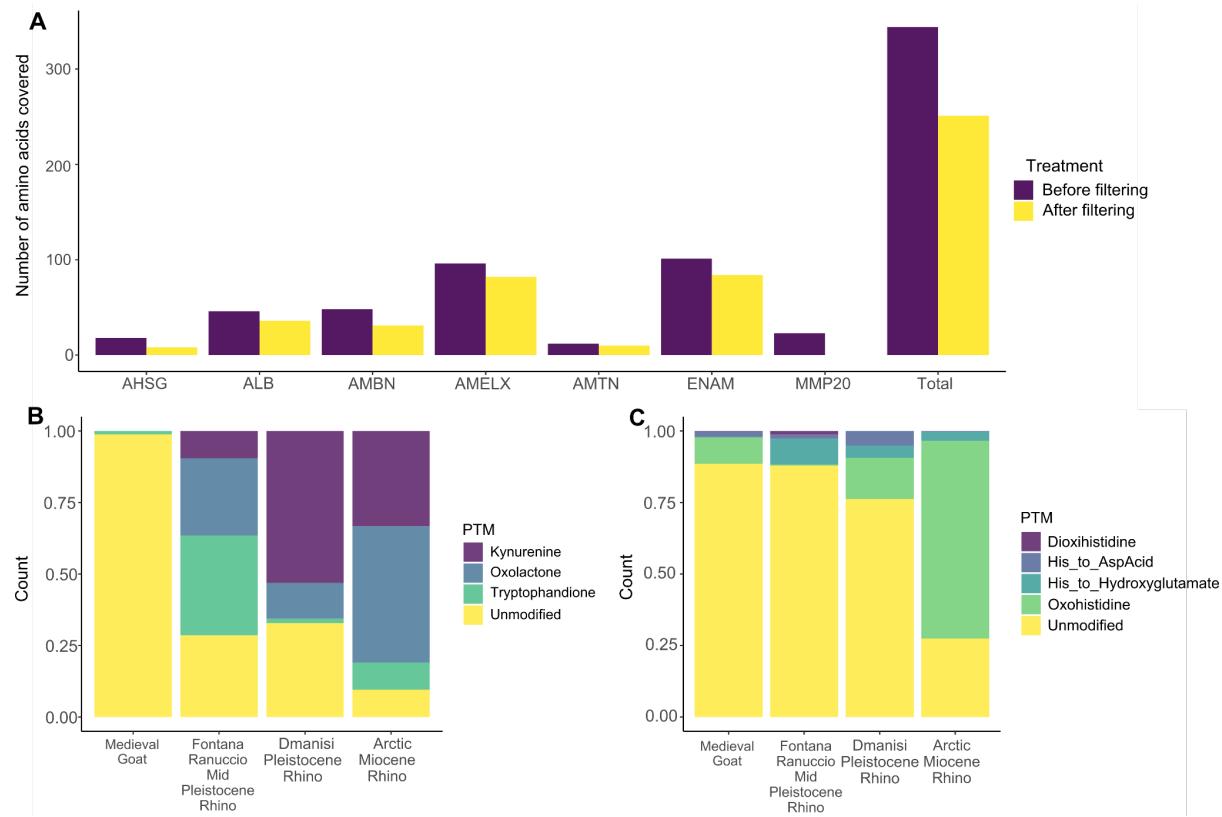
722

723

724

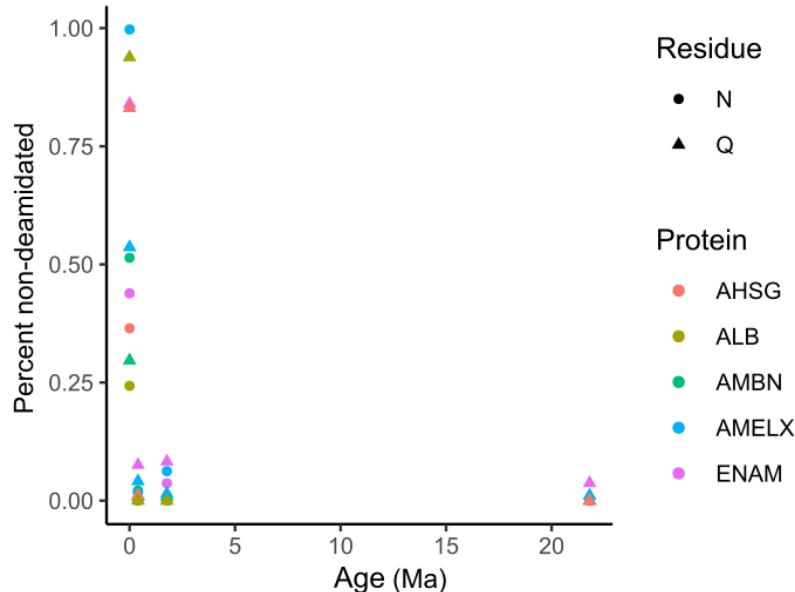
725

726


727

728

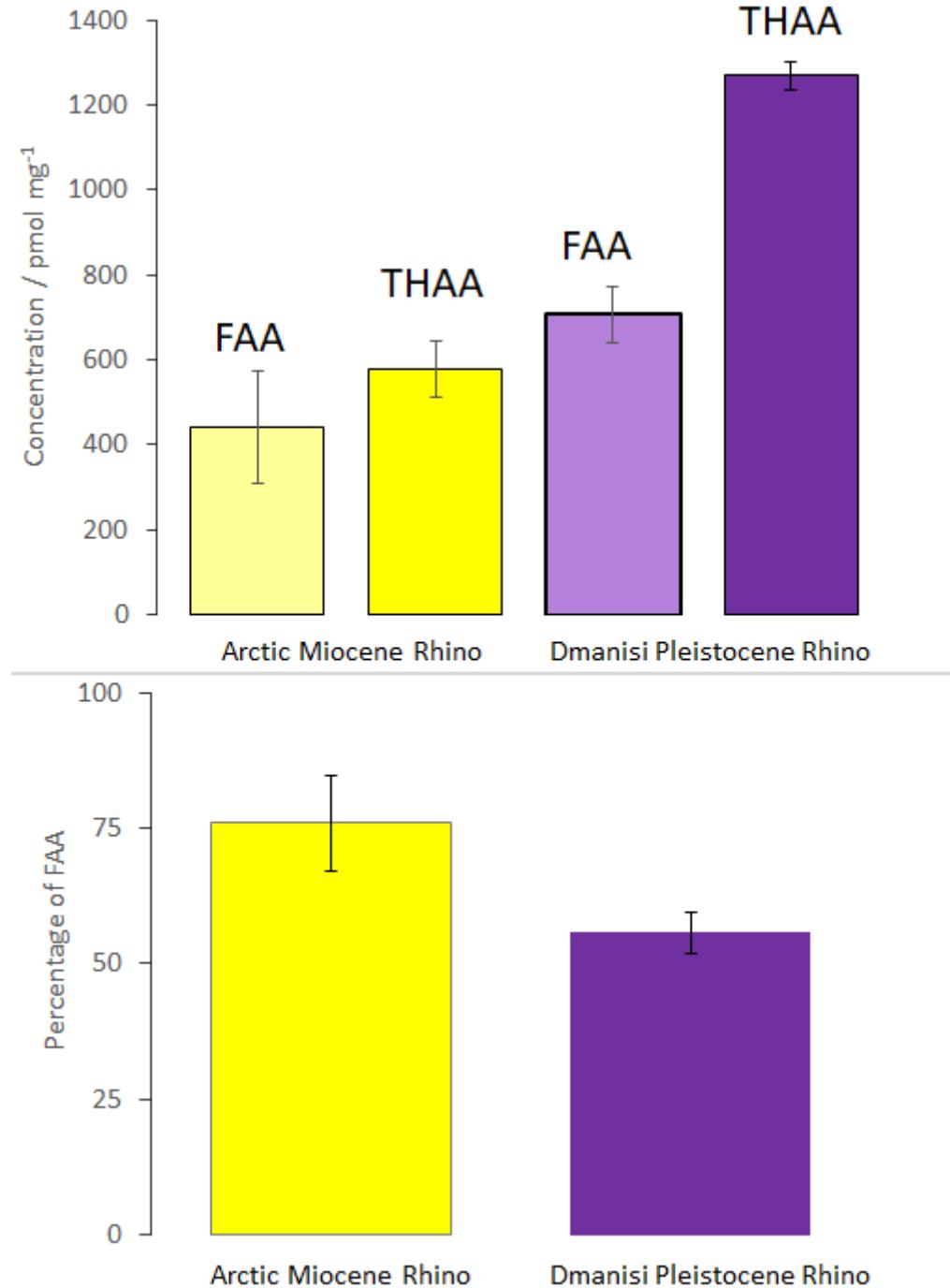
729


730

731 **Extended Data**



732

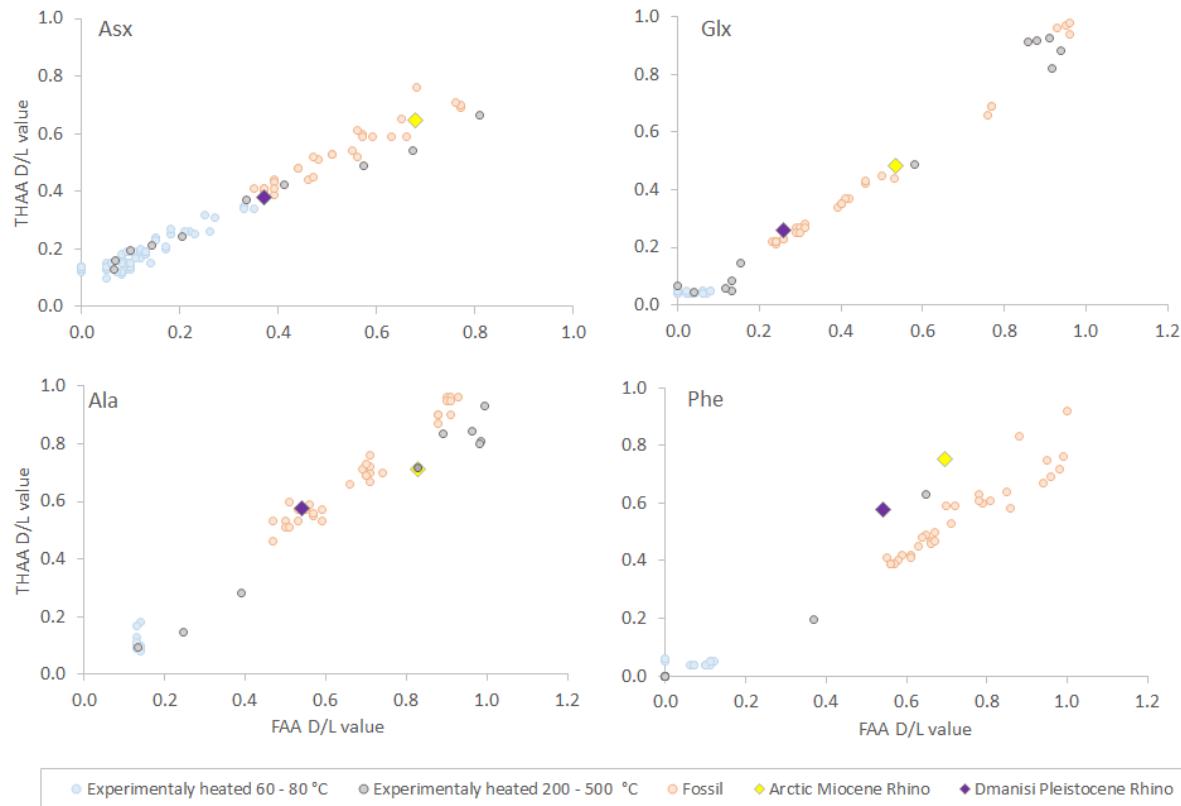

733 **Extended Figure 1) Proteome preservation in CMNF-59632.** A) Amino acid count for each  
734 identified protein, before and after filtering (see Methods), B) PTMs related to oxidative degradation  
735 of tryptophan for CMNF-59632, compared to enamel proteomes from other ancient rhinos and a  
736 mediaeval ovicaprine, C) PTMs related to oxidative degradation of histidine for same taxon set. The  
737 moderate protein preservation in CMNF-59632, indicated by the lower amino acid coverage  
738 compared to other ancient enamel proteomes, is further supported by the high incidence of PTMs  
739 related to oxidative degradation, compared to other fossil rhinocerotids.



740

741 **Extended Figure 2) Deamidation rates in fossil rhinocerotid enamel proteomes, plotted against**  
742 **geological age.** Data used is CMFN-59632 from Haughton Crater (21.8 Ma), DM.5/157 from  
743 Dmanisi (1.77 Ma), CGG 1\_023342 from Fontana Ranuccio (0.4 Ma), and a mediaeval control  
744 sample (0.005 Ma). While useful for establishing authenticity of an ancient proteome, deamidation  
745 rates plateau relatively quickly, so they are not reliable for assessing relative degradative state in  
746 ancient proteomes from deep geological timescales.

747



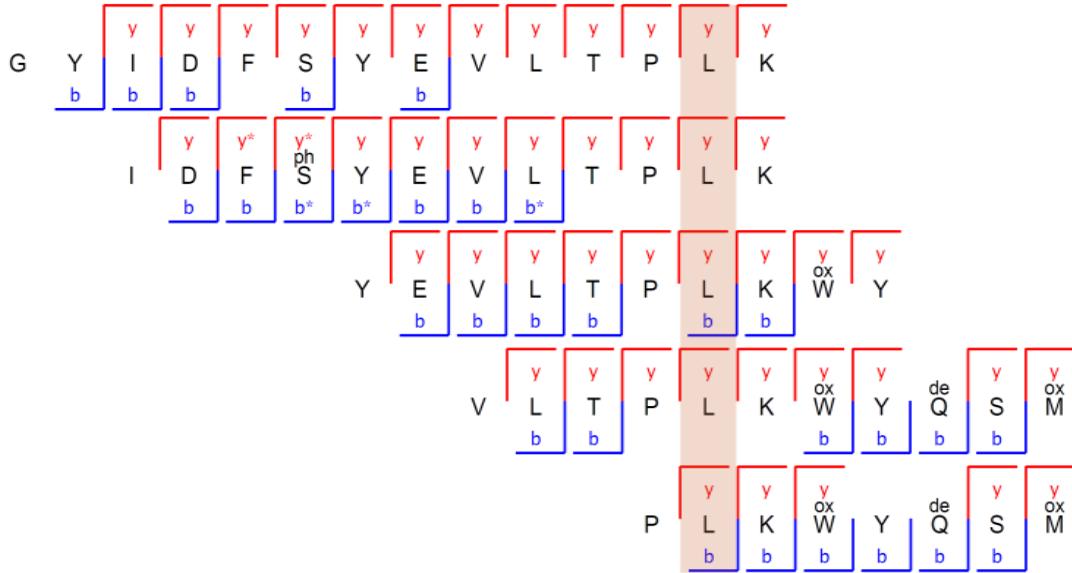

748

749 **Extended Figure 3) Comparison of FAA & THAA concentration (top) and %FAA (bottom) of**  
750 **the Arctic Miocene rhinocerotid with the Dmanisi Pleistocene *Stephanorhinus*<sup>11</sup>.** Error bars  
751 represent 1 standard deviation about the mean for preparative replicates. The lower overall  
752 concentration, higher %FAA and yet incomplete hydrolysis in the Arctic Miocene rhino is consistent  
753 with endogenous peptides in the tooth enamel.

754

755




756

757 **Extended Figure 4) Asx, Glx, Ala and Phe FAA vs THAA D/L values for tooth enamel from**  
758 **Arctic Miocene rhino from Ellesmere Island Canada, and the Dmanisi Pleistocene rhino.** A data  
759 set consisting of published and unpublished enamel data from other rhino palaeontological and  
760 experimental data has been included for comparison. The good correlation between FAA & THAA  
761 for the Arctic Miocene rhino (CMNF-59632) sample supports the presence of closed system original  
762 peptides and their constituent amino acids in this Miocene sample.

763

764

765



766

767 **Extended Figure 5) Subset of overlapping peptides supporting a SAP at AMELX position 53.**

768 While all other later-diverging rhinocerotids, including *Elasmotherium*, display a valine (V) at  
769 position 53 (highlighted in light red; following numbering of reference sequence A0A5F5PLN8),  
770 CMNF-59632 displays a leucine (L) (or isoleucine (I)), representing the ancestral condition in  
771 Perissodactyla. The peptide sequences depicted here represent just a small portion of the peptide-  
772 spectrum matches covering this position. Together, these peptides display high Andromeda scores,  
773 extended, in some cases complete, ion series, and the presence of several PTMs supporting their  
774 endogeneity (phosphorylation) and ancientness (tryptophan oxidation, glutamine deamidation).