

1 Structural Basis for Pol0-Helicase DNA Binding and Microhomology-Mediated End- 2 Joining

3
4
5 Fumiaki Ito^{1,2,3,#}, Ziyuan Li^{1,#}, Leonid Minakhin⁴, Htet A. Khant⁵, Richard T. Pomerantz^{4*}, and Xiaojiang S.
6 Chen^{1*}

7
8
9 **Affiliations:**

10 ¹Molecular and Computational Biology, Department of Biological Sciences and Chemistry, University of
11 Southern California, Los Angeles, California, 90089, USA.

12 ²Department of Microbiology, Immunology and Molecular Genetics

13 ³California NanoSystems Institute, University of California, Los Angeles, CA90095, USA.

14 ⁴Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson
15 University, Philadelphia, PA, 19107, USA.

16 ⁵USC Center of Excellence for Nano-Imaging, Viterbi School of Engineering, University of Southern
17 California, Los Angeles, CA, 90089, USA.

18
19 [#]These authors contributed equally to this work

20
21 *Correspondence to: Richard T. Pomerantz, richard.pomerantz@jefferson.edu and Xiaojiang S. Chen,
22 xiaojiac@usc.edu

29 **Abstract**

30 DNA double-strand breaks (DSBs) present a critical threat to genomic integrity, often precipitating genomic
31 instability and oncogenesis. Repair of DSBs predominantly occurs through homologous recombination (HR)
32 and non-homologous end joining (NHEJ). In HR-deficient cells, DNA polymerase theta (Pol θ) becomes
33 critical for DSB repair via microhomology-mediated end joining (MMEJ), also termed theta-mediated end
34 joining (TMEJ). Thus, Pol θ is synthetically lethal with BRCA1/2 and other HR factors, underscoring its
35 potential as a therapeutic target in HR-deficient cancers. However, the molecular mechanisms governing
36 Pol θ -mediated MMEJ remain poorly understood. Here we present a series of cryo-electron microscopy
37 structures of the Pol θ helicase domain (Pol θ -hel) in complex with DNA containing 3'-overhang. The
38 structures reveal the sequential conformations adopted by Pol θ -hel during the critical phases of DNA
39 binding, microhomology searching, and microhomology annealing. The stepwise conformational changes
40 within the Pol θ -hel subdomains and its functional dimeric state are pivotal for aligning the 3'-overhangs,
41 facilitating the microhomology search and subsequent annealing necessary for DSB repair via MMEJ. Our
42 findings illustrate the essential molecular switches within Pol θ -hel that orchestrate the MMEJ process in
43 DSB repair, laying the groundwork for the development of targeted therapies against the Pol θ -hel.

44

45

46 **Introduction**

47 The integrity of the genome is central to cellular health and proper organismal development. Among the
48 various types of genomic insults, DNA double-strand breaks (DSBs) are particularly catastrophic, potentially
49 leading to severe genomic disorders and tumorigenesis. Cells predominantly repair these DSB lesions
50 through the major DSB repair mechanisms such as homologous recombination (HR) and non-homologous
51 end joining (NHEJ). HR preserves genomic stability by accurately rejoining broken DNA ends. Thus, major
52 HR factors such as BRCA1/2 act as tumor suppressor proteins¹⁻³. However, in cells deficient in HR, typically
53 due to mutations in BRCA1/2, alternative pathways like microhomology-mediated end joining (MMEJ)
54 become crucial. DNA polymerase theta (Pol θ) promotes DSB repair via MMEJ, also referred to as theta-
55 mediated end-joining (TMEJ) or alternative end-joining (Alt-EJ)⁴⁻⁷. Pol θ is upregulated in several cancers
56 and plays a pivotal role in DSB repair in HR-deficient (HRD) cancer cells^{6,8-10}, making it a promising target
57 for therapeutic intervention¹¹⁻¹⁶.

58 The Pol θ protein, consisting of 2,575 amino acids, includes a helicase domain (Pol θ -hel), a central
59 flexible domain (Pol θ -Ct), and a polymerase domain (Pol θ -pol)^{5,17-19}. The Pol θ -hel has been shown to
60 promote MMEJ in cells and in vitro, but its mechanistic involvement remains unclear^{4,10,20}. Pol θ -hel is
61 capable of unwinding DNA in a 3'-to-5' direction and translocating ssDNA in an ATP-dependent
62 manner^{19,21,22}. Pol θ -hel's ATPase activity is most strongly stimulated by ssDNA, and it has been shown to
63 promote ssDNA annealing in an ATP-independent manner. Thus, putative functions for Pol θ -hel in MMEJ
64 are translocation along ssDNA and annealing of microhomologies crucial for the error-prone MMEJ
65 repair^{18,23-25}. The involvement of Pol θ -hel in MMEJ make it a promising target for therapeutic interventions
66 in HRD cancer such as subsets of breast, ovarian, prostate, and pancreatic cancers, and the first Pol θ -hel
67 inhibitor has entered clinical trials^{4,20,26,27}.

68 Despite its critical roles in MMEJ and promise as a drug target, the molecular details of how Pol θ -hel
69 binds to 3'-ssDNA and facilitates the searching and annealing of DNA microhomologies during MMEJ have
70 not been elucidated. Our work offers new structural and biochemical insights that elucidate detailed
71 mechanisms of Pol θ -hel DNA binding and microhomology search and annealing, expanding our
72 understanding of this enzyme's role in initiating MMEJ. Our findings underscore the intricate mechanisms of

73 Pol0-hel's role in Pol0-mediated DNA repair, providing a basis for novel therapeutic strategies in HRD
74 malignancies.

75

76 Results

77 Architecture of Pol0-hel bound to DNA in multiple states

78 To understand the mechanisms of DNA binding and initial steps of microhomology search and annealing by
79 Pol0, we reconstituted the helicase domain (Pol0-hel) with model MMEJ substrates containing various
80 sequences at the 3'-ssDNA overhang strand (Fig. 1a-b). Fluorescence anisotropy and gel shift assays showed
81 the DNA substrates readily bind to Pol0-hel with similar affinity (Fig. 1c-d). The reconstituted complexes
82 were subsequently applied to structural analysis using single particle cryoEM. To simulate the forms of DNA
83 being repaired through the cellular MMEJ process, we used DNA oligonucleotides consisting of a 30-base
84 pair duplex and a poly(T) 3'-overhang ssDNA. The 3'-overhang region was designed to have various lengths
85 with or without 6-nucleotide long palindromic microhomology (MH) sequence (CCCGGG) that can be
86 annealed to each other at the end of 3'-overhang strand as previously report¹⁰ (Fig. 1b). Pol0-hel in complex
87 with DNA encompassing 3'-overhangs of 9-nt poly(T) with MH, 11-nt poly(T) with MH, and 15-nt poly(T)
88 without MH, yielded cryoEM reconstructions with resolutions ranging from 3.1 to 3.8 Å (Table 1, Extended
89 Data Fig. 1-3). In addition to the DNA-bound forms, we obtained structures of Pol0-hel bound to AMP-PNP,
90 a non-hydrolyzable ATP analog, and the apo form of the protein (Table 1, Extended Data Fig. 4-5). Among
91 the helicase domain of Pol0 that are included in our construct (amino acid residues 1-894), all the cryoEM
92 reconstructions showed density for the core subdomains comprising the helicase ring, including the two
93 RecA-like domains (D1 and D2), winged-helix (WH) domain (D3), and ratchet domain (D4) (Fig. 1a, e-g). A
94 small helix-loop-helix (HLH) domain (D5) appeared conformationally variable and visible for a subset of the
95 structures (discussed later).

96 All the Pol0-hel structures had dimers as the most abundant oligomeric state. The dimerization is
97 mediated by the D4-D4 head-to-head interaction, similar to the previously reported crystal structure of the
98 Pol0-hel tetramer form that contained two copies of this dimer form²⁴. In all the DNA-bound structures, clear
99 ssDNA densities were observed along the central channels of the two helicase protomers. The two DNA
100 strands enter through the helicase channel openings that are distantly positioned yet originate from the same
101 side where the subdomain D2 is largely exposed. On the other hand, the 3'-ends of the strands exit the
102 channel on the opposite side of the dimer, bringing the ssDNA ends close to each other (Fig. 1e). In the
103 complex with 3'-overhang DNA with 9-nt poly(T) and 6 nt MH sequence, a continuous low-resolution
104 density spans the dimer cleft and connects the two channel exits for the 3'-end ssDNA (Fig. 1e, top left). The
105 corresponding density in the structure containing poly(T) 3'-overhang without MH was noticeably weaker at
106 a similar isosurface threshold level. Therefore, this density accounts for the microhomology DNA introduced
107 at the ends of the 3'-overhangs. MH annealed DNA was built into the density and termed MH annealed state
108 hereafter (Fig. 1e, left, and 1f). Similarly, the complex with 3'-overhang DNA with 11-nt poly(T) with MH
109 also showed similar densities accounting for the annealed MH at the dimer cleft (Extended Data Fig. 2). In
110 contrast, 3'-overhang DNA with 15-nt poly(T) without MH had a density at the same location, which
111 diminished immediately after exiting the helicase channels, attributable to the absence of MH, with the two
112 3'-overhangs continuing their search for microhomology, termed the MH search state henceforth.

113 In addition to the dimer form, the data sets for the MH annealed state and apo form contained
114 tetramer form as a subpopulation, closely resembling the previously reported crystal structure of the
115 tetramer²⁴ (Extended Data Fig. 1 and 4). Careful inspection of the cryoEM map of the tetramer form from the
116 sample containing MH DNA showed no trace of DNA density, and it is identical to the tetramer form from
117 the apo form data set. These observations indicate that the tetramer form is incompatible with the DNA

118 binding. Supporting this observation, the data set for the MH search state structure, where we added an
119 excess amount of DNA (30-fold more than the protein in molarity), yielded 2D class averages predominantly
120 showing dimers and dissociated monomers with no obvious tetramer form. This marks a clear shift from the
121 apo form data set, which exhibited a mixture of tetramer, dimer, and monomer forms (Fig. 1g). Notably, a
122 subset of 2D class averages of the Pol0-hel-DNA showed additional thread-like densities stemming from the
123 Pol0-hel ring, representing the bound DNA (indicated by white arrows in Fig. 1g). These results indicate that
124 the oligomeric state of the Pol0-hel equilibrates between dimer and tetramer, with DNA binding promoting
125 the dissociation of the tetramers into two dimers.

126

127 **Pol0-hel D5 is a mobile domain**

128 Unexpectedly, the subdomain D5, composed of short alpha-helices and connecting loops, shows considerable
129 structural variability among our Pol0-hel structures. In the apo form and the AMP-PNP-bound form, D5
130 adheres to the surface of the helicase ring across the D1-D4 subdomain interface, consistent with the reported
131 crystal structure²⁴ (Fig. 2a, top left and middle). Of note, amino acids 839-858 in D5 are disordered in these
132 forms. In the MH search state, the D5 became completely invisible, even at a low isosurface threshold,
133 indicating detachment from the helicase ring and flexible connection via the D4-D5 linker (Fig. 2a, top
134 right). In the MH annealed structures, the D5 reemerges at a different location with a different structure: it is
135 located at a narrow cleft near the D4-D4 dimer interface, surrounded by the D4 of the same protomer and the
136 D3 and D4 of the other protomer (Fig. 2a, bottom). This relocalization results in a large displacement with
137 the C-terminal helix moving approximately 42 Å from its original position in the apo form, accompanied by
138 extensive rotational movements that orient the C-terminal helix in nearly opposite direction (Fig. 2b).
139 Interestingly, the relocated D5 is observed in only one protomer in the complex with 11-nt poly(T) DNA
140 while the D5 in the other protomer remains invisible (termed state 1). In the complex with 9-nt poly(T)
141 DNA, the relocated D5 is visible in both protomers. (termed state 2). These variations indicate different
142 microhomology annealing states. Furthermore, the previously disordered residues 839-858 of D5 became
143 fully visible, forming a U-shaped helix-turn-loop motif, along the shallow groove at the D4-D4 interface
144 (Fig. 2c). At the apex of the U-turn, a negatively charged patch spanning the residues ⁸⁴⁷DEEEE⁸⁵¹ is
145 positioned next to a positively charged surface of the D4 of the other protomer, formed by R637 and K640,
146 effectively anchoring the U-shape motif (Fig. 2d). Additionally, F839 at the beginning of the U-shape is
147 trapped by a solvent-exposed hydrophobic cavity formed by residues L614, F632, L769, and W771 in the D4
148 of the other protomer (Fig. 2e). The U-shape motif solidifies the groove at the dimer interface, doubling the
149 dimer interface area from 951 Å² in the apo form to 1956 Å² in the MH annealed state 2.

150 The aforementioned structural observation demonstrates that Pol0-hel D5 is a mobile domain,
151 dissociating from the helicase ring upon DNA binding to create the necessary space for the MH search at the
152 dimer cleft. Indeed, the MH DNA would clash with the D5 at the original location in the apo form. When
153 binding to substrate DNA, the D5 appears to relocalize to the dimer interface in a step-wise manner during
154 the microhomology annealing (Fig. 2f). This repositioning of D5 stabilizes the dimer configuration, which
155 may be essential for maintaining the MH annealed DNA to support the downstream steps of MMEJ.

156

157 **DNA capture by Pol0-hel channel**

158 The 3'-overhang ssDNA is threaded through the entire central channel of the Pol0-hel ring (Fig. 3a). A
159 continuous DNA density was observed across the channel, extending from the wide entrance formed by the
160 subdomains D2, D3, and D4 to the narrow exit formed between the D1 and D4 (Fig. 3b and 3c). Inside the
161 Pol0-hel ring, a total of seven and eight nucleotides of poly(T) ssDNA strand were visible for the MH search
162 state and MH annealed state 1, respectively. The eight nucleotides observed in the MH annealed state are

163 termed T₁ to T₈ (in 5' → 3' direction). Throughout the channel, the ssDNA extensively interacts with three
164 subdomains of Polθ-hel, namely D1, D2, and D4. The 5'-end of the ssDNA is held by D2 at the entrance of
165 the helicase channel through its interaction with the phosphate backbone, facilitated by electrostatic
166 interactions from two basic residues K348 and K347 with the 5'-phosphate of T₁ and T₂, respectively.
167 Additional stabilization is provided by the side chain hydroxyl of S346 and T443, and the main chain amine
168 of A418, which form hydrogen bonds with the backbone phosphates of T₂ and T₃, thus aiding the DNA
169 capture at the channel entrance (Fig. 3d).

170 The downstream ssDNA inside the channel stretches along a long α-helix in D4, which was
171 previously termed ratchet helix (Fig. 2e), which facilitates unidirectional DNA translocation in the 3'->5'
172 direction as the DNA duplex is unwound by superfamily-2 helicase, acting like a ratchet²⁸. The bases T₄ to
173 T₆, adjacent to the ratchet helix, maintain continuous base-stacking, while two hydrophobic residues, V757
174 and M761 on the ratchet helix, are intercalated between the T₆ and T₇ bases, disrupting the base-stacking.
175 These residues act as a wedge of the ratchet at the channel's narrow exit, allowing unidirectional passage of
176 the incoming DNA and preventing back-tracking. Although there is no sequence-specific interaction for the
177 bases in this region, the phosphate backbone engages in extensive interactions with the residues in D1. The
178 5'-phosphates of T₅ and T₆ form hydrogen bonds with the main chain amine of V147 and the side chain
179 hydroxyl of T190, respectively. The 5'-phosphates of T₇ and T₈ form electrostatic interactions with two
180 arginines R193 and R200 on a short helix in D1 at the channel exit (Fig. 3e). The side chain hydroxyl of
181 S622 additionally stabilizes the T₇ phosphate. In total, 10 residues are involved in recognizing the backbone
182 of the ssDNA inside the channel (Fig. 3f). The nucleotides after T₈ are exposed to a space outside the
183 channel, allowing the ssDNA chain to proceed to the dimer cleft for the subsequent microhomology
184 sequence searching and annealing. The surface electrostatic potential of the Polθ-hel channel showed that
185 both ends of the channel have positively charged surfaces for DNA capture. The K347 and K348 at the
186 entrance form a continuous basic patch with K352 that likely contributes to the recognition of the additional
187 DNA backbone at the branch of the fork DNA (Fig. 3g). At the exit, three arginines R193, R200, and R768
188 hold the ssDNA after it passes the narrowest point of the channel at the V757/M761 wedge (Fig. 3h).

189 190 DNA binding induces dimer conformational change

191 Structural superimposition of the DNA-bound and apo forms of Polθ-hel dimer further revealed marked
192 conformational rearrangements. Notably, in both the MH search state and MH annealed state, the relative
193 positions of the two protomers within the dimer shift to an “open” form, where the two helicase rings rotate
194 away from each other around the D4-D4 dimer interface. This movement results in the largest movements in
195 the D2 among the Polθ-hel subdomains as it is located farthest from the dimer interface. In the MH search
196 state, aligning D4 of one protomer (protomer 1) for superimposition shows a shift in D2 of the other
197 protomer (protomer 2) with an r.m.s.d. of 13 Å. This shift increases to 20 Å in the MH annealed state,
198 highlighting a global conformational shift in the dimer configuration as a result of DNA binding.
199 Additionally, smaller movements within the same protomer were observed, with the D2 from the same
200 protomer rotating away from the other protomer by 3 Å in both the MH search and annealed states (Fig. 4a).
201 These observations suggest that both inter- and intra-protomer conformational change are induced upon
202 DNA binding. These conformational changes flatten the overall dimer architecture and create a wider space
203 in the dimer cleft where the microhomology searching and annealing occur.

204 The superimposition of the DNA-bound dimer with one of the dimer units of the apo form tetramer
205 structure shows a steric clash with the other dimer unit near the dimer-dimer interface, suggesting that the
206 DNA-bound dimer conformation is incompatible with forming a tetramer as in the apo form (Fig. 4b). This is
207 consistent with our finding in our cryoEM data sets that tetramer is only present as a DNA-free form.

208 As part of the intra-protomer conformational changes, the narrow exit of the DNA channel formed
209 between the D1 and D4 widens upon DNA binding. When the ratchet helix in D4 is aligned, the helix in D1
210 containing two arginines (R193 and R200) that recognize backbone phosphates (termed arginine helix)
211 shifted away from the ratchet helix by 4 Å (Fig. 4c). This shift indicates a degree of flexibility in the channel
212 exit as the ssDNA passes through it. Collectively, these results indicate that Polθ-hel undergoes both global
213 and local conformational changes upon DNA binding, revealing that the dimer form is the functional
214 oligomeric unit during the MMEJ process.

215 216 Discussion

217 Our study elucidates the critical role of Polθ-hel in the MMEJ repair of DSBs. The cryo-EM structures of
218 Polθ-hel, in its apo form, AMP-PNP-bound form, and DNA-bound states, elucidate the mechanism by which
219 this helicase recognizes and processes 3'-ssDNA overhangs, facilitating microhomology search and
220 annealing. The results reveal an unprecedented stepwise and sequential conformational change involved in
221 the initial steps of MMEJ by Polθ-hel. The implications of these findings not only provide basic mechanistic
222 insights but also offer specific potential drug-target sites for therapeutic intervention in HRD cancers.

223 Our structural analysis revealed that the active form of Polθ-hel is a dimer, mediated by head-to-head
224 interactions of the D4 domains. Upon DNA binding, Polθ-hel undergoes notable conformational changes that
225 transition the dimer from a "closed" to an "open" state. This shift flattens the overall dimer architecture,
226 creating a wider cleft that accommodates the microhomology search and annealing process. The DNA-bound
227 dimer configuration is incompatible with the tetrameric form observed in the apo state, indicating that DNA
228 binding induces a functional dimerization that is essential for MMEJ.

229 A striking finding of our study is the dynamic behavior of the D5 domain which is manifested by its
230 flexibility of location and induced refolding. In its apo form or ANP-PMP-bound form, D5 adheres to the
231 helicase ring, but upon DNA binding, it detaches from the helicase ring and relocates to the dimer interface
232 in a stepwise fashion, accompanied by structural refolding. This relocation of D5 is crucial for generating
233 space for the 3'-overhang ssDNA exit to perform microhomology search near the ssDNA exits of Polθ-hel
234 dimer interface, and the accompanied refolding is also critical for facilitating the tetramer-to-dimer transition
235 and further solidifying the dimer interface for the MMEJ process. These overall and local conformational
236 changes in Polθ-hel associated with DNA binding ensure the precise alignment of DNA overhangs, which is
237 critical for the MMEJ pathway.

238 The detailed examination of ssDNA threading through the Polθ-hel channel reveals extensive
239 interactions with residues across subdomains D1, D2, and D4. The ssDNA going through the entire helicase
240 channel passage in the absence of ATP and magnesium ion suggests that the helicase ring is sufficiently
241 flexible to allow the full traverse of its channel by the ssDNA. The interactions of Polθ-hel with the DNA are
242 non-sequence specific with a mixture of the charge-charge interactions with the backbone and hydrophobic
243 interactions with the bases, which stabilize the ssDNA and facilitate its unidirectional translocation. This
244 unidirectional movement is critical for the helicase's function, allowing it to align and anneal
245 microhomologies efficiently.

246 Based on the available data, we propose a working model of Polθ-hel function in MMEJ during DSB
247 repair (Extended Data Fig. 6). Polθ operates as a dimer mediated via Polθ-hel interactions. Consistent with
248 this model, prior electron micrographs observed that full-length Polθ behaved mostly as monomeric and
249 dimeric forms¹⁰. The Polθ-hel dimer binds to resected 3'-overhangs and dissociates replication protein A
250 (RPA), thereby exposing the microhomology sequences necessary for end alignment and annealing.
251 Following this annealing, the polymerase domain of Polθ extends the annealed DNA ends sequentially and
252 completes the repair process with the help of DNA ligases and other cofactors. The long flexible central

253 domain linker tethers the helicase and polymerase domains and may also function to interact and coordinate
254 with other protein cofactors necessary for MMEJ.

255 In summary, our findings provide crucial insights into the molecular mechanisms of Pol0-hel in DNA
256 repair. The structural elucidation of its interactions with ssDNA and the conformational flexibility of its
257 subdomains and its dimer/tetramer form underscore the enzyme's structural plasticity in facilitating MMEJ in
258 repairing DSBs. The detailed understanding of Pol0-hel's mechanism also opens avenues for inhibitors that
259 target specific sites of Pol0-hel to exploit synthetic lethality in HRD tumors as precision medicine for cancer
260 therapy.

261

262 References

- 263 1 Zhao, B., Rothenberg, E., Ramsden, D. A. & Lieber, M. R. The molecular basis and disease
264 relevance of non-homologous DNA end joining. *Nat Rev Mol Cell Biol* **21**, 765-781,
265 doi:10.1038/s41580-020-00297-8 (2020).
- 266 2 Jensen, R. B. & Rothenberg, E. Preserving genome integrity in human cells via DNA double-
267 strand break repair. *Mol Biol Cell* **31**, 859-865, doi:10.1091/mbc.E18-10-0668 (2020).
- 268 3 Ramsden, D. A., Carvajal-Garcia, J. & Gupta, G. P. Mechanism, cellular functions and cancer
269 roles of polymerase-theta-mediated DNA end joining. *Nat Rev Mol Cell Biol* **23**, 125-140,
270 doi:10.1038/s41580-021-00405-2 (2022).
- 271 4 Mateos-Gomez, P. A. et al. Mammalian polymerase theta promotes alternative NHEJ and
272 suppresses recombination. *Nature* **518**, 254-257, doi:10.1038/nature14157 (2015).
- 273 5 Kent, T., Chandramouly, G., McDevitt, S. M., Ozdemir, A. Y. & Pomerantz, R. T. Mechanism of
274 microhomology-mediated end-joining promoted by human DNA polymerase theta. *Nat Struct
275 Mol Biol* **22**, 230-237, doi:10.1038/nsmb.2961 (2015).
- 276 6 Yousefzadeh, M. J. et al. Mechanism of suppression of chromosomal instability by DNA
277 polymerase POLQ. *PLoS Genet* **10**, e1004654, doi:10.1371/journal.pgen.1004654 (2014).
- 278 7 Koole, W. et al. A Polymerase Theta-dependent repair pathway suppresses extensive genomic
279 instability at endogenous G4 DNA sites. *Nat Commun* **5**, 3216, doi:10.1038/ncomms4216
280 (2014).
- 281 8 Chan, S. H., Yu, A. M. & McVey, M. Dual roles for DNA polymerase theta in alternative end-
282 joining repair of double-strand breaks in Drosophila. *PLoS Genet* **6**, e1001005,
283 doi:10.1371/journal.pgen.1001005 (2010).
- 284 9 Higgins, G. S. et al. A small interfering RNA screen of genes involved in DNA repair identifies
285 tumor-specific radiosensitization by POLQ knockdown. *Cancer Res* **70**, 2984-2993,
286 doi:10.1158/0008-5472.CAN-09-4040 (2010).
- 287 10 Black, S. J. et al. Molecular basis of microhomology-mediated end-joining by purified full-length
288 Poltheta. *Nat Commun* **10**, 4423, doi:10.1038/s41467-019-12272-9 (2019).
- 289 11 Carvajal-Garcia, J. et al. Mechanistic basis for microhomology identification and genome
290 scarring by polymerase theta. *Proc Natl Acad Sci U S A* **117**, 8476-8485,
291 doi:10.1073/pnas.1921791117 (2020).
- 292 12 Feng, W. et al. Genetic determinants of cellular addiction to DNA polymerase theta. *Nat
293 Commun* **10**, 4286, doi:10.1038/s41467-019-12234-1 (2019).
- 294 13 Lemee, F. et al. DNA polymerase theta up-regulation is associated with poor survival in breast
295 cancer, perturbs DNA replication, and promotes genetic instability. *Proc Natl Acad Sci U S A*
296 **107**, 13390-13395, doi:10.1073/pnas.0910759107 (2010).

297 14 Zhou, J. *et al.* A first-in-class Polymerase Theta Inhibitor selectively targets Homologous-
298 Recombination-Deficient Tumors. *Nat Cancer* **2**, 598-610, doi:10.1038/s43018-021-00203-x
299 (2021).

300 15 Zatreanu, D. *et al.* Poltheta inhibitors elicit BRCA-gene synthetic lethality and target PARP
301 inhibitor resistance. *Nat Commun* **12**, 3636, doi:10.1038/s41467-021-23463-8 (2021).

302 16 Fried, W. *et al.* Discovery of a small-molecule inhibitor that traps Poltheta on DNA and
303 synergizes with PARP inhibitors. *Nat Commun* **15**, 2862, doi:10.1038/s41467-024-46593-1
304 (2024).

305 17 Seki, M., Marini, F. & Wood, R. D. POLQ (Pol theta), a DNA polymerase and DNA-dependent
306 ATPase in human cells. *Nucleic Acids Res* **31**, 6117-6126, doi:10.1093/nar/gkg814 (2003).

307 18 Schaub, J. M., Soniat, M. M. & Finkelstein, I. J. Polymerase theta-helicase promotes end joining
308 by stripping single-stranded DNA-binding proteins and bridging DNA ends. *Nucleic Acids Res*
309 **50**, 3911-3921, doi:10.1093/nar/gkac119 (2022).

310 19 Chandramouly, G. *et al.* Poltheta reverse transcribes RNA and promotes RNA-templated DNA
311 repair. *Sci Adv* **7**, doi:10.1126/sciadv.abf1771 (2021).

312 20 Ceccaldi, R. L., J.C.; Amunugama, R.; Hajdu, I.; Primack, B.; Petalcorin, M.I.R.; O'Connor, K. W.
313 K., P.A.; Elledge, S.J.; Boulton, S.J.; Yusufzai, Y.T.; & D'Andrea, A. D. Homologous-
314 recombination-deficient tumours are dependent on Polθ-mediated repair. *Nature* **517**,
315 doi:doi:10.1038/nature14184 (2015).

316 21 Ozdemir, A. Y., Rusanov, T., Kent, T., Siddique, L. A. & Pomerantz, R. T. Polymerase theta-
317 helicase efficiently unwinds DNA and RNA-DNA hybrids. *J Biol Chem* **293**, 5259-5269,
318 doi:10.1074/jbc.RA117.000565 (2018).

319 22 Ceccaldi, R. *et al.* Homologous-recombination-deficient tumours are dependent on Poltheta-
320 mediated repair. *Nature* **518**, 258-262, doi:10.1038/nature14184 (2015).

321 23 Mateos-Gomez, P. A. *et al.* The helicase domain of Poltheta counteracts RPA to promote alt-
322 NHEJ. *Nat Struct Mol Biol* **24**, 1116-1123, doi:10.1038/nsmb.3494 (2017).

323 24 Newman, J. A., Cooper, C. D. O., Aitkenhead, H. & Gileadi, O. Structure of the Helicase Domain
324 of DNA Polymerase Theta Reveals a Possible Role in the Microhomology-Mediated End-Joining
325 Pathway. *Structure* **23**, 2319-2330, doi:10.1016/j.str.2015.10.014 (2015).

326 25 Fijen, C. *et al.* Sequential requirements for distinct Poltheta domains during theta-mediated
327 end joining. *Mol Cell* **84**, 1460-1474 e1466, doi:10.1016/j.molcel.2024.03.010 (2024).

328 26 Higgins, G. S. & Boulton, S. J. Beyond PARP-POLtheta as an anticancer target. *Science* **359**,
329 1217-1218, doi:10.1126/science.aar5149 (2018).

330 27 Chen, X. S. & Pomerantz, R. T. DNA Polymerase theta: A Cancer Drug Target with Reverse
331 Transcriptase Activity. *Genes (Basel)* **12**, doi:10.3390/genes12081146 (2021).

332 28 Buttner, K., Nehring, S. & Hopfner, K. P. Structural basis for DNA duplex separation by a
333 superfamily-2 helicase. *Nat Struct Mol Biol* **14**, 647-652, doi:10.1038/nsmb1246 (2007).

334 29 Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid
335 unsupervised cryo-EM structure determination. *Nat Methods* **14**, 290-296,
336 doi:10.1038/nmeth.4169 (2017).

337 30 Punjani, A., Zhang, H. & Fleet, D. J. Non-uniform refinement: adaptive regularization improves
338 single-particle cryo-EM reconstruction. *Nat Methods* **17**, 1214-1221, doi:10.1038/s41592-020-
339 00990-8 (2020).

340 31 Bepler, T. *et al.* Positive-unlabeled convolutional neural networks for particle picking in cryo-
341 electron micrographs. *Nat Methods* **16**, 1153-1160, doi:10.1038/s41592-019-0575-8 (2019).

342 32 Chen, S. *et al.* High-resolution noise substitution to measure overfitting and validate resolution
343 in 3D structure determination by single particle electron cryomicroscopy. *Ultramicroscopy* **135**,
344 24-35, doi:10.1016/j.ultramic.2013.06.004 (2013).

345 33 Pettersen, E. F. *et al.* UCSF Chimera--a visualization system for exploratory research and
346 analysis. *J Comput Chem* **25**, 1605-1612, doi:10.1002/jcc.20084 (2004).

347 34 Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. *Acta*
348 *Crystallogr D Biol Crystallogr* **66**, 486-501, doi:10.1107/S0907444910007493 (2010).

349 35 Adams, P. D. *et al.* PHENIX: a comprehensive Python-based system for macromolecular
350 structure solution. *Acta Crystallogr D Biol Crystallogr* **66**, 213-221,
351 doi:10.1107/S0907444909052925 (2010).

352 36 Afonine, P. V. *et al.* Towards automated crystallographic structure refinement with phenix.refine.
353 *Acta Crystallogr D Biol Crystallogr* **68**, 352-367, doi:10.1107/S0907444912001308 (2012).

354 37 Afonine, P. V. *et al.* Real-space refinement in PHENIX for cryo-EM and crystallography. *Acta*
355 *Crystallogr D Struct Biol* **74**, 531-544, doi:10.1107/S2059798318006551 (2018).

356 38 Afonine, P. V. *et al.* New tools for the analysis and validation of cryo-EM maps and atomic
357 models. *Acta Crystallogr D Struct Biol* **74**, 814-840, doi:10.1107/S2059798318009324 (2018).

358 39 Goddard, T. D. *et al.* UCSF ChimeraX: Meeting modern challenges in visualization and analysis.
359 *Protein Sci* **27**, 14-25, doi:10.1002/pro.3235 (2018).

360

361 Methods

362 Protein expression and purification

363 The pSUMO expression vector carrying human DNA polymerase θ helicase domain (residues 1-894) was
364 transformed into the *E. coli* strain Rosetta 2 (DE3) pLysS. The bacterial cells harboring the expression
365 vectors were grown in LB medium at 37°C until the OD₆₀₀ reached 0.3. The recombinant proteins were
366 induced by 1 mM isopropyl β -D-1-thiogalactopyranoside (IPTG) at 18°C for 18 hours. The cell pellets were
367 resuspended with a lysis buffer (25 mM Tris-HCl (pH 8.5), 500 mM NaCl, 10% glycerol, and 0.5 mM
368 TCEP) supplemented with 2 mM PMSF and a cOmplete inhibitor tablet per 100 ml, lysed by sonication, and
369 cellular debris was removed by centrifugation. The supernatant containing the His₆-SUMO-Pol θ -hel was
370 loaded onto a Ni-NTA agarose column (Qiagen). The nickel column was extensively washed with a wash
371 buffer (25 mM Tris-HCl (pH 8.5), 500 mM NaCl, 10% glycerol, 40 mM imidazole, and 0.5 mM TCEP). The
372 His₆-SUMO tag was cleaved with Prescission protease in one bed volume of the lysis buffer by incubating at
373 4°C overnight. The tag-free Pol θ -hel was eluted from the resin in three bed volumes of the lysis buffer
374 (Cytiva). The eluent was diluted with a 2.5 times larger volume of a buffer with no salt (25 mM Tris-HCl
375 (pH 8.5), 10% glycerol, and 0.5 mM TCEP), and loaded onto the HiTrap Heparin HP affinity column
376 (Cytiva). The proteins were eluted with a gradient NaCl of 0.2 to 2.0 M. Final purification was achieved with
377 a Superdex 200 Increase 10/300 GL column (Cytiva) equilibrated with a buffer (25 mM Tris-HCl (pH 8.5),
378 500 mM NaCl, and 0.5 mM TCEP). The peak fractions were collected and concentrated for cryoEM study.
379 Protein purity was assessed by SDS-PAGE at each purification step.

380

381 CryoEM sample preparation and data acquisition

382 Five data sets were collected in separate TEM sessions. Prior to the reconstitution of the Pol θ -hel-DNA
383 complexes, synthetic ssDNA strands (Integrated DNA Technologies) were pre-annealed to form dsDNA with
384 3'-overhang ssDNA. The following pairs of ssDNA were used for annealing: 9-nt poly(T) with MH 3'-

385 overhang (chain 1: 5'-CCAACCGACCACACCCACCACCCCTACCGCCTTTTTCCCAGGG-3', chain 2: 386 5'-GGCGGTAGGGTGGTGGGTGTGGTCGGTTGG-3'), 11-nt poly(T) with MH 3'-overhang (chain 1: 5'- 387 CCAACCGACCACACCCACCACCCCTACCGCCTTTTTCCCAGGG-3', chain 2: 5'- 388 GGCGGTAGGGTGGTGGGTGTGGTCGGTTGG-3'), and 15-nt poly(T) without MH 3'-overhang (chain 1: 389 5'-CCAACCGACCACACCCACCACCCCTACCGCCTTTTTTTTT-3', chain 2: 5'- 390 GGCGGTAGGGTGGTGGGTGTGGTCGGTTGG-3'). These pairs of ssDNA were mixed in an annealing 391 buffer (10 mM HEPES (pH 7.5) and 50 mM NaCl), denatured at 95°C for 5 minutes, and then cooled down 392 slowly overnight. For the data set of the complex with 9-nt poly(T) with MH, 11-nt poly(T) with MH, and 393 15-nt poly(T) without MH 3'-overhang DNA, the purified protein (10 μ M) and pre-annealed DNA were 394 mixed by 1:4, 1:10, and 1:30 molar ratio, respectively, in a buffer (10 mM HEPES (pH 7.5), 150 mM NaCl, 395 and 0.5 mM TCEP) and the mixture was incubated on ice overnight. For the AMP-PNP-bound form, the 396 purified protein (10 μ M) was mixed with 2 mM AMP-PNP and the mixture was incubated on ice for 20 min. 397 Of note, the samples for the data sets of the AMP-PNP-bound form and apo forms include DNA substrates 398 with 3'-overhang and internal loop structures, respectively, but these samples did not yield any DNA-bound 399 Pol θ -hel structure. 3 μ l aliquots of the mixture were applied to UltrAu foil R1.2/1.3 gold 300-mesh grids 400 (Electron Microscopy Sciences). Grids were then blotted and vitrified in liquid ethane cooled by liquid 401 nitrogen using Vitrobot Mark IV (Thermo Fisher Scientific).

402 CryoEM data of Pol θ -hel-DNA complexes were collected in a Titan Krios G3i (Thermo Fisher 403 Scientific) equipped with a K3 direct electron detector and post-BioQuantum GIF energy filter (Gatan) 404 operated at 300 kV in electron counting mode. Movies were collected at a nominal magnification of 405 105,000 \times in super-resolution mode after binning by a factor of 2, resulting in an effective pixel size of 0.86 406 \AA . A total dose of 65 e $^-$ / \AA^2 per movie was used with a dose rate of approximately 15 e $^-$ /pix/sec. 10,005, 407 10,331, and 7,268, movies were recorded for the complexes with 3'-overhang DNA with 9-nt poly(T) with 408 MH, 11-nt poly(T) with MH, and 15-nt poly(T) without MH data sets, respectively, by automated data 409 acquisition with EPU version 3.5.0.

410 CryoEM data of AMP-PNP-bound form and apo form of Pol θ -hel were collected in a Glacios 411 (Thermo Fisher Scientific) equipped with Falcon-4 direct electron detector operated at 200 kV in electron 412 counting mode. Movies were collected at a nominal magnification of 150,000 \times and a pixel size of 0.92 \AA in 413 EER format. A total dose of 50-60 e $^-$ / \AA^2 per movie was used with a dose rate of 5-6 e $^-$ /pix/sec. 671 and 4,511 414 movies were recorded for AMP-PNP-bound form and apo form, respectively, by automated data acquisition 415 with EPU.

416

417 CryoEM data processing

418 The movies from five data sets were imported into cryoSPARC software package²⁹ and subjected to patch 419 motion correction and CTF estimation in cryoSPARC. Initially, reference-free manual particle picking in 420 a small subset of data was performed to generate 2D templates for auto-picking and to assess the data quality.

421 For the complex with 9-nt poly(T) with MH 3'-overhang DNA, a total of 3,203,827 particles were 422 picked initially, extracted, and down-sampled by a factor of 4, on which 2D classification was performed. 423 746,417 particles from 2D class averages were selected and re-extracted with full resolution. Another round 424 of 2D classification was performed and 514,557 particles from 2D class averages were selected. 3D *ab initio* 425 reconstruction was then performed to generate six initial volumes. The particles from the first round of 2D 426 classification were then used in the following heterogeneous refinement with two copies of each of the six *ab* 427 *initio* classes as starting volumes. A single dominant class containing 21.5% of the particles showed a feature 428 of dimeric Pol θ -hel with anisotropic density. Further *ab initio* reconstruction and heterogeneous refinement 429 were performed with two classes to obtain more isotropic maps. A single class containing 49.2% of the

430 particles was selected, and non-uniform refinement³⁰ was performed with C2 symmetry to yield the final 3.1
431 Å resolution map. A single class containing 6.6% of the particles in the first heterogeneous refinement
432 showed a feature of tetrameric Polθ-hel and it was used for non-uniform refinement with D2 symmetry to
433 yield a 3.4 Å resolution map. The tetramer map displayed no DNA density.

434 For the complex with 11-nt poly(T) with MH 3'-overhang DNA, the micrographs were curated and
435 34% of them were discarded. A total of 1,050,266 particles were picked initially, extracted, and down-
436 sampled by a factor of 4, on which 2D classification was performed. We noticed that free DNA particles
437 were dominant in this data set, which interfered with the identification of protein particles. Topaz, a
438 convolutional neural-network-based particle-picking program³¹, was trained with the clean 31,276 particles
439 from the 2D classification. 885,890 particles were extracted by Topaz and used for the second round of 2D
440 classification. A subset of good 2D class averages with clear secondary structure features containing 65,577
441 particles was used for *ab initio* reconstruction to generate four initial volumes. Two similar classes
442 containing 64.1% of the particles with a feature of dimeric Polθ-hel were then combined to yield an *ab initio*
443 volume. The three volumes were used as starting volumes for the following heterogeneous refinement with
444 105,752 particles from a broader selection of 2D classes in the second round of 2D classification. A single
445 dominant class containing 50.7% of the particles was selected, and non-uniform refinement was performed
446 with C1 symmetry to yield the final 3.8 Å resolution map.

447 For the complex with 15-nt poly(T) without MH 3'-overhang DNA, a total of 2,654,648 particles
448 were picked initially, extracted, and down-sampled by a factor of 4, on which 2D classification was
449 performed. A subset of 2D class averages containing 210,199 particles was re-extracted with full resolution
450 and used for 3D *ab initio* reconstruction to generate six initial volumes. A broader selection of 2D classes
451 containing 702,967 particles was then used in the following heterogeneous refinement with two copies of
452 each *ab initio* class as starting volumes. A single dominant class containing 14.5% of the particles was
453 selected, and non-uniform refinement was performed with C2 symmetry to yield the final 3.2 Å resolution
454 map.

455 For the complex with AMP-PNP, a total of 501,459 particles were picked initially, extracted, and
456 down-sampled by a factor of 4, on which 2D classification was performed. 232,215 particles from 2D classes
457 with clear features were selected and re-extracted with full resolution. 3D *ab initio* reconstruction was then
458 performed to generate six initial volumes. A single dominant class with a feature of dimeric Polθ-hel
459 containing 30.3% of the particles was selected, and non-uniform refinement was performed with C2
460 symmetry to yield the final 3.5 Å resolution map.

461 For the apo form dimer and tetramer, a total of 3,882,670 particles were picked initially, extracted,
462 and down-sampled by a factor of 4, on which 2D classification was performed. 1,965,226 particles from 2D
463 classes were selected and re-extracted with full resolution. 3D *ab initio* reconstruction was then performed to
464 generate six initial volumes. Heterogeneous refinement was then performed with two copies of each of the
465 six *ab initio* classes as starting volumes. A single class with a feature of dimeric Polθ-hel containing 14.7%
466 of the particles was selected, and non-uniform refinement was performed with C2 symmetry to yield the final
467 3.6 Å resolution map of the apo form dimer. Another class with a feature of tetrameric Polθ-hel containing
468 14.6% of the particles was selected for further *ab initio* reconstruction and heterogeneous refinement with
469 two classes. A dominant class containing 73.0% of the particles was selected and non-uniform refinement
470 was performed with D2 symmetry to yield the final 3.5 Å resolution map of the apo form tetramer. All
471 resolution evaluation was performed based on the gold-standard criterion of FSC coefficient at the 0.143³².

472
473 **Atomic model building**

474 An atomic model derived from crystal structures of Polθ-hel (PDB ID: 5AGA) was docked into the cryo-EM
475 maps of Polθ-hel apo form dimer and Polθ-hel in complex with the 15-nt poly(T) without MH 3'-overhang
476 DNA using UCSF Chimera³³. The apo form tetramer and AMP-PNP-bound form were built based on the apo
477 form dimer model. The complex with the 9-nt poly(T) with MH 3'-overhang DNA was built based on the
478 complex with the 15-nt poly(T) without MH 3'-overhang DNA model. The models were initially adjusted
479 manually to match the density map using COOT³⁴ and refined with the phenix.real_space_refine module in
480 Phenix with secondary structure restraints and geometry restraints³⁵⁻³⁷. The residues 839-858 in D5 of the
481 complex with the 9-nt poly(T) with MH 3'-overhang DNA were built de novo. For the Polθ-hel-DNA
482 complexes, well-defined nucleotide densities inside the channel facilitated the DNA model building process.
483 DNA densities outside the Polθ-hel channel including the density for the annealed microhomology are less
484 well-defined. A standard B-form DNA duplex of six base pairs was placed into the low-resolution density
485 connecting the channel exit of the two protomers in the complex with the 9-nt poly(T) with MH 3'-overhang
486 DNA and then connected to the ssDNA chains threading through the channels. The final atomic models were
487 validated using the comprehensive cryo-EM validation tool implemented in Phenix (Table 1)³⁸. All structural
488 figures were generated with UCSF ChimeraX³⁹.

489

490 DNA binding assay by native PAGE and fluorescence anisotropy

491 For DNA binding assay by native gel shift, the annealed DNA (Fig. 1b) at 20 nM was titrated by Polθ-hel in
492 20 µl reaction volume containing 10 mM HEPES (pH 7.5), 150 mM NaCl, 0.5 mM TCEP, and 10% glycerol.
493 Reaction mixtures were incubated on ice for 20 min and analyzed by 8% acrylamide native PAGE. The
494 electrophoresis was performed at a constant 150 V for 75 min using 0.5x TBE. SYBR™ Gold Nucleic Acid
495 Gel Stain (Thermo Fisher) was used for staining the gel. The gel images were visualized using an
496 Amersham™ Typhoon™ Biomolecular Imager (GE Healthcare). For fluorescence anisotropy, binding
497 reactions were performed in 20 mM Tris-HCl (pH 7.5), 1 mM DTT, 5 mM MgCl₂, 5 % glycerol, 0.1 mg/ml
498 BSA, 30 mM NaCl for at least 20 min at room temperature. Reactions contained 10 nM FAM-conjugated
499 ssDNAs: FAM-9T+MH (oligos FAM-9T+MH/DNA-c), FAM-11T+MH (oligos FAM-11T+MH/DNA-c), and
500 FAM-15T no MH (oligos FAM-15T no MH/DNA-c), and the indicated amounts of the Polθ-hel enzyme. A
501 ClariostarPLUS plate reader (BMG Labtech) was used to measure fluorescence anisotropy. All experiments
502 were performed in triplicate and plotted with ± s.d. GraphPadPrism 10 was used for plotting and K_d
503 calculations. Sequences of the oligos used to create DNA substrates for the assay are as follows (DNA-c is
504 used to anneal each of the FAM-labeled oligos):

505 DNA-c: 5'-GGCGGTAGGGTGGTGGGTGGTCGGTTGG;
506 FAM-9T+MH: FAM-5'-CCAACCGACCACACCCACCCACCCTACCGCCTTTTTTTCCCAGGG;
507 FAM-11T+MH: FAM-5'-CCAACCGACCACACCCACCCACCCTACCGCCTTTTTTTCCCAGGG;
508 FAM-15T no MH: FAM-5'-CCAACCGACCACACCCACCCACCCTACCGCCTTTTTTTTTTTTT.

509

510 Acknowledgements

511 This work was supported by National Institutes of Health grants R01AI150524 to X.S.C. and R35GM152198 to R.T.P..
512 F.I. was a former fellowship awardee from Nakajima Foundation and Z.L. is a recipient of University of Southern
513 California (USC) dean's fellowship. Electron microscopy data were collected at the Core Center of Excellence in Nano
514 Imaging (CNI) at USC. Cryo-EM data was computed at Center for Advanced Research Computing (CARC) at USC.
515 We thank Tomek Osinski for assisting with computing work at CARC.

516

517 Data availability

518 The atomic models have been deposited in the PDB with accession codes 9C5Q (Polθ-hel-DNA MH annealed state 2
519 dimer), 8W0A (Polθ-hel-DNA MH search state dimer), 9ASJ (Polθ-hel-AMP-PNP dimer), 9ASK (Polθ-hel apo form
520 dimer), and 9ASL (Polθ-hel apo form tetramer). The cryo-EM density maps have been deposited in the EMDB with
521 accession codes EMD-45217 (Polθ-hel-DNA MH annealed state 1 dimer), EMD-45218 (Polθ-hel-DNA MH annealed
522 state 2 dimer), EMD-43706 (Polθ-hel-DNA MH search dimer), EMD-43816 (Polθ-hel-AMP-PNP dimer), EMD-43817
523 (Polθ-hel apo form dimer), and EMD-43818 (Polθ-hel apo form tetramer).

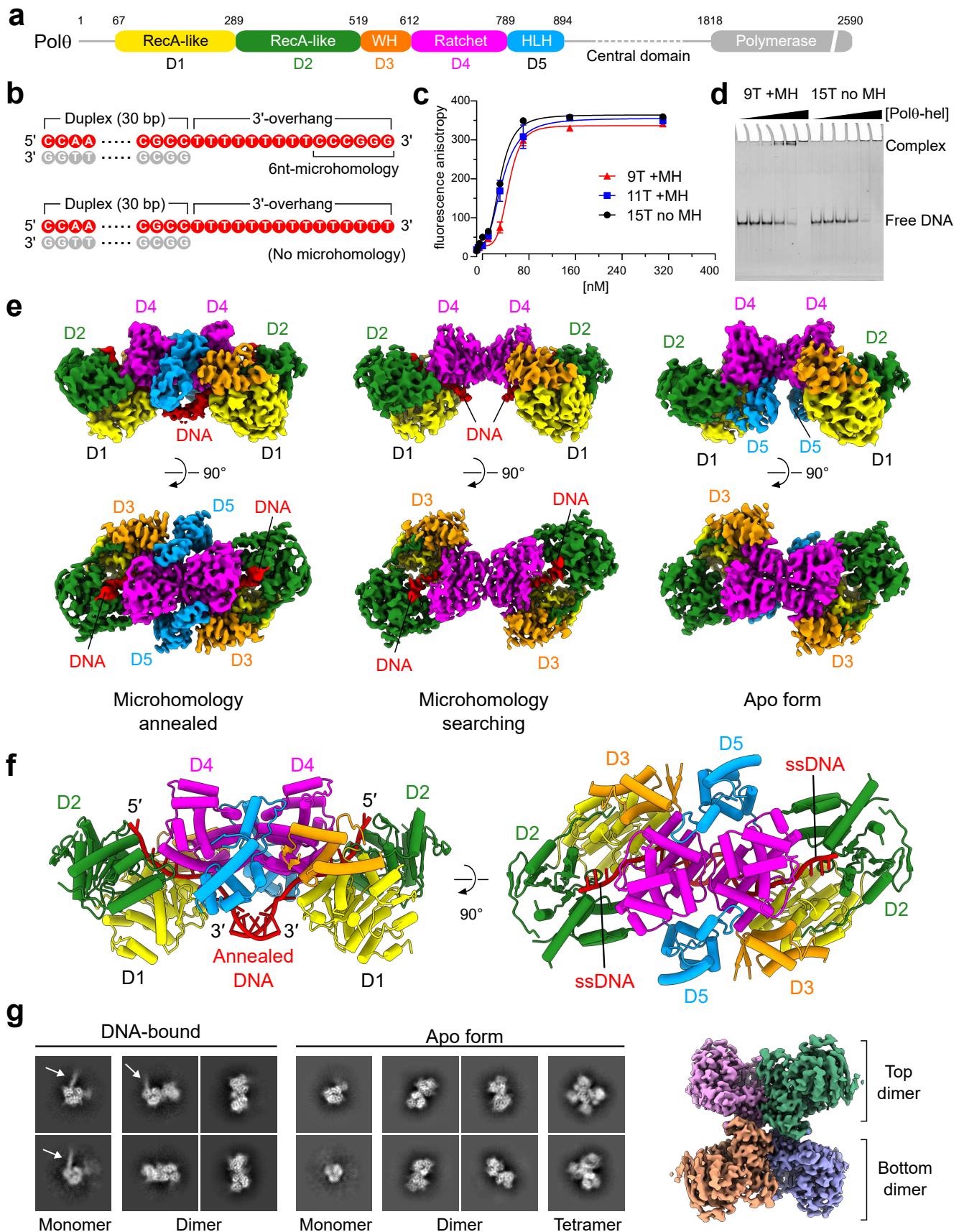
524

525 **Author contributions**

526 X.S.C., R.T.P., Z.L., and F.I. conceived the project. X.S.C. supervised the project. F.I. and Z.L. purified Polθ-hel
527 protein and performed DNA binding and cryo-EM structural studies. H.A.K. assisted with cryo-EM data collection.
528 L.M. performed fluorescence anisotropy assay. F.I. and Z.L. wrote the initial draft and all the authors contributed to the
529 final version of the manuscript.

530

531 **Competing interests**


532 X.S.C. is a cofounder of Recombination Therapeutics, LLC. R.T.P. is a cofounder and CSO of Recombination
533 Therapeutics, LLC. The other authors do not declare any competing interests.

534

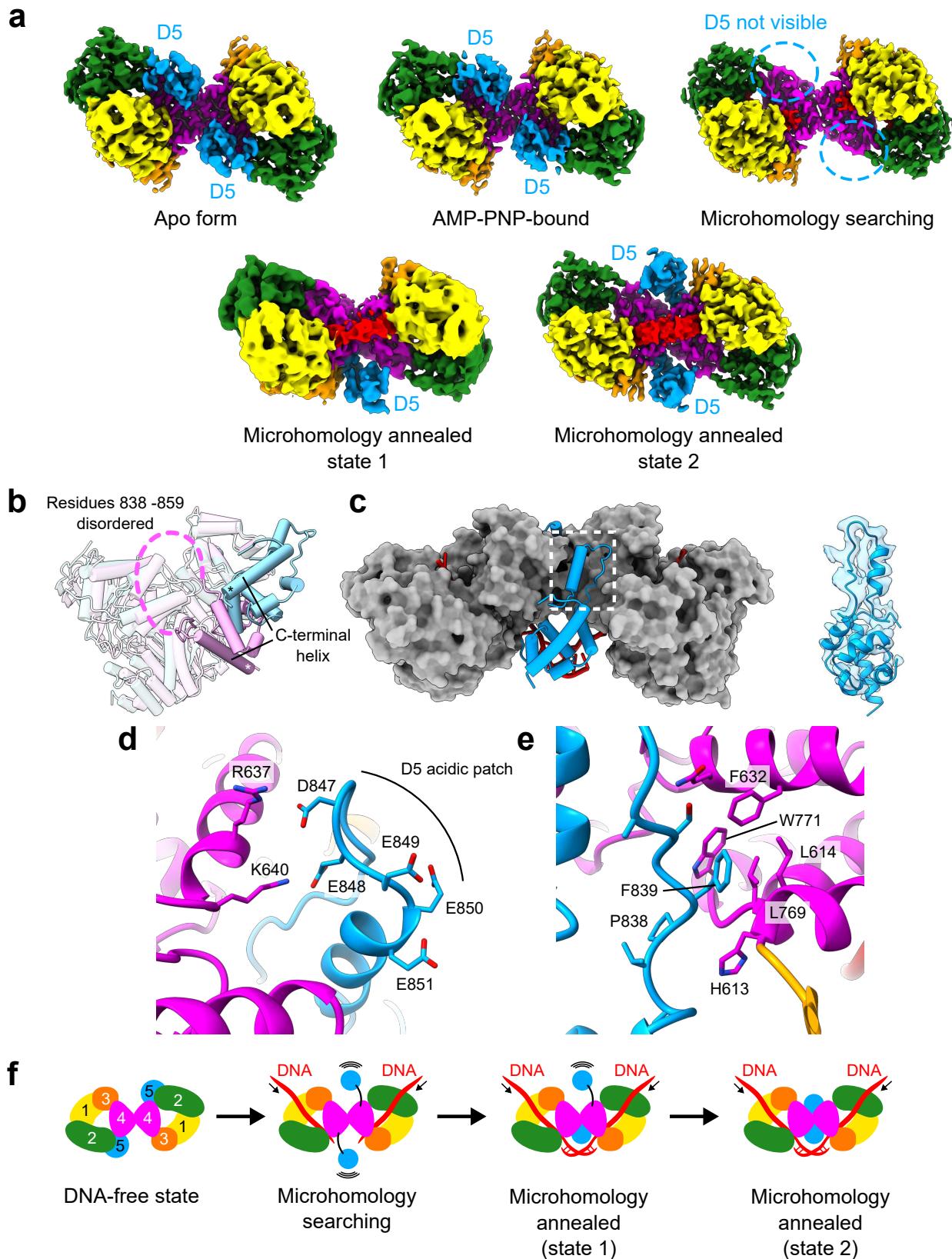

535

Table 1. Cryo-EM data collection, refinement, and validation statistics

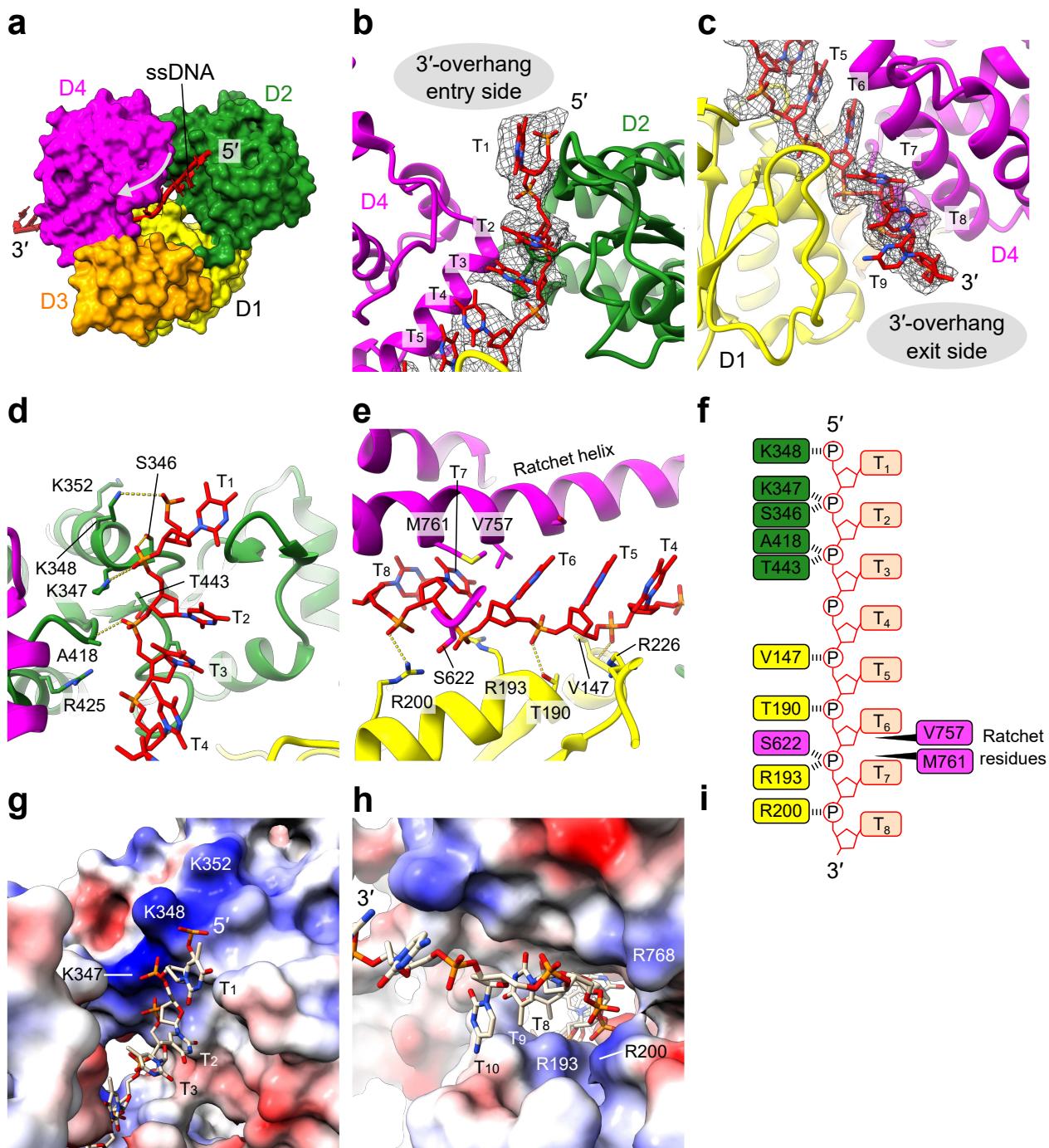

	Pol0-hel-DNA	Pol0-hel-DNA	Pol0-hel-DNA	Pol0-hel-	Pol0-hel	Pol0-hel
MH annealed	MH annealed	MH annealed	MH search	AMP-PNP	apo form	apo form
state 1	state 2	dimer	(PDB: 8W0A)	dimer	dimer	tetramer
dimer	dimer	(EMDB: EMD-43706)	(PDB: 9ASJ)	(EMDB: EMD-43816)	(PDB: 9ASK)	(PDB: 9ASL)
(EMDB: EMD-45217)	(PDB: 9C5Q)	(EMDB: EMD-45218)	(EMDB: EMD-45218)	(EMDB: EMD-43817)	(EMDB: EMD-43818)	
Data collection						
Magnification	105,000	105,000	105,000	150,000	150,000	150,000
Voltage (kV)	300	300	300	200	200	200
Electron exposure (e ⁻ /Å ²)	65	65	65	58	58	58
Defocus range (μm)	-0.6 to -2.0	-0.6 to -2.0	-0.6 to -2.0	-1.0 to -3.0	-1.0 to -3.0	-1.0 to -3.0
Pixel size (Å)	0.86	0.86	0.86	0.92	0.92	0.92
Symmetry imposed	C1	C2	C2	C2	C2	D2
Initial particle images	885,890	3,203,827	2,654,648	509,731	3,961,362	3,961,362
Final particle images	53,607	78,928	99,902	68,248	280,269	202,004
Map resolution (Å)	3.75	3.13	3.23	3.54	3.61	3.51
FSC threshold	0.143	0.143	0.143	0.143	0.143	0.143
Map resolution range (Å)	2.8 – 8.3	2.5 – 6.0	2.6 – 3.7	3.0 – 4.0	3.0 – 4.2	3.0 – 4.0
Refinement						
Initial model used (PDB)	Pol0-hel-DNA MH search	5AGA	Pol0-hel apo form dimer	5AGA	Pol0-hel apo form dimer	Pol0-hel apo form dimer
Model resolution (Å)	3.5	3.6	3.9	4.0	4.0	3.8
FSC threshold	0.5	0.5	0.5	0.5	0.5	0.5
Map sharpening B factor (Å ²)	-44.0	-82.5	-110.1	-154.6	-154.6	-145.4
No. non-hydrogen atoms	12418	10216	11626	11564	11564	23128
Protein residues	1550	1272	1482	1482	1482	2964
Nucleotides	28	14	0	0	0	0
Ligands	0	0	2	0	0	0
<i>B</i> -factors						
Protein	105.55	48.54	61.54	52.01	68.12	
Nucleotide	111.01	10.40	-	-	-	-
Ligand	-	-	94.67	-	-	-
R.m.s. deviations						
Bond lengths (Å)	0.002	0.004	0.004	0.003	0.004	
Bond angles (°)	0.555	0.972	0.969	0.604	0.681	
Validation						
MolProbity score	1.90	2.02	1.95	1.96	2.07	
Clash score	7.17	10.31	13.06	14.03	16.24	
Poor rotamers (%)	0.08	0.09	0.24	0.32	0.44	
Ramachandran plot						
Favored (%)	91.50	91.94	95.37	95.64	94.81	
Allowed (%)	8.50	8.06	4.63	4.36	5.19	
Disallowed (%)	0.00	0.00	0.00	0.00	0.00	

Fig. 1. Architecture of Polθ-hel-DNA complex. (a) Schematic representation of the domain organization and construct design of Polθ-hel. WH, winged helix; HLH, helix-loop-helix. The regions either invisible in any of the cryoEM maps or excluded from the construct are colored in grey. (b) DNA substrate sequences used in this study. A 30-base pair DNA duplex with a poly(T) 3'-overhang ssDNA was prepared either with 6-nt MH sequence (CCCGGG) or without MH sequence. (c) Quantitation of DNA binding of Polθ-hel by rotational anisotropy. The FAM-labeled DNA with 3'-overhang ssDNA containing 9-nt poly(T) with MH, 11-nt poly(T) with MH, and 15-nt poly(T) without MH were used for the binding assay. (d) DNA gel shift assay with unlabeled DNA with 3'-overhang ssDNA containing 9-nt poly(T) with MH and 15-nt poly(T) without MH. (e) Orthogonal views of the cryoEM maps of Polθ-hel dimer in complex with 3'-overhangs with 9-nt poly(T) with MH (left), 15-nt poly(T) without MH (middle), and in apo form (right). (f) Orthogonal views of the atomic model of the Polθ-hel in MH annealed state. (g) Representative 2D class averages from the data sets of the complex with 15-nt poly(T) DNA without MH 3'-overhang DNA (left) and apo form (middle). The cryoEM map of the apo form tetramer is shown on the right.

Fig. 2. Structural variability of the mobile domain D5. (a) Cryo-EM density maps of Polθ-hel in the apo form, AMP-PNP-bound form, MH search state, and MH annealed states 1 and 2. The subdomain D5 (highlighted in blue) is bound to the helicase ring at the D2-D4 interface in the apo and AMP-PNP-bound forms but becomes invisible in the MH search state. In the MH annealed states, the D5 reemerges at the dimer interface in either one protomer (state 1) or both protomers (state 2). (b) Superimposition of a protomer from the apo form with the MH annealed state, highlighting the displacement of D5. The C-terminal end of the C-terminal helix is marked with an asterisk. (c) Positioning of the relocated D5 in the dimer context, depicted in a cylinder model (blue) against the rest of the Polθ-hel dimer shown in the surface representation (grey). An overlay of the cryoEM density over the atomic model of the relocated D5 is shown on the right. (d) Structure around the acidic patch of the U-shape structure in D5. Basic residues R637 and K640 of D4 in the other protomer electrostatically engage with the acidic patch. (e) Structure around the F839 of the U-shape structure in D5. The F839 is bound at the hydrophobic cavity formed by L614, F632, L769, and W771 of D4 in the other protomer. (f) Proposed model of the mobile D5 during the MMEJ.

Fig. 3. DNA-helicase channel interactions. (a) Overview of the 3'-overhang ssDNA (red sticks) threading through the helicase channel (surface model color-coded by subdomains). The direction of DNA translocation is indicated by an arrow. (b and c) Structure of ssDNA across the helicase channel, showing the atomic model of ssDNA (sticks) near the channel entrance (b) and exit (c), overlaid with the corresponding cryoEM density (mesh). (d) Detailed DNA-protein interactions around the channel entrance featuring the 3'-overhang DNA nucleotides T1-T4 (sticks) with surrounding amino acids (green sticks). (e) Detailed DNA-protein interactions around the channel exit featuring the 3'-overhang DNA nucleotides T4-T8 (sticks) with surrounding amino acids (green sticks). (f) Schematic of the ssDNA strand inside the Pol0-hel channel and interactions with residues from subdomains D1, D2, and D4. (g and h) Surface electrostatic potential of Pol0-hel. The positively charged patches near channel entrance (g) and exit (h) responsible for ssDNA capture. The surface area is colored according to the calculated electrostatic potential from -10.0 kT/e (red) to +10.0 kT/e (blue).

Fig. 4. DNA-induced conformational changes in Pol0-hel dimer. (a) Superimposition of the Pol0-hel dimer structure in the apo form (cylinder model in light pink) and the complexes with DNA in MH search state (light blue, left) and MH annealed state (lime, right). The bound DNA and the mobile domain D5 have been omitted from the models for clarity. (b) Superimposition of the Pol0-hel DNA complex in MH annealed state 1 dimer form with the dimer unit of the apo form tetramer. A steric clash between the DNA-bound dimer and the other dimer unit of the apo form tetramer is highlighted. (c) Superimposition of the apo form (ribbon model in light pink) and the MH annealed state (lime) near the exit of the helicase channel. The movement of the arginine helix in D1 is indicated by arrows. The ratchet helix was used for alignment in the superimposition.