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Abstract

Motivation: With the increased reliance on multi-omics data for bulk and single cell analyses, the availability of robust approaches to perform
unsupervised analysis for clustering, visualization, and feature selection is imperative. Joint dimensionality reduction methods can be applied
to multi-omics datasets to derive a global sample embedding analogous to single-omic techniques such as Principal Components Analysis
(PCA). Multiple co-inertia analysis (MCIA) is a method for joint dimensionality reduction that maximizes the covariance between block- and
global-level embeddings. Current implementations for MCIA are not optimized for large datasets such such as those arising from single cell

studies, and lack capabilities with respect to embedding new data.

Results: We introduce nipalsMCIA, an MCIA implementation that solves the objective function using an extension to Non-linear lterative
Partial Least Squares (NIPALS), and shows significant speed-up over earlier implementations that rely on eigendecompositions for single
cell multi-omics data. It also removes the dependence on an eigendecomposition for calculating the variance explained, and allows users to
perform out-of-sample embedding for new data. nipalsMCIA provides users with a variety of pre-processing and parameter options, as well as
ease of functionality for down-stream analysis of single-omic and global-embedding factors.

Availability: nipalsMCIA is available as a BioConductor package at https://bioconductor.org/packages/release/bioc/html/nipalsMCIA.html, and
includes detailed documentation and application vignettes. Supplementary Materials are available online.
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1. Introduction

Multiple co-inertia analysis (MCIA) is a member of the family of joint
dimensionality reduction (jDR) methods that extend unsupervised
dimension reduction techniques such as Principal Components Anal-
ysis (PCA) and Non-negative Matrix Factorization (NMF) to datasets
with multiple data blocks (alternatively called views) [1, 2]. Such meth-
ods, also known as multi-block or multi-view analysis algorithms, are
becoming increasingly important in the field of bioinformatics, where
data is often collected simultaneously using multiple omics technolo-
gies such as transcriptomics, proteomics, epigenomics, metabolomics,
etc. [3].

Here, we present a new implementation in R/Bioconductor of
MCIA, nipalsMCIA, that uses an extension with proof of monotonic
convergence of Non-linear Iterative Partial Least Squares (NIPALS)
to solve the MCIA optimization problem [4]. This implementation
shows significant speed-up over existing Singular Value Decomposi-
tion (SVD)-based approaches for MCIA [5, 6] on large datasets. Fur-
thermore, nipalsMCIA offers users several options for pre-processing
and deflation to customize algorithm performance, methodology
to perform out-of-sample global embedding, and analysis and visu-
alization capabilities for efficient results interpretation. We show
application of nipalsMCIA to both bulk and single cell multi-omics
data. The overall workflow that includes the optimization steps and
analyses for nipalsMCIA is outlined in Figure 1.

2. MCIA: theoretical background

2.1. Notation and preliminaries

Scalars, vectors, and matrices are represented in lowercase script (a),
lowercase script with a vector symbol (@) and bold uppercase script
(A), respectively. The ith column vector of a matrix A is denoted a®.
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Since we are evaluating several datasets (termed blocks) simultane-
ously, the sample-by-feature data matrix for the kth block is labeled
as X;.. We denote the column-wise concatenation of N data blocks as
the ‘global’ data matrix X = [X|...|Xy].

2.2, Loadings and Scores

MCIA extends the concept from PCA of deriving principal compo-
nents (which we term scores) and loadings (which we also term load-
ings) to the multi-block setting. The loadings are a set of optimal axes
in feature space, while the scores are the projection coefficients of the
samples onto these axes. Unlike PCA, MCIA generates two types of
scores and loadings, one set for all the data (global scores/loadings),
and the other for the individual omics (block scores/loadings). The
number of scores/loadings generated is equal to the dimension of the
MCIA embedding of the data, which we will denote as R.

Originally, the optimization criteria for MCIA were presented using
the concept of statistical triplets [7, 5]. The criteria can equivalently be
represented as a parameterized member of the Regularized Canonical
Correlation Analysis (RGCCA) family of multi-variate dimension
reduction methods [2, 8], which is consistent with the optimization
criteria that is solved by an extension of the NIPALS algorithm [4].
We review these criteria below.

In the multi-block dataset, each block must share the same n sam-
ples (rows), but the number of features (columns) p, in each block
k can vary. nipalsMCIA generates distinct block-level scores (F}*X)

and loadings (A,”**), and global scores (F™X) and loadings (AP*R),

where p = ZLI Dk, and R is the dimension of the embedding. The
scores, loadings, and data matrices are related as follows,

F=[fO..f®]=X[g"»...d"] =XA

21 2(R) -(1 (R
B =110 01 = Xeldy - a0 = X, A, ¢))
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Figure 1. Workflow overview for nipalsMCIA performed on the three-block NCI60 data from the main text. a) A breakdown of the NIPALS algorithm for
performing MCIA. Data blocks are normalized before scores and loadings are computed to satisfy the objective function. Higher-order results are then
computed after the data has been deflated with the current scores or loadings. b) Scree plot for the proportion of variance explained by each order of global
score/loading. c) Scheme for interpreting the global loadings and scores. (i) Global scores are calculated from the global data matrix and global loadings. (ii)
Global scores represent low-dimensional embeddings of the data used to cluster samples via hierarchical clustering. Colors represent the three different cancer
types associated with each sample (iii) Block contributions vectors plotted to visualize the weight of each block on each order of global score. (iv) The first
global loadings vector is plotted to identify the top features for the first global score.

for all blocks k = 1, ..., N (Figure 1c, i).

Scores and loadings are computed by nipalsMCIA to satisfy the
objective function and orthogonality constraints

N
argmax Z covz(Xka(J) Xay)
a9,..a0.a0 k=1
20 _ [79 7050
ijs f(J) = [fl fN ]w(f),

(J) (j)
wy’, ...

@hra =3 @

where w") = (w; (’))T is a vector of block contributions to
the j® order global score, w1th constraint |[@w"||, = 1 for all orders
Jj =1,..,Rasin[4], and §;; is the Kronecker delta function. Equation
(2) is solved separately for each order (j) up to the dimension of
the embedding, R. The block scores {f, ", F (2) . (R)} represent a
R-dimensional embedding of the samples in the orthonormal set of
block loadings vectors for block k. This contrasts with Consensus
PCA (CPCA), which solves for the same objective function as MCIA,
but with an orthogonality constraint on the global scores instead of
the block loadings [9]. In nipalsMCIA, users can choose to use either
method.

2.3. NIPALS strategy for computing MCIA

Several methods exist for computing MCIA, including direct com-
putation from the principal components of the covariance matrix
(see [2]). The implementation in nipalsMCIA uses an extension of
Nonlinear Iterative Partial Least Squares method (NIPALS) [4]. NI-
PALS was first introduced as an iterative (power) method to estimate
principal components [10, 11], and later extended to the multi-block
setting [12]. A modification of the multi-block algorithm was proven
to have monotonic convergence [4]. Since the NIPALS procedure is
iterative, it does not require a full eigendecomposition. Moreover,
it easily enables a choice of deflation methods. In nipalsMCIA, the
stable multi-block extension to NIPALS [4] is implemented with de-
flation options for both MCIA and CPCA. Additionally, variance
explained by each component is also calculated without reference to
an eigendecomposition calculation.

3. Usage and functionality

Since MCIA is designed to handle multiple omics data blocks, pre-
processing options are available both at within- and whole-block
levels. The latter is recommended to account for potential disparities
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in block size.

3.1. Analysis & Interpretation

The nipals_multiblock function is used to run MCIA in
nipalsMCIA. The function outputs an object of the NipalsResult
class, which includes the global scores and loadings, block scores
and loadings, the global score eigenvalues, and the block score con-
tributions vector for all orders up to the maximum specified via the
num_PCs argument. The global scores represent the projection of the
multi-block data in the reduced space, and can be plotted with or
without corresponding block scores (Figure 1C, ii). The contribution
of each block to the global score can be easily visualized (Figure 1C,
iii), along with high-scoring features (Figure 1C, iv).

Vignettes providing full analysis pipelines using nipalsMCIA for
bulk and single cell data are available with the package. The example
bulk data is a subset of the National Cancer Institute 60 tumor-cell line
screen (NCI60 data) [13, 8]. It includes RNA-Seq, miRNA, and pro-
tein data from 21 cell lines that correspond to three cancer subtypes
(brain, leukemia, and melanoma). The single cell data is sourced from
10x Genomics and includes both gene expression and cell surface an-
tibody data [14]. The single cell analysis vignette includes instruction
on how to obtain, process, and prepare the dataset for nipalsMCIA,
along with a demonstration of the capability of nipalsMCIA for ef-
fectively clustering known cell types in a computationally efficient
manner.

3.2. Out-of-sample embedding

The loadings vectors generated by MCIA on a dataset X represent
linear combinations of the original features of X. Therefore, after
computing MCIA on a training dataset, one can use the associated
loadings vectors to predict global embeddings for a test dataset of
new observations of the same features. nipalsMCIA provides the
predict_gs function for this task.

This can be valuable for testing the quality of the embedding, as
well as embedding new data without rerunning the decomposition.
‘We provide a vignette in the package showing how this can be done
using the NCI60 data set, using 70% of the data to train the model,
and then deriving global scores for the remaining 30%.

4. Computation time comparison for MCIA algorithms

We used three datasets to compare the performance of nipalsMCIA
with two other implementations of MCIA: MOGSA [6], and Omicade
[5]. The three datasets are composed of the NCI60 data, the 10x single
cell data filtered for the top 2000 most variable genes, and the same
single cell data without filtering. Data pre-processing was standard-
ized across all algorithms and a decomposition for 10 factors was
performed across all datasets and implementations. All experiments
were performed in R 4.3.0 on a MacBook with 3.2GHz and 16GB
RAM. The dimensions of the datasets and performance are shown
in Table 1. We observe that while MOGSA has slightly faster perfor-
mance than nipalsMCIA and Omicade on the smaller NCI60 dataset,
nipalsMCIA is an order of magnitude faster for both the filtered and
full single cell datasets, even when using the ‘fast SVD’ option in
MOGSA. The speedup offered by nipalsMCIA thus opens up capabil-
ities for practical deployment of nipalsMCIA on a larger variety of
datasets, including high-dimensional single cell data.

5. Discussion

The accessibility of next-generation sequencing and other high-
throughput biological assays are resulting in an increase of multi-
block (or multi-modal) datasets [15, 16, 17, 18]. Analysis of these data
are facilitated by the application of joint dimensionality reduction
methods such as MCIA. nipalsMCIA is a comprehensive R package

Due to the slow performance of Moesa without the fast SVD option and 0Omicade, only
nipalsMCIA and MOGSA with the fast SVD option were tested for the full single cell dataset.
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Table 1. Computation time (in seconds) comparison for different MCIA
implementations and datasets.

Implementation Dataset (dimension)
NCI60 Single cell (filtered) Single cell (full)’
21 x (12895, 547, 7016) 4193 x (2000, 32) 4193 x (33538, 32)
nipalsMCIA 2.3 15.32 289.46
MOGSA 0.53 519.55 NA
MOGSA (fast SVD) 0.38 434.84 13,840.66
Omicade 2.66 1089.53 NA

thatimplements MCIA in a highly efficient manner using the NIPALS
algorithm. The package features various pre-processing and analysis
options, is much faster for large input datsets compared with existing
packages, supports the projection for out-of-sample scores, and offers
visualization options for scores and top-magnitude loadings at each
order.

6. Supplementary Materials

The Supplementary Materials include additional information on the
NIPALS algorithm implemented in nipalsMCIA, in-depth discussion
of data pre-processing options, detailed overview of the calculations
for variance explained and out-of-sample embedding, as well as a
summary of the results (detailed more fully in the vignettes) corre-
sponding to out-of-sample embedding of NCI60 data and application
of nipalsMCIA to single cell data.
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