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SUMMARY

Efforts to cure BCR::ABL1 B cell acute lymphoblastic leukemia (Ph+ ALL) solely through
inhibition of ABL1 kinase activity have thus far been insufficient despite the availability of tyrosine
kinase inhibitors (TKIs) with broad activity against resistance mutants. The mechanisms that
drive persistence within minimal residual disease (MRD) remain poorly understood and therefore
untargeted. Utilizing 13 patient-derived xenograft (PDX) models and clinical trial specimens of
Ph+ ALL, we examined how genetic and transcriptional features co-evolve to drive progression
during prolonged TKI response. Our work reveals a landscape of cooperative mutational and
transcriptional escape mechanisms that differ from those causing resistance to first generation
TKIls. By analyzing MRD during remission, we show that the same resistance mutation can either
increase or decrease cellular fithess depending on transcriptional state. We further demonstrate
that directly targeting transcriptional state-associated vulnerabilities at MRD can overcome
BCR::ABL1 independence, suggesting a new paradigm for rationally eradicating MRD prior to
relapse. Finally, we illustrate how cell mass measurements of leukemia cells can be used to
rapidly monitor dominant transcriptional features of Ph+ ALL to help rationally guide therapeutic

selection from low-input samples.
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HIGHLIGHTS:
e Relapse after remission on TKI can harbor mutations in ABL1, RAS, or neither
e Mutations and development-like cell state dictate fitness in residual disease
e Co-targeting cell state and ABL1 markedly reduces MRD

e Biophysical measurements provide an integrative, rapid measurement of cell state
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INTRODUCTION

A large fraction of patients with cancer achieve complete remission at some point during their
course of therapy, either through surgery, chemotherapy, radiation, or a combination thereof.
Nevertheless, many of these patients relapse or progress owing to a small pool of remaining
cancer cells commonly referred to as minimal residual disease (MRD). This is even true for
cancers with clear, targetable oncogene dependencies such as BCR::ABL1-rearranged B cell
acute lymphoblastic leukemia (Ph+ ALL). Despite highly effective tyrosine kinase inhibitors (TKI)
with potent activity against multiple resistance-conferring point mutations in BCR::ABL1, relapse
during single-agent treatment is nearly universal.'?3 Unfortunately, accumulating evidence casts
doubt on the potential for up-front combinations of next-generation TKIs to fully overcome
subclonal heterogeneity and thereby eradicate MRD.*

While most patients with BCR::ABL1-driven disease relapse with kinase domain
mutations, 30-40% of patients progress with BCR::ABL1-independent mechanisms that are
poorly understood.® Previous studies have identified developmental heterogeneity across ALL,%’
as well as in Ph+ ALL specifically.?® This developmental heterogeneity has also been linked to
treatment response for multiple classes of inhibitors.®"'® Recent work specifically in Ph+ ALL
examined developmental subtypes that align with earlier (Early-Pro) and later developmental
(Late-Pro) B cell features, finding that the former was associated with poor overall survival upon
treatment with the first-generation TKI imatinib.® Commitment to earlier or later stages of
development has been associated with cooperating alterations in lineage-defining transcription
factors (EBF1 deletion or deletions in IKZF1, PAX5, and CDKNZ2A, respectively), suggesting that
developmental state adherence —and its associated therapeutic response — may be mutationally
driven and static upon leukemic transformation.®® However, other studies have nominated the
potential for a leukemia’s dominant developmental states to shift in response to therapeutic
pressure. lllustratively, non-mutational mechanisms of chemotherapy resistance have been
observed in ALL patient-derived xenografts (PDXs), whereby leukemia cells transiently adopt a
dormant, stem-like state at MRD;"" others have demonstrated post-treatment shifts in the
abundance of dormant subpopulations mimicking earlier developmental stages.’ It has also been
suggested that TKl-resistant Ph+ ALL cells in a later developmental state proliferate by activating
signaling that typically occurs downstream of the pre-B cell receptor (pre-BCR), despite the
absence of a functionally expressed pre-BCR in Ph+ ALL.'®'? It remains unclear which attributes
allow for persistence during remission and if mutational or developmental phenotypes are the

dominant drivers of resistance.
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Accordingly, resistance to ABL1 TKIs is multifactorial and extends beyond ABLA1
resistance mutations, suggesting that informed strategies to convert deep remissions into cures
may require incorporating orthogonal measurements of the non-genetic determinants of cellular
state (e.g. via single-cell transcriptomics).’'"> However, there are limited studies describing
how mutations participate (or clash) with these additional cellular features to drive persistence
and clonal expansion under TKI pressure. Though recent evidence from our group and others
indicates that some mutations are enriched in specific transcriptional backgrounds,®'17:1819 the
relative importance of mutational and transcriptional drivers to MRD persistence and relapse is
not known. Furthermore, there are significant technical challenges associated with isolating and
profiling rare residual cells that have limited their characterization largely to mutational profiling
— a problem affecting essentially all cancer types.'>?°2" While MRD enumeration and mutational
monitoring have been used to some clinical benefit,?#%*2* the translational utility of understanding
non-mutational attributes from these rare cells has yet to be demonstrated.?' These constraints,
coupled with the heterogeneity among MRD phenotypes both within and between patients, have
historically made it difficult to nominate specific therapeutic strategies to combat MRD. We and
others previously proposed that direct interrogation of MRD cells to identify dependencies for
individual patients could offer clinical benefit if approaches existed to define those dependences
in “real-time”.?"*® This would require a rapid strategy applicable to individual cells that could
distinguish patients most likely to respond to one of several available therapeutic options.

Here, to better understand how both mutational and transcriptional variation coordinate
to drive relapse within MRD, we defined the biology of Ph+ ALL cells at different stages of
treatment and across a diversity of models and human patients. We reveal unique and targetable
characteristics of Ph+ ALL MRD and nominate combination strategies to eradicate residual

disease.

RESULTS

Modeling disease kinetics in response to combination TKI in Ph+ ALL PDX models
Although treatment with allosteric BCR::ABL1 inhibitors drives deep remissions in patients,
nearly all will relapse if not consolidated with allogeneic stem cell transplantation. The recent
development of asciminib (ABL0O01), an allosteric inhibitor of BCR::ABL1,%® created the first
opportunity to address whether dual inhibition of BCR::ABL1 could eradicate Ph+ leukemias
(Figure 1A). We combined orthosteric (ponatinib; 40 mg/kg/day) and allosteric (asciminib; 30
mg/kg/day) inhibitors in a diverse cohort of Ph+ ALL PDX models (n=13 models;*” 190 mice
total) to assess how pre-existing clinical and molecular features would dictate response to
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sustained oncogene withdrawal within a statistically powered, phase ll-like preclinical trial
(Figures 1A & 1B; see Methods and Tables S1 & S2). All mice receiving ponatinib or
combination therapy, and 92% of subjects receiving asciminib monotherapy who survived
beyond one week achieved complete remission (CR), corroborating the dependence of these
leukemias on BCR::ABL1 (Figures S1A & S1B). The durations of remission with ponatinib-
based regimens exceeded those of asciminib monotherapy, but we observed no difference
between the combination and ponatinib monotherapy arms (p=0.70; Figures 1C & S1C).
Notably, survival outcomes between mice on each treatment arm did not correlate with PDX line
characteristics associated with inferior treatment response in other contexts, such as increased
prior lines of therapy,” IKZF1 deletion,® and pre-existing ABL1 resistance mutations (Figure
S1D).2* All mice were ultimately euthanized, either for disease progression or clinical toxicity.
Even the 7 mice euthanized for clinical toxicity after achieving a durable response — three of
whom maintained CR for >12 months on study (Figure S1B) — harbored residual ALL in the
bone marrow and/or spleen when sacrificed. These data demonstrate that while single-agent
ponatinib and combination therapy confer deep and prolonged clinical remissions, BCR::ABL1

inhibition alone was insufficient to fully eradicate human leukemias in vivo.

Divergent mutational patterns upon oncogene inhibition in Ph+ B-ALL

To chart landscapes of genetic resistance to single agent and combination TKIl in Ph+ ALL, we
sequenced 142 PDX samples (74 trial and 68 other TKI-treated leukemias) and examined
patterns of acquisition within known driver mutations in ALL across multiple phases of treatment
(Figure S2A; Table S3; see Methods). In general, alterations in ABL1 or RAS pathway genes
consistently emerged upon therapeutic pressure compared to mutations affecting B cell survival,
lineage commitment, or cell cycle control (Figures S2A & S2B). Of relapsed leukemias, 35%
harbored mutations in BCR::ABL1, frequently compound mutations involving T315I plus at least
one other high-level resistance mutation (e.g., Y253H, F311L, F359V) or an activating mutation
in STAT5A (collectively termed ‘ABL pathway’ mutations). A separate 24% relapsed with
activating mutations in RAS pathway genes — specifically KRAS, NRAS, BRAF, and/or PTPN11
— representing emergent alternate pathway utilization in these oncogene-addicted leukemias
(Figures 1D & S2C). Acquisition of driver pathway mutations was influenced by treatment arm
— mice treated with asciminib predominantly acquired ABL pathway mutations at relapse, mice
treated with ponatinib predominantly acquired RAS pathway mutations, and mice on the dual-
treatment arm acquired mutations on either ABL or RAS pathways (Figure S2B). Samples
harboring RAS pathway mutations were mutually exclusive with those involving ABL pathway


https://doi.org/10.1101/2024.06.06.597767
http://creativecommons.org/licenses/by-nc-nd/4.0/

161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.06.597767; this version posted June 10, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

mutations within each PDX line at both pretreatment and progression time points (Figure 1E).
The remaining tumors (41%) harbored no driver mutations in either ABL or RAS pathway genes,
and the majority of these (74%) had no apparent genetic lesions explaining phenotypic
resistance by whole exome sequencing (Figures 1D, S2A, & S2C). These data suggest three
recurrent patterns for resistance whereby leukemias progress on therapy with either ABL
pathway, RAS pathway, or no discernible gain-of-function mutations.

Ph+ ALL leukemic cells are defined by hybrid developmental states

Given the lack of discernible mutation-driven resistance in a substantial fraction of our cohort
(Figures 1D & S2A), we hypothesized that resistance to single-agent or combination TKl in Ph+
ALL may be understood best by characterizing both mutational and transcriptional state
heterogeneity. To this end, we applied single-cell RNA-sequencing (scRNA-seq) to define
transcriptional states in Ph+ ALL and identify leukemic phenotypes associated with progression.
Using Seq-Well S3*" we generated a dataset of 42,667 single-cell transcriptomes from 52
samples spanning 11 PDX lines from our phase lI-like pre-clinical trial and 5 patients on a clinical
trial testing dasatinib (a second-generation orthosteric BCR::ABL1 inhibitor) plus asciminib for
previously untreated Ph+ ALL (Figure 2A; NCT02081378; see Methods). We then performed
consensus non-negative matrix factorization (cNMF) over each leukemia in this dataset to
identify intratumoral gene expression programs (GEPs; Methods). Hierarchical clustering of the
126 GEPs defined across individual leukemias revealed 7 shared patterns (meta-GEPs, or
“‘mGEPSs”) of covarying gene programming that were present in at least 8 samples (Figures 2B,
2C & S3A; Table S4). Two mGEPs were defined by genes associated with active stages of the
cell cycle (e.g., CENPF, MKI67, MCM6, E2F2) and another mGEP specifically associated with
MYC activity (e.g., HSP90AB1, NMET). The remaining four mGEPs associated with various
stages of B cell development, either containing Pro-B cell genes (e.g., DNTT, CSGALNACTT1),
genes associated with later stages of B cell development —i.e., Pre-Bll (e.g., CD38, IRF4), and
Immature B (e.g., CD79A, HLA-DPB1) — or progenitor-associated genes co-expressed with
Immature B genes (e.g., CD44, CSF1R and HLA-DQA1, IRF8). These data suggest that aspects
of normal B cell development are captured as major axes of intratumoral transcriptional variation
in Ph+ ALL.

In several cases, genes defining multiple B lineage developmental stages were enriched
in the same GEP and co-expressed within individual leukemia cells (Figures S3A & S3B).”*
We next sought to better understand these stage-specific “hybrid” expression patterns by
utilizing a supervised machine learning approach to resolve the relationship between leukemia
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cells and nonmalignant B cell development. To enable this comparison, we first generated a
reference dataset of human hematopoiesis from the bone marrow aspirates of healthy donors
(n=7), profiling both sorted and unsorted fractions to ensure the proper B cell developmental
populations were captured (Figures S4A & S4B; see Methods). By performing iterative
clustering, we identified 13 cell types spanning the HSC progenitor, myeloid, erythroid, and
lymphoid lineages (n = 13,643 cells; Figures S4C & S4D); each cell type population contained
cells from at least 6 of 7 donors (Figures S4E & S4F). To enable leukemic cell reference
mapping and comparison, we trained a random-forest (RF) classifier on the cell type-labeled
reference scRNA-seq dataset using 10-fold cross-validation (Figures 2D & S5A; see Methods).
We ensured this model was cueing on biologically-relevant expression patterns by using
permutation tests to identify the top 200 features needed to accurately classify single-cell
transcriptomes, as well as testing its accuracy on an external scRNA-seq dataset (Figures S5B
& S5C)."® We then assigned individual B-ALL cells to their most likely developmental state using
our RF classifier (Figure 2D). Across all malignant cells, the RF model assigned highest
classification probabilities for the Pro-B cell type, followed by Pre-Bl, Pre-Bll, HSC, and
Immature B cell types (Figures 2E & 2F); 1% of leukemia cells that classified into non-B lineage
cell types, such as T cells, were poor quality and removed from downstream analyses (Figure
S5D).

Corroborating our observations with NMF, marker genes that were restricted to individual
stages of B cell development in healthy cells were routinely co-expressed in leukemia cells
(Figure 2G). For example, within leukemic cells classified as Pro-B, we observed a dominant
secondary RF classification probability for an earlier (HSC) or later (Pre-Bl, Pre-Bll, Immature
B) stage of B cell development. We therefore characterized the transcriptional heterogeneity in
Ph+ ALL as a continuum of hybrid states according to their non-Pro-B RF classification
probability (Figure 2H). This revealed transcriptionally hybrid populations with underlying ProB-
like gene-expression, co-expressed with either progenitor-like genes (HSC-hyb) or genes
implicated in later developmental phenotypes (PreB-hyb or ImmatureB-hyb) (Figures S6A-C).
Genes correlated with these prediction probabilities reflected markers of earlier and later stages
of B cell development (Figures S5E & S6A; Table S5), and largely agreed with our unbiased
NMF results (Figures S3A & S3C). All three hybrid populations were characterized by predicted
utilization of canonical transcription factors (TFs) active in the healthy reference cell subsets
(e.g., CREB1, MYC in HSC-hyb; E2F2, FOXM1 in PreB-hyb; IRF4, FOXO3, CIITA in ImmatureB-
hyb), as well as aberrant TF activity (e.g., IRF1, STAT1 in ImmatureB-hyb; Figure S6D; see
Methods). Thus, anomalous co-expression of stage-associated genes in both primary patient
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samples and PDX models defines a hybrid development-like continuum in Ph+ ALL and
implicates promiscuous, but still coherent, developmental transcriptional states.

Hybrid development states are associated with treatment response and restricted
mutation acquisition

We next asked whether shifts in this hybrid development-like continuum associated with
resistance to combination TKI. Overall, progression samples were characterized by decreased
hybrid population diversity, suggesting a restriction toward a single hybrid state (Figure 3A).
Differential expression analysis across all PDX tumors revealed genes included in the ProB-like
(e.g., SOCS2, DNTT) and HSC-hyb (e.g., CD34, ID2, CD99) signatures enriched at pre-
treatment while genes implicated in the more mature PreB-hyb (e.g., TCL1A, VPREBS, IGLL1)
and ImmatureB-hyb (e.g., MS4A1, CD74, HLA-DRBT) signatures were up-regulated at
progression, implicating a shift into later developmental stages (Figure 3B). However, not all
PDX models shifted toward more mature hybrid transcriptional states at progression. DFAB-
25157, which progressed with mutations in ABL7 (Figure S2C; Table S3), remained dominated
by ProB-like and HSC-hyb states at both pretreatment and progression compared to other PDX
lines (Figures 3C & S7A). Leukemias that progressed with RAS pathway mutations either
contained a majority of cells expressing PreB-hyb and ImmatureB-hyb signatures at both pre-
treatment and progression (CBAB-30198, DFAB-54880), or increased proportions of malignant
cells with high PreB- and ImmatureB-hyb gene expression at progression (DFAB-62208; Figure
S2C; Table S3). Notably, the two PDX lines that progressed with neither ABL nor RAS pathway
mutations (CBAB-75914, CBAB-12402; Figure S2C; Table S3) demonstrated the strongest
shifts toward more mature hybrid developmental bins.

This enrichment for more mature phenotypes at progression was a strong departure from
patterns seen in Ph+ ALL treated with chemotherapy' or imatinib,® where progression on
therapy was driven by less mature or stem-like cells. We sought corroborating evidence for this
observation in our PDX trial samples using standard immunophenotyping approaches (Figure
S7B; see Methods). Mirroring the transcriptional data, most pre-treatment leukemias harbored
multiple subpopulations across the B cell developmental trajectory and showed a similar
restriction in developmental state diversity at progression (Figures 3D & S7C). These
immunophenotyping data also corroborated the overall enrichment of more developmentally
mature phenotypes at progression (Figure S7C), specifically the predominance of more mature
CD34-negative developmental phenotypes in leukemias that progressed with RAS pathway


https://doi.org/10.1101/2024.06.06.597767
http://creativecommons.org/licenses/by-nc-nd/4.0/

262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.06.597767; this version posted June 10, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

mutations or no mutations (p<0.001 from Dirichlet regression for both mutation group
comparisons to ABL pathway-mutated leukemias; Figures 3E, 3F & S7D).

We next sought direct clinical evidence for the relevance of developmentally-hybrid
programs in resistance to combination TKIl. We prospectively collected serial single-cell
measurements from the bone marrow of 2 patients (n=5 individual samples, n=7,649 cells;
Figure 3G; Table S6) enrolled on a phase 1 trial testing dasatinib in combination with asciminib
and prednisone. Clinical activity was assessed by the reduction in bone marrow BCR::ABL1
MRNA transcript levels after three cycles of treatment (day 85; NCT02081378). Samples from
patient BIAB-16768 maintained a predominant population of ProB-like malignant cells over the
course of treatment and entered remission before 85 days of treatment (3-log reduction in bone
marrow BCR::ABL1 detected by qRT-PCR). By contrast, samples from patient DFAB-71417
rapidly shifted toward later developmental hybrid states (PreB-hyb and ImmatureB-hyb) by day
28 on therapy and failed to respond by day 85 (1-log reduction in bone marrow BCR::ABL1
detected by qRT-PCR; Figures 3G & 3H). Combined with our PDX analysis, these results
provide preliminary evidence that more mature developmentally-hybrid expression programs

can drive resistance to dual ABL1 inhibition.

Longitudinal monitoring of cell state and mutational co-evolution
Collectively, our data nominate 3 potential routes of resistance to ABL1 inhibition in Ph+ ALL: 1)
mutational reactivation of ABL signaling in progenitor-like states, 2) mutational activation of RAS
signaling in later-stage hybrid states, or 3) transcriptional shifts toward later developmental
hybrid states without accompanying mutational alterations. To directly explore whether these
routes are recoverable at multiple timepoints during ABL1 inhibition, we next examined
genotype-phenotype co-evolution by profiling single cells from pre-treatment, MRD (21 days on
therapy), and progression in our PDX models, selecting individual leukemias that represent each
putative mechanism of resistance (Figure 4A; DFAB-25157, ABL1 reactivation; DFAB-62208,
RAS activation; CBAB-12402, no mutations). At each stage of therapy, we profiled leukemia
cells using SMART-Seq2 (SS2)-based scRNA-seq to increase information capture from low cell
numbers at remission and to facilitate matched single nucleotide variant (SNV) detection in the
same single cells. For these longitudinal studies, we treated mice with single agent ponatinib
(see Methods) since it performed equivalently to combination TKI therapy (Figure 1C) and is
directly relevant to treatment being used in patients.

First, we ensured the robustness of our RF hematopoietic developmental classifier on
full-length, SS2 transcriptomes from both healthy (n = 421; same donors as Figure S4) and
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leukemic cells (n = 3,641; Figure S8A; see Methods). Using our RF framework, we
independently derived the leukemic cellular states in our SS2 dataset (Figures S8B-D; Table
S7), finding they highly correlated with our Seq-Well-derived hybrid phenotypes — specifically in
early progenitor (Progenitor-like vs. HSC-hyb) and more mature (PreB-like vs. PreB-hyb and
ImmatureB-hyb) leukemic cell states (Figure S8E). Given this coherence, hereafter we refer to
Progenitor-like and PreB-like SS2 programs as HSC-hyb and PreB-hyb respectively for
simplicity. We next detected mutated transcripts identified from bulk DNA sequencing within
individual cells from our SS2 data (Figure S9A; Table S3; see Methods). The number of
detected mutant transcripts in SS2 libraries was limited by the average expression of the
corresponding gene, with higher rates of detection for RAS pathway single-nucleotide variants
(SNVs; GNB1, NRAS, KRAS, PTPN11) compared to ABL pathway SNVs (ABL1, STAT5A)
(Figure S9B). For highly expressed target genes, however, the proportion of single cells
harboring mutations corresponded with the variant allele frequency measured in bulk
sequencing of the same tumor (Figure S9C; Table S3), highlighting that SS2 provides sufficient
SNV detection to capture the kinetics of RAS pathway mutations in our dataset. Furthermore,
single-cell profiling enabled highly sensitive detection of rare malignant cells harboring mutations
with less than 3% VAF from bulk sequencing, allowing comparisons of dominant and rare
subclones (Figure S9C). Finally, we identified copy number variations (CNVs) in the SS2 profiles
using inferCNV (see Methods). In combination with transcriptional state information, these data
provided a detailed, high-resolution picture of the co-evolution of mutational and transcriptional
heterogeneity in B-ALL single cells over the course of ponatinib treatment (Figures 4B & S9D-
F).

Cell state dictates fitness and restricts growth of RAS-mutant cells in remission

Using this high-resolution dataset, we first evaluated changes in hybrid developmental state
frequency between pre-treatment and residual cells in each model during treatment with
ponatinib (Figure 4C). CBAB-12402 was transcriptionally dynamic and demonstrated a
significant shift towards a dominant PreB-hyb phenotype among MRD cells that was conserved
at progression, mirroring patterns seen in the larger PDX trial for this model (Figures 3C & S9F).
Transcriptional states in MRD and progression leukemia cells from DFAB-62208 displayed a
minor shift forward to stronger PreB-hyb expression compared to pre-treatment. DFAB-25157
was variable along the progenitor to mature phenotype continuum at both pretreatment and
progression, driven by dominant HSC-hyb gene expression. A subset of cells from this model
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co-expressed HSC-hyb and PreB-hyb states in MRD, albeit at much lower levels than PreB-hyb
scores in the other two models (Figures S9E-G).

Point mutations in NRAS and KRAS from the same leukemia cells revealed surprising
dynamics across PDX models and stages of therapy (Figure 4D). We detected very low
frequency RAS mutations in CBAB-12402 at pre-treatment that were not enriched at
progression, in agreement with bulk DNA sequencing data that did not identify actionable driver
mutations (Figure S2C; Table S3), thus implicating a “state-shift” only mechanism enabling
progression. DFAB-62208 also harbored low-frequency KRAS and NRAS point mutations at
pretreatment; a single NRAS-mutant, cycling cell was observed in remission and both KRAS-
and NRAS-mutant clones expanded at progression (mirroring bulk sequencing data; Figure
S2C; Table S3), suggesting the preexisting PreB-hyb transcriptional state was permissive for
expansion of RAS-mutant clones. In DFAB-25157, we observed a significant increase in the
proportion of KRAS mutant malignant cells in MRD (3 of 6 mice at MRD harbored identifiable
RAS-mutant cells) compared to pretreatment leukemic cells, a finding we confirmed using bulk
DNA sequencing from a separate sample (Table S3; Mouse 4HO, KRAS AF 0.75). This was
surprising given that this model does not progress on therapy with emergent RAS mutations
(Figures 4D & S2C). Indeed, considering both single-cell CNV and SNV clones (Figures S9D
& S9E), we found no evidence of outright genetically-driven clonal selection in DFAB-25157
despite the enrichment of RAS-mutant cells in remission (Figure 4E). In this case, our data
suggest that RAS-family mutations in cells with a discordant developmental cell state permit
survival (or persistence) in the context of ABL inhibition but confer a fitness disadvantage that
suppresses their expansion.

We next interrogated the single-cell transcriptomes of remission DFAB-25157 cells to
define mechanisms for this apparent state-genotype incompatibility. KRAS-mutant leukemic
cells from DFAB-25157 at MRD upregulated genes that positively regulate senescence (e.g.,
CCL2, TOB1) and negatively regulate cell cycle (e.g., CDKN2A) compared to KRAS-mutant
leukemia cells from all other time points and PDX lines (Figure 4F). To evaluate how this
signature evolves over the course of therapy, we scored individual cells for these upregulated
senescence-associated genes (Senescence-like score; Table S8). KRAS-mutant clones with
similar senescence-like signatures were present at pretreatment in cells with co-incident HSC-
hyb phenotypes, whereas PreB-hyb KRAS-mutant leukemia cells across other treatment stages
and PDX lines had low senescence-like scores (Figure S9G). These data suggest the fitness of
RAS mutant clones is influenced by the compatibility of transcriptional state and genotype: the
expression of senescence-implicated genes is restricted to HSC-hyb cells harboring RAS
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mutations, whereas RAS-mutant PreB-hyb cells remain capable of entering the cell cycle
(Figure 4G). Therefore, despite activation of a mitogenic oncogene that contributes to resistance
to TKI in multiple contexts, developmental states restrict the expansion of these genotypes,
including during deep remissions.

As MRD genotypes alone could not predict clonal expansion driving progression, we
sought to identify what phenotypes persist in MRD and actively contribute to progression. We
binned each cell from MRD and progression into four fithess phenotypes based on their
expression of senescence-like and cell cycle scores (Figure 4H). To our surprise, progression
contained a significant accumulation of putatively cell cycle-arrested cells with higher
senescence-like scores compared to MRD (p<0.001, KS statistic). Notably, we also observed
CNV subclonal fitness plasticity in DFAB-25157, whose cells at MRD were characterized by high
senescence-like scores. A cycling population of RAS-wildtype cells from one subclone emerged
at progression (Figures 41 & S9H; p<0.01, Fisher’s exact test), associated with an increased
abundance of that subclone at progression (Figure 4E). In contrast, RAS-mutant cells from
DFAB-62208, characterized by later developmental phenotypes, were highly proliferative at
progression (Figure S9H). Collectively, these data suggest that diverse Ph+ ALL genetic
subclones can persist to progression and even clones with senescence-like phenotypes at MRD
may expand with enhanced fithess to seed progression. Given the possibility of plasticity and
the restrictions imposed by cell states on certain genotypes, these data suggest it may be difficult

to predict from genetics alone the subclones that will ultimately seed relapse.

Direct targeting of transcriptional programs in residual disease deepens remission

In light of this complexity, we hypothesized that directly targeting transcriptional programs that
enable persistence at MRD could overcome the diversity of subclones identified at remission.
Using differential expression and gene-gene correlation (see Methods), we identified three
expression programs in remission that persisted to progression — a Pre-BCR Signaling program,
closely aligned with the PreB-hyb state (e.g., IGLL1, VPREB3), a Stress/Autophagy program
(e.g., HSPA1A, UBC), and an inflammatory program (e.g., EGR1, JUN, TNF; Figure 5A; Table
S9). The inflammatory program was evenly expressed across all leukemic cells in remission, a
phenotype seen in other hematological diseases (28504724, 35618837; Figure S10A). The
remaining expression programs were variable across MRD cells stratifying those high for the
Stress/Autophagy cell state and those expressing the Pre-BCR Signaling program (Figures
S10A & S10B). We considered these variable programs to test the hypothesis that targeting
specific expression programs could deepen remissions. These two variable gene expression
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programs split along fithess subpopulations, with leukemic cells harboring high Pre-BCR
Signaling scores also scoring high for cell cycle, and leukemic cells with high Stress/Autophagy
program scores enriched for senescence-like expression (Figure 5B).

We next evaluated whether these two gene expression programs could be therapeutically
targeted. We paired ponatinib with either the FDA-approved SYK inhibitor, fostamatinib, to inhibit
pre-BCR signaling in leukemic cells scoring highly for the Pre-BCR program, or the FDA-
approved p38a MAPK inhibitor losmapimod, to target leukemic cells scoring highly for the
Stress/Autophagy program given the co-enrichment of p38a MAPK activation with the
Stress/Autophagy program and previous work supporting crosstalk between p38 signaling and
autophagy/leukemic stem cell-related phenotypes (Figure S10C).*3*% As a combination
control, we compared transcriptional-state-directed combination therapy to dual oncogene
targeting using ponatinib and asciminib (Figure 5C). We selected two PDX lines that were
enriched for either variable MRD expression program: DFAB-25157, which scored highly for the
Stress/Autophagy program, and DFAB-62208, which scored highly for the Pre-BCR signaling
program and sat along the poised/cell cycle spectrum (Figures 5D, 5F & S10D). DFAB-25157
mice treated with combination losmapimod plus ponatinib showed a significant reduction in
residual disease burden compared to dual oncogene suppression, a striking comparison as
DFAB-25157 tumors consistently progressed with acquired mutations in ABL1 (Figures 5E &
S2C). Analogously, DFAB-62208 mice responded to ponatinib plus fostamatinib and had
significantly reduced residual disease compared to dual oncogene suppression (Figure 5G).
These data suggest that residual leukemia cells can be effectively targeted according to the

specific transcriptional state governing persistence in remission.

A biophysical workflow for low-cost, rapid coupling of genotype to developmental state
in leukemia cells
Our data support the importance of both mutations and overall cell state in determining leukemic
cell fitness and therapeutic susceptibility at MRD. While mutations can be monitored in clinical
workflows from residual leukemic cells, single-cell transcriptomics is currently difficult to scale
due to the overall cost and time required for sample collection and analysis. We sought a metric
that would integrate complex transcriptional information from low-input MRD samples to enable
rapid determination of leukemic cell state, compatible with downstream mutational profiling.
Immunophenotyping strategies of developmental cell states, especially given the very low
cell numbers at MRD, is likely to be highly challenging. Alternatively, cell size characteristically
decreases as healthy progenitor cells progress from HSCs to pro-B to pre-B cells, putatively
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providing a label-free attribute with which to phenotype ALL cells.*® We have previously shown
that measurements of buoyant mass, as measured by the suspended microchannel resonator
(SMR),* can reveal changes in cell state.?®%*:404142 Byoyant mass (referred to hereafter simply
as mass) can be measured from live single cells with a resolution near 50 fg, which is highly
precise given that the average buoyant mass of a hematopoietic cell is ~75 pg.** Further, we
have shown that coupling mass measurements to scRNA-seq from the same cell enables the
determination of expression-dependent changes in cellular mass.*' Thus, we hypothesized that
underlying biophysical development-like phenotypes may be conserved and sufficient to rapidly
capture the developmental state of a leukemia cell.

We first determined whether mass can distinguish B cell developmental states in healthy
donors. By performing paired SMR-SS2*' on cells flow-sorted from healthy donors into
Progenitor (CFU-L; 155 cells), Pro-B (122 cells), and Immature B (105 cells) gates, we found
that each stage of B cell development was characterized by distinct mass distributions, with
decreasing cell mass along the B cell developmental trajectory (Figures 6A, 6B, S11A & S11B).
Within each B cell developmental stage, healthy cells with higher mass also scored highly for S
phase or G2/M phase cell cycle, a pattern seen across studies using SMRs within a specific cell
type (Figure S11A).4"44 We found a strong relationship between each gene’s dependence on
RF prediction scores and matched cellular mass (r = 0.88 from Pearson correlation), indicating
that genes highly associated with cell mass are also most correlated to healthy B cell
developmental states (Figure S11C). Consistently, in leukemic cells, genes defining the HSC-
hyb signature were most positively correlated with leukemic cell mass, and genes defining the
PreB-hyb signature were most negatively correlated with cell mass (r = 0.90) (Figure 6C). We
validated this observation across 17 additional PDX samples at the bulk level showing that the
average leukemic cell mass reflects the average RF predicted state (r = 0.66) and tracks with
the progression-emergent mutations for each PDX (Figure 6D). Taken together, these data
support mass as a meaningful surrogate for development-associated transcriptional state in
leukemia cells.

Finally, we evaluated how single-cell mass could pair with genotyping to further define
developmental state and mutation compatibility (Figure 6E). We compared mass distributions
between RAS-mutant PDX lines with higher HSC-hyb and high senescence-like gene
expression (DFAB-25157) and PDX lines with higher PreB-hyb gene expression (DFAB-62208
and DFAB-54880). State-genotype discordant HSC-hyb DFAB-25157 cells were enriched for
senescent-like scores and significantly higher mass than the more developmentally-mature and
non-senescent DFAB-62208 and DFAB-54880, mirroring mass differences between healthy
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progenitor and immature B cells (Figure 6F). Furthermore, we found a significant difference
between the mass distributions of DFAB-25157 MRD cells compared to DFAB-62208 cells at
MRD (Figure 6G), implicating that mass measurements reflect developmentally-relevant and
therapeutically actionable heterogeneity in MRD for these leukemias (Figures 5D-G).
Consequently, mass measurements appear to be sufficiently sensitive to distinguish differences
in developmental state for leukemic cells, and, when assessed simultaneously with genotypic
data from the same sample, may predict therapeutic susceptibility for targeting states in MRD.

DISCUSSION

Oncogene-directed therapy provides clear benefits to certain patient populations, yet it is equally
clear that targeting cancers solely based on their mutational heterogeneity has an upper
limit.*>¢47 Indeed, our phase ll-like preclinical trial results reveal that even combinations of highly
potent TKls aimed at the same oncogene do not cure Ph+ ALL. While much of the preclinical
and clinical data in CML and ALL have identified pathway reactivation through alterations in
ABL1 as a primary mechanism of escape,’?** our data suggest alternative pathway activation
through RAS alterations also drives resistance in a significant fraction of cases. Mirroring
patterns seen in patients,® our trial also shows that a large fraction of mice engrafted with patient-
derived leukemias (up to 40%) progress without a clear genetic driver, warranting the exploration
of alternate therapeutic strategies for these cases.

Transcriptional phenotypes have been described in AML,'® CML," and ALL,2 and recent
studies suggest that patients with more progenitor-like leukemia cells have a worse overall
prognosis and tend to respond poorly to therapy. In ALL specifically, a recent study showed that
leukemias enriched for progenitor-like states have worse outcomes on imatinib.8 Our data
suggest that lineage plasticity is relatively common in response to 3 generation and
combination TKI therapy, with resistant leukemia cells most frequently mimicking later stages of
B cell development. This contrasts with most settings where, even in solid cancers, a canonical
response to therapy is the enrichment of less differentiated cell states.*®4° Moreover, we
demonstrate the importance of defining cell state and mutational associations — despite myriad
mutational routes that might be predicted to confer resistance, our data suggest that specific
transcriptional backgrounds may restrict leukemias to distinct subsets of escape mutations.
Though these associations will need to be learned in larger cohorts and for each specific
disease, this framework may represent a strategy for prioritizing the permissible transcriptional
state/mutational convergences within oligo/polyclonal populations that can drive progression.
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While there is agreement on the clinical and therapeutic importance of understanding
MRD, the phenotypes of the residual cells responsible for seeding progression and how to best
target them remains an outstanding question in the field owing to several technical
challenges.?"?5 In this regard, Ph+ ALL is a tractable system, as it is feasible to isolate MRD
from either blood or bone marrow of patients or xenografted mice in adequate numbers to allow
for single-cell transcriptomics in addition to DNA sequencing. We found that matched genotypic
and phenotypic profiling of rare MRD cells was critical for identifying three key insights about the
biology of MRD and the translational potential of targeting it prior to relapse. First, the
conventional wisdom proposes that not all cells at MRD can seed relapse, especially those that
have exited the cell cycle or are otherwise classified as “unfit”.2"2% In contrast, we find that some
CNV-defined clones expressing senescence-like genes at MRD can re-enter the cell cycle and
contribute to progression. Of note, a similar phenotype has also been observed in AML treated
with chemotherapy.5® Second, our discovery that senescent clones harboring RAS mutations
were enriched in residual disease but did not contribute to relapse highlights the importance of
understanding the cell state of mutant cells. This observation complicates current MRD
evaluation strategies, as information about genotype alone will likely be insufficient to predict
relapse for specific leukemias. Third, we show that co-targeting tumor-specific transcriptional
programs in remission out-performs additional targeting of the same oncogene, at least with
current therapeutics. This finding provides a translational rationale for identifying transcriptional
phenotypes in residual disease to inform the rational selection of combination strategies. The
importance of targeting cell state likely extends to other cancers where a central oncogene can
be deeply inhibited, resulting in relapses that have acquired an alternate histology, including
small cell relapse after androgen receptor inhibition in prostate cancer,® squamous cell and
small cell transitions after EGFR inhibition in lung adenocarcinoma,®?%% and estrogen receptor
positive relapse after HER2 blockade.?

We note that the influence of an intact immune system on the developmental dynamics
of Ph+ ALL is not well defined and represents a liability of our approach interrogating PDX
models of leukemia in NSG hosts. We mitigated this by confirming our PDX results in serial
measurements from patient bone marrow, but future efforts should include the use of humanized
xenograft models and additional evaluation of primary patient specimens. Nevertheless, our
identification of a central role for developmental state in Ph+ ALL has had immediate clinical
implications. Our phase 1 clinical trial of dual oncogene targeting (NCT03595917) completed
accrual® and reopened as a phase 2 trial incorporating early introduction of the CD3xCD10
bispecific antibody blinatumomab (anti-CD3xCD19 bispecific antibody), which should maintain
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activity across the developmental states we have defined in MRD and relapse. Importantly,
blinatumomab has demonstrated promising clinical activity in clearing residual disease in
patients intended for consolidative allogeneic hematopoietic stem cell transplantation.5¢:57

Evaluating complex, non-mutational biomarkers may have significant clinical challenges.
scRNA-seq is not yet a clinically-scalable assay, nor is it readily interpretable on a short time-
scale. For translation to clinical workflows, it will be critical to develop diagnostics that are able
to assess a sample’s genotype and relevant phenotype with reasonable throughput and
interpretability. For remission profiling specifically, this is further complicated by the requirement
for use with low-input samples. Owing to the low-input and non-destructive nature of the SS2-
SMR measurement,*' we were able to acquire a unique dataset that directly links cellular mass
to leukemic developmental state. These data establish that assessing complex, non-mutational
biomarkers may be possible using mass as a relatively simple integrative cellular property. Our
matched SMR/scRNA-seq data from normal bone marrow hints that mass variation may extend
to other hematopoietic lineages as well so this approach may be applicable in diseases with
significant developmental heterogeneity such as AML.'® We speculate that additional features
of clinical utility in different disease contexts could come from other integrative single-cell
properties such as morphology.®®

In sum, we find transcriptional state controls the fithess of individual clones in MRD and
dictates the landscape of progression on TKI in Ph+ ALL. We highlight the need to understand
and monitor both mutational and transcriptional features in clinical pipelines to properly evaluate
individual clones for their potential to drive relapse. We functionally establish the paramount
importance of cell state in this context and suggest it should be prioritized for targeting in
conjunction with driver oncogenes. In agreement with recent studies in solid cancers,%%5%6" our
work in leukemia makes it apparent that therapies intended to convert remissions to cures should

consider monitoring and targeting features outside of traditional mutational biomarkers.5?

17


https://doi.org/10.1101/2024.06.06.597767
http://creativecommons.org/licenses/by-nc-nd/4.0/

557
558
559
560
561
562
563
564

565
566
567

568
569
570
571
572
573
574
575
576
577

578
579
580

581
582
583
584
585
586
587
588
589
590
591

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.06.597767; this version posted June 10, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

ACKNOWLEDGEMENTS

This work was funded by the NIH-NCI U54 CA217377 (S.R.M., D.M.W., A.K.S.), KO8 CA212252
(M.A.M.), K12 HL141953-05 (M.A.M.), P30 CA14051 (A.K.S., S.R.M.), 1U2C CA23319501
(A.K.S.), R35 CA231958 (D.M.W.); the Paul G. Allen Frontiers Group Distinguished Investigator
Award (S.R.M., D.M.W.); the Sloan Research Fellowship in Chemistry (A.K.S.); and the Pew-
Stewart Scholars Program for Cancer Research (A.K.S.). The authors acknowledge assistance
with targeted panel and whole exome sequencing of PDX specimens from Dr. Aaron Thorner,
Dr. Anwesha Nag, and Neil Patel of the Dana-Farber Cancer Institute Center for Cancer

Genomics.

AUTHOR CONTRIBUTIONS

Conceptualization, P.S.W., S.R.M., D.M.W., A.K.S. and M.A.M.; Methodology, P.S.W., M.L.R,,
AW.N., S.S,, C.P.C, L.C., S.RM., D.MW., AK.S., and M.AM; Validation, P.S.W., M.L.R.,
A.W.N., and M.A.M.; Formal Analysis, P.S.\W., M.L.R., K.E.S., S.R.,, AD,, S.S., and M.A.M;;
Investigation, P.S.W., M.L.R., AW.N., AD.,, S.§, HS.,, N.S., MM., HH.A,, L.B., P.D., C.S.L.,
KS.,J.GR.,Y.Z,FP,NM,LC,APA SV.R,AJ.G,NC, AV.S, KJ, HL, RJK, MMS,,
M.A.M.; Resources, S.R.M., DM.W., AK.S., and M.A.M.; Data Curation, P.S.W., AAW.N and
M.A.M.; Writing — Original Draft, P.S.W., M.L.R., AW.N, AK.S., and M.A.M; Writing — Review &
Editing, P.S.W, M.L.R.,, AWN, L.C.,, AP.A,S.S,, SV.R, MR.L, S.RM., D.MW., AK.S., and
M.A.M.; Visualization, P.S.W., M.L.R., AW.N., AK.S., and M.A.M.; Supervision, M.A.M.,
P.S.W., S.R.M., D.M.W., and A.K.S.; Project Administration, P.S.W., S.R.M., D.M.W., AK.S.,
and M.A.M.; Funding Acquisition, S.R.M., D.M.W., AK.S., and M.A.M.

DECLARATION OF INTERESTS

S.R.M., RJ.K, MM.S., and D.M.W. disclose equity ownership in Travera. A.K.S. reports
compensation for consulting and/or SAB membership from Honeycomb Biotechnologies,
Cellarity, Bio-Rad Laboratories, Fog Pharma, Passkey Therapeutics, Ochre Bio, Relation
Therapeutics, IntrECate biotherapeutics, and Dahlia Biosciences unrelated to this work. P.S.W
receives research funding from Microsoft. S.R. holds equity in Amgen and receives research
funding from Microsoft. D.M.W. is an employee of Merck and Co., owns equity in Merck and Co.,
Bantam, Ajax, and Travera, received consulting fees from Astra Zeneca, Secura, Novartis, and
Roche/Genentech, and received research support from Daiichi Sankyo, Astra Zeneca,
Verastem, Abbvie, Novartis, Abcura, and Surface Oncology. P.S.W., AK.S., M.AM., S.R.M,,
and D.M.W. have filed a patent related to this work.

Other authors — none.

18


https://doi.org/10.1101/2024.06.06.597767
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.06.597767; this version posted June 10, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Figure 1
A B C

Ph+ B Cell Acute Lymphoblastic Leukemia Overall survival

190 mice randomized

Imatinib 9.9.
g —» Dasatinib 'y (1:2:2:1) . 100 o Vehicle (n=10)
: Ponatinib . Pretreatment Progression Asciminib (n=14)
" === Ponatinib (n=30)
Malignant Oncogene Targeted L P
Pro/Pre B cell dependency small molecules DFAB-92612 ~— Ponatinib+Asciminib (n=34)
- : - CBAB-30198
Evoll_thlon of Resistance DFAB-96061 o Ponatinib ° ° Clinical endpoint: Day 120
- reafmentamm DFAB-25157 (n=57) > vs © :p = 0.0085
Single Agent = Combination TKI = vs @ : p<0.001
Ponatinib ‘ Ponatinib + DFAB-13601 P Ponatinib + Asciminib P © 50 - Vs e . p< 0'001
e Asciminib 5 CBAB-75728 (n=57) g e p< 0.001
ot ke stat Remission E HCAB-89433 Vehicle 8 e iblo0o1
em-like states " = o) ‘p=
ABL point - Mutations? DFAB-54880 = _ Q p=070
mutations } CBAB-12402 mice Profiling Assay mice
Progression CBAB-99093 22 —DNA xooox— 36
—— Mutations? CBAB-75914 Ie}
Only oncogene ‘ Curative? DFAB-62208 20 —Flow {: 27
reactivation? Dominant SCRNA- —
mechanisms? CBAB-72204 "N — e @® — 16 0
Wl Yes CINo T T T T T T T T T T T 171
0 P DD OO OO DS
RSO N O S
Days post treatment initiation
D . . E Divergent mutational acquisition
Pathway Mutations at Progression
i Treatment status
ABL RAS Neither W 0.60 @ Progression (n=9)
I SN N Treatment Am < ,
> Paired
- ABL1 z 001 Unmutated PDXline (n=8)
n STATSA [ Alteration detected E 0451 1 PDX Untreated (n=13)
=
H HE-H-HH KRAS Treatment emergent $ 0.005 Prior TKI exposure
NRA! VAF increased by at i No
S least 2X vs. untreated 2 030 Q Yes
BRAF o0 0.00
. () .
Hmm || 1 111 11 Prior Treatment % 0.154 0.00 0.005 0.01
o
Progression mice —p g
Treatment arm Prior treatment <
Asciminib No 0.00 { o—o® e
M Ponatinib il Yes 000 015 030 045 060
[ Ponatinib + Asciminib

Average ABL Pathway VAF

592


https://doi.org/10.1101/2024.06.06.597767
http://creativecommons.org/licenses/by-nc-nd/4.0/

593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.06.597767; this version posted June 10, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Figure 1. Genetic mechanisms of resistance to oncogene inhibition in Ph+ ALL.

(A) Motivation for evaluating efficacy and mechanisms of resistance to combination TKI therapy
in Ph+ ALL.

(B) Patient characteristics of the 13 PDX models used in the study and Phase Il-like randomized
in vivo trial design. Number of mice examined by genetic profiling, immunophenotyping
(“Flow”), or scRNA-seq at pre-treatment and progression time points. For characteristics of
patients from whom PDX lines were derived (Table S2): “TKI’=prior patient exposure to
tyrosine kinase inhibitor; “relapse”=patient tumor at progression; “mut’=mutant (non-
BCR::ABL1); “p210” and “p190”=p210 and p190 BCR::ABL1 isoforms, respectively.

(C) Overall survival across treatment arms in Phase |l-like study; p-values from Cox regression
analysis at clinical end-point (day 120) are indicated for each pairwise comparison between
treatment arms.

(D) ABL and RAS pathway detected alterations in Phase ll-like study tumors at progression
(n=40). Treatment emergent mutations indicated when mice from the same PDX line were
profiled at pretreatment (see full alteration details in Figure S2A and Table S3). Prior
treatment indicates mice whose PDX lines were derived from patients with prior TKI and
chemotherapy exposure. “VAF”=variant allele frequency.

(E) Average VAF for mutations along RAS (y-axis) or ABL (x-axis) pathways, averaged across
mice in each PDX line at pretreatment or progression. Arrows link pretreatment and
progression average VAFs from the same PDX line. PDX lines derived from patients with
prior TKI exposure are outlined in black. Inset highlights a subset of PDX model timepoints
where no (n=4 pretreatment, n=1 progression) or few mutations were detected in either

pathway.

See also Figures S1 & S2; Tables S1, S2 & S3.

20


https://doi.org/10.1101/2024.06.06.597767
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.06.597767; this version posted June 10, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Figure 2

PDX Line  Treatment Stage mGEP top genes
mGEP o |
2 ) @" g‘ ) mmB-like ImmB = CD79A
V.. W AR . Pre-Bllik “like] — = ‘HLA—DPB1
g ¥ 1 e ¢ intratumoral re-Bll-like e
= ' ‘ Pro-B-like Pre-Bll = CD38
gl o ? s | cNMF _ -like = IRF4
P & 5 52 tumors [ | HSC+mmB-like ProB[ —=  —{-DNTT
126 GEPs i _ -like] \‘ CSGALNACT1
PDX lines Pretreatment w MYC activity HSC+ = | csFir
es e e ® Progression i (O] ImmB-like —— |- IRF8
Patient ~ Treatment Stage PN o Myc =\ HsPooaB1
& g S cycling activity NME1
2 % cluster GEPs E s MCM6
o ’ across tumors g cycling E2F2
3 - Y 5 _ cyeling]
% ,“.‘ 7 recurrent mGEPs = G2M cycling G2M CENPF
E ‘ cycling MKI67
Patients Pretreatment intratumoral GEPs  Cosine similarity Median gene
eost ® On Treatment [ . | spectra (z-score)
-1-050051 0_000_0_004
&— Ph+ALL —°
D ) E ifi i F Projected Leukemia cells
@ Classify Classified Leukemia Cells )
Z o Prediction >500
Healthy BM % S5 (cell #)
. Input -8 m = HSC. 8 g
o = >
o8 g g
coo 6 <
St 23
T 2 3o
O ow o]
healthy donors “ﬁ s g- (%2.
7 heal o)
n= 13,643 cells R domp“ft g g ol
andom forest O 7
o S i g
4 e lr—r—r—rrrTrTrTTr T
ODF=0@m=o0 ©o o 9 >
$382E838E2584 0
Ly 2T ERr 23020
de o 5
o
G Normal Pro-B cells Predicted Leukemia Pro-B cells H Developmental Hybrids
© Undiff. «—— Diff. Undiff. «—— Diff.
g T R D C '”:1’;‘:' Non Pro-B RF
7] o PR . o i . ; i
B os) R Cell 0sl: . *| Higher 3 0.25 E))I:lsscsmcanon
a R density co-expression 3 © Pre-BI
o Low ] High = <3 o Pre-BlI
< oo0d - o o Immature B
g 0.0 L 00
[0} i 7 9%
S ' x ° % L
(&) _\1,,/ 6 - 1] PPt w1 z,'ld \\\1\ ~~\~~ (LD) .,fu : s /VPI'EB- Pro-B RF
e AN Y . N PreBl Tes T S5 prediction
3 . \.  _--""HSC-hyb .7/ S mmB-hyb ™~~~ C 025 mkn
3 Hsc - % e / o
3 =
@ IR EY DR T @R AL s £ B
5 PreB \ \ 0 1 8 = <= HSC-hyb
E ImmB = 0507 T T T T 00
= Normal cells Developmentally hybrid leukemia cells Marker score -0.50 0.0 0.50 1.0
(n=300) (n=300 each) - Pre-B - HSC RF Prediction

618


https://doi.org/10.1101/2024.06.06.597767
http://creativecommons.org/licenses/by-nc-nd/4.0/

619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.06.597767; this version posted June 10, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Figure 2. Hybrid developmental transcriptional states define B-ALL.

(A)Overview of Ph+ ALL scRNA-seq data collected from PDX lines (n=26,987 cells across 11
PDX lines inclusive of 38 pretreatment and progression tumors) and patient biopsies
(n=15,680 cells across 5 patients inclusive of 14 pretreatment and on-treatment tumors).

(B)Unbiased factorization of leukemic scRNA-seq data with consensus non-negative matrix
factorization (cNMF). Each row and column is an individual GEP and clustering is based on
cosine similarity to find meta-programs (mGEPs; see Methods). “HSC”=hematopoietic stem
cell; “ImmB”=Immature B.

(C)Each mGEP annotated by the top 30 genes with the highest median cNMF gene spectra
score across clustered intratumoral GEPs (Table S4).

(D)Approach for supervised classification using a random forest (RF) classifier trained on
healthy bone marrow (BM) scRNA-seq data.

(E) Distribution (box plot and violin plot) of leukemia single-cell RF classification probabilities for
each healthy BM cell type, ordered by median RF classification probability.
“‘pDC”=plasmacytoid dendritic cell; “Ery”=erythroid; “‘Plasma”=plasma cell;
“‘GMP”=granulocyte-monocyte progenitor; “Mono”=monocyte.

(F) K-nearest neighbor (kNN) projection of all leukemia cells onto reference normal hierarchy,
annotated by number of classified leukemic cells for each reference B cell lineage population.

(G)Developmental marker gene co-expression in normal Pro-B cells (left) vs. leukemia cells
classified as Pro-B cells (right). X-axis represents gene expression score difference between
healthy HSC differentially expressed genes (undifferentiated) and the union of Pre-B and
Immature B differentially expressed genes (more differentiated); y-axis represents each cell's
second highest healthy cell type marker expression score. 300 randomly-sampled single
cells from each bin are shown below. P-values from ANOVA (**p<0.001) compare expression
distribution in normal vs leukemic Pro-B cells for each normal cell type marker expression
score (rows).

(H)Leukemia cells plotted according to non Pro-B RF classification probabilities. Cells are
colored by RF Pro-B classification probability (greyscale, fill) and cells are outlined by their
classified cell type.

See also Figures S3-S6; Tables S4 & Sb5.
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Figure 3. Oncogene withdrawal drives convergence onto developmental hybrids.

(A) Simpson’s Diversity Index (SDI) of non ProB-like hybrid population proportions in each PDX
line, colored by mutation status at progression. Tied points represent paired PDX treatment
stages. Median SDI for pretreatment and progression across PDX lines plotted as a line.
Wilcoxon rank sum p-value (**p<0.01) reported, excluding ABL pathway mutated PDX line
(outlier DFAB-25157).

(B) Differentially expressed genes between PDX pretreatment and progression single-cells.
Marker genes for HSC, Pro-B, Pre-B, and Immature B cell types are annotated.

(C) Density of cells across the spectrum of hybrid developmental gene expression space,
calculated by the difference between later-stage hybrid scores (PreB-hyb, ImmatureB-hyb)
and progenitor hybrid scores (HSC-hyb). Rows are annotated by PDX line, time point, and
mutation (“mut.”) status at progression.

(D) SDI of flow cytometry immunophenotyped B cell lineage populations within individual PDX
tumors at pretreatment and progression; median SDI indicated for pretreatment and
progression tumors. **p<0.01 (Wilcoxon rank sum test).

(E) Fractional representation of immunophenotyped B cell lineage populations for 42 leukemia
samples from 11 PDX lines at pretreatment and progression time points. “Pre.” =
pretreatment; “Prog.” = progression. Immunophenotyped population flow cytometry markers
defined in Figures S7B & S7C.

(F) Pretreatment and progression average immunophenotyped population proportions (as
plotted in (E)) for three representative PDX lines corroborate transcriptional trends in (C);
error bars indicate +1 standard deviation when at least 3 mice were profiled. Number of mice
profiled at each time point indicated for each PDX line. PDX lines are labeled based on
mutation group at progression.

(G) BCR::ABL1 percent mRNA gRT-PCR traces (log1o(BCR::ABL/B-Actin mRNA)) from bone marrow
aspirates of two patients on combination ABL1 inhibition, including one representative responder
(BIAB-16768) and one non-responder (DFAB-71417), from a Phase | clinical trial (Table S6). MRD
3.0 indicates trial definition of remission tumor burden (3-log reduction in bone marrow BCR::ABL1
mRNA detected by qRT-PCR). Right: scRNA-seq data collected from patients at each treatment
cycle time point shown on t-SNE projections.

(H) Density of cells across the spectrum of hybrid developmental space, as defined in (C),
compared across paired patient pre-treatment and on-treatment time point bone marrow

aspirates.

See also Figure S7; Table S6.
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Figure 4. Developmental phenotypes restrict genotype fitness in remission.

(A)Strategy for profiling three representative PDX models at pretreatment, MRD, and
progression with Smart-Seq2 (SS2).

(B)t-SNE visualizations for the leukemic cells collected with SS2 and labeled by PDX line (top),
developmental state (middle; “dev.”=development), and detected genetic alterations (bottom;
“SNV”=single nucleotide variant; “CNV”=copy number variant).

(C)Density distributions of leukemia cells at pretreatment, MRD, and progression time points
across HSC-hyb to PreB-hyb gene expression scores. *p<0.001 from KS test for each
pairwise comparison between treatment stages.

(D) Mutant or wild-type (WT) transcript detection for KRAS, NRAS, and PTPN11 within single-
cells. Significant mutant transcript abundance between time points are annotated; *p<0.05
by Fisher exact test.

(E) Dynamics of CNV sub-clonal proportions at pretreatment, MRD, and progression in DFAB-
25157. Pie charts represent KRAS or NRAS fraction of each sub-clone at the indicated time
points. Number of cells sampled within each CNV sub-clone are reported.

(F) Differentially expressed genes between DFAB-25157 KRAS-mutant cells at MRD versus all
other KRAS-mutant cells, highlighting increased expression of genes implicated in
senescence (Table S8).

(G)RAS-pathway mutant leukemic cells plotted according to their differentiation gene expression
score on the x-axis, and senescence-like gene expression score on the y-axis. Overlaid
healthy progenitor, Pre-B, and Immature B cells colored by cell type.

(H)Fitness landscape of cell-cycle arrested, poised, and actively cycling leukemic cells in
remission. Single-cells plotted by cycling (x-axis) and senescence (y-axis) signature scores.
Distributions for cells in each fitness quadrant shown (green=MRD, red=Progression;
*p<0.001 reported from KS test).

() DFAB-25157 leukemic cells from each CNV subclone ranked along senescence-like and cell
cycle signature scores. Fisher's exact test p-value reported for the origin of cycling cells
(MRD vs. Progression). No cells belonged to the “poised” fitness category from either CNV

subclone.

See also Figures S8 & S9; Tables S7 & S8.
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Figure 5. Targeting integrative cell states enhances remission.

(A)Pairwise Pearson correlation of genes defining MRD states (Table S9).

(B)Module scores for the Stress-Autophagy (turquoise) and Pre-BCR Signaling (dark red) states
projected over single-cells at MRD. Cells are plotted along fitness quadrants as in Figure 4H
by their cycling (x-axis) and senescence-like (y-axis) gene signature scores.

(C) Study design for testing MRD cell-state targeting.

(D) Cell fitness distribution for DFAB-25157 MRD cells.

(E) DFAB-25157 MRD bone marrow disease burden assessed by flow cytometry (y-axis, relative
to Ponatinib+Asciminib) in the respective treatment arms (“Asc.”=Asciminib;
“Fos.”=Fostamatinib; “Los.”=Losmapimod). T-test p-values reported, comparing losmapimod
and fostamatinib arms to asciminib reference.

(F) Cell fitness distribution for DFAB-62208 MRD cells.

(G)DFAB-62208 MRD disease burden assessed by flow cytometry as in (E). Reported t-test p-

values compare losmapimod and fostamatinib arms to asciminib reference.

See also Figure S10; Table S9.
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Figure 6. Biophysical measurements can be used as a surrogate for complex

transcriptional states.

(A)Schematic for evaluating the relationship between complex transcriptional state and
integrative biophysical features.

(B)Mass distributions from the sorted populations in (A) measured using the SMR; median mass
reported.

(C) Leukemia cell mass-correlated genes (x-axis) are plotted against each gene’s correlation to
developmental phenotypes (RF probability for progenitor and Pre-B cell types; y-axis).
Colored points mark genes included in the Progenitor and Pre-B SS2 signatures; “Sig.
genes’=Leukemia developmental marker genes.

(D)Average difference in RF prediction score between early and late stages of B cell
development (x-axis) versus average mass for each mouse (n=17), binned by distributions
in (B) and Figure S11A, and annotated by progression mutation status.

(E) Proposed workflow for comparing sequencing to biophysical measurements for diagnostics.

(F) Example application for pairing mutation and mass information to predict development and
fitness-integrated transcriptomic state. Density spectra of (left) developmental score and
(right) mass for (top) healthy progenitor cells and immature B cells, and (bottom) RAS-mutant
leukemic cells in three representative PDX lines. Dotted line for mass distribution represents
mean+1 standard deviation of healthy Immature B mass. Median differentiation scores or
mass for each PDX line are denoted as a dot; PDX lines are colored based on their median
similarity to Immature B or Progenitor differentiation scores or mass. * indicates significant
difference between DFAB-25157 differentiation score or mass distributions compared to
those of DFAB-62208 and DFAB-54880 (KS test, p<0.001). Individual cells are colored
according to their senescence signature score. Blue shaded region is the putative zone of
compatibility for RAS mutations and developmental state.

(G)Mass distributions for leukemia cells at MRD from DFAB-25157 (sensitive to combination
losmapimod) and DFAB-62208 (sensitive to combination fostamatinib). **p<0.001 from

paired Wilcoxon test.

See also Figure S11.
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METHODS
RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagents should be sent to and will be fulfilled

by Dr. Peter Winter (pwinter@broadinstitute.org).

Data Availability

The scRNA-seq data and SMR data reported in this paper will be deposited in a central data
sharing repository (Genomic Data Commons) under the NCBI Database of Genotypes and
Phenotypes (dbGaP). scRNA-seq digital gene expression matrices, metadata, and interactive
visualization tools will additionally be available through the Alexandria Project, a Bill & Melinda
Gates Foundation-funded portal (part of the Single Cell Portal hosted by the Broad Institute of

MIT and Harvard). Code used for analysis will be available upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Generation and Use of PDXs

Primary bone marrow and peripheral blood specimens were collected from patients with
leukemia at the Dana-Farber Cancer Institute, Brigham and Women’s Hospital, and Boston
Children’s Hospital for xenotransplantation. Additional PDXs that had already been established
through the Public Repository of Xenografts (PRoXe) were utilized.?” De-identified patient
samples were obtained with informed consent and xenografted under Dana-Farber/Harvard
Cancer Center Institutional Review Board (IRB)-approved protocols. Nod.Cg-
Prkdcsc@lL 2rgtm™i|SzJ (NSG) mice were purchased from Jackson Laboratories and handled
according to Dana-Farber Cancer Institute Institutional Animal Care and Use Committee-
approved protocols. Salient PDX line metadata are provided in Tables S1 & S2.

In vivo therapeutic studies

Viably frozen Ph+ ALL xenograft cells were thawed and changed into 1X PBS before tail-vein
injection at 0.5-2.0*108 cells per mouse. Engraftment was monitored by weekly peripheral blood
flow cytometry beginning three weeks after injection. Blood was processed with Red Blood Cell
Lysis Buffer (Qiagen #158904; Hilden, Germany) and stained with antibodies against human
CD45 (APC-conjugated, eBioscience #17-0459-42; San Diego, CA, USA) and human CD19
(PE-conjugated, eBioscience #12-0193-82) in 1X PBS with EDTA (2mM). Flow cytometry data
were analyzed using FlowJo software (BD Biosciences; Ashland, OR, USA). Upon engraftment
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— when at least 10% of cells were positive for CD45 and CD19 — mice within each PDX line
underwent 1:2:2:4:1 randomization to the following arms and initiated treatment within two days:
(1) sacrifice for baseline tissue interrogation; (2) ponatinib (Selleckchem #S1490; Houston, TX,
USA; constituted in 26mM citrate buffer, pH 2.75) 40mg/kg via oral gavage (OG) daily; (3)
asciminib (NVP-ABLOO01, Novartis Pharmaceuticals; Basel, Switzerland; constituted in HCI 0.1M,
PEG300 30%, Solutrol HS15 6%, NaOH 0.1M, sodium acetate buffer pH 4.7 10mM) 30mg/kg
OG twice daily; (4) ponatinib 40mg/kg OG twice daily plus asciminib 30mg/kg OG BID; and (5)
vehicle (alternating doses of vehicle used for ponatinib and asciminib, at equivalent volumes).
One mouse per active treatment arm per PDX line was sacrificed on day 7 of treatment for
pharmacodynamic assessment. The remaining mice continued daily treatment under monitoring
with biweekly peripheral blood flow cytometry until progression (defined as peripheral blood
involvement of at least 10% on two consecutive assessments at least one week apart), weight
loss of greater than 20% from pre-treatment baseline, or clinical manifestations of advanced
disease, including but not limited to ruffled fur, hunched posture, hind limb paralysis, or lethargy.
Progression or toxicity as defined above triggered humane euthanasia by CO. asphyxiation,
necropsy to ascertain cause of death, and post-mortem harvest of peripheral blood, bone
marrow, and any soft tissue masses. Additional in vivo studies involved treatment with nilotinib
(Selleckchem #S1033), which was constituted in N-methyl-2-pyrrolidone (10%) in polyethylene
glycol (PEG)-300 (90%) and dosed at 50mg/kg OG twice daily.

Studies to define the in vivo activity of combination therapies targeting the biology of MRD
within individual PDX lines DFAB-62208 and DFAB-25157 utilized the same xenotransplantation
and engraftment monitoring scheme as previously described and the following drugs: ponatinib
(as above), asciminib (as above), fostamatinib (Selleckchem #S2206-50mg), constituted in 0.1%
carboxymethylcellulose sodium, 0.1% methylparaben, and 0.02% propylparaben (pH 6.5) and
dosed at 25mg/kg OG thrice daily, and losmapimod (Selleckchem #S7215-50mg), constituted in
1% DMSO in methylcellulose and dosed at 20mg/kg via the intraperitoneal (IP) route daily. Upon
engraftment (>10% leukemia involvement of peripheral blood), individual mice underwent live
femoral bone marrow aspirates under anesthesia with inhaled isoflurane delivered via precision
vaporizer and underwent 1:1:1 randomization to the combination of ponatinib and asciminib,
ponatinib and fostamatinib, or ponatinib and losmapimod. Animals initiated treatment within 48
hours of engraftment and continued treatment for 21 days + 3 days, at which point they
underwent humane euthanasia, necropsy, and immediate post-mortem recovery of peripheral
blood and bone marrow from the femur contralateral to that which was aspirated upon

engraftment.
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Human donors for reference

Normal human bone marrow aspirates were obtained from donors who provided informed
consent for tissue banking and research under Dana-Farber/Harvard Cancer Center |IRB
protocols and were undergoing bone marrow harvest for unrelated hematopoietic stem cell
transplantation recipients. Briefly, bone marrow was collected into a Baxter bone marrow harvest
collection system with diluent consisting of sodium heparin in lactated Ringers solution. Bone
marrow was heparinized at a final concentration of 15-20 units/mL and filtered inline using
200um and 500um filters. Bone marrow mononuclear cells from the heparinized, filtered product
were isolated via density gradient centrifugation (Ficoll-Paque, ThermoFisher Scientific #45-001-
749) and subsequently underwent fluorescence-activated cell sorting (FACS) to isolate
hematopoietic developmental subpopulations for Seg-Well S® and SS2 single-cell transcriptomic
profiling (see Methods Details).

Phase I clinical trial

Serial primary blood and bone marrow specimens were obtained from appropriately consented
patients treated on a phase |, investigator-initiated clinical trial (NCT03595917) of asciminib
(ABLOO1) in combination with dasatinib plus prednisone for adults with newly diagnosed Ph+
ALL or chronic myelogenous leukemia in lymphoid blast phase (CML-LBP). Some patients
cross-consented to a Dana-Farber Cancer Institute tissue banking protocol permitting additional
evaluation of primary specimens. Bone marrow was obtained at screening and after each 21-
day cycle through the first four cycles. Peripheral blood was obtained at screening and on days
2,4, 8, 11, 15, and 22 (2 days) of cycle 1. Both bone marrow and peripheral blood were
collected into EDTA vacutainer tubes prior to mononuclear cell isolation per standard protocols.
Bone marrow and peripheral blood underwent clinical quantitative real time PCR for BCR::ABL 1
mMRNA according to the BCR::ABL 1 isoform detected at screening (p190 or p210). Curated sets
of Ph+ ALL clinically annotated specimens underwent evaluation by scRNA-seq (Seq-Well S3;
salient donor metadata provided in Table S6).

METHOD DETAILS

Quantifying BCR::ABL1 mRNA in PDX peripheral blood with qRT-PCR

BCR::ABL1 mRNA levels were measured via quantitative real-time PCR (qRT-PCR) of serial
peripheral blood specimens from PDX models to track kinetics of response and progression.
Briefly, xenografted mice were phlebotomized for 100uL by submandibular vein laceration every
two weeks. Blood was stored in RNAProtect tubes (Qiagen #76544). mRNA was isolated using
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the RNeasy Protect Animal Blood Kit (Qiagen #73224) and quantified using the iScript One-Step
RT-PCR Kit with SYBR Green (Bio-Rad #170-8893) on a Bio-Rad CFX96 Thermal Cycler.
Synthesis of cDNAs was performed with random hexamers. Amplification of cDNAs was
performed using iTaq Universal SYBR Green Supermix (Bio-Rad #172-5125) and the following
oligomers:

BCR::ABL1 isoform p190 forward: CAACAGTCCTTCGACAGCAG

BCR::ABL1 isoform p190 reverse: CCCTGAGGCTCAAAGTCAGA

BCR::ABL1 isoform p210 forward: TCCGCTGACCATCAATAAGGA
BCR::ABL1 isoform p210 reverse: CACTCAGACCCTGAGGCTCAA

Positive control reagents for each isoform were p190 clonal control RNA (Invivoscribe #4-
089-2800) and mRNA isolated from the BCR::ABL1 p210-positive cell line K562.

Quantifying BCR::ABL1 mRNA in primary patient peripheral blood with gqRT-PCR
BCR::ABL1 mRNA was quantified in the peripheral blood of patients treated on clinical trial
NCT03595917 via CAP/CLIA-approved clinical BCR::ABL1 qRT-PCR performed in the clinical
molecular laboratory of Brigham and Women’s Hospital (Boston, MA).

Targeted DNA Sequencing

PDX models underwent mutational profiling with targeted panels. Leukemia cells were enriched
from fresh primary PDX bone marrow or peripheral blood via immunomagnetic enrichment for
human B cells using human CD19 MicroBeads (Miltenyi Biotec #130-050-301; Gaithersburg,
MD, USA). DNA was extracted using the DNeasy Blood & Tissue kit (QIAGEN #69504) and
fluorometrically quantitated using the Qubit dsDNA HS assay kit (Invitrogen #Q32854; Waltham,
MA, USA) prior to use in next-generation sequencing library preparation.

A hybrid-capture target enrichment panel targeting the full coding sequences of 183
genes selected based on the presence of recurrent mutations in hematologic malignancies was
utilized to profile most PDX models at baseline, on-treatment, and at end of study (as previously
described).®® An amplicon-based clinical sequencing panel targeting hotspot regions of the
oncogenes and most of the coding regions of tumor suppressor genes recurrently implicated in
hematologic malignancies (total 93 genes) was employed for a subset of PDX models.®* A
custom amplicon-based deep sequencing panel targeting 23 genes implicated in in B-ALL
treatment resistance (ArcherDX; Boulder, CO, USA) was employed to profile PDXs progressing
after BCR::ABL1 inhibition.
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Whole Exome Sequencing (WES) sample preparation

PDXs that progressed in absence of treatment-emergent driver alterations detected by targeted
sequencing underwent whole exome sequencing using the SureSelect Human All Exon v5 kit
(Agilent Life Sciences; Santa Clara, CA, USA). Briefly, 100ng of genomic DNA from each
leukemia specimen as well as a control cell line (CEPH 1408) and a tail clipping from a non-
xenografted NSG mouse were fragmented to 250bp on a Covaris Ultrasonicator (Woburn, MA,
USA). Size-selected DNA fragments were ligated to xGen v1 UDI-UMI9 adaptors (Integrated
DNA Technologies; Coralville, IA, USA) during automated library preparation with a Biomek FXP
liquid handling robot (Beckman Coulter; Indianapolis, IN, USA). Libraries (250ng per sample)
were pooled to 750ng and captured with the SureSelect Human All Exon v5 bait set. Captures
were pooled and sequenced on a HiSeq 3000 (lllumina; San Diego, CA, USA).

Flow sorting of from healthy human bone marrow aspirates and PDX tumors
Approximately 108 cells per sample were resuspended in PBS with 4,6-diamidino-2-phenylindole
(DAPI; 0.75ug/mL) as a dead cell marker. For cell surface staining, PBS-washed cells were
blocked with Fc blocker for 10 min on ice and then stained with the antibodies listed in Table S10
at the manufacturers’ recommended concentrations or with an isotype control for 25 min on ice.
Cells were then washed and resuspended in chilled PBS containing 0.75ug/mL of DAPI to
exclude dead cells. For annexin V staining, annexin V binding buffer (BD Biosciences) was used
instead of PBS, and 7-aminoactinomysin D (7-AAD; BD Biosciences) instead of DAPI.
Phycoerythrin (PE)-labelled annexin V was purchased from BD Biosciences. Acquisition was
performed on a LSR Fortessa flow cytometer (BD Biosciences). Fluorescence-based cell sorting
was performed on a FACSAria Il (BD Biosciences). FACS data were analyzed with FlowJo
software (FlowJo).

Cells expressing B cell lineage-defining surface proteins were enriched by FACS on a BD
FACSAria Il cell sorter (BD Biosciences; Franklin Lakes, New Jersey, USA) based on staining
with antibodies targeting the following markers: Annexin V, CD45, CD34, CD10, CD19, CD20,
and CD22. Healthy and immunophenotyped subpopulations were defined as in Figures S4A &
S7B. Lymphoid progenitor sub-populations then underwent scRNA-seq via Seg-Well S® and
SS2.

Sample preparation for scRNA-seq of clinical and PDX samples

We used the Seq-Well S2 platform for massively parallel scRNA-seq to capture transcriptomes
of single cells on barcoded mRNA capture beads.3! Briefly, a single-cell suspension of 15,000
cells in 200uL RPMI media supplemented with 10% FBS was loaded onto single arrays
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containing barcoded mRNA capture beads (ChemGenes). The arrays were sealed with a
polycarbonate membrane (pore size of 0.01um), before undergoing cell lysis and transcript
hybridization. The barcoded mRNA capture beads were then recovered and pooled for all
subsequent steps. Reverse transcription was performed using Maxima H Minus Reverse
Transcriptase (Thermo Fisher Scientific EP0753). Exonuclease | treatment (NEB M0293 L) was
used to remove excess primers, followed by Second Strand Synthesis using a primer of eight
random bases to create complementary cDNA strands with SMART handles for PCR
amplification. Whole transcriptome amplification was carried out using KAPA HiFi PCR
Mastermix (Kapa Biosystems KK2602) with 2000 beads per 50-ul reaction volume. Libraries
were then pooled in sets of eight (totaling 16,000 beads), purified using Agencourt AMPure XP
beads (Beckman Coulter, A63881) by a 0.6x solid phase reversible immobilization (SPRI)
followed by a 1x SPRI, and quantified using Qubit hsDNA Assay (Thermo Fisher Scientific
Q32854). The quality of whole transcriptome amplification (WTA) product was assessed using
the Agilent High Sensitivity D5000 Screen Tape System (Agilent Genomics) with an expected
peak at 800 base pairs tailing off to beyond 3000 base pairs and a small/nonexistent primer
peak.

Libraries were constructed using the Nextera XT DNA tagmentation method (lllumina FC-
131-1096) on a total of 750pg of pooled cDNA library from 16,000 recovered beads using index
primers with format as previously described.?' Tagmented and amplified sequences were
purified at a 0.6x SPRI ratio yielding library sizes with an average distribution of 300 to 750bp in
length as determined using the Agilent High Sensitivity D5000 Screen Tape System (Agilent
Genomics). Two arrays were sequenced per sequencing run with an lllumina 75 Cycle NextSeq
500/550 v2 kit (lllumina FC-404—2005) at a final concentration of 2.4pM. The read structure was
paired end with Read 1 starting from a custom Read 1 primer containing 20 bases with a 12-bp
cell barcode and 8-bp unique molecular identifier (UMI) and Read 2 containing 50 bases of

transcript sequence.

Sample preparation for paired SMR mass profiling and SMART-Seq2

For all PDX and healthy bone marrow samples, cells were adjusted to a final
concentration of 2.5%10° cells/ml to load single cells into the mass sensor array and record
single-cell mass measurements, as previously described.#-%5 In order to exchange buffer and
flush individual cells from the system, the release side of the device was constantly flushed with
PBS at a rate of 15uL per minute. Upon detection of a single-cell at the final cantilever of the
SMR, as indicated by a supra-threshold shift in resonant frequency, a set of three-dimensional
motorized stages (ThorLabs) was triggered to move a custom PCR-tube strip mount from a
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waste collection position to a sample collection position to retrieve the cell. Each cell was
dispensed in approximately 5ul of PBS into a PCR tube containing 5pl of 2x TCL lysis buffer
(Qiagen) with 2% v/v 2-mercaptoethanol (Sigma) for a total final reaction volume of 10ul. After
each 8-tube PCR strip was filled with cells, the strip was spun down at 1,000 g for 30 seconds
and immediately snap-frozen on dry ice. Following collection, samples were stored at -80 C prior
to library preparation and sequencing.

Single-cell lysates were compiled from independent collections upon thawing and
transferred into wells of a 0.2mL skirted 96-well PCR plate (Thermo Fisher Scientific). sScCRNA-
seq libraries were generated using SMART-Seq2 protocol.?® Briefly, cDNA was reversed
transcribed from single cells using Maxima RT (Thermo Fisher Scientific) and whole
transcriptome amplification (WTA) was performed. WTA products were purified using the
Agencourt AMPure XP beads (Beckman Coulter) and used to prepare paired-end libraries with
Nextera XT (lllumina). Single cells were pooled and sequenced on a NextSeq 550 sequencer
(Mlumina) using a 75 cycle High Output Kit (v2.5) with a 30bp paired end read structure.

QUANTIFICATION AND STATISTICAL ANALYSIS

PDX in vivo studies: survival analysis on treatment arms and with pretreatment clinical
risk stratification metadata

Analyses fitting a Cox proportional hazards model for overall survival (OS) and progression-free
survival (PFS) outcomes on treatment arms and pretreatment clinical risk stratification
categories were performed using the survival package in R.6” The following pre-clinical features
included: IZKF1 deletion, 9p deletion, hyperdiploid karyotype, gain of chromosome 21,
presenting white blood cell count, age, sex (if age <18 years), race, phase of disease, number
of prior therapies, and pre-existing ABL 1 mutation(s). Hazard ratios and p-values for PFS within
pretreatment clinical risk categories were generated relative to the lowest risk group in each
category (Figure S1D).

WES alignment and variant calling

Pooled sequenced WES samples were demultiplexed using Picard tools. Read pairs were
aligned to the hg19 reference build using the Burrows-Wheeler Aligner.5® Data were sorted and
duplicate-marked using Picard tools. Alignments were refined using the Genome Analysis
Toolkit (GATK)870 for localized realignment around small insertion and deletion (indel) sites.
Mutation analysis for single nucleotide variants was performed with MuTect v1.1.47" and
annotated by Variant Effect Predictor.”? Indels were called using the SomaticindelDetector tool
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of the GATK. Copy number variants (CNVs) were identified using RobustCNV for autosomes.”
Detected alterations are reported in Table S3 and Figure S2A.

scRNA-seq sequencing alignment and quality control
Sequenced Seqg-Well BCL files were demultiplexed into individual sample FASTQs for Read 1
and Read 2 using the bcl2fastq pipeline on Terra, as previously described. The resultant paired
read FASTQs were aligned to the hg19 genome using the cumulus/dropseq_tools pipeline on
Terra maintained by the Broad Institute using standard settings, generating a genes by cells
count matrix for each sample.” Low quality cells were filtered using nGene<200, nUMI<500,
and percent mitochondrial transcripts<30% thresholds before merging samples; genes were
filtered if they were not expressed in at least 10 cells.

Sequenced SS2 BCL files were similarly demultiplexed using bcl2fastq and aligned to the
hg19 genome using publicly available scripts on Terra (github.com/broadinstitute/TAG-public).

Total gene counts and transcript per million (TPM) matrices were filtered to remove low quality
cells with <15% transcriptome mapping, 2,000 genes, and 45,000 mapped reads, before
continuing analysis. Genes expressed in fewer than 10 cells, as well as long non-coding RNAs

and unique hg19 reference-build variants were removed before downstream analysis.

Human healthy bone marrow reference cell type clustering and visualization
After QC filtering, 13,643 high quality cells from 7 healthy human bone marrow donors were
analyzed in Seurat v2.3.4 to classify hematopoietic cell types.” After normalization, the top
1,500 highly dispersed variable genes were selected using the mean-variance plot method in
Seurat’s FindVariableFeatures function. SCRNA-seq data was scaled over highly variable genes
and used as input for PCA analysis. The top significant PCs, as defined by the JackStraw test
(top 25 PCs), were used as input for building a SNN graph to cluster cells by their (k=35) nearest
neighbors and for t-SNE visualization of clusters. Given the shared, continuous hierarchy of
covarying gene expression in hematopoietic development, broad cell types (progenitor, myeloid,
erythroid, B cell lineage, pDCs, T cells, and Plasmablasts) were called based on their
differentially expressed genes (identified using the Wilcox test in Seurat's FindAllMarkers
function), and subset into individual Seurat objects for a second round of clustering to resolve
the final 13 cell types defined in Figure S4. Cell type annotations were post-hoc validated based
on biased or exclusive expression of known marker genes (Figure S4D).

SS2 healthy reference cell types were called by their confident random forest prediction
probabilities (see next section) and examination of marker genes to provide further support of
cell type identification (Figure S8B). Cell type clusters were visualized using SPRING, a tool
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that generates force-directed layouts from kNN graphs to visually preserve hierarchical
relationships between cell types.’®

Unbiased identification of consensus intratumoral gene expression programs with NMF
We sought to identify common axes of covarying intratumoral gene expression within all Ph+
ALL tumors in our dataset. First, we ran consensus NMF (cNMF) on each tumor in our dataset
(n=52 total samples, defining bone marrow and spleen samples from the same mouse as
individual tumors).”” For this analysis, we selected a consensus 1,489 variable genes across all
tumors by first identifying the top 2,500 variable genes within each individual tumor using the
variance standardized transformation method in Seurat v5.0.2 FindVariableFeatures function.
To ensure consensus variable gene selection was not biased by PDX line- or patient-specific
variable genes, as some models or donors had more tumors sampled than others, we initially
selected the top 2,000 median weighted variable genes across tumors within a PDX line or
patient, and then chose the top 2,000 median weighted variable genes across all PDX line and
patient median gene lists. 511 of these top 2,000 variable genes were removed based on non-
zero expression across all 52 tumors.

cNMF (1,000 iterations) was performed on the counts matrices of each tumor utilizing the
consensus variable gene list over a range of k=3-9. All stable solutions of k, defined by a cNMF
solution silhouette score>0.8 across iterations, were evaluated for optimal k selection using the
following heuristics. We first hierarchically clustered the Jaccard Similarity of the top 50 genes
from each factor across all stable k solutions; under-clustered k solutions were nominated based
on factors that contained genes split across clusters that were hierarchically clustered in higher
k factorizations, and over-clustered k solutions were nominated based on the presence of factors
that did not hierarchically cluster with lower k factorizations or split genes across multiple lower
k factors.”® To further evaluate these hypothesized over- or under-clustered k solutions, we
scaled the data and ran UMAP projections over the top 50 genes from each factor for each
stable k solutions. We used Seurat’s AddModuleScore function over the top 50 genes from each
factor to assess whether under-clustered factors convolved expression across UMAP
subclusters of optimal k solutions, or whether over-clustered factors scored highest in the same
subcluster of cells or mostly strongly defined 1-2 cells (“junk” factor). Finally, we assessed
significant Pearson correlation of the top 50 genes in each optimal k factor over an expression-
binned bootstrapped null distribution as previously described,’”® removing factors that were not
significantly correlated (typically “activity’-like continuous programs in UMAP projections that,
upon inspection, actually contained sparsely expressed genes of redundant biological
annotations to other factors within that k solution). Factors from the selected optimal k that
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contained significantly correlated genes were labeled as “intratumoral gene expression
programs” or GEPs, and collated for downstream intertumoral comparisons across the entire
tumor cohort. Examples of intratumoral GEPs from representative PDX and patient tumors are
shown in Figure S3B.

From performing intratumoral cNMF on 52 tumors, we identified 166 intratumoral GEPs.
We excluded outlier GEPs by constructing a kNN graph (k=15) and filtered 40 intratumoral GEPs
using an elbow-based filtering criterion over kNN distances of each individual GEP to its nearest
neighbor. The remaining 126 intratumoral GEPs were hierarchically clustered using Ward.D
clustering over their cosine similarity to reveal 7 meta-GEPs or “mGEPSs”, which we interpret as
shared intratumoral gene covariation across at least 8 individual tumors (Figure S3A). To
interpret shared gene covariation across each identified mGEP, we isolated the top 30 median
gene loadings across intratumoral GEPs within a given mGEP cluster (Figures 3C & S3A; Table
S4).

Training and interpreting the random forest classifier

Random forest is an ensemble machine learning method used for both classification and
regression. Like other ensemble models, random forests combine multiple weak classifiers, in
this case shallow decision trees, to make predictions. In this work, a random forest was used for
classification. Here, we interrogate aberrant developmental hierarchies in ALL by using random
forests to predict the nearest cell type from the normal B-cell lineage for single cells from Ph+
ALL samples. There are inherent advantages to random forests for the Ph+ ALL classification
task. Importantly, ensemble classifiers, like a random forest, provide a distribution of class
probabilities reflecting the similarity of each cell to each cell type the model was trained on. This
is done by calculating the proportion of trees voting for a cell type for each given observation.
To generate a single prediction for a cell, the highest-class probability becomes the prediction.
The higher the probability of the chosen class, the more transcriptionally similar the cell is to that
stage of B cell development. The distribution of class probabilities itself can be used to
understand the certainty — or uncertainty — of a prediction. We leveraged this measure of
uncertainty in predictions to evaluate how well a tumor cell fits a specific stage in B cell lineage
(Figure 2H). A tumor cell with a more uniform distribution of probabilities over classes likely
shares transcriptional features with many a wider range of stages of B cell development,
potentially indicating a more aberrant cell from normal development. Second, ensemble
approaches tend to be more robust to overfitting, which is necessary when applying a model
trained on sorted, healthy populations of cells to evaluate aberrant leukemic cells. Finally,
because random forests are nonparametric models, they also are highly flexible to input feature
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scale and variance. This makes the approach particularly suited to raw count matrices output by
various scRNA-seq technologies used.

Here, we trained a random forest on sorted cells from the B cell lineage using 15,000
genes with detected expression in more than 10 cells as input features. Random forests were
implemented using R version 3.5.1 using the caret package for training infrastructure.8 The
ranger implementation of random forests was used.®' Hyperparameter search over ranger
parameters (the number of randomly selected features considered for splitting at each tree node
and the rule used for splitting) was done via 10-fold cross-validation (CV). The model achieved
an accuracy of 94+£0.006% on 10-fold CV with optimal parameters. The final model used the full
training set of 13,643 cells. Results of 10-fold cross validation are provided in Figure S5A. The
model was also evaluated on an external testing set of Seq-Well generated healthy bone marrow
scRNA-seq transcriptomes,'® and achieved performance of average AUC=0.99 over all 13 cell
types (Figure S5C). To interpret features being used to make predictions by the classifier, we
used permutation importance tests. Permutation importance measures the impact of randomly
shuffling feature values on the performance of a model measured as accuracy and decrease in
Gini impurity. Specifically, a computationally accelerated heuristic method was used that
constructs a null distribution from features that have importance values close to zero, limiting the
need for randomly shuffling all features independently to evaluate significance.®? The results of
feature importance defining marker genes segregating the 13 cell types can be found in Figure
S5B.

Generating Tumor Hybrid Scores and assigning leukemia cells to hybrid populations

Tumor Hybrid gene signatures were generated as previously described.® First, normalized gene
expression values were correlated to RF cell type classification probabilities along B cell
progenitor cell types (HSC, Pre-B, and Immature B). Pro-B RF probability correlations were
excluded; since most leukemic cells were dominantly classified as Pro-B with secondary
classifications along B cell lineage cell types, genes that highly correlated to Pro-B RF
probabilities were not Pro-B-specific. To ensure that genes in each hybrid population signature
were specific and unique to HSC, Pre-B, and Immature B cell types, the second-highest cell type
correlation coefficient was subtracted from the highest correlation coefficient for a given cell type.
Additionally, to ensure that cell type signatures were not obfuscated by cell cycle, positive
correlation values of genes with cell cycle scores were subtracted from the highest correlation
coefficient of a given cell type. After performing these corrections, the top 30 correlated genes
to HSC, Pre-B, and Immature B cell types were included in their respective hybrid gene
signatures; a threshold of 30 genes was selected based on the approximate elbow in corrected
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correlation values for each hybrid signature. Likewise, Pro-B gene scores were defined by the
top 30 differentially expressed genes in healthy Pro-B cells (Figures S6A; Table S5).

Tumor cells were scored by these HSC, Pro-B, Pre-B, and Immature B gene signatures
using the Seurat v4 AddModuleScore function, and consequently assigned to hybrid populations
similarly to what has been described previously.®° Single cells were classified into HSC-like,
PreB-like, and Immature-like hybrid populations based on their highest hybrid cell type signature
score, which we required to be > 0.5 + that cell's Pro-B score. All other cells were classified as
Pro-B like cells, which were characterized by strong Pro-B gene expression and weak or no co-
expression of other cell type hybrid signature scores. The classifications based on these hybrid
score distributions and relative to their B cell lineage RF prediction probabilities is demonstrated
in Figure S6B.

Mutual information of transcription factor activities with tumor hybrids

We sought to elucidate gene programs whose activity associated with the tumor hybrid
populations defined above. Given the highly entropic co-expression of tumor hybrid signatures
with Pro-B marker genes, we utilized mutual information as a metric for the potentially non-linear
mutual dependence of gene expression with hybrid-defined developmental marker genes. Within
respective hybrid subpopulations of each individual PDX line’s pre-treatment and progression
time points, we calculated the average normalized mutual information (NMI) of all highly
expressed genes across the top 30 genes in each hybrid population signature, using raw gene
counts as input. Within each PDX sample and hybrid population, Ml values between each gene-
gene pair were generated using R infotheo package mutinformation function with the Miller-
Madow asymptotic bias corrected empirical estimator and normalized to scale values between
0 and 1 as a relative, comparable metric between samples.®® We interpret these NMI values as
a metric for genes whose expression relatively scale with hybrid population identity.

To identify cooperatively expressed genes that are collectively mutually informed with
tumor hybrid signatures, we utilized the collectRI transcription factor accessibility database along
with the decoupleR package to in silico predict mutually informed transcription factor (TF) activity
with tumor hybrid identity.®* Averaged NMI values for each PDX sample hybrid were used as
input with the run_ulm function to estimate the linear relationship between TF-target genes and
their hybrid marker gene expression. Within each PDX samples, significant TFs were ordered
by their variance in mutually informed activity between hybrid populations, and the top 30 of
these TFs were selected for further inspection of scaled predicted activity between hybrid
subsets. NMI values and in silico predicted TF activities for each healthy reference population
(HSC for HSC-hyb, Pre-Bl and Pre-Bll for PreB-hyb, Immature B for InmB-hyb) were generated
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analogously and post-hoc compared to their leukemic hybrid counterparts (subset shown in
Figure S6D), demonstrating that the majority of leukemic hybrid-defining TF activities were
conserved with their healthy counterparts, with a couple of TFs.

Defining developmental skews in Smart-seq2 PDX samples

Given the paucity of RF-classified immature B cells in the SS2 leukemic dataset (Figure S8A),
we identified genes that were Pearson correlated with Pre-B RF probabilities and with progenitor
population (HSC, GMP, Pro-Mono, Early-Erythroid) probabilities. We found that genes
correlated with progenitor RF probabilities negatively correlated with Pre-B RF probabilities in
leukemic cells and vice versa, enabling us to define a spectrum of differentiation between
progenitor and later-stage B cell developmental stages (Figures S8C & S8D). Progenitor-like
and PreB-like scores were generated by scoring leukemic cells over the top 30 genes
significantly correlated to their respective RF probabilities (Table S7). Each cell’s location on the
leukemic differentiation spectrum was defined by its (PreB-like score — Progenitor-like score).

Identifying somatic variants in full-length Smart-seq2 (SS2) scRNA-seq libraries

Each sample's SS2 FASTAQ files were aligned to hg19 using STAR (version 2.6.0c) and then
sorted and indexed with SAMtools (version 1.13).858 16 genomic loci, nominated based on
recurrently identified SNVs from bulk RNA-seq in the genes KRAS, NRAS, PTPN11, GNB1,
ABL1, and STAT5A (Figure S9A; Table S3), were assessed for wild-type or mutant transcript
detection by a custom script utilizing the Pysam library (version 0.16.0.1).8” In particular, for each
locus of interest, each cell was marked as "NC" if there was no coverage at the locus, marked
with O if all overlapping reads matched the reference allele, or marked as mutant if there were
overlapping reads that did not match the reference allele.

Predicting chromosomal number variations (CNVs) in SS2 scRNA-seq libraries with
inferCNV

To identify SS2 leukemic cells harboring CNVs and in silico elucidate subclonal heterogeneity
within tumors, we estimated single-cell CNVs as previously described by computing the average
expression in a sliding window of 100 genes within each chromosome after sorting the detected
genes by their hg19 genome-defined chromosomal coordinates.®8 We used all healthy bone
marrow SS2 cells identified above (Figure S8B) as reference normal populations for this
analysis. Complete information on the inferCNV workflow used for this analysis can be found

here: https://github.com/broadinstitute/inferCNV/wiki, using baseline input parameters for SS2
data and for the i6 HMM algorithm for confident CNV-positive or negative predictions in single-
cells.
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Module scoring single-cell transcriptomes

Module scores of all gene signatures over single-cells were annotated using the Seurat v4
AddModuleScore function, which calculates the average expression levels of genes in a gene
list relative to all other genes with comparable normalized gene expression. Quiescent cells were
binned based on positive scores for a literature-derived quiescence gene signature derived from
human hematopoietic cells.®® We utilized previously established signatures for G1/S (n=43
genes) and G2/M (n=55 genes) to place each cell along this dynamic process;?® after inspecting
the distribution of scores in the complete dataset, we considered any cell > 1.5 SD above the
mean for either the G1/S or the G2/M scores to be cycling.'® Senescence scores were derived
from the top 50 genes significantly differentially expressed in the SS2 DFAB-25157 RAS-mutant
cells in remission compared to all other RAS-mutant SS2 cells (Figure 4F; Table S8).

Defining stress-autophagy, pre-BCR signaling, and inflammation transcriptional
programs at remission

To define heterogeneous, correlated transcriptional states defining PDX tumors that emerge in
MRD, we first performed differential gene expression analysis between paired pre-treatment and
MRD cells within the same PDX line to identify genes that significantly increase expression at
remission. A total of 40 MRD state-defining genes were identified based on significant
upregulation in at least two PDX-specific MRD differentially expressed gene (DEG) lists.
Performing gene-gene Pearson correlation across the expression of these 40 shared MRD-high
DEGs in all remission leukemic cells revealed three correlated modules of genes. To expand
these three modules, we identified the top 30 genes significantly correlated (>2 standard
deviations above median Pearson correlation) with the top differentially expressed gene in each
module (Table S9). Pathway enrichment of significantly correlated genes was performed over
msigDB Reactome gene sets for functional annotation, and to nominate targeted inhibitors of
state (Figures S10C).
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Figure S1. In vivo PDX Phase ll-like trial outcomes.

Related to Figure 1

(A) Serial peripheral blood BCR::ABL1 gRT-PCR measurements from PDX model DFAB-13601
treated with Ponatinib daily (40mg/kg/day); each line represents an individual mouse.

(B) Key trial events and outcomes for each mouse on Phase ll-like trial, grouped by treatment
arm. Complete response indicates <4% peripheral blood circulating blasts detected via flow
cytometry; partial response indicates reduced peripheral blood blasts compared to
pretreatment but >1% involvement; durable response indicates complete remission past 120
days on therapy.

(C) Competing risks model comparing progression and non-progression mortality in mice by
treatment arm; p-values from a Cox regression analysis indicated for differences in
progression and non-progression outcomes between treatment arms.

(D) Hazard ratios comparing pre-clinical risk factors for progression free survival in PDX mice
(see Methods). Significant shifts (p<0.05 from Cox regression analysis) annotated in red.
Median hazard ratios plotted with error bars representing +1 quartile; “N”=number of mice;

“HR”=hazard ratio; “Cl’=confidence interval.
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Figure S2. Emergent patterns in BCR::ABL1 B-ALL mutation acquisition on TKI.

Related to Figure 1

(A) Mutational alterations of individual PDX mice on TKI therapeutic regimen, grouped by
disease stage and annotated by treatment arm (“Tx Arm”). Treatment emergent mutations
indicated when mice from the same PDX line were profiled at pretreatment. Summary of
grouped RAS or ABL pathway mutations included below. Mice are annotated for prior TKI
exposure. “MRD”=minimal residual disease; “TFs”=transcription factors. Alteration details
additionally reported in Table S3.

(B) Change in the fraction of mice on each Phase ll-like trial treatment arm that harbor mutations
between progression and pretreatment. Genes along the ABL and RAS pathways are
annotated in turquoise and magenta, respectively.

(C) Change in average VAF of PDX lines at progression for mutations along the ABL or RAS
pathways compared to paired pretreatment tumors. Error bars indicate +1 standard deviation
from the plotted mean AVAF.
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Figure S3. Intratumoral cNMF reveals developmentally convolved gene co-expression.

Related to Figure 2

(A)cNMF program z-scored gene spectra for the top 30 metaprogram (mGEP) genes across all
intratumoral gene expression programs (GEPs; Table S4); individual GEPs are annotated
by PDX or Patient ID to show mGEP consensus across multiple donors.

(B)Representative heatmaps demonstrating intratumoral GEPs for one PDX tumor (DFAB-
25157 4A0) and one patient tumor (BIAB-16768 Pretreatment). Known, healthy B cell lineage
marker genes are annotated for each GEP.

(C)Pearson correlation of GEP module score and random forest (RF) classification probabilities.
Bottom color track indicates the donor where each individual GEP was identified.

51


https://doi.org/10.1101/2024.06.06.597767
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.06.597767; this version posted June 10, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

1291

Supplemental Figure 4

i Healthy populations © GMP
be @ HSC .Early
@ S Xy : Ery
v Q 2 N % S ®pDC
@ @ Flow cytometry & & € & \@@
— @ ®Mono-. :
- . CD45 ® ° ° ° o °
£ cD34 ® ° °
£ coio ° °
Healthy bone armmw, S CD19 o o o o o
marrow M Unsorted G0y = :
(n=7 donors) fraction Eb22
L J
v o °
Cell type calling L T ®Pre-BI . 5*’
wghtmertged <+————— W Sorted fractions D
atasets
Pre-BlI
HSC ® Pre
1,319 cells D
Percent
13 total cell types T|® Py . . @ Expressed
I | l Plasma [ ) c 0@ ¢ . o ee - ~25
. pbc{® - . ° c®0+- - 000 - °
Myeloid Lymphoid Eythroid Late Ery . 0 3 r;g
Early Ery LN X o [ ) :100
00 00 o i g
Pro Mono{ @ - X X ° AScaIed
GMP pDC Pro-B ImmatureB Early Ery GMP e 0 Y Y ) E verage
1,121 324 807 1,176 |mmature B ) . °co-00@@ Xpression
Pre-Bll { @ 900000000 - : 2
‘ . . . Pre-BI{® - 90000000 - ° - 1
Pro-B . 00000 D} . 0
Pro Mono Pre-Bl  Plasma Late Ery
581 2729 183 926 HSC ’ ‘ ° & o o L
SRANAVE S 0 V‘ N 95 Y
N, ® o % o“ V“\O” OVQCEO 9“‘%@ ’\VY\Q’ QAR
Mono Pre-BlI T
1,392 1,067 417
E Healthy bone marrow donors F Donor contribution to cell types

Donor

©O DFND-16010
O DFND-23320
O DFND-24693
O DFND-37477
O DFND-61300
O DFND-77958
O DFND-93045

13y ~
S @

Fraction Representation

N
@

1.00
[ |
0.
0.
0.
0.00

Donor

|77 oFND-16010
|7 oFND-23320
[ oFnD-24693
[ oFnD-37477
[ oFnD-61300
|7 oFND-77958
|| DFND-93045

O DN o O ’b A
% °<b" 0@\@ *@3@6{0
QB o ‘o N
& <

52


https://doi.org/10.1101/2024.06.06.597767
http://creativecommons.org/licenses/by-nc-nd/4.0/

1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.06.597767; this version posted June 10, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Figure S4. Generation of healthy human bone marrow scRNA-seq dataset.

Related to Figure 2

(A)Healthy human bone marrow samples (n = 7) were flow sorted into live bulk, CFU-L (colony-
forming unit low; progenitor), Prim-B, Pro-B, Pre-Pre-B, Pre-B, and Immature B populations
for scRNA-seq profiling (see Methods).

(B) Proportion of each cell type identified from the bulk (gray) or flow sorted-fraction (green).

(C)Force-directed graph (FDG) projection of healthy human bone marrow annotated by
hematopoietic cell types (n=13,643 cells).

(D) Dot plot of hematopoietic cell type marker genes. Color denotes scaled average expression;
size denotes percent expression in each scRNA-seq cell type population.

(E) FDG projection of healthy human bone marrow, annotated by donor.

(F) Donor fractional contribution to each cell type population.
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Figure S5. Random Forest Classifier accurately classifies healthy and Ph+ ALL single-

cell transcriptomes.

Related to Figure 2

(A) 10-fold cross-validation of each healthy reference cell type during RF training.

(B) Top 200 RF features ranked by permuted feature importance, grouped by healthy reference
cell type (randomly down-sampled n=100 cells).

(C) Receiver Operating Characteristics (ROC) curves for RF classification of test scRNA-seq
bone marrow dataset;'® area under the ROC curve (AUC) values listed in inset for each cell
type.

(D) Shannon Diversity Index (SDI) of classification probabilities versus number of unique
molecular identifier (UMI), number of genes, and percent mitochondrial transcripts for all
leukemic cells. Cells removed from analysis due to highest non-B cell lineage classification
are outlined in red and colored by misclassified cell type. Significant shifts in distribution
between non-B lineage and B-lineage single-cells, as defined by a Kolmogorov-Smirnov
(KS) test, reported (*p<0.001).

(E) Pearson correlation over gene expression of top 2,000 highly-variable genes from healthy
reference dataset across healthy and malignant hybrid cell type subpopulations.
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A

B

HSC-hyb ProB-like PreB-hyb ImmatureB-hyb
Correlated gene y y 4 »
HSC[ ] T K
programs Prob ] 3
= oo pre-8/[1] T A TR I &
— Immature B LI
- cpaa «
HSC- \ Cyoling [T LT S RO
hyb HSP90AB1 Quiescent [T [T [T 1T T IO 1T 10 T TN [
- MAFF
1]
—— ~~DNTT HSC-hyb g
- S0cs2 ProB-like =2
! __ PreB-hyb g
like [ ImmatureB-hyb (.%)
-
— —IGLL1 CBAB-12402 T T T[T T T
~-TCL1A CBAB-30198 I FITIE T 10T [
PreB- CBAB-72204 Rl [ )
hyb — CBAB-75728 Il | | | ©
e CBAB-75914|| || | | | AL \ I 138
| cD79A CBAB-99093 I | | =
{M A1 DFAB-13601 i ‘ J | [ ] (LMY TR x
ImmB- S DFAB-25157 | \IIH”IIIIIHH LU TR AT AR \‘\ F T e At (VYN Y e
HLA-DRA DFAB-54880 ‘ |1 1] Im ‘\ W HH‘I h | I 1l
hyb DFAB-62208 ’\H‘\ 0l l’II\I\I‘HI\II\H‘I\\IH\IIHII\I\IH\II\HIIHHHII\I\’I\HHHIHHHI\IWH\ \II\IHHII\\HHII\HII I HII\I\’\HI\I\HIIHH HIIWIIH LT O WA
~— BANK1 HCAB-89433[| | | ||[|| [I| [ | | . I | | [ [ |
BIAB-16768(]] [ TT ] WI/ MM AT I 1T T T {H T T 1%}
] 4 OFAB-71417 || 1IN0 11 A RN AT A H\IIHII\HI\ H\WHIHH AL TN W TR NCED ‘qc:
A sms20sselil’ 1T v M HHHIHH IR L “u‘u M | | mhe
Average Relative - x
expression DFAB-77993| | || LI [ I | I
42,667 cells . s
Expression Score Prediction Score
| Cells from PDX line or donor  -0.75 [N 2 o[ 0.35
C Developmental hybrid populations D
ProB-Like HSC-Hybrid HSC-hyb PreB-hyb ImmatureB-hyb Disease stage
Q o025 025 Stage W Healtny
I B Fraction Pretreatment
| 0.00 #h 0.00 i I ﬂ ICDR2E51 M Progression
o i
€ 025 + 0.25 I JACm Sample
£ { K .
= 050 050" I Egg Fra(itlon
05 00 05 10 05 00 05 1.0 E2F2
) ) IRF6 05
PreB-Hybrid ImmB-Hybrid ] STAT1 -
Foxo3
8 0.25 i 0.25 I ﬁ?ﬁg ° )
T . I I STAT2 Scaled Predicted
| 0.00 %— 0.00 u IRF4 i
fos] L ] = u RFXAP Tanct|V|ty
€ -0.25 & -0.25 I [ RE%\NK
€
£ o5 080 cim
05 00 05 1.0 05 00 05 1.0 [ I [ T IRF1 -2
Pre-B - HSC Pre-B - HSC P IR O DT FIFIFT| FIPEPE
PDX B PSS PSSP @D B g
All Ph+ leukmia cells ow I high F PR F R PR F® P
FFFSFEE FFFSFSEF FFFS SR

1322

Hybrid density

56


https://doi.org/10.1101/2024.06.06.597767
http://creativecommons.org/licenses/by-nc-nd/4.0/

1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.06.597767; this version posted June 10, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Figure S6. Defining Ph+ ALL developmental tumor hybrid populations.

Related to Figure 2

(A) Developmental hybrid signatures defined by the top 30 genes correlated to RF prediction
scores for each normal B-lineage cell type (Table S5). Average expression of signature
genes across leukemic hybrid populations.

(B) Classification of leukemic hybrid populations based on random forest (RF) classification
probabilities and hybrid signatures (see Methods). RF prediction probabilities, cycling or
quiescent status, and PDX line or Patient ID annotated for each cell.

(C) Leukemic hybrid subpopulations projected onto RF prediction probability axes, as in Figure
2H. Densities of leukemia cells from each hybrid population projected over the landscape of
all leukemia cells in the scRNA-seq dataset (plotted in grey).

(D) Scaled in silico predicted transcription factor (TF) activity over genes associated with
developmental hybrid gene signatures (see Methods). Scaled TF activity scores shown in
human reference samples (green) and PDX lines at pretreatment (grey) and progression
(red), subset to TFs whose predicted activity scale with HSC, Pre-B, and Immature B RF
classification probabilities in leukemic cells. Healthy reference Pre-Bl and Pre-Bll
populations plotted independently within Pre-B.
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Figure S7. Transcriptional and immunophenotype shifts on therapy.

Related to Figure 3

(A) Hybrid scRNA-seq population distributions for each profiled pretreatment and progression
PDX mouse, annotated by treatment arm and time on treatment.

(B) Flow sorting gating strategy for B cell progenitor populations on a representative healthy
human umbilical cord blood sample, PDX pre-treatment tumor, and PDX progression tumor
(representative PDX=CBAB-75914).

(C) Fraction representation of PDX pretreatment and progression tumors across
immunophenotyped B cell progenitor-like populations. Individual tumor immunophenotyped
population fractions plotted as points; bars represent average tumor fraction within each
immunophenotyped population at pretreatment or progression time points, including error
bars for +1 standard deviation. Surface markers used for flow gating of each population, as
shown in (B), annotated below.

(D) Fraction of PDX tumor at progression of each immunophenotyped B cell progenitor-like
population, grouped by mutation status at progression; bars represent average tumor
fraction, with error bars for 1 standard deviation. Significant p-values from Dirichlet

regression noted; **p<0.01 and ***p<0.001.
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Figure S8. Random Forest (RF) Classifier recovers developmental structure in Smart-

Seq2 single-cell transcriptomes.

Related to Figure 4

(A)Proportion of RF cell type classifications across all Smart-Seq2 (SS2) healthy and leukemic
cells.

(B) Single-cells ordered by RF prediction probabilities from progenitor cell types to differentiated
B cell types, and annotated by flow sort gate (as in Figure S4A). Below, scaled expression
of the top 10 RF prediction-correlated genes in developmentally-ordered healthy cells.

(C)Genes correlated to Pre-B RF prediction (x-axis) and genes correlated to Progenitor RF
prediction are negatively correlated with each other; rho and p-value from Pearson
correlation noted. Colored points represent the top 30 progenitor and Pre-B correlated genes
used to define the SS2 developmental spectrum.

(D)Leukemic SS2 single-cells ranked by Progenitor-like score, annotated by B cell lineage RF
prediction probabilities. Below, scaled expression of top 30 Progenitor-like and PreB-like
signature genes (Table S7).

(E) Pearson cross-correlation of RF cell type-correlated gene signature scores derived from Seq-
Well and SS2 show cross-modality concordance. For clarity, SS2 signatures are hereafter
referenced as “HSC-hyb” for Progenitor-like scores, and “PreB-hyb” for PreB-like scores.
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Figure S9. SS2 enables co-detection of mutations and transcriptome in leukemic single-

cells.

Related to Figure 4

(A)Summary of recurrently-identified RAS-pathway and ABL-pathway mutation loci from bulk
targeted sequencing across PDX lines that were aligned for mutation detection in SS2
FASTQs (see Methods; Table S3).

(B)For genes with recurrently-identified mutations, Pearson correlation of average gene
expression and normalized mutation-locus detection rate (either mutant or wild-type reads).

(C)Mutant and wild-type transcripts detected in SS2 single-cell transcriptomes from three
representative PDX tumors; detected mutant transcript frequency in single-cells matched
bulk VAF.

(D)Single-cell CNV profiles across each PDX line, including instances of CNV subclonal
heterogeneity, paired with SS2-detected SNVs.

(E) SS2 single-cells within each profiled PDX line ordered by HSC-hyb expression scores, as
defined in Figure S8D. Cycling status, CNV detection, and detected mutant and wild-type
transcripts are annotated. Co-mutant indicates single-cells where RAS and ABL pathway
mutations were detected.

(F) t-SNE projection of SS2 single-cells from representative PDX lines CBAB-12402, DFAB-
62208, and DFAB-25157, colored by treatment time point. Number of SS2-profiled cells and
mice at each time point denoted (n=cells, x=mice).

(G)AlIl RAS-pathway mutant leukemic single-cells grouped by three treatment timepoints,
annotated by KRAS or NRAS mutant transcript detection, and ordered by HSC-hyb signature
scores within SS2 single-cells from DFAB-25157 and non-DFAB-25157 PDX lines
demonstrates association between senescence-like and HSC-hyb gene expression scores
across PDX lines and treatment stages.

(H)Cells from DFAB-25157 and DFAB-62208 at MRD and Progression, plot along fitness
quadrants as defined in Figure 4H, with RAS-mutant leukemia cells annotated in red.
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Figure S10. Targeting integrative cell states enhances remission.

Related to Figure 5

(A)All MRD single-cells ordered by Pre-BCR Signaling MRD state scores. CNV and SNV
mutation status annotated for each cell, along with cycling and quiescent status. P-values
reported from Fisher exact test comparing abundance of KRAS-mutant, quiescent, and/or
cycling MRD cells with dominant Stress/Autophagy (“Stress/Auto.”) expression scores to
those with dominant Pre-BCR Signaling expression scores.

(B)Correlation between Stress/Autophagy and HSC-hyb gene expression, versus Pre-BCR
signaling and PreB-hyb gene expression. Cycling cells annotated in red.

(C)Pathway enrichment false discovery rate (FDR) g-values for the top 100 genes in the
Stress/Autophagy MRD state.

(D)Boxplot of relative MRD program (Pre-BCR Signaling — Stress/Autophagy) in MRD cells from
DFAB-25157 and DFAB-62208; single-cell scores from each PDX-line plotted as individual
points.

65


https://doi.org/10.1101/2024.06.06.597767
http://creativecommons.org/licenses/by-nc-nd/4.0/

1420

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.06.597767; this version posted June 10, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

Supplemental Figure 11
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Figure S11. Mass correlates with developmental states and cell cycle.

Related to Figure 6

(A)Mass of healthy reference SS2 cells, binned by random forest-classified cell type and
annotated by cell-type marker gene expression. Mean mass for each cell type plotted as a
line.

(B)Force directed graph (FDG) visualization of healthy SS2 cells, annotated by cell type (top)
and by cell mass (bottom); dot size indicates cell mass.

(C)Mass-correlated genes in healthy SS2 cells on the x-axis, versus the difference between
genes correlated with RF progenitor and Pre-B cell types in healthy SS2 cells on the y-axis.
Colored points denote marker genes for each cell type. R and p-value denote Pearson

correlation between x- and y-axis indicated gene correlations.
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