

1 **ALBA proteins facilitate cytoplasmic YTHDF-mediated reading of m<sup>6</sup>A in plants**

2

3 Marlene Reichel<sup>1,2,5</sup>, Mathias Due Tankmar<sup>1,5</sup>, Sarah Rennie<sup>3,5\*</sup>, Laura Arribas-  
4 Hernández<sup>1</sup>, Martin Lewinski<sup>2</sup>, Tino Köster<sup>2</sup>, Naiqi Wang<sup>4</sup>, Anthony A. Millar<sup>4\*\*</sup>, Dorothee  
5 Staiger<sup>2\*\*\*</sup>, Peter Brodersen<sup>1,6\*\*\*\*</sup>

6

7 <sup>1</sup> University of Copenhagen, Copenhagen Plant Science Center, Department of Biology,  
8 Copenhagen N, Denmark

9 <sup>2</sup> Department of RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld  
10 University, D-33615 Bielefeld, Germany

11 <sup>3</sup> Department of Biology, Copenhagen University, Copenhagen N, Denmark

12 <sup>4</sup> Division of Plant Science, Research School of Biology, The Australian National  
13 University, Canberra ACT 2601, Australia.

14 <sup>5</sup>These authors contributed equally to this work

15 <sup>6</sup>Lead contact, email [pbrodersen@bio.ku.dk](mailto:pbrodersen@bio.ku.dk)

16 \*Correspondence: [sarah.rennie@bio.ku.dk](mailto:sarah.rennie@bio.ku.dk)

17 \*\*Correspondence: [tony.millar@anu.edu.au](mailto:tony.millar@anu.edu.au)

18 \*\*\*Correspondence: [dorothee.staiger@uni-bielefeld.de](mailto:dorothee.staiger@uni-bielefeld.de)

19 \*\*\*\*Correspondence: [pbrodersen@bio.ku.dk](mailto:pbrodersen@bio.ku.dk)

20

21 Keywords: N6-methyladenosine (m<sup>6</sup>A), YTHDF proteins, ECT2, ALBA proteins,

22 Intrinsically disordered regions (IDR), Arabidopsis, iCLIP, HyperTRIBE

23

24 **ABSTRACT**

25 *N*6-methyladenosine (m<sup>6</sup>A) exerts many of its regulatory effects on eukaryotic mRNAs by  
26 recruiting cytoplasmic YT521-B homology domain family (YTHDF) proteins. Here, we  
27 show that in *Arabidopsis*, the interaction between m<sup>6</sup>A and the major YTHDF protein ECT2  
28 also involves the mRNA-binding ALBA protein family. ALBA and YTHDF proteins  
29 physically associate via a deeply conserved short linear motif in the intrinsically disordered  
30 region of YTHDF proteins, their mRNA target sets overlap, and ALBA4 binding sites are  
31 juxtaposed to m<sup>6</sup>A sites. These binding sites correspond to pyrimidine-rich elements  
32 previously found to be important for m<sup>6</sup>A binding of ECT2. Accordingly, both biological  
33 functions of ECT2 and its binding to m<sup>6</sup>A targets *in vivo* require ALBA association. Our  
34 results introduce the YTHDF-ALBA complex as the functional cytoplasmic m<sup>6</sup>A-reader in  
35 plants and define a molecular foundation for the concept of facilitated m<sup>6</sup>A reading that  
36 increases the potential for combinatorial control of biological m<sup>6</sup>A effects.

37 **INTRODUCTION**

38 *N*6-methyladenosine (m<sup>6</sup>A) occurs widely in eukaryotic mRNAs. It is introduced into  
39 pre-mRNA during transcription in adenosines in DRACH/GGAU (D=A/G/U, R=A/G,  
40 H=A/C/U) motifs by a deeply conserved RNA polymerase II-coupled methyltransferase  
41 complex<sup>1</sup>. m<sup>6</sup>A is required to complete embryogenesis in vertebrates and plants<sup>2,3</sup>. It is  
42 also important for yeast sporulation<sup>4</sup> and for sex determination and neuronal development  
43 in insects<sup>5,6</sup>. Many developmental functions of m<sup>6</sup>A rely on cytoplasmic RNA-binding  
44 proteins (RBPs) specialized for m<sup>6</sup>A recognition, or “reading”, via a YTH domain<sup>7-10</sup>. These  
45 YTH domain family (YTHDF) m<sup>6</sup>A readers contain the YTH domain at the C-terminus,  
46 preceded by a long intrinsically disordered region (IDR)<sup>11</sup>.

47 Higher plants encode an expanded family of YTHDF proteins with, for instance, 11  
48 members in *Arabidopsis thaliana* (Arabidopsis)<sup>12,13</sup>. They are called EVOLUTIONARILY  
49 CONSERVED C-TERMINAL REGION 1-11 (ECT1-11) with reference to the deeply  
50 conserved YTH domain at the C-terminus<sup>14</sup>, following an intrinsically disordered region  
51 (IDR) of more variable length and sequence. ECT2 and ECT3 are crucial for post-  
52 embryonic development<sup>7,15</sup>, as they stimulate cell division in primordial cells<sup>15</sup>. Thus,  
53 double knockout of *ECT2* and *ECT3* causes slow formation and aberrant morphology of  
54 leaves, roots, stems, flowers and fruits, and these phenotypes are generally exacerbated  
55 by additional knockout of *ECT4*<sup>15</sup>. The developmental role of the m<sup>6</sup>A-ECT module is  
56 conserved in plants, because knockout of tomato and rice *ECT* genes also causes  
57 delayed development<sup>16,17</sup>.

58 Three features of the molecular functions of ECT proteins that promote growth  
59 during organogenesis have been defined. First, they are deeply conserved, because the  
60 sole YTHDF protein encoded by the liverwort *Marchantia polymorpha* that diverged from  
61 higher plants ~450 million years ago<sup>18,19</sup> can functionally replace *Arabidopsis* ECT2 when  
62 expressed in primordial cells in *ect2 ect3 ect4* mutants<sup>20</sup>. Second, ECTs interact with the  
63 major cytoplasmic poly(A)-binding proteins PAB2/4/8<sup>21,22</sup>. This interaction is mediated by a  
64 conserved tyrosine-rich motif in the IDR of ECT2 and is required for developmental  
65 functions of ECT2<sup>21</sup>. Third, most *Arabidopsis* *ECT* paralogues across phylogenetic  
66 subclades retain the ability to complement *ect2 ect3 ect4* mutants upon ectopic expression  
67 in primordial cells<sup>20</sup>. For the three *Arabidopsis* ECT proteins unable to perform this basal  
68 function, the divergence can at least in part be ascribed to differences in their N-terminal

69 IDRs<sup>20</sup>, including the loss of the PAB2/4/8-interacting motif<sup>21</sup>. Thus, the molecular  
70 properties of the IDRs of ECT proteins are central to understand their biological functions.

71 At least three distinct molecular properties of IDRs in RBPs are expected to  
72 contribute to their functions. First, IDRs often mediate self-assembly such that above a  
73 critical concentration, they separate into a phase distinct from the aqueous solution<sup>23</sup>. This  
74 is also the case for plant ECT proteins<sup>7,13</sup>, and negative feedback regulation of important  
75 stress-related m<sup>6</sup>A-containing mRNAs may indeed rely on ECT-mediated phase  
76 separation<sup>24,25</sup>. Second, the IDR may influence RNA-binding activity, either by stabilization  
77 of the RNA-bound conformation of the globular RNA-binding domain<sup>26</sup>, or through direct  
78 RNA binding activity, as in the case of Arg-Gly-Gly (RGG) repeats in IDRs<sup>27</sup>. The non-  
79 RGG-containing IDR of ECT2 may have such properties, because crosslinks to target  
80 mRNAs specific to the IDR were identified in crosslinking-immunoprecipitation-sequencing  
81 (CLIP-seq) data<sup>28</sup>, and because deletion of the IDR from ECT2 strongly reduces RNA  
82 binding capacity *in vivo*<sup>21</sup>. Third, short linear motifs (SLiMs) may be used to mediate direct  
83 binding to other proteins<sup>29</sup>, including other RBPs and regulators of the rate of translation  
84 and mRNA decay, as in the example of the ECT2-PAB2/4/8 interaction<sup>21</sup>.

85 The ALBA (acetylation lowers binding affinity) family of proteins was found in mRNA  
86 interactome capture screens to be a prominent group of mRNA-associated RBPs in  
87 *Arabidopsis*<sup>30,31</sup>. The ALBA superfamily of proteins contains an archaeal and two  
88 eukaryotic families. Proteins in the Sac10b archaeal family<sup>32</sup> exhibit acetylation-sensitive  
89 DNA-binding activity and have histone-like properties<sup>33-36</sup>, but may also have RNA  
90 chaperone functions<sup>37</sup>. The two eukaryotic families group around two distinct subunits of  
91 RNaseP/MRP complexes, Rpp20 or Rpp25<sup>32</sup>. Plants encode ALBA proteins belonging to  
92 both eukaryotic families. The Rpp20-related forms are short and contain only the ~95  
93 amino acid globular ALBA domain, while the Rpp25-related forms are long and contain  
94 ~200-300 amino acid C-terminal extensions, often IDRs with many RGG repeats<sup>38</sup>. The  
95 sequence similarity within the eukaryotic families is limited, and in most cases, it is not  
96 clear whether the ALBA proteins are mRNA-binding or have other RNA-related functions.  
97 mRNA-binding ALBA proteins have been studied in the parasitic protist *Trypanosoma*  
98 *brucei* where short and long forms are required for translational regulation of many mRNAs  
99 during the transition between mammalian and insect hosts, in particular for growth after  
100 commitment to differentiation into the insect-specific form<sup>39,40</sup>.

101 A requirement of ALBA proteins for growth is recurrent in several plant species<sup>41,42</sup>,  
102 first observed in the liverwort *M. polymorpha* where the sole long RGG-repeat-containing  
103 ALBA protein is necessary for the development of root-like structures called rhizoids<sup>41</sup>.  
104 Arabidopsis encodes three short ALBA proteins in the Rpp20 group, ALBA1-3, and three  
105 long ALBA proteins in the Rpp25 group, ALBA4-6<sup>38</sup>. Single knockouts of *ALBA1* and  
106 *ALBA2* cause defective root hair development, but no overall growth defects<sup>41</sup>. In contrast,  
107 combined knockout of *ALBA4-6* leads to slow seedling development, including defective  
108 root growth<sup>43</sup>. A similar defect in root growth was also observed in cotton upon RNAi-  
109 mediated knockdown of *ALBA* genes<sup>42</sup>, further supporting the idea that ALBA proteins  
110 stimulate tissue growth in plants. Nonetheless, the molecular basis for their growth-  
111 promoting function has not been defined.

112 In this study, we show that ALBAs and ECT2 associate via a deeply conserved  
113 SLiM in the IDR of ECT2 to form an efficient m<sup>6</sup>A reader complex in Arabidopsis. The  
114 mRNA target sets of ALBA proteins overlap significantly with those of m<sup>6</sup>A-ECT2/3, and  
115 ALBA4 binding sites in 3'-UTRs are juxtaposed to m<sup>6</sup>A sites. Finally, ALBA proteins  
116 facilitate the association of ECT2 with m<sup>6</sup>A-modified transcripts and are necessary for  
117 biological functions of m<sup>6</sup>A-ECT2/3. Thus, our results uncover a mechanism for facilitated  
118 m<sup>6</sup>A reading by YTHDF-interacting RBPs with binding sites in close proximity to m<sup>6</sup>A.

119

## 120 RESULTS

121 *The N8 IDR element of ECT2 is required for normal growth of leaf primordia*

122 We previously showed that a 37-amino acid residue region in the N-terminal IDR of  
123 ECT2, N8, is required for full activity in promoting growth of leaf primordia<sup>21</sup>. Since deletion  
124 of the N8-encoding region from an *ECT2-mCherry* gDNA transgene caused a decrease,  
125 not abolishment, of the complementation frequency of the *ect2-1 ect3-1 ect4-2*  
126 (henceforth, *te234*) triple knockout mutant<sup>7,21</sup>, we first sought to corroborate the  
127 importance of N8 by independent means. To this end, we used CRISPR-Cas9 in the *ect3-1*  
128 *ect4-2* genetic background to generate a chromosomal in-frame *ECT2* deletion matching  
129 almost exactly ΔN8 (*ect2-5*, **Figure 1A**, **Figure S1**). The resulting *ect2-5 ect3-1 ect4-2*  
130 mutant exhibited slow emergence of the first true leaves, albeit less pronounced than  
131 *te234* (**Figure 1B,C**). These results verify that deletion of N8 causes partial loss of ECT2  
132 function. We also confirmed that the *ECT2-5* protein accumulated to levels similar to the

133 wild type protein (**Figure 1D**), excluding the possibility that the partial loss of ECT2  
134 function in *ect2-5* mutants is due to decreased dosage.

135

136 *N8 is necessary for full RNA association of ECT2*

137 We next conducted *in vivo* UV crosslinking and immunoprecipitation (CLIP)  
138 experiments to test whether RNA association was affected by deletion of N8. We  
139 quantified crosslinked RNA immunoprecipitated with ECT2<sup>WT</sup>-mCherry or ECT2<sup>ΔN8</sup>-  
140 mCherry by polynucleotide kinase (PNK)-mediated radiolabeling, using the previously  
141 described assay conditions that allow assignment of the radiolabeled species as ECT2-  
142 mCherry-RNA complexes with different sizes resulting from cleavage of the IDR in the  
143 lysis buffer<sup>28</sup>. These experiments revealed a reproducible reduction in RNA association of  
144 ECT2<sup>ΔN8</sup>-mCherry compared to ECT2-mCherry, albeit less pronounced than the reduction  
145 obtained with the m<sup>6</sup>A-binding deficient ECT2<sup>W464A</sup>-mCherry mutant<sup>28</sup> (**Figure 1E**). These  
146 results suggest that N8 is involved in RNA association, either directly or through interaction  
147 with other RBPs whose presence may enhance the affinity of ECT2 for m<sup>6</sup>A-containing  
148 mRNAs.

149

150 *N8 is necessary for interaction with ALBA proteins*

151 To test whether N8 is required for association of ECT2 with other RBPs, we used  
152 comparative immunoprecipitation-mass spectrometry (IP-MS) with stable transgenic lines  
153 expressing comparable amounts of either ECT2<sup>WT</sup>-mCherry or ECT2<sup>ΔN8</sup>-mCherry in the  
154 *te234* background ([21], **Figure S2A**). We also included three lines of ECT2<sup>ΔN</sup>-mCherry  
155 lacking the entire N-terminal IDR ([21], **Figure 1A**) as an additional negative control. All  
156 immunopurifications were done in the presence of RNaseA to recover RNA-independent  
157 interactors. These experiments revealed that the family of ALBA proteins, in particular  
158 ALBA1/2/4/5, were prominent interactors of ECT2 (**Figure 1F**), and that the interaction  
159 was strongly dependent on N8 (**Figure 1G, Table S1**).

160 We used three different approaches to verify the ALBA-ECT interaction and its  
161 dependence on N8. First, we raised an antibody specific for ALBA1 (**Figure S2B**) and  
162 used it to confirm that ALBA1 enrichment is reduced, but not abolished, upon deletion of  
163 N8 (**Figure 1H**). We also included two larger IDR deletion mutants in this experiment,  
164 ECT2<sup>ΔN</sup>-mCherry and ECT2<sup>ΔN.2</sup>-mCherry lacking the ~200 amino acid residues proximal to

165 the YTH domain ([21], **Figure 1A,H**). ALBA1 levels were not detectable in immunopurified  
166 fractions of these two mutants (**Figure 1H**), perhaps suggesting that additional  
167 determinants of ALBA interaction are located in the IDR outside of the N8 region. Second,  
168 inspection of IP-MS data with HA-ECT2 and with tagged versions of the two YTHDF  
169 paralogs ECT3 (ECT3-Venus) and ECT1 (ECT1-TFP)<sup>21</sup>, both of which have m<sup>6</sup>A-binding  
170 capacity<sup>7,20,24,28,44</sup>, revealed enrichment of ALBA proteins over the negative controls  
171 (**Figure S2C**). Third, comparative IP-MS analysis carried out with ALBA4-GFP and free  
172 GFP revealed a clear enrichment of several ECT proteins, including ECT1-8 and ECT11,  
173 in the ALBA4-GFP purified fractions (**Figure 1I**, **Figure S2D**, **Table S1**). These results  
174 indicate that ALBA and ECT proteins physically associate *in vivo* and that the ECT2-ALBA  
175 association involves the N8 region of the ECT2 IDR. We also take particular note of the  
176 combination of two properties. First, deletion of N8 causes reduced RNA binding of ECT2  
177 *in vivo*. Second, ECT interactors of ALBAs include ECT1 and ECT11 which have m<sup>6</sup>A-  
178 binding capacity but not the function of ECT2 required for leaf formation<sup>20</sup>. Hence, our  
179 results suggest that the ALBA-ECT interaction mediates a molecular property common to  
180 all ECT proteins, perhaps m<sup>6</sup>A-binding.

181

182 *AlphaFold3 modeling highlights a conserved SLiM in N8 as key for interaction of ECT2*  
183 *with ALBA domains and RNA*

184 Because many proteins in addition to ALBA1/2/4/5 lose enrichment in  
185 immunopurified ECT2 fractions upon deletion of N8 (**Figure 1G**), we sought to further  
186 narrow the region in the IDR of ECT2 required for ALBA interaction. We noticed that a  
187 SLiM within N8 is conserved both in *Arabidopsis* ECT paralogs and in ECT2 orthologs  
188 from representatives of major clades representing land plant evolution, including *M. polymorpha* YTHDF (**Figure 2A**). Since the N8 region is required for full association of  
189 ECT2 with both mRNA and ALBA proteins *in vivo*, we hypothesized that the N8 element  
190 might mediate interaction between the three molecules, perhaps via the conserved SLiM.  
191 Thus, we used AlphaFold3<sup>45</sup> to query whether a complex composed of an ALBA-domain  
192 dimer<sup>36</sup>, an ECT2 fragment spanning the YTH-domain plus the SLiM-containing proximal  
193 part of the IDR, and an m<sup>6</sup>A-containing 10-nt RNA could be modeled. Interestingly,  
194 AlphaFold3 generated a model of high confidence overall (**Figure 2B-D**, **Figure S3A-B**).  
195 The model features several interactions between the N8-SLiM and the YTH domain, and

197 situates the SLiM centrally between the YTH domain, the ALBA domains, and the  $m^6A$ -  
198 containing RNA (**Figure 2B, Figure S3A**). Because these properties offer straight-forward  
199 explanations for the reduced ALBA- and RNA-association of  $ECT2^{\Delta N8}$  *in vivo*, we devoted  
200 further efforts to the study of the SLiM and refer to it as the YTHDF-ALBA Interaction Motif  
201 (YAIM) in the remainder of this report.

202

203 *The YAIM is required for ECT2-ALBA interaction and ECT2 function*

204 We next generated a YAIM mutant of ECT2 containing several alanine substitutions  
205 (**Figure 2E**). The  $ECT2^{YAIM}$ -mCherry mutant exhibited a reduced *te234* complementation  
206 frequency similar to  $ECT2^{\Delta N8}$ -mCherry (**Figure 2F**), despite the fact that protein levels in  
207 several independent transgenic lines were similar to those obtained with an  $ECT2^{WT}$ -  
208 *mCherry* transgene (**Figure 2G**). These observations demonstrate the *in vivo* importance  
209 of the YAIM for ECT2 function. At the molecular level, the  $ECT2^{YAIM}$ -mCherry mutant also  
210 exhibited defects closely resembling those of  $ECT2^{\Delta N8}$ -mCherry: less RNA could be  
211 crosslinked and immunoprecipitated with  $ECT2^{YAIM}$ -mCherry than with  $ECT2^{WT}$ -mCherry  
212 (**Figure 2H**), and ALBA1/2/4/5 were depleted in  $ECT2^{YAIM}$ -mCherry immunopurifications  
213 relative to  $ECT2^{WT}$ -mCherry (**Figure 2I, Figure S3C, Table S1**). We also used the ALBA1  
214 antibody to verify reduced association with  $ECT2^{YAIM}$ -mCherry compared to  $ECT2^{WT}$ -  
215 *mCherry* (**Figure S3D**). Taken together, we conclude that the YAIM is required for ALBA  
216 association and for full target RNA-binding of ECT2 *in vivo*, as predicted by the AlphaFold3  
217 model of the (ALBA4)<sub>2</sub>-ECT2-RNA complex. We note, however, that ALBA1/2/4/5 were not  
218 specifically depleted from ECT2-mCherry purifications upon mutation of the YAIM, perhaps  
219 suggesting that the primary function of the YAIM is to mediate ALBA- and RNA-interaction,  
220 and that the ECT2-ALBA-RNA complex generates a platform required for interaction with  
221 multiple other proteins.

222

223 *A model for concerted  $m^6A$ -ECT-ALBA function in vivo*

224 The results presented so far suggest that ECTs and ALBAs act in concert to bind to  
225  $m^6A$ -sites in mRNA targets. A basic prediction of this hypothesis is that ECT2 and ALBAs  
226 are expressed in the same cells. Examination of expression patterns using fluorescent  
227 protein fusions expressed under the control of endogenous promoters showed that  
228 ALBA1, ALBA2 and ALBA4 are indeed expressed in mitotically active cells of root and leaf

229 primordia, as is ECT2 (**Figure 3A,B**). The tight co-expression of ECT2 and ALBA proteins  
230 was also evident from analysis of published root single-cell mRNA-seq data<sup>46,47</sup> (**Figure**  
231 **S4**). Further assessment of the subcellular localization by confocal microscopy indicated  
232 that ALBA1, ALBA2, ALBA4 and ALBA5 localize to the cytoplasm (**Figure 3C**), as do  
233 ECT2, ECT3 and ECT4<sup>7,15,44</sup>.

234 The model further predicts that ALBAs and ECTs share a significant overlap in  
235 mRNA target sets, that they have juxtaposed binding sites around m<sup>6</sup>A sites in those  
236 target mRNAs, and that at least some direct mRNA targets associate less with ECTs *in*  
237 *vivo* in the absence of ALBA proteins. We previously demonstrated the feasibility of using  
238 TRIBE (Target Identification of RNA-binding Proteins by Editing)<sup>48</sup> and iCLIP (Individual  
239 Nucleotide-Resolution Crosslinking and Immunoprecipitation)<sup>49</sup> to address such  
240 predictions using transcriptome-wide analyses *in vivo*<sup>28,44,50</sup>. In TRIBE, the catalytic  
241 domain (cd) of the A-I RNA-editing enzyme ADAR is fused to the RNA-binding protein of  
242 interest, and targets are identified by mRNA-seq as mRNAs containing sites significantly  
243 more edited in cells expressing the ADAR<sub>cd</sub> fusion compared to a free ADAR<sub>cd</sub> control<sup>28,48</sup>.  
244 TRIBE can also be used to estimate differential protein-mRNA association between two  
245 conditions based on quantitative changes in editing proportions in target mRNAs. For  
246 example, many shared ECT2/3 target mRNAs are more highly edited by ECT3-ADAR<sub>cd</sub> in  
247 the absence of ECT2, indicating that the two proteins compete for the same binding sites  
248 *in vivo*<sup>44</sup>. In iCLIP, target mRNAs are identified by co-purification with the protein of interest  
249 after covalent crosslinking *in vivo*, and binding sites are deduced from the position of  
250 frequent reverse transcription termination events at crosslink sites<sup>49</sup>. We therefore set out  
251 to test predictions on shared and interdependent ECT-ALBA target binding *in vivo* using  
252 combined iCLIP and TRIBE analyses focused on ALBA4 (long form), ALBA2 (short form)  
253 and ECT2.

254

#### 255 *Identification of mRNA targets of ALBA4 using iCLIP*

256 We first aimed to identify direct mRNA targets and binding sites of ALBA4 via iCLIP.  
257 To this end, we used transgenic lines expressing *ALBA4-GFP* under the control of the  
258 endogenous *ALBA4* promoter in the *alba4-1 alba5-1 alba 6-1* (henceforth, *alba456*)  
259 mutant background (**Figure S5A-B**), verified to carry T-DNA-induced knockout mutations  
260 in all three *ALBA* genes by RT-qPCR (**Figure S5C**) and western blot (**Figure S5D**)

261 analyses. Initial immunoprecipitation tests with or without prior UV-crosslinking and  
262 followed by polynucleotide kinase (PNK) labeling established that RNA-protein complexes  
263 were specifically purified with ALBA4-GFP after UV crosslinking (**Figure 4A**). We therefore  
264 prepared and sequenced libraries from RNA immunopurified with ALBA4-GFP or GFP  
265 alone after crosslinking *in vivo* (**Figure S6A-D**), using the recently developed iCLIP2  
266 protocol<sup>51,52</sup>. This effort identified 379,670 high-confidence replicated sites for ALBA4-  
267 GFP, corresponding to 7,744 genes (henceforth referred to as ALBA4 iCLIP2 targets). We  
268 further defined a "strong" set by filtering low scores, resulting in 63,695 sites mapping to  
269 7,509 genes. In the GFP-only samples, only 81 sites in 13 genes were detected (**Figure**  
270 **4B, Table S2**). Thus, nearly all ALBA4 iCLIP2 targets are strong candidates for *bona fide*  
271 ALBA4 target mRNAs.

272

273 *mRNA target sets of ALBA proteins overlap significantly with those of ECT2/ECT3*

274 We first noticed that ALBA4 iCLIP2 sites occurred in coding regions and, even more  
275 predominantly, in 3'-UTRs, with the 3'-UTR enrichment particularly apparent in the strong  
276 set (**Figure 4C**). Importantly, more than 90% of ECT2 iCLIP targets are also ALBA4  
277 iCLIP2 targets (**Figure 4D**). Hence, ECT2 mainly binds to mRNAs that are also targeted  
278 by ALBA4. To corroborate this essential conclusion, we employed TRIBE to identify  
279 targets of both a long (ALBA4) and a short (ALBA2) ALBA protein family member by  
280 independent means. We used the improved variant HyperTRIBE relying on a hyperactive  
281 mutant of the ADAR<sub>cd</sub><sup>53</sup> for ALBA2, but had to proceed with TRIBE for ALBA4, because  
282 expression of the hyperactive ADAR<sub>cd</sub> fused to ALBA4 was lethal (see Methods). In both  
283 cases, lines expressing comparable levels of free and ALBA-fused ADAR<sub>cd</sub> were selected  
284 for mRNA-seq analysis (**Figure S7**). Significantly differentially edited sites between fused  
285 and free ADAR<sub>cd</sub> exhibited higher editing proportions in the ALBA2/4-ADAR<sub>cd</sub> fusions, as  
286 expected (**Figure 4E,F**). These differentially edited sites defined 5,272 target mRNAs for  
287 ALBA2 and 5,995 for ALBA4 (**Figure 4E,F, Table S3**). Using these target sets, ALBA4  
288 iCLIP2 targets and the previously defined ECT2/3 targets<sup>28,44</sup> for comparative analyses,  
289 we revealed the following three properties of ALBA2/4 and ECT2/3 target mRNAs and the  
290 relations between them. (1) The ALBA4 iCLIP2 target set is robust, because the overlap  
291 with ALBA4 TRIBE is significant (**Figure 4G**). In particular, TRIBE support of ALBA4  
292 iCLIP2 targets is prominent for those target mRNAs with multiple called iCLIP peaks

293 (Figure S8A-B). (2) ALBA4 and ALBA2 target a common set of mRNAs (Figure 4H) and  
294 differences between the two target sets can largely be explained by the tissue source used  
295 for the analysis (aerial tissues for ALBA2, roots for ALBA4) (Figure S8C). (3) The overlaps  
296 between the ECT2/3 target set and both the high-confidence set of ALBA4 targets  
297 supported by iCLIP2 and TRIBE and the set of ALBA2 HyperTRIBE targets are highly  
298 significant, as demonstrated by comparison to corresponding random target sets (Figure  
299 4I,J; Figure S8D-F, FigureS9, Table S4). We conclude that ECT2/3 and ALBA2/4 mRNA  
300 target sets significantly overlap, thus fulfilling a second key requirement of the model of  
301 concerted mRNA binding by ECT-ALBA modules.

302

303 *ALBA proteins bind to pyrimidine-rich elements in the vicinity of m<sup>6</sup>A*

304 We next analyzed positions of ALBA4 binding sites in their targets using the iCLIP2  
305 data. Metagene analysis normalizing for region length showed a peak in the density of  
306 ALBA4 binding sites in 3'-UTRs, if less pronounced than ECT2 binding sites and m<sup>6</sup>A-  
307 sites, because ALBA4 binding sites also occur in coding regions as noted above (Figure  
308 5A). The *RPS7A* and *TUBULIN ALPHA-5* genes provide illustrative examples of this close  
309 alignment of m<sup>6</sup>A, ECT2 and ALBA4 sites (Figure 5B). Both ALBA4 iCLIP2 and ECT2  
310 iCLIP peaks<sup>28</sup> are enriched upstream of m<sup>6</sup>A sites determined by Nanopore direct RNA  
311 sequencing<sup>54</sup> (Figure 5C,D), with ALBA peaks situated either at or slightly upstream of  
312 ECT2 peaks (Figure 5E). Strikingly, the enrichment of ALBA4 peaks at m<sup>6</sup>A-sites was  
313 much more pronounced when considering peaks in ECT2 targets compared to non-  
314 targets. Indeed, the ALBA4 peak enrichment around m<sup>6</sup>A-sites in ECT2 non-targets  
315 showed a distribution similar to the location-matched background (Figure 5F). These key  
316 observations demonstrate that the important prediction of juxtaposition of ECT2 and  
317 ALBA4 binding sites on target mRNAs is fulfilled, and strongly suggest mutual  
318 dependence on target mRNA binding.

319 Because we previously showed that several sequence motifs are enriched around  
320 ECT2 binding sites<sup>28</sup>, we went on to study whether any of these motifs were enriched at  
321 ALBA4 binding sites. We included 6 motifs identified as enriched around ECT2 iCLIP sites  
322 in our previous study<sup>28</sup>. This analysis revealed that uridine- or pyrimidine-rich motifs in the  
323 immediate vicinity of m<sup>6</sup>A/ECT2 binding sites are strongly enriched precisely at ALBA4

324 crosslink sites (**Figure 5G**), suggesting that these sequences may be ALBA4 binding sites  
325 *in vivo*.

326  
327 *Deep learning supports pyrimidine-rich elements in the vicinity of m<sup>6</sup>A as determinants of*  
328 *ALBA4-ECT2 binding*

329 One potential pitfall of this conclusion is that the photochemical properties of  
330 nucleobases result in a bias of UV-induced RNA-protein crosslinks to occur at uridines<sup>55,56</sup>  
331 such that iCLIP sites can be located at nearby uridines if the actual binding site lacks this  
332 nucleotide. For example, many miCLIP sites obtained by UV crosslinking of an m<sup>6</sup>A-  
333 specific antibody to RNA *in vitro* map to uridines surrounding the uridine-depleted major  
334 m<sup>6</sup>A consensus site (DRACH)<sup>28</sup>. Therefore, we employed neural networks to identify  
335 sequence elements that distinguish m<sup>6</sup>A sites bound by ECT2/ALBA4 from m<sup>6</sup>A sites not  
336 bound by these proteins. We first collected *Arabidopsis* m<sup>6</sup>A sites from multiple published  
337 sources and curated a compendium of 41,883 high-quality, non-overlapping m<sup>6</sup>A sites  
338 which have properties highly consistent with the smaller set of sites identified by Nanopore  
339 direct RNA sequencing<sup>54</sup> (**Figure S10**, **Table S5**, see Methods). Of these, 16,406 sites  
340 were annotated as ECT2-positive and 22,866 were ALBA4-positive (**Figure 6A**). We then  
341 used sequences surrounding all sites for input into a neural network trained  
342 simultaneously on two binary outputs: whether ECT2 was bound or unbound, and whether  
343 ALBA4 was bound or unbound (**Figure 6A**). This model performed well when predicting  
344 the presence of ALBA4 or ECT2 at m<sup>6</sup>A sites on gene sets excluded during model training  
345 (average AUC=0.74 (ECT2) and 0.76 (ALBA4), based on five-fold cross validation), with  
346 predicted binding probabilities clearly distinguishing between bound and unbound sites  
347 (**Figure 6B**). As expected, predicted binding probabilities for the two proteins correlated  
348 (PCC = 0.71, **Figure 6C**). Importantly, some differences between the two suggested that  
349 the model had learned specific sequence patterns relevant to each protein. To investigate  
350 this, we leveraged the filters learned in the first convolutional layer, since these represent  
351 motifs identified *de novo* by the model. We converted the sequences of the highest-  
352 scoring instances into position weight matrices (PWMs) and fit a generalised linear model  
353 predicting motif presence additively from the network-predicted ECT2 and ALBA4 binding  
354 probabilities (see Methods). From this model, the coefficient for each protein (motif score)  
355 can be interpreted as the effect of that protein controlling for the other (**Figure 6D**). This

356 analysis identified the uridine-/pyrimidine-rich motifs UAUUUU and UUUACUUU as  
357 determinants of both ECT2-bound and ALBA4-bound m<sup>6</sup>A sites (**Figure 6D**). Indeed, the  
358 UAUUUU and UUUACUUU motifs were highly enriched at ALBA4 iCLIP sites and located  
359 just upstream of ECT2 iCLIP sites (**Figure 6E**), thus providing independent experimental  
360 evidence that these motifs act as ALBA4 binding sites. This conclusion is particularly  
361 important because it provides a simple molecular explanation for our previous machine  
362 learning-based finding that uridine- or pyrimidine-rich motifs are important for the  
363 distinction between m<sup>6</sup>A sites bound or not by ECT2<sup>28</sup>: juxtaposed m<sup>6</sup>A sites and uridine-  
364 /pyrimidine-rich elements provide the context required for binding of the ECT-ALBA  
365 module.

366

#### 367 *Binding to target mRNA in vivo involves mutual ALBA-ECT dependence*

368 We next assessed whether ALBA proteins are necessary for mRNA target  
369 association of the wild type ECT2 protein. Initially, we used the CLIP-PNK assay with  
370 ECT2-mCherry expressed in wild type, or the *alba1-2 alba2-2 alba4-1 alba5-1* (henceforth  
371 *alba1245*) or *alba456* mutant backgrounds, carrying T-DNA insertion alleles in the  
372 corresponding ALBA genes (**Figures S2B and S5**, see Methods). These experiments  
373 showed that ECT2-mCherry associated with less RNA in the *alba* mutants compared to  
374 wild type, with the clearest effects (~2.5-fold reduction) observed in *alba456* mutants  
375 (**Figure 7A, Figure S11A**). We next used ECT2 HyperTRIBE to estimate the relative  
376 target mRNA binding in wild type and in *alba1245* mutants by differential editing. We  
377 chose this method both to gain sensitivity and to assess directly whether mRNAs that  
378 associate less with ECT2 *in vivo* in *alba1245* mutants are in fact dual ECT2/ALBA targets.  
379 We selected five independent lines expressing ECT2-ADAR in both wild type and  
380 *alba1245*, and performed mRNA-seq of root tissues to provide the raw data for analysis of  
381 differential editing. Positions exhibiting significant differential editing according to the  
382 hyperTRIBER package<sup>57</sup> were strongly biased in the direction of lower editing in *alba1245*,  
383 although these results were potentially biased by the expression of the ECT2-ADAR fusion  
384 protein not being balanced between the two conditions (**Figure S11B,C,H**). For this  
385 reason, we developed a highly robust alternative statistical modelling approach, correcting  
386 the editing proportions for mRNA levels of ADAR and to obtain a smaller, high confidence  
387 set of significantly differentially edited sites between the two backgrounds (Methods). As a

388 further control, we also performed differential editing analysis using only those replicates  
389 whose ECT2-ADAR expression was nearly perfectly matched as judged by both mRNA-  
390 seq read densities and protein blots, resulting in a smaller set of sites which overlapped  
391 significantly with the set from the robust modelling approach (**Figure S11F,G**). Overall,  
392 these analyses converged on the same conclusion: editing proportions in ECT2/ALBA4  
393 mRNA targets tended to be higher in wild type than in *alba1245* mutants, indicating that  
394 ALBA proteins facilitate target mRNA binding of ECT2 *in vivo* (**Figure 7B,D**). Because the  
395 structural model of the ALBA-ECT2 interaction suggests that RNA association by the  
396 ALBA domain may also be enhanced by ECT proteins, we did the reciprocal experiment  
397 with the short ALBA2 protein. Thus, we expressed ALBA2-ADAR either in wild type or  
398 *ect2-3 ect3-2 ect4-2* (*Gte234*) mutant backgrounds and carried out analysis of differential  
399 editing proportions as above. We found that editing proportions of ALBA2-ECT2/3 targets  
400 were higher in wild type than in *Gte234* mutants (**Figure 7C,E, Figure S11D,E,I**),  
401 indicating that there is mutual ALBA-ECT dependence for mRNA target association *in vivo*.  
402 Taken together, our TRIBE-based assessment of target mRNA association *in vivo*  
403 supports the conclusion that the ALBA domain acts as a unit with the YTH domain to  
404 facilitate m<sup>6</sup>A-binding.

405

#### 406 *Inactivation of ALBA and ECT genes cause similar developmental phenotypes*

407 We finally characterized mutants in *ALBA* genes to assess whether they exhibit  
408 phenotypes characteristic of reduced m<sup>6</sup>A-ECT function. As previously reported, single  
409 *alba* mutants (**Figure S2**) did not show obvious developmental phenotypes<sup>43</sup>. In contrast,  
410 *alba123* mutants with lesions in all three ALBA-only-encoding genes, and in particular  
411 *alba1245* and *alba456* mutants showed pleiotropic developmental defects including slower  
412 growth, defects in leaf morphology and delayed flowering (**Figure 7F, Figure S12A,B**).  
413 Similar observations on smaller stature of *alba456* mutants have been reported by  
414 others<sup>43</sup>. Although some of these phenotypes are reminiscent of phenotypes displayed by  
415 *ect2 ect3 ect4* mutants, they are not identical. We therefore assessed a quantifiable  
416 phenotype seen consistently in mutants with defects in m<sup>6</sup>A-ECT function: branching of  
417 leaf epidermal hairs (trichomes,<sup>58</sup>) where defects can be detected even in single *ect2* and  
418 *ect3* mutants<sup>7,13,59</sup>. We found that *alba1245* and *alba456* mutants showed increased  
419 trichome branching (**Figure 7G**), with a phenotypic strength intermediate between single

420 mutants in *ect2* or *ect3* and the *te234* triple knockout mutant. Importantly, ECT2 protein  
421 levels in *alba1245* and *alba456* mutants were only slightly lower than in wild type (**Figure**  
422 **S12C**), excluding the trivial possibility that the phenotypic similarity between composite  
423 *alba* and *ect* mutants is due to drastically reduced ECT protein levels in *alba1245* and  
424 *alba456*. We conclude that the developmental defects of composite *alba* mutants are  
425 consistent with defective m<sup>6</sup>A-ECT function, as predicted by the model of m<sup>6</sup>A-ECT  
426 interaction facilitated by ALBA proteins.

427

## 428 **DISCUSSION**

429 Our results on ALBA-ECT interaction and target binding *in vivo* provide strong  
430 support for the conclusion that the YTH domain of major plant YTHDF proteins is  
431 insufficient for full m<sup>6</sup>A binding *in vivo*, because it requires facilitation by ALBA proteins. In  
432 the following paragraphs, we discuss how this new understanding of the m<sup>6</sup>A-YTH  
433 interaction impacts the thinking of m<sup>6</sup>A-mediated genetic control in plants and other  
434 eukaryotes.

435

### 436 *Functional implications of recognition of m<sup>6</sup>A by the ALBA-YTHDF module*

437 The discovery that m<sup>6</sup>A reading in plants involves YTHDF-m<sup>6</sup>A binding modulated  
438 by a third player, the ALBA proteins, introduces increased potential to integrate information  
439 into combinatorial control of biological effects of m<sup>6</sup>A. A key determinant of those effects is  
440 the fraction of m<sup>6</sup>A target mRNAs bound by YTHDF, in turn determined by the  
441 stoichiometry of m<sup>6</sup>A modification in mRNA, and YTHDF concentration and affinity for  
442 m<sup>6</sup>A-sites. Since we now understand that the affinity is not a constant, but must be tunable  
443 via, for instance, ALBA concentration and modification, we envision that plants have  
444 evolved to take advantage of this combinatorial potential to generate a gradient of m<sup>6</sup>A  
445 outputs that matches the cellular environment measured by multiple environmental and  
446 developmental sensors.

447

### 448 *Conservation of the ALBA-YTHDF unit and generality of RBP-assisted m<sup>6</sup>A-YTH* 449 *interaction*

450 It is an important observation that *Arabidopsis* YTHDF proteins both with and  
451 without the molecular properties required to complement organogenesis defects of *te234*

452 mutants<sup>20</sup> retain the conserved YAIM and interact with ALBA4. This observation further  
453 supports the generality of ALBA-assisted m<sup>6</sup>A-binding among *Arabidopsis* YTHDF  
454 proteins. Thus, it is a pertinent question how widespread this phenomenon is. The YAIM is  
455 deeply conserved in land plant YTHDF proteins, strongly suggesting that the ALBA-  
456 YTHDF unit is conserved over the 500 My of land plant evolution. Beyond land plants, the  
457 YAIM is not conserved, and fungal and animal ALBA-family proteins are so divergent in  
458 sequence that conservation of the details of their molecular functions cannot be assumed.  
459 In addition, *Trypanosoma brucei* where ALBA proteins clearly perform functions in mRNA  
460 control<sup>39,40</sup> does not encode YTHDF proteins, providing an example that the two families  
461 do not always have linked functions in eukaryotes. These observations raise two  
462 immediate questions.

463 First, given the deep conservation of the YTH domain, it is of interest how the m<sup>6</sup>A-  
464 YTHDF interaction is made efficient in organisms where ALBA proteins are unlikely to  
465 assist binding directly as in plants. We see two possible answers. Either other, as yet  
466 unidentified classes of RBPs evolved to facilitate m<sup>6</sup>A reading by YTHDF proteins, or the  
467 YTHDF proteins evolved to read m<sup>6</sup>A independently of other RBPs. In the latter case,  
468 comparative structure-function studies between, for instance, *Arabidopsis* and human  
469 YTHDF-m<sup>6</sup>A-RNA interactions should reveal the probably subtle structural features that  
470 may allow ALBA-independent efficient m<sup>6</sup>A-interaction. In this context, an YTH-proximal  
471 element in the IDRs of mammalian YTHDF proteins is of particular interest for at least two  
472 reasons. First, its location relative the YTH domain is reminiscent of the YAIM described  
473 here for plant YTHDFs. Second, it is predicted by AlphaFold<sup>60</sup> to engage in YTH-domain  
474 interactions, perhaps via disorder-to-order transition upon RNA-binding to stabilize the  
475 RNA-bound form<sup>61</sup>, as observed for the *Schizosaccharomyces pombe* YTH-domain  
476 protein Mmi1<sup>62</sup>. The existence of non-ALBA facilitators of YTHDF-m<sup>6</sup>A binding in other  
477 organisms should not be entirely discarded, however. The mammalian IGF2BP/IMP/ZBP  
478 family of RBPs has been suggested to act as m<sup>6</sup>A readers based on multiple lines of  
479 evidence, including m<sup>6</sup>A-dependent target mRNA association and the similar positions of  
480 m<sup>6</sup>A sites and IGF2BP2 CLIP sites in 3'-UTRs of target mRNAs<sup>63</sup>. Because the m<sup>6</sup>A  
481 mapping methodology used at the time had limited resolution, it is possible that m<sup>6</sup>A sites  
482 are in fact adjacent to IGF2BP2 CLIP sites, particularly since the IGF2BP/IMP/ZBP  
483 recognition element (CAUH) defined in previous transcriptome-wide studies<sup>64</sup> is not

484 identical to the DRACH m<sup>6</sup>A consensus site. The slight off-set between IGF2BP CLIP site  
485 and m<sup>6</sup>A distributions<sup>63</sup> is indeed reminiscent of the 3'-UTR distributions of m<sup>6</sup>A sites and  
486 ALBA4 iCLIP sites observed here, and the identification of IGF2BP2 as a prominent  
487 interactor of YTHDF1/2/3 in IP-MS experiments<sup>65</sup> is more easily reconciled with a function  
488 in facilitated m<sup>6</sup>A binding by YTHDFs than direct m<sup>6</sup>A binding competing with YTHDFs.  
489 Thus, in light of our results on the ALBA-YTHDF-m<sup>6</sup>A module in plants, it may be  
490 appropriate to consider whether facilitated m<sup>6</sup>A-reading by YTHDF proteins could have  
491 evolved independently in several eukaryotic lineages, and, for mammals in particular,  
492 whether a function as a facilitator of m<sup>6</sup>A reading might explain many of the results  
493 originally interpreted to reveal a direct reader function of the IGF2BPs<sup>63</sup>.

494 Second, which molecular functions do ALBA proteins fulfill independently of YTHDF  
495 proteins? Such functions are anticipated for a number of reasons. First, while most ALBA4  
496 mRNA binding sites in 3'-UTRs appear to be linked to m<sup>6</sup>A sites, binding sites in open  
497 reading frames were even more numerous and were found in mRNAs with no evidence of  
498 m<sup>6</sup>A modification or ECT2/3 binding. Indeed, ALBA proteins have been found to play a role  
499 in heat adaptation via regulation of Heat Shock Factor-encoding mRNAs, primarily with  
500 binding sites in open reading frames<sup>43</sup>. Second, even the YTHDF-linked ALBA functions  
501 may involve properties in addition to assisted m<sup>6</sup>A-binding, because many ECT2-  
502 associated proteins were depleted in the immunoaffinity-purified fraction of the ECT2<sup>YAIM</sup>  
503 mutant defective in ALBA interaction. Finally, we note that while this report identifies a  
504 molecular role of the ALBA domain, it does not address the function of the C-terminal IDR  
505 of long ALBA proteins, expected to be of considerable biological importance given the  
506 stronger phenotypes of *alba456* compared to *alba123* mutants, as reported here and by  
507 others<sup>43</sup>.

508

## 509 **FIGURE LEGENDS**

510

511 **Figure 1. The N8 IDR-element of ECT2 is required for growth promotion, RNA**  
512 **association and interaction with ALBA proteins.**

513 **(A)** Schematic representation of wild type and mutant ECT2 proteins. The MobiDB<sup>66</sup> track  
514 (top) displays regions predicted to be structured or disordered.

515 **(B)** Images of representative seedlings of the indicated genotypes taken at 7 days after  
516 germination (DAG).

517 **(C)** Quantification of first true leaf size in seedlings of the indicated genotypes 7 DAG. 50  
518 seedlings were measured for each genotype ( $n = 50$ ). The boxes show the interquartile  
519 range (25th–75th percentile), with the central line marking the median. Whiskers extend  
520 1.5 times the interquartile range. Asterisks indicate significance according to  $p$ -value  
521 of  $t$ -tests between the indicated genotypes. NS, not significant ( $*** p < 10^{-5}$ ).

522 **(D)** Protein blots of total lysates prepared from 12-day old seedlings of the indicated  
523 genotypes, probed with ECT2-specific antisera<sup>7</sup>. Arrows indicate the positions of the  
524 ECT2<sup>WT</sup> protein and the ECT2-5 protein containing the N8-like deletion. The asterisk  
525 indicates an unspecific band. Ponceau staining serves as the loading control.

526 **(E)** Results of an *in vivo* UV crosslinking ECT2-mCherry-immunoprecipitation experiment,  
527 followed by PNK-labelling of precipitated RNA with  $\gamma^{32}\text{P}$ -ATP. Left panel, autoradiogram of  
528  $^{32}\text{P}$ -radiolabelled RNA-protein complexes purified from plants expressing  
529 ECT2<sup>WT</sup>-mCherry, ECT2<sup>ΔN8</sup>-mCherry or the aromatic cage mutant ECT2<sup>W464A</sup>-mCherry.  
530 Molecular weight marker positions and the location of the verified ECT2-mCherry-RNA  
531 complexes<sup>28</sup> are indicated. The presence of several bands of unequal intensity is due to  
532 partial proteolysis of the ECT2 IDR during immunoprecipitation and differential labelling  
533 efficiency of the different RNPs<sup>28</sup>. Right panels, mCherry immunoblots of the  
534 immunoprecipitated (top) and total fractions (input, bottom). Samples were pools of 3  
535 independent lines for each genotype.

536 **(F-G)** Volcano plots showing the differential abundance of proteins co-purified with  
537 ECT2-mCherry variants (RFP-trap) measured by mass spectrometry of immunopurified  
538 fractions (IP-MS). All ECT2-mCherry variants were expressed in the *te234* mutant  
539 background. Diagrams above each plot indicate the proteins compared. Statistical  
540 significance was determined using empirical Bayes statistics with Benjamin–Hochberg  
541 adjusted P-values. The data underlying the plot in (F) have previously been published<sup>21</sup>.

542 **(H)** Co-immunoprecipitation assay using mCherry immunoprecipitation from 10-day old  
543 seedlings expressing the indicated ECT2-mCherry variants (see (A)), followed by  
544 immunoblot analysis with mCherry- and ALBA1-specific antibodies. Seedlings from three  
545 independent transgenic lines were pooled in this experiment.

546 **(I)** Volcano plots showing the differential abundance of proteins co-purified with ALBA4-  
547 GFP as determined by IP-MS from total lysates prepared from 7-day-old seedlings.  
548 Statistical significance was calculated using empirical Bayes statistics with Benjamini-  
549 Hochberg adjusted p-values.

550

551 **Figure 2. The ECT2-ALBA interaction is mediated by a conserved short linear motif**  
552 **in the N8 element of the ECT2 IDR.**

553 **(A)** Logo representations of sequence conservation in the N8 region of the IDR of plant  
554 YTHDF proteins. Top, Arabidopsis ECT paralogues (ECT1-ECT11). Bottom, Arabidopsis  
555 ECT2 orthologues from 7 different species representing major clades of land plants  
556 separated by ~500 million years of evolution [liver worts (*Marchantia polymorpha*), mosses  
557 (*Physcomitrella patens*), lycophytes (*Selaginella moellendorffii*), ferns (*Ceratopteris*  
558 *richardii*), Amborella (*Amborella trichopoda*), monocots (*Oryza sativa*), dicots (*Arabidopsis*  
559 *thaliana*). Logos<sup>67</sup> were generated using the WebLogo tool<sup>68</sup>, and sequences were aligned  
560 with ClustalW<sup>69</sup>.

561 **(B)** AlphaFold3 model of the complex between ECT2 (YTH domain plus a YAIM-containing  
562 fragment of the N-terminal IDR), two ALBA5 subunits (ALBA domains only), and a 10-nt  
563 RNA [5'-AAA(m<sup>6</sup>A)CUUCUG-3']. The YAIM is accentuated in space fill mode (magenta, C;  
564 blue, N; red, O), all other protein elements in cartoon mode, and the RNA in stick mode.

565 **(C)** Same view of the model as in panel (B) but colored according to the predicted Local  
566 Distance Difference Test (pLDDT) score calculated by AlphaFold3 to indicate model  
567 confidence on a local per-residue basis<sup>45</sup>.

568 **(D)** 2D plot generated by AlphaFold3 showing the Predicted Aligned Error (PAE) indicating  
569 the Expected Position Error (EPE) in Ångströms (white-green scale) in the relative  
570 positions of each pair of residues in the complex<sup>45</sup>. The location of subunits and structural  
571 elements along the axes is indicated. An additional view of the complex is provided in  
572 Supplemental Figure S4.

573 **(E)** Schematic representation of the ECT2<sup>YAIM</sup> mutant with alanine substitutions in the  
574 YTH-ALBA Interaction Motif (YAIM) highlighted in red.

575 **(F)** Categorized leaf size distribution of 9-day-old primary transformants of *te234* mutants  
576 expressing wild type or mutant versions of ECT2-mCherry as indicated. Red lines with  
577 asterisks denote significant differences based on pairwise Fisher exact tests with Holm-

578 adjusted p-values (\*p < 0.05, \*\*p < 0.01, \*\*\*p < 0.001). Black line indicates no significant  
579 difference.

580 **(G)** Anti-mCherry immunoblot from total lysates of 9-day-old seedlings of transgenic lines  
581 expressing either a fully complementing ECT2<sup>WT</sup>-mCherry transgene<sup>7</sup> or the ECT2<sup>YAIM</sup>-  
582 mCherry construct (L1-L3, three independent lines), or without any ECT2 transgene (–), all  
583 in the *te234* mutant background. Dashed lines indicate that lanes have been removed for  
584 presentation purposes. Ponceau staining is used as a loading control.

585 **(H)** Results of an *in vivo* UV crosslinking ECT2-mCherry-immunoprecipitation experiment,  
586 followed by PNK-labelling of precipitated RNA with  $\gamma^{32}\text{P}$ -ATP. Top panel, autoradiogram  
587 of  $^{32}\text{P}$ -radiolabelled RNA-protein complexes purified from plants expressing  
588 ECT2<sup>WT</sup>-mCherry, the aromatic cage mutant ECT2<sup>W464A</sup>-mCherry, or ECT2<sup>YAIM</sup>-mCherry.  
589 Molecular weight marker positions and the location of the verified ECT2-mCherry-RNA  
590 complexes<sup>28</sup> are indicated. The presence of several bands of unequal intensity is due to  
591 partial proteolysis of the ECT2 IDR during immunoprecipitation and differential labelling  
592 efficiency of the different RNPs<sup>28</sup>. Middle and bottom panels, immunoblots against  
593 mCherry showing the ECT2-mCherry proteins in the IP (middle) and total lysates (input,  
594 bottom). Samples were pools of 3 independent lines for each genotype.

595 **(I)** Volcano plot showing differential abundance of proteins detected by mass spectrometry  
596 in mCherry immunoprecipitates from *te234* seedlings expressing either ECT2<sup>YAIM</sup>-mCherry  
597 or ECT2<sup>WT</sup>-mCherry. Statistical significance was determined using empirical Bayes  
598 statistics with Benjamini–Hochberg adjusted p-values.

599

600 **Figure 3. The expression patterns and subcellular localizations of ECTs and ALBAs  
601 overlap.**

602 **(A)** Fluorescence microscopy of 5-day old seedlings co-expressing ECT2-mCherry and  
603 ALBA1-TFP (top panel), ECT2-mCherry and ALBA2-TFP (middle panel), or ECT2-  
604 mCherry and ALBA4-Venus (bottom panel).

605 **(B)** Confocal microscopy images of mCherry and GFP fluorescence in root tips of plants  
606 co-expressing ECT2-mCherry and ALBA1-TFP (top) or ECT2-mCherry and ALBA4-Venus  
607 (bottom).

608 **(C)** Confocal images of GFP fluorescence and DAPI staining in root tips of plants  
609 expressing ALBA1-GFP, ALBA2-GFP, ALBA4-GFP, ALBA5-GFP and 35S-GFP.

610

611 **Figure 4. The mRNA targets bound by ECT2/3 and ALBA2/4 overlap substantially.**

612 **(A)** Top, autoradiogram of  $^{32}\text{P}$ -labelled RNA-protein complexes obtained by PNK/ $\gamma$ - $^{32}\text{P}$ -  
613 ATP labelling of immunopurified material from ALBA4-GFP- or GFP-expressing plants.  
614 Immunoprecipitations were carried out with or without UV crosslinking and after  
615 precipitation with GFP-Trap beads (IP+). (IP-) indicates mock immunoprecipitation with  
616 RFP-Trap beads. Treatment of the precipitate with RNase I (+ RNase) indicates the size of  
617 the precipitated protein. Marker positions and the location of the ALBA4-GFP RNA adducts  
618 are indicated.

619 Bottom, immunoblots of input, supernatant (SN) after IP, and immunoprecipitated (IP)  
620 fractions, probed with GFP antibodies. Samples are pools of 3 independent lines for each  
621 genotype.

622 **(B)** Number of called iCLIP peaks and associated genes for ALBA4-GFP, GFP alone and  
623 ECT2-mCherry<sup>28</sup>. Strong ALBA4-GFP peaks are defined as those with a score higher than  
624 the median, per gene.

625 **(C)** Scaled metagene profiles showing the enrichment along the gene body (5'UTR, CDS  
626 or 3'UTR) of ALBA4-GFP iCLIP2 peaks.

627 **(D)** Overlap of ECT2 and ALBA4 iCLIP mRNAs. The overlap is highly significant ( $p < 10^{-16}$ ,  
628 permutation test based on random sampling of genes from transcriptome with matched  
629 expression patterns, see Methods).

630 **(E)** Scatterplot of the editing proportions (E.P.=G/(A+G)) of potential and significant editing  
631 sites (E.S.) determined by comparing mRNA-seq data obtained from transgenic lines  
632 expressing ALBA2-FLAG-ADAR or FLAG-ADAR in the Col-0 background, both under the  
633 control of the ALBA2 promoter (seedlings, shoot tissue). Significance was determined  
634 using the hyperTRIBER pipeline<sup>57</sup>, specifying an adjusted-p-value  $<0.01$  and  $\log_2$  fold-  
635 change  $> 1$ .

636 **(F)** Same analysis as in (E), but carried out with roots of lines expressing ALBA4-FLAG-  
637 ADAR or FLAG-ADAR under the control of the ALBA4 promoter in the Col-0 background.

638 **(G)** Overlap of ALBA4 targets identified using iCLIP2 and TRIBE analysis. The overlap is  
639 highly significant ( $p < 10^{-16}$ , permutation test, as in D).

640 **(H)** Overlap between ALBA4 TRIBE targets (roots) and ALBA2 HyperTRIBE targets  
641 (shoots). The overlap is highly significant ( $p < 10^{-16}$ , permutation test, as in D). Most non-  
642 overlapping targets are expressed specifically in shoots or roots (**Figure S7**).  
643 **(I)** Overlap between high-confidence ALBA4 targets, supported by iCLIP and TRIBE, and  
644 ECT2/3 targets, supported by ECT2/3 HyperTRIBE and ECT2 iCLIP. The overlap is highly  
645 significant ( $p < 10^{-16}$ , permutation test, as in D).  
646 **(J)** Overlap between ALBA2 HyperTRIBE targets and ECT2/3 HyperTRIBE targets. The  
647 overlap is highly significant ( $p < 10^{-16}$ , as in D).  
648

649 **Figure 5. ALBA4 binds to pyrimidine-rich elements juxtaposed to m<sup>6</sup>A.**  
650 **(A)** Scaled metagene profiles showing the enrichment along the gene body (5'UTR, CDS  
651 or 3'UTR) of the called ALBA4 iCLIP2 peaks. ECT2 iCLIP peaks<sup>28</sup> and Nanopore-  
652 determined m<sup>6</sup>A density<sup>54</sup> are shown for reference.  
653 **(B)** Representative examples of ECT2 and ALBA4 common targets showing the location of  
654 ALBA4 iCLIP2 and ECT2 iCLIP crosslink sites<sup>28</sup>, and m<sup>6</sup>A sites<sup>54</sup>.  
655 **(C)** Number of ALBA4 iCLIP2 crosslink sites per 1000 Nanopore-derived m<sup>6</sup>A sites, as a  
656 function of distance from the m<sup>6</sup>A site.  
657 **(D)** Number of ECT2 iCLIP crosslink sites per 1000 Nanopore-derived m<sup>6</sup>A sites, as a  
658 function of distance from the m<sup>6</sup>A site.  
659 **(E)** Number of ALBA4 iCLIP2 crosslink sites per 1000 ECT2 crosslink sites, as a function  
660 of distance from the crosslink site.  
661 **(F)** Number of ALBA4 iCLIP2 crosslink sites per 1000 Nanopore-derived m<sup>6</sup>A sites, as a  
662 function of distance from the m<sup>6</sup>A site and according to whether containing genes are also  
663 targets of ECT2 or non-ECT2 targets. For each set, a matched background set was  
664 defined as positions on similarly expressed genes with a similar metagene distribution to  
665 the true set.  
666 **(G)** Number of the indicated motifs (selected from<sup>28</sup>) per 1000 Nanopore-determined m<sup>6</sup>A  
667 sites (top), ECT2 iCLIP crosslink sites (middle) or ALBA4 iCLIP2 crosslink sites (bottom).  
668 For each set, a matched background set was defined as positions on similarly expressed  
669 genes with a similar meta-gene distribution to the true set.  
670

671 **Figure 6. Neural network analysis identifies U-rich motifs in the vicinity of m<sup>6</sup>A as**  
672 **determinants of ALBA4-ECT2 binding.**

673 **(A)** Strategy for deep learning. m<sup>6</sup>A sites were annotated according to presence or  
674 absence of either ECT2 or ALBA4 and a convolutional neural network was trained which  
675 takes sequences surrounding m<sup>6</sup>A as input and predicts the probability of ECT2 and  
676 ALBA4 binding.

677 **(B)** Boxplots showing predicted binding probabilities from the network, split according to  
678 protein and binding status.

679 **(C)** Scatter plot of the predicted ALBA4 binding probabilities against the ECT2 binding  
680 probabilities from the network. Counts depict the density of sites.

681 **(D)** Output-specific enrichment scores for *de novo* motifs learned by convolutional neural  
682 network, calculated using a generalized linear model for predicting motif presence from  
683 predicted presence of ECT2 and ALBA4 at m<sup>6</sup>A-centered sequences using model. Colored  
684 circles indicate interesting motifs determined as specific to ALBA4 (yellow), ECT2 (blue) or  
685 both (green).

686 **(E)** Enrichment of motif sets indicated in D around ALBA4 iCLIP2, ECT2 iCLIP and  
687 Nanopore-derived m<sup>6</sup>A sites<sup>54</sup>. Grey shows location-matched background positions.

688

689 **Figure 7. ALBA proteins are required for ECT2 target mRNA binding and biological**  
690 **function.**

691 **(A)** Results of an *in vivo* UV crosslinking-ECT2-mCherry immunoprecipitation experiment,  
692 followed by PNK-labelling of precipitated RNA with  $\gamma$ -<sup>32</sup>P-ATP. Top panel, autoradiogram  
693 of <sup>32</sup>P-radiolabelled RNA-protein complexes purified from plants expressing  
694 ECT2<sup>WT</sup>-mCherry in the indicated genetic backgrounds. Molecular weight marker positions  
695 and the location of the verified ECT2-mCherry-RNA complexes<sup>28</sup> are indicated. The  
696 presence of several bands of unequal intensity is due to partial proteolysis of the ECT2  
697 IDR during immunoprecipitation, and differential labelling efficiency of the different RNPs<sup>28</sup>.  
698 Middle and bottom panels, mCherry immunoblots of the immunoprecipitated (middle) and  
699 total fractions (input, bottom). Samples were pools of 3 independent lines for each  
700 genotype.

701 **(B)** Scatter plot showing the editing proportions of ECT2-ADAR-catalyzed editing sites  
702 between Col-0 WT and *alba1245*. Green, sites whose change in editing proportions is

703 statistically significant and that are located in dual-bound mRNAs. Yellow, sites whose  
704 change in editing proportions is statistically significant but that are located in mRNAs not  
705 targeted by both ECT2 and ALBA4 (non-dual bound). Light green/light yellow, candidate  
706 sites whose change in editing proportions is not statistically significant.

707 **(C)** Scatter plot showing the editing proportions of ALBA2-ADAR-catalyzed editing sites  
708 between Col-0 WT and *ect2-3 ect3-2 ect4-2* (*Gte234*). Color scheme as in (B).

709 **(D)** Quantification of the tendency of sites differentially edited by ECT2-ADAR between  
710 Col-0 and *alba1245* to be less highly edited in *alba1245*. Left, histogram showing the  
711 fraction that sites in dual-bound targets comprise of either less highly edited sites in  
712 *alba1245* (down) or more highly edited sites in *alba1245* (up). The histogram also  
713 illustrates the fraction of editing sites in dual-bound targets relative to all editing sites for  
714 comparison. Right, boxplot showing the median  $\log_2$  differential editing proportions for  
715 editing sites either in dual-bound mRNA targets (true) or in other mRNAs (false). Asterisks  
716 indicate p-values from 2-sample t-test: \*\*\*p < 0.001.

717 **(E)** Quantification of the tendency of sites differentially edited by ALBA2-ADAR between  
718 Col-0 and *Gte234* to be less highly edited in *Gte234*. Analogous to the analyses presented  
719 in (D) for ECT2-ADAR in Col-0 vs *alba1245*. Asterisks indicate p-values from 2-sample t-  
720 test: \*\*\*p < 0.001.

721 **(F)** Representative photographs of seedlings and rosettes of the indicated genotypes at  
722 three different time points given in days after germination (DAG) in soil.

723 **(G)** Trichome branching sorted by number of spikes in the indicated genotypes. Branches  
724 were counted on at least 150 trichomes on each of at least 6 plants for each genotype ( $n =$   
725  $\sim 1000$ ). Data were fitted to a proportional odds model in R for statistical analyses (see  
726 Methods). Asterisks indicate Bonferroni-corrected p-values: \*\*\*p < 0.001. Black bar  
727 indicates no significant difference.

728

## 729 **METHODS**

### 730 **Plant material and growth conditions**

731 All lines used in this study are in the *Arabidopsis thaliana* Col-0 ecotype. The following  
732 mutant and transgenic lines mentioned have been previously described: *ect2-1 ect3-1*  
733 *ect4-2* (*te234*)<sup>7</sup>, *ect2-1 ECT2<sup>W464A</sup>-mCherry*<sup>7</sup>, *ect3-2 ECT3-Venus*<sup>7</sup>, *ect2-1 HA-ECT2*<sup>21</sup>.  
734 The *alba1-1* (GABI\_560B06), *alba1-2* (SALK\_069210), *alba2-1* (GABI\_128D08), *alba2-2*

735 (*SALKseq\_069306*), *alba3-1* (*SAIL\_649\_E11*), *alba4-1* (*SALK\_015940*), *alba5-1*  
736 (*SALK\_088909*) and *alba6-1* (*SALK\_048337*) single mutants were obtained from the  
737 Arabidopsis Biological Resource Center (ARBC). Seeds were sterilized by immersing them  
738 in 70% EtOH for 20 min, followed by incubation in 1.5% NaOCl, 0.05% Tween-20 for  
739 10 min, after which the seeds were washed twice with H<sub>2</sub>O. The seeds were then spread  
740 on plates containing Murashige & Skoog (MS) medium (4.1 g/l MS salt, 10 g/l sucrose,  
741 8 g/l Bacto agar). The plates were stratified in darkness at 4°C for 2–5 days before  
742 transfer to Aralab incubators at 21°C, with a light intensity of 120 μmol/m<sup>2</sup> and a  
743 photoperiod of 16 h light/8 h dark. When needed, after 10 days of growth, seedlings  
744 were transferred to soil and kept in Percival incubators under identical settings.

745

#### 746 **Generation of *ect2-5 ect3-1 ect4-2* by CRISPR-Cas9 genome engineering**

747 For the targeted creation of an in-frame deletion mutant at the endogenous *ECT2* locus,  
748 we employed the pKIR1.1 CRISPR-Cas9 system<sup>70</sup>. Two plasmids, pKIR1.1-*ect2-N8A* and  
749 pKIR1.1-*ect2-N8B*, expressing sgRNAs were constructed by ligating oligonucleotides that  
750 target *ECT2* into pKIR1.1, as described<sup>70</sup>. The crRNAs were designed to yield a deletion  
751 resembling *ECT2*<sup>ΔN8</sup> as closely as possible. The plasmids were then transformed into  
752 *ect3-1 ect4-2* mutants, and transformants were selected on MS-agar supplemented with  
753 25 μg/mL hygromycin. After transfer to soil, plants with deletions in *ECT2* were identified  
754 via PCR using primers spanning the deletion. Progeny from plants with deletions of the  
755 expected size, as confirmed by migration in a 1% agarose gel, were plated on MS  
756 supplemented with 25 μg/mL hygromycin. Hygromycin-sensitive plants, indicative of the  
757 absence of Cas9 and homozygosity of the deletion, were rescued and transferred to  
758 MS-agar for recovery. Subsequently, these plants were genotyped and Sanger sequenced  
759 for identification of in-frame deletions. Western blotting, utilizing antibodies raised against  
760 synthetic peptides in the *ECT2* IDR outside the deleted region<sup>7</sup>, was performed to confirm  
761 the in-frame deletion. Primers are listed in Table S6.

762

#### 763 **Construction of transgenic lines**

764 To generate the constructs *pro(ALBA2):ALBA2-FLAG-TFP:ter(ALBA2)*,  
765 *pro(ALBA4):ALBA4-VENUS:ter(ALBA4)*, *pro(ALBA2):ALBA2-FLAG-ADAR:ter(ALBA2)*,  
766 *pro(ALBA4):ALBA4-FLAG-ADAR:ter(ALBA4)*, *pro(ECT2):ECT2<sup>YAIM</sup>-mCherry:ter(ECT2)*,

767 PCR-amplified DNA fragments were pieced together by USER cloning<sup>71</sup> in all cases  
768 except for *pro(ECT2):ECT2<sup>YAIM</sup>-mCherry:ter(ECT2)* in which an appropriate dsDNA  
769 containing the YAIM-mutations was synthesized (Integrated DNA Technologies, gBlocks).  
770 As template for PCR, we used plasmids containing wild-type *pro(ECT2):ECT2-*  
771 *mCherry:ter(ECT2)*<sup>7</sup> for *ECT2-mCherry* constructs, *pro(ECT2):ECT2-FLAG-*  
772 *ADAR:ter(ECT2)* for *FLAG-ADAR* constructs<sup>28</sup>, and *pro(ECT3):ECT3-VENUS:ter(ECT3)*  
773 for *VENUS* constructs<sup>7</sup>. DNA fragments were amplified using dU-substituted primers and  
774 KAPA HiFi Hotstart Uracil+ ReadyMix<sup>71</sup>. The amplified fragments were inserted into the  
775 pCAMBIA3300-U vector, a modified version with a double *PacI* USER cassette<sup>72</sup>. To clone  
776 *pro(ALBA1):ALBA1-FLAG-TFP:ter(ALBA1)*, we made use of Greengate cloning. Briefly,  
777 PCR fragments were amplified using Thermo Scientific Phusion High-Fidelity DNA  
778 Polymerase (NEB) and ligated into entry vectors through *Bsal*-restriction cloning. The  
779 *pro(ALBA1):ALBA1* gDNA fragment was subcloned into pGEM-T Easy by A-tailing  
780 (Promega) prior to *Bsal*-restriction cloning. The vectors containing *pro(ALBA1):ALBA1* (in  
781 pGEM-T Easy), linker-*TFP* (pGGD003), *ALBA1* 3'UTR and downstream sequences (in  
782 pGGE000), and the D-AlaR cassette (pGGF003) were combined in a 'Greengate reaction'  
783 using *Bsal*-HF (NEB), T4 DNA-Ligase (Thermo Scientific), and pGGZ001 as the  
784 destination vector. *pro(ALBA2):ALBA2-FLAG-TFP:ter(ALBA2)*, and *pro(ALBA4):ALBA4-*  
785 *FLAG-Venus:ter(ALBA4)* fusions were constructed by USER cloning with the primers listed  
786 in **Table S6**. To clone *ALBA1-GFP*, *ALBA2-GFP*, *ALBA4-GFP*, and *ALBA5-GFP* used for  
787 confocal microscopy, we employed Gateway cloning. *ALBA* gene fragments, including 5'-  
788 regions, exons/introns to the gene's end (excluding the stop codon), were amplified with  
789 *attB1* and *attB2* sites for Gateway cloning using KOD Hot Start DNA Polymerase. Purified  
790 amplicons were cloned into pDONR/Zeo via Gateway BP Clonase II (Thermo Fisher) and  
791 transformed into *E. coli*  $\alpha$ -select cells. Subsequently, entry clones were recombined with  
792 the destination vectors pMDC111 and pMDC164, respectively (<sup>73,74</sup> via Gateway LR  
793 Clonase II (Thermo Fisher) to generate expression clones. All plasmids were verified  
794 through restriction digestion and sequencing before being transformed into respective  
795 plants using Agrobacterium-mediated floral dip<sup>75</sup>. Primers are listed in **Table S6**.

796 **Screening for te234 complementation**

797 Screening of primary transformants (T1s) expressing wild-type, deletion or point mutant  
798 variants of ECT2-mCherry in the *te234* background was done as previously described<sup>21</sup>.  
799 In brief, primary transformants were selected on MS-agar plates containing glufosinate  
800 ammonium (7.5 mg/L (Sigma)) to select plants with the transgene and ampicillin (10 mg/l)  
801 to restrict agrobacterial growth. Nine days after germination, primary transformants were  
802 categorized according to the size(s) of the first true leaves: full complementation  
803 ( $s \geq 1 \text{ mm}$ ), partial complementation ( $0.5 \text{ mm} < s < 1 \text{ mm}$ ), or no  
804 complementation ( $s \leq 0.5 \text{ mm}$ ). The complementation percentages were then  
805 determined by dividing the number of seedlings in each complementation category by the  
806 total number of transformants.

807 **Statistical analysis of complementation data**

808 Statistical significance of the different T1 complementation categories was determined  
809 using Fisher's exact test, and the Holm–Bonferroni method was applied to address  
810 multiple testing. Student's t-test was used to evaluate the significance of differences in leaf  
811 size between Col-0 WT, *de34* (*ect3-1 ect4-2*), *te234* (*ect2-3 ect3-1 ect4-2*), and the  
812 CRISPR-generated *ect2-5 ect3-1 ect4-2*.

813 **Analysis of trichome phenotypes**

814 Counts of trichomes with different numbers of branches and the statistical analysis of the  
815 raw data were done as described<sup>7</sup>.

816

817 **Western blotting**

818 Western blotting was performed as described<sup>21</sup>. In brief, 100-300 mg of tissue were  
819 ground in liquid nitrogen and resuspended in 5 volumes of IP buffer (50 mM Tris–HCl pH  
820 7.5, 150 mM NaCl, 10% glycerol, 5 mM MgCl<sub>2</sub>, and 0.1% Nonidet P40), supplemented  
821 with 1x protease inhibitor (Roche Complete tablets) and 1 mM DTT. The lysate was  
822 centrifuged at 13,000  $\times g$  for 10 min and 4x LDS sample buffer (277.8 mM Tris–HCl pH  
823 6.8, 44.4% (v/v) glycerol, 4.4% LDS, and 0.02% bromophenol blue) was added to a final  
824 concentration of 1x LDS. Subsequently, the samples were denatured at 75°C for 10 min  
825 and run on a 4–20% Criterion<sup>TM</sup> TGX<sup>TM</sup> Precast gel in 1x Tris-glycine, 0.1% SDS buffer at  
826 90–120 V for ~1 h on ice. The proteins were transferred onto an Amersham Protran

827 Premium nitrocellulose membrane (GE Healthcare Life Sciences) in cold transfer buffer  
828 (1× Tris-glycine, 20% EtOH) at 80 V for 1 h on ice. The membrane was then blocked  
829 in 5% skim milk in PBS-T (137 mM NaCl, 2.7 mM KCl, 10 mM Na<sub>2</sub>HPO<sub>4</sub>, 1.8 mM  
830 KH<sub>2</sub>PO<sub>4</sub>, pH 7.4, 0.05% Tween-20) for 30 min. After blocking, membranes were probed  
831 with antibodies specific for ECT2<sup>7</sup>, ALBA1 (1:2000, see below), ALBA4 (1:1000, see  
832 below), or commercially available antibodies against mCherry (Abcam ab183628, 1:2,000  
833 dilution) at 4°C over night. Membranes were then washed three times in PBS-T, incubated  
834 with HRP-coupled goat-anti-rabbit antibody and developed using chemiluminescence  
835 detection, as previously described<sup>7</sup>.

836

### 837 **RNA extraction and qRT-PCR**

838 Total RNA was extracted from frozen and ground plant powder using TRIzol® (1 mL per  
839 500 mg sample). 14 µg RNA was treated with 14 µL of RQ1 RNase-Free DNase  
840 (Promega) and 1 µL of RNaseOut™ Recombinant RNase Inhibitor (Invitrogen) following  
841 the manufacturer's protocol. The RNA was then purified using the QIAGEN RNeasy mini kit  
842 following the RNeasy column clean-up protocol. The RNA quantity and quality were  
843 determined via NanoDrop and agarose gel electrophoresis. cDNA was prepared using  
844 SuperScript® III Reverse Transcriptase (Invitrogen), with the addition of RNaseOut™. For  
845 qRT-PCR, 0.4 µL 10 µM specific primer pairs (mixture of forward and reverse primers) was  
846 mixed with 10 µL SensiFAST SYBR (Bioline) mastermix and 9.6 µL of cDNA. All the qRT-  
847 PCR reactions were performed in three technical replicates, carried out on a QIAGEN  
848 Rotor-Gene-Q real-time PCR machine and analyzed with the Rotor-Gene 6000 series  
849 software (QIAGEN). CYCLOPHILIN (At2g29960) was used for normalization. Primers are  
850 listed in **Table S6**.

851

### 852 **CLIP-PNK assays of ECT2-mCherry variants**

853 12-day-old seedlings were UV-crosslinked with 2000 mJ/cm<sup>2</sup> and ground into a fine  
854 powder in liquid nitrogen. Immunoprecipitation with RFP-trap beads (Chromotek), washes,  
855 DNase and RNase digestion, PNK labelling, SDS-PAGE, membrane transfer and  
856 autoradiography were performed as described in<sup>28</sup>. We used 20 µL of beads for 1 g of  
857 tissue in 1.5 mL of iCLIP buffer for every sample.

858

859 **Immunoprecipitation and LC-MS**

860 Immunoprecipitations of ECT1-TFP, ECT2-mCherry variants and ECT3-Venus were  
861 performed as described by<sup>21</sup>, while immunoprecipitations of ALBA4-GFP or GFP were  
862 performed as described by<sup>76</sup>. Briefly, 7-day-old seedlings expressing ALBA4-GFP or GFP  
863 alone were harvested and ground into fine powder using liquid nitrogen. For each  
864 replicated, 0.5 g of ground plant tissue was homogenized in 1.5 mL IP buffer (50 mM Tris-  
865 HCl pH 7.5, 150 mM NaCl, 10% glycerol, 0.1% Triton-X100) supplemented with 2% (w/v)  
866 PVP40, Roche Complete Protease Inhibitor cocktail (1 tablet/50 mL), 100 µM MG132, 1  
867 mM PMSF and Sigma Plant Protease Inhibitor cocktail (1/30 v/v). Samples were  
868 centrifuged at 16,000 x g for 5 min at 4°C, the supernatant was transferred to a new tube  
869 and centrifugation was repeated for 10 min. The supernatant was again transferred to a  
870 new tube and filtered through a 0.45 µm filter. For Co-IP, 1 mL of cell extract at a  
871 concentration of 2 µg/µL was first added to 50 µL of sepharose beads for pre-clearing and  
872 incubated for 30 min at 4°C with constant rotation. After centrifugation at 1000 x g for 1.5  
873 min at 4°C, the cell extract was added to 20 µL GFP-Trap beads and incubated for 2.5 h at  
874 4°C with constant rotation. The beads were washed 4x in Co-IP wash buffer (50 mM Tris-  
875 HCl pH 7.5, 150 mM NaCl, 10% glycerol, 0.05% Triton-X100, Roche Complete Protease  
876 Inhibitor cocktail (1 tablet/50 mL)) and proteins were eluted by addition of 40 µL 2x LDS  
877 sample buffer to the beads and incubation at 70°C for 10 min. For control samples treated  
878 with nucleases, beads were washed once in Co-IP wash buffer (+ 10 mM MgCl<sub>2</sub>) after the  
879 IP. Beads were then resuspended in 100 µL Co-IP wash buffer (+ 10 mM MgCl<sub>2</sub>) and  
880 treated with 2 µL Turbo DNase (Thermo Fisher Scientific) and, optionally, 5 µL of a 1:50  
881 dilution of RNase I (Ambion) for 10 min at 37°C and 1200 rpm. Beads were then washed  
882 three times with Co-IP wash buffer and elution was performed as described above. Mass  
883 spectrometry data was analysed as in<sup>21</sup>.

884

885 **Protein expression of ALBA1**

886 An ALBA1 (AT1G29250) cDNA was amplified from oligo(dT)-primed reverse transcription  
887 products of DNase-treated total RNA from Col-0 wild type using the primer set MT303-  
888 MT304. The resulting PCR product was ligated in frame downstream of His<sub>6</sub>-SUMO in  
889 pET-24-derived vector containing His<sub>6</sub>-SUMO (Twist Bioscience). For recombinant protein  
890 expression, the plasmid encoding His-SUMO-ALBA1 was transformed into *E. coli* BL21

891 (DE3 7tRNA) codon plus. Cells were grown at 37°C in LB medium supplemented with  
892 35 µg/ml kanamycin, and expression was induced at OD<sub>600</sub> ≈ 0.6 by addition of  
893 0.5 mM IPTG. Following induction, the cells were grown at 18°C overnight and harvested  
894 by centrifugation. The cell pellet was resuspended in 20 mM Tris-HCl (pH 8), 10 mM  
895 imidazole, and 300 mM NaCl supplemented with 1 mM DTT and EDTA-free protease  
896 inhibitor (cComplete; Roche). Cells were lysed once using a French press (20,000 psi).  
897 Crude lysate was cleared by centrifugation at 30,000 g for 30 min at 4°C and filtered  
898 through a 0.45-µm membrane. His-SUMO-ALBA1 was purified on Ni<sup>2+</sup>-NTA resin by  
899 incubation for 1 h at 4°C after which the beads were washed in wash buffer (20 mM  
900 Tris-HCl pH 8, 20 mM imidazole, 200 mM NaCl), and the bound protein was eluted in  
901 elution buffer (300 mM imidazole, 20 mM Tris-HCl pH 8, 300 mM NaCl). The eluted  
902 protein was dialysed overnight into 20 mM Tris-HCl pH 8, 200 mM NaCl, 1 mM 2-  
903 mercaptoethanol followed by cleavage after the His<sub>6</sub>-SUMO tag with heterologously  
904 expressed His<sub>6</sub>-tagged ULP1 protease, a kind gift from Birthe Kragelund. Ni<sup>2+</sup>-NTA resin  
905 was used to bind the protease and impurities bound to the Ni<sup>2+</sup>-NTA resin in the first  
906 affinity purification, and ALBA1 was collected in the flowthrough. ALBA1 was further  
907 purified on a HiLoad Superdex™ 200 10/300 GL prep grade column (GE Healthcare)  
908 connected to an HPLC ÄKTA Purifier system (GE Healthcare). Eluates were monitored at  
909 A<sub>280</sub>, and purity assessed by SDS-page analysis.

910

### 911 **Development of ALBA1 and ALBA4 antibodies**

912 The anti-ALBA1, anti-ALBA4 antibodies were affinity-purified by Eurogentec from serum  
913 collected from rabbits immunized with recombinant ALBA1 protein or a 1:1 mix of the KLH-  
914 coupled ALBA4 peptides H-CGFNNRSDGPPVQAAA-OH and H-  
915 CNGPPNEYDAPQDGYY-NH<sub>2</sub> (Eurogentech). The ALBA4 peptides were synthesized by  
916 Schafer-N Aps, Copenhagen, Denmark.

917

### 918 **Protein alignment and logo representation**

919 Protein sequence fragments spanning the region from the N-terminal end of N8 to the C-  
920 terminal part of the YTH domain were aligned using ClustalW<sup>69</sup>. The high conservation of  
921 the YTH domains facilitated the definition of a common point of reference (the N-terminus  
922 of the YTH domain) for all protein sequences. Logo representations of the IDR parts

923 of the alignment (ending in the common reference point) were made using Weblogo<sup>68</sup>. For  
924 alignment of ECT2 paralogs, *Arabidopsis* ECT1-ECT11 protein sequences were used. For  
925 alignment of ECT2 orthologs, we used the proteins with the highest fraction of sequence  
926 identity to *Arabidopsis* ECT2 (as determined by BlastP) from the following land plant  
927 species: *Marchantia polymorpha*, *Physcomitrella patens*, *Selaginella moellendorffii*,  
928 *Ceratopteris richardtii*, *Amborella trichopoda*, *Oryza sativa*, *Arabidopsis thaliana*.

929

### 930 **Structural modeling using AlphaFold3**

931 The structural model of the ECT2-(ALBA4)<sub>2</sub>-RNA complex was generated by AlphaFold3<sup>45</sup>  
932 using default settings and the following sequence input: 1 molecule of ECT2 (gene model  
933 AT3G13460.1, amino acid residues 373-616), 2 molecules of ALBA5 (gene model  
934 AT1G20220.1, amino acid residues 18-114), 1 molecule of RNA (5'-AAA[m<sup>6</sup>A]CUUCUG-  
935 3').

936

### 937 **ALBA4-GFP iCLIP experiments and library preparation**

938 iCLIP experiments were carried out based on the method previously employed for  
939 *Arabidopsis* GRP7-GFP<sup>50</sup> and the optimized iCLIP2 protocol<sup>51,52</sup>. Briefly, 7-day-old  
940 seedlings expressing ALBA4-GFP or GFP alone grown at 20°C in LD (16h light, 8h dark)  
941 were crosslinked with 254 nm UV light at 2000 mJ/cm<sup>2</sup>, snap frozen and ground into a fine  
942 powder in liquid nitrogen, and homogenized in iCLIP lysis buffer (50 mM Tris-HCl pH 7.5,  
943 150 mM NaCl, 4 mM MgCl<sub>2</sub>, 5 mM DTT, 1% SDS, 0.25% sodium deoxycholate, 0.25%  
944 Igepal) supplemented with Roche Complete Protease Inhibitor cocktail (1 tablet/50 mL).  
945 The lysate was cleared by centrifugation and filtration (0.45 µm pore) of the supernatant.  
946 After pre-clearing with 200 µL of sepharose beads for 1h at 4°C, RNP-complexes were  
947 immunopurified with GFP-Trap beads (ChromoTek) for 4 hr at 4°C under constant rotation.  
948 We used 50 µL of beads for 3 g of tissue in 5 mL of iCLIP lysis buffer for every replicate.  
949 After washing four times with iCLIP wash buffer (2 M urea, 50 mM Tris-HCl pH 7.5,  
950 500 mM NaCl, 4 mM MgCl<sub>2</sub>, 2 mM DTT, 1% SDS, 0.5% sodium deoxycholate, 0.5%  
951 Igepal, supplemented with Roche Complete Protease Inhibitor cocktail (1 tablet/50 mL)),  
952 and twice with PNK wash buffer (20 mM Tris-HCl, pH 7.4, 10 mM MgCl<sub>2</sub>, 0.2% Tween 20),  
953 RNP complexes attached to the beads were subjected to treatment with DNase (Turbo  
954 DNase [Ambion], 4 U/100 µL) and optionally RNase I (Ambion, 1 U/mL) at 37°C for

955 10 min. Subsequently, RNA 3'-ends were dephosphorylated (PNK [ThermoFisher] in buffer  
956 containing 350 mM Tris-HCl pH 6.5, 50 mM MgCl<sub>2</sub>, 25 mM DTT) for 20 min at 37°C,  
957 followed by one wash with PNK wash buffer, one wash with high-salt buffer (50 mM Tris-  
958 HCl pH 7.4, 1 M NaCl, 1 mM EDTA, 1% Igepal, 0.1% SDS, 0.5 % sodium deoxycholate)  
959 and two more washes with PNK wash buffer. The L3 linker was then ligated to the 3' RNA  
960 ends (with NEB HC RNA Ligase in ligation buffer (200 mM Tris-HCl pH 7.8, 40 mM MgCl<sub>2</sub>,  
961 40 mM DTT with RiboLock and PEG8000) at 16°C and 1250 rpm for >16h.  
962 Samples were then washed twice in high-salt buffer and once in PNK wash buffer before  
963 the RNA was radioactively labeled at the 5'-end by PNK-mediated phosphorylation using  
964  $\square$ -<sup>32</sup>P- ATP (20 min at 37°C). The labeled RNP complexes were subjected to SDS-PAGE  
965 (4-12% NuPAGE Bis-Tris gel with 1x MOPS buffer) and blotting on a nitrocellulose  
966 membrane (Protran BA-85). Pieces of membrane containing a size range of RNA species  
967 bound to the protein (a smear above the expected molecular weight localized by  
968 autoradiography) were excised and subjected to proteolysis (200 µg of Proteinase K  
969 [Roche] in 200 µL of PK buffer [100 mM Tris-HCl pH 7.4, 50 mM NaCl, 10 mM EDTA] for  
970 20 min at 37°C) to release RNA bound to small peptides. The RNA was then purified using  
971 phenol-chloroform (pH 7.0) and ethanol precipitation and used to prepare sequencing  
972 libraries following the iCLIP2 protocol<sup>51</sup>: reverse transcription with SSIII (Invitrogen) and an  
973 RT oligo complementary to the L3 liker followed by RNA hydrolysis and cDNA clean-up  
974 with MyONE Silane beads (Thermo Fisher). A second adapter was then ligated to the  
975 3'OH of the cDNAs (with NEB HC RNA Ligase in NEB ligation buffer plus 5% DMSO, 1  
976 mM ATP and 22.5% PEG8000) at 20°C and 1250 rpm overnight. The adapter contains a  
977 bipartite unique molecular identifier (UMI) and an experimental barcode, allowing for PCR  
978 duplicate removal and sample multiplexing, respectively. After another MyONE Silane  
979 clean-up, the cDNA library is pre-amplified in a first PCR (6 cycles) followed by size  
980 selection with ProNex beads (Promega) to remove short cDNAs and primer dimers. The  
981 cDNA library is then amplified in a second PCR followed by a second ProNex size  
982 selection to remove PCR primers and finally prepare the cDNA library for sequencing. The  
983 2<sup>nd</sup> PCR was carried out with 10 µL of cDNA and 8 cycles for each replicate. Samples  
984 were multiplexed and sequenced in the NextSeq sequencer (NextSeq® 500/550 Mid  
985 Output Kit v2 (150 cycles)) at the Genomics Core Facility at IMB (Mainz, Germany).  
986

987 **ALBA4-GFP iCLIP analysis**

988 All reads from iCLIP experiments were quality checked after multiple processing steps with  
989 FastQC (0.11.9). The distribution of read counts assigned to sample barcodes was  
990 computed using awk (GNU awk 5.0.1). Reads were demultiplexed, sequencing adapters  
991 removed from 3' ends and subsequently quality- as well as length-trimmed (--min-read-  
992 length 15 -q WIN -qf sanger --min-read-length 15) with Flexbar (3.5.0) while keeping the  
993 random UMI parts in the read id field (--umi-tags). A genome index was created using  
994 STAR (2.7.3a) using the *Arabidopsis thaliana* genome version TAIR10. The genome  
995 annotation from Araport (version 11) was specified to mark the location splice junctions.  
996 Quality trimmed reads were then mapped using STAR and the created genome index,  
997 allowing only softclipping of 3' ends (--alignEndsType Extend5pOfRead1) to preserve the  
998 position of the crosslinked nucleotide. PCR duplicates were removed using umi\_tools  
999 (1.0.1) by considering the UMI tag in the read id field and the mapping coordinates. The  
1000 uniquely mapped and deduplicated reads from each ALBA4-GFP and GFP replicate were  
1001 merged together using samtools (1.14) and peak called with PureCLIP (1.3.1) in standard  
1002 mode (-bc 0) to identify short and defined peak coordinates. In order to learn the HMM  
1003 parameters only the first two chromosomes were specified (-iv 'Chr1;Chr2') and the  
1004 precision to store probabilities was set to long double (-ld). Clusters of directly adjacent  
1005 called peaks were merged and reduced to the position with the highest reported PureCLIP  
1006 score (1-nt resolution). Binding sites were defined as called peaks, extended by 4 nt (-  
1007 4...0...+4) in both directions with bedtools (2.27.1). Sites which reported crosslinks in only  
1008 1 out of 9 position were removed as they are considered artifacts. To confirm that the  
1009 binding sites are supported by at least 2 replicates and a sufficient number of reads  
1010 (reproducible binding sites), the coordinates of binding sites were overlapped with  
1011 crosslink positions from every replicate (ALBA4-GFP and GFP independently). The  
1012 distribution of crosslinks per binding sites was used to determine a reproducibility  
1013 threshold. After defining a distribution quantile of 30% as the minimal filtering threshold,  
1014 only binding sites above this threshold in at least 2 out of 3 replicates were kept. Due to  
1015 the low amount of uniquely mapped reads the GFP control was not tested for  
1016 reproducibility. Reproducible binding sites of ALBA4-GFP overlapping with binding sites  
1017 from the GFP control were removed using bedtools and reported in browser extensible  
1018 data (BED) format. Targets of ALBA4-GFP were defined as transcripts overlapping

1019 reproducible binding sites. Only the locations of representative gene models from Araport  
1020 (version 11) were considered. For visual inspection data tracks were generated from  
1021 uniquely mapped ALBA4-GFP and GFP only reads using bedtools.

1022

1023 **Sample preparation for TRIBE and HyperTRIBE**

1024 RNA extraction and library preparation was performed as previously described<sup>28</sup>. Total  
1025 RNA was extracted from manually dissected root tips for ALBA4-FLAG-ADAR and apices  
1026 (removing cotyledons) for ALBA2-FLAG-ADAR and ECT2-FLAG-ADAR of five  
1027 independent lines (10-day-old T2 seedlings) with each of the lines being used as biological  
1028 replicate.

1029

1030 **TRIBE/HyperTRIBE analyses for ALBA2 and ALBA4 vs. free ADAR controls**

1031 For all TRIBE/HyperTRIBE experiments, reads were mapped to the TAIR10 genome using  
1032 STAR<sup>77</sup> (version 2.7.11) and transcripts quantified using Salmon<sup>78</sup> based on the Araport11  
1033 transcriptome<sup>79</sup> augmented with the DNA sequence for the ADAR clone. The  
1034 hyperTRIBER pipeline<sup>57</sup> was employed in order to quantify all positions with at least one  
1035 mismatch to the genome, filter candidate positions by mutation type (A-to-G or T-to-C for  
1036 forward or reverse strands, respectively) and replicate agreement, and formally test these  
1037 candidates using a generalised linear model based approach for assessing difference in  
1038 editing proportions between free ADAR control samples vs. fusion samples, retaining  
1039 positions with a  $\log_2FC > 1$ , an adjusted p-value  $< 0.01$  and a minimum editing proportion of  
1040 0.01. All sets were further annotated using the hyperTRIBER pipeline based on Araport11  
1041 gene annotations and prioritising highly expressed transcripts in the control lines in the  
1042 case of positions overlapping multiple transcripts.

1043

1044 **HyperTRIBE analysis for ECT2 on *alba1245* background and ALBA2 on *gte234*  
1045 background**

1046 Unequal levels of *ECT2*-FLAG-ADAR or *ALBA2*-FLAG-ADAR expression between  
1047 different genetic backgrounds in the same HyperTRIBE experiment could result in  
1048 misinterpretation of results due to biased ADAR-driven editing patterns. This was  
1049 supported by inspection of the initial results from the hyperTRIBER pipeline<sup>57</sup> when  
1050 comparing *ECT2*-FLAG-ADAR-expressing plants in the Col-0 vs *alba1245* backgrounds.

1051 This preliminary analysis showed stronger editing in the direction of the samples with  
1052 higher average *ADAR* expression, supported by western blots. To investigate further, we  
1053 first re-ran the pipeline on only four lines (two per genetic background), selected such that  
1054 the average number of reads mapping to *ADAR* was approximately equal between the two  
1055 genetic backgrounds. Compared to the naïve analysis of all five lines per genotype, the  
1056 significantly differently edited sites were visually less biased in the direction high *ADAR*  
1057 expression, indicating that unequal *ADAR* expression leads to spurious results if left  
1058 uncorrected. Furthermore, we observed a pattern whereby sites on lowly expressed genes  
1059 tended to exhibit a larger editing proportion. To robustly account for differences in *ADAR*  
1060 expression as measured by mRNA-seq read counts, we formulated a Bayesian  
1061 hierarchical model as follows. First, we split the samples into three groups according to the  
1062 expression of the *ADAR* clone (*ADAR\_BIN*) and binned expression levels into 5 groups  
1063 (*EXPR\_BIN*). Let  $Y_{ijkc}$  denote the observed count of base  $G$  at the  $i$ -th position, with the  $j$ -  
1064 th level of *ADAR\_BIN*, the  $k$ -th level of *EXPR\_BIN*, and under condition  $c$ .  $Y_{ijkc}$  is assumed  
1065 to follow a Binomial distribution  $Y_{ijkc} \sim \text{Binomial}(n_{ijkc}, p_{ijkc})$  where  $n_{ijkc}$  represents the  
1066 number of trials for each combination of position, *ADAR\_BIN* level, *EXPR\_BIN* level, and  
1067 condition, and  $p_{ijkc}$  is the probability of observing base  $G$ . Then the logit of  $p_{ijkc}$  is  
1068 modelled as  $\log\left(\frac{p_{ijkc}}{1-p_{ijkc}}\right) = \eta_{ijkc}$  where the linear predictor  $\eta_{ijkc}$  is given by:

$$\eta_{ijkc} = \beta_0 + \beta_j + \gamma_k + \delta_{jk} + u_{ic}$$

1069 where  $\beta_0$  is the intercept,  $\beta_j$  is the effect of *ADAR* bin  $j$ ,  $\gamma_k$  is the effect of expression bin  $k$ ,  
1070  $\delta_{jk}$  is the corresponding *ADAR* expression interaction and  $u_{ic} \sim N(0, \tau_c^{-1})$  is a position-  
1071 specific random effect with condition-specific precision parameter  $\tau_c$ . The model was fit  
1072 using the Integrated Nested Latent Laplace (INLA) framework.

1073

1074 Let  $u_{iA}$  and  $u_{iB}$  denote the random effects for position  $i$  under conditions A and B, then the  
1075 linear combination is  $LC_i = u_{iA} - u_{iB}$  was computed from the posterior distribution of the  
1076 fitted model. The mean  $\mu_{LC_i}$  and standard deviation  $\sigma_{LC_i}$  of samplings from the fitted  
1077 posterior were used to generate Z-scores  $Z_i = \frac{\mu_{LC_i}}{\sigma_{LC_i}}$  which were converted into p-values and  
1078 subsequently adjusted to a false discovery rate (FDR). Importantly, the list of significant  
1079 genes from this analysis strongly overlapped with the smaller list of genes from the 2-

1080 sample analysis described above (Supplementary Figure S11 H+I, compared to overlap  
1081 with randomly sampled positions).

1082  
1083 Finally, position-specific corrected editing proportions from the fitted model were further  
1084 estimated by assuming ADAR to be exactly to the center bin and used for producing  
1085 scatter plots for all tested positions.

1086

#### 1087 **Definitions of strict and permissive gene sets**

1088

1089 Strict sets: ALBA4, intersection of iCLIP (strong) and ALBA4 TRIBE associated gene sets.  
1090 ECT2, intersection between ECT2/3 HyperTRIBE and ECT2 iCLIP (110 KDa) target  
1091 sets<sup>44</sup>. Permissive sets: union instead of intersection between above sets for ALBA4 and  
1092 ECT2, respectively.

1093

#### 1094 **Venn diagrams and significance of overlaps**

1095 Venn diagrams were generated using custom code and the R-package eulerr  
1096 (<https://CRAN.R-project.org/package=eulerr>)<sup>80,81</sup>. To assess the significance of overlaps  
1097 between two sets of genes, a random set of genes of size equal to the number of genes in  
1098 the first set was selected. To avoid expression bias—due to random genes being on  
1099 average more lowly expressed than the sets of interest—the expression distribution of the  
1100 random set was matched to that of the first set. We calculated the number of genes in the  
1101 first set overlapping with the second set, as well as the number of genes for each of 1000  
1102 random samples overlapping with the second set. The *p*-value was calculated as:

1103 
$$p\text{-value} = 1 - 2 \times \left( \frac{|hsum - \frac{1000}{2}|}{1000} \right)$$
 where hsum is the number of cases where the number of

1104 genes in the random set overlapped more with the second set. In cases where there were  
1105 zero instances where the random set had a better overlap with the second set than the  
1106 first set, the *p*-value was set to "<0.001", indicating a high significance of overlap. This  
1107 procedure was carried out using a custom script, which also returned a single random set  
1108 of (expression distribution matched) genes. This random set was used in the Venn  
1109 diagrams to provide a visual indication of the expected overlap by chance.

1110 In order to check for possible false positives in genes with fewer than 2-5 iCLIP sites, we  
1111 overlapped the set with the ALBA4 HyperTRIBE data and looked for the percentage of  
1112 support. We noted that genes with only a single, low quality iCLIP site tended to be  
1113 supported by ALBA4 HyperTRIBE to a similar level as random sets of expressed genes,  
1114 providing justification for considering the more robust set for subsequent analyses.

1115

### 1116 **Metagene plots**

1117 Metagene plots showing enrichment of features in 5'-UTR, CDS and 3'-UTR corrected for  
1118 the size of the annotated region were generated using a strategy similar to what we  
1119 previously reported<sup>28</sup>.

1120

### 1121 **Single cell co-expression analysis of ECT2**

1122 We first obtained single-cell mRNA-seq root tip data<sup>46,47</sup>. To avoid bias due differences in  
1123 UMI count between ECT2 expressing (ECT2+) cells and non-expressing (ECT2-) cells,  
1124 each ECT2+ cell was matched with an ECT2- cell of similar UMI count. For each gene G  
1125 expressed within the range of 20-80% of the resulting total cells, counts of G+ and G- cells  
1126 for each of the ECT2+ and ECT2- sets were used to perform a fisher's exact test, whereby  
1127 a high odds ratio represents a high corresponding between ECT2 and the tested G,  
1128 indicative of co-expression.

1129

### 1130 **Motif analysis**

1131 We first considered the set of motifs previously defined on the basis of ECT2 iCLIP data<sup>28</sup>.  
1132 Background sites for m<sup>6</sup>A (nanopore-derived [54]), ALBA4 iCLIP and ECT2 iCLIP were  
1133 generated following a similar strategy to what we previously reported<sup>28</sup>, ensuring that the  
1134 distribution of site locations across gene features were identical for both the true set and  
1135 the background set. We subsequently removed background sites which by chance  
1136 overlapped with sites from the true sets (within 100 bp). For both the true sets and  
1137 background sites, we calculated the number of motifs present per 1000 sites (a  
1138 normalization allowing for comparability across different sets), for each position up to 100  
1139 bp from the site.

1140

### 1141 **Curation of m<sup>6</sup>A site set**

1142 We first collected m<sup>6</sup>A sites for *A. thaliana* from multiple published sources<sup>54,82</sup>. As  
1143 nanopore-derived sites are not subjected to UV-bias, we trained a neural network to  
1144 differentiate between the 20,858 m<sup>6</sup>A sites identified by nanopore<sup>54</sup> and a corresponding  
1145 set of 20,715 location-matched negative sites (Figure S6A). The neural network used as  
1146 input extracted sequence +/-100 bp regions around all positions (R-packages  
1147 BSgenome<sup>83</sup> and AThaliana), which was converted from FASTA to one-hot encoded  
1148 format<sup>84</sup>. As output, the network predicted the presence or absence of the m6A at the  
1149 center point of the input sequence. The network was based on 4 blocks of: 1D  
1150 convolutional layer with relu activation, batch normalization and max pooling of size 2. The  
1151 output of these four blocks was flattened, run through a fully connected layer and then  
1152 passed into a fully connected output layer of output size 1 with a sigmoid activation  
1153 function. The model was trained specifying the binary cross-entropy loss function using  
1154 Keras with a Tensorflow back-end<sup>85</sup> specifying binary cross entropy loss function. The  
1155 model showed excellent performance, with AUC ranging 0.85-0.92 over the five folds. This  
1156 model enabled us to fine-adjust sites from other sets by systematically shifting their  
1157 positions and selecting those with the highest probability (Figure S6B, Methods).  
1158 Consequently, we augmented the smaller set of nanopore-derived positions with a broader  
1159 set exhibiting properties highly consistent with nanopore-identified sites (Figure S6B-E)  
1160 Notably, approx. 90,000 miCLIP-derived positions not only shifted to locations similar to  
1161 nearby nanopore-defined sites, but also consolidated into fewer positions, indicating that  
1162 many miCLIP-identified sites represent imprecise locations. Overall, our augmentation  
1163 strategy yielded a compendium of 41,883 m<sup>6</sup>A sites in *A. thaliana*.

1164

### 1165 **Convolutional neural network based de-novo motif detection**

1166 We annotated each of 41,883 m<sup>6</sup>A sites according to overlap of either ECT2 iCLIP or  
1167 ALBA iCLIP sites within 100 bp. For each m6A site, 300 bp of sequence was extracted  
1168 either side, creating a 601 bp long sequences, which were embedded using one-hot  
1169 encoding and passed as input in a convolutional neural network with two outputs -  
1170 presence or absence of ECT2 iCLIP and presence or absence of ALBA iCLIP. The  
1171 network architecture consisted of five blocks of: a 1D convolutional layers with RELU  
1172 activation, 0.2 drop-out layer, a batch normalisation layer and a max-pooling layer with  
1173 pool size 2. Each convolutional layer had 64 filters, with a kernal size of 8 in the first layer

1174 and 6 thereafter. The output was then flattened into one dimension and passed through a  
1175 separate a connected layer of kernel 32 for each output, which was specified as a fully  
1176 connected layer of size 1 using a sigmoid activation function. The network was trained  
1177 using Keras with a Tensorflow back-end<sup>85</sup>, specifying the binary cross entropy loss  
1178 function for each output.

1179

#### 1180 **5-fold cross-validation strategy for machine learning models**

1181 Sites were split into 5 sets of similar size. Since there are often multiple m6A sites on a  
1182 single gene, and these sites often fall within overlapping windows, we separated training  
1183 and test sets such that no gene was present in both sets. Each testing set consisted of  
1184 one of the 5 sets, and the training set the remaining sets combined. All predictions used in  
1185 subsequent analyses were based only on sets held out of the training process.

1186

#### 1187 **Modelling of RBP-specific motifs**

1188 After fitting each fold weights for the 32 learned convolutional filters of length 8 from the  
1189 initial layer (that is, the layer connecting to the input sequence) were extracted, resulting in  
1190 a total of 160 filters. For each of these filters individually, we scanned through all  
1191 sequences from the training set, selected the top 5000 high-scoring positions and used the  
1192 resulting nucleotide frequencies at each of the 8 positions to derive a position weight  
1193 matrix. These position weight matrices were then allocated a consensus name using the R  
1194 package universalmotif<sup>86</sup>.

1195

1196 For each motif, m<sup>6</sup>A-centered sequences were classified as containing or not-containing  
1197 the given motif within 150 bp of the methylation site. In order to detect RBP-specific  
1198 binding motifs, a generalized linear model (glm) assuming a binomial-distributed response  
1199 was used to predict motif presence as the dependent variable, where the two predictors in  
1200 the model were the probability of ECT2 binding from the neural network and the probability  
1201 of ALBA4 binding from the neural network. In this way, the coefficient for ECT2 binding is  
1202 interpreted as the strength of correspondence with that motif whilst controlling for binding  
1203 of ALBA4, and vice-versa. Z-scores for each of the two proteins for all motifs were then  
1204 extracted from the model and plotted as enrichment scores.

1205

1206 **ACKNOWLEDGEMENTS**

1207 We thank Kristina Neudorf, Lena Bjørn Johansson, Daniel Tobias Kyndesen Lahti, Ida  
1208 Thorøe Michler, Magnus von Holstein-Rathlou, and Jakub Najbar for their valuable  
1209 technical assistance and Theo Bølsterli and René Hvidberg Petersen and their teams for  
1210 plant care. Christian Poulsen is thanked for help with AlphaFold3 modeling. We  
1211 acknowledge Erwin Schoof and the proteomics platform at Denmark's Technical University  
1212 for their expertise in running protein identification through liquid chromatography-mass  
1213 spectrometry. We also thank Mandy Rettel and Frank Stein from the EMBL Proteomics  
1214 Core facility for IP-MS analysis of ALBA4 IPs. Carlotta Porcelli is thanked for advice on  
1215 analysis of mass spectrometry data. Support by the IMB Genomics Core Facility and the  
1216 use of its NextSeq500 (funded by the Deutsche Forschungsgemeinschaft (DFG, German  
1217 Research Foundation) – INST 247/870-1 FUGG) is gratefully acknowledged. This  
1218 research was supported by a Hallas-Møller Ascending Investigator Fellowship grant from  
1219 the Novo Nordisk Foundation (NNF19OC0054973), a Consolidator Grant from the  
1220 European Research Council (PATHORISC, ERC-2016-CoG 726417), a Research  
1221 Infrastructure Grant from Carlsberg Fondet (CF20-0659), and an Instrument Grant from  
1222 Brdr Hartmann Fonden (A35879), all awarded to PB, and by grants STA653/13 and  
1223 STA653/14 from Deutsche Forschungsgemeinschaft to DS.

1224

1225 **AUTHOR CONTRIBUTIONS**

1226 M.R. carried out IP-MS and iCLIP experiments with ALBA4-GFP and noticed that ECT  
1227 proteins were of particular interest for follow-up studies, conducted crosslinking-PNK  
1228 labeling experiments, and characterized *alba* mutant phenotypes. M.D.T. made and  
1229 characterized the *ect2-5* in-frame deletion mutant, made transgenic lines expressing  
1230 ECT2-mCherry mutants and used them for IP-MS and IP-western blot analyses, noticed  
1231 that ALBA proteins were of particular interest for follow-up study, made ALBA1/4  
1232 antibodies, conducted TRIBE and HyperTRIBE experiments, and made and analysed  
1233 ALBA1-TFP and ALBA4-Venus transgenic lines. S.R. designed and carried out all  
1234 computational analyses except iCLIP peak calling, with most objectives determined in  
1235 discussion with L.A-H, M.R., M.D.T. and P.B. M.L. called ALBA4 iCLIP peaks. T.K.  
1236 provided guidance on iCLIP optimization for ALBA4-GFP. L.A-H designed initial steps of  
1237 ECT2 N8 characterization with P.B., supervised M.D.T.'s work towards these goals, and

1238 participated in decisions on project directions and data presentation. N.W. constructed  
1239 composite *alba* mutants, and constructed and analyzed ALBA-GFP-expressing transgenic  
1240 lines. T.M. supervised work on construction of *alba* mutants, ALBA-GFP transgenic lines,  
1241 and confocal microscopy of ALBA-GFP lines, D.S. supervised ALBA4 IP-MS and iCLIP  
1242 experiments, P.B. designed, supervised and coordinated the project, and wrote the  
1243 manuscript together with S.R., M.R. and M.D.T. All authors contributed improvements on  
1244 the first manuscript draft.

1245

## 1246 DATA AVAILABILITY

1247 All sequencing data have been deposited in the European Nucleotide Archive under  
1248 accession code PRJEB71752. The mass spectrometry proteomics data have been  
1249 deposited to the ProteomeXchange Consortium via the PRIDE<sup>87</sup> partner repository with  
1250 the dataset identifier PXD052232.

1251 Reviewer access:

1252 **Username:** reviewer\_pxd052232@ebi.ac.uk

1253 **Password:** XAPWwwxp

1254 Code used for data analysis is available at Github: [https://github.com/sarah-ku/ALBA\\_YTH\\_arabidopsis](https://github.com/sarah-ku/ALBA_YTH_arabidopsis)

1256

## 1257 COMPETING INTERESTS

1258 The authors declare that they have no competing interests.

1259

## 1260 REFERENCES

1261

- 1262 1. Balacco, D.L., and Soller, M. (2019). The m6A Writer: Rise of a Machine for  
1263 Growing Tasks. *Biochemistry* 58, 363-378. 10.1021/acs.biochem.8b01166.
- 1264 2. Zhong, S., Li, H., Bodi, Z., Button, J., Vespa, L., Herzog, M., and Fray, R.G. (2008).  
1265 MTA is an *Arabidopsis* messenger RNA adenosine methylase and interacts with a  
1266 homolog of a sex-specific splicing factor. *The Plant cell* 20, 1278-1288.  
1267 10.1105/tpc.108.058883.
- 1268 3. Geula, S., Moshitch-Moshkovitz, S., Dominissini, D., Mansour, A.A., Kol, N.,  
1269 Salmon-Divon, M., Hershkovitz, V., Peer, E., Mor, N., Manor, Y.S., et al. (2015).  
1270 m6A mRNA methylation facilitates resolution of naive pluripotency toward  
1271 differentiation. *Science* 347, 1002-1006. 10.1126/science.1261417.
- 1272 4. Clancy, M.J., Shambaugh, M.E., Timpte, C.S., and Bokar, J.A. (2002). Induction of  
1273 sporulation in *Saccharomyces cerevisiae* leads to the formation of N6-

1274 methyladenosine in mRNA: a potential mechanism for the activity of the IME4 gene.  
1275 Nucleic acids research 30, 4509-4518.

1276 5. Lence, T., Akhtar, J., Bayer, M., Schmid, K., Spindler, L., Ho, C.H., Kreim, N.,  
1277 Andrade-Navarro, M.A., Poeck, B., Helm, M., and Roignant, J.-Y. (2016). m6A  
1278 modulates neuronal functions and sex determination in *Drosophila*. *Nature* 540,  
1279 242-247. 10.1038/nature20568.

1280 6. Haussmann, I.U., Bodi, Z., Sanchez-Moran, E., Mongan, N.P., Archer, N., Fray,  
1281 R.G., and Soller, M. (2016). m6A potentiates *Sxl* alternative pre-mRNA splicing for  
1282 robust *Drosophila* sex determination. *Nature* 540, 301-304. 10.1038/nature20577.

1283 7. Arribas-Hernández, L., Bressendorff, S., Hansen, M.H., Poulsen, C., Erdmann, S.,  
1284 and Brodersen, P. (2018). An m<sup>6</sup>A-YTH Module Controls Developmental Timing  
1285 and Morphogenesis in *Arabidopsis*. *The Plant cell* 30, 952-967.

1286 8. Ivanova, I., Much, C., Di Giacomo, M., Azzi, C., Morgan, M., Moreira, P.N.,  
1287 Monahan, J., Carrieri, C., Enright, A.J., and O'Carroll, D. (2017). The RNA m(6)A  
1288 Reader YTHDF2 Is Essential for the Post-transcriptional Regulation of the Maternal  
1289 Transcriptome and Oocyte Competence. *Molecular cell* 67, 1059-1067 e1054.  
1290 10.1016/j.molcel.2017.08.003.

1291 9. Lasman, L., Krupalnik, V., Viukov, S., Mor, N., Aguilera-Castrejon, A., Schneir, D.,  
1292 Bayerl, J., Mizrahi, O., Peles, S., Tawil, S., et al. (2020). Context-dependent  
1293 functional compensation between Ythdf m(6)A reader proteins. *Genes &*  
1294 *development* 34, 1373-1391. 10.1101/gad.340695.120.

1295 10. Kontur, C., Jeong, M., Cifuentes, D., and Giraldez, A.J. (2020). Ythdf m6A Readers  
1296 Function Redundantly during Zebrafish Development. *Cell reports* 33,  
1297 10.1016/j.celrep.2020.108598.

1298 11. Patil, D.P., Pickering, B.F., and Jaffrey, S.R. (2018). Reading m(6)A in the  
1299 Transcriptome: m(6)A-Binding Proteins. *Trends Cell Biol* 28, 113-127.  
1300 10.1016/j.tcb.2017.10.001.

1301 12. Fray, R.G., and Simpson, G.G. (2015). The *Arabidopsis* epitranscriptome. *Current*  
1302 *Opinion in Plant Biology* 27, 17-21. <https://doi.org/10.1016/j.pbi.2015.05.015>.

1303 13. Scutenaire, J., Deragon, J.-M., Jean, V., Benhamed, M., Raynaud, C., Favery, J.-J.,  
1304 Merret, R., and Bousquet-Antonacci, C. (2018). The YTH Domain Protein ECT2 Is an  
1305 m<sup>6</sup>A Reader Required for Normal Trichome Branching in *Arabidopsis*. *The Plant cell*  
1306 30, 986.

1307 14. Ok, S.H., Jeong, H.J., Bae, J.M., Shin, J.S., Luan, S., and Kim, K.N. (2005). Novel  
1308 CIPK1-associated proteins in *Arabidopsis* contain an evolutionarily conserved C-  
1309 terminal region that mediates nuclear localization. *Plant physiology* 139, 138-150.  
1310 10.1104/pp.105.065649.

1311 15. Arribas-Hernandez, L., Simonini, S., Hansen, M.H., Paredes, E.B., Bressendorff, S.,  
1312 Dong, Y., Ostergaard, L., and Brodersen, P. (2020). Recurrent requirement for the  
1313 m(6)A-ECT2/ECT3/ECT4 axis in the control of cell proliferation during plant  
1314 organogenesis. *Development* 147. 10.1242/dev.189134.

1315 16. Yin, S., Ao, Q., Qiu, T., Tan, C., Tu, Y., Kuang, T., and Yang, Y. (2022). Tomato  
1316 SIYTH1 encoding a putative RNA m6A reader affects plant growth and fruit shape.  
1317 *Plant Science* 323, 111417. <https://doi.org/10.1016/j.plantsci.2022.111417>.

1318 17. Ma, W., Cui, S., Lu, Z., Yan, X., Cai, L., Lu, Y., Cai, K., Zhou, H., Ma, R., Zhou, S.,  
1319 and Wang, X. (2022). YTH Domain Proteins Play an Essential Role in Rice Growth  
1320 and Stress Response. *Plants* 11. 10.3390/plants11172206.

1321 18. Su, D., Yang, L., Shi, X., Ma, X., Zhou, X., Hedges, S.B., and Zhong, B. (2021).  
1322 Large-Scale Phylogenomic Analyses Reveal the Monophyly of Bryophytes and  
1323 Neoproterozoic Origin of Land Plants. *Molecular Biology and Evolution* 38, 3332-  
1324 3344. 10.1093/molbev/msab106.

1325 19. Magallón, S., Hilu, K.W., and Quandt, D. (2013). Land plant evolutionary timeline:  
1326 Gene effects are secondary to fossil constraints in relaxed clock estimation of age  
1327 and substitution rates. *American Journal of Botany* 100, 556-573.  
1328 <https://doi.org/10.3732/ajb.1200416>.

1329 20. Flores-Téllez, D., Tankmar, M.D., von Bülow, S., Chen, J., Lindorff-Larsen, K.,  
1330 Brodersen, P., and Arribas-Hernández, L. (2023). Insights into the conservation and  
1331 diversification of the molecular functions of YTHDF proteins. *PLoS genetics* 19,  
1332 e1010980. 10.1371/journal.pgen.1010980.

1333 21. Tankmar, M.D., Reichel, M., Arribas-Hernández, L., and Brodersen, P. (2023). A  
1334 YTHDF-PABP interaction is required for m6A-mediated organogenesis in plants.  
1335 *EMBO reports* 24, e57741. <https://doi.org/10.15252/embr.202357741>.

1336 22. Song, P., Wei, L., Chen, Z., Cai, Z., Lu, Q., Wang, C., Tian, E., and Jia, G. (2023).  
1337 m(6)A readers ECT2/ECT3/ECT4 enhance mRNA stability through direct  
1338 recruitment of the poly(A) binding proteins in Arabidopsis. *Genome biology* 24, 103.  
1339 10.1186/s13059-023-02947-4.

1340 23. Wiedner, H.J., and Giudice, J. (2021). It's not just a phase: function and  
1341 characteristics of RNA-binding proteins in phase separation. *Nature structural &*  
1342 *molecular biology* 28, 465-473. 10.1038/s41594-021-00601-w.

1343 24. Lee, K.P., Liu, K., Kim, E.Y., Medina-Puche, L., Dong, H., Di, M., Singh, R.M., Li,  
1344 M., Qi, S., Meng, Z., et al. (2023). The m6A reader ECT1 drives mRNA  
1345 sequestration to dampen salicylic acid-dependent stress responses in Arabidopsis.  
1346 *The Plant cell* 36, 746-763. 10.1093/plcell/koad300.

1347 25. Wu, X., Su, T., Zhang, S., Zhang, Y., Wong, C.E., Ma, J., Shao, Y., Hua, C., Shen,  
1348 L., and Yu, H. (2024). N6-methyladenosine-mediated feedback regulation of  
1349 abscisic acid perception via phase-separated ECT8 condensates in Arabidopsis.  
1350 *Nature Plants* 10, 469-482. 10.1038/s41477-024-01638-7.

1351 26. Stowell, J.A.W., Wagstaff, J.L., Hill, C.H., Yu, M., McLaughlin, S.H., Freund, S.M.V.,  
1352 and Passmore, L.A. (2018). A low-complexity region in the YTH domain protein  
1353 Mmi1 enhances RNA binding. *Journal of Biological Chemistry* 293, 9210-9222.  
1354 <https://doi.org/10.1074/jbc.RA118.002291>.

1355 27. Chong, P.A., Vernon, R.M., and Forman-Kay, J.D. (2018). RGG/RG Motif Regions  
1356 in RNA Binding and Phase Separation. *Journal of Molecular Biology* 430, 4650-  
1357 4665. <https://doi.org/10.1016/j.jmb.2018.06.014>.

1358 28. Arribas-Hernández, L., Rennie, S., Köster, T., Porcelli, C., Lewinski, M., Staiger, D.,  
1359 Andersson, R., and Brodersen, P. (2021). Principles of mRNA targeting via the  
1360 Arabidopsis m6A-binding protein ECT2. *eLife* 10, e72375. 10.7554/eLife.72375.

1361 29. Holehouse, A.S., and Kragelund, B.B. (2024). The molecular basis for cellular  
1362 function of intrinsically disordered protein regions. *Nature Reviews Molecular Cell  
1363 Biology* 25, 187-211. 10.1038/s41580-023-00673-0.

1364 30. Reichel, M., Liao, Y., Rettel, M., Ragan, C., Evers, M., Alleaume, A.M., Horos, R.,  
1365 Hentze, M.W., Preiss, T., and Millar, A.A. (2016). In Planta Determination of the  
1366 mRNA-Binding Proteome of Arabidopsis Etiolated Seedlings. *The Plant cell* 28,  
1367 2435-2452. 10.1105/tpc.16.00562.

1368 31. Marondedze, C., Thomas, L., Serrano, N.L., Lilley, K.S., and Gehring, C. (2016).  
1369 The RNA-binding protein repertoire of *Arabidopsis thaliana*. *Scientific Reports* 6,  
1370 29766. 10.1038/srep29766.

1371 32. Aravind, L., Iyer, L.M., and Anantharaman, V. (2003). The two faces of Alba: the  
1372 evolutionary connection between proteins participating in chromatin structure and  
1373 RNA metabolism. *Genome biology* 4, R64. 10.1186/gb-2003-4-10-r64.

1374 33. Forterre, P., Confalonieri, F., and Knapp, S. (1999). Identification of the gene  
1375 encoding archeal-specific DNA-binding proteins of the Sac10b family. *Molecular*  
1376 *Microbiology* 32, 669-670. <https://doi.org/10.1046/j.1365-2958.1999.01366.x>.

1377 34. Xue, H., Guo, R., Wen, A., Liu, D., and Huang, L. (2000). An Abundant DNA  
1378 Binding Protein from the Hyperthermophilic Archaeon *Sulfolobus shibatae* Affects  
1379 DNA Supercoiling in a Temperature-Dependent Fashion. *Journal of bacteriology*  
1380 182, 3929-3933. doi:10.1128/jb.182.14.3929-3933.2000.

1381 35. Bell, S.D., Botting, C.H., Wardleworth, B.N., Jackson, S.P., and White, M.F. (2002).  
1382 The Interaction of Alba, a Conserved Archaeal Chromatin Protein, with Sir2 and Its  
1383 Regulation by Acetylation. *Science* 296, 148-151. doi:10.1126/science.1070506.

1384 36. Wardleworth, B.N., Russell, R.J.M., Bell, S.D., Taylor, G.L., and White, M.F. (2002).  
1385 Structure of Alba: an archaeal chromatin protein modulated by acetylation. *The*  
1386 *EMBO journal* 21, 4654-4662. <https://doi.org/10.1093/emboj/cdf465>.

1387 37. Zhang, N., Guo, L., and Huang, L. (2020). The Sac10b homolog from *Sulfolobus*  
1388 *islandicus* is an RNA chaperone. *Nucleic acids research* 48, 9273-9284.  
1389 10.1093/nar/gkaa656.

1390 38. Goyal, M., Banerjee, C., Nag, S., and Bandyopadhyay, U. (2016). The Alba protein  
1391 family: Structure and function. *Biochimica et Biophysica Acta (BBA) - Proteins and*  
1392 *Proteomics* 1864, 570-583. <https://doi.org/10.1016/j.bbapap.2016.02.015>.

1393 39. Mani, J., Güttinger, A., Schimanski, B., Heller, M., Acosta-Serrano, A., Pescher, P.,  
1394 Späth, G., and Roditi, I. (2011). Alba-Domain Proteins of *Trypanosoma brucei* Are  
1395 Cytoplasmic RNA-Binding Proteins That Interact with the Translation Machinery.  
1396 *PloS one* 6, e22463. 10.1371/journal.pone.0022463.

1397 40. Bevkal, S., Naguleswaran, A., Rehmann, R., Kaiser, M., Heller, M., and Roditi, I.  
1398 (2021). An Alba-domain protein required for proteome remodelling during  
1399 trypanosome differentiation and host transition. *PLOS Pathogens* 17, e1009239.  
1400 10.1371/journal.ppat.1009239.

1401 41. Honkanen, S., Jones, V.A.S., Morieri, G., Champion, C., Hetherington, A.J., Kelly,  
1402 S., Proust, H., Saint-Marcoux, D., Prescott, H., and Dolan, L. (2016). The  
1403 Mechanism Forming the Cell Surface of Tip-Growing Rooting Cells Is Conserved  
1404 among Land Plants. *Curr. Biol.* 26, 3238-3244. 10.1016/j.cub.2016.09.062.

1405 42. Magwanga, R.O., Kirungu, J.N., Lu, P., Cai, X., Xu, Y., Wang, X., Zhou, Z., Hou, Y.,  
1406 Agong, S.G., Wang, K., and Liu, F. (2019). Knockdown of ghAlba\_4 and ghAlba\_5  
1407 Proteins in Cotton Inhibits Root Growth and Increases Sensitivity to Drought and  
1408 Salt Stresses. *Frontiers in Plant Science* 10. 10.3389/fpls.2019.01292.

1409 43. Tong, J., Ren, Z., Sun, L., Zhou, S., Yuan, W., Hui, Y., Ci, D., Wang, W., Fan, L.-M.,  
1410 Wu, Z., and Qian, W. (2022). ALBA proteins confer thermotolerance through  
1411 stabilizing HSF messenger RNAs in cytoplasmic granules. *Nature Plants* 8, 778-  
1412 791. 10.1038/s41477-022-01175-1.

1413 44. Arribas-Hernández, L., Rennie, S., Schon, M., Porcelli, C., Enugutti, B., Andersson,  
1414 R., Nodine, M.D., and Brodersen, P. (2021). The YTHDF proteins ECT2 and ECT3

1415 bind largely overlapping target sets and influence target mRNA abundance, not  
1416 alternative polyadenylation. *eLife* 10, e72377. 10.7554/eLife.72377.

1417 45. Abramson, J., Adler, J., Dunger, J., Evans, R., Green, T., Pritzel, A., Ronneberger,  
1418 O., Willmore, L., Ballard, A.J., Bambrick, J., et al. (2024). Accurate structure  
1419 prediction of biomolecular interactions with AlphaFold<sup>□</sup>3. *Nature*. 10.1038/s41586-  
1420 024-07487-w.

1421 46. Shahani, R., Hsu, C.-W., Nolan, T.M., Cole, B.J., Taylor, I.W., Greenstreet, L.,  
1422 Zhang, S., Afanassiev, A., Vlot, A.H.C., Schiebinger, G., et al. (2022). A single-cell  
1423 *Arabidopsis* root atlas reveals developmental trajectories in wild-type and cell  
1424 identity mutants. *Developmental cell* 57, 543-560.e549.  
1425 10.1016/j.devcel.2022.01.008.

1426 47. He, Z., Luo, Y., Zhou, X., Zhu, T., Lan, Y., and Chen, D. (2023). scPlantDB: a  
1427 comprehensive database for exploring cell types and markers of plant cell atlases.  
1428 *Nucleic acids research* 52, D1629-D1638. 10.1093/nar/gkad706.

1429 48. McMahon, A.C., Rahman, R., Jin, H., Shen, J.L., Fieldsend, A., Luo, W., and  
1430 Rosbash, M. (2016). TRIBE: Hijacking an RNA-Editing Enzyme to Identify Cell-  
1431 Specific Targets of RNA-Binding Proteins. *Cell* 165, 742-753.  
1432 10.1016/j.cell.2016.03.007.

1433 49. Konig, J., Zarnack, K., Rot, G., Curk, T., Kayikci, M., Zupan, B., Turner, D.J.,  
1434 Luscombe, N.M., and Ule, J. (2010). iCLIP reveals the function of hnRNP particles  
1435 in splicing at individual nucleotide resolution. *Nature structural & molecular biology*  
1436 17, 909-915. 10.1038/nsmb.1838.

1437 50. Meyer, K., Köster, T., Nolte, C., Weinholdt, C., Lewinski, M., Grosse, I., and Staiger,  
1438 D. (2017). Adaptation of iCLIP to plants determines the binding landscape of the  
1439 clock-regulated RNA-binding protein AtGRP7. *Genome biology* 18, 204.  
1440 10.1186/s13059-017-1332-x.

1441 51. Buchbender, A., Mutter, H., Sutandy, F.X.R., Körtel, N., Hänel, H., Busch, A.,  
1442 Ebersberger, S., and König, J. (2020). Improved library preparation with the new  
1443 iCLIP2 protocol. *Methods* 178, 33-48. <https://doi.org/10.1016/j.ymeth.2019.10.003>.

1444 52. Lewinski, M., Brüggemann, M., Köster, T., Reichel, M., Bergelt, T., Meyer, K.,  
1445 König, J., Zarnack, K., and Staiger, D. (2024). Mapping protein–RNA binding in  
1446 plants with individual-nucleotide-resolution UV cross-linking and  
1447 immunoprecipitation (plant iCLIP2). *Nature protocols* 19, 1183-1234.  
1448 10.1038/s41596-023-00935-3.

1449 53. Xu, W., Rahman, R., and Rosbash, M. (2018). Mechanistic implications of  
1450 enhanced editing by a HyperTRIBE RNA-binding protein. *Rna* 24, 173-182.  
1451 10.1261/rna.064691.117.

1452 54. Parker, M.T., Knop, K., Sherwood, A.V., Schurch, N.J., Mackinnon, K., Gould, P.D.,  
1453 Hall, A.J., Barton, G.J., and Simpson, G.G. (2020). Nanopore direct RNA  
1454 sequencing maps the complexity of *Arabidopsis* mRNA processing and m(6)A  
1455 modification. *Elife* 9, 49658. 10.7554/eLife.49658.

1456 55. Hafner, M., Katsantoni, M., Köster, T., Marks, J., Mukherjee, J., Staiger, D., Ule, J.,  
1457 and Zavolan, M. (2021). CLIP and complementary methods. *Nature Reviews  
1458 Methods Primers* 1, 20. 10.1038/s43586-021-00018-1.

1459 56. Angelov, D., Boopathi, R., Lone, I.N., Menoni, H., Dimitrov, S., and Cadet, J.  
1460 (2023). Capturing Protein–Nucleic Acid Interactions by High-Intensity Laser-Induced  
1461 Covalent Cross-Linking†. *Photochemistry and Photobiology* 99, 296-312.  
1462 <https://doi.org/10.1111/php.13699>.

1463 57. Rennie, S., Magnusson, D.H., and Andersson, R. (2021). hyperTRIBER: a flexible  
1464 R package for the analysis of differential RNA editing. *bioRxiv*,  
1465 2021.2010.2020.465108. 10.1101/2021.10.20.465108.  
1466 58. Bodi, Z., Zhong, S., Mehra, S., Song, J., Graham, N., Li, H., May, S., and Fray, R.G.  
1467 (2012). Adenosine Methylation in *Arabidopsis* mRNA is Associated with the 3' End  
1468 and Reduced Levels Cause Developmental Defects. *Front Plant Sci* 3, 48.  
1469 10.3389/fpls.2012.00048.  
1470 59. Wei, L.-H., Song, P., Wang, Y., Lu, Z., Tang, Q., Yu, Q., Xiao, Y., Zhang, X., Duan,  
1471 H.-C., and Jia, G. (2018). The m6A Reader ECT2 Controls Trichome Morphology  
1472 by Affecting mRNA Stability in *Arabidopsis*. *The Plant cell* 30, 968.  
1473 60. Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O.,  
1474 Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., et al. (2021). Highly  
1475 accurate protein structure prediction with AlphaFold. *Nature* 596, 583-589.  
1476 10.1038/s41586-021-03819-2.  
1477 61. Sikorski, V., Selberg, S., Lalowski, M., Karelson, M., and Kankuri, E. (2023). The  
1478 structure and function of YTHDF epitranscriptomic m<sup>6</sup>A readers. *Trends in*  
1479 *Pharmacological Sciences* 44, 335-353. 10.1016/j.tips.2023.03.004.  
1480 62. Wang, C., Zhu, Y., Bao, H., Jiang, Y., Xu, C., Wu, J., and Shi, Y. (2016). A novel  
1481 RNA-binding mode of the YTH domain reveals the mechanism for recognition of  
1482 determinant of selective removal by Mmi1. *Nucleic acids research* 44, 969-982.  
1483 10.1093/nar/gkv1382.  
1484 63. Huang, H., Weng, H., Sun, W., Qin, X., Shi, H., Wu, H., Zhao, B.S., Mesquita, A.,  
1485 Liu, C., Yuan, C.L., et al. (2018). Recognition of RNA N6-methyladenosine by  
1486 IGF2BP proteins enhances mRNA stability and translation. *Nature cell biology* 20,  
1487 285-295. 10.1038/s41556-018-0045-z.  
1488 64. Hafner, M., Landthaler, M., Burger, L., Khorshid, M., Hausser, J., Berninger, P.,  
1489 Rothballer, A., Ascano, M., Jr., Jungkamp, A.-C., Munschauer, M., et al. (2010).  
1490 Transcriptome-wide Identification of RNA-Binding Protein and MicroRNA Target  
1491 Sites by PAR-CLIP. *Cell* 141, 129-141. 10.1016/j.cell.2010.03.009.  
1492 65. Zaccara, S., and Jaffrey, S.R. (2020). A Unified Model for the Function of YTHDF  
1493 Proteins in Regulating m(6)A-Modified mRNA. *Cell* 181, 1582-1595 e1518.  
1494 10.1016/j.cell.2020.05.012.  
1495 66. Di Domenico, T., Walsh, I., Martin, A.J.M., and Tosatto, S.C.E. (2012). MobiDB: a  
1496 comprehensive database of intrinsic protein disorder annotations. *Bioinformatics* 28,  
1497 2080-2081. 10.1093/bioinformatics/bts327.  
1498 67. Schneider, T.D., and Stephens, R.M. (1990). Sequence logos: a new way to display  
1499 consensus sequences. *Nucleic acids research* 18, 6097-6100.  
1500 10.1093/nar/18.20.6097.  
1501 68. Crooks, G.E., Hon, G., Chandonia, J.-M., and Brenner, S.E. (2004). WebLogo: A  
1502 Sequence Logo Generator. *Genome Res.* 14, 1188-1190. 10.1101/gr.849004.  
1503 69. Thompson, J.D., Higgins, D.G., and Gibson, T.J. (1994). CLUSTAL W: improving  
1504 the sensitivity of progressive multiple sequence alignment through sequence  
1505 weighting, position specific gap penalties and weight matrix choice. *Nucleic acids*  
1506 *research* 22, 4673-4680.  
1507 70. Tsutsui, H., and Higashiyama, T. (2017). pKAMA-ITACHI Vectors for Highly  
1508 Efficient CRISPR/Cas9-Mediated Gene Knockout in *Arabidopsis thaliana*. *Plant and*  
1509 *Cell Physiology* 58, 46-56. 10.1093/pcp/pcw191.

1510 71. Bitinaite, J., and Nichols, N.M. (2009). DNA Cloning and Engineering by Uracil  
1511 Excision. *Current Protocols in Molecular Biology* 86, 3.21.21-23.21.16.  
1512 <https://doi.org/10.1002/0471142727.mb0321s86>.

1513 72. Nour-Eldin, H.H., Hansen, B.G., Norholm, M.H., Jensen, J.K., and Halkier, B.A.  
1514 (2006). Advancing uracil-excision based cloning towards an ideal technique for  
1515 cloning PCR fragments. *Nucleic acids research* 34, e122. 10.1093/nar/gkl635.

1516 73. Curtis, M.D., and Grossniklaus, U. (2003). A Gateway Cloning Vector Set for High-  
1517 Throughput Functional Analysis of Genes in *Planta*. *Plant physiology* 133, 462-469.  
1518 10.1104/pp.103.027979.

1519 74. Earley, K.W., Haag, J.R., Pontes, O., Opper, K., Juehne, T., Song, K., and Pikaard,  
1520 C.S. (2006). Gateway-compatible vectors for plant functional genomics and  
1521 proteomics. *The Plant Journal* 45, 616-629. <https://doi.org/10.1111/j.1365-313X.2005.02617.x>.

1523 75. Clough, S.J., and Bent, A.F. (1998). Floral dip: a simplified method for  
1524 *Agrobacterium*-mediated transformation of *Arabidopsis thaliana*. *Plant J* 16, 735-  
1525 743.

1526 76. Speth, C., Toledo-Filho, L.A.A., and Laubinger, S. (2014). Immunoprecipitation-  
1527 Based Analysis of Protein–Protein Interactions. In *Plant Circadian Networks: Methods and Protocols*, D. Staiger, ed. (Springer New York), pp. 175-185.  
1528 10.1007/978-1-4939-0700-7\_11.

1530 77. Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P.,  
1531 Chaisson, M., and Gingeras, T.R. (2013). STAR: ultrafast universal RNA-seq  
1532 aligner. *Bioinformatics* 29, 15-21. 10.1093/bioinformatics/bts635.

1533 78. Patro, R., Duggal, G., Love, M.I., Irizarry, R.A., and Kingsford, C. (2017). Salmon  
1534 provides fast and bias-aware quantification of transcript expression. *Nature Methods* 14, 417-419. 10.1038/nmeth.4197.

1536 79. Cheng, C.-Y., Krishnakumar, V., Chan, A.P., Thibaud-Nissen, F., Schobel, S., and  
1537 Town, C.D. (2017). Araport11: a complete reannotation of the *Arabidopsis thaliana*  
1538 reference genome. *The Plant Journal* 89, 789-804.  
1539 <https://doi.org/10.1111/tpj.13415>.

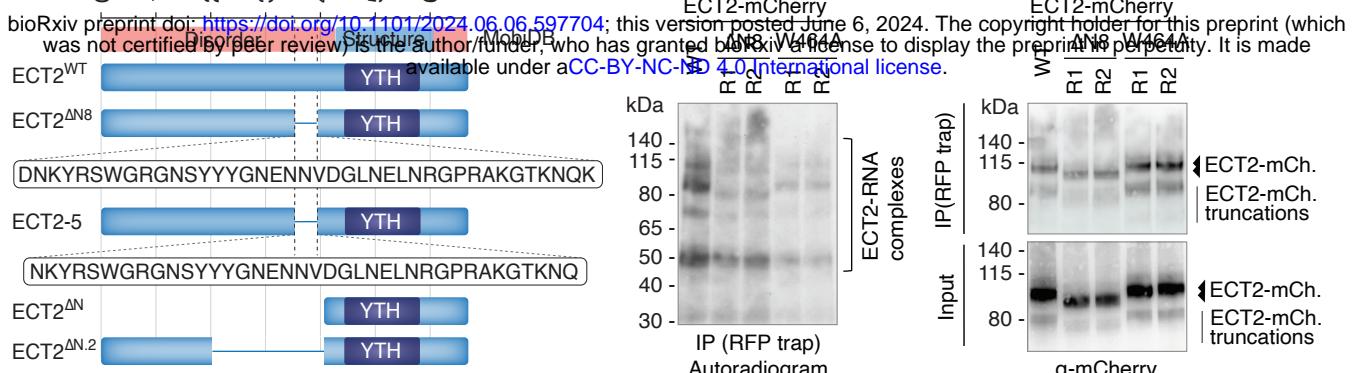
1540 80. Larsson, J., Gustafsson, P. (2018). A case study in fitting area-proportional euler  
1541 diagrams with ellipses using eulerr. *CEUR Workshop Proceedings - Proceedings of*  
1542 *International Workshop on Set Visualization and Reasoning* 2116, 84-91.

1543 81. Larsson, J. (2022). eulerr: Area-Proportional Euler and Venn Diagrams with  
1544 Ellipses. .

1545 82. Tang, Y., Chen, K., Song, B., Ma, J., Wu, X., Xu, Q., Wei, Z., Su, J., Liu, G., Rong,  
1546 R., et al. (2020). m6A-Atlas: a comprehensive knowledgebase for unraveling the  
1547 N6-methyladenosine (m6A) epitranscriptome. *Nucleic acids research* 49, D134-  
1548 D143. 10.1093/nar/gkaa692.

1549 83. Pagès, H. (2024). BSgenome: Software infrastructure for efficient representation of  
1550 full genomes and their SNPs. R package version 1.70.2. Bioconductor.  
1551 10.18129/B9.bioc.BSgenome.

1552 84. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,  
1553 Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al. (2011). Scikit-learn:  
1554 Machine Learning in Python. *J. Mach. Learn. Res.* 12, 2825–2830.


1555 85. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M.,  
1556 Ghemawat, S., Irving, G., Isard, M., et al. (2016). TensorFlow: a system for large-

1557 scale machine learning. Proceedings of the 12th USENIX conference on Operating  
1558 Systems Design and Implementation. USENIX Association.

1559 86. Tremblay, B.J. (2024). universalmotif: Import, Modify, and Export Motifs with R.  
1560 10.18129/B9.bioc.universalmotif.

1561 87. Perez-Riverol, Y., Bai, J., Bandla, C., García-Seisdedos, D., Hewapathirana, S.,  
1562 Kamatchinathan, S., Kundu, Deepti J., Prakash, A., Frericks-Zipper, A., Eisenacher,  
1563 M., et al. (2021). The PRIDE database resources in 2022: a hub for mass  
1564 spectrometry-based proteomics evidences. Nucleic acids research 50, D543-D552.  
1565 10.1093/nar/gkab1038.  
1566

**A** 0 100 200 300 400 500 600 aa

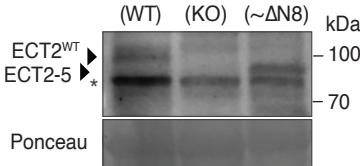


**B** *ect3-1 ect4-2*

Col-0 WT ECT2 *ect2-1 ect2-5* (WT) (KO) (~ΔN8)

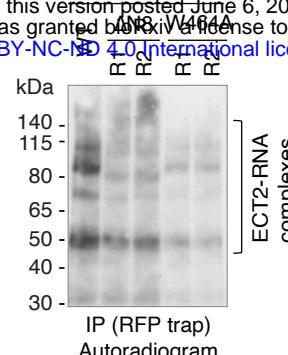


**C**




Col-0 ECT2 *ect2-1 ect2-5* (WT) (KO) (~ΔN8)

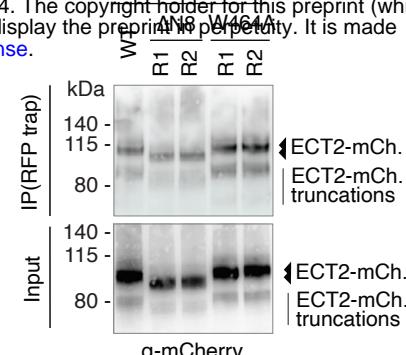
**D**


*ect3-1 ect4-2*

ECT2 *ect2-1 ect2-5* (WT) (KO) (~ΔN8)

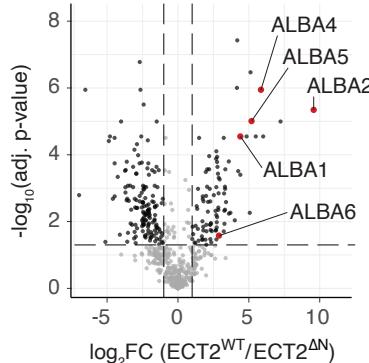


**E** *te234*


ECT2-mCherry

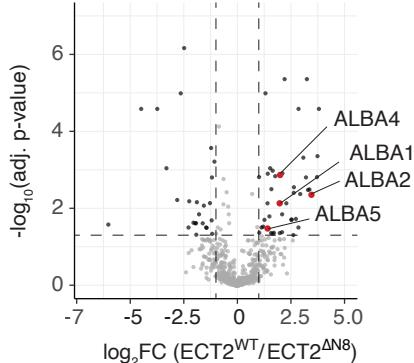


IP (RFP trap) Autoradiogram

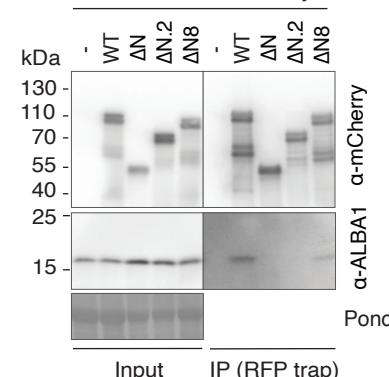

**E** *te234*

ECT2-mCherry



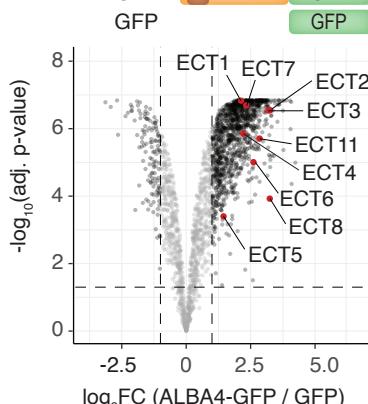

**F**

ECT2WT YTH mCh  
ECT2ΔN YTH mCh




**G**

ECT2WT YTH mCh  
ECT2ΔN8 YTH mCh




**H** *te234* ECT2-mCherry



**I**

ALBA  
GFP

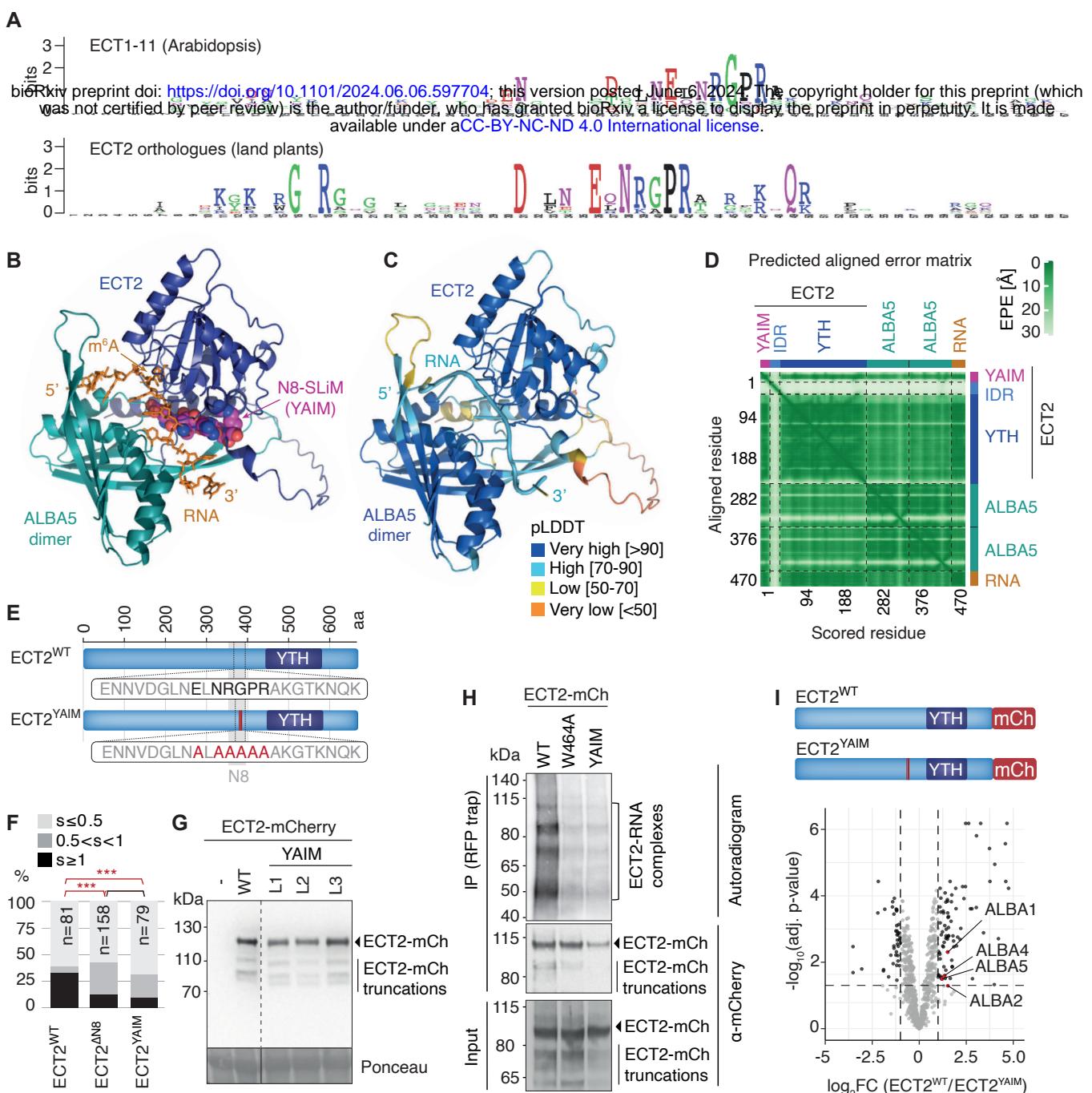


**Figure 1. The N8 IDR-element of ECT2 is required for growth promotion, RNA association and interaction with ALBA proteins.**

(A) Schematic representation of wild type and mutant ECT2 proteins. The MobiIDB<sup>66</sup> track (top) displays regions predicted to be structured or disordered.

(B) Images of representative seedlings of the indicated genotypes taken at 7 days after germination (DAG).

(C) Quantification of first true leaf size in seedlings of the indicated genotypes 7 DAG. 50 seedlings were measured for each genotype (n = 50). The boxes show the interquartile range (25th–75th percentile), with the central line marking the median. Whiskers extend 1.5 times the interquartile range. Asterisks indicate significance according to p-value of t-tests between the indicated genotypes. NS, not significant (\*\* p < 10<sup>-5</sup>).


(D) Protein blots of total lysates prepared from 12-day old seedlings of the indicated genotypes, probed with ECT2-specific antisera<sup>7</sup>. Arrows indicate the positions of the ECT2<sup>WT</sup> protein and the ECT2-5 protein containing the N8-like deletion. The asterisk indicates an unspecific band. Ponceau staining serves as the loading control.

(E) Results of an *in vivo* UV crosslinking ECT2-mCherry-immunoprecipitation experiment, followed by PNK-labelling of precipitated RNA with  $\gamma$ -<sup>32</sup>P-ATP. Left panel, autoradiogram of <sup>32</sup>P-labelled RNA-protein complexes purified from plants expressing ECT2<sup>WT</sup>-mCherry, ECT2<sup>ΔN8</sup>-mCherry or the aromatic cage mutant ECT2<sup>W464A</sup>-mCherry. Molecular weight marker positions and the location of the verified ECT2-mCherry-RNA complexes<sup>28</sup> are indicated. The presence of several bands of unequal intensity is due to partial proteolysis of the ECT2 IDR during immunoprecipitation and differential labelling efficiency of the different RNPs<sup>28</sup>. Right panels, mCherry immunoblots of the immunoprecipitated (top) and total fractions (input, bottom). Samples were pools of 3 independent lines for each genotype.

(F-G) Volcano plots showing the differential abundance of proteins co-purified with ECT2-mCherry variants (RFP-trap) measured by mass spectrometry of immunopurified fractions (IP-MS). All ECT2-mCherry variants were expressed in the *te234* mutant background. Diagrams above each plot indicate the proteins compared. Statistical significance was determined using empirical Bayes statistics with Benjamin-Hochberg adjusted P-values. The data underlying the plot in (F) have previously been published<sup>21</sup>.

(H) Co-immunoprecipitation assay using mCherry immunoprecipitation from 10-day old seedlings expressing the indicated ECT2-mCherry variants (see (A)), followed by immunoblot analysis with mCherry- and ALBA1-specific antibodies. Seedlings from three independent transgenic lines were pooled in this experiment.

(I) Volcano plots showing the differential abundance of proteins co-purified with ALBA4-GFP as determined by IP-MS from total lysates prepared from 7-day-old seedlings. Statistical significance was calculated using empirical Bayes statistics with Benjamin-Hochberg adjusted p-values.

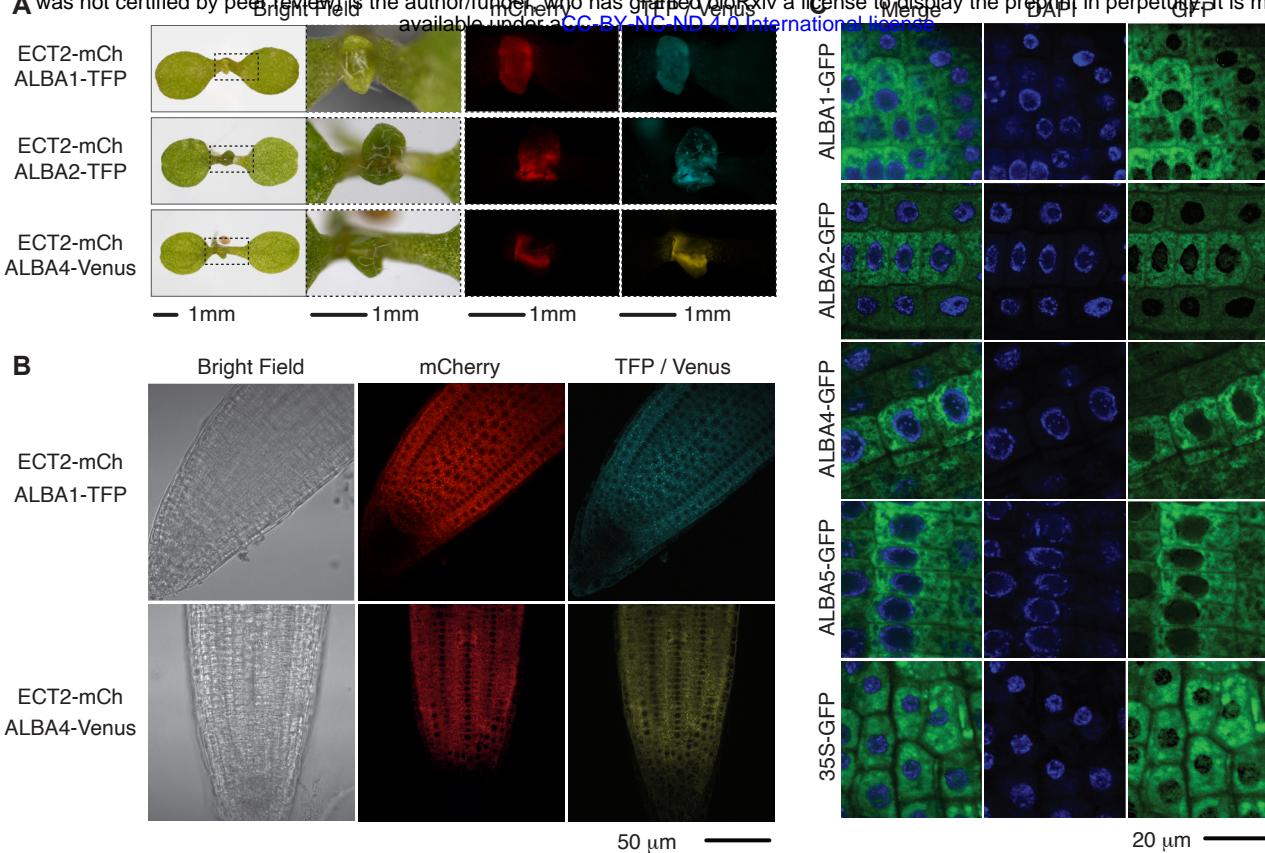


**Figure 2. The ECT2-ALBA interaction is mediated by a conserved short linear motif in the N8 element of the ECT2 IDR.**

**(A)** Logo representations of sequence conservation in the N8 region of the IDR of plant YTHDF proteins. Top, *Arabidopsis* ECT paralogues (ECT1-ECT11). Bottom, *Arabidopsis* ECT2 orthologues from 7 different species representing major clades of land plants separated by ~500 million years of evolution [liver worts (*Marchantia polymorpha*), mosses (*Physcomitrella patens*), lycophytes (*Selaginella moellendorffii*), ferns (*Ceratopteris richardii*), Amborella (*Amborella trichopoda*), monocots (*Oryza sativa*), dicots (*Arabidopsis thaliana*)]. Logos<sup>67</sup> were generated using the Weblogo tool<sup>68</sup>, and sequences were aligned with ClustalW<sup>69</sup>.

**(B)** AlphaFold3 model of the complex between ECT2 (YTH domain plus a YAIM-containing fragment of the N-terminal IDR), two ALBA5 subunits (ALBA domains only), and a 10-nt RNA [5'-AAA(m<sup>6</sup>A)CUUCUG-3']. The YAIM is accentuated in space fill mode (magenta, C; blue, N; red, O), all other protein elements in cartoon mode, and the RNA in stick mode.

(C) Same view of the model as in panel (B) but colored according to the predicted Local Distance Difference Test (pLDDT) score calculated by AlphaFold3 to indicate model confidence on a local per-residue basis<sup>45</sup>.

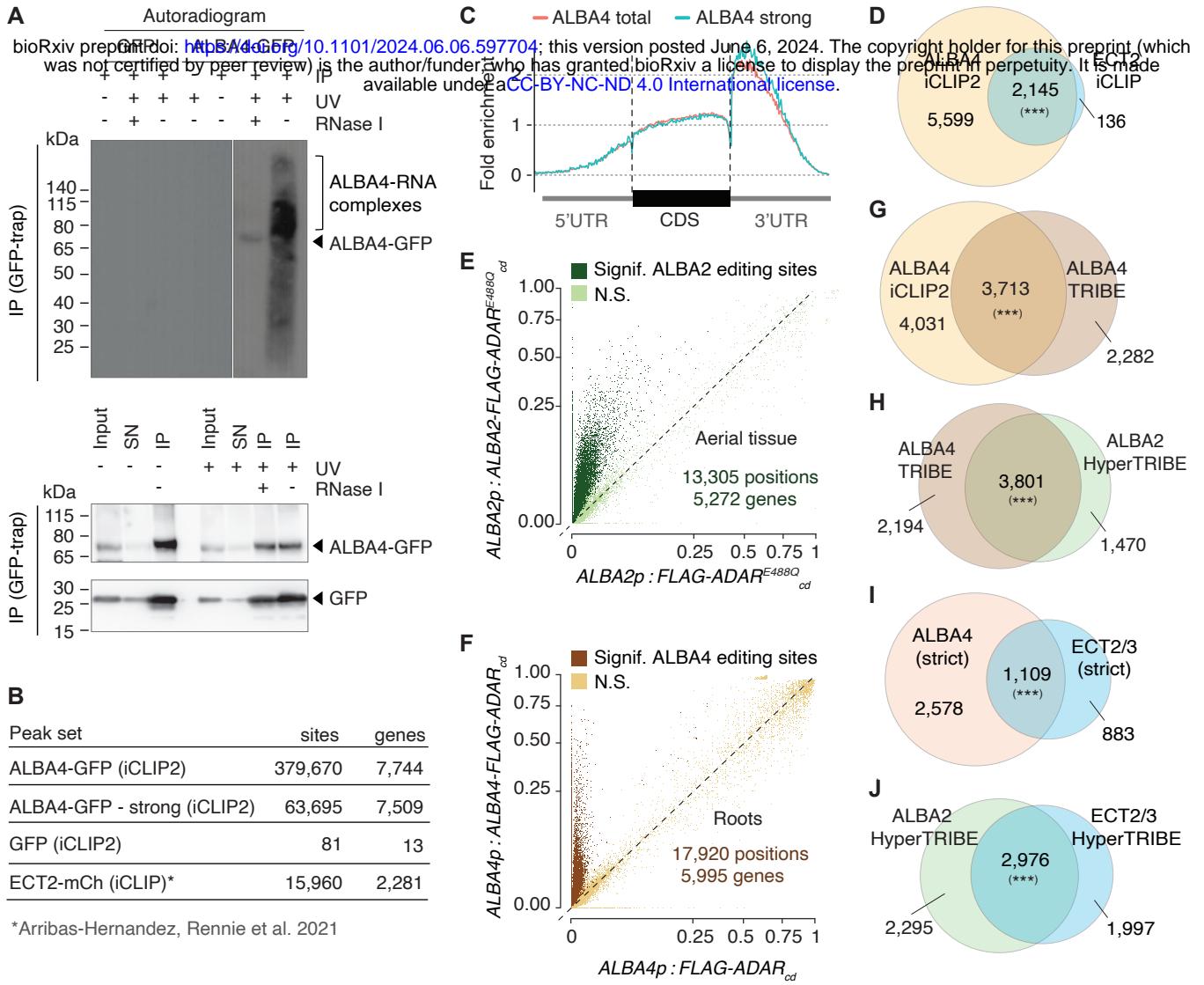

**(D)** 2D plot generated by AlphaFold3 showing the Predicted Aligned Error (PAE) indicating the Expected Position Error (EPE) in Ångströms (white-green scale) in the relative positions of each pair of residues in the complex<sup>45</sup>. The location of subunits and structural elements along the axes is indicated. An additional view of the complex is provided in Supplemental Figure S4.

**(E)** Schematic representation of the ECT2<sup>YAIM</sup> mutant with alanine substitutions in the YTH-ALBA Interaction Motif (YAIM) highlighted in red. **(F)** Categorized leaf size distribution of 9-day-old primary transformants of *te234* mutants expressing wild type or mutant versions of ECT2-mCherry as indicated. Red lines with asterisks denote significant differences based on pairwise Fisher exact tests with Holm-adjusted p-values (\* $p < 0.05$ , \*\* $p < 0.01$ , \*\*\* $p < 0.001$ ). Black line indicates no significant difference.

**(G)** Anti-mCherry immunoblot from total lysates of 9-day-old seedlings of transgenic lines expressing either a fully complementing ECT2<sup>WT</sup>-mCherry transgene<sup>7</sup> or the ECT2<sup>YAIM</sup>-mCherry construct (L1-L3, three independent lines), or without any ECT2 transgene (-), all in the *te234* mutant background. Dashed lines indicate that lanes have been removed for presentation purposes. Ponceau staining is used as a loading control.

**(H)** Results of an *in vivo* UV crosslinking ECT2-mCherry-immunoprecipitation experiment, followed by PNK-labelling of precipitated RNA with  $\gamma$ -<sup>32</sup>P-ATP. Top panel, autoradiogram of <sup>32</sup>P-radiolabelled RNA-protein complexes purified from plants expressing ECT2<sup>WT</sup>-mCherry, the aromatic cage mutant ECT2<sup>W464A</sup>-mCherry, or ECT2<sup>YAIM</sup>-mCherry. Molecular weight marker positions and the location of the verified ECT2-mCherry-RNA complexes<sup>28</sup> are indicated. The presence of several bands of unequal intensity is due to partial proteolysis of the ECT2 IDR during immunoprecipitation and differential labelling efficiency of the different RNPs<sup>28</sup>. Middle and bottom panels, immunoblots against mCherry showing the ECT2-mCherry proteins in the IP (middle) and total lysates (input, bottom). Samples were pools of 3 independent lines (L1-L3).

(I) Volcano plot showing differential abundance of proteins detected by mass spectrometry in mCherry immunoprecipitates from *te234* seedlings expressing either ECT2<sup>YAIM</sup>-mCherry or ECT2<sup>WT</sup>-mCherry. Statistical significance was determined using empirical Bayes statistics with Benjamini-Hochberg indicated as a line.




**Figure 3. The expression patterns and subcellular localizations of ECTs and ALBAs overlap.**

**(A)** Fluorescence microscopy of 5-day old seedlings co-expressing ECT2-mCherry and ALBA1-TFP (top panel), ECT2-mCherry and ALBA2-TFP (middle panel), or ECT2-mCherry and ALBA4-Venus (bottom panel).

**(B)** Confocal microscopy images of mCherry and GFP fluorescence in root tips of plants co-expressing ECT2-mCherry and ALBA1-TFP (top) or ECT2-mCherry and ALBA4-Venus (bottom).

**(C)** Confocal images of GFP fluorescence and DAPI staining in root tips of plants expressing ALBA1-GFP, ALBA2-GFP, ALBA4-GFP, ALBA5-GFP and 35S-GFP.



**Figure 4. The mRNA targets bound by ECT2/3 and ALBA2/4 overlap substantially.**

(A) Top, autoradiogram of  $^{32}\text{P}$ -labelled RNA-protein complexes obtained by PNK/ $\gamma$ - $^{32}\text{P}$ -ATP labelling of immunopurified material from ALBA4-GFP- or GFP-expressing plants. Immunoprecipitations were carried out with or without UV crosslinking and after precipitation with GFP-Trap beads (IP+). (IP-) indicates mock immunoprecipitation with RFP-Trap beads. Treatment of the precipitate with RNase I (+ RNase) indicates the size of the precipitated protein. Marker positions and the location of the ALBA4-GFP RNA adducts are indicated.

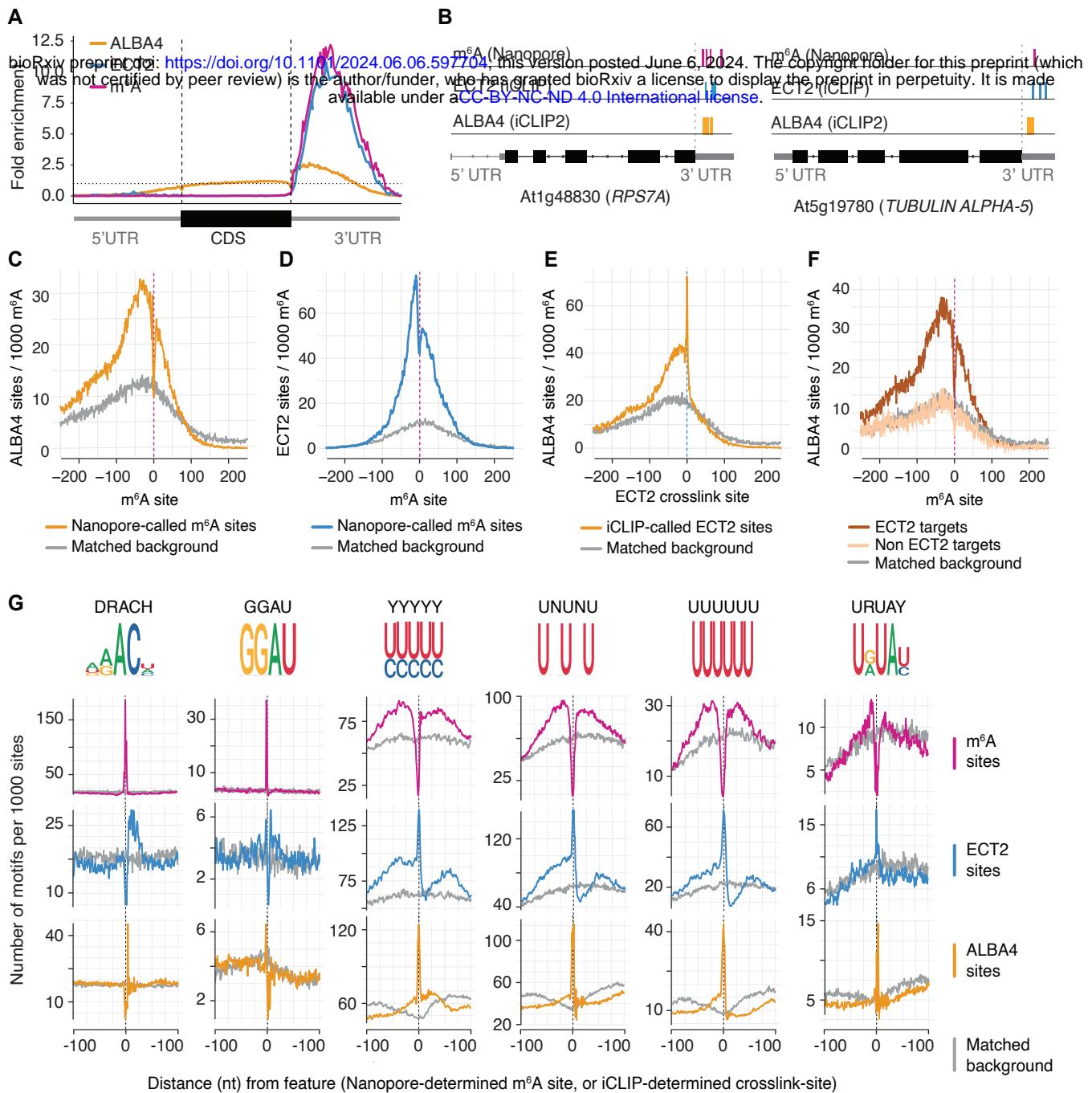
Bottom, immunoblots of input, supernatant (SN) after IP, and immunoprecipitated (IP) fractions, probed with GFP antibodies. Samples are pools of 3 independent lines for each genotype.

(B) Number of called iCLIP peaks and associated genes for ALBA4-GFP, GFP alone and ECT2-mCherry<sup>28</sup>. Strong ALBA4-GFP peaks are defined as those with a score higher than the median, per gene.

(C) Scaled metagene profiles showing the enrichment along the gene body (5'UTR, CDS or 3'UTR) of ALBA4-GFP iCLIP2 peaks.

(D) Overlap of ECT2 and ALBA4 iCLIP mRNAs. The overlap is highly significant ( $p < 10^{-16}$ , permutation test based on random sampling of genes from transcriptome with matched expression patterns, see Methods).

(E) Scatterplot of the editing proportions (E.P.=G/(A+G)) of potential and significant editing sites (E.S.) determined by comparing mRNA-seq data obtained from transgenic lines expressing ALBA2-FLAG-ADAR or FLAG-ADAR in the Col-0 background, both under the control of the ALBA2 promoter (seedlings, shoot tissue). Significance was determined using the hyperTRIBER pipeline<sup>57</sup>, specifying an adjusted-p-value  $<0.01$  and  $\log_2$  fold-change  $> 1$ .


(F) Same analysis as in (E), but carried out with roots of lines expressing ALBA4-FLAG-ADAR or FLAG-ADAR under the control of the ALBA4 promoter in the Col-0 background.

(G) Overlap of ALBA4 targets identified using iCLIP2 and TRIBE analysis. The overlap is highly significant ( $p < 10^{-16}$ , permutation test, as in D).

(H) Overlap between ALBA4 TRIBE targets (roots) and ALBA2 HyperTRIBE targets (shoots). The overlap is highly significant ( $p < 10^{-16}$ , permutation test, as in D). Most non-overlapping targets are expressed specifically in shoots or roots (Figure S7).

(I) Overlap between high-confidence ALBA4 targets, supported by iCLIP and TRIBE, and ECT2/3 targets, supported by ECT2/3 HyperTRIBE and ECT2 iCLIP. The overlap is highly significant ( $p < 10^{-16}$ , permutation test, as in D).

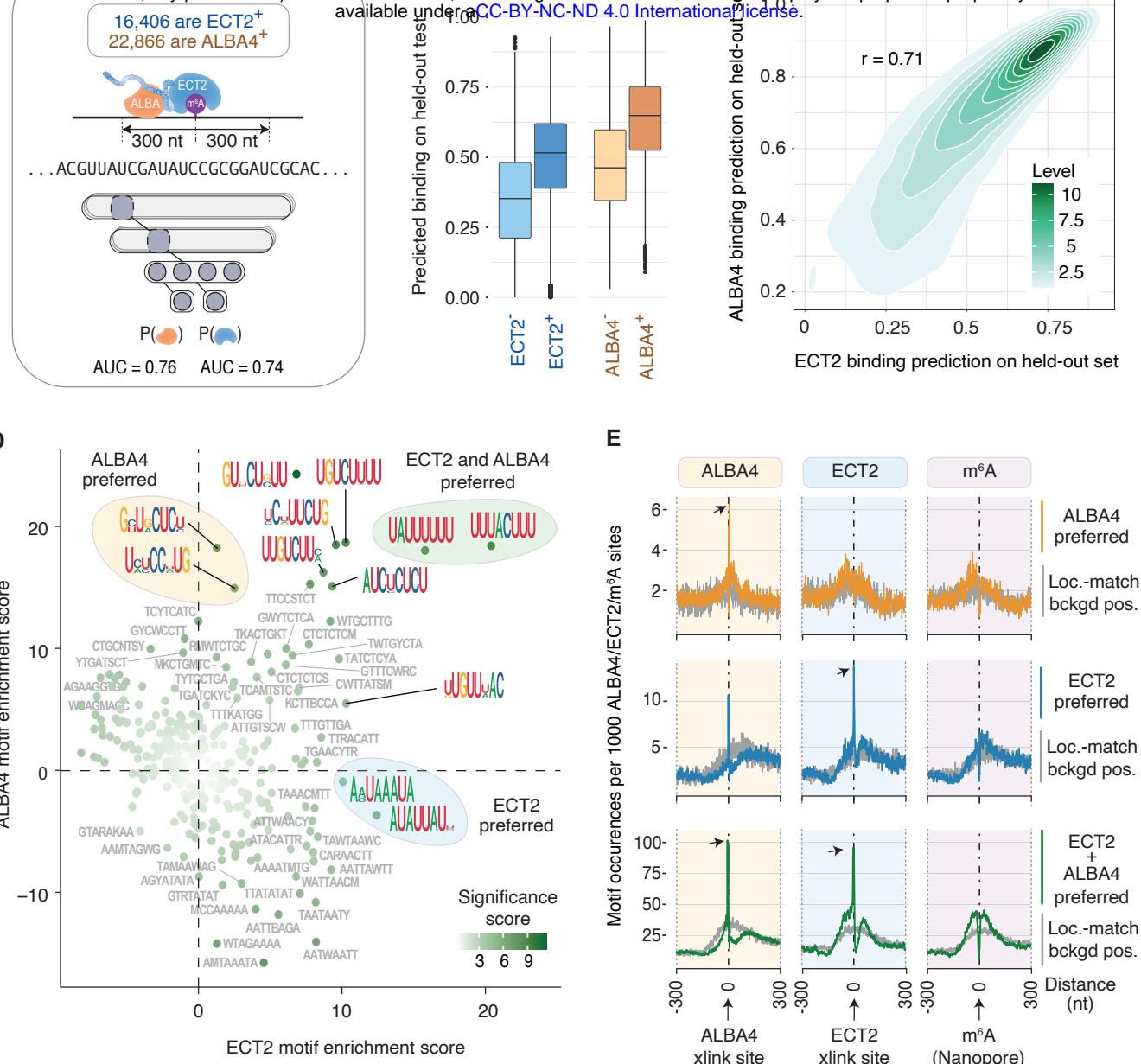
(J) Overlap between ALBA2 HyperTRIBE targets and ECT2/3 HyperTRIBE targets. The overlap is highly significant ( $p < 10^{-16}$ , as in D).



**Figure 5. ALBA4 binds to pyrimidine-rich elements juxtaposed to m<sup>6</sup>A.**

(A) Scaled metagene profiles showing the enrichment along the gene body (5'UTR, CDS or 3'UTR) of the called ALBA4 iCLIP2 peaks. ECT2 iCLIP peaks<sup>28</sup> and Nanopore-determined m<sup>6</sup>A density<sup>54</sup> are shown for reference.

(B) Representative examples of ECT2 and ALBA4 common targets showing the location of ALBA4 iCLIP2 and ECT2 iCLIP crosslink sites<sup>28</sup>, and m<sup>6</sup>A sites<sup>54</sup>.


(C) Number of ALBA4 iCLIP2 crosslink sites per 1000 Nanopore-derived m<sup>6</sup>A sites, as a function of distance from the m<sup>6</sup>A site.

(D) Number of ECT2 iCLIP crosslink sites per 1000 Nanopore-derived m<sup>6</sup>A sites, as a function of distance from the m<sup>6</sup>A site.

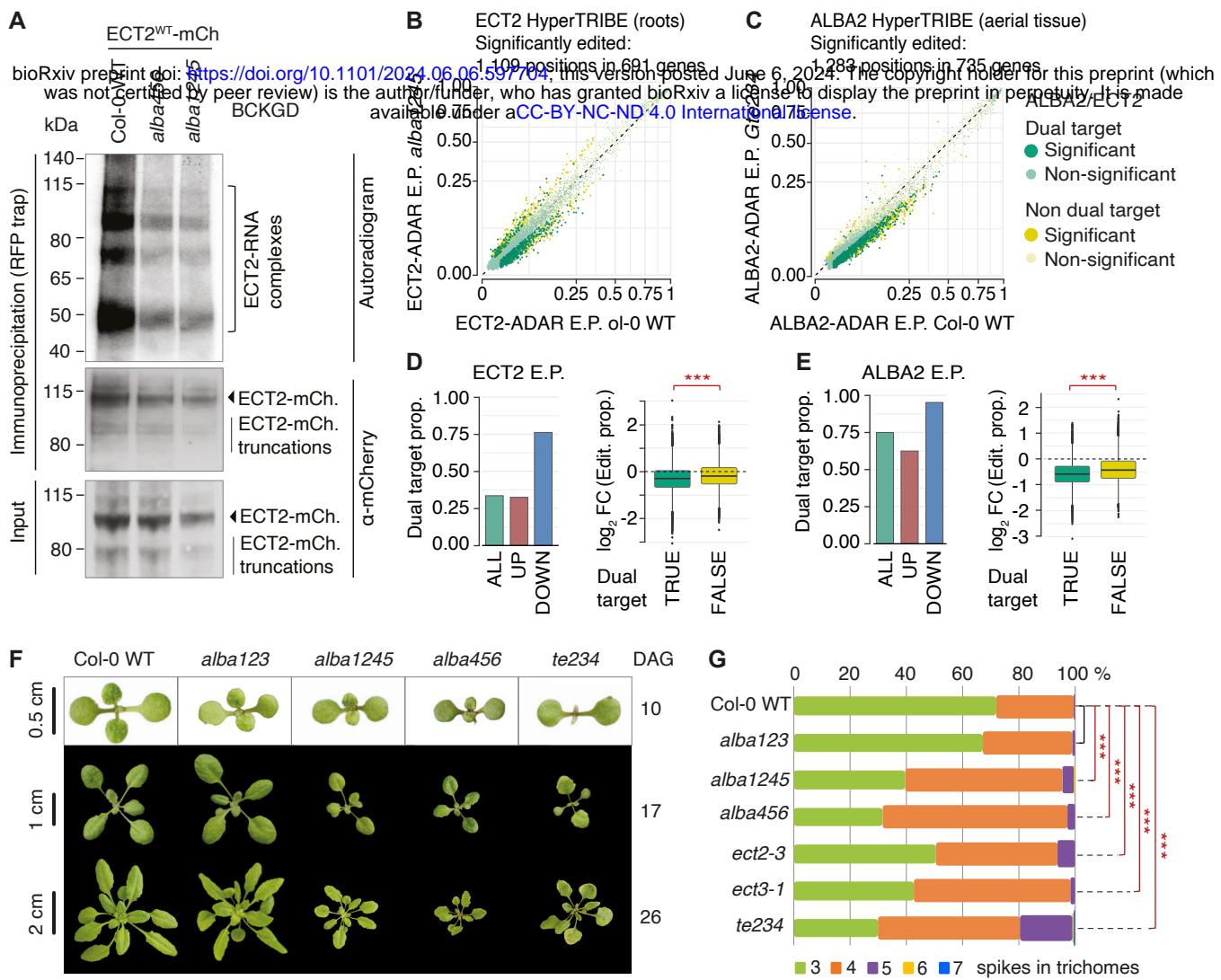
(E) Number of ALBA4 iCLIP2 crosslink sites per 1000 ECT2 crosslink sites, as a function of distance from the crosslink site.

(F) Number of ALBA4 iCLIP2 crosslink sites per 1000 Nanopore-derived m<sup>6</sup>A sites, as a function of distance from the m<sup>6</sup>A site and according to whether containing genes are also targets of ECT2 or non-ECT2 targets. For each set, a matched background set was defined as positions on similarly expressed genes with a similar metagene distribution to the true set.

(G) Number of the indicated motifs (selected from<sup>28</sup>) per 1000 Nanopore-determined m<sup>6</sup>A sites (top), ECT2 iCLIP crosslink sites (middle) or ALBA4 iCLIP2 crosslink sites (bottom). For each set, a matched background set was defined as positions on similarly expressed genes with a similar meta-gene distribution to the true set.



**Figure 6. Neural network analysis identifies U-rich motifs in the vicinity of m<sup>6</sup>A as determinants of ALBA4-ECT2 binding.**


(A) Strategy for deep learning. m<sup>6</sup>A sites were annotated according to presence or absence of either ECT2 or ALBA4 and a convolutional neural network was trained which takes sequences surrounding m<sup>6</sup>A as input and predicts the probability of ECT2 and ALBA4 binding.

(B) Boxplots showing predicted binding probabilities from the network, split according to protein and binding status.

(C) Scatter plot of the predicted ALBA4 binding probabilities against the ECT2 binding probabilities from the network. Counts depict the density of sites.

(D) Output-specific enrichment scores for *de novo* motifs learned by convolutional neural network, calculated using a generalized linear model for predicting motif presence from predicted presence of ECT2 and ALBA4 at m<sup>6</sup>A-centered sequences using model. Colored circles indicate interesting motifs determined as specific to ALBA4 (yellow), ECT2 (blue) or both (green).

(E) Enrichment of motif sets indicated in D around ALBA4 iCLIP2, ECT2 iCLIP and Nanopore-derived m<sup>6</sup>A sites <sup>54</sup>. Grey shows location-matched background positions.



**Figure 7. ALBA proteins are required for ECT2 target mRNA binding and biological function.**

(A) Results of an *in vivo* UV crosslinking-ECT2-mCherry immunoprecipitation experiment, followed by PNK-labeling of precipitated RNA with  $\gamma^{32}\text{P}$ -ATP. Top panel, autoradiogram of  $^{32}\text{P}$ -radiolabelled RNA-protein complexes purified from plants expressing *ECT2<sup>WT</sup>-mCherry* in the indicated genetic backgrounds. Molecular weight marker positions and the location of the verified ECT2-mCherry-RNA complexes<sup>28</sup> are indicated. The presence of several bands of unequal intensity is due to partial proteolysis of the ECT2 IDR during immunoprecipitation, and differential labelling efficiency of the different RNPs<sup>28</sup>. Middle and bottom panels, mCherry immunoblots of the immunoprecipitated (middle) and total fractions (input, bottom). Samples were pools of 3 independent lines for each genotype.

(B) Scatter plot showing the editing proportions of ECT2-ADAR-catalyzed editing sites between Col-0 WT and *alba1245*. Green, sites whose change in editing proportions is statistically significant and that are located in dual-bound mRNAs. Yellow, sites whose change in editing proportions is statistically significant but that are located in mRNAs not targeted by both ECT2 and ALBA4 (non-dual bound). Light green/light yellow, candidate sites whose change in editing proportions is not statistically significant.

(C) Scatter plot showing the editing proportions of ALBA2-ADAR-catalyzed editing sites between Col-0 WT and *ect2-3 ect3-2 ect4-2* (*Gte234*). Color scheme as in (B).

(D) Quantification of the tendency of sites differentially edited by ECT2-ADAR between Col-0 and *alba1245* to be less highly edited in *alba1245*. Left, histogram showing the fraction that sites in dual-bound targets comprise of either less highly edited sites in *alba1245* (down) or more highly edited sites in *alba1245* (up). The histogram also illustrates the fraction of editing sites in dual-bound targets relative to all editing sites for comparison. Right, boxplot showing the median  $\log_2$  differential editing proportions for editing sites either in dual-bound mRNA targets (true) or in other mRNAs (false). Asterisks indicate p-values from 2-sample t-test: \*\*\*p < 0.001.

(E) Quantification of the tendency of sites differentially edited by ALBA2-ADAR between Col-0 and *Gte234* to be less highly edited in *Gte234*. Analogous to the analyses presented in (D) for ECT2-ADAR in Col-0 vs *alba1245*. Asterisks indicate p-values from 2-sample t-test: \*\*\*p < 0.001.

(F) Representative photographs of seedlings and rosettes of the indicated genotypes at three different time points given in days after germination (DAG) in soil.

(G) Trichome branching sorted by number of spikes in the indicated genotypes. Branches were counted on at least 150 trichomes on each of at least 6 plants for each genotype (n = 1,000). Data were fitted to a proportional odds model in R for statistical analyses (see Methods). Asterisks indicate Bonferroni-corrected p-values: \*\*\*p < 0.001. Black bar indicates no significant difference.