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1 Abstract

2 Multiple Myeloma (MM) is a plasma cell cancer that occurs in the bone marrow. A leading
3 treatment for MM is the monoclonal antibody Daratumumab, targeting the CD38 receptor,
4 which is highly overexpressed in myeloma cells. In this work we model drug evasion via loss of
5 CD38 expression, which is a proposed mechanism of resistance to Daratumumab treatment.
6 We develop an ODE model that includes drug evasion via two mechanisms: a direct effect in
7 which CD38 expression is lost without cell death in response to Daratumumab, and an indirect
8 effect in which CD38 expression switches on and off in the cancer cells; myeloma cells that do
9 not express CD38 have lower fitness but are shielded from the drug action. The model also
10 incorporates competition with healthy cells, death of healthy cells due to off-target drug effects,
1 and a Michaelis-Menten type immune response. Using optimal control theory, we study the
12 effect of the drug evasion mechanisms and the off-target drug effect on the optimal treatment
13 regime. We identify a general increase in treatment duration and costs, with varying patterns
14 of response for the different controlling parameters. Several distinct optimal treatment regimes
15 are identified within the parameter space.
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16 Short title: Optimal control of Multiple Myeloma

v Author summary

18 In this work we investigate a model of Multiple Myeloma, a cancer of the bone marrow, and
19 its treatment with the drug Daratumumab. The model incorporates proposed mechanisms by
2 which the cancer evades Daratumumab by reduced expression of the receptor CD38, which is the
a1 drug target and normally abundent in the cancer cells. The model includes an off-target effect,
» meaning that the drug treatment destroys some healthy cells alongside the targeted cancer cells.
23 Both mechanisms can reasonably be expected to reduce the efficacy of the drug. We investigate
2 the model using optimal control methods, which are used to find the drug dose over time which
s best balances the financial and health costs of treatment against cancer persistence, according to a
»  specified cost function. We show that this drug resistence and off-target effect prolongs the optimal
2 treatment and increase the burden of both the disease and drug. We analyse the distinct effects
s of the controlling parameters on each of these costs factors as well as the time course, and identify
2 conditions under which extended treatment is required, with either intermittant treatment or a

s steady reduced dose. Extended treatment may be indefinite or for a fixed period.

+ 1 Introduction

» Myeloma is a plasma cell cancer that occurs in the bone marrow. Myeloma cells typically form
13 masses of cancerous tissue, and the disease is known as multiple myeloma (MM) when more than
s one mass is present. Myeloma can crowd out healthy marrow tissue, leading to a range of potential
s deficiencies, and invade and weaken bone. It may also cause damage via production of abnormal
s antibodies. A number of treatment options are available, although a complete cure has proved
w elusive [1], [2].

38 In general, myeloma cells are marked by very high CD38 expression, motivating the use of the
» monoclonal antibody Daratumumab (Dara), which effectively targets myeloma via several mecha-
w0 nisms [3]. However, CD38 is also expressed in a wide range of cell types, resulting in important and
a complex off-target effects [4]. Daratumumab is a leading treatment for MM, commonly sold under

« the brand name Darzalez. We note that several other drugs have been developed to treat myeloma,
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s such as Elotuzumab [5], [6] and Lenalidomide [7], which can be used together in combination with
w  the adjunct drug Dexamethasone as a combination treatment for refactory disease [8]. However,
s in this work we consider treatment using Dara only.

46 Myeloma develops tolerance to Daratumumab. The dynamics are not fully understood, al-
4 though various mechanisms have been proposed and combination therapies and recurrent treat-
s ment have had clinical success [9]. In this work we focus on one known tolerance mechanism, in
s which myeloma cells evade Daratumumab via loss of CD38 expression. This may occur passively
so due to differential response to Dara treatment, leading to a relative increase in myeloma cells with
s low CD38 expression. There may also be a direct loss of expression (without cell death) in response
2 to drug exposure, as has been shown to occur in red blood cells [10].

53 Using optimal control theory, we investigate how these drug escape and off-target effects impact
s« on effective treatment protocols for Dara that balance the cost of treatment with the burden of
55 disease. We find in general that these effects support a more prolonged treatment regime and
ss drive higher overall costs, and we further investigate the connection between the specific dynamics
sz and the total cost and duration of treatment. Notably, we find that with a linear cost function,
ss the optimal drug dosage over time can have distinct functional forms depending on parameter
so values. An initial period of maximal dosage may be followed by lower level treatment at constant
o or reducing dose, possibly after a pause. In certain cases where a more prolonged or indefinite
s treatment is required, we find that a regular intermittant treatment regime is optimal. This may
&2 help to inform maintainance Dara treatment, which has been shown to be effective in some cases

63 [11].

« 1.1 Dynamical systems and optimal control theory

s Dynamical systems are a class of mathematical model used to study complex time varying systems.
e The state of a system at any time is represented by one or more numerical state variables, and
&7 the rate of change of each state variable at a given time is taken to be a function of itself and the
¢ other state variables. These functions typically form a system of ordinary differential equations

oo (ODEs), which can be solved or analysed using a range of numerical and analytical techniques,
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70 in order to provide insight into the modelled system. First applied by Poincaré to the study of
7 the three body problem in classical mechanics [12], dynamical systems theory has been developed
2 and applied extensively in a wide range of areas. Biological applications were pioneered with the
72 logistic model of Verhulst [13], [14], representing exponential population increase constrained by
7 a maximum carrying capacity. The famous Lotka—Volterra predator-prey model was first used to
75 study interacting chemical species [15], then later applied to an ecological model, showing that the
7 interactions between a prey species and a predator species could produce a continuing oscillation
7 of populations over time [16].

78 Cancer biology typically involves complex interactions of cancer cells with their microenviron-
7 ment and with a range of immune and other cell types, and a range of dynamical systems models
s have been developed to help understand this clinically critical biology [17]. State variables represent
s populations of cells and other relevant species. A number of papers (e.g. [18], [19]) have modelled
&2 cancer-immune interactions through a predator-prey framing, with cancer cells as the prey and
ss  cytotoxic T-cells, a type of white blood cell which destroy diseased cells, acting as the predator.
s« Modelling of this interaction is of particular interest due to the introduction of CAR T-cell therapy
s [20], which relies on modified T-cells with an increased capacity to target cancer. A limitation of
s the predator-prey analogy is that consumption of prey strengthens the predator, whereas in cancer
&7 the first-order effect of immune cell “predation” weakens the immune cell population. However,
s positive feedback may be produced via various second order effects. The appropriate approaches
g for modelling these complex interactions is the subject of active research [21], [22].

% Optimal control theory is used to study external interventions in a dynamical system. The
a  control is an exogenous variable representing an external force. It is incorporated into the state
e equations, so that it may influence the rate of change of the state variables. The general form of

s the ODE system is then

dx

dt = f(x,u), (1)

e where x(t) is the vector of state variables and u(t) is the control. A cost function is defined based

s on the values of the control and the state variables over a specified time window [to,ty], and the
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o optimal control is chosen to minimise this cost function for a given initial state:

x(to) = Xo. (2)

o7 Since the control may vary freely over the time window, determining the optimal control is a
¢ challenging problem in general. Specialised numerical methods are required, with mathematical
o and numerical constraints that restrict the form of the cost function. Our approach is based on

1w Pontryagin’s maximum principle [23]. The cost function must have the form

ty
J= ox(ty) + L(t,x(t),u(t)) dt. (3)
S~—— tg S———
end state cost ongoing cost
101 Cost functions in which £ has a linear dependancy on u require bounds to be imposed on « in

12 order to give a well defined solution. The optimal control will generally take the form of a step
w3 function, equal to either the lower or upper bound at each time. The bounds typically correspond
s to “off” and “on”, and this is known as a bang-bang control. If L is a convex function of u the
105 problem is more tractable, generally giving a smoothly varying optimal control without the need
s to impose bounds. This is known as a continuous control. We will consider cost functions of both
w7 types (see Section 1.3).

108 Optimal control theory has been applied to clinical models to find theoretically optimal treat-
w0 ment regimes, with controls representing drug dose levels over time and cost functions designed
no  to balance the monetary and health cost of treatment against the burden of disease. Important
m  recent work includes applications to cancer immunotherapy, including generalised Lotka-Volterra
2 predator-prey models [24] and models of combination therapy [25].

13 In this work we take a different approach, incorporating a simple immune response and placing

us  focus instead on the drug escape mechanism and off-target effects discussed above.

s 1.2 Model of myeloma and Daratumumab

us  Crowell et. al. proposed a dynamical system model of blood cancer (ASL) incorporating a com-
w7 petition between healthy and cancerous cells for space in the marrow, with proliferation of both
us populations restricted as the total cell population approaches the carrying capacity [26]. The

o model features the migration of healthy cells into the compartment from a separate stem cell
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Figure 1: Model of multiple myeloma (MM) treatment with Daratumumab (control, u), including
an immune response (red arrows) and drug escape mechanisms via loss of CD38 expression. Three
drug actions are included (green arrows): cell mortality and loss of CD38 expression in the CD38+

cancer cells, and off-target cell mortality in healthy cells within the compartment.

120 compartment, and migration of both healthy and cancerous cells into the blood system.

121 Sharp et al. [27] applied an optimal control methodology to a modified version of the Crowell
12 model, with the addition of an immune response to cancer. The immune response was represented
123 using a Michaelis-Menten term, which models a bounded immune capacity that initially scales
12« with the cancer level but has a maximum capacity to remove cancer calls; this has the effect, for
125 appropriate parameter choices, of allowing stable steady states with and without cancer present.
126 This modification allows finite term treatment to result in a permanent control of the cancer; the
127 authors found that this property was required for convergence of the optimal control algorithm.
s These works provide a calibrated model that supports the expected dynamics of cancer and cancer
120 treatment, as well as a proven methodology for obtaining continuous and bang-bang controls.

130 We develop a dynamical systems model of myeloma that adapts the core features of the Sharp
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. model. Our model also contains healthy and cancerous populations of marrow cells that compete
12 for space, while the downsteam blood cell populations are dropped, as they do not affect the marrow
133 cells or the cost function. The upsteam stem cell population is modelled implicitly as an influx of
1 healthy cells into the marrow (rate 54) under the assumption that the stem cell population is at
135 steady state; this causes only a transitory divergence from the Sharp model.

136 In order to incorporate the core drug escape mechanism, we replace the cancer population with
1 CD38+ and CD38- cancer cell subpopulations P and N, of which only P is susceptible to the drug.
138 These represent alternate states of a single population, so it is assumed that cells move between
3o P and N at rates dp and dy. We will refer to this mechanism as expression switching. Given
uo the general overexpression of C'D38 in myeloma, we assume that dy = 10dp, and that fitness is
1 significantly lower in N. We also allow for both direct drug-induced loss of CD38 expression (dp,,),
w2 and an off-target effect modelled by drug induced death of healthy cells (p4,). Note that off-target
w3 drug effects can be modelled implicitly in the cost function, but this explicit approach accounts
us for interaction with population dynamics.

145 The complete model is as follows, where the three state variables x = (A, P, N) are each

us expresed as a proportion of the marrow carrying capacity:

dA

% = ﬂA+pAA(1—A—N—P)—[LAA—[LAuUA (4)

dP aP

— = Pl1—A—-N-P)—96pP+oyN —bépyuP — upP — ppyuP — ——— (5

o ppP( ) —0pP + N Pull ©p KPPyl THPIN (5)

dN alN

— = N(1—A—-—N-P)+0pP—0NN +dpyuP — uyyN — —— 6

i pNIN( )+0p NN +6p,uP — pn STPiN (6)
147 Here the control u > 0 represents the dosage rate of Daratumumab. The state variables must

us also be non-negative to be physically realisable. The model parameters, and the default values

e used, are listed below.
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Description Parameter Value
Influx of healthy cells Ba 0.1008
Proliferation rate of A (healthy cells) PA 0.43
Rate of death or other exit for A A 0.44
Off-target mortality effect on A per unit of Dara (control) pay 0.1
Proliferation rate of P (CD38+ myeloma) pp 0.28
Rate of death or other exit for P wp 0.048

150 Additional death rate of P per unit of Dara (control) Py 1
Proliferation rate of N (CD38- myeloma) PN 0.15
Rate of death or other exit for N N 0.06
Rate of loss in CD38 expression in P op 0.003
Rate of gain in CD38 expression in N ON 0.03
Increased loss in CD38 expression in P per unit of Dara Opy 0.2
Immune control rate o 0.015
Immune control half saturation y 0.1

151 Where possible, parameter values were adapted from the Sharp model, which were selected

12 to produce balanced dynamics supporting both healthy and cancerous states and the capacity
153 for effective drug control. Proliferation and exit rates are set so that the CD38+ myeloma cell
¢ population P is slightly more fit than the cancer population in the Sharp model, and the CD38-
155 population N substantially less fit. The effect of a unit of control on the mortality rate of CD38+
156 cancer cells, pp,, is fixed at one; this defines the scale for the control u. Since CD38 is typically
157 highly overexpressed in myeloma, it can be assumed that p 4, is substantially lower than up, = 1;
155, 'we use 0.1 by default, although higher values are also considered. We also choose a conservative
150 initial value of dp,, = 0.2, implying the direct loss of expression from Dara is a smaller effect than
1o mortality, but with higher values considered. Note that in our model, as in the Sharp and Crowell

11 models, the unit of time is abstract and parameters are not calibrated to real data.
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w 1.3 Cost functions and control types

15 An optimal control can only be calculated in reference to a cost function. This function encodes
1« the health cost of cancer presence, as well as the cost of the drug dose over time — both its direct
s financial cost and health effects due to its side effects. However, the most appropriate mapping
166 between these factors and cost is not obvious, including the correct weighting between cancer and
17 drug dose.

168 Since results will depend on the cost function chosen, we consider two optimal control cost
10 functions, corresponding to a continuous and a bang-bang control, to provide insight into the
o influence of the cost assumptions and the robustness of any conclusions. In each case the cost
m function takes the form of (3) with ¢(x(¢;)) = 0; removing the dependence on the final state is
2 generally preferred as it provides more tractable computations. The health cost due to cancer is

13 assumed to depend on the total cancer population, P + N.

Continuous control: L=u?+(P+N)>~ (7)
Bang—bang control: L=u+ P+ N, where 0 <u < 1. (8)
174 While it is normally expected that this second cost function will result in convergence to a

s control solution which is equal to either u(t) = 0 or u(t) = 1 for each value of ¢, the iterative
ws update algorithm used means that solutions of this form are not guaranteed. Valid alternative
177 forms were found in some cases, and a modifed form of the iterative update algorithm was used to
s improve convergence in these cases; see Methods 4.3 for details.

179 Note that the cost function cannot take into account the system state outside the selected time
180 window, such as a cancer recurrence, and this must be taken into account in the interpretation of
1 results. For example, the algorithm can return a null optimal control, with w(t) = 0 for all ¢, but

12 this may be due to the time window being too short.
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2 Results

2.1 Drug escape mechanism produces expected resistance to control
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Figure 2: Model validation and comparison with Sharp model. Selected numerical simulations
using the fourth order Runge-Kutta method and time step 0.001. The full model developed in this
paper (e-h) is compared with a simplified version designed to replicate the Sharp model (Null-N
model, a-d), in which the CD38- cancer population is suppressed. In a,be,f the initial state is
P =0.1, A= N = 0 and no control is applied; in a,e we also suppress the immune response, as
in Sharp Figure 2. In c,d,g,h the simulation starts at steady state and a prespecified control is

applied.

185 Our model extends the Sharp model [27], which we use as a negative control to validate the

185 drug escape and off-target mortality effects. We can reproduce the core features of the Sharp

model by suppressing the drug resistant CD38- cancer cell population (N) and the off-target drug

187

effect. We verified this by defining a Null-N model with the parameter changes N(0) =0, ép =0,

188

=0, py =0, pp = 0.27, pup = 0.05. Simulations using this model are shown in Fig. 2 a-d.

189 5pu

1o Without treatment, the healthy and cancerous cells reach a balance. The presense of the immune

10
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11 response shifts this balance against the cancer without achieving elimination. But if the treatment
12 can reduce the cancer level sufficiently, the immune response will prevent recurrence.

103 In Fig. 2 e-h we show the corresponding simulations using our full model. As intended, in
e the absense of the drug control the CD38- population plays only a marginal role; this can be
15 seen in ef. In the presense of the drug control, the role of this population grows and has the
s effect of diminishing drug efficacy via the escape mechanism. Panels g,h suggest that the drug
17 escape mechanism plays a larger role when the control has higher intensity and shorter duration;
18 we examine this issue more systematically below through the lens of optimal control. For the
19 parameters used here, where the drug’s effect on healthy cells is only one tenth of its effect on

200 CD38+ cells, the off-target drug effect is extremely minor.

o 2.2 Drug escape motivates prolonged treatment

22 Using the continuous and bang-bang optimal controls, we can evaluate the overall effect of the
203 model modifications under the default parameters in terms of the cost to treat and optimal pattern
20 of treatment (Fig. 3). Note that cost is not comparable between the two types of optimal control.
2s  In both cases, the total control and overall cost is increased relative to the Null-N control, and the
206 duration of treatment is extended. For both control types a high initial drug dose in the full model
27 rapidly reduces overall cancer levels, but at the cost of much higher levels of the drug-immune
28  CD38- population, and recovery of the healthy cell population is inhibited by the off-target effect
200 while the control dose is high. The control is then continued at a lower level that balances these
a0 factors, until control of the cancer is achieved.

on The increases in cost, total control, and duration of treatment relative to the Null-N control
a2 are all much smaller for the continuous control than for the bang-bang control. This can likely be
a3 attributed to the fact that prolonged, low level treatment is favoured by the quadratic function (7),
24 incurring a low cost. This explains the tapered shape of the continuous control solutions for the
25 Null-N model, and with the addition of the new mechanisms the required prolongation of treatment
26 is small and achieved at low cost. However, the quadratic cost will not reflect the financial cost

a7 of drug supply or treatment, and the very low cost associated with prolonged low level treatment

11


https://doi.org/10.1101/2024.06.06.597698
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.06.597698; this version posted June 9, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

Null-N model Full model
5 ! '
5 Cost = 3.64 Cost = 5.13
c 0.8 Total U = 2.65 0.8 Total U = 3.14
8 Initial U = 2.65 Initial U = 2.09
Total P = 0.99 Total P = 1.17
g %0'6 Total N =0 2 0-6 Total N = 0.82
& & | — &
a 0.4 0.4 ﬁ__
1 -
(@)]
‘% 0.2 0.2
o — A
0 0!
0 20 40 0 20 40 - P
Time Time
1 1 N
o Cost = 0.72 Cost = 0.74 _U
=)
c 0.8 Total u?=036 0.8 Total U2 = 0.42
8 l:JZ <(tt<<250))= %2376 Uz2 (t<5) = 0.30
=0. U2 (t<20) = 0.41
n 806 Total P(P+N) = 0.36 ) 0.6 Total P(P+N) = 0.29
3 ® Total N(P+N) = 0 I Total N(P+N) = 0.03
o n 0
3 0.4 0.4
C
S
c 0.2 0.2
@]
@)
0 ' 0
0 20 40 0 20 40
Time Time

Figure 3: Optimal controls for the full model developed in this paper (Full model) and the simplified
version that replicates the Sharp model (Null-N). In each case we give the overall cost function
value ((7) or (8)) and its components (control cost and cancer burden). We also note the total
control applied in the initial period when the control is at its maximum level. For the continuous
control cost function, the total cancer cost ((P + N)?) is allocated proportionately between P and
N for the quoted numbers. The drug related cost incurred in the first 5 and 20 time units is also
given as an indication of relative control duration. Optimal controls were found using a time period

of length 200, plots and numerical results are shown for the initial 50.

218 may not be realistic.

219 In contrast, the linear cost function used in the bang-bang control does not discount the cost
20 of continuing lower level treatment. This cost function typically gives optimal control levels at
21 either the maximum level or zero; in the Sharp model all solutions consisted of an initial period at
22 maximum level followed by an abrupt and final end of treatment. The fact that in our model the

223 bang-bang optimal control includes a period of intermediate level control provides clear support

12
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13

The immune response, controlled by parameter «, plays an important role in treatment. In
Fig. 4 we show the affect of varying this parameter on the optimal control. We see that a reduced

immune response increases the cost to treat primarily through prolongation of the control; for the
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29 bang-bang control, the initial period of treatment is almost invariant. As the immune response
20 approaches zero, there is a point at which final control of the cancer becomes impossible, and the
2 optimal control transitions to an initial high dose treatment followed by an indefinite maintainance
22 treatment. At this stage the burden of CD38- cancer becomes significant; we can also project
213 ongoing costs from the trendline.

23 We are most interested in model parameters that allow both a persistent cancer state and the
25 possibility of permanent control via drug treatment. We show in Section 4.4 that this requires
26 the Michaelis-Menten immune response; a linear immune response can be regarded as a simple
»7  modification of the exit rate parameters and cannot achieve the same effect. However, cases
238 in which the cancer must be managed through ongoing treatment are also of interest, despite
29 posing some difficulty in interpretation due to the finite time window used in the optimal control
20  methodology. From a modelling perspective, it is significant that when the immune response is not
. sufficient to allow permanent control of the cancer, our algorithm is able to find an optimal steady
22 state treatment regime, as shown in Fig. 4 when a = 0. This can be attributed to the additional
23 mechanisms in our model, as it is not the case for the Null-N model. If we consider the Null-N
24 model with a constant level of control applied so that P approaches 0, then A will approach a
us  steady state Ay and we have Cfi—f ~ P(pp(1—Ap) — pup — ppyu), giving an asyptotically exponential
as  solution for P. Cessation of the control will lead to exponential increase until P is again non-
27 mnegligible. This implicitly models cancer at arbitrarily low levels, potentially less than a single
us  cell, and also results in convergence failure of the optimal control, due to extreme insensitivity to
29 control timing while P is at a negligible level. Thus we see that our modified model provides an

0 improvement in this case both computationally and as a biologically realistic system.

» 2.4 Drug escape parameters have distinct and interacting effects on

252 model dynamics

3 The drug escape mechanism we model consists of four added features: an alternative CD38- cancer
e state with reduced fitness; switching of cancer cells between the CD38+ and CD38- states; a

s response to treatment in the form of loss of CD38 expression; and mortality of CD38+ but not

14
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Figure 5: Effect of expression switching of CD38 expression on optimal treatment: optimal control

solutions for range of dp and d values (original values §p = 0.003,0y = 0.03).

6 CD38- cancer cells in response to the control. Here we consider the sensitivity of the model and
»s7 - the optimal control solutions to the parameters controlling these features. The mortality effect is
s kept fixed with pp, = 1 while we consider variations in the other three features, observing distinct

9 Tresponses in each case.

15


https://doi.org/10.1101/2024.06.06.597698
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.06.597698; this version posted June 9, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

pN=0'28 pN=0'15 pN=0'05
Uy=0.048 Ly=0.06 uy=0.07

Bang-bang control
< W

0.2 0.2 0.25
0" 0:‘ 0 A
O R R SRS O R & RS O XSRS P
Time Time Time N
—_ 1 1 1
= —u
)
= 0.8 0.8 0.8
8
v 0.6 0.6
0 = =]
3 o &
g 0.4 0.4
£
=} 0.2 0.2
c
o S ——
U OL " n 0- 4 =
O D R wQQ O D RO P &0 O R RS \9@
Time Time Time

(a) Optimal bang-bang and continuous control solutions, selected values of py and

HN-
Bang-bang control Continuous control
20 2.5
—o—Cost —e—Cost
——P ——P(P+N)
N 5 N(P+N)
8 15 ——U - 8 —.—2
,\_/. ~e--Initial U v\—/! s 'UZ, Time<20
g g 1.5 ®-U<, Time<5
F 10f =
8 8
= ©
5
0 j
(0.28, (0.2, (0.15, (0.1, (0.05, (0.28, (0.2, (0.15, (0.1, (0.05,
0.048) 0.055) 0.06) 0.065) 0.07) 0.048) 0.055) 0.06) 0.065) 0.07)

(PnHN) (PnHN)

(b) Total costs and components up to Time=100.

Figure 6: Effect of CD38- myeloma fitness on optimal treatment: optimal control solutions for range
of py and p values. The x axis represents fitness of the CD38- cancer cells, with fitness decreasing
to the right, and the leftmost value representing fitness equal to the CD38+ cells (original value

pn = 0.15 and py = 0.06).

16


https://doi.org/10.1101/2024.06.06.597698
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.06.597698; this version posted June 9, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

6pu=0 6pu=0.2 5Pu=2

Bang-bang control

0.2 0.2 0.2
0 0‘:\ o | A
R SR RO SIS SR DR S SR P
Time Time Time N
—_ 1 1 1
e —u
)
c 0.8 0.8 0.8
8
v 0.6 0.6 v 0.6
[7)] - - +
o
S 0.4 0.4 0.4
£
=] 0.2, 0.2 0.2
c
o
o 0= 0 0
O D R \90 O O R ’&0 O N R PP \/Qc
Time Time Time

(a) Optimal bang-bang and continuous control solutions, selected values of dpy.

Bang-bang control Continuous control
10
—o—Cost
—e—PpP
N
o 8 u o 0.
= we-Initial U S
v v
o 6 006
£ E
= =
E 4 E 0.
'9 r,..——O—o—_.\\ |9
.
2b o 0.2
I S o
Oo N ¥ © — o~
o O o
6Pu

(b) Total costs and components up to Time=100.

Figure 7: Effect of drug-induced loss of CD38 expression on optimal treatment: optimal control

solutions for range of dp, values (original value dp,, = 0.2).

260 For the expression switching mechanism, in which cancer cells lose or gain CD38 expression,
1 we retain d/dp = 10 to reflect the typical dominance of the CD38+ state, but consider large
22 coordinated changes in both values (Fig. 5). There is minimal effect on the optimal continuous

x3 control. For the bang-bang control, higher rates of switching lead to a prolonged optimal control,
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»s  with a control that is higher in aggregate despite a shorter initial period at maximum intensity.
»%s The temporal pattern of the control after the initial period also changes: at the highest level
xs6  Of expression switching there is a much stronger reduction over time in the control level. The
%7 aggregate cancer level remains relatively constant, although CD38 expression increases.

268 The fitness penalty from loss of CD38 expression in cancer cells is represented by a reduction
x%0 in proliferation and increase in mortality. Plausible variations in the size of this penalty have little
a0 effect on outcomes except for a modest reduction in treatment duration at higher fitness penalty
o (Fig. 6). However, if the fitness penalty is removed entirely (left side) there is a large increase in
a2 cost driven by extended control and persistent CD38- cancer cells. Note that we do not attempt
a3 to disentagle the effects of changes in proliferation and mortality.

274 Finally, the most complex response is elicited from variation in the rate of drug-induced loss
o5 of CD38 expression (Fig. 7). Optimal control solutions appear to show competing effects from
ars  this loss of CD38 expression: the drug control induces a CD38- subpopulation that persists under
o7 treatment, imposing a health burden and requiring more prolonged treatment (particularly for the
2 bang-bang control). However, the lower fitness of this subpopulation results in a relatively stable
a9 or reduced quantity of control required in aggregate.

280 The most striking feature we observe from the optimal control analysis of our model is the
s prolongation of treatment at lower intensity in the bang-bang control, which is significant precisely
22 because it is not typically present in bang-bang controls. Note that while a modified method was
23 required to obtain these solutions, these solutions are not an artefact of the method, as detailed
2a  in Methods 4.3. We see that the existence of this phenomenon requires both the induced loss of

s CD38 expression and expression switching between CD38+ and CD38- states.

x» 2.5 Elevated off-target drug effect produces distinct form of bang-bang

287 control

s In addition to modelling drug avoidance via loss of CD38 expression, our model includes an off-
20 target effect, in which the control causes some mortality in healthy cells. While the harm caused

20 by drug side-effects can be modelled through the cost function, including this feature explicitly

18
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Figure 8: Optimal control solutions for range of 4, values (original value g4, = 0.1).

allows us to examine the effects on the population dynamics, and particularly the interaction with

the drug escape mechanism. Since myeloma cells notably over-express the drug target CD38, we

expect realistic values of the off-target mortality parameter pa, to be much less than 1. At this

level the off-target effect appears to have limited influence. When we consider higher values (Fig.

8) we see a general pattern of slightly increased costs (both drug and disease burden). However,
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206 at pa, = 1 we see a striking change in the form of the optimal bang-bang control. Instead of a
27 period of continuing control at reduced intensity, the initial period of maximum intensity control is
28 followed by a complete cessation of treatment, then a second shorter period of maximum intensity
200 treatment. During the break in treatment the healthy cell population recovers while the drug
s0  resistant CD38- population declines, but the CD38+ cancer subpopulation also recovers from low
sn levels. The followup treatment prevents a cancer resurgence, reducing levels to where they can be

s2  controlled by the immune response.

3

S

s 2.6 Optimal bang bang controls may be cyclic or discontinuous
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Figure 9: Optimal bang-bang control solutions for g4, = 0.5, dp = 0.0003, o5y = 0.003, o =

0,0.01,0.015, §p, = 0.2, 2.

304 The bang-bang optimal control solution with w4, = 1 raises the question of whether the solution
s may take other forms depending on the choice of parameters, particularly cyclic or discontinuous
w6 control solutions. The value p4,, = 1 seems biologically implausible, so we performed a systematic
sr  search for alternate forms of the optimal bang-bang control using a somewhat more reasonable

w8 value pa, = 0.5. The rate of expression switching appeared to influence the shape of the control,
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Figure 10: Optimal bang-bang control solutions with either p = d5 = 0 or dp,, = 0; in all cases

tay, = 0.5 and a = 0.

w0 s0 we considered both 10-fold increase and 10-fold decrease in these values (maintaining a fixed
a0 ratio between them). Drug-induced loss of CD38 expression also plays a key role, so we considered
au  the effect of a 10-fold increase in this rate (dp,). In addition, we considered removal or reduction
sz in the immune intensity (o = 0,0.01 instead of a = 0.015).

313 We see a remarkable solution form in the case of reduced expression switching, with reduced
se  or zero immune response (Fig. 9, top row). The optimal control takes the form of short periods of
ais - control at maximum intensity, separated by longer periods of zero control. The initial treatment
ais  period is longer, and is also followed by a longer break; the treatment periods then follow a regular
a7 pattern. When the immune response is removed (o = 0), permanent control of the cancer is not
ais possible, and the solution tends towards a repeating cyclic pattern. When a = 0.01 we see a
s modifed version of this pattern which terminates when suppression by the immune response has
x0  been established. Increasing the rate of drug-induced loss of CD38 expression appears to suppress
a1 this cyclic solution (Fig. 9, bottom row), however we retain a period of zero control following the

;22 initial period of maximum-intensity control. Note that the cases with unchanged or increased rates
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23 of expression switching (§p and dn) did not give any cyclic or discontinuous solutions (data not
2« shown).

35 Since we see the cyclic solutions (Fig. 9) at the lowest values of dp, oy and dp, that were
;26 considered in this experiment, it is natural to ask whether the complete removal of one or both of
37 these features would also give optimal control solutions with a cyclic form. We retain g4, = 0.5
»s and set o = 0, consistent with the clearest examples of cyclic solutions seen. We observe (Fig. 10)
»9  that the cyclic solution form appears to be consistent with dp,, = 0, but not with dp = dy = 0.
10 We have used a high value of the off-target mortality parameter p4, under the assumption that
s this is required to produce the cyclic solution form. We check this assumption by setting p 4, = 0
s in two cases with the clearest observed cyclic behaviour (Fig. 11), leading to a loss of the cyclic
;3 form.

33 While this analysis does not amount to a full exploration of the parameter space, our investi-
35 gation suggests that the cyclic form requires a high value of p 4., a low value of «, and a low but

336 non-zero value of o and dp.

w 3 Discussion

138 We have presented a model of myeloma treatment using the monoclonal antibody Daratumumab,
;9 with which we investigated the impact of a drug escape mechanism and off-target cell mortality

a0 using optimal control theory. In our model myeloma cells evade the effect of Daratumumab via
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s loss of CD38 expression, albeit at the cost of reduced fitness. This loss of expression may result
s from either differential mortality or as a direct result of drug exposure. The proposed mechanisms
sz generally resulted in increased overall costs and extended duration of treatment. These mechanisms
s are modelled with several rate parameters, and in most cases the relationship between the rate
us  parameters and outcomes such as total drug dose, treatment duration and cancer persistence were
us  found to be at least directionally consistent between the two cost functions considered, suggesting
s that the identified trends are robust. Exceptions included the rate of expression switching (Fig. 6),
us  which had very little effect on the continuous control, and the rate of drug-induced loss of CD38
a0 expression, which had a somewhat inconsistent effect (Fig. 7). The forms of the optimal control
0 solution over time presented a more complex situation, with greater differences between the two
s cost functions over a range of parameters.

352 The Null-N model, which we use as a negative control that reproduces the core Sharp model,
13 gives optimal control solutions of two forms, depending on the cost function. The linear cost
4 function with bounded control values gives solutions of the expected “bang-bang” form, in which
5 the control starts at the maximum level and then at some time point permanently switches to
6 zero. Intuitively, there is no advantage to delay in treatment, and so the total drug dose necessary
37 to contain the cancer is administered in the minimal possible time. The quadratic cost function
s gives continuous solutions which begin at a high level then drop continuously, a tradeoff between
0 removing cancer as quickly as possible and the cost advantage of treatment at lower dose.

360 When we included the drug escape and off-target effect mechanisms in the model, we found
s that for many parameter choices the bang-bang solution features a period of lower-intensity or
w2 intermittent treatment subsequent to the initial period of maximum level control. We can un-
3 derstand this as a period in which the imperative to treat the cancer must be balanced against
s the need to allow time for the CD38 expression level in the myeloma cells to recover, so that the
s drug effectiveness is restored. Recovery of the healthy cell population may also be a factor in this
6 pattern.

367 The use of the quadratic cost function is motivated by the observation that the health burden of

s both disease and drug treatment will potentially increase at a super-linear rate; double the amount
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0 of drug or cancer causes more than twice the harm. However, this cost function also promotes
s extended treatment at very low dose, and the resulting tapering off of treatment appears to partly
sn  obscure the effect of the drug escape mechanism; the effect of our model modification is lower
sz when using the quadratic cost function, particularly in terms of the prolongation of treatment.
sz This tapering effect should be interpreted with appropriate caution in real world applications:
s below some level, the quadratic cost function will not fairly reflect the fixed financial cost of
ss  Daratumumab, or the practicalities of drug administration by diffusion. In contrast, for “bang-
s bang” control solutions using the linear cost function any period of ongoing control at a reduced
sz level can be reasonably attributed to the biological mechanisms that we model.

378 Bang-bang controls for the full model take a range of forms, depending on the parameter values.
s These include the simple form with an initial period of maximum control and then no subsequent
;0 treatment. Higher levels of CD38 expression switching (6p and dy) and drug-induced loss of CD38
s expression (dp,) produce controls with an intermediate period of ongoing control at a reduced
sz level. Lower drug-induced loss of expression and lower but non-zero levels of expression switching,
33 together with an elevated off-target effect (114.), tend to produce periodic control solutions with
s intermittant control at the maximum level. Both of these more complex forms are promoted by
s a reduced immune response. Insufficient immune response results in optimal control solutions
s in which indefinite continuation of treatment is required, either intermittant, or continuous at a
sr - reduced level.

388 We briefly note some limitations of this study. Although the identification of distinct optimal
s control forms depending on the various rate parameters is of considerable interest, this is principally
w0 theoretical. It demonstrates that real world optimal treatment regimes may be contingent on such
s factors, but the mechanisms discussed in [9], for example, are unquantified; the natural variation
32 of CD38 expression between myeloma cells, and the rate at which this changes naturally and in
33 the presense of Daratumumab, is unknown. We also did not attempt to definitively characterise
sa  the optimal control solutions across the entire plausible parameter space. This is largely due to
s the complexity of the system, but the reduction in convergence speed for the more complex bang-

36 bang controls was also a limitation, and improvements to the convergence algorithm could allow
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s7 - a more complete analysis. Finally, a fully realistic cost function for a diffusion treatment such
s as Daratumumab would most likely incorporate a fixed per-session cost, reflecting factors such as
w0 setup and travel. This cannot be directly represented in the form of (3), and finding a method of

w0 incorporating such a cost factor could be of value.

o 3.1 Conclusion

w2 In this work we investigated a drug evasion mechanism proposed by Saltarella et al [9], formalising
w03 the mechanism and incorporating it into a dynamical systems model of MM under Daratumumab
ws  treatment. Using simulations and optimal control methodology we validated the model, demon-
w5 strating that the proposed evasion mechanism can lead to effective resistance. We found a stronger
ws resistance to higher drug dosage, resulting in an increase in both the cost and duration of treat-
w7 ment. We also demonstrated that our model is effective at representing disease under conditions
a8 in which a complete cure is impossible, and found optimal control solutions in these cases that
wo include optimised ongoing treatment. Acknowledging the caveats discussed above, we also found
a0 several distinet functional forms for the optimal control across the plausible parameter space (using
a1 a linear cost function). This indicates that the optimal pattern of treatment may vary considerably
a2 depending on the cancer cell dynamics as well as patient characteristics such as the strength of
a3 immune response. While this analysis is theoretical, we have shown that the approach provides a
as  promising framework for understanding this drug evasion mechanism in the case of Daratumumab
a5 in MM or any analogous system, and has the potential to inform empirical investigations leading

a6 to clinical advances.

~ 4 Methods

as 4.1 Application of Pontryagin’s maximum principle

a9 We begin by outlining the application of Pontryagin’s maximum (minimum) principle to solve an
w20 optimal control problem as specified in Section 1.1. Methods broadly follow [27] except for mod-

a1 ifications to the convergence algorithm for the bang-bang control and to the method of obtaining

25


https://doi.org/10.1101/2024.06.06.597698
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.06.597698; this version posted June 9, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

a2 equilibrium solutions.
Consider a boundary value problem of the form given by Equations (1) and (2), where x(t) =
(z1(t), x2(t), ..., z,(t)) is a vector of state variables and u(t) is the control. The objective is to
choose u(t) to minimise a cost function of the form (3) over a time window [to,ts]. We introduce

a vector of costate variables A(t) = (A1(t), A2(t), ..., A (t)) and define a Hamiltonian
H(t) = L(t) + X()f(2).

23 The costate variables can be obtained from the necessary conditions

ax__om __(or o
da ox ox ox

24 and the transversality condition

99

Alty) = 7% (10)

t=ty

s Pontryagin’s maximum (minimum) principle [23] states that the cost function is minimised when
22 the control, together with the corresponding state and costate, minimise H(t) for all ¢ € [to,ty].
w7 In general this is not directly solvable, as x and A must be obtained numerically for a given u. We

w2 use the following approach, where at each step t € [to, tf]:

29 Algorithm 1

430 1. Select an initial value for u(t).

a1 2. Solve the boundary value problem given by the state Equations (1) and (2) for x(t).

a2 3. Solve the boundary value problem given by the costate Equations (9) and (10) for A(t).
433 4. Find w*(¢) which minimises H(t) for the given x(t) and A(t).

o 5. Update u(t) based on a combination of the current value and w*(t).

a3 6. Check the specified convergence condition; if not met, go to step 2.

1 We use the initial control value u(t) = 0 in all cases. The state equations f(x,u) are given by
s Equations (4-6), with x = (A, P, N). In all cases the initial state is a stable equilibrium with

s cancer present and no control (see below). We solve the boundary value problems using the fourth
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a0 order Runge-Kutta method and time step 0.001. In step 3, the boundary value is specified at time
wo Ly, so the solution is obtained working backwards in time. The details of the costate equations
a1 and of steps 4, 5 and 6 depend on the cost function and the corresponding optimal control form,
w2 as discussed in Section 1.1. We consider the two cases separately below. We use the convergence
w3 condition [Unew — Uod|/|tnew| < 1073,

aaa A limitation of the optimal control methodology is that results are valid only for the specified
ws  time window, while we are typically interested in the cost of treatment over an indefinite period.
us  This includes cases where ongoing treatment is required. If the model parameters do not permit
w7 permanent control of the cancer, the optimal control may include an artefact late in the time
ws  window caused by the artificial end-point. For this reason all optimal controls were obtained using
wo  a time window [0,200], and only the period [0,100] or [0,50] was shown. All costs and other

w0 statistics shown or plotted were recalculated on this interval.

s 4.2 Continuous control

w2 We first consider the quadratic cost function £ = u? + (P + N)? (Equation 7), which will typically

53 correspond to continuous optimal control solutions. Using Equation 9 with f = (%, %, %) given
e by (4-6), we obtain the costate equations
d\y
I = M (=pa(1 =24 =P = N)+ pa+ pawu) + AappP + A3py N
d)\g aN
—= = —2(P+ N)+ApaA+ A N —ép—dpyu — —————
o7 (P+N)+ Mpa +3<PN P Pyl (nyrPJrN)Q)
a(y+ N)
A | —pp(1—A—-2P—-N)+J dpy ” —_—
+2< pp( )+0p +dpuu+ pup + pp u+(7+P+N)2
dAs aP
— = =2(P+4+ N)+A1paA+2A P—féy——7——
a (P+N)+ Apa +2<PP N (7+P+N)2>
a(y+P) )
+A3| —pn(1—A—P—2N)+y + + ——— .
3<PN( ) N T HN (1 Pt N)

The end-state cost ¢ in the cost function (3) is set to zero, so the boundary condition (10) gives

A(ty) = 0. We next find w*(t) that minimises H for all ¢ € [to,ts]. Note that

oH
Y= By = 2u — AMppawA — A2bpy P — Xopipy P + A30py, P.

Setting ¥(t) = 0 gives

u* = (AMpaA + A20py P + Aopupy P — A3dp, P)/2.

27


https://doi.org/10.1101/2024.06.06.597698
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.06.597698; this version posted June 9, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

Using u* as the updated value of u will not in general allow for convergence, and so the updated

value of u is then taken to be a linear combination of the current value and u*,

*

Unew () = Wil + (1 — w)u™.

w5 The parameter w € [0,1) can be increased as required to achieve convergence; we used w = 0.9 in

s all cases, with convergence in less than 100 steps.

= 4.3 Bang-bang control

We now consider the linear cost function £ = u+ P + N (Equation 8). The costate equations
differ only slightly from the continuous control case, with the term —2(P + N) replaced by —1 in
dXa

the equations for <72 and %. The costate boundary condition is again A(t;) = 0. However, a

substantially different approach is required for the optimality condition. Note that

oH
Y= u = 1= ApawA — Abpu P — Aopipy P 4 A36po, P.

s Since ¥(t) is not a function of w, the natural approach to minimising H is to increase u where
w0 Y(t) < 0, and decrease u where t(¢t) > 0, while limiting the change in u in each step to allow
w0 convergence given the indirect effect of w on H via x and A. However, this will generally result in
w1 u diverging towards oo at some values of ¢, and so it is necessary to impose bounds ug < u(t) < ug.
w2 Such bounds are typically consistent with the real world system being modelled. In our model,
w3 the drug level cannot be negative and there will be an upper bound on the safe and effective drug
we  dose; we use the range [ug,u;] = [0,1]. In the approach adopted from [27], we set u*(t) = wug
ws  for Y(t) > 0, and w*(¢t) = uy for ¥(t) < 0. We then set tpeqw(t) = wugg + (1 — w)u®, as for the
ws continuous control. In some cases we found that this algorithm converged to a solution in which
s u(t) is equal to either 0 or 1 for each t € [ty,ts], the expected form of a bang-bang control. But
ws note that while v*(¢) has this form at each time step by definition, the update method using a
w0 weighted average means that u(t) does not have this form at each step of the iteration. In fact, we
w0 found that for some parameter cases we could not meet the formal convergence criterion for any
a1 choice of w, yet the control appeared to approximately converge to a form in which u(t) attains

a2 a value intermediate between 0 and 1 for a range of t. The algorithm given above cannot achieve
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a3 convergence to such a control, since u*(t) will be equal to 0 or 1 for any given iteration and value
anof t. In order to achieve convergence to optimal control solutions of this type, we adopted the

as following convergence strategy:

u'(t) = uea(t) —wi(t)

Unew(t) = max(ug, min(uy,u (t))).

as  The convergence parameter w > 0 is not comparable to the parameter in the previous method.
a7 Lower values give slower but more reliable convergence. We used w € {0.02,0.01,0.005}. Con-
s vergence speed was found to be substantially lower than for continuous controls even for simple
w9 bang-bang controls using the original algorithm. For the modified algorithm we added an additional
w  secondary convergence condition, calculated every 1000 iterations: |us — u;—1000|/|ut| < 1072, For
s obtaining controls including periods of intermediate control values using the modified method, con-
a2 vergence speed was substantially slower again, with up to 10000 iterations required for convergence,

w3 and up to 60000 iterations were required for more complex control solutions.

w 4.4 Equilibria

s All optimal control calculations use an initial state x () in which cancer is present and the system
w6 18 in stable equilibrium prior to application of the control. We do not have an exact expression for
w7 this steady state, so we first find the steady state solution with N, P > 0 for the restricted model
s with & = 0 (no immune response). We then run the full model simulation, using the fourth order
a0 Runge-Kutta method and time step 0.001 as in the optimal control algorithm, until the absolute
w0 single time step change in each state variable is less than the minimum floating point difference
w o (279%).

102 In the following we provide the required derivation for the steady states with o = 0. We also
w3 show that the physically realisable steady states for this model conform to one of two cases: (1)
w¢  there is exactly one steady state, which has N = P = 0 and is stable; (2) there are two steady
w5 states, one with N = P = 0 which is unstable, and one with P, N > 0 which is stable. In particular,
a6 this shows that the Michaelis-Menten immune response term is necessary in order to allow for cases

a7 in which cancer is present and persistent, but can be permanently controlled by a finite period of
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w8 drug treatment. Note that in the neighbourhood of P = N = 0, the full model is equivalent to a
w0 model with @ = 0 and modified cancer exit rates up = pp + /v and ply = pv + /7. Using the
soo method below we can thus determine exactly when the N = P = 0 equilibrium is stable. However,
sa in the full model a stable P = N = 0 equilibrium does not exclude a stable equilibrium with

s IN, P > 0, due to the reduction in the immune component of the exit rates as P + NN increases.

s 4.4.1 Equilibria with zero immune response

To obtain the steady states of our model with no control and in the absence of the immune response,

welet C=1—A—P— N andset a =u= %4 =22 = 2V —  in (4-6) to give

Ba+ paAC — psaA=0 (11)
ppPC—(SPP—F(SNN—/LPP: 0 (12)

504 For physical (non-negative) N and P, we have A <1 — C. With (11) this gives the condition

sos paC? — (pa+pa)C+pa—Ba > 0. The larger zero is greater than 1 and hence non-physical, thus

CSpAJrMA_\/(pA—MA)QJrﬁA_ (14)

2pa 2pa pA

For any C' satisfying this constraint, we obtain A by rearranging Equation 11 to give A =
Ba/(na —paC). We always have a non-cancer steady state in which P = N = 0, where C is equal
to the bound in (14) and A =1—C. By (12) and (13), N =0 <= P =0, so it remains only to

consider the case N > 0 and P > 0 . From (12) and (13) we have

P N _In+pn —pNC
N 5P+,u,p7ppc 5P .

(15)

This gives a quadratic in C. The larger solution is greater than 1, and hence the only potentially

physical solution is

p + On + p + on +pun\> | 0pd
C:P NP+N BN <P kP ON MN)_’_PN. (16)
2pp 2pN 2pp 2pN pPPPN
506 We see that there are two cases. There is always a non-cancerous steady state. If the expression

sov  for C'in (16) satisfies condition (14) without exact equality, and gives a positive value for the ratio
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ss  P/N in (15), then A can then be obtained from (11), and the cancerous cells N+ P=1—-A—-C

s0 can be apportioned according to (15) to give exactly one additional physical solution.

510 We next consider the stability of these equilibria. The Jacobian for the system when o = u =0
s 1S
pa(C—A) —pa —pal —pal
J = —ppP pp(C —P)—0p —pup —ppP + N
—pnN —pNN +dp pn(C = N) = 0N — pn

For the non-cancerous fixed point (A4, P, N) = (A, 0,0), the characteristic equation det(J —

M) =0is
(A+pa —pa(l =240))((A+0p + pp — pp(1 = Ag))(A + 0N + v — pn (1 — Ap)) — pdn) = 0.

The equilibrium is stable if and only if all solutions have negative real part. The first term
gives the solution A = pa(1—2A0) — pa < B84+ pado(l— Ag) — naAp, which is negative by (11).

This leaves the solutions to the quadratic
N+ \(Sp + Sy) + SpSy — 6pdn =0,

s where Sp =d0p 4+ up — pp(l — Ag) and Sy = oy + un — pn(1 — Ag). Thus by the Routh-Hurwitz
si3  stability criterion, all solutions will have a negative real part if and only if Sp + Sy > 0 and
su SpSy > 0pdn.
515 Let C = C} be the solution of (16), and define Sp = dp+pup—ppCi and Sy = on +pn —pnCh.
sis We saw above that there exists a physical equilibrium with non-zero cancer exactly when C; <
sz 1 — Ag and the P/N ratio given by (15) for C' = C is positive (note that the equality in (15) holds
sis by the definition of Cy). This implies that S%» > Sp, Sy > Sy, Sp > 0 and S, > 0, and hence
sw  either SpSy < SpSh = dpdn or else both Sp and Sy are negative. Thus (Ao, 0, 0) is unstable.
s0  Conversely, if (A, 0,0) is stable then SpSy > dpdn = SpSy and Sp, Sy > 0. This implies that
sn  either C1 > 1 — Ag or both S and S are negative. Thus there is no real physical solution with
2= N,P>0.

We now suppose that there exists a steady state (A, Py, N1) with Ay, P;, N7 > 0, and consider

stability at this point. Let C; =1— A; — P, — Ny and R = P;/N; > 0. By (11) and (15) we have
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pa —paCi = Ba/Ar, dp +pp — ppCi =0n/R, and on + pn — pnC1 = Rép, giving

M—-J=

A+ B2y paA pad paA
ppP /\‘F%V-‘FPPP —On + ppP
onN —0p + pNN A+ Rép + pnN

Noting the cancellation of all terms containing (p4A)(ppP) , (paA)(pnN) , or (ppP)(pnN)

in det(A — J), we obtain the characteristic equation

where

a2

ay

ao

)\3+a2)\2+a1)\+a0 =0,

0
%"‘ﬂAA"‘EN"‘R(SP“V‘pPP"‘pNN

5
%<g+R&+m£+mW>+umﬁ+®)

1) 0
+pNN (N + 6N> + paA (g + R5p>

R
Ba oN
T ppP (Rép + 6p) + pn N T +on | |-

Since all parameters and state variables are positive, we observe that as, a1,a9 > 0 and asa; > ag.

Thus by the Routh-Hurwitz criterion all solutions have a negative real part, and the fixed point

(A1, P1, Ny) is stable.

Thus we have shown that there is either a single, stable fixed point with P = N = 0, or else

this fixed point is unstable and there is a second, stable fixed point with P, N > 0.
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