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Abstract1

Multiple Myeloma (MM) is a plasma cell cancer that occurs in the bone marrow. A leading2

treatment for MM is the monoclonal antibody Daratumumab, targeting the CD38 receptor,3

which is highly overexpressed in myeloma cells. In this work we model drug evasion via loss of4

CD38 expression, which is a proposed mechanism of resistance to Daratumumab treatment.5

We develop an ODE model that includes drug evasion via two mechanisms: a direct effect in6

which CD38 expression is lost without cell death in response to Daratumumab, and an indirect7

effect in which CD38 expression switches on and off in the cancer cells; myeloma cells that do8

not express CD38 have lower fitness but are shielded from the drug action. The model also9

incorporates competition with healthy cells, death of healthy cells due to off-target drug effects,10

and a Michaelis-Menten type immune response. Using optimal control theory, we study the11

effect of the drug evasion mechanisms and the off-target drug effect on the optimal treatment12

regime. We identify a general increase in treatment duration and costs, with varying patterns13

of response for the different controlling parameters. Several distinct optimal treatment regimes14

are identified within the parameter space.15
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Short title: Optimal control of Multiple Myeloma16

Author summary17

In this work we investigate a model of Multiple Myeloma, a cancer of the bone marrow, and18

its treatment with the drug Daratumumab. The model incorporates proposed mechanisms by19

which the cancer evades Daratumumab by reduced expression of the receptor CD38, which is the20

drug target and normally abundent in the cancer cells. The model includes an off-target effect,21

meaning that the drug treatment destroys some healthy cells alongside the targeted cancer cells.22

Both mechanisms can reasonably be expected to reduce the efficacy of the drug. We investigate23

the model using optimal control methods, which are used to find the drug dose over time which24

best balances the financial and health costs of treatment against cancer persistence, according to a25

specified cost function. We show that this drug resistence and off-target effect prolongs the optimal26

treatment and increase the burden of both the disease and drug. We analyse the distinct effects27

of the controlling parameters on each of these costs factors as well as the time course, and identify28

conditions under which extended treatment is required, with either intermittant treatment or a29

steady reduced dose. Extended treatment may be indefinite or for a fixed period.30

1 Introduction31

Myeloma is a plasma cell cancer that occurs in the bone marrow. Myeloma cells typically form32

masses of cancerous tissue, and the disease is known as multiple myeloma (MM) when more than33

one mass is present. Myeloma can crowd out healthy marrow tissue, leading to a range of potential34

deficiencies, and invade and weaken bone. It may also cause damage via production of abnormal35

antibodies. A number of treatment options are available, although a complete cure has proved36

elusive [1], [2].37

In general, myeloma cells are marked by very high CD38 expression, motivating the use of the38

monoclonal antibody Daratumumab (Dara), which effectively targets myeloma via several mecha-39

nisms [3]. However, CD38 is also expressed in a wide range of cell types, resulting in important and40

complex off-target effects [4]. Daratumumab is a leading treatment for MM, commonly sold under41

the brand name Darzalez. We note that several other drugs have been developed to treat myeloma,42
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such as Elotuzumab [5], [6] and Lenalidomide [7], which can be used together in combination with43

the adjunct drug Dexamethasone as a combination treatment for refactory disease [8]. However,44

in this work we consider treatment using Dara only.45

Myeloma develops tolerance to Daratumumab. The dynamics are not fully understood, al-46

though various mechanisms have been proposed and combination therapies and recurrent treat-47

ment have had clinical success [9]. In this work we focus on one known tolerance mechanism, in48

which myeloma cells evade Daratumumab via loss of CD38 expression. This may occur passively49

due to differential response to Dara treatment, leading to a relative increase in myeloma cells with50

low CD38 expression. There may also be a direct loss of expression (without cell death) in response51

to drug exposure, as has been shown to occur in red blood cells [10].52

Using optimal control theory, we investigate how these drug escape and off-target effects impact53

on effective treatment protocols for Dara that balance the cost of treatment with the burden of54

disease. We find in general that these effects support a more prolonged treatment regime and55

drive higher overall costs, and we further investigate the connection between the specific dynamics56

and the total cost and duration of treatment. Notably, we find that with a linear cost function,57

the optimal drug dosage over time can have distinct functional forms depending on parameter58

values. An initial period of maximal dosage may be followed by lower level treatment at constant59

or reducing dose, possibly after a pause. In certain cases where a more prolonged or indefinite60

treatment is required, we find that a regular intermittant treatment regime is optimal. This may61

help to inform maintainance Dara treatment, which has been shown to be effective in some cases62

[11].63

1.1 Dynamical systems and optimal control theory64

Dynamical systems are a class of mathematical model used to study complex time varying systems.65

The state of a system at any time is represented by one or more numerical state variables, and66

the rate of change of each state variable at a given time is taken to be a function of itself and the67

other state variables. These functions typically form a system of ordinary differential equations68

(ODEs), which can be solved or analysed using a range of numerical and analytical techniques,69
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in order to provide insight into the modelled system. First applied by Poincaré to the study of70

the three body problem in classical mechanics [12], dynamical systems theory has been developed71

and applied extensively in a wide range of areas. Biological applications were pioneered with the72

logistic model of Verhulst [13], [14], representing exponential population increase constrained by73

a maximum carrying capacity. The famous Lotka–Volterra predator-prey model was first used to74

study interacting chemical species [15], then later applied to an ecological model, showing that the75

interactions between a prey species and a predator species could produce a continuing oscillation76

of populations over time [16].77

Cancer biology typically involves complex interactions of cancer cells with their microenviron-78

ment and with a range of immune and other cell types, and a range of dynamical systems models79

have been developed to help understand this clinically critical biology [17]. State variables represent80

populations of cells and other relevant species. A number of papers (e.g. [18], [19]) have modelled81

cancer-immune interactions through a predator-prey framing, with cancer cells as the prey and82

cytotoxic T-cells, a type of white blood cell which destroy diseased cells, acting as the predator.83

Modelling of this interaction is of particular interest due to the introduction of CAR T-cell therapy84

[20], which relies on modified T-cells with an increased capacity to target cancer. A limitation of85

the predator-prey analogy is that consumption of prey strengthens the predator, whereas in cancer86

the first-order effect of immune cell “predation” weakens the immune cell population. However,87

positive feedback may be produced via various second order effects. The appropriate approaches88

for modelling these complex interactions is the subject of active research [21], [22].89

Optimal control theory is used to study external interventions in a dynamical system. The90

control is an exogenous variable representing an external force. It is incorporated into the state91

equations, so that it may influence the rate of change of the state variables. The general form of92

the ODE system is then93

dx

dt
= f(x, u), (1)

where x(t) is the vector of state variables and u(t) is the control. A cost function is defined based94

on the values of the control and the state variables over a specified time window [t0, tf ], and the95
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optimal control is chosen to minimise this cost function for a given initial state:96

x(t0) = x0. (2)

Since the control may vary freely over the time window, determining the optimal control is a97

challenging problem in general. Specialised numerical methods are required, with mathematical98

and numerical constraints that restrict the form of the cost function. Our approach is based on99

Pontryagin’s maximum principle [23]. The cost function must have the form100

J = φ(x(tf ))︸ ︷︷ ︸
end state cost

+

∫ tf

t0

L(t,x(t), u(t))︸ ︷︷ ︸
ongoing cost

dt. (3)

Cost functions in which L has a linear dependancy on u require bounds to be imposed on u in101

order to give a well defined solution. The optimal control will generally take the form of a step102

function, equal to either the lower or upper bound at each time. The bounds typically correspond103

to “off” and “on”, and this is known as a bang-bang control. If L is a convex function of u the104

problem is more tractable, generally giving a smoothly varying optimal control without the need105

to impose bounds. This is known as a continuous control. We will consider cost functions of both106

types (see Section 1.3).107

Optimal control theory has been applied to clinical models to find theoretically optimal treat-108

ment regimes, with controls representing drug dose levels over time and cost functions designed109

to balance the monetary and health cost of treatment against the burden of disease. Important110

recent work includes applications to cancer immunotherapy, including generalised Lotka-Volterra111

predator-prey models [24] and models of combination therapy [25].112

In this work we take a different approach, incorporating a simple immune response and placing113

focus instead on the drug escape mechanism and off-target effects discussed above.114

1.2 Model of myeloma and Daratumumab115

Crowell et. al. proposed a dynamical system model of blood cancer (ASL) incorporating a com-116

petition between healthy and cancerous cells for space in the marrow, with proliferation of both117

populations restricted as the total cell population approaches the carrying capacity [26]. The118

model features the migration of healthy cells into the compartment from a separate stem cell119
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Figure 1: Model of multiple myeloma (MM) treatment with Daratumumab (control, u), including

an immune response (red arrows) and drug escape mechanisms via loss of CD38 expression. Three

drug actions are included (green arrows): cell mortality and loss of CD38 expression in the CD38+

cancer cells, and off-target cell mortality in healthy cells within the compartment.

compartment, and migration of both healthy and cancerous cells into the blood system.120

Sharp et al. [27] applied an optimal control methodology to a modified version of the Crowell121

model, with the addition of an immune response to cancer. The immune response was represented122

using a Michaelis-Menten term, which models a bounded immune capacity that initially scales123

with the cancer level but has a maximum capacity to remove cancer calls; this has the effect, for124

appropriate parameter choices, of allowing stable steady states with and without cancer present.125

This modification allows finite term treatment to result in a permanent control of the cancer; the126

authors found that this property was required for convergence of the optimal control algorithm.127

These works provide a calibrated model that supports the expected dynamics of cancer and cancer128

treatment, as well as a proven methodology for obtaining continuous and bang-bang controls.129

We develop a dynamical systems model of myeloma that adapts the core features of the Sharp130
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model. Our model also contains healthy and cancerous populations of marrow cells that compete131

for space, while the downsteam blood cell populations are dropped, as they do not affect the marrow132

cells or the cost function. The upsteam stem cell population is modelled implicitly as an influx of133

healthy cells into the marrow (rate βA) under the assumption that the stem cell population is at134

steady state; this causes only a transitory divergence from the Sharp model.135

In order to incorporate the core drug escape mechanism, we replace the cancer population with136

CD38+ and CD38- cancer cell subpopulations P and N , of which only P is susceptible to the drug.137

These represent alternate states of a single population, so it is assumed that cells move between138

P and N at rates δP and δN . We will refer to this mechanism as expression switching. Given139

the general overexpression of CD38 in myeloma, we assume that δN = 10δP , and that fitness is140

significantly lower in N . We also allow for both direct drug-induced loss of CD38 expression (δPu),141

and an off-target effect modelled by drug induced death of healthy cells (µAu). Note that off-target142

drug effects can be modelled implicitly in the cost function, but this explicit approach accounts143

for interaction with population dynamics.144

The complete model is as follows, where the three state variables x = (A,P,N) are each145

expresed as a proportion of the marrow carrying capacity:146

dA

dt
= βA + ρAA(1−A−N − P )− µAA− µAuuA (4)

dP

dt
= ρPP (1−A−N − P )− δPP + δNN − δPuuP − µPP − µPuuP −

αP

γ + P +N
(5)

dN

dt
= ρNN(1−A−N − P ) + δPP − δNN + δPuuP − µNN −

αN

γ + P +N
(6)

Here the control u ≥ 0 represents the dosage rate of Daratumumab. The state variables must147

also be non-negative to be physically realisable. The model parameters, and the default values148

used, are listed below.149
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Description Parameter Value

Influx of healthy cells βA 0.1008

Proliferation rate of A (healthy cells) ρA 0.43

Rate of death or other exit for A µA 0.44

Off-target mortality effect on A per unit of Dara (control) µAu 0.1

Proliferation rate of P (CD38+ myeloma) ρP 0.28

Rate of death or other exit for P µP 0.048

Additional death rate of P per unit of Dara (control) µPu 1

Proliferation rate of N (CD38- myeloma) ρN 0.15

Rate of death or other exit for N µN 0.06

Rate of loss in CD38 expression in P δP 0.003

Rate of gain in CD38 expression in N δN 0.03

Increased loss in CD38 expression in P per unit of Dara δPu 0.2

Immune control rate α 0.015

Immune control half saturation γ 0.1

150

Where possible, parameter values were adapted from the Sharp model, which were selected151

to produce balanced dynamics supporting both healthy and cancerous states and the capacity152

for effective drug control. Proliferation and exit rates are set so that the CD38+ myeloma cell153

population P is slightly more fit than the cancer population in the Sharp model, and the CD38-154

population N substantially less fit. The effect of a unit of control on the mortality rate of CD38+155

cancer cells, µPu, is fixed at one; this defines the scale for the control u. Since CD38 is typically156

highly overexpressed in myeloma, it can be assumed that µAu is substantially lower than µPu = 1;157

we use 0.1 by default, although higher values are also considered. We also choose a conservative158

initial value of δPu = 0.2, implying the direct loss of expression from Dara is a smaller effect than159

mortality, but with higher values considered. Note that in our model, as in the Sharp and Crowell160

models, the unit of time is abstract and parameters are not calibrated to real data.161
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1.3 Cost functions and control types162

An optimal control can only be calculated in reference to a cost function. This function encodes163

the health cost of cancer presence, as well as the cost of the drug dose over time — both its direct164

financial cost and health effects due to its side effects. However, the most appropriate mapping165

between these factors and cost is not obvious, including the correct weighting between cancer and166

drug dose.167

Since results will depend on the cost function chosen, we consider two optimal control cost168

functions, corresponding to a continuous and a bang-bang control, to provide insight into the169

influence of the cost assumptions and the robustness of any conclusions. In each case the cost170

function takes the form of (3) with φ(x(tf )) = 0; removing the dependence on the final state is171

generally preferred as it provides more tractable computations. The health cost due to cancer is172

assumed to depend on the total cancer population, P +N .173

Continuous control: L = u2 + (P +N)2. (7)

Bang–bang control: L = u+ P +N, where 0 ≤ u ≤ 1. (8)

While it is normally expected that this second cost function will result in convergence to a174

control solution which is equal to either u(t) = 0 or u(t) = 1 for each value of t, the iterative175

update algorithm used means that solutions of this form are not guaranteed. Valid alternative176

forms were found in some cases, and a modifed form of the iterative update algorithm was used to177

improve convergence in these cases; see Methods 4.3 for details.178

Note that the cost function cannot take into account the system state outside the selected time179

window, such as a cancer recurrence, and this must be taken into account in the interpretation of180

results. For example, the algorithm can return a null optimal control, with u(t) = 0 for all t, but181

this may be due to the time window being too short.182
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2 Results183

2.1 Drug escape mechanism produces expected resistance to control184

Figure 2: Model validation and comparison with Sharp model. Selected numerical simulations

using the fourth order Runge-Kutta method and time step 0.001. The full model developed in this

paper (e-h) is compared with a simplified version designed to replicate the Sharp model (Null-N

model, a-d), in which the CD38- cancer population is suppressed. In a,b,e,f the initial state is

P = 0.1, A = N = 0 and no control is applied; in a,e we also suppress the immune response, as

in Sharp Figure 2. In c,d,g,h the simulation starts at steady state and a prespecified control is

applied.

Our model extends the Sharp model [27], which we use as a negative control to validate the185

drug escape and off-target mortality effects. We can reproduce the core features of the Sharp186

model by suppressing the drug resistant CD38- cancer cell population (N) and the off-target drug187

effect. We verified this by defining a Null-N model with the parameter changes N(0) = 0, δP = 0,188

δPu = 0, µu = 0, ρP = 0.27, µP = 0.05. Simulations using this model are shown in Fig. 2 a-d.189

Without treatment, the healthy and cancerous cells reach a balance. The presense of the immune190
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response shifts this balance against the cancer without achieving elimination. But if the treatment191

can reduce the cancer level sufficiently, the immune response will prevent recurrence.192

In Fig. 2 e-h we show the corresponding simulations using our full model. As intended, in193

the absense of the drug control the CD38- population plays only a marginal role; this can be194

seen in e,f. In the presense of the drug control, the role of this population grows and has the195

effect of diminishing drug efficacy via the escape mechanism. Panels g,h suggest that the drug196

escape mechanism plays a larger role when the control has higher intensity and shorter duration;197

we examine this issue more systematically below through the lens of optimal control. For the198

parameters used here, where the drug’s effect on healthy cells is only one tenth of its effect on199

CD38+ cells, the off-target drug effect is extremely minor.200

2.2 Drug escape motivates prolonged treatment201

Using the continuous and bang-bang optimal controls, we can evaluate the overall effect of the202

model modifications under the default parameters in terms of the cost to treat and optimal pattern203

of treatment (Fig. 3). Note that cost is not comparable between the two types of optimal control.204

In both cases, the total control and overall cost is increased relative to the Null-N control, and the205

duration of treatment is extended. For both control types a high initial drug dose in the full model206

rapidly reduces overall cancer levels, but at the cost of much higher levels of the drug-immune207

CD38- population, and recovery of the healthy cell population is inhibited by the off-target effect208

while the control dose is high. The control is then continued at a lower level that balances these209

factors, until control of the cancer is achieved.210

The increases in cost, total control, and duration of treatment relative to the Null-N control211

are all much smaller for the continuous control than for the bang-bang control. This can likely be212

attributed to the fact that prolonged, low level treatment is favoured by the quadratic function (7),213

incurring a low cost. This explains the tapered shape of the continuous control solutions for the214

Null-N model, and with the addition of the new mechanisms the required prolongation of treatment215

is small and achieved at low cost. However, the quadratic cost will not reflect the financial cost216

of drug supply or treatment, and the very low cost associated with prolonged low level treatment217
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Figure 3: Optimal controls for the full model developed in this paper (Full model) and the simplified

version that replicates the Sharp model (Null-N). In each case we give the overall cost function

value ((7) or (8)) and its components (control cost and cancer burden). We also note the total

control applied in the initial period when the control is at its maximum level. For the continuous

control cost function, the total cancer cost ((P +N)2) is allocated proportionately between P and

N for the quoted numbers. The drug related cost incurred in the first 5 and 20 time units is also

given as an indication of relative control duration. Optimal controls were found using a time period

of length 200, plots and numerical results are shown for the initial 50.

may not be realistic.218

In contrast, the linear cost function used in the bang-bang control does not discount the cost219

of continuing lower level treatment. This cost function typically gives optimal control levels at220

either the maximum level or zero; in the Sharp model all solutions consisted of an initial period at221

maximum level followed by an abrupt and final end of treatment. The fact that in our model the222

bang-bang optimal control includes a period of intermediate level control provides clear support223
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for extended treatment.224

2.3 Reduced immune response requires extended treatment regime225

(a) Optimal bang-bang and continuous control solutions, selected values of α.

(b) Total costs and components up to Time=100.

Figure 4: Optimal control solutions for range of α values (original value α = 0.015).

The immune response, controlled by parameter α, plays an important role in treatment. In226

Fig. 4 we show the affect of varying this parameter on the optimal control. We see that a reduced227

immune response increases the cost to treat primarily through prolongation of the control; for the228
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bang-bang control, the initial period of treatment is almost invariant. As the immune response229

approaches zero, there is a point at which final control of the cancer becomes impossible, and the230

optimal control transitions to an initial high dose treatment followed by an indefinite maintainance231

treatment. At this stage the burden of CD38- cancer becomes significant; we can also project232

ongoing costs from the trendline.233

We are most interested in model parameters that allow both a persistent cancer state and the234

possibility of permanent control via drug treatment. We show in Section 4.4 that this requires235

the Michaelis-Menten immune response; a linear immune response can be regarded as a simple236

modification of the exit rate parameters and cannot achieve the same effect. However, cases237

in which the cancer must be managed through ongoing treatment are also of interest, despite238

posing some difficulty in interpretation due to the finite time window used in the optimal control239

methodology. From a modelling perspective, it is significant that when the immune response is not240

sufficient to allow permanent control of the cancer, our algorithm is able to find an optimal steady241

state treatment regime, as shown in Fig. 4 when α = 0. This can be attributed to the additional242

mechanisms in our model, as it is not the case for the Null-N model. If we consider the Null-N243

model with a constant level of control applied so that P approaches 0, then A will approach a244

steady state A0 and we have dP
dt ≈ P (ρP (1−A0)−µP −µPuu), giving an asyptotically exponential245

solution for P . Cessation of the control will lead to exponential increase until P is again non-246

negligible. This implicitly models cancer at arbitrarily low levels, potentially less than a single247

cell, and also results in convergence failure of the optimal control, due to extreme insensitivity to248

control timing while P is at a negligible level. Thus we see that our modified model provides an249

improvement in this case both computationally and as a biologically realistic system.250

2.4 Drug escape parameters have distinct and interacting effects on251

model dynamics252

The drug escape mechanism we model consists of four added features: an alternative CD38- cancer253

state with reduced fitness; switching of cancer cells between the CD38+ and CD38- states; a254

response to treatment in the form of loss of CD38 expression; and mortality of CD38+ but not255
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(a) Optimal bang-bang and continuous control solutions, selected values of δP and δN .

(b) Total costs and components up to Time=100; note δP = δN/10.

Figure 5: Effect of expression switching of CD38 expression on optimal treatment: optimal control

solutions for range of δP and δN values (original values δP = 0.003, δN = 0.03).

CD38- cancer cells in response to the control. Here we consider the sensitivity of the model and256

the optimal control solutions to the parameters controlling these features. The mortality effect is257

kept fixed with µPu = 1 while we consider variations in the other three features, observing distinct258

responses in each case.259

15

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 9, 2024. ; https://doi.org/10.1101/2024.06.06.597698doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.06.597698
http://creativecommons.org/licenses/by/4.0/


(a) Optimal bang-bang and continuous control solutions, selected values of ρN and

µN .

(b) Total costs and components up to Time=100.

Figure 6: Effect of CD38- myeloma fitness on optimal treatment: optimal control solutions for range

of ρN and µN values. The x axis represents fitness of the CD38- cancer cells, with fitness decreasing

to the right, and the leftmost value representing fitness equal to the CD38+ cells (original value

ρN = 0.15 and µN = 0.06).
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(a) Optimal bang-bang and continuous control solutions, selected values of δPu.

(b) Total costs and components up to Time=100.

Figure 7: Effect of drug-induced loss of CD38 expression on optimal treatment: optimal control

solutions for range of δPu values (original value δPu = 0.2).

For the expression switching mechanism, in which cancer cells lose or gain CD38 expression,260

we retain δN/δP = 10 to reflect the typical dominance of the CD38+ state, but consider large261

coordinated changes in both values (Fig. 5). There is minimal effect on the optimal continuous262

control. For the bang-bang control, higher rates of switching lead to a prolonged optimal control,263
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with a control that is higher in aggregate despite a shorter initial period at maximum intensity.264

The temporal pattern of the control after the initial period also changes: at the highest level265

of expression switching there is a much stronger reduction over time in the control level. The266

aggregate cancer level remains relatively constant, although CD38 expression increases.267

The fitness penalty from loss of CD38 expression in cancer cells is represented by a reduction268

in proliferation and increase in mortality. Plausible variations in the size of this penalty have little269

effect on outcomes except for a modest reduction in treatment duration at higher fitness penalty270

(Fig. 6). However, if the fitness penalty is removed entirely (left side) there is a large increase in271

cost driven by extended control and persistent CD38- cancer cells. Note that we do not attempt272

to disentagle the effects of changes in proliferation and mortality.273

Finally, the most complex response is elicited from variation in the rate of drug-induced loss274

of CD38 expression (Fig. 7). Optimal control solutions appear to show competing effects from275

this loss of CD38 expression: the drug control induces a CD38- subpopulation that persists under276

treatment, imposing a health burden and requiring more prolonged treatment (particularly for the277

bang-bang control). However, the lower fitness of this subpopulation results in a relatively stable278

or reduced quantity of control required in aggregate.279

The most striking feature we observe from the optimal control analysis of our model is the280

prolongation of treatment at lower intensity in the bang-bang control, which is significant precisely281

because it is not typically present in bang-bang controls. Note that while a modified method was282

required to obtain these solutions, these solutions are not an artefact of the method, as detailed283

in Methods 4.3. We see that the existence of this phenomenon requires both the induced loss of284

CD38 expression and expression switching between CD38+ and CD38- states.285

2.5 Elevated off-target drug effect produces distinct form of bang-bang286

control287

In addition to modelling drug avoidance via loss of CD38 expression, our model includes an off-288

target effect, in which the control causes some mortality in healthy cells. While the harm caused289

by drug side-effects can be modelled through the cost function, including this feature explicitly290
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(a) Optimal bang-bang and continuous control solutions, selected values of µAu.

(b) Total costs and components up to Time=100.

Figure 8: Optimal control solutions for range of µAu values (original value µAu = 0.1).

allows us to examine the effects on the population dynamics, and particularly the interaction with291

the drug escape mechanism. Since myeloma cells notably over-express the drug target CD38, we292

expect realistic values of the off-target mortality parameter µAu to be much less than 1. At this293

level the off-target effect appears to have limited influence. When we consider higher values (Fig.294

8) we see a general pattern of slightly increased costs (both drug and disease burden). However,295
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at µAu = 1 we see a striking change in the form of the optimal bang-bang control. Instead of a296

period of continuing control at reduced intensity, the initial period of maximum intensity control is297

followed by a complete cessation of treatment, then a second shorter period of maximum intensity298

treatment. During the break in treatment the healthy cell population recovers while the drug299

resistant CD38- population declines, but the CD38+ cancer subpopulation also recovers from low300

levels. The followup treatment prevents a cancer resurgence, reducing levels to where they can be301

controlled by the immune response.302

2.6 Optimal bang bang controls may be cyclic or discontinuous303

Figure 9: Optimal bang-bang control solutions for µAu = 0.5, δP = 0.0003, δN = 0.003, α =

0, 0.01, 0.015, δPu = 0.2, 2.

The bang-bang optimal control solution with µAu = 1 raises the question of whether the solution304

may take other forms depending on the choice of parameters, particularly cyclic or discontinuous305

control solutions. The value µAu = 1 seems biologically implausible, so we performed a systematic306

search for alternate forms of the optimal bang-bang control using a somewhat more reasonable307

value µAu = 0.5. The rate of expression switching appeared to influence the shape of the control,308
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Figure 10: Optimal bang-bang control solutions with either δP = δN = 0 or δPu = 0; in all cases

µAu = 0.5 and α = 0.

so we considered both 10-fold increase and 10-fold decrease in these values (maintaining a fixed309

ratio between them). Drug-induced loss of CD38 expression also plays a key role, so we considered310

the effect of a 10-fold increase in this rate (δPu). In addition, we considered removal or reduction311

in the immune intensity (α = 0, 0.01 instead of α = 0.015).312

We see a remarkable solution form in the case of reduced expression switching, with reduced313

or zero immune response (Fig. 9, top row). The optimal control takes the form of short periods of314

control at maximum intensity, separated by longer periods of zero control. The initial treatment315

period is longer, and is also followed by a longer break; the treatment periods then follow a regular316

pattern. When the immune response is removed (α = 0), permanent control of the cancer is not317

possible, and the solution tends towards a repeating cyclic pattern. When α = 0.01 we see a318

modifed version of this pattern which terminates when suppression by the immune response has319

been established. Increasing the rate of drug-induced loss of CD38 expression appears to suppress320

this cyclic solution (Fig. 9, bottom row), however we retain a period of zero control following the321

initial period of maximum-intensity control. Note that the cases with unchanged or increased rates322
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Figure 11: Optimal bang-bang control solutions for µAu = 0, α = 0, δP = 0.0003, δN = 0.003, and

δPu = 0, 0.2.

of expression switching (δP and δN ) did not give any cyclic or discontinuous solutions (data not323

shown).324

Since we see the cyclic solutions (Fig. 9) at the lowest values of δP , δN and δPu that were325

considered in this experiment, it is natural to ask whether the complete removal of one or both of326

these features would also give optimal control solutions with a cyclic form. We retain µAu = 0.5327

and set α = 0, consistent with the clearest examples of cyclic solutions seen. We observe (Fig. 10)328

that the cyclic solution form appears to be consistent with δPu = 0, but not with δP = δN = 0.329

We have used a high value of the off-target mortality parameter µAu under the assumption that330

this is required to produce the cyclic solution form. We check this assumption by setting µAu = 0331

in two cases with the clearest observed cyclic behaviour (Fig. 11), leading to a loss of the cyclic332

form.333

While this analysis does not amount to a full exploration of the parameter space, our investi-334

gation suggests that the cyclic form requires a high value of µAu, a low value of α, and a low but335

non-zero value of δN and δP .336

3 Discussion337

We have presented a model of myeloma treatment using the monoclonal antibody Daratumumab,338

with which we investigated the impact of a drug escape mechanism and off-target cell mortality339

using optimal control theory. In our model myeloma cells evade the effect of Daratumumab via340
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loss of CD38 expression, albeit at the cost of reduced fitness. This loss of expression may result341

from either differential mortality or as a direct result of drug exposure. The proposed mechanisms342

generally resulted in increased overall costs and extended duration of treatment. These mechanisms343

are modelled with several rate parameters, and in most cases the relationship between the rate344

parameters and outcomes such as total drug dose, treatment duration and cancer persistence were345

found to be at least directionally consistent between the two cost functions considered, suggesting346

that the identified trends are robust. Exceptions included the rate of expression switching (Fig. 6),347

which had very little effect on the continuous control, and the rate of drug-induced loss of CD38348

expression, which had a somewhat inconsistent effect (Fig. 7). The forms of the optimal control349

solution over time presented a more complex situation, with greater differences between the two350

cost functions over a range of parameters.351

The Null-N model, which we use as a negative control that reproduces the core Sharp model,352

gives optimal control solutions of two forms, depending on the cost function. The linear cost353

function with bounded control values gives solutions of the expected “bang-bang” form, in which354

the control starts at the maximum level and then at some time point permanently switches to355

zero. Intuitively, there is no advantage to delay in treatment, and so the total drug dose necessary356

to contain the cancer is administered in the minimal possible time. The quadratic cost function357

gives continuous solutions which begin at a high level then drop continuously, a tradeoff between358

removing cancer as quickly as possible and the cost advantage of treatment at lower dose.359

When we included the drug escape and off-target effect mechanisms in the model, we found360

that for many parameter choices the bang-bang solution features a period of lower-intensity or361

intermittent treatment subsequent to the initial period of maximum level control. We can un-362

derstand this as a period in which the imperative to treat the cancer must be balanced against363

the need to allow time for the CD38 expression level in the myeloma cells to recover, so that the364

drug effectiveness is restored. Recovery of the healthy cell population may also be a factor in this365

pattern.366

The use of the quadratic cost function is motivated by the observation that the health burden of367

both disease and drug treatment will potentially increase at a super-linear rate; double the amount368
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of drug or cancer causes more than twice the harm. However, this cost function also promotes369

extended treatment at very low dose, and the resulting tapering off of treatment appears to partly370

obscure the effect of the drug escape mechanism; the effect of our model modification is lower371

when using the quadratic cost function, particularly in terms of the prolongation of treatment.372

This tapering effect should be interpreted with appropriate caution in real world applications:373

below some level, the quadratic cost function will not fairly reflect the fixed financial cost of374

Daratumumab, or the practicalities of drug administration by diffusion. In contrast, for “bang-375

bang” control solutions using the linear cost function any period of ongoing control at a reduced376

level can be reasonably attributed to the biological mechanisms that we model.377

Bang-bang controls for the full model take a range of forms, depending on the parameter values.378

These include the simple form with an initial period of maximum control and then no subsequent379

treatment. Higher levels of CD38 expression switching (δP and δN ) and drug-induced loss of CD38380

expression (δPu) produce controls with an intermediate period of ongoing control at a reduced381

level. Lower drug-induced loss of expression and lower but non-zero levels of expression switching,382

together with an elevated off-target effect (µAu), tend to produce periodic control solutions with383

intermittant control at the maximum level. Both of these more complex forms are promoted by384

a reduced immune response. Insufficient immune response results in optimal control solutions385

in which indefinite continuation of treatment is required, either intermittant, or continuous at a386

reduced level.387

We briefly note some limitations of this study. Although the identification of distinct optimal388

control forms depending on the various rate parameters is of considerable interest, this is principally389

theoretical. It demonstrates that real world optimal treatment regimes may be contingent on such390

factors, but the mechanisms discussed in [9], for example, are unquantified; the natural variation391

of CD38 expression between myeloma cells, and the rate at which this changes naturally and in392

the presense of Daratumumab, is unknown. We also did not attempt to definitively characterise393

the optimal control solutions across the entire plausible parameter space. This is largely due to394

the complexity of the system, but the reduction in convergence speed for the more complex bang-395

bang controls was also a limitation, and improvements to the convergence algorithm could allow396
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a more complete analysis. Finally, a fully realistic cost function for a diffusion treatment such397

as Daratumumab would most likely incorporate a fixed per-session cost, reflecting factors such as398

setup and travel. This cannot be directly represented in the form of (3), and finding a method of399

incorporating such a cost factor could be of value.400

3.1 Conclusion401

In this work we investigated a drug evasion mechanism proposed by Saltarella et al [9], formalising402

the mechanism and incorporating it into a dynamical systems model of MM under Daratumumab403

treatment. Using simulations and optimal control methodology we validated the model, demon-404

strating that the proposed evasion mechanism can lead to effective resistance. We found a stronger405

resistance to higher drug dosage, resulting in an increase in both the cost and duration of treat-406

ment. We also demonstrated that our model is effective at representing disease under conditions407

in which a complete cure is impossible, and found optimal control solutions in these cases that408

include optimised ongoing treatment. Acknowledging the caveats discussed above, we also found409

several distinct functional forms for the optimal control across the plausible parameter space (using410

a linear cost function). This indicates that the optimal pattern of treatment may vary considerably411

depending on the cancer cell dynamics as well as patient characteristics such as the strength of412

immune response. While this analysis is theoretical, we have shown that the approach provides a413

promising framework for understanding this drug evasion mechanism in the case of Daratumumab414

in MM or any analogous system, and has the potential to inform empirical investigations leading415

to clinical advances.416

4 Methods417

4.1 Application of Pontryagin’s maximum principle418

We begin by outlining the application of Pontryagin’s maximum (minimum) principle to solve an419

optimal control problem as specified in Section 1.1. Methods broadly follow [27] except for mod-420

ifications to the convergence algorithm for the bang-bang control and to the method of obtaining421
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equilibrium solutions.422

Consider a boundary value problem of the form given by Equations (1) and (2), where x(t) =

(x1(t), x2(t), . . . , xn(t)) is a vector of state variables and u(t) is the control. The objective is to

choose u(t) to minimise a cost function of the form (3) over a time window [t0, tf ]. We introduce

a vector of costate variables λ(t) = (λ1(t), λ2(t), . . . , λn(t)) and define a Hamiltonian

H(t) = L(t) + λ(t)f(t).

The costate variables can be obtained from the necessary conditions423

dλ

dt
= −∂H

∂x
= −

(
∂L
∂x

+ λ
∂f

∂x

)
(9)

and the transversality condition424

λ(tf ) =
∂φ

∂x

∣∣∣∣
t=tf

. (10)

Pontryagin’s maximum (minimum) principle [23] states that the cost function is minimised when425

the control, together with the corresponding state and costate, minimise H(t) for all t ∈ [t0, tf ].426

In general this is not directly solvable, as x and λ must be obtained numerically for a given u. We427

use the following approach, where at each step t ∈ [t0, tf ]:428

Algorithm 1429

1. Select an initial value for u(t).430

2. Solve the boundary value problem given by the state Equations (1) and (2) for x(t).431

3. Solve the boundary value problem given by the costate Equations (9) and (10) for λ(t).432

4. Find u∗(t) which minimises H(t) for the given x(t) and λ(t).433

5. Update u(t) based on a combination of the current value and u∗(t).434

6. Check the specified convergence condition; if not met, go to step 2.435

We use the initial control value u(t) = 0 in all cases. The state equations f(x, u) are given by436

Equations (4-6), with x = (A,P,N). In all cases the initial state is a stable equilibrium with437

cancer present and no control (see below). We solve the boundary value problems using the fourth438
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order Runge-Kutta method and time step 0.001. In step 3, the boundary value is specified at time439

tf , so the solution is obtained working backwards in time. The details of the costate equations440

and of steps 4, 5 and 6 depend on the cost function and the corresponding optimal control form,441

as discussed in Section 1.1. We consider the two cases separately below. We use the convergence442

condition |unew − uold|/|unew| < 10−3.443

A limitation of the optimal control methodology is that results are valid only for the specified444

time window, while we are typically interested in the cost of treatment over an indefinite period.445

This includes cases where ongoing treatment is required. If the model parameters do not permit446

permanent control of the cancer, the optimal control may include an artefact late in the time447

window caused by the artificial end-point. For this reason all optimal controls were obtained using448

a time window [0, 200], and only the period [0, 100] or [0, 50] was shown. All costs and other449

statistics shown or plotted were recalculated on this interval.450

4.2 Continuous control451

We first consider the quadratic cost function L = u2 + (P +N)2 (Equation 7), which will typically452

correspond to continuous optimal control solutions. Using Equation 9 with f =
(
dA
dt ,

dP
dt ,

dN
dt

)
given453

by (4-6), we obtain the costate equations454

dλ1
dt

= λ1 (−ρA(1− 2A− P −N) + µA + µAuu) + λ2ρPP + λ3ρNN

dλ2
dt

= −2(P +N) + λ1ρAA+ λ3

(
ρNN − δP − δPuu−

αN

(γ + P +N)2

)
+λ2

(
−ρP (1−A− 2P −N) + δP + δPuu+ µP + µPuu+

α(γ +N)

(γ + P +N)2

)
dλ3
dt

= −2(P +N) + λ1ρAA+ λ2

(
ρPP − δN −

αP

(γ + P +N)2

)
+λ3

(
−ρN (1−A− P − 2N) + δN + µN +

α(γ + P )

(γ + P +N)2

)
.

The end-state cost φ in the cost function (3) is set to zero, so the boundary condition (10) gives

λ(tf ) = 0. We next find u∗(t) that minimises H for all t ∈ [t0, tf ]. Note that

ψ =
∂H

∂u
= 2u− λ1µAuA− λ2δPuP − λ2µPuP + λ3δPuP.

Setting ψ(t) = 0 gives

u∗ = (λ1µAuA+ λ2δPuP + λ2µPuP − λ3δPuP )/2.
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Using u∗ as the updated value of u will not in general allow for convergence, and so the updated

value of u is then taken to be a linear combination of the current value and u∗,

unew(t) = ωuold + (1− ω)u∗.

The parameter ω ∈ [0, 1) can be increased as required to achieve convergence; we used ω = 0.9 in455

all cases, with convergence in less than 100 steps.456

4.3 Bang-bang control457

We now consider the linear cost function L = u + P + N (Equation 8). The costate equations

differ only slightly from the continuous control case, with the term −2(P +N) replaced by −1 in

the equations for dλ2

dt and dλ3

dt . The costate boundary condition is again λ(tf ) = 0. However, a

substantially different approach is required for the optimality condition. Note that

ψ =
∂H

∂u
= 1− λ1µAuA− λ2δPuP − λ2µPuP + λ3δPuP.

Since ψ(t) is not a function of u, the natural approach to minimising H is to increase u where458

ψ(t) < 0, and decrease u where ψ(t) > 0, while limiting the change in u in each step to allow459

convergence given the indirect effect of u on H via x and λ. However, this will generally result in460

u diverging towards ±∞ at some values of t, and so it is necessary to impose bounds u0 < u(t) < u1.461

Such bounds are typically consistent with the real world system being modelled. In our model,462

the drug level cannot be negative and there will be an upper bound on the safe and effective drug463

dose; we use the range [u0, u1] = [0, 1]. In the approach adopted from [27], we set u∗(t) = u0464

for ψ(t) > 0, and u∗(t) = u1 for ψ(t) < 0. We then set unew(t) = ωuold + (1 − ω)u∗, as for the465

continuous control. In some cases we found that this algorithm converged to a solution in which466

u(t) is equal to either 0 or 1 for each t ∈ [t0, tf ], the expected form of a bang-bang control. But467

note that while u∗(t) has this form at each time step by definition, the update method using a468

weighted average means that u(t) does not have this form at each step of the iteration. In fact, we469

found that for some parameter cases we could not meet the formal convergence criterion for any470

choice of ω, yet the control appeared to approximately converge to a form in which u(t) attains471

a value intermediate between 0 and 1 for a range of t. The algorithm given above cannot achieve472
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convergence to such a control, since u∗(t) will be equal to 0 or 1 for any given iteration and value473

of t. In order to achieve convergence to optimal control solutions of this type, we adopted the474

following convergence strategy:475

u′(t) = uold(t)− ωψ(t)

unew(t) = max(u0,min(u1, u
′(t))).

The convergence parameter ω > 0 is not comparable to the parameter in the previous method.476

Lower values give slower but more reliable convergence. We used ω ∈ {0.02, 0.01, 0.005}. Con-477

vergence speed was found to be substantially lower than for continuous controls even for simple478

bang-bang controls using the original algorithm. For the modified algorithm we added an additional479

secondary convergence condition, calculated every 1000 iterations: |ut − ut−1000|/|ut| < 10−2. For480

obtaining controls including periods of intermediate control values using the modified method, con-481

vergence speed was substantially slower again, with up to 10000 iterations required for convergence,482

and up to 60000 iterations were required for more complex control solutions.483

4.4 Equilibria484

All optimal control calculations use an initial state x(t0) in which cancer is present and the system485

is in stable equilibrium prior to application of the control. We do not have an exact expression for486

this steady state, so we first find the steady state solution with N,P > 0 for the restricted model487

with α = 0 (no immune response). We then run the full model simulation, using the fourth order488

Runge-Kutta method and time step 0.001 as in the optimal control algorithm, until the absolute489

single time step change in each state variable is less than the minimum floating point difference490

(2−53).491

In the following we provide the required derivation for the steady states with α = 0. We also492

show that the physically realisable steady states for this model conform to one of two cases: (1)493

there is exactly one steady state, which has N = P = 0 and is stable; (2) there are two steady494

states, one with N = P = 0 which is unstable, and one with P,N > 0 which is stable. In particular,495

this shows that the Michaelis-Menten immune response term is necessary in order to allow for cases496

in which cancer is present and persistent, but can be permanently controlled by a finite period of497
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drug treatment. Note that in the neighbourhood of P = N = 0, the full model is equivalent to a498

model with α = 0 and modified cancer exit rates µ′P = µP + α/γ and µ′N = µN + α/γ. Using the499

method below we can thus determine exactly when the N = P = 0 equilibrium is stable. However,500

in the full model a stable P = N = 0 equilibrium does not exclude a stable equilibrium with501

N,P > 0, due to the reduction in the immune component of the exit rates as P +N increases.502

4.4.1 Equilibria with zero immune response503

To obtain the steady states of our model with no control and in the absence of the immune response,

we let C = 1−A− P −N and set α = u = dA
dt = dP

dt = dN
dt = 0 in (4-6) to give

βA + ρAAC − µAA = 0 (11)

ρPPC − δPP + δNN − µPP = 0 (12)

ρNNC + δPP − δNN − µNN = 0. (13)

For physical (non-negative) N and P , we have A ≤ 1− C. With (11) this gives the condition504

ρAC
2− (ρA +µA)C+µA−βA ≥ 0. The larger zero is greater than 1 and hence non-physical, thus505

C ≤ ρA + µA
2ρA

−

√(
ρA − µA

2ρA

)2

+
βA
ρA

. (14)

For any C satisfying this constraint, we obtain A by rearranging Equation 11 to give A =

βA/(µA− ρAC). We always have a non-cancer steady state in which P = N = 0, where C is equal

to the bound in (14) and A = 1− C. By (12) and (13), N = 0 ⇐⇒ P = 0, so it remains only to

consider the case N > 0 and P > 0 . From (12) and (13) we have

P

N
=

δN
δP + µP − ρPC

=
δN + µN − ρNC

δP
. (15)

This gives a quadratic in C. The larger solution is greater than 1, and hence the only potentially

physical solution is

C =
δP + µP

2ρP
+
δN + µN

2ρN
−

√(
δP + µP

2ρP
− δN + µN

2ρN

)2

+
δP δN
ρP ρN

. (16)

We see that there are two cases. There is always a non-cancerous steady state. If the expression506

for C in (16) satisfies condition (14) without exact equality, and gives a positive value for the ratio507
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P/N in (15), then A can then be obtained from (11), and the cancerous cells N + P = 1−A−C508

can be apportioned according to (15) to give exactly one additional physical solution.509

We next consider the stability of these equilibria. The Jacobian for the system when α = u = 0510

is511

J =


ρA(C −A)− µA −ρAA −ρAA

−ρPP ρP (C − P )− δP − µP −ρPP + δN

−ρNN −ρNN + δP ρN (C −N)− δN − µN

 .
For the non-cancerous fixed point (A,P,N) = (A0, 0, 0), the characteristic equation det(J −

λI) = 0 is

(λ+ µA − ρA(1− 2A0))((λ+ δP + µP − ρP (1−A0))(λ+ δN + µN − ρN (1−A0))− δP δN ) = 0.

The equilibrium is stable if and only if all solutions have negative real part. The first term

gives the solution λ = ρA(1− 2A0)− µA < βA + ρAA0(1−A0)− µAA0, which is negative by (11).

This leaves the solutions to the quadratic

λ2 + λ(SP + SN ) + SPSN − δP δN = 0,

where SP = δP +µP − ρP (1−A0) and SN = δN +µN − ρN (1−A0). Thus by the Routh–Hurwitz512

stability criterion, all solutions will have a negative real part if and only if SP + SN > 0 and513

SPSN > δP δN .514

Let C = C1 be the solution of (16), and define S′P = δP +µP −ρPC1 and S′N = δN+µN−ρNC1.515

We saw above that there exists a physical equilibrium with non-zero cancer exactly when C1 <516

1−A0 and the P/N ratio given by (15) for C = C1 is positive (note that the equality in (15) holds517

by the definition of C1). This implies that S′P > SP , S′N > SN , S′P > 0 and S′N > 0, and hence518

either SPSN < S′PS
′
N = δP δN or else both SP and SN are negative. Thus (A0, 0, 0) is unstable.519

Conversely, if (A0, 0, 0) is stable then SPSN > δP δN = S′PS
′
N and SP , SN > 0 . This implies that520

either C1 > 1− A0 or both S′P and S′N are negative. Thus there is no real physical solution with521

N,P > 0.522

We now suppose that there exists a steady state (A1, P1, N1) with A1, P1, N1 > 0, and consider

stability at this point. Let C1 = 1−A1 − P1 −N1 and R = P1/N1 > 0. By (11) and (15) we have
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µA − ρAC1 = βA/A1, δP + µP − ρPC1 = δN/R, and δN + µN − ρNC1 = RδP , giving

λI − J =


λ+ βA

A + ρAA ρAA ρAA

ρPP λ+ δN
R + ρPP −δN + ρPP

ρNN −δP + ρNN λ+RδP + ρNN

 .

Noting the cancellation of all terms containing (ρAA)(ρPP ) , (ρAA)(ρNN) , or (ρPP )(ρNN)

in det(λI − J), we obtain the characteristic equation

λ3 + a2λ
2 + a1λ+ a0 = 0,

where523

a2 =
βA
A

+ ρAA+
δN
R

+RδP + ρPP + ρNN

a1 =
βA
A

(
δN
R

+RδP + ρPP + ρNN

)
+ ρPP (RδP + δP )

+ρNN

(
δN
R

+ δN

)
+ ρAA

(
δN
R

+RδP

)
a0 =

βA
A

(
ρPP (RδP + δP ) + ρNN

(
δN
R

+ δN

))
.

Since all parameters and state variables are positive, we observe that a2, a1, a0 > 0 and a2a1 > a0.524

Thus by the Routh-Hurwitz criterion all solutions have a negative real part, and the fixed point525

(A1, P1, N1) is stable.526

Thus we have shown that there is either a single, stable fixed point with P = N = 0, or else527

this fixed point is unstable and there is a second, stable fixed point with P,N > 0.528
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