

Optimal control of Multiple Myeloma assuming drug evasion and off-target effects

James G. Lefevre^{1,2}, Brodie A.J. Lawson^{3,2}, Pamela M. Burrage^{3,2}, Diane M. Donovan^{1,2}, Kevin Burrage^{3,2,4}

¹School of Mathematics and Physics, The University of Queensland, Brisbane, 4072, Australia

²ARC Centre of Excellence, Plant Success in Nature and Agriculture

³Queensland University of Technology, Australia

⁴Visiting Professor, Department of Computer Science, University of Oxford, UK

June 6, 2024

1 **Abstract**

2 Multiple Myeloma (MM) is a plasma cell cancer that occurs in the bone marrow. A leading
3 treatment for MM is the monoclonal antibody Daratumumab, targeting the CD38 receptor,
4 which is highly overexpressed in myeloma cells. In this work we model drug evasion via loss of
5 CD38 expression, which is a proposed mechanism of resistance to Daratumumab treatment.
6 We develop an ODE model that includes drug evasion via two mechanisms: a direct effect in
7 which CD38 expression is lost without cell death in response to Daratumumab, and an indirect
8 effect in which CD38 expression switches on and off in the cancer cells; myeloma cells that do
9 not express CD38 have lower fitness but are shielded from the drug action. The model also
10 incorporates competition with healthy cells, death of healthy cells due to off-target drug effects,
11 and a Michaelis-Menten type immune response. Using optimal control theory, we study the
12 effect of the drug evasion mechanisms and the off-target drug effect on the optimal treatment
13 regime. We identify a general increase in treatment duration and costs, with varying patterns
14 of response for the different controlling parameters. Several distinct optimal treatment regimes
15 are identified within the parameter space.

16 **Short title:** Optimal control of Multiple Myeloma

17 **Author summary**

18 In this work we investigate a model of Multiple Myeloma, a cancer of the bone marrow, and
19 its treatment with the drug Daratumumab. The model incorporates proposed mechanisms by
20 which the cancer evades Daratumumab by reduced expression of the receptor CD38, which is the
21 drug target and normally abundant in the cancer cells. The model includes an off-target effect,
22 meaning that the drug treatment destroys some healthy cells alongside the targeted cancer cells.
23 Both mechanisms can reasonably be expected to reduce the efficacy of the drug. We investigate
24 the model using optimal control methods, which are used to find the drug dose over time which
25 best balances the financial and health costs of treatment against cancer persistence, according to a
26 specified cost function. We show that this drug resistance and off-target effect prolongs the optimal
27 treatment and increase the burden of both the disease and drug. We analyse the distinct effects
28 of the controlling parameters on each of these costs factors as well as the time course, and identify
29 conditions under which extended treatment is required, with either intermittent treatment or a
30 steady reduced dose. Extended treatment may be indefinite or for a fixed period.

31 **1 Introduction**

32 Myeloma is a plasma cell cancer that occurs in the bone marrow. Myeloma cells typically form
33 masses of cancerous tissue, and the disease is known as multiple myeloma (MM) when more than
34 one mass is present. Myeloma can crowd out healthy marrow tissue, leading to a range of potential
35 deficiencies, and invade and weaken bone. It may also cause damage via production of abnormal
36 antibodies. A number of treatment options are available, although a complete cure has proved
37 elusive [1], [2].

38 In general, myeloma cells are marked by very high CD38 expression, motivating the use of the
39 monoclonal antibody Daratumumab (Dara), which effectively targets myeloma via several mecha-
40 nisms [3]. However, CD38 is also expressed in a wide range of cell types, resulting in important and
41 complex off-target effects [4]. Daratumumab is a leading treatment for MM, commonly sold under
42 the brand name Darzalex. We note that several other drugs have been developed to treat myeloma,

43 such as Elotuzumab [5], [6] and Lenalidomide [7], which can be used together in combination with
44 the adjunct drug Dexamethasone as a combination treatment for refractory disease [8]. However,
45 in this work we consider treatment using Dara only.

46 Myeloma develops tolerance to Daratumumab. The dynamics are not fully understood, al-
47 though various mechanisms have been proposed and combination therapies and recurrent treat-
48 ment have had clinical success [9]. In this work we focus on one known tolerance mechanism, in
49 which myeloma cells evade Daratumumab via loss of CD38 expression. This may occur passively
50 due to differential response to Dara treatment, leading to a relative increase in myeloma cells with
51 low CD38 expression. There may also be a direct loss of expression (without cell death) in response
52 to drug exposure, as has been shown to occur in red blood cells [10].

53 Using optimal control theory, we investigate how these drug escape and off-target effects impact
54 on effective treatment protocols for Dara that balance the cost of treatment with the burden of
55 disease. We find in general that these effects support a more prolonged treatment regime and
56 drive higher overall costs, and we further investigate the connection between the specific dynamics
57 and the total cost and duration of treatment. Notably, we find that with a linear cost function,
58 the optimal drug dosage over time can have distinct functional forms depending on parameter
59 values. An initial period of maximal dosage may be followed by lower level treatment at constant
60 or reducing dose, possibly after a pause. In certain cases where a more prolonged or indefinite
61 treatment is required, we find that a regular intermittent treatment regime is optimal. This may
62 help to inform maintenance Dara treatment, which has been shown to be effective in some cases
63 [11].

64 1.1 Dynamical systems and optimal control theory

65 Dynamical systems are a class of mathematical model used to study complex time varying systems.
66 The state of a system at any time is represented by one or more numerical *state variables*, and
67 the rate of change of each state variable at a given time is taken to be a function of itself and the
68 other state variables. These functions typically form a system of ordinary differential equations
69 (ODEs), which can be solved or analysed using a range of numerical and analytical techniques,

70 in order to provide insight into the modelled system. First applied by Poincaré to the study of
71 the three body problem in classical mechanics [12], dynamical systems theory has been developed
72 and applied extensively in a wide range of areas. Biological applications were pioneered with the
73 logistic model of Verhulst [13], [14], representing exponential population increase constrained by
74 a maximum carrying capacity. The famous Lotka–Volterra predator-prey model was first used to
75 study interacting chemical species [15], then later applied to an ecological model, showing that the
76 interactions between a prey species and a predator species could produce a continuing oscillation
77 of populations over time [16].

78 Cancer biology typically involves complex interactions of cancer cells with their microenvironment
79 and with a range of immune and other cell types, and a range of dynamical systems models
80 have been developed to help understand this clinically critical biology [17]. State variables represent
81 populations of cells and other relevant species. A number of papers (e.g. [18], [19]) have modelled
82 cancer-immune interactions through a predator-prey framing, with cancer cells as the prey and
83 cytotoxic T-cells, a type of white blood cell which destroy diseased cells, acting as the predator.
84 Modelling of this interaction is of particular interest due to the introduction of CAR T-cell therapy
85 [20], which relies on modified T-cells with an increased capacity to target cancer. A limitation of
86 the predator-prey analogy is that consumption of prey strengthens the predator, whereas in cancer
87 the first-order effect of immune cell “predation” weakens the immune cell population. However,
88 positive feedback may be produced via various second order effects. The appropriate approaches
89 for modelling these complex interactions is the subject of active research [21], [22].

90 Optimal control theory is used to study external interventions in a dynamical system. The
91 *control* is an exogenous variable representing an external force. It is incorporated into the state
92 equations, so that it may influence the rate of change of the state variables. The general form of
93 the ODE system is then

$$\frac{d\mathbf{x}}{dt} = \mathbf{f}(\mathbf{x}, u), \quad (1)$$

94 where $\mathbf{x}(t)$ is the vector of state variables and $u(t)$ is the control. A cost function is defined based
95 on the values of the control and the state variables over a specified time window $[t_0, t_f]$, and the

96 *optimal control* is chosen to minimise this cost function for a given initial state:

$$\mathbf{x}(t_0) = \mathbf{x}_0. \quad (2)$$

97 Since the control may vary freely over the time window, determining the optimal control is a
98 challenging problem in general. Specialised numerical methods are required, with mathematical
99 and numerical constraints that restrict the form of the cost function. Our approach is based on
100 Pontryagin's maximum principle [23]. The cost function must have the form

$$J = \underbrace{\phi(\mathbf{x}(t_f))}_{\text{end state cost}} + \int_{t_0}^{t_f} \underbrace{\mathcal{L}(t, \mathbf{x}(t), u(t))}_{\text{ongoing cost}} dt. \quad (3)$$

101 Cost functions in which \mathcal{L} has a linear dependency on u require bounds to be imposed on u in
102 order to give a well defined solution. The optimal control will generally take the form of a step
103 function, equal to either the lower or upper bound at each time. The bounds typically correspond
104 to “off” and “on”, and this is known as a *bang-bang* control. If \mathcal{L} is a convex function of u the
105 problem is more tractable, generally giving a smoothly varying optimal control without the need
106 to impose bounds. This is known as a continuous control. We will consider cost functions of both
107 types (see Section 1.3).

108 Optimal control theory has been applied to clinical models to find theoretically optimal treat-
109 ment regimes, with controls representing drug dose levels over time and cost functions designed
110 to balance the monetary and health cost of treatment against the burden of disease. Important
111 recent work includes applications to cancer immunotherapy, including generalised Lotka-Volterra
112 predator-prey models [24] and models of combination therapy [25].

113 In this work we take a different approach, incorporating a simple immune response and placing
114 focus instead on the drug escape mechanism and off-target effects discussed above.

115 1.2 Model of myeloma and Daratumumab

116 Crowell et. al. proposed a dynamical system model of blood cancer (ASL) incorporating a com-
117 petition between healthy and cancerous cells for space in the marrow, with proliferation of both
118 populations restricted as the total cell population approaches the carrying capacity [26]. The
119 model features the migration of healthy cells into the compartment from a separate stem cell

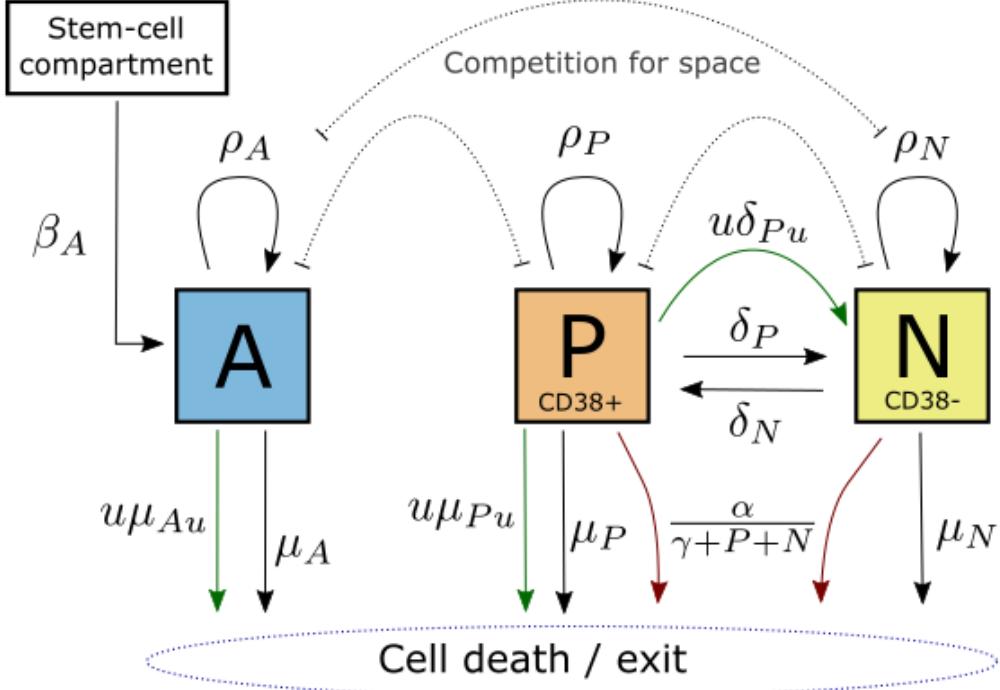


Figure 1: Model of multiple myeloma (MM) treatment with Daratumumab (control, u), including an immune response (red arrows) and drug escape mechanisms via loss of CD38 expression. Three drug actions are included (green arrows): cell mortality and loss of CD38 expression in the CD38+ cancer cells, and off-target cell mortality in healthy cells within the compartment.

120 compartment, and migration of both healthy and cancerous cells into the blood system.

121 Sharp et al. [27] applied an optimal control methodology to a modified version of the Crowell
 122 model, with the addition of an immune response to cancer. The immune response was represented
 123 using a Michaelis-Menten term, which models a bounded immune capacity that initially scales
 124 with the cancer level but has a maximum capacity to remove cancer cells; this has the effect, for
 125 appropriate parameter choices, of allowing stable steady states with and without cancer present.
 126 This modification allows finite term treatment to result in a permanent control of the cancer; the
 127 authors found that this property was required for convergence of the optimal control algorithm.
 128 These works provide a calibrated model that supports the expected dynamics of cancer and cancer
 129 treatment, as well as a proven methodology for obtaining continuous and bang-bang controls.

130 We develop a dynamical systems model of myeloma that adapts the core features of the Sharp

131 model. Our model also contains healthy and cancerous populations of marrow cells that compete
 132 for space, while the downstream blood cell populations are dropped, as they do not affect the marrow
 133 cells or the cost function. The upstream stem cell population is modelled implicitly as an influx of
 134 healthy cells into the marrow (rate β_A) under the assumption that the stem cell population is at
 135 steady state; this causes only a transitory divergence from the Sharp model.

136 In order to incorporate the core drug escape mechanism, we replace the cancer population with
 137 CD38+ and CD38- cancer cell subpopulations P and N , of which only P is susceptible to the drug.
 138 These represent alternate states of a single population, so it is assumed that cells move between
 139 P and N at rates δ_P and δ_N . We will refer to this mechanism as expression switching. Given
 140 the general overexpression of *CD38* in myeloma, we assume that $\delta_N = 10\delta_P$, and that fitness is
 141 significantly lower in N . We also allow for both direct drug-induced loss of *CD38* expression (δ_{Pu}),
 142 and an off-target effect modelled by drug induced death of healthy cells (μ_{Au}). Note that off-target
 143 drug effects can be modelled implicitly in the cost function, but this explicit approach accounts
 144 for interaction with population dynamics.

145 The complete model is as follows, where the three state variables $\mathbf{x} = (A, P, N)$ are each
 146 expressed as a proportion of the marrow carrying capacity:

$$\frac{dA}{dt} = \beta_A + \rho_A A(1 - A - N - P) - \mu_A A - \mu_{Au} u A \quad (4)$$

$$\frac{dP}{dt} = \rho_P P(1 - A - N - P) - \delta_P P + \delta_N N - \delta_{Pu} u P - \mu_P P - \mu_{Pu} u P - \frac{\alpha P}{\gamma + P + N} \quad (5)$$

$$\frac{dN}{dt} = \rho_N N(1 - A - N - P) + \delta_P P - \delta_N N + \delta_{Pu} u P - \mu_N N - \frac{\alpha N}{\gamma + P + N} \quad (6)$$

147 Here the control $u \geq 0$ represents the dosage rate of Daratumumab. The state variables must
 148 also be non-negative to be physically realisable. The model parameters, and the default values
 149 used, are listed below.

Description	Parameter	Value
Influx of healthy cells	β_A	0.1008
Proliferation rate of A (healthy cells)	ρ_A	0.43
Rate of death or other exit for A	μ_A	0.44
Off-target mortality effect on A per unit of Dara (control)	μ_{Au}	0.1
Proliferation rate of P (CD38+ myeloma)	ρ_P	0.28
Rate of death or other exit for P	μ_P	0.048
150 Additional death rate of P per unit of Dara (control)	μ_{Pu}	1
Proliferation rate of N (CD38- myeloma)	ρ_N	0.15
Rate of death or other exit for N	μ_N	0.06
Rate of loss in CD38 expression in P	δ_P	0.003
Rate of gain in CD38 expression in N	δ_N	0.03
Increased loss in CD38 expression in P per unit of Dara	δ_{Pu}	0.2
Immune control rate	α	0.015
Immune control half saturation	γ	0.1

151 Where possible, parameter values were adapted from the Sharp model, which were selected
 152 to produce balanced dynamics supporting both healthy and cancerous states and the capacity
 153 for effective drug control. Proliferation and exit rates are set so that the CD38+ myeloma cell
 154 population P is slightly more fit than the cancer population in the Sharp model, and the CD38-
 155 population N substantially less fit. The effect of a unit of control on the mortality rate of CD38+
 156 cancer cells, μ_{Pu} , is fixed at one; this defines the scale for the control u . Since CD38 is typically
 157 highly overexpressed in myeloma, it can be assumed that μ_{Au} is substantially lower than $\mu_{Pu} = 1$;
 158 we use 0.1 by default, although higher values are also considered. We also choose a conservative
 159 initial value of $\delta_{Pu} = 0.2$, implying the direct loss of expression from Dara is a smaller effect than
 160 mortality, but with higher values considered. Note that in our model, as in the Sharp and Crowell
 161 models, the unit of time is abstract and parameters are not calibrated to real data.

162 1.3 Cost functions and control types

163 An optimal control can only be calculated in reference to a cost function. This function encodes
164 the health cost of cancer presence, as well as the cost of the drug dose over time — both its direct
165 financial cost and health effects due to its side effects. However, the most appropriate mapping
166 between these factors and cost is not obvious, including the correct weighting between cancer and
167 drug dose.

168 Since results will depend on the cost function chosen, we consider two optimal control cost
169 functions, corresponding to a continuous and a bang-bang control, to provide insight into the
170 influence of the cost assumptions and the robustness of any conclusions. In each case the cost
171 function takes the form of (3) with $\phi(\mathbf{x}(t_f)) = 0$; removing the dependence on the final state is
172 generally preferred as it provides more tractable computations. The health cost due to cancer is
173 assumed to depend on the total cancer population, $P + N$.

$$\text{Continuous control: } \mathcal{L} = u^2 + (P + N)^2. \quad (7)$$

$$\text{Bang-bang control: } \mathcal{L} = u + P + N, \text{ where } 0 \leq u \leq 1. \quad (8)$$

174 While it is normally expected that this second cost function will result in convergence to a
175 control solution which is equal to either $u(t) = 0$ or $u(t) = 1$ for each value of t , the iterative
176 update algorithm used means that solutions of this form are not guaranteed. Valid alternative
177 forms were found in some cases, and a modified form of the iterative update algorithm was used to
178 improve convergence in these cases; see Methods 4.3 for details.

179 Note that the cost function cannot take into account the system state outside the selected time
180 window, such as a cancer recurrence, and this must be taken into account in the interpretation of
181 results. For example, the algorithm can return a null optimal control, with $u(t) = 0$ for all t , but
182 this may be due to the time window being too short.

183 **2 Results**

184 **2.1 Drug escape mechanism produces expected resistance to control**

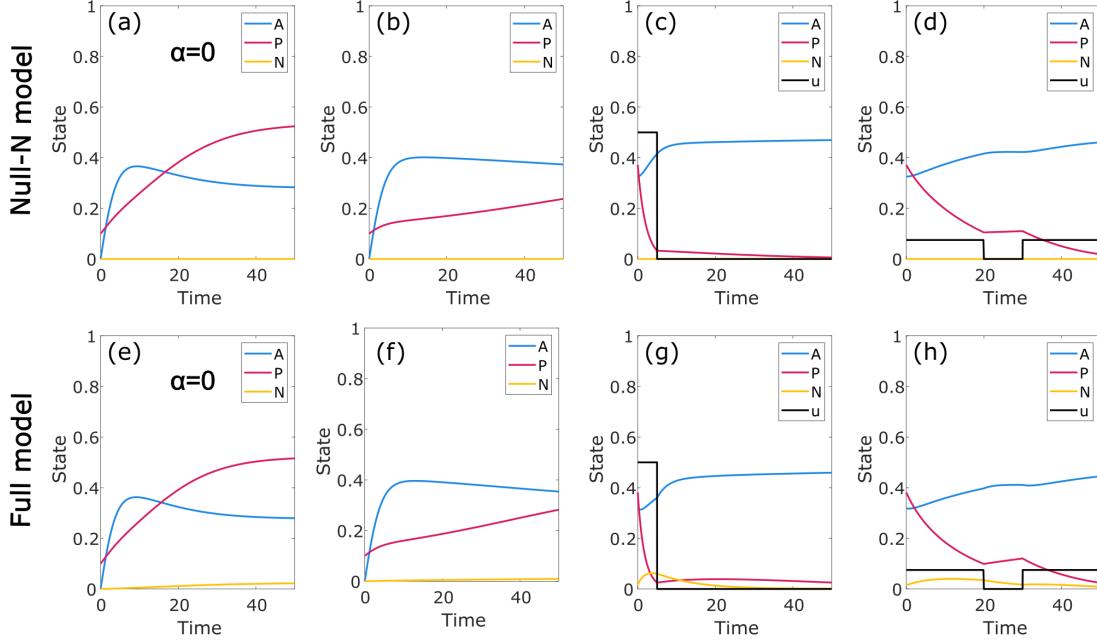


Figure 2: Model validation and comparison with Sharp model. Selected numerical simulations using the fourth order Runge-Kutta method and time step 0.001. The full model developed in this paper (e-h) is compared with a simplified version designed to replicate the Sharp model (Null-N model, a-d), in which the CD38- cancer population is suppressed. In a,b,e,f the initial state is $P = 0.1$, $A = N = 0$ and no control is applied; in a,e we also suppress the immune response, as in Sharp Figure 2. In c,d,g,h the simulation starts at steady state and a prespecified control is applied.

185 Our model extends the Sharp model [27], which we use as a negative control to validate the
 186 drug escape and off-target mortality effects. We can reproduce the core features of the Sharp
 187 model by suppressing the drug resistant CD38- cancer cell population (N) and the off-target drug
 188 effect. We verified this by defining a Null-N model with the parameter changes $N(0) = 0$, $\delta_P = 0$,
 189 $\delta_{Pu} = 0$, $\mu_u = 0$, $\rho_P = 0.27$, $\mu_P = 0.05$. Simulations using this model are shown in Fig. 2 a-d.
 190 Without treatment, the healthy and cancerous cells reach a balance. The presence of the immune

191 response shifts this balance against the cancer without achieving elimination. But if the treatment
192 can reduce the cancer level sufficiently, the immune response will prevent recurrence.

193 In Fig. 2 e-h we show the corresponding simulations using our full model. As intended, in
194 the absence of the drug control the CD38- population plays only a marginal role; this can be
195 seen in e,f. In the presence of the drug control, the role of this population grows and has the
196 effect of diminishing drug efficacy via the escape mechanism. Panels g,h suggest that the drug
197 escape mechanism plays a larger role when the control has higher intensity and shorter duration;
198 we examine this issue more systematically below through the lens of optimal control. For the
199 parameters used here, where the drug's effect on healthy cells is only one tenth of its effect on
200 CD38+ cells, the off-target drug effect is extremely minor.

201 2.2 Drug escape motivates prolonged treatment

202 Using the continuous and bang-bang optimal controls, we can evaluate the overall effect of the
203 model modifications under the default parameters in terms of the cost to treat and optimal pattern
204 of treatment (Fig. 3). Note that cost is not comparable between the two types of optimal control.
205 In both cases, the total control and overall cost is increased relative to the Null-N control, and the
206 duration of treatment is extended. For both control types a high initial drug dose in the full model
207 rapidly reduces overall cancer levels, but at the cost of much higher levels of the drug-immune
208 CD38- population, and recovery of the healthy cell population is inhibited by the off-target effect
209 while the control dose is high. The control is then continued at a lower level that balances these
210 factors, until control of the cancer is achieved.

211 The increases in cost, total control, and duration of treatment relative to the Null-N control
212 are all much smaller for the continuous control than for the bang-bang control. This can likely be
213 attributed to the fact that prolonged, low level treatment is favoured by the quadratic function (7),
214 incurring a low cost. This explains the tapered shape of the continuous control solutions for the
215 Null-N model, and with the addition of the new mechanisms the required prolongation of treatment
216 is small and achieved at low cost. However, the quadratic cost will not reflect the financial cost
217 of drug supply or treatment, and the very low cost associated with prolonged low level treatment

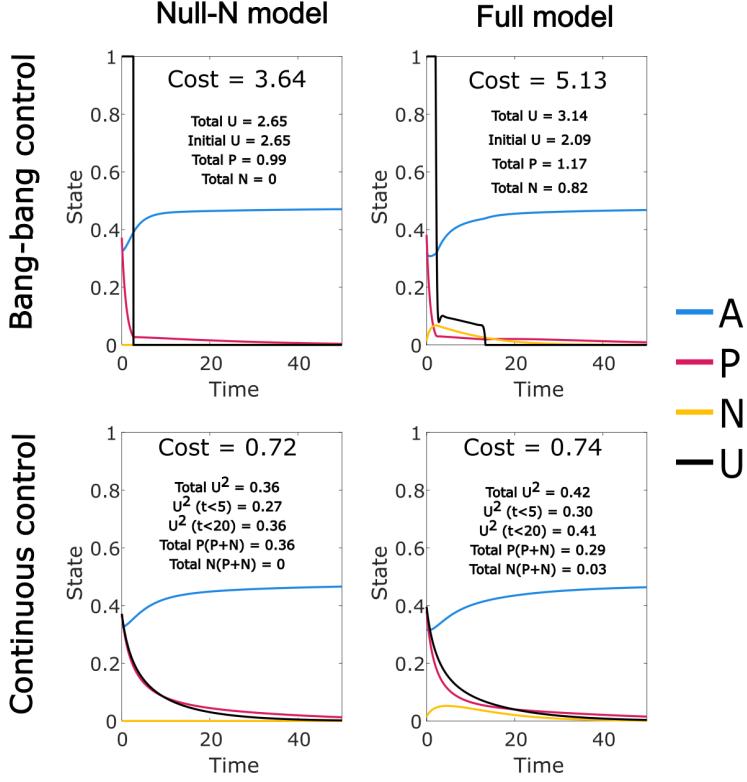


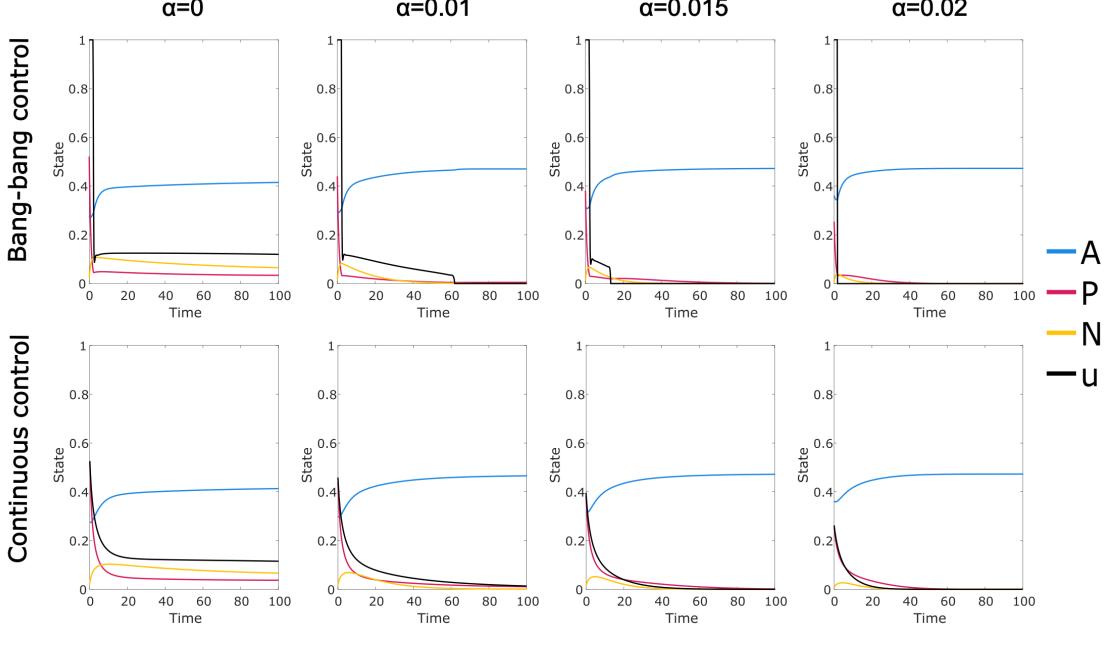
Figure 3: Optimal controls for the full model developed in this paper (Full model) and the simplified version that replicates the Sharp model (Null-N). In each case we give the overall cost function value ((7) or (8)) and its components (control cost and cancer burden). We also note the total control applied in the initial period when the control is at its maximum level. For the continuous control cost function, the total cancer cost $((P + N)^2)$ is allocated proportionately between P and N for the quoted numbers. The drug related cost incurred in the first 5 and 20 time units is also given as an indication of relative control duration. Optimal controls were found using a time period of length 200, plots and numerical results are shown for the initial 50.

²¹⁸ may not be realistic.

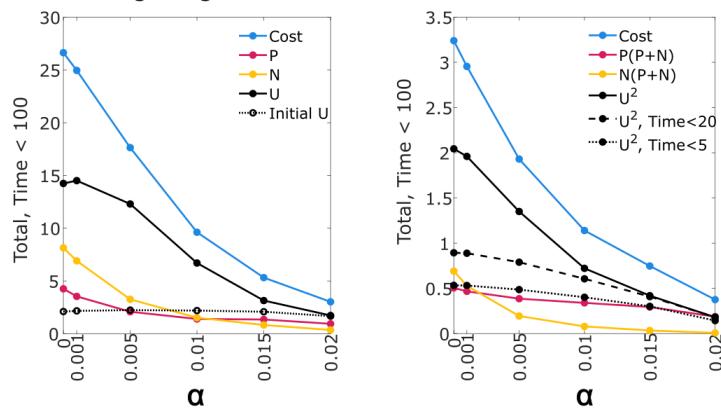
²¹⁹ In contrast, the linear cost function used in the bang-bang control does not discount the cost
²²⁰ of continuing lower level treatment. This cost function typically gives optimal control levels at
²²¹ either the maximum level or zero; in the Sharp model all solutions consisted of an initial period at
²²² maximum level followed by an abrupt and final end of treatment. The fact that in our model the
²²³ bang-bang optimal control includes a period of intermediate level control provides clear support

224 for extended treatment.

225 2.3 Reduced immune response requires extended treatment regime



(a) Optimal bang-bang and continuous control solutions, selected values of α .



(b) Total costs and components up to Time=100.

Figure 4: Optimal control solutions for range of α values (original value $\alpha = 0.015$).

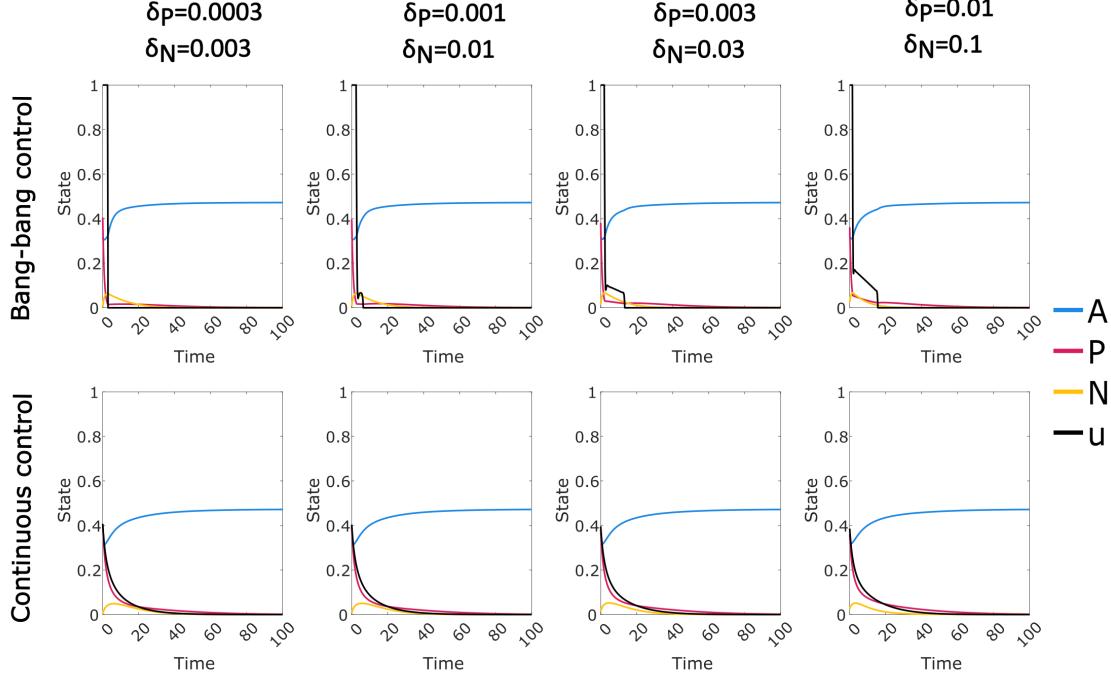
226 The immune response, controlled by parameter α , plays an important role in treatment. In
 227 Fig. 4 we show the affect of varying this parameter on the optimal control. We see that a reduced
 228 immune response increases the cost to treat primarily through prolongation of the control; for the

229 bang-bang control, the initial period of treatment is almost invariant. As the immune response
230 approaches zero, there is a point at which final control of the cancer becomes impossible, and the
231 optimal control transitions to an initial high dose treatment followed by an indefinite maintainance
232 treatment. At this stage the burden of CD38- cancer becomes significant; we can also project
233 ongoing costs from the trendline.

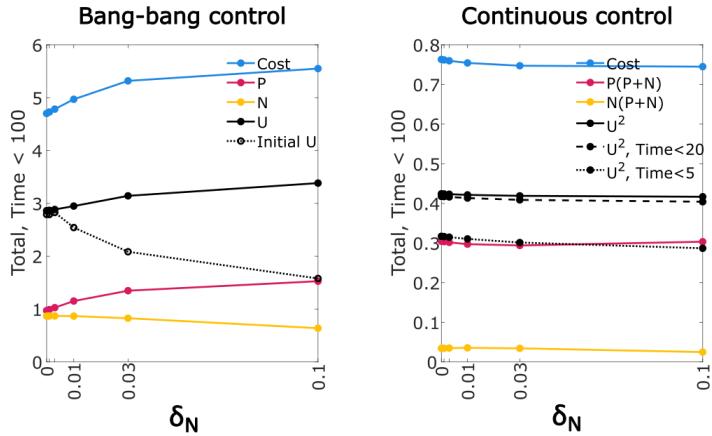
234 We are most interested in model parameters that allow both a persistent cancer state and the
235 possibility of permanent control via drug treatment. We show in Section 4.4 that this requires
236 the Michaelis-Menten immune response; a linear immune response can be regarded as a simple
237 modification of the exit rate parameters and cannot achieve the same effect. However, cases
238 in which the cancer must be managed through ongoing treatment are also of interest, despite
239 posing some difficulty in interpretation due to the finite time window used in the optimal control
240 methodology. From a modelling perspective, it is significant that when the immune response is not
241 sufficient to allow permanent control of the cancer, our algorithm is able to find an optimal steady
242 state treatment regime, as shown in Fig. 4 when $\alpha = 0$. This can be attributed to the additional
243 mechanisms in our model, as it is not the case for the Null-N model. If we consider the Null-N
244 model with a constant level of control applied so that P approaches 0, then A will approach a
245 steady state A_0 and we have $\frac{dP}{dt} \approx P(\rho_P(1 - A_0) - \mu_P - \mu_{Pu}u)$, giving an asymptotically exponential
246 solution for P . Cessation of the control will lead to exponential increase until P is again non-
247 negligible. This implicitly models cancer at arbitrarily low levels, potentially less than a single
248 cell, and also results in convergence failure of the optimal control, due to extreme insensitivity to
249 control timing while P is at a negligible level. Thus we see that our modified model provides an
250 improvement in this case both computationally and as a biologically realistic system.

251 **2.4 Drug escape parameters have distinct and interacting effects on**
252 **model dynamics**

253 The drug escape mechanism we model consists of four added features: an alternative CD38- cancer
254 state with reduced fitness; switching of cancer cells between the CD38+ and CD38- states; a
255 response to treatment in the form of loss of CD38 expression; and mortality of CD38+ but not



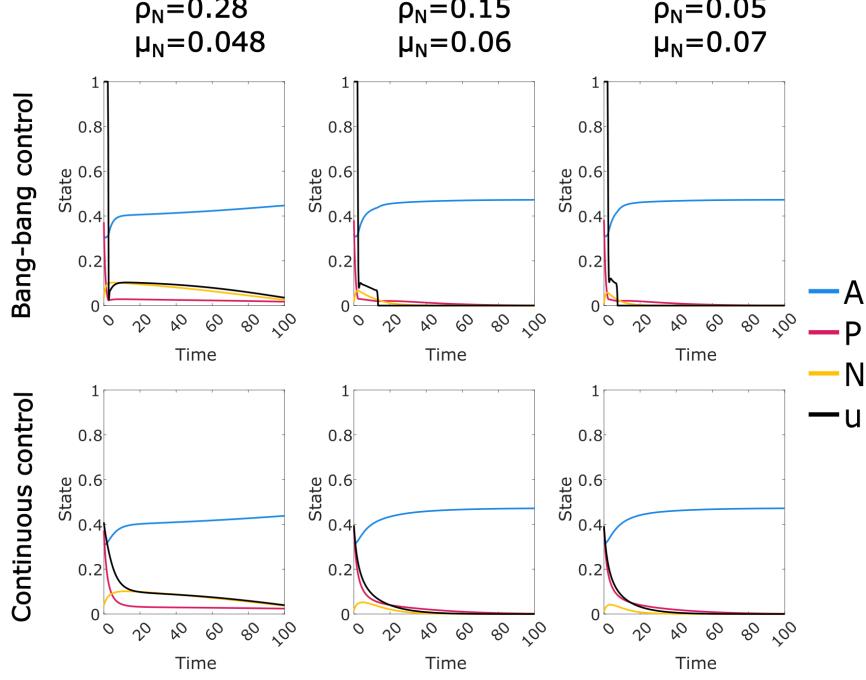
(a) Optimal bang-bang and continuous control solutions, selected values of δ_P and δ_N .



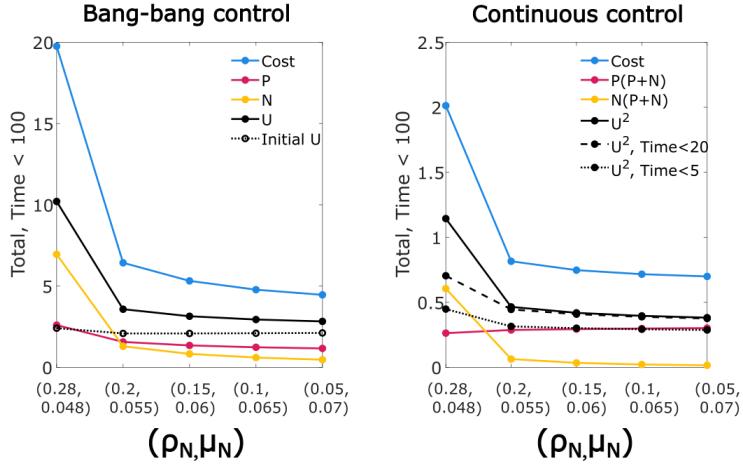
(b) Total costs and components up to Time=100; note $\delta_P = \delta_N/10$.

Figure 5: Effect of expression switching of CD38 expression on optimal treatment: optimal control solutions for range of δ_P and δ_N values (original values $\delta_P = 0.003, \delta_N = 0.03$).

256 CD38- cancer cells in response to the control. Here we consider the sensitivity of the model and
 257 the optimal control solutions to the parameters controlling these features. The mortality effect is
 258 kept fixed with $\mu_{Pu} = 1$ while we consider variations in the other three features, observing distinct
 259 responses in each case.

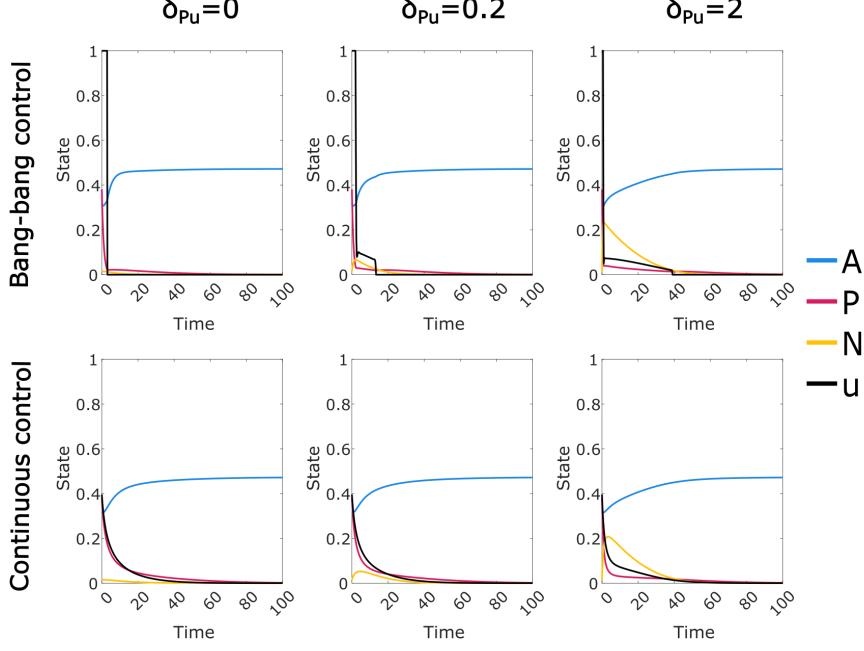


(a) Optimal bang-bang and continuous control solutions, selected values of ρ_N and μ_N .

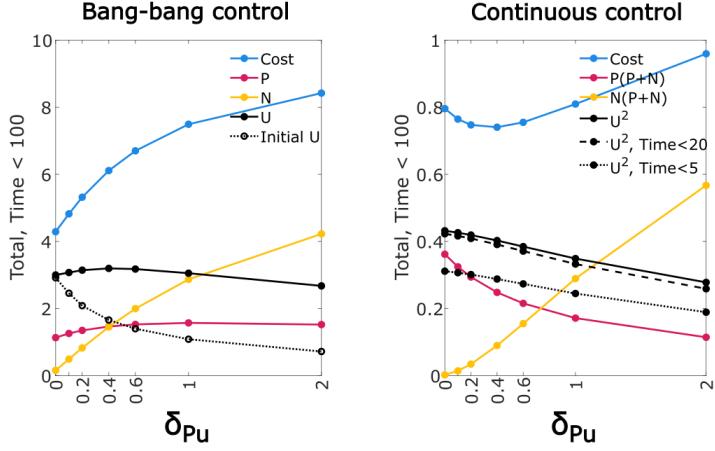


(b) Total costs and components up to Time=100.

Figure 6: Effect of CD38- myeloma fitness on optimal treatment: optimal control solutions for range of ρ_N and μ_N values. The x axis represents fitness of the CD38- cancer cells, with fitness decreasing to the right, and the leftmost value representing fitness equal to the CD38+ cells (original value $\rho_N = 0.15$ and $\mu_N = 0.06$).



(a) Optimal bang-bang and continuous control solutions, selected values of δ_{Pu} .



(b) Total costs and components up to Time=100.

Figure 7: Effect of drug-induced loss of CD38 expression on optimal treatment: optimal control solutions for range of δ_{Pu} values (original value $\delta_{Pu} = 0.2$).

260 For the expression switching mechanism, in which cancer cells lose or gain CD38 expression,
 261 we retain $\delta_N/\delta_P = 10$ to reflect the typical dominance of the CD38+ state, but consider large
 262 coordinated changes in both values (Fig. 5). There is minimal effect on the optimal continuous
 263 control. For the bang-bang control, higher rates of switching lead to a prolonged optimal control,

264 with a control that is higher in aggregate despite a shorter initial period at maximum intensity.
265 The temporal pattern of the control after the initial period also changes: at the highest level
266 of expression switching there is a much stronger reduction over time in the control level. The
267 aggregate cancer level remains relatively constant, although CD38 expression increases.

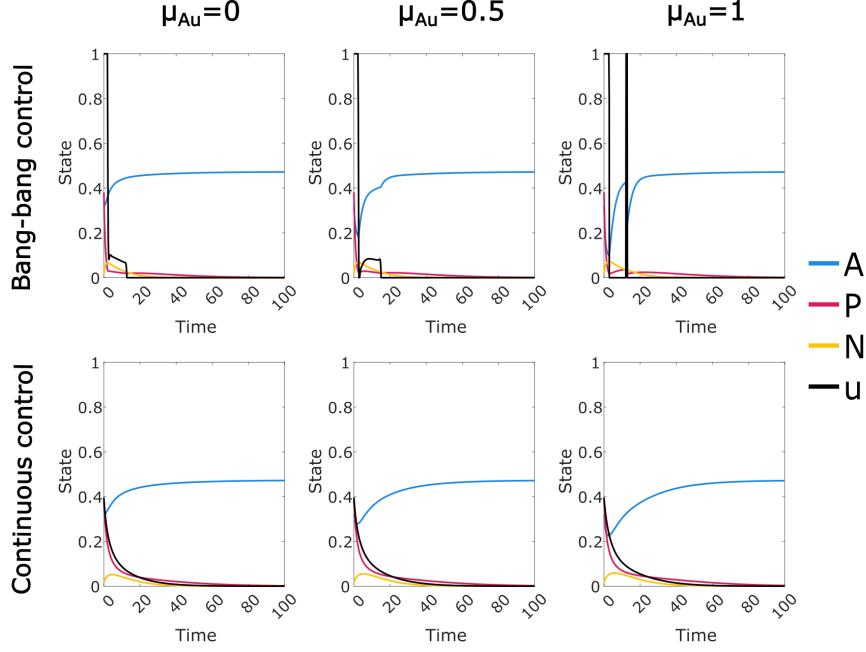
268 The fitness penalty from loss of CD38 expression in cancer cells is represented by a reduction
269 in proliferation and increase in mortality. Plausible variations in the size of this penalty have little
270 effect on outcomes except for a modest reduction in treatment duration at higher fitness penalty
271 (Fig. 6). However, if the fitness penalty is removed entirely (left side) there is a large increase in
272 cost driven by extended control and persistent CD38- cancer cells. Note that we do not attempt
273 to disentangle the effects of changes in proliferation and mortality.

274 Finally, the most complex response is elicited from variation in the rate of drug-induced loss
275 of CD38 expression (Fig. 7). Optimal control solutions appear to show competing effects from
276 this loss of CD38 expression: the drug control induces a CD38- subpopulation that persists under
277 treatment, imposing a health burden and requiring more prolonged treatment (particularly for the
278 bang-bang control). However, the lower fitness of this subpopulation results in a relatively stable
279 or reduced quantity of control required in aggregate.

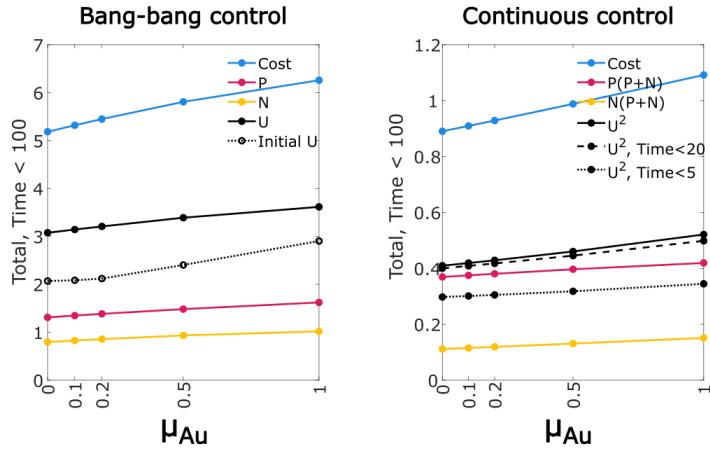
280 The most striking feature we observe from the optimal control analysis of our model is the
281 prolongation of treatment at lower intensity in the bang-bang control, which is significant precisely
282 because it is not typically present in bang-bang controls. Note that while a modified method was
283 required to obtain these solutions, these solutions are not an artefact of the method, as detailed
284 in Methods 4.3. We see that the existence of this phenomenon requires both the induced loss of
285 CD38 expression and expression switching between CD38+ and CD38- states.

286 **2.5 Elevated off-target drug effect produces distinct form of bang-bang
287 control**

288 In addition to modelling drug avoidance via loss of CD38 expression, our model includes an off-
289 target effect, in which the control causes some mortality in healthy cells. While the harm caused
290 by drug side-effects can be modelled through the cost function, including this feature explicitly



(a) Optimal bang-bang and continuous control solutions, selected values of μ_{Au} .



(b) Total costs and components up to Time=100.

Figure 8: Optimal control solutions for range of μ_{Au} values (original value $\mu_{Au} = 0.1$).

291 allows us to examine the effects on the population dynamics, and particularly the interaction with
 292 the drug escape mechanism. Since myeloma cells notably over-express the drug target CD38, we
 293 expect realistic values of the off-target mortality parameter μ_{Au} to be much less than 1. At this
 294 level the off-target effect appears to have limited influence. When we consider higher values (Fig.
 295 8) we see a general pattern of slightly increased costs (both drug and disease burden). However,

296 at $\mu_{Au} = 1$ we see a striking change in the form of the optimal bang-bang control. Instead of a
 297 period of continuing control at reduced intensity, the initial period of maximum intensity control is
 298 followed by a complete cessation of treatment, then a second shorter period of maximum intensity
 299 treatment. During the break in treatment the healthy cell population recovers while the drug
 300 resistant CD38- population declines, but the CD38+ cancer subpopulation also recovers from low
 301 levels. The followup treatment prevents a cancer resurgence, reducing levels to where they can be
 302 controlled by the immune response.

303 **2.6 Optimal bang bang controls may be cyclic or discontinuous**

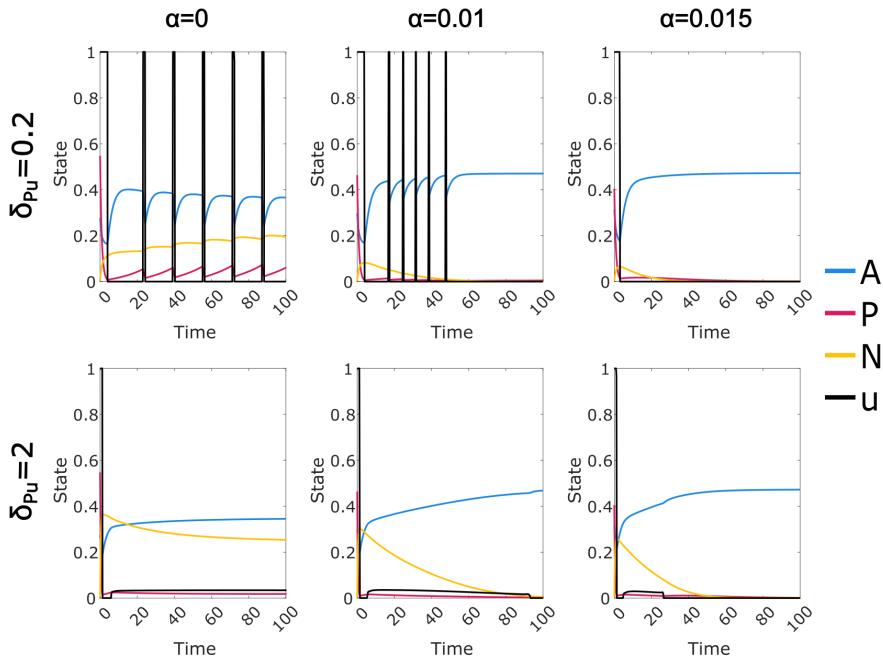


Figure 9: Optimal bang-bang control solutions for $\mu_{Au} = 0.5$, $\delta_P = 0.0003$, $\delta_N = 0.003$, $\alpha = 0, 0.01, 0.015$, $\delta_{Pu} = 0.2, 2$.

304 The bang-bang optimal control solution with $\mu_{Au} = 1$ raises the question of whether the solution
 305 may take other forms depending on the choice of parameters, particularly cyclic or discontinuous
 306 control solutions. The value $\mu_{Au} = 1$ seems biologically implausible, so we performed a systematic
 307 search for alternate forms of the optimal bang-bang control using a somewhat more reasonable
 308 value $\mu_{Au} = 0.5$. The rate of expression switching appeared to influence the shape of the control,

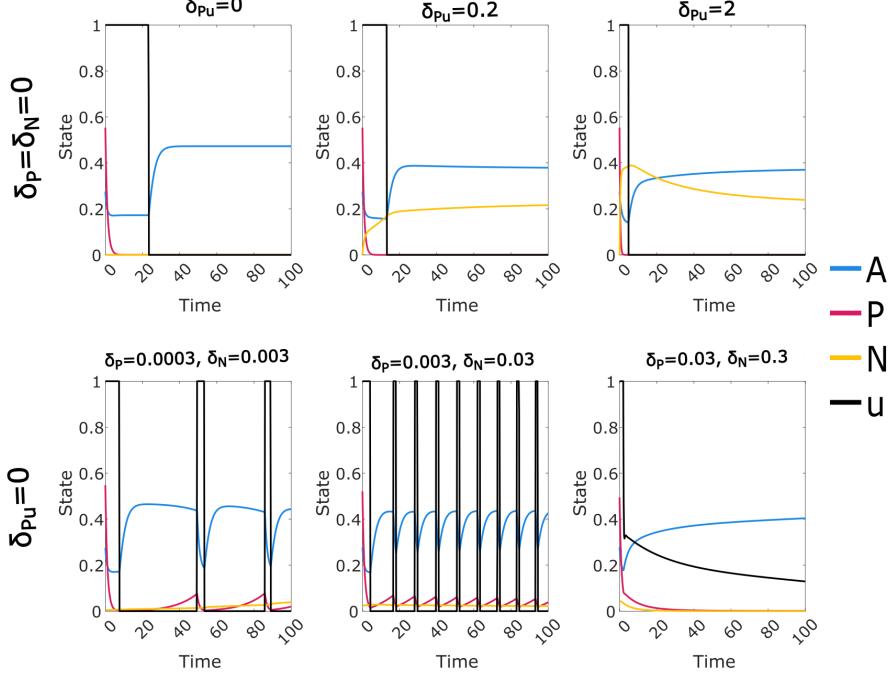


Figure 10: Optimal bang-bang control solutions with either $\delta_P = \delta_N = 0$ or $\delta_{Pu} = 0$; in all cases

$\mu_{Au} = 0.5$ and $\alpha = 0$.

so we considered both 10-fold increase and 10-fold decrease in these values (maintaining a fixed ratio between them). Drug-induced loss of CD38 expression also plays a key role, so we considered the effect of a 10-fold increase in this rate (δ_{Pu}). In addition, we considered removal or reduction in the immune intensity ($\alpha = 0, 0.01$ instead of $\alpha = 0.015$).

We see a remarkable solution form in the case of reduced expression switching, with reduced or zero immune response (Fig. 9, top row). The optimal control takes the form of short periods of control at maximum intensity, separated by longer periods of zero control. The initial treatment period is longer, and is also followed by a longer break; the treatment periods then follow a regular pattern. When the immune response is removed ($\alpha = 0$), permanent control of the cancer is not possible, and the solution tends towards a repeating cyclic pattern. When $\alpha = 0.01$ we see a modified version of this pattern which terminates when suppression by the immune response has been established. Increasing the rate of drug-induced loss of CD38 expression appears to suppress this cyclic solution (Fig. 9, bottom row), however we retain a period of zero control following the initial period of maximum-intensity control. Note that the cases with unchanged or increased rates

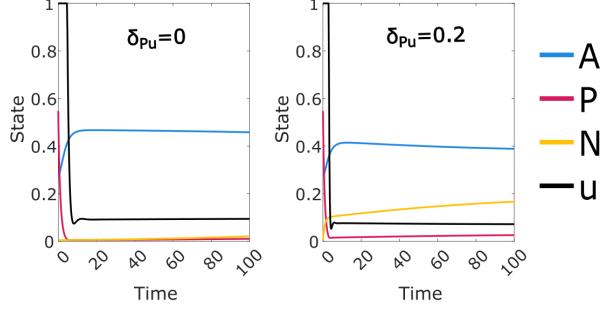


Figure 11: Optimal bang-bang control solutions for $\mu_{Au} = 0$, $\alpha = 0$, $\delta_P = 0.0003$, $\delta_N = 0.003$, and $\delta_{Pu} = 0, 0.2$.

323 of expression switching (δ_P and δ_N) did not give any cyclic or discontinuous solutions (data not
324 shown).

325 Since we see the cyclic solutions (Fig. 9) at the lowest values of δ_P , δ_N and δ_{Pu} that were
326 considered in this experiment, it is natural to ask whether the complete removal of one or both of
327 these features would also give optimal control solutions with a cyclic form. We retain $\mu_{Au} = 0.5$
328 and set $\alpha = 0$, consistent with the clearest examples of cyclic solutions seen. We observe (Fig. 10)
329 that the cyclic solution form appears to be consistent with $\delta_{Pu} = 0$, but not with $\delta_P = \delta_N = 0$.
330 We have used a high value of the off-target mortality parameter μ_{Au} under the assumption that
331 this is required to produce the cyclic solution form. We check this assumption by setting $\mu_{Au} = 0$
332 in two cases with the clearest observed cyclic behaviour (Fig. 11), leading to a loss of the cyclic
333 form.

334 While this analysis does not amount to a full exploration of the parameter space, our investi-
335 gation suggests that the cyclic form requires a high value of μ_{Au} , a low value of α , and a low but
336 non-zero value of δ_N and δ_P .

337 3 Discussion

338 We have presented a model of myeloma treatment using the monoclonal antibody Daratumumab,
339 with which we investigated the impact of a drug escape mechanism and off-target cell mortality
340 using optimal control theory. In our model myeloma cells evade the effect of Daratumumab via

341 loss of CD38 expression, albeit at the cost of reduced fitness. This loss of expression may result
342 from either differential mortality or as a direct result of drug exposure. The proposed mechanisms
343 generally resulted in increased overall costs and extended duration of treatment. These mechanisms
344 are modelled with several rate parameters, and in most cases the relationship between the rate
345 parameters and outcomes such as total drug dose, treatment duration and cancer persistence were
346 found to be at least directionally consistent between the two cost functions considered, suggesting
347 that the identified trends are robust. Exceptions included the rate of expression switching (Fig. 6),
348 which had very little effect on the continuous control, and the rate of drug-induced loss of CD38
349 expression, which had a somewhat inconsistent effect (Fig. 7). The forms of the optimal control
350 solution over time presented a more complex situation, with greater differences between the two
351 cost functions over a range of parameters.

352 The Null-N model, which we use as a negative control that reproduces the core Sharp model,
353 gives optimal control solutions of two forms, depending on the cost function. The linear cost
354 function with bounded control values gives solutions of the expected “bang-bang” form, in which
355 the control starts at the maximum level and then at some time point permanently switches to
356 zero. Intuitively, there is no advantage to delay in treatment, and so the total drug dose necessary
357 to contain the cancer is administered in the minimal possible time. The quadratic cost function
358 gives continuous solutions which begin at a high level then drop continuously, a tradeoff between
359 removing cancer as quickly as possible and the cost advantage of treatment at lower dose.

360 When we included the drug escape and off-target effect mechanisms in the model, we found
361 that for many parameter choices the bang-bang solution features a period of lower-intensity or
362 intermittent treatment subsequent to the initial period of maximum level control. We can un-
363 derstand this as a period in which the imperative to treat the cancer must be balanced against
364 the need to allow time for the CD38 expression level in the myeloma cells to recover, so that the
365 drug effectiveness is restored. Recovery of the healthy cell population may also be a factor in this
366 pattern.

367 The use of the quadratic cost function is motivated by the observation that the health burden of
368 both disease and drug treatment will potentially increase at a super-linear rate; double the amount

369 of drug or cancer causes more than twice the harm. However, this cost function also promotes
370 extended treatment at very low dose, and the resulting tapering off of treatment appears to partly
371 obscure the effect of the drug escape mechanism; the effect of our model modification is lower
372 when using the quadratic cost function, particularly in terms of the prolongation of treatment.
373 This tapering effect should be interpreted with appropriate caution in real world applications:
374 below some level, the quadratic cost function will not fairly reflect the fixed financial cost of
375 Daratumumab, or the practicalities of drug administration by diffusion. In contrast, for “bang-
376 bang” control solutions using the linear cost function any period of ongoing control at a reduced
377 level can be reasonably attributed to the biological mechanisms that we model.

378 Bang-bang controls for the full model take a range of forms, depending on the parameter values.
379 These include the simple form with an initial period of maximum control and then no subsequent
380 treatment. Higher levels of CD38 expression switching (δ_P and δ_N) and drug-induced loss of CD38
381 expression (δ_{Pu}) produce controls with an intermediate period of ongoing control at a reduced
382 level. Lower drug-induced loss of expression and lower but non-zero levels of expression switching,
383 together with an elevated off-target effect (μ_{Au}), tend to produce periodic control solutions with
384 intermittent control at the maximum level. Both of these more complex forms are promoted by
385 a reduced immune response. Insufficient immune response results in optimal control solutions
386 in which indefinite continuation of treatment is required, either intermittent, or continuous at a
387 reduced level.

388 We briefly note some limitations of this study. Although the identification of distinct optimal
389 control forms depending on the various rate parameters is of considerable interest, this is principally
390 theoretical. It demonstrates that real world optimal treatment regimes may be contingent on such
391 factors, but the mechanisms discussed in [9], for example, are unquantified; the natural variation
392 of CD38 expression between myeloma cells, and the rate at which this changes naturally and in
393 the presence of Daratumumab, is unknown. We also did not attempt to definitively characterise
394 the optimal control solutions across the entire plausible parameter space. This is largely due to
395 the complexity of the system, but the reduction in convergence speed for the more complex bang-
396 bang controls was also a limitation, and improvements to the convergence algorithm could allow

397 a more complete analysis. Finally, a fully realistic cost function for a diffusion treatment such
398 as Daratumumab would most likely incorporate a fixed per-session cost, reflecting factors such as
399 setup and travel. This cannot be directly represented in the form of (3), and finding a method of
400 incorporating such a cost factor could be of value.

401 **3.1 Conclusion**

402 In this work we investigated a drug evasion mechanism proposed by Saltarella et al [9], formalising
403 the mechanism and incorporating it into a dynamical systems model of MM under Daratumumab
404 treatment. Using simulations and optimal control methodology we validated the model, demon-
405 strating that the proposed evasion mechanism can lead to effective resistance. We found a stronger
406 resistance to higher drug dosage, resulting in an increase in both the cost and duration of treat-
407 ment. We also demonstrated that our model is effective at representing disease under conditions
408 in which a complete cure is impossible, and found optimal control solutions in these cases that
409 include optimised ongoing treatment. Acknowledging the caveats discussed above, we also found
410 several distinct functional forms for the optimal control across the plausible parameter space (using
411 a linear cost function). This indicates that the optimal pattern of treatment may vary considerably
412 depending on the cancer cell dynamics as well as patient characteristics such as the strength of
413 immune response. While this analysis is theoretical, we have shown that the approach provides a
414 promising framework for understanding this drug evasion mechanism in the case of Daratumumab
415 in MM or any analogous system, and has the potential to inform empirical investigations leading
416 to clinical advances.

417 **4 Methods**

418 **4.1 Application of Pontryagin's maximum principle**

419 We begin by outlining the application of Pontryagin's maximum (minimum) principle to solve an
420 optimal control problem as specified in Section 1.1. Methods broadly follow [27] except for mod-
421 ifications to the convergence algorithm for the bang-bang control and to the method of obtaining

422 equilibrium solutions.

Consider a boundary value problem of the form given by Equations (1) and (2), where $\mathbf{x}(t) = (x_1(t), x_2(t), \dots, x_n(t))$ is a vector of state variables and $u(t)$ is the control. The objective is to choose $u(t)$ to minimise a cost function of the form (3) over a time window $[t_0, t_f]$. We introduce a vector of costate variables $\boldsymbol{\lambda}(t) = (\lambda_1(t), \lambda_2(t), \dots, \lambda_n(t))$ and define a Hamiltonian

$$H(t) = \mathcal{L}(t) + \boldsymbol{\lambda}(t)\mathbf{f}(t).$$

423 The costate variables can be obtained from the necessary conditions

$$\frac{d\boldsymbol{\lambda}}{dt} = -\frac{\partial H}{\partial \mathbf{x}} = -\left(\frac{\partial \mathcal{L}}{\partial \mathbf{x}} + \boldsymbol{\lambda} \frac{\partial \mathbf{f}}{\partial \mathbf{x}}\right) \quad (9)$$

424 and the transversality condition

$$\boldsymbol{\lambda}(t_f) = \left. \frac{\partial \phi}{\partial \mathbf{x}} \right|_{t=t_f}. \quad (10)$$

425 Pontryagin's maximum (minimum) principle [23] states that the cost function is minimised when
426 the control, together with the corresponding state and costate, minimise $H(t)$ for all $t \in [t_0, t_f]$.
427 In general this is not directly solvable, as \mathbf{x} and $\boldsymbol{\lambda}$ must be obtained numerically for a given u . We
428 use the following approach, where at each step $t \in [t_0, t_f]$:

429 **Algorithm 1**

- 430 1. Select an initial value for $u(t)$.
- 431 2. Solve the boundary value problem given by the state Equations (1) and (2) for $\mathbf{x}(t)$.
- 432 3. Solve the boundary value problem given by the costate Equations (9) and (10) for $\boldsymbol{\lambda}(t)$.
- 433 4. Find $u^*(t)$ which minimises $H(t)$ for the given $\mathbf{x}(t)$ and $\boldsymbol{\lambda}(t)$.
- 434 5. Update $u(t)$ based on a combination of the current value and $u^*(t)$.
- 435 6. Check the specified convergence condition; if not met, go to step 2.

436 We use the initial control value $u(t) = 0$ in all cases. The state equations $\mathbf{f}(\mathbf{x}, u)$ are given by
437 Equations (4-6), with $\mathbf{x} = (A, P, N)$. In all cases the initial state is a stable equilibrium with
438 cancer present and no control (see below). We solve the boundary value problems using the fourth

439 order Runge-Kutta method and time step 0.001. In step 3, the boundary value is specified at time
 440 t_f , so the solution is obtained working backwards in time. The details of the costate equations
 441 and of steps 4, 5 and 6 depend on the cost function and the corresponding optimal control form,
 442 as discussed in Section 1.1. We consider the two cases separately below. We use the convergence
 443 condition $|u_{new} - u_{old}|/|u_{new}| < 10^{-3}$.

444 A limitation of the optimal control methodology is that results are valid only for the specified
 445 time window, while we are typically interested in the cost of treatment over an indefinite period.
 446 This includes cases where ongoing treatment is required. If the model parameters do not permit
 447 permanent control of the cancer, the optimal control may include an artefact late in the time
 448 window caused by the artificial end-point. For this reason all optimal controls were obtained using
 449 a time window $[0, 200]$, and only the period $[0, 100]$ or $[0, 50]$ was shown. All costs and other
 450 statistics shown or plotted were recalculated on this interval.

451 4.2 Continuous control

452 We first consider the quadratic cost function $\mathcal{L} = u^2 + (P + N)^2$ (Equation 7), which will typically
 453 correspond to continuous optimal control solutions. Using Equation 9 with $\mathbf{f} = (\frac{dA}{dt}, \frac{dP}{dt}, \frac{dN}{dt})$ given
 454 by (4-6), we obtain the costate equations

$$\begin{aligned} \frac{d\lambda_1}{dt} &= \lambda_1 (-\rho_A(1 - 2A - P - N) + \mu_A + \mu_{Au}u) + \lambda_2 \rho_P P + \lambda_3 \rho_N N \\ \frac{d\lambda_2}{dt} &= -2(P + N) + \lambda_1 \rho_A A + \lambda_3 \left(\rho_N N - \delta_P - \delta_{Pu}u - \frac{\alpha N}{(\gamma + P + N)^2} \right) \\ &\quad + \lambda_2 \left(-\rho_P(1 - A - 2P - N) + \delta_P + \delta_{Pu}u + \mu_P + \mu_{Pu}u + \frac{\alpha(\gamma + N)}{(\gamma + P + N)^2} \right) \\ \frac{d\lambda_3}{dt} &= -2(P + N) + \lambda_1 \rho_A A + \lambda_2 \left(\rho_P P - \delta_N - \frac{\alpha P}{(\gamma + P + N)^2} \right) \\ &\quad + \lambda_3 \left(-\rho_N(1 - A - P - 2N) + \delta_N + \mu_N + \frac{\alpha(\gamma + P)}{(\gamma + P + N)^2} \right). \end{aligned}$$

The end-state cost ϕ in the cost function (3) is set to zero, so the boundary condition (10) gives

$\lambda(t_f) = 0$. We next find $u^*(t)$ that minimises H for all $t \in [t_0, t_f]$. Note that

$$\psi = \frac{\partial H}{\partial u} = 2u - \lambda_1 \mu_{Au} A - \lambda_2 \delta_{Pu} P - \lambda_2 \mu_{Pu} P + \lambda_3 \delta_{Pu} P.$$

Setting $\psi(t) = 0$ gives

$$u^* = (\lambda_1 \mu_{Au} A + \lambda_2 \delta_{Pu} P + \lambda_2 \mu_{Pu} P - \lambda_3 \delta_{Pu} P)/2.$$

Using u^* as the updated value of u will not in general allow for convergence, and so the updated value of u is then taken to be a linear combination of the current value and u^* ,

$$u_{new}(t) = \omega u_{old} + (1 - \omega)u^*.$$

455 The parameter $\omega \in [0, 1)$ can be increased as required to achieve convergence; we used $\omega = 0.9$ in
 456 all cases, with convergence in less than 100 steps.

457 **4.3 Bang-bang control**

We now consider the linear cost function $\mathcal{L} = u + P + N$ (Equation 8). The costate equations differ only slightly from the continuous control case, with the term $-2(P + N)$ replaced by -1 in the equations for $\frac{d\lambda_2}{dt}$ and $\frac{d\lambda_3}{dt}$. The costate boundary condition is again $\boldsymbol{\lambda}(t_f) = 0$. However, a substantially different approach is required for the optimality condition. Note that

$$\psi = \frac{\partial H}{\partial u} = 1 - \lambda_1 \mu_{Au} A - \lambda_2 \delta_{Pu} P - \lambda_3 \mu_{Pu} P + \lambda_3 \delta_{Pu} P.$$

458 Since $\psi(t)$ is not a function of u , the natural approach to minimising H is to increase u where
 459 $\psi(t) < 0$, and decrease u where $\psi(t) > 0$, while limiting the change in u in each step to allow
 460 convergence given the indirect effect of u on H via \mathbf{x} and $\boldsymbol{\lambda}$. However, this will generally result in
 461 u diverging towards $\pm\infty$ at some values of t , and so it is necessary to impose bounds $u_0 < u(t) < u_1$.
 462 Such bounds are typically consistent with the real world system being modelled. In our model,
 463 the drug level cannot be negative and there will be an upper bound on the safe and effective drug
 464 dose; we use the range $[u_0, u_1] = [0, 1]$. In the approach adopted from [27], we set $u^*(t) = u_0$
 465 for $\psi(t) > 0$, and $u^*(t) = u_1$ for $\psi(t) < 0$. We then set $u_{new}(t) = \omega u_{old} + (1 - \omega)u^*$, as for the
 466 continuous control. In some cases we found that this algorithm converged to a solution in which
 467 $u(t)$ is equal to either 0 or 1 for each $t \in [t_0, t_f]$, the expected form of a bang-bang control. But
 468 note that while $u^*(t)$ has this form at each time step by definition, the update method using a
 469 weighted average means that $u(t)$ does not have this form at each step of the iteration. In fact, we
 470 found that for some parameter cases we could not meet the formal convergence criterion for any
 471 choice of ω , yet the control appeared to approximately converge to a form in which $u(t)$ attains
 472 a value intermediate between 0 and 1 for a range of t . The algorithm given above cannot achieve

473 convergence to such a control, since $u^*(t)$ will be equal to 0 or 1 for any given iteration and value
474 of t . In order to achieve convergence to optimal control solutions of this type, we adopted the
475 following convergence strategy:

$$\begin{aligned} u'(t) &= u_{old}(t) - \omega\psi(t) \\ u_{new}(t) &= \max(u_0, \min(u_1, u'(t))). \end{aligned}$$

476 The convergence parameter $\omega > 0$ is not comparable to the parameter in the previous method.
477 Lower values give slower but more reliable convergence. We used $\omega \in \{0.02, 0.01, 0.005\}$. Con-
478 vergence speed was found to be substantially lower than for continuous controls even for simple
479 bang-bang controls using the original algorithm. For the modified algorithm we added an additional
480 secondary convergence condition, calculated every 1000 iterations: $|u_t - u_{t-1000}|/|u_t| < 10^{-2}$. For
481 obtaining controls including periods of intermediate control values using the modified method, con-
482 vergence speed was substantially slower again, with up to 10000 iterations required for convergence,
483 and up to 60000 iterations were required for more complex control solutions.

484 4.4 Equilibria

485 All optimal control calculations use an initial state $\mathbf{x}(t_0)$ in which cancer is present and the system
486 is in stable equilibrium prior to application of the control. We do not have an exact expression for
487 this steady state, so we first find the steady state solution with $N, P > 0$ for the restricted model
488 with $\alpha = 0$ (no immune response). We then run the full model simulation, using the fourth order
489 Runge-Kutta method and time step 0.001 as in the optimal control algorithm, until the absolute
490 single time step change in each state variable is less than the minimum floating point difference
491 (2^{-53}) .

492 In the following we provide the required derivation for the steady states with $\alpha = 0$. We also
493 show that the physically realisable steady states for this model conform to one of two cases: (1)
494 there is exactly one steady state, which has $N = P = 0$ and is stable; (2) there are two steady
495 states, one with $N = P = 0$ which is unstable, and one with $P, N > 0$ which is stable. In particular,
496 this shows that the Michaelis-Menten immune response term is necessary in order to allow for cases
497 in which cancer is present and persistent, but can be permanently controlled by a finite period of

498 drug treatment. Note that in the neighbourhood of $P = N = 0$, the full model is equivalent to a
 499 model with $\alpha = 0$ and modified cancer exit rates $\mu'_P = \mu_P + \alpha/\gamma$ and $\mu'_N = \mu_N + \alpha/\gamma$. Using the
 500 method below we can thus determine exactly when the $N = P = 0$ equilibrium is stable. However,
 501 in the full model a stable $P = N = 0$ equilibrium does not exclude a stable equilibrium with
 502 $N, P > 0$, due to the reduction in the immune component of the exit rates as $P + N$ increases.

503 **4.4.1 Equilibria with zero immune response**

To obtain the steady states of our model with no control and in the absence of the immune response, we let $C = 1 - A - P - N$ and set $\alpha = u = \frac{dA}{dt} = \frac{dP}{dt} = \frac{dN}{dt} = 0$ in (4-6) to give

$$\beta_A + \rho_A AC - \mu_A A = 0 \quad (11)$$

$$\rho_P PC - \delta_P P + \delta_N N - \mu_P P = 0 \quad (12)$$

$$\rho_N NC + \delta_P P - \delta_N N - \mu_N N = 0. \quad (13)$$

504 For physical (non-negative) N and P , we have $A \leq 1 - C$. With (11) this gives the condition
 505 $\rho_A C^2 - (\rho_A + \mu_A)C + \mu_A - \beta_A \geq 0$. The larger zero is greater than 1 and hence non-physical, thus

$$C \leq \frac{\rho_A + \mu_A}{2\rho_A} - \sqrt{\left(\frac{\rho_A - \mu_A}{2\rho_A}\right)^2 + \frac{\beta_A}{\rho_A}}. \quad (14)$$

For any C satisfying this constraint, we obtain A by rearranging Equation 11 to give $A = \beta_A/(\mu_A - \rho_A C)$. We always have a non-cancer steady state in which $P = N = 0$, where C is equal to the bound in (14) and $A = 1 - C$. By (12) and (13), $N = 0 \iff P = 0$, so it remains only to consider the case $N > 0$ and $P > 0$. From (12) and (13) we have

$$\frac{P}{N} = \frac{\delta_N}{\delta_P + \mu_P - \rho_P C} = \frac{\delta_N + \mu_N - \rho_N C}{\delta_P}. \quad (15)$$

This gives a quadratic in C . The larger solution is greater than 1, and hence the only potentially physical solution is

$$C = \frac{\delta_P + \mu_P}{2\rho_P} + \frac{\delta_N + \mu_N}{2\rho_N} - \sqrt{\left(\frac{\delta_P + \mu_P}{2\rho_P} - \frac{\delta_N + \mu_N}{2\rho_N}\right)^2 + \frac{\delta_P \delta_N}{\rho_P \rho_N}}. \quad (16)$$

506 We see that there are two cases. There is always a non-cancerous steady state. If the expression
 507 for C in (16) satisfies condition (14) without exact equality, and gives a positive value for the ratio

508 P/N in (15), then A can then be obtained from (11), and the cancerous cells $N + P = 1 - A - C$
509 can be apportioned according to (15) to give exactly one additional physical solution.

510 We next consider the stability of these equilibria. The Jacobian for the system when $\alpha = u = 0$
511 is

$$J = \begin{bmatrix} \rho_A(C - A) - \mu_A & -\rho_A A & -\rho_A A \\ -\rho_P P & \rho_P(C - P) - \delta_P - \mu_P & -\rho_P P + \delta_N \\ -\rho_N N & -\rho_N N + \delta_P & \rho_N(C - N) - \delta_N - \mu_N \end{bmatrix}.$$

For the non-cancerous fixed point $(A, P, N) = (A_0, 0, 0)$, the characteristic equation $\det(J - \lambda I) = 0$ is

$$(\lambda + \mu_A - \rho_A(1 - 2A_0))((\lambda + \delta_P + \mu_P - \rho_P(1 - A_0))(\lambda + \delta_N + \mu_N - \rho_N(1 - A_0)) - \delta_P \delta_N) = 0.$$

The equilibrium is stable if and only if all solutions have negative real part. The first term gives the solution $\lambda = \rho_A(1 - 2A_0) - \mu_A < \beta_A + \rho_A A_0(1 - A_0) - \mu_A A_0$, which is negative by (11). This leaves the solutions to the quadratic

$$\lambda^2 + \lambda(S_P + S_N) + S_P S_N - \delta_P \delta_N = 0,$$

512 where $S_P = \delta_P + \mu_P - \rho_P(1 - A_0)$ and $S_N = \delta_N + \mu_N - \rho_N(1 - A_0)$. Thus by the Routh–Hurwitz
513 stability criterion, all solutions will have a negative real part if and only if $S_P + S_N > 0$ and
514 $S_P S_N > \delta_P \delta_N$.

515 Let $C = C_1$ be the solution of (16), and define $S'_P = \delta_P + \mu_P - \rho_P C_1$ and $S'_N = \delta_N + \mu_N - \rho_N C_1$.
516 We saw above that there exists a physical equilibrium with non-zero cancer exactly when $C_1 <$
517 $1 - A_0$ and the P/N ratio given by (15) for $C = C_1$ is positive (note that the equality in (15) holds
518 by the definition of C_1). This implies that $S'_P > S_P$, $S'_N > S_N$, $S'_P > 0$ and $S'_N > 0$, and hence
519 either $S_P S_N < S'_P S'_N = \delta_P \delta_N$ or else both S_P and S_N are negative. Thus $(A_0, 0, 0)$ is unstable.
520 Conversely, if $(A_0, 0, 0)$ is stable then $S_P S_N > \delta_P \delta_N = S'_P S'_N$ and $S_P, S_N > 0$. This implies that
521 either $C_1 > 1 - A_0$ or both S'_P and S'_N are negative. Thus there is no real physical solution with
522 $N, P > 0$.

We now suppose that there exists a steady state (A_1, P_1, N_1) with $A_1, P_1, N_1 > 0$, and consider stability at this point. Let $C_1 = 1 - A_1 - P_1 - N_1$ and $R = P_1/N_1 > 0$. By (11) and (15) we have

$\mu_A - \rho_A C_1 = \beta_A/A_1$, $\delta_P + \mu_P - \rho_P C_1 = \delta_N/R$, and $\delta_N + \mu_N - \rho_N C_1 = R\delta_P$, giving

$$\lambda I - J = \begin{bmatrix} \lambda + \frac{\beta_A}{A} + \rho_A A & \rho_A A & \rho_A A \\ \rho_P P & \lambda + \frac{\delta_N}{R} + \rho_P P & -\delta_N + \rho_P P \\ \rho_N N & -\delta_P + \rho_N N & \lambda + R\delta_P + \rho_N N \end{bmatrix}.$$

Noting the cancellation of all terms containing $(\rho_A A)(\rho_P P)$, $(\rho_A A)(\rho_N N)$, or $(\rho_P P)(\rho_N N)$ in $\det(\lambda I - J)$, we obtain the characteristic equation

$$\lambda^3 + a_2\lambda^2 + a_1\lambda + a_0 = 0,$$

523 where

$$\begin{aligned} a_2 &= \frac{\beta_A}{A} + \rho_A A + \frac{\delta_N}{R} + R\delta_P + \rho_P P + \rho_N N \\ a_1 &= \frac{\beta_A}{A} \left(\frac{\delta_N}{R} + R\delta_P + \rho_P P + \rho_N N \right) + \rho_P P (R\delta_P + \delta_P) \\ &\quad + \rho_N N \left(\frac{\delta_N}{R} + \delta_N \right) + \rho_A A \left(\frac{\delta_N}{R} + R\delta_P \right) \\ a_0 &= \frac{\beta_A}{A} \left(\rho_P P (R\delta_P + \delta_P) + \rho_N N \left(\frac{\delta_N}{R} + \delta_N \right) \right). \end{aligned}$$

524 Since all parameters and state variables are positive, we observe that $a_2, a_1, a_0 > 0$ and $a_2 a_1 > a_0$.

525 Thus by the Routh-Hurwitz criterion all solutions have a negative real part, and the fixed point
526 (A_1, P_1, N_1) is stable.

527 Thus we have shown that there is either a single, stable fixed point with $P = N = 0$, or else
528 this fixed point is unstable and there is a second, stable fixed point with $P, N > 0$.

529 References

- 530 [1] Marc S Raab, Klaus Podar, Iris Breitkreutz, Paul G Richardson, and Kenneth C Ander-
531 son. Multiple myeloma. *The Lancet*, 374(9686):324–339, jul 2009. doi: 10.1016/s0140-
532 6736(09)60221-x.
- 533 [2] Kazuhito Suzuki, Kaichi Nishiwaki, and Shingo Yano. Treatment strategy for multiple
534 myeloma to improve immunological environment and maintain MRD negativity. *Cancers*,
535 13(19):4867, sep 2021. doi: 10.3390/cancers13194867.

- 536 [3] Torben Plesner and Jakub Krejcik. Daratumumab for the treatment of multiple myeloma.
537 *Frontiers in Immunology*, 9, jun 2018. doi: 10.3389/fimmu.2018.01228.
- 538 [4] Jakub Krejcik, Tineke Casneuf, Inger S. Nijhof, Bie Verbist, Jaime Bald, Torben Plesner,
539 Khaja Syed, Kevin Liu, Niels W. C. J. van de Donk, Brendan M. Weiss, Tahamtan Ahmadi,
540 Henk M. Lokhorst, Tuna Mutis, and A. Kate Sasser. Daratumumab depletes CD38⁺ immune
541 regulatory cells, promotes t-cell expansion, and skews t-cell repertoire in multiple myeloma.
542 *Blood*, 128(3):384–394, jul 2016. doi: 10.1182/blood-2015-12-687749.
- 543 [5] Yu-Tzu Tai, Myles Dillon, Weihua Song, Merav Leiba, Xian-Feng Li, Peter Burger, Alfred I.
544 Lee, Klaus Podar, Teru Hideshima, Audie G. Rice, Anne van Abbema, Lynne Jesaitis, Ingrid
545 Caras, Debbie Law, Edie Weller, Wanling Xie, Paul Richardson, Nikhil C. Munshi, Claire
546 Mathiot, Hervé Avet-Loiseau, Daniel E. H. Afar, and Kenneth C. Anderson. Anti-cs1 hu-
547 manized monoclonal antibody huluc63 inhibits myeloma cell adhesion and induces antibody-
548 dependent cellular cytotoxicity in the bone marrow milieu. *Blood*, 112(4):1329–1337, August
549 2008. ISSN 1528-0020. doi: 10.1182/blood-2007-08-107292.
- 550 [6] Anthony Markham. Elotuzumab: First global approval. *Drugs*, 76(3):397–403, January 2016.
551 ISSN 1179-1950. doi: 10.1007/s40265-016-0540-0.
- 552 [7] X. Armoiry, G. Aulagner, and T. Facon. Lenalidomide in the treatment of multiple myeloma:
553 a review. *Journal of Clinical Pharmacy and Therapeutics*, 33(3):219–226, June 2008. ISSN
554 1365-2710. doi: 10.1111/j.1365-2710.2008.00920.x.
- 555 [8] Sagar Lonial, Meletios Dimopoulos, Antonio Palumbo, Darrell White, Sebastian Grosicki, Ivan
556 Spicka, Adam Walter-Croneck, Philippe Moreau, Maria-Victoria Mateos, Hila Magen, Andrew
557 Belch, Donna Reece, Meral Beksaç, Andrew Spencer, Heather Oakervee, Robert Z. Orlowski,
558 Masafumi Taniwaki, Christoph Röllig, Hermann Einsele, Ka Lung Wu, Anil Singhal, Jesus
559 San-Miguel, Morio Matsumoto, Jessica Katz, Eric Bleickardt, Valerie Poulart, Kenneth C.
560 Anderson, and Paul Richardson. Elotuzumab therapy for relapsed or refractory multiple
561 myeloma. *New England Journal of Medicine*, 373(7):621–631, August 2015. ISSN 1533-4406.
562 doi: 10.1056/nejmoa1505654.

- 563 [9] Ilaria Saltarella, Vanessa Desantis, Assunta Melaccio, Antonio Giovanni Solimando, Aure-
564 lia Lamanuzzi, Roberto Ria, Clelia Tiziana Storlazzi, Maria Addolorata Mariggò, Angelo
565 Vacca, and Maria Antonia Frassanito. Mechanisms of resistance to anti-CD38 daratumumab
566 in multiple myeloma. *Cells*, 9(1):167, jan 2020. doi: 10.3390/cells9010167.
- 567 [10] Harold C. Sullivan, Christian Gerner-Smidt, Ajay K. Nooka, Connie M. Arthur, Louisa
568 Thompson, Amanda Mener, Seema R. Patel, Marianne Yee, Ross M. Fasano, Cassandra D.
569 Josephson, Richard M. Kaufman, John D. Roback, Sagar Lonial, and Sean R. Stowell. Dara-
570 tumumab (anti-CD38) induces loss of CD38 on red blood cells. *Blood*, 129(22):3033–3037, jun
571 2017. doi: 10.1182/blood-2016-11-749432.
- 572 [11] Philippe Moreau, Cyrille Hulin, Aurore Perrot, Bertrand Arnulf, Karim Belhadj, Lotfi Ben-
573 boubker, Marie C Béné, Sonja Zweegman, Hélène Caillon, Denis Caillot, Jill Corre, Michel
574 Delforge, Thomas Dejoie, Chantal Doyen, Thierry Facon, Cécile Sonntag, Jean Fontan, Mo-
575 hamad Mohty, Kon-Siong Jie, Lionel Karlin, Frédérique Kuhnowski, Jérôme Lambert, Xavier
576 Leleu, Margaret Macro, Frédérique Orsini-Piocelle, Murielle Roussel, Anne-Marie Stoppa,
577 Niels W C J van de Donk, Soraya Wuillème, Annemiek Broijl, Cyrille Touzeau, Mourad Tiab,
578 Jean-Pierre Marolleau, Nathalie Meuleman, Marie-Christiane Vekemans, Matthijs Wester-
579 man, Saskia K Klein, Mark-David Levin, Fritz Offner, Martine Escoffre-Barbe, Jean-Richard
580 Eveillard, Réda Garidi, Tahamtan Ahmadi, Maria Krevvata, Ke Zhang, Carla de Boer, San-
581 jay Vara, Tobias Kampfenkel, Veronique Vanquickenberghe, Jessica Vermeulen, Hervé Avet-
582 Loiseau, and Pieter Sonneveld. Maintenance with daratumumab or observation following
583 treatment with bortezomib, thalidomide, and dexamethasone with or without daratumumab
584 and autologous stem-cell transplant in patients with newly diagnosed multiple myeloma (CAS-
585 SIOPEIA): an open-label, randomised, phase 3 trial. *The Lancet Oncology*, 22(10):1378–1390,
586 oct 2021. doi: 10.1016/s1470-2045(21)00428-9.
- 587 [12] Philip Holmes. Poincaré, celestial mechanics, dynamical-systems theory and "chaos". *Physics*
588 *Reports (review section of Physics Letters)* **193**, No. 3, 1990.

- 589 [13] Pierre-François Verhulst. Notice sur la loi que la population poursuit dans son accroissement.
590 *Correspondance Mathématique et Physique*, 10:113–121, 1838.
- 591 [14] Pierre-François Verhulst. Recherches mathématiques sur la loi d'accroissement de la popula-
592 tion [mathematical researches into the law of population growth increase]. *Nouveaux Mémoires*
593 *de l'Académie Royale des Sciences et Belles-Lettres de Bruxelles*, 18(8), 1845.
- 594 [15] Alfred J. Lotka. Contribution to the theory of periodic reactions. *The Journal of Physical*
595 *Chemistry*, 14(3):271–274, mar 1910. doi: 10.1021/j150111a004.
- 596 [16] Narendra S. Goal, Samarendra C. Maitra, and Elliott W. Montroll. On the volterra and other
597 nonlinear models of interacting populations. *Reviews of Modern Physics*, 43(2):231–276, apr
598 1971. doi: 10.1103/revmodphys.43.231.
- 599 [17] Abicumaran Uthamacumaran. A review of dynamical systems approaches for the de-
600 tection of chaotic attractors in cancer networks. *Patterns*, 2(4):100226, apr 2021. doi:
601 10.1016/j.patter.2021.100226.
- 602 [18] Odelaisy León-Triana, Soukaina Sabir, Gabriel F. Calvo, Juan Belmonte-Beitia, Salvador
603 Chulián, Álvaro Martínez-Rubio, María Rosa, Antonio Pérez-Martínez, Manuel Ramirez-
604 Orellana, and Víctor M. Pérez-García. CAR t cell therapy in b-cell acute lymphoblastic
605 leukaemia: Insights from mathematical models. *Communications in Nonlinear Science and*
606 *Numerical Simulation*, 94:105570, mar 2021. doi: 10.1016/j.cnsns.2020.105570.
- 607 [19] Manju Agarwal and Archana S. Bhadauria. A generalised prey-predator type model of im-
608 munogenic cancer with the effect of immunotherapy. *International Journal of Engineering,*
609 *Science and Technology*, 5(1):66–84, mar 2018. doi: 10.4314/ijest.v5i1.6.
- 610 [20] Robert C. Sterner and Rosalie M. Sterner. CAR-t cell therapy: current limitations and
611 potential strategies. *Blood Cancer Journal*, 11(4), apr 2021. doi: 10.1038/s41408-021-00459-7.
- 612 [21] Irina Kareva, Kimberly A. Luddy, Cliona O'Farrelly, Robert A. Gatenby, and Joel S. Brown.
613 Predator-prey in tumor-immune interactions: A wrong model or just an incomplete one?
614 *Frontiers in Immunology*, 12, aug 2021. doi: 10.3389/fimmu.2021.668221.

- 615 [22] Phineas T. Hamilton, Bradley R. Anholt, and Brad H. Nelson. Tumour immunother-
616 apy: lessons from predator-prey theory. *Nature Reviews Immunology*, may 2022. doi:
617 10.1038/s41577-022-00719-y.
- 618 [23] L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze, and E.F. Mischenko. The mathematical
619 theory of optimal processes [english translation]. 1962.
- 620 [24] N.L. Grigorenko, E.N. Khailov, E.V. Grigorieva, and A.D. Klimenkova. Optimal strategies
621 for car-t therapy for the treatment of leukemia in the lotka-volterra predator-prey model. 27
622 (3):43–58, sep 2021. doi: 10.21538/0134-4889-2021-27-3-43-58.
- 623 [25] Pariya Khalili and Ramin Vatankhah. Optimal control design for drug delivery of immunother-
624 apy in chemoimmunotherapy treatment. *Computer Methods and Programs in Biomedicine*,
625 229:107248, feb 2023. doi: 10.1016/j.cmpb.2022.107248.
- 626 [26] Helena L. Crowell, Adam L. MacLean, and Michael P.H. Stumpf. Feedback mechanisms
627 control coexistence in a stem cell model of acute myeloid leukaemia. *Journal of Theoretical
628 Biology*, 401:43–53, jul 2016. doi: 10.1016/j.jtbi.2016.04.002.
- 629 [27] Jesse A. Sharp, Alexander P Browning, Tarunendu Mapder, Kevin Burrage, and Matthew J
630 Simpson. Optimal control of acute myeloid leukaemia. *Journal of Theoretical Biology*, 470:
631 30–42, jun 2019. doi: 10.1016/j.jtbi.2019.03.006.

632 5 Data availability statement

- 633 There are no primary data in the paper; all code is available on a GitHub repository at <https://github.com/jameslefeuvre/>
634 optimal-control/tree/main.