

1 **EVOLUTIONARY GENOMICS OF A ZOONOTIC PARASITE ACROSS THE**
2 **NEOTROPICAL REALM**

3 Senne Heeren^{1,2,3,*}, Mandy Sanders^{4,†}, Jeffrey Jon Shaw⁵, Sinval Pinto Brandão-Filho⁶,
4 Mariana Côrtes Boité⁷, Lilian Motta Cantanhêde^{7,8}, Khaled Chourabi⁷, Ilse Maes¹, Alejandro
5 Llanos-Cuentas⁹, Jorge Arevalo⁹, Jorge D. Marco¹⁰, Philippe Lemey², James A. Cotton^{4,11},
6 Jean-Claude Dujardin^{1,3}, Elisa Cupolillo^{7,8,*}, Frederik Van den Broeck^{1,2,*}

7 **AFFILIATIONS**

8 ¹ Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium

9 ² Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical
10 Research, Katholieke Universiteit Leuven, Leuven, Belgium

11 ³ Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium

12 ⁴ Wellcome Sanger Institute, Hinxton, United Kingdom

13 ⁵ Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São
14 Paulo (USP), São Paulo, SP, Brazil

15 ⁶ Department of Immunology, Aggeu Magalhães Institute, Fiocruz, Pernambuco, Brazil

16 ⁷ Leishmaniasis Research Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio
17 de Janeiro 21040360, Brazil

18 ⁸ Instituto Nacional de Ciência e Tecnologia de Epidemiologia da Amazônia Ocidental, INCT
19 EpiAmO, Porto Velho 76812100, Brazil

20 ⁹ Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano
21 Heredia, Lima, Peru

22 ¹⁰ Instituto de Patología Experimental, Universidad Nacional de Salta — Consejo Nacional de
23 Investigaciones Científicas y Técnicas (CONICET), Salta, Argentina

24 ¹¹ School of Biodiversity, One Health and Comparative Medicine, College of Medical,
25 Veterinary and Life Sciences, University of Glasgow, Glasgow, UK

26 [†]In Memoriam of Mandy Sanders

27 Co-senior authors: Frederik Van den Broeck and Elisa Cupolillo

28 ***Correspondence:**

29 Senne Heeren (sheeren@itg.be)

30 Frederik Van den Broeck (fvandenbroeck@gmail.com)

31 Elisa Cupolillo (elisa.cupolillo@ioc.fiocruz.br)

32 **ORCID IDs**

33 SH: 0000-0002-5786-258X

34 FVDB: 0000-0003-2542-5585

35 PL: 0000-0003-2826-5353

36 JCD: 0000-0002-9217-5240

37 JAC: 0000-0001-5475-3583

38 JDM: 0000-0002-4408-0941

39 SPBF: 0000-0003-3768-2810

40 EC: 0000-0002-0620-3250

41 **ABSTRACT**

42 The Neotropical realm, one of the most biodiverse regions on Earth, houses a broad range of
43 zoonoses that pose serious public health threats. Protozoan parasites of the *Leishmania*
44 (*Viannia*) *braziliensis* species complex cause zoonotic leishmaniasis in Latin America with
45 clinical symptoms ranging from simple cutaneous to destructive, disfiguring mucosal
46 lesions. We present the first comprehensive genome-wide continental study including 257
47 cultivated isolates representing most of the geographical distribution of this major human
48 pathogen. The *L. braziliensis* species complex is genetically highly heterogeneous, consisting
49 of divergent parasite groups that are associated with different environments and vary greatly
50 in diversity. Apart from several small ecologically isolated groups with little diversity, our
51 sampling identifies two major parasite groups, one associated with the Amazon and the other
52 with the Atlantic Forest biomes. These groups show different recombination histories, as
53 suggested by high levels of heterozygosity and effective population sizes in the Amazonian
54 group in contrast to high levels of linkage and clonality in the Atlantic group. We argue that
55 these differences are linked to strong eco-epidemiological differences between the two
56 regions. In contrast to geographically focused studies, our study provides a broad
57 understanding of the molecular epidemiology of zoonotic parasites circulating in tropical
58 America.

59 **INTRODUCTION**

60 Leishmaniasis is a vector-borne disease that is caused by the protozoan *Leishmania* parasite
61 (Trypanosomatidae) and transmitted by phlebotomine sand flies in tropical regions. It is a
62 spectral disease with many clinical manifestations, including visceral and various forms of
63 cutaneous leishmaniasis (CL) (1). While visceral leishmaniasis is potentially fatal if the patient
64 is not treated, CL is the most common form of the disease and causes a large burden due to
65 social stigma and humiliation (2). It is estimated that globally about 700,000 to 1.2 million CL
66 cases occur each year (3). In South America the annual CL incidence is estimated to lie
67 between 190,000 and 308,000 cases.

68 One of the most important causative agents of CL and the more severe
69 mucocutaneous disease in South America is *Leishmania (Viannia) braziliensis*, a zoonotic
70 parasite circulating principally in wild rodents (4, 5). Human infections appear to be a spillover
71 from the sylvatic transmission cycle. In addition, skin lesions due to *L. braziliensis* have also
72 been found in domestic animals such as equines, dogs and cats (6, 7), suggesting a
73 peridomestic transmission cycle in some areas. In ecological terms, *L. braziliensis* has typical
74 generalist characteristics that allow it to occupy a broad range of ecological niches. This is
75 highlighted by i) its high genetic diversity (8–14), ii) its continent-wide distribution, occurring in
76 at least 15 Central and South American countries (13–16), iii) its vast range of different vector
77 (17, 18) and reservoir (4) host species, and (iv) the existence of a handful of genetically
78 divergent ecotypes (8, 9, 11–14, 19). The *L. braziliensis* parasite is thus an ideal model species
79 for understanding the population structure of zoonotic pathogens circulating across the
80 Neotropical realm.

81 Studies investigating the natural genetic diversity of *L. braziliensis* based on amplified
82 (8) or restriction fragment length polymorphisms (AFLP; RFLP) (12), multilocus microsatellites
83 (9, 20) and whole genome sequence data (11, 13, 14, 21, 22) revealed a high genetic
84 heterogeneity partitioned by the environment. At the continental level, there is a clear
85 distinction between *L. braziliensis* populations circulating in the Amazonian and Atlantic
86 rainforests (23). Parasite molecular heterogeneity appeared to be substantially higher in the
87 Amazon, presumably due to its more diverse vector and reservoir host communities (23). In
88 Peru and Bolivia, studies have shown that the Amazonian *L. braziliensis* is further subdivided
89 into distinct subpopulations that are associated with specific ecoregions (20, 22). In addition,
90 several genetically divergent ecotypes have been reported across South-America (8, 9, 11–
91 13, 19), such as *Leishmania (Viannia) peruviana* that emerged in the Peruvian Andes during
92 forestation changes over the past 150,000 years (13). These observations highlight the
93 extensive diversity of *L. braziliensis* variants infectious to humans.

94 Most studies on the natural variation of *L. braziliensis* were restricted in terms of the
95 geographic scope (11–13, 20, 22, 23), limiting our knowledge on the evolution of the parasite
96 across its range. Here, the goal of our study was to map the continental genome variation and
97 population structure of *L. braziliensis* within a broad ecological context. This was achieved by
98 using whole genome sequencing data of 257 cryopreserved parasite isolates sampled in
99 Argentina, Bolivia, Brazil and Peru, covering a wide range of ecological regions including
100 Andean, Amazonian and Atlantic forests. Capitalizing on an unprecedented genome dataset

101 for this major human pathogen, we gain essential knowledge on the molecular epidemiology
102 of cutaneous leishmaniasis in South America.

103 **RESULTS**

104 ***L. braziliensis* consists of genetically divergent ecotypes**

105 Paired-end whole-genome sequence data were generated from promastigote cultures
106 of 188 *Leishmania* isolates and combined with previously generated sequencing data of 69
107 *Leishmania* isolates, including isolates from different *L. (Viannia)* species for comparative
108 purposes (Supp. Table 1). The median read coverage was 55x (mean = 56x, SD = 21x). A
109 total of 13 genomes were excluded for downstream analyses, either because of i) aberrant
110 allele frequency distributions potentially indicative of mixed infections or contamination (Supp.
111 Fig 1) or ii) a low or fragmented coverage of the accessible genome (i.e. genomic regions with
112 a minimum read depth of 5, mapping quality of 25 and base quality of 25) (Supp. Fig 2A). The
113 resulting dataset consisted of a total of 244 high-quality genomes belonging to the *L.*
114 *braziliensis* species complex (N=226), *Leishmania (Viannia) guyanensis* species complex (N
115 = 5), *Leishmania (Viannia) lainsoni* (N=2), *Leishmania (Viannia) naiffi* (N=4) and *L. eishmania*
116 (*Viannia*) *shawi* (N=1). Six genomes showed more complex ancestries and were characterized
117 as interspecific hybrid parasites (Supplementary Results).

118 Inspection of homozygous and heterozygous SNP counts in our panel of 226 *L. braziliensis*
119 genomes revealed four groups of parasites (Supp. Fig 2B; Table 1), including a large group of
120 *L. braziliensis* parasites found within the Amazonian and Atlantic rainforests (here-after
121 referred to as L1) (N=182, including the M2904 reference strain), one group found sporadically
122 in Brazil, Peru and Bolivia that has previously been associated with both human and canine
123 leishmaniasis (here-after referred to as L2) (N=4) (8, 9, 12), one group that has been described
124 solely in the Paudalho municipality (Pernambuco state) in Northeastern Brazil (here-after
125 referred to as L3) (N=9) (11), and the well-described *L. peruviana* ecotype that is found within
126 the Peruvian highlands (N=31) (13). L2 (60,095 SNPs) showed a significantly larger number
127 of SNPs compared to L1 (30,158 SNPs), L3 (25,620 SNPs) and *L. peruviana* (26,024 SNPs)
128 (pairwise Dunn's tests: Supp. Table 2). L2 appeared genetically to be the most divergent *L.*
129 *braziliensis* group, as indicated by its distant position in the phylogenetic network (Supp. Fig
130 2C) and the high number of homozygous SNPs (55,773 SNPs) called against the *L.*
131 *braziliensis* reference (Supp. Fig 2B).

132 In terms of heterozygous SNPs per isolate, L2 (median 4,406 SNPs) and in particular
133 L3 (median 113 SNPs) and *L. peruviana* (median 98 SNPs) exhibited a significantly lower
134 number compared to L1 (median 13,766 SNPs) (pairwise Dunn's tests: Supp. Table 3; Supp.
135 Fig 2B). Additionally, the population allele frequency spectrum of L1 was dominated by low-
136 frequency variants (i.e. 75% of the alleles having a frequency below 0.1), whereas the majority
137 of SNP loci were entirely fixed in L2 (81.42%), L3 (99.1%) and *L. peruviana* (66.66%) (Supp.
138 Fig 3). Pairwise Dunn's tests on the pairwise genetic distances (Bray-Curtis dissimilarity)
139 confirmed that L2 (L2-L1: Z = 5.53; p = 6.33e-08), L3 (L3-L1: Z = 14.85; p < 2.2e-16) and *L.*
140 *peruviana* (*Lp*-L1: Z = 48.96; p < 2.2e-16) hold a significantly lower genetic variability relative
141 to L1.

142 A phylogenetic network based on 695,229 genome-wide SNPs highlighted the extensive
143 diversity in L1 where individual genomes were separated by relatively long branches, in
144 contrast to the L3 and *L. peruviana* genomes that appear terminally as single divergent
145 offshoots (Fig 1A). This was corroborated by PCA: PC1 (29.9%) mainly explained the large
146 diversity in L1, while PC2 (16.6%) and PC3 (10.4%) separated *L. peruviana* and L3,
147 respectively (Fig 1B,C). Ancestry estimation revealed more insight into the divergence of *L.*
148 *braziliensis* in South America (Fig 1D-F) and its association with the environment (Fig 1G). At
149 the deepest evolutionary level (i.e. K=2) (Fig 1D), there was a clear separation between L1
150 parasites from the Atlantic (i.e. Eastern Highlands) and Amazonian Forests (i.e. Amazonian–
151 Orinocan Lowlands). *L. peruviana* and L3 appeared as separate parasite groups at K=3 (Fig
152 1E) and K=4 (Fig 1F), respectively. Both *L. peruviana* from the Peruvian highlands and L3
153 from the Pernambuco state in Brazil clustered largely with L1 from the Amazonian rainforests
154 at K=2, although the ancestry of L3 seems somewhat more complex (Fig 1D). In addition to
155 the clear distinction between Amazonian and Atlantic L1, we also encountered isolates
156 showing patterns of mixed ancestry between these two distinct populations. These isolates
157 originated geographically from the center of the Amazon, more or less in between the foci of
158 their putative parental lineages.

159 Pairwise F_{st} calculations confirmed the divergent nature of each parasite group, with
160 estimates ranging from 0.11 to 0.77 (Supp. Table 4). Notably, F_{st} was similar when estimated
161 between the Amazonian L1 group on the one hand and Atlantic L1 ($F_{st} = 0.12$), L3 ($F_{st} = 0.14$)
162 or *L. peruviana* ($F_{st} = 0.11$) on the other hand, which may indicate that the Amazonian L1 group
163 represents the ancestral parasite population from which all other parasite groups emerged.
164 Estimates of F_{st} were much higher when compared between Atlantic L1 on the one hand and
165 L3 ($F_{st} = 0.39$) or *L. peruviana* ($F_{st} = 0.40$) on the other hand, and between L3 and *L. peruviana*
166 ($F_{st} = 0.77$) (Supp. Table 4).

167 Continental population diversity and structure of *L. braziliensis* L1

168 The population structure of the L1 group was examined in more detail based on
169 194,791 SNPs (178,400 bi-allelic) that were called across 182 *L. braziliensis* isolates sampled
170 in Argentina, Bolivia, Brazil and Peru (Supp. Table 1). Our analyses predicted that 1,727
171 variants (216 SNPs; 1,511 INDELs) have a deleterious impact on the underlying protein
172 sequences. However, the large majority (96.99%) of these deleterious mutations occurred in
173 low frequencies (< 5%) (Supp. Table 5). For population structure analyses, we retained one
174 genome per clonal group (hereafter N_{unique} refers to the number of genomes after removing
175 multiple clones) (see methods and below for more details) and removed SNPs showing high
176 LD, resulting in a dataset of 106,188 bi-allelic SNPs called across 119 genomes.

177 We identified three major parasite groups showing strong spatio-environmental
178 structuring (Fig 2A-C), whereby each isolate was assigned with at least 85% ancestry to their
179 respective group. The Atlantic (ATL) group ($N_{all}=66$, $N_{unique}=20$) represents parasites isolated
180 in (North-) Eastern Brazil and North Argentina between 1995 and 2016. The West Amazon
181 (WAM) group ($N_{all}=81$, $N_{unique}=67$) contained isolates from Bolivia, Western Brazil and Peru
182 that were sampled between 1990 and 2003. The Central Amazon (CAM) group ($N_{all}=22$,
183 $N_{unique}=20$) contains isolates sampled in Bolivia and West/Central Brazil between 1984 and
184 2015 (Fig 2C). The ATL group (22,414 SNPs) exhibited a significantly lower number of SNPs
185 in comparison to WAM (30,725 SNPs) and CAM (30,254 SNPs) (Kruskal-Wallis test: χ^2
186 =121.81; df = 2; p < 2.2e-16; pairwise Dunn's tests: Supp. Table 6). Isolates showing less than

187 85% ancestry for any of the inferred groups were grouped together into a conglomerate (CON)
188 group of parasites showing patterns of mixed ancestry ($N_{\text{all}}=13$, $N_{\text{unique}}=12$) (Fig 2A). Parasites
189 of this polyphyletic group were sampled between 1975 and 2015, originating from Argentina,
190 Brazil and Peru (Fig 2C).

191 Next to the geographical east-west stratification of *L. braziliensis* L1, there were also
192 indications of ecological differentiation (Fig 2B) as we found a significant association between
193 the three major parasite groups and the biomes where they occur (Chi-squared test of
194 independence: $\chi^2 = 300.83$; $df = 18$; $p = 3.24e-53$). More specifically, ATL was predominantly
195 linked with the Atlantic Forest biome in Brazil and the Western Dry Chaco in Argentina, CAM
196 was mainly associated with the Amazonian and Coastal Lowlands while WAM was more
197 associated with the Amazonian Irregular Plains and Piedmont, the Yungas as well as the
198 Central High Andes (Fig 2B). Pairwise mean F_{st} values revealed a clear differentiation between
199 the Amazonian and Atlantic populations ($F_{\text{st}}(\text{WAM-ATL}) = 0.16 \pm 0.07$; $F_{\text{st}}(\text{CAM-ATL}) = 0.15 \pm 0.06$;
200 Supp. Table 7), which was higher compared to the differentiation within the two Amazonian
201 populations ($F_{\text{st}}(\text{WAM-CAM}) = 0.06 \pm 0.02$) (Supp. Table 7). Assuming K=5 populations (as per
202 lowest cross validation error) revealed the sub-structuring of the WAM population which
203 corresponded with the recently described population structure of Amazonian *L. braziliensis* in
204 Peru and Bolivia (22), and which will not be further discussed here (Fig 2 A,D).

205 We next investigated the distribution of chromosome and gene copy number variants
206 across the different *L. braziliensis* populations. Consistent with previous reports (24–26), we
207 described considerable variation in chromosome copy numbers, including chromosome 31
208 that was polysomic in all individuals (Supp. Fig 4). A PCA based on gene copy number
209 variations (CNVs) revealed a similar population structure as observed based on SNPs,
210 suggesting that each of the three populations WAM, CAM and ATL carries a specific CNV
211 pattern (Fig 3A). We found significant differences in the number of CNVs between WAM-CAM
212 and WAM-ATL, though not between CAM-ATL (Fig 3B,C; Supp. Table 8). Similarly, the CNV
213 burden (i.e. the proportion of the genome covered by CNVs) ranged between 0.001% to 0.83%
214 of the genome, and was significantly different between amplifications of WAM and ATL, and
215 deletions of WAM and CAM or ATL (Fig 3D,E; log rank tests for survival curve differences:
216 Supp. Table 9). The CNV frequency distributions in each population were skewed towards
217 rare variants, with a median CNV frequency of 5% for WAM, 23% for CAM and 7% for ATL
218 (Supp. Fig 5; Supp. Table 10-12). Nine amplifications were present in more than 90% of the
219 individuals in each of the three populations (ANOVA: $F = 268.4$, $df = 2$, $p < 2.2e-16$; adjusted
220 R-squared = 0.27) (Tukey's HSD test: Supp. Table 13), seven of which coding for beta-tubulins
221 on chromosome 33 (ORTHOMCL4), one coding for GP63 on chromosome 10 (ORTHOMCL1)
222 and one conserved hypothetical protein on chromosome 31 (ORTHOMCL2303).

223 **Contrasting recombination histories in Amazonian and Atlantic *L. braziliensis* L1**

224 We identified 18 clusters of near-identical genomes that constituted 44.5% ($N=81$) of
225 the isolates (Supp. Table 1). Genomes within each of the 18 clusters exhibited relatively few
226 heterozygous SNP differences (median=256, min=3, max=2720) and virtually no fixed
227 homozygous SNP differences (homSNPs) (median=0, min=0, max=17) (Supp. Table 14).
228 These observations suggest that there is a lack of recombination and chromosomal re-
229 assortment between parasites of the same cluster (hereafter referred to as clonal groups).
230 Exceptions were isolates M2903 and EMM (133 homSNPs), LSC358_2 and LSC582 (127
231 homSNPs), LSC358_2 and LSC684 (127 homSNPs) and LSC358_2 and LSC392 (126

232 homSNPs). Close inspection revealed that these homSNPs are localized on chromosomes 20
233 (first 360kb) and 35 (300kb-410kb) for M2903 and EMM or on chromosome 29 (1Mb-1.2Mb)
234 for LSC358_2, LSC582, LSC684 and LSC392, and are thus likely the result of gene
235 conversion.

236 We found a strong difference in the number of near-identical genomes between the
237 Amazonian (WAM, CAM) and Atlantic populations (ATL) (Chi-squared test: $\chi^2 = 49.55$; df = 2;
238 $p = 1.742e-11$; Fig 4A). In particular, ATL (53/66, 80.3%) appeared to have a significantly
239 higher clonal prevalence compared to WAM (22/81, 27.2%) and CAM (4/22, 18.2%) (pairwise
240 Fisher's exact tests: Supp. Table 15). No significant differences were found between the
241 populations WAM, CAM and ATL in terms of the number of near-identical genomes per clonal
242 group (Kruskal-Wallis test: $\chi^2 = 7.89$; df=6; $p = 0.25$). However, three of the top four largest
243 clonal groups (group 2: N=32, group 3: N=5 and group 16: N=8) belonged to ATL, while group
244 9 (N=7) belonged to WAM. While all but one clonal group (group 8 found in Peru and Bolivia)
245 were unique to a single country, ten groups were additionally restricted to a single
246 department/state (Fig 4B,C). The remainder of the clonal groups were identified in either two
247 (groups 4, 6, 7, 8 and 17) or three (groups 2 and 16) departments/states.

248 When only accounting for the unique genomes (i.e. retaining one genome per clonal group)
249 we found that the Amazonian populations (WAM, CAM) were characterized by i) a strong LD
250 decay ($r^2 < 0.2$ within 10bp; Fig 4D; Supp. Table 16) and ii) distributions of inbreeding
251 coefficients (F_{is}) centered around zero (0.042 ± 0.21 for WAM and 0.009 ± 0.21 for CAM)
252 (Supp. Fig 6; Supp. Table 17). In contrast, ATL showed a much slower LD decay ($r^2 < 0.2$ from
253 37.1kb or 101 kb; Fig 4D; Supp. Table 16) and distributions of F_{is} deviating negatively from
254 zero ($F_{is} = -0.17 \pm 0.32$) (Supp. Fig 6; Supp. Table 17). We also observed significant
255 differences between the three populations in the number ($\chi^2 = 33.05$, df = 2, $p = 6.67e-08$) and
256 proportion ($\chi^2 = 37.33$, df = 2, $p = 7.84e-09$) of 'loss of heterozygosity' (LOH) regions across
257 their genomes (Fig 4E,F; Supp. Table 18). Overall, ATL showed a much denser LOH pattern
258 throughout the genome (Supp. Fig 7) with an average of 48 LOH blocks, covering on average
259 18% of the genome (Supp. Table 19). In contrast, WAM and CAM each harbored on average
260 26 and 14 LOH blocks encompassing about 5.7% and 4.2% of the genome, respectively.
261 These results suggest that a considerable degree of genetic diversity has been lost in ATL.

262 Finally, we inferred the effective population size (N_e) of each major *L. brasiliensis* L1
263 population with G-PhoCS (Fig 5) and simulated the change of N_e over past generations with
264 MSMC2 (Fig 6). Estimations of N_e were made for different scenarios of historical migration
265 between the Amazon and Atlantic populations: no migration (i), unidirectional migration from
266 the Amazon to the Atlantic (ii) or the Atlantic to the Amazon (iii), and bi-directional migration
267 (iv) (Fig 5, right panel). All estimations were done in triplicate (i.e. using three different sample
268 subsets) per population and per migration scenario (Supp. Table 20). This revealed strong
269 significant differences in N_e between all pairwise combinations (main effects multi-way
270 ANOVA: $F = 96.55$ on 8 and 423 df; $p < 2.2e-16$; adjusted $R^2 = 0.64$) (Tukey's HSD test: Supp.
271 Table 21; Supp. Fig 8). Here, ATL consistently exhibited a significantly lower N_e compared to
272 WAM (factor 1.7), CAM (factor 2.6) and AM (i.e. the ancestral Amazonian population prior to
273 the WAM-CAM divergence) (factor 3.1). This pattern remained consistent across the different
274 migration models and replicate runs (Supp. Table 14; Supp. Fig 8).

Simulations of N_e over time (Fig 6) revealed similar patterns whereby ATL showed lower N_e compared to WAM and CAM for the past 2.74 million generations. Nevertheless, all parasite populations showed a slight decline in N_e for the past 3 million generations until approximately 400,000 generations ago (Fig 6). From then on the N_e seemed to rise again for the three populations until 300,000 to 250,000 generations ago where the N_e of WAM and CAM continued to increase whereas ATL exhibited a second and stronger decline. Calculation of the relative cross-coalescence rates (rCCR) between populations revealed mid-point values (i.e. divergence time estimates; see methods) at around 500,000-300,000 generations ago for the split between the two Amazonian populations (Supp. Fig 9), while this was estimated around 5.2 million to 3.4 million generations ago for the split between the Amazonian and Atlantic populations (Supp. Fig 10).

286 DISCUSSION

287 We confirmed that the *L. braziliensis* species complex is genetically highly
 288 heterogeneous (8, 9, 11–13, 19, 23), consisting of divergent parasite groups that are
 289 associated with the environment and vary greatly in diversity. We described two major,
 290 widespread and genetically diverse groups, one associated with the Amazon and the other
 291 with Atlantic Forest biomes, and several smaller groups with little diversity showing a restricted
 292 geographic and environmental distribution. Parasites of the smaller groups showed stable
 293 long-term genetic diversification and their origin was accompanied by a strong population
 294 bottleneck, as indicated by a genome-wide loss of heterozygosity and fixation of SNP
 295 polymorphisms. Ancestry and F_{ST} estimates suggest that the major admixed Amazonian group
 296 may represent the ancestral population from which the other groups emerged, as indicated
 297 previously for *L. peruviana* (13). This is consistent with historical, biological and
 298 epidemiological data suggesting that *L. braziliensis* and its variants preexisted in Amazonia
 299 before spreading to other regions through clonal expansion (27). Our data thus add to a
 300 growing body of evidence suggesting the existence of distinct evolutionary and ecological
 301 groups of zoonotic *L. braziliensis* parasites in South America (15, 19, 23).

302 Our main goal was to examine the population diversity and structure of the two major
303 genetically diverse parasite groups that are associated with the Amazon and Atlantic Forest
304 biomes. While both forests were connected as a single forest around 30 thousand years ago
305 (kya) (28), they were separated 20 kya after the last major glaciation (29) by more open
306 savannah-like ecosystems (e.g. Cerrados, Gran Chaco, Caatinga) (30). These may thus
307 represent important barriers to natural gene flow of *L. braziliensis* (22), as has been suggested
308 for lianas, didelphids and anuran trypanosomes (31–33). Our demographic models suggest
309 that the two major *L. braziliensis* populations separated 5.2 to 3.4 million generations ago,
310 which would equate to approximately 742 to 340 kya when assuming 7–10 generations per
311 year (34). The two Amazonian populations diverged much earlier, namely between 300 and
312 500 thousand generations ago (30 to 71 kya). Our results revealed a decline in N_e since about
313 2.5 million generations ago (357 kya - 250 kya) and a strong increase, in particular for the
314 Amazonian populations, about 250 thousand generations ago (35 kya - 25 kya). The latter
315 estimate coincides largely with the end of the last major glaciation, which may suggest that
316 subsequent habitat expansions may have promoted a resurgence of this major zoonotic
317 parasite in the Amazon. While these calculations should be considered as rough estimates,
318 they indicate that the history of diversification of *L. braziliensis* is limited to the Pleistocene, an

319 epoch that is characterized by a succession of glacial and interglacial climatic cycles that
320 resulted in changes of suitable habitat for *Leishmania* (13).

321 The two major *L. braziliensis* groups in South-America show vastly different recombination
322 histories. The Amazonian group was characterized by high levels of heterozygosity, low
323 linkage disequilibrium and median inbreeding coefficients approximating zero, as would be
324 predicted for a population experiencing predominantly meiotic recombination. In contrast, the
325 Atlantic group was characterized by a high prevalence of near-identical genomes, a slow
326 decay in linkage disequilibrium, negative median inbreeding coefficients and extensive loss of
327 heterozygosity that likely arose from gene conversion events, as would be predicted for a
328 population experiencing predominant clonal propagation. In addition, the effective population
329 size was at least twice as large in the Amazonian groups compared to the Atlantic group. Our
330 results thus clearly show that these protozoan parasites show a broad spectrum of population
331 structures (13, 22, 35–37). Within this context, we examined the impact of *L. braziliensis*
332 population structure on the frequency and burden of CNVs, which are characteristic to and
333 highly heterogeneous in *Leishmania* (24, 25). Our data revealed that CNV distributions were
334 strongly skewed towards low frequency variants in all populations, suggesting that CNVs are
335 deleterious and subject to strong purifying selection in *L. braziliensis*. We hypothesized that
336 CNVs would be more efficiently purged from the large and stable Amazonian parasite
337 populations than from the smaller and endogamous Atlantic populations, as described in the
338 malaria parasite *Plasmodium falciparum* (38). However, our analysis did not demonstrate that
339 differences in N_e or clonality are sufficient to explain differences in CNV burden and frequency
340 in *L. braziliensis*. This might be because i) differences in population structures are not strong
341 enough to result in differences in purifying selection, ii) *Leishmania* is a predominantly diploid
342 organism (in contrast to *P. falciparum* that has a haploid stage) and/or iii) *Leishmania* can
343 easily change chromosome copy numbers to mitigate the impact of deleterious CNVs (39–
344 41).

345 We argue that the observed demographic differences may be linked to strong eco-
346 epidemiological differences between the two Forest biomes, in particular differences in the
347 type of transmission cycles (23, 42) and forest fragmentation (43). *L. braziliensis* from the
348 Amazon is predominantly circulating in wild animals where human infections appear as
349 spillovers from the sylvatic life cycle, while *L. braziliensis* from the Atlantic is predominantly
350 circulating in synanthropic animals and humans (27). Our observation of high parasite diversity
351 in the Amazon compared to the Atlantic Forest is consistent with other studies where
352 sylvatically transmitted parasite populations were more diverse compared to populations
353 predominated by (peri-)domestic transmission (23, 42, 44, 45). In addition, the Amazon Forest
354 is known as a pristine biome and is the largest contiguous forest in the world. While
355 deforestation in the Amazon poses an extensive threat on the Earth's climate and biodiversity
356 (43, 46), the vast majority of the forest remains contiguous (46, 47). In contrast, the Atlantic
357 Forest is known as a degraded biome as it experienced intense deforestation over the past
358 five centuries (48) and is left highly fragmented along the Atlantic coast (43, 46, 47, 49). Hence,
359 the extensive biodiversity, forest integrity and predominant zoonotic transmission in the
360 Amazon may explain the high diversity of different parasite genotypes sampled in this region,
361 while the genetic uniformity of *L. braziliensis* in the Atlantic may be due to extensive forest
362 fragmentation and predominant synanthropic transmission.

363 In conclusion, our continent-wide sampling revealed that *L. braziliensis* consists of
364 divergent populations that are associated with the environment and vary greatly in diversity
365 and recombination histories. We argue that these differences are linked to anthropogenic
366 environmental disturbances in the Atlantic Forest that altered the originally sylvatic
367 transmission of *L. braziliensis* towards a predominantly (peri-)domestic or synanthropic
368 transmission, resulting in higher proportions of clonal genotypes. These protozoan parasites
369 thus provide an excellent organism to study a broad spectrum of population structures within
370 a single species, and understand the impact of anthropogenic environmental disturbances on
371 the eco-epidemiology of vector-borne diseases (50).

372 **METHODS**

373 **Parasite culturing and DNA sequencing**

374 This study included 257 isolates from different *Leishmania* (*Viannia*) species, mainly *L. (V.)*
375 *braziliensis*, sampled between 1975 and 2016, originating from seven South American
376 countries: Argentina (N=11), Bolivia (N=27), Brazil (N=115), Colombia (N=3), Panama (N=2),
377 Peru (N=95), Venezuela (N=2) and two of unknown origin. Parasite isolates were grown in
378 Schneider culture medium until the end of the log phase at the Oswaldo Cruz Institute (Rio de
379 Janeiro, Brazil. DNA was extracted from 10^7 – 10^8 parasites/ml using the QIAamp DNA Mini kit
380 (QIAGEN) following the manufacturer's protocol. Similar to previous work (13), DNA was
381 sheared into 400-600 bp fragments through ultrasonication (Covaris inc.) and amplification-
382 free Illumina libraries were prepared. One hundred 50 base pair paired end reads were
383 generated on the HiSeq $\times 10$ according to the manufacturer's standard sequencing protocol.
384 Sequence data are available at Sequence Read Archive (SRA) BioProject PRJEB4442.

385 **Variant detection**

386 Paired-end sequencing reads were mapped against the M2904 reference genome, a
387 long-read assembly (available at: <https://tritrypdb.org/>) comprising the 35 autosomal
388 chromosomes (32.73Mb) and the complete sequence of the mitochondrial maxicircle
389 (27.69kb). The mapping of the reads was done using SMALT v0.7.4 (available at:
390 <https://www.sanger.ac.uk/science/tools/smalt-0>). Here we generated the hash index with
391 words of 13 bp long (k=13) that were sampled at every other position in the genome (s=2).
392 Short variants (SNPs and INDELs) were called using GATK's (v.4.0.2) HaplotypeCaller
393 resulting in genotype VCF (gVCF) files for each parasite isolate. Subsequently, all gVCF files
394 were merged using CombineGVCFs after which joint genotyping of all isolates was performed
395 using GenotypeGVCFs. SelectVariants was used to separate SNPs and INDELs which were
396 separately exposed to hard-filtering thresholds using VariantFiltration to exclude low-quality
397 and false-positive variants. SNPs were excluded when: QD < 2.0, FS > 60.0, MQ < 40.0,
398 MQRankSum < -12.5, or ReadPosRankSum < -8.0 (51), DP < 5 or when SNPs occurred
399 within SNP clusters (clusterSize = 3 and clusterWindowSize = 10). INDELs were excluded
400 when: QD < 2.0, FS > 200.0, or ReadPosRankSum < -20.0 (51). In addition, we determined
401 which intervals in the genome were accessible for genotyping in each isolate using GATK's
402 CallableLoci (parameters: –minDepth 5 –minBaseQuality 25 – minMappingQuality 25).
403 Finally, we only retained variants that were present in the accessible genome by using the -
404 intersect function of BEDOPS (52).

405 **Ancestry of *Leishmania (Viannia)* species and their hybrids**

406 A phylogenetic network (NeighborNet), based on uncorrected p-distances (i.e. the proportion
407 of loci where two sequences differ between each other) of genome-wide, concatenated SNPs,
408 was generated, using the NeighborNet (53) and EqualAngle (54) algorithms implemented in
409 SplitsTree v.4.17.0 (55), to infer phylogenetic relationships within the *Leishmania Viannia*
410 subgenus and to identify putative interspecific hybrids (e.g. long terminal branches, reticulated
411 patterns). Hybrid ancestry was subsequently inferred by phylogenetic analysis of (near-)
412 homozygous stretches, as identified by chromosome specific ARDF (alternate allele read
413 depth frequencies at heterozygous sites) along with PCA-based hybrid-ancestry estimation
414 using PCAdmix v.1.0 (56) using *L. braziliensis* L1, *L. guyanensis*/*L. panamensis* and *L. shawi*
415 as putative ancestral groups.
416

417 **Ancestry of the *L. braziliensis* species complex**

418 A phylogenetic network was constructed in a similar way as described above by calculating
419 pairwise uncorrected p-distances based on genome-wide, concatenated, bi-allelic SNPs
420 (683,649 SNPs) using SplitsTree (55). The ecotype structure was further investigated through
421 i) a principal component analysis (PCA) using the 'gIPCA' function of the Adegenet (v.2.1.7)
422 R package (57); and ii) a simple model-based ancestry estimation, using ADMIXTURE v.1.3.0
423 (58), without prior LD pruning. Differences among the number of SNPs (homozygous or
424 heterozygous) among the different sub-lineages were tested by means of pairwise Dunn's
425 tests (FSA v.0.9.4 R-package) (59). A similar comparison was done for comparing the inter-
426 individual pairwise genetic distances, calculated as the Bray-Curtis dissimilarity using the
427 vegan (v.2.6-2) R-package (60), among the different ecotypes. Pairwise F_{st} values between
428 the inferred *L. braziliensis* ecotypes were calculated on a per-site basis over all variable sites
429 using vcftools v.0.1.13 (--weir-fst-pop) (61). Individual genomes with >70% ancestry for a
430 specific ecotype in the K=4 ADMIXTURE model were included in the F_{st} calculations.

431 **Identification of near-identical genomes in *L. braziliensis* L1**

432 Similar to a preceding study (22) groups of potential (near-) identical genomes were
433 identified through branch sharing patterns in the phylogenetic network and low pairwise
434 genetic dissimilarity (<0.02; Bray-Curtis dissimilarity (60)). For each group, fixed SNPs were
435 removed after which counted the number of heterozygous and non-reference homozygous
436 SNPs within each group in a pairwise manner. Near-identical genomes are defined by (near)
437 absence of homozygous SNPs and a relatively low number of heterozygous SNPs (Supp.
438 Table 14).

439 **Population genomic analyses of *L. braziliensis* L1**

440 We constructed a phylogenetic network (NeighborNet) for *L. braziliensis* L1 based on
441 pairwise uncorrected p-distances, calculated from genome-wide concatenated SNPs using
442 SplitsTree (55). The population genomic diversity and structure of *L. braziliensis* L1 was
443 examined in greater detail by two model-based clustering methods: i) ADMIXTURE v.1.3.0
444 (58) ii) fineSTRUCTURE v.4.1.1 (62). ADMIXTURE was run on a LD-pruned SNP panel for K
445 = 1-15 populations with a five-fold cross validation procedure. SNP-pruning was done using
446 plink v.1.9 (63) (--indep-pairwise) by retaining SNPs with an r^2 lower than 0.3 within 50 bp

447 windows sliding over 10 bp. fineSTRUCTURE was used to infer the genomic ancestries
448 among the individual genomes based on haplotype similarity, generating a co-ancestry matrix.
449 Haplotypes were obtained through computational phasing of the genome-wide SNP
450 genotypes, as was done using BEAGLE v.5.2 (64) (default settings). Inferences with
451 fineSTRUCTURE were done after running the algorithm up to 8e06 MCMC iterations (burn-
452 in: 500,000 iterations) and 2e06 maximization steps (for identifying the best tree building
453 state). The ecological association with the population structure was tested using a chi-squared
454 test for independence using the CrossTable function from the gmodels v.2.18.1.1 R package
455 (65). Pairwise F_{st} estimates between the major parasite groups, as inferred by the K=3
456 ADMIXTURE model, were calculated in a similar way as between the different *L. braziliensis*
457 ecotypes. In addition, we also investigated the Hardy-Weinberg equilibrium (HWE) by
458 calculating inbreeding coefficients (Eq.1); and LD decay was examined using PopLDdecay
459 (66). To this end, we calculated both F_{is} and LD decay accounting for spatio-temporal Wahlund
460 effects by subsetting individual genomes into groups of individuals close in time (year of
461 isolation < 3 years apart) and space (sample locality in the same department). In addition, the
462 LD decay was corrected for the population sizes (Eq.2) (67). The clonal prevalences of the
463 inferred populations were compared by means of a Chi-squared test using the stats R-
464 package (68).

465
$$F_{IS} = 1 - \frac{H_O}{H_E} \quad (\text{Eq.1})$$

466 (H_O : observed heterozygosity; H_E : expected heterozygosity)

467
$$r_{corrected}^2 = r^2 - \frac{1}{2N} \quad (\text{Eq.2})$$

468 (N : population size)

469 Finally, we identified Loss-of-Heterozygosity (LOH) regions across the genome as regions in
470 non-overlapping 10kb windows (69), for which the following parameters were used (70):
471 minimum number of SNPs = 1; number of heterozygous SNPs = 0; minimum number of
472 contiguous homozygous 10kb windows = 4; maximum number of 10kb gaps allowed within a
473 LOH region = 1/3 of the windows; and maximum number of heterozygous SNPs allowed in a
474 gap region = 2. Differences in the number and proportions of LOH regions among the inferred
475 populations were tested by means of a Kruskal-Wallis test (stats R-package) (68) along with
476 pairwise Dunn's tests with BH corrected p-values (59).

477 **Estimating effective population size (G-PhoCS)**

478 Effective population sizes (N_e) were estimated using G-PhoCS v.1.3.2 (Generalized
479 Phylogenetic Coalescent Sampler) (71). We estimated N_e per chromosome for four different
480 migration models: i) no migration; ii) unidirectional migration from the Amazon to the Atlantic;
481 iii) unidirectional migration from the Atlantic to the Amazon; and iv) bidirectional migration
482 between the Amazon and Atlantic (Fig 5). Sequence input files were generated based on VCF
483 and BED files per chromosome after excluding SNPs with a MAF < 0.05 and all SNPs present
484 in CDS regions. The chromosomal VCF and BED files were then converted into the G-PhoCS
485 input format using the 'vcf_to_gphocs.py' script from the Popgen Pipeline Platform (available
486 at: <https://github.com/jaredgk/PPP/blob/master/pgpipe/>). As G-PhoCS only allows for a small
487 number of individuals per population, we selected three subsets of five isolates per population
488 (WAM, CAM, ATL) to include in the analyses (Supp. Table 22). Each G-PhoCS analysis was
489 run over 2,500,000 MCMC iterations (excl. burn-in) sampling every 1000 steps and with an

490 initial burn-in of 500,000 iterations. Additional information on the priors of the G-PhoCS
491 analyses is available in Supp. Table 22. The following priors were used: tau-theta-alpha = 1;
492 tau-theta-beta = 20000; mig-rate-alpha = 0.02; mig-rate-beta = 0.0001; locus-mut-rate =
493 CONST; find-finetunes = TRUE; find-finetunes-num-steps = 100; find-finetunes-samples-per-
494 step = 100; tau-initial_{WAM-CAM} = 0.0005; tau-initial_{AM-ATL} = 0.001. Convergence of all theta
495 estimates was assessed by examining their effective sample sizes (ESS) using the Tracerer
496 v.2.2.3 R package (72). We only included G-PhoCS runs where all theta values reached
497 convergence (i.e. ESS > 200). The posterior distributions of the population size estimates were
498 converted into effective population sizes, using $\theta = 4Ne\mu$, assuming the genome-wide
499 mutation rate (μ) of *Leishmania* spp. is 1.99e-09 per bp per generation (36). Following
500 Campagna et al. (2015) (73), we limited the interpretations of the N_e estimates to relative
501 differences to rule out potential biases of the assumed mutation rate on the absolute values.
502 Estimates of N_e were compared between parasite populations, as inferred by ADMIXTURE
503 (K=3) and fineSTRUCTURE, by means of a main effects multi-way ANOVA, accounting for
504 the different sample subsets and migration models using the stats R-package (68). Post hoc
505 pairwise comparisons between populations, migration models and sample subsets were
506 performed using the Tukey's HSD (Honest Significant Difference) method (stats R-package
507 (68)).

508 **Estimating effective population size through time (MSMC2)**

509 Inference of N_e through time was performed using MSMC2 (Multiple Sequentially
510 Markovian Coalescent) (74) and auxiliary scripts from the msmc-tools repository ((available
511 at: <https://github.com/stschiff/msmc-tools>). A mappability mask from the M2904 reference
512 genome was generated using the code from SNPable (available at:
513 <http://lh3lh3.users.sourceforge.net/snpable.shtml>) and the makeMappabilityMask.py script
514 (msmc-tools). All SNPs were phased using BEAGLE v.5.2 (64) and separated per
515 chromosome per individual (only for a subset of individuals; Supp. Table 22). Chromosome
516 and individual specific mask files were generated using the vcfAllSiteParser.py script (msmc-
517 tools) after which MSMC2 input files were generated using the generate_multihetsep.py script
518 (msmc-tools). Effective population sizes for each *L. braziliensis* population were inferred, in
519 triplicate (Supp Table 23), by running MSMC2 with 500 iterations (-i) and 1*2+21*1+1*2 as
520 time segmentation pattern (-p). The coalescence rate estimates from MSMC2 were scaled to
521 effective population size values (Eq.3). The inferred time segments from the MSMC2 output
522 were rescaled to numbers of generations (Eq.4). Finally, to get an idea of when populations
523 have diverged from each other we calculated the relative cross-coalescence rate (rCCR)
524 between WAM and CAM, and between WAM+CAM and ATL. This was achieved by running
525 additional MSMC2 runs for cross population coalescence rate (λ) estimates and subsequently
526 running combineCrossCoal.py (msmc-tools) with the ms mc2 outputs of the cross-population
527 analysis as well as the two separate populations as input files. The rCCR was then calculated
528 based on the two within population coalescence rates and the across population coalescence
529 rate (Eq.5). The rCCR ranges between 0 and 1 where a value of 1 points towards the point
530 when both populations probably coalesced into one population while a value of 0 indicates the
531 point when both populations are assumed to be fully separated. The midpoint (rCCR0.5) can
532 be seen as an estimate for when both populations have sufficiently diverged from each other
533 to consider them as separate populations (74).

534
$$N_e = \frac{\frac{1}{\lambda}}{2\mu} \quad (\text{Eq.3})$$

535 (N_e : effective population size; λ : coalescence rate; μ : mutation rate)

536
$$g = \frac{t}{\mu} \quad (\text{Eq.4})$$

537 (g : number of generations ago; t : time segments; μ : mutation rate)

538
$$rCCR = \frac{2\lambda_{POP1-2}}{\lambda_{POP1} + \lambda_{POP2}} \quad (\text{Eq.5})$$

539 ($rCCR$: relative cross – coalescence rate; λ : coalescence rate)

540 **Variant annotation and estimation of chromosome and gene copy number variation in**
541 ***L. braziliensis* L1**

542 Chromosome and gene copy number variations (CNV) were estimated based on the
543 per-site read depths as obtained with SAMtools depth (-a option). Chromosomal somy
544 variation was estimated assuming diploidy by multiplying the haploid copy number (HCN) by
545 two. Here the HCN was calculated as the division of the median chromosomal read depth over
546 the genome-wide read depth. Differences in chromosomal copy numbers were tested using
547 the Wilks' lambda test (MANOVA) using the Vegan (v.2.6-2) R-package (60). In parallel, gene
548 HCNs were calculated by dividing the median read depth per gene, as per coding DNA
549 sequence (CDS), over the genome-wide median read depth. We defined gene CNVs as an
550 increase (z-score > 3; amplification) or decrease (z-score < -3; deletion) in HCN by subtracting
551 the sample specific HCN over the genome-wide median HCN. Subsequently, the difference in
552 the number of CNVs and the CNV burden across the genome was assessed between the
553 three L1 populations population by means of a Kruskal-Wallis test (stats R-package (68))
554 along with pairwise Dunn's tests with BH corrected p-values (59) and through survival
555 analyses using the Survival (v.3.3-1) (75) and Survminer (v.0.4.9) (76) R-packages,
556 respectively. The potential difference in HCN of the CNVs that were common in all three
557 populations (i.e. occurring in more than 90% of each population) was tested by means of a
558 one-way ANOVA and subsequent Tukey's HSD post-hoc comparison with p-value correction
559 using the BH method. Prior to the ANOVA, several CDS regions were identified as outliers by
560 the Bonferroni outlier test from the car package in R (v.3.1-1) (77). These CDS regions
561 consistently belonged to isolates of clonal group 3 (Supp. Table 1), showing extreme high
562 amplifications. For the purpose of comparing the mean HCN per population in these highly
563 frequent amplifications, we discarded these individuals. In addition, a PCA was performed on
564 the HCN of all CNVs using the 'prcomp' function of the stats R-package (68) Variants were
565 annotated, based on the *L. braziliensis* M2904 annotation file as reference database, using
566 SNPEFF v.5.2 (78) with default parameters.

567 **FUNDING**

568 This work received financial support from the Directie-Generaal Ontwikkelingssamenwerking
569 en Humanitaire Hulp (DGD) (Belgian cooperation and was funded in part by the Wellcome
570 Trust Grant [206194]. F.V.D.B. and S.H. acknowledge support from the Research Foundation
571 Flanders (Grants 1226120N and G092921N). E.C. acknowledges support from Coordenação
572 de Aperfeiçoamento de Pessoal de Nível Superior, Finance Code 001; Conselho Nacional de
573 Desenvolvimento Científico e Tecnológico, Research Fellow, 302622/2017-9; Fundação
574 Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro, CNE, E26-
575 202.569/2019 and E_08/2020 -COLBIO-210.285/2021; GGBN Award: GGI-GGBN-2021-278.
576 L.M.C. acknowledges support from Fundação Carlos Chagas Filho de Amparo à Pesquisa do
577 Estado do Rio de Janeiro, Pós-Doutorado Nota 10 E-26/205.730/2022 and 205.731/2022.

588 **REFERENCES**

- 589 1. R. Reithinger, et al., Cutaneous leishmaniasis. *Lancet Infect. Dis.* **7**, 581–596 (2007).
- 590 2. H. Nuwangi, et al., Stigma associated with cutaneous and mucocutaneous
591 leishmaniasis: A systematic review. *PLoS Negl. Trop. Dis.* **17**, e0011818 (2023).
- 592 3. J. Alvar, et al., Leishmaniasis worldwide and global estimates of its incidence. *PLoS*
593 One **7**, e35671 (2012).
- 594 4. A. L. R. Roque, A. M. Jansen, Wild and synanthropic reservoirs of Leishmania species
595 in the Americas. *Int. J. Parasitol. Parasites Wildl.* **3**, 251–262 (2014).
- 596 5. J. F. Marinho-Júnior, et al., High levels of infectiousness of asymptomatic Leishmania
597 (Viannia) braziliensis infections in wild rodents highlights their importance in the epidemiology
598 of American Tegumentary Leishmaniasis in Brazil. *PLoS Negl. Trop. Dis.* **17**, e0010996
599 (2023).
- 600 6. T. M. Schubach, et al., American cutaneous leishmaniasis in two cats from Rio de
601 Janeiro, Brazil: first report of natural infection with Leishmania (Viannia) braziliensis. *Trans. R.*
602 *Soc. Trop. Med. Hyg.* **98**, 165–167 (2004).
- 603 7. E. L. Yoshida, et al., Human, canine and equine (*Equus caballus*) leishmaniasis due
604 to *Leishmania braziliensis* (= *L. braziliensis braziliensis*) in the south-west region of São Paulo
605 State, Brazil. *Mem. Inst. Oswaldo Cruz* **85**, 133–134 (1990).
- 606 8. S. Odiwuor, et al., Evolution of the *Leishmania braziliensis* species complex from
607 amplified fragment length polymorphisms, and clinical implications. *Infect. Genet. Evol.* **12**,
608 1994–2002 (2012).
- 609 9. G. Van der Auwera, et al., Evaluation of four single-locus markers for Leishmania
610 species discrimination by sequencing. *J. Clin. Microbiol.* **52**, 1098–1104 (2014).
- 611 10. S. Li, R. Jovelin, T. Yoshiga, R. Tanaka, A. D. Cutter, Specialist versus generalist life
612 histories and nucleotide diversity in *Caenorhabditis* nematodes. *Proc. Biol. Sci.* **281**, 20132858
613 (2014).

604 11. B. S L Figueiredo de Sá, A. M. Rezende, O. P. de Melo Neto, M. E. F. de Brito, S. P.
605 Brandão Filho, Identification of divergent *Leishmania (Viannia) braziliensis* ecotypes derived
606 from a geographically restricted area through whole genome analysis. *PLoS Negl. Trop. Dis.*
607 13, e0007382 (2019).

608 12. A. F. Brilhante, et al., *Leishmania (Viannia) braziliensis* type 2 as probable etiological
609 agent of canine cutaneous leishmaniasis in Brazilian Amazon. *PLoS One* 14, e0216291
610 (2019).

611 13. F. Van den Broeck, et al., Ecological divergence and hybridization of Neotropical
612 *Leishmania* parasites. *Proc. Natl. Acad. Sci. U. S. A.* 117, 25159–25168 (2020).

613 14. L. H. Patino, M. Muñoz, L. Cruz-Saavedra, C. Muskus, J. D. Ramírez, Genomic
614 Diversification, Structural Plasticity, and Hybridization in *Leishmania (Viannia) braziliensis*.
615 *Front. Cell. Infect. Microbiol.* 10, 582192 (2020).

616 15. K. Kuhls, et al., Population structure and evidence for both clonality and recombination
617 among Brazilian strains of the subgenus *Leishmania (Viannia)*. *PLoS Negl. Trop. Dis.* 7, e2490
618 (2013).

619 16. G. Herrera, et al., An interactive database of *Leishmania* species distribution in the
620 Americas. *Sci Data* 7, 110 (2020).

621 17. M. Maroli, M. D. Feliciangeli, L. Bichaud, R. N. Charrel, L. Gradoni, Phlebotomine
622 sandflies and the spreading of leishmaniases and other diseases of public health concern.
623 *Med. Vet. Entomol.* 27, 123–147 (2013).

624 18. M. Akhouni, et al., A Historical Overview of the Classification, Evolution, and
625 Dispersion of *Leishmania* Parasites and Sandflies. *PLoS Negl. Trop. Dis.* 10, e0004349
626 (2016).

627 19. F. Van den Broeck, et al., Genome Analysis of Triploid Hybrid *Leishmania* Parasite
628 from the Neotropics. *Emerg. Infect. Dis.* 29, 1076–1078 (2023).

629 20. M. B. De los Santos, I. M. Ramírez, J. E. Rodríguez, P. Beerli, H. O. Valdivia, Genetic
630 diversity and population structure of *Leishmania (Viannia) braziliensis* in the Peruvian jungle.
631 *PLoS Negl. Trop. Dis.* 16, e0010374 (2022).

632 21. H. O. Valdivia, et al., Comparative genomic analysis of *Leishmania (Viannia) peruviana*
633 and *Leishmania (Viannia) braziliensis*. *BMC Genomics* 16, 715 (2015).

634 22. S. Heeren, et al., Diversity and dissemination of viruses in pathogenic protozoa. *Nat.*
635 *Commun.* 14, 8343 (2023).

636 23. E. Cupolillo, et al., Genetic polymorphism and molecular epidemiology of *Leishmania*
637 (*Viannia*) *braziliensis* from different hosts and geographic areas in Brazil. *J. Clin. Microbiol.*
638 41, 3126–3132 (2003).

639 24. M. B. Rogers, et al., Chromosome and gene copy number variation allow major
640 structural change between species and strains of Leishmania. *Genome Res.* **21**, 2129–2142
641 (2011).

642 25. H. Imamura, et al., Evolutionary genomics of epidemic visceral leishmaniasis in the
643 Indian subcontinent. *Elife* **5** (2016).

644 26. S. U. Franssen, et al., Global genome diversity of the Leishmania donovani complex.
645 *Elife* **9** (2020).

646 27. M. C. de A. Marzochi, et al., Anthropogenic Dispersal of Leishmania (Viannia)
647 braziliensis in the Americas: A Plausible Hypothesis. *Frontiers in Tropical Diseases* **2**, 21
648 (2021).

649 28. R. M. D. Ledo, G. R. Colli, The historical connections between the Amazon and the
650 Atlantic Forest revisited. *J. Biogeogr.* **44**, 2551–2563 (2017).

651 29. J. Flenley, M. Bush, *Tropical Rainforest Responses to Climatic Change* (Springer
652 Science & Business Media, 2007).

653 30. E. H. Bucher, Chaco and Caatinga — South American Arid Savannas, Woodlands and
654 Thickets in *Ecology of Tropical Savannas*, (Springer Berlin Heidelberg, 1982), pp. 48–79.

655 31. V. A. Thode, I. Sanmartín, L. G. Lohmann, Contrasting patterns of diversification
656 between Amazonian and Atlantic forest clades of Neotropical lianas (*Amphilophium*,
657 *Bignoniaceae*) inferred from plastid genomic data. *Mol. Phylogenet. Evol.* **133**, 92–106 (2019).

658 32. A. Fabrício Machado, et al., Recent past connections between Amazonian and Atlantic
659 forests by comparative phylogeography and paleodistribution models for didelphid mammals.
660 *Evol. Ecol.* (2024). <https://doi.org/10.1007/s10682-024-10292-6>.

661 33. R. C. Ferreira, et al., Morphological and molecular diversity and phylogenetic
662 relationships among anuran trypanosomes from the Amazonia, Atlantic Forest and Pantanal
663 biomes in Brazil. *Parasitology* **134**, 1623–1638 (2007).

664 34. M. Koffi, et al., Population genetics of *Trypanosoma brucei gambiense*, the agent of
665 sleeping sickness in Western Africa. *Proc. Natl. Acad. Sci. U. S. A.* **106**, 209–214 (2009).

666 35. J. D. Ramírez, M. S. Llewellyn, Reproductive clonality in protozoan pathogens-truth or
667 artefact? *Mol. Ecol.* **23**, 4195–4202 (2014).

668 36. M. B. Rogers, et al., Genomic confirmation of hybridisation and recent inbreeding in a
669 vector-isolated Leishmania population. *PLoS Genet.* **10**, e1004092 (2014).

670 37. E. Inbar, et al., Whole genome sequencing of experimental hybrids supports meiosis-
671 like sexual recombination in Leishmania. *PLoS Genet.* **15**, 1–28 (2019).

672 38. I. H. Cheeseman, et al., Population Structure Shapes Copy Number Variation in
673 Malaria Parasites. *Mol. Biol. Evol.* **33**, 603–620 (2016).

674 39. Y. Sterkers, et al., Novel insights into genome plasticity in Eukaryotes: mosaic
675 aneuploidy in Leishmania. Mol. Microbiol. **86**, 15–23 (2012).

676 40. F. Dumetz, et al., Modulation of Aneuploidy in Leishmania donovani during Adaptation
677 to Different In Vitro and In Vivo Environments and Its Impact on Gene Expression. MBio **8**
678 (2017).

679 41. G. H. Negreira, et al., High throughput single-cell genome sequencing gives insights
680 into the generation and evolution of mosaic aneuploidy in Leishmania donovani. Nucleic Acids
681 Res. **50**, 293–305 (2022).

682 42. E. Cupolillo, H. Momen, G. Grimaldi Jr, Genetic diversity in natural populations of New
683 World Leishmania. Mem. Inst. Oswaldo Cruz **93**, 663–668 (1998).

684 43. M. C. Hansen, et al., High-resolution global maps of 21st-century forest cover change.
685 Science **342**, 850–853 (2013).

686 44. M. E. F. Brito, et al., Species diversity of Leishmania (Viannia) parasites circulating in
687 an endemic area for cutaneous leishmaniasis located in the Atlantic rainforest region of
688 northeastern Brazil. Trop. Med. Int. Health **14**, 1278–1286 (2009).

689 45. S. P. Brandão-Filho, et al., Wild and synanthropic hosts of Leishmania (Viannia)
690 braziliensis in the endemic cutaneous leishmaniasis locality of Amaraji, Pernambuco State,
691 Brazil. Trans. R. Soc. Trop. Med. Hyg. **97**, 291–296 (2003).

692 46. N. M. Haddad, et al., Habitat fragmentation and its lasting impact on Earth's
693 ecosystems. Sci Adv **1**, e1500052 (2015).

694 47. H. S. Grantham, et al., Anthropogenic modification of forests means only 40% of
695 remaining forests have high ecosystem integrity. Nat. Commun. **11**, 5978 (2020).

696 48. A. M. G. Teixeira, B. S. Soares-Filho, S. R. Freitas, J. P. Metzger, Modeling landscape
697 dynamics in an Atlantic Rainforest region: Implications for conservation. For. Ecol. Manage.
698 **257**, 1219–1230 (2009).

699 49. M. C. Ribeiro, J. P. Metzger, A. C. Martensen, F. J. Ponzoni, M. M. Hirota, The Brazilian
700 Atlantic Forest: How much is left, and how is the remaining forest distributed? Implications for
701 conservation. Biol. Conserv. **142**, 1141–1153 (2009).

702 50. W. M. de Souza, S. C. Weaver, Effects of climate change and human activities on
703 vector-borne diseases. Nat. Rev. Microbiol. (2024). <https://doi.org/10.1038/s41579-024-01026-0>.

705 51. G. A. Van der Auwera, et al., From FastQ data to high confidence variant calls: the
706 Genome Analysis Toolkit best practices pipeline. Curr. Protoc. Bioinformatics **43**, 11.10.1–
707 11.10.33 (2013).

708 52. S. Neph, A. P. Reynolds, M. S. Kuehn, J. A. Stamatoyannopoulos, Operating on
709 Genomic Ranges Using BEDOPS. Methods Mol. Biol. **1418**, 267–281 (2016).

710 53. D. Bryant, V. Moulton, Neighbor-net: an agglomerative method for the construction of
711 phylogenetic networks. *Mol. Biol. Evol.* **21**, 255–265 (2004).

712 54. A. W. M. Dress, D. H. Huson, Constructing splits graphs. *IEEE/ACM Trans. Comput.*
713 *Biol. Bioinform.* **1**, 109–115 (2004).

714 55. D. H. Huson, D. Bryant, Application of phylogenetic networks in evolutionary studies.
715 *Mol. Biol. Evol.* **23**, 254–267 (2006).

716 56. A. Brisbin, et al., PCAdmix: principal components-based assignment of ancestry along
717 each chromosome in individuals with admixed ancestry from two or more populations. *Hum.*
718 *Biol.* **84**, 343–364 (2012).

719 57. T. Jombart, adegenet: a R package for the multivariate analysis of genetic markers.
720 *Bioinformatics* **24**, 1403–1405 (2008).

721 58. D. H. Alexander, J. Novembre, K. Lange, Fast model-based estimation of ancestry in
722 unrelated individuals. *Genome Res.* **19**, 1655–1664 (2009).

723 59. D. H. Ogle, J. C. Doll, A. P. Wheeler, A. Dinno, FSA: Simple fisheries stock assessment
724 methods. R package version 0.9. 4. [Preprint] (2023).

725 60. J. Oksanen, et al., Vegan Community Ecology Package Version 2.5-7 (2020).

726 61. P. Danecek, et al., The variant call format and VCFtools. *Bioinformatics* **27**, 2156–2158
727 (2011).

728 62. D. J. Lawson, G. Hellenthal, S. Myers, D. Falush, Inference of population structure
729 using dense haplotype data. *PLoS Genet.* **8**, e1002453 (2012).

730 63. S. Purcell, et al., PLINK: a tool set for whole-genome association and population-based
731 linkage analyses. *Am. J. Hum. Genet.* **81**, 559–575 (2007).

732 64. B. L. Browning, X. Tian, Y. Zhou, S. R. Browning, Fast two-stage phasing of large-
733 scale sequence data. *Am. J. Hum. Genet.* **108**, 1880–1890 (2021).

734 65. G. R. Warnes, et al., gmodels: Various R Programming Tools for Model Fitting.
735 [Preprint] (2022). Available at: <https://CRAN.R-project.org/package=gmodels>.

736 66. C. Zhang, S.-S. Dong, J.-Y. Xu, W.-M. He, T.-L. Yang, PopLDdecay: a fast and
737 effective tool for linkage disequilibrium decay analysis based on variant call format files.
738 *Bioinformatics* **35**, 1786–1788 (2019).

739 67. D. Shin, S.-H. Kim, J. Park, H.-K. Lee, K.-D. Song, Extent of linkage disequilibrium and
740 effective population size of the Landrace population in Korea. *Asian-australas. J. Anim. Sci.*
741 **31**, 1078–1087 (2018).

742 68. R Core Team, R: A language and environment for statistical computing. [Preprint]
743 (2021). Available at: <https://www.R-project.org/>.

744 69. W. Weir, et al., Population genomics reveals the origin and asexual evolution of human
745 infective trypanosomes. *Elife* **5**, e11473 (2016).

746 70. A. Hadermann, et al., Genome diversity of *Leishmania aethiopica*. *Front. Cell. Infect.*
747 *Microbiol.* **13** (2023).

748 71. I. Gronau, M. J. Hubisz, B. Gulko, C. G. Danko, A. Siepel, Bayesian inference of
749 ancient human demography from individual genome sequences. *Nat. Genet.* **43**, 1031–1034
750 (2011).

751 72. R. J. C. Bilderbeek, R. S. Etienne, babette: BEAUti 2, BEAST2 and Tracer for R.
752 *bioRxiv* 271866 (2018).

753 73. L. Campagna, I. Gronau, L. F. Silveira, A. Siepel, I. J. Lovette, Distinguishing noise
754 from signal in patterns of genomic divergence in a highly polymorphic avian radiation. *Mol.*
755 *Ecol.* **24**, 4238–4251 (2015).

756 74. S. Schiffels, K. Wang, MSMC and MSMC2: The Multiple Sequentially Markovian
757 Coalescent. *Methods Mol. Biol.* **2090**, 147–166 (2020).

758 75. T. Therneau, A Package for Survival Analysis in R . R package version 3.3-1. 2022.
759 [Preprint] (2022). Available at: <https://CRAN.R-project.org/package=survival>.

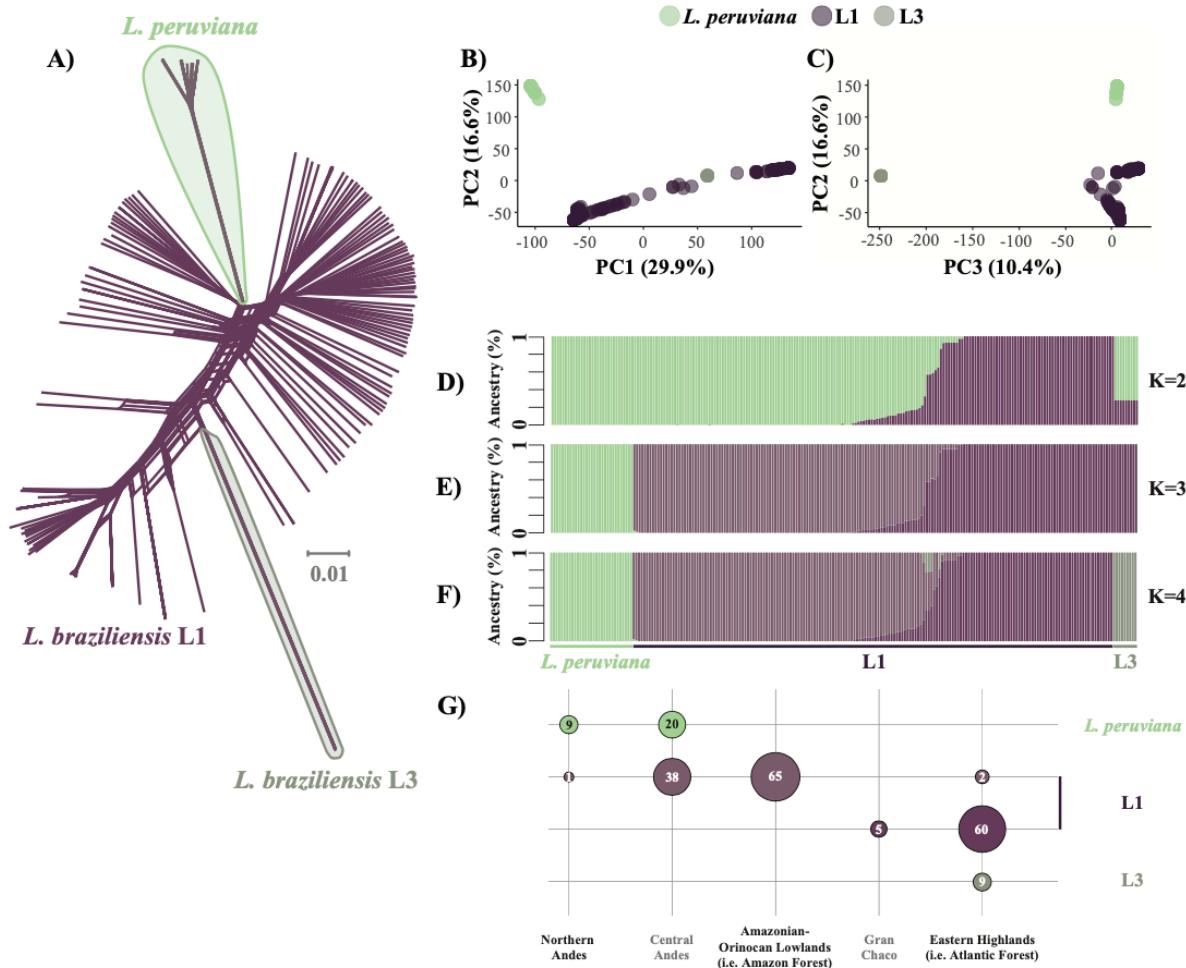
760 76. A. Kassambara, M. Kosinski, P. Biecek, S. Fabian, survminer: Drawing Survival
761 Curves using'ggplot2'. R package version 0.4. 9. 2021. [Preprint] (2021).

762 77. J. Fox, S. Weisberg, An R Companion to Applied Regression. [Preprint] (2019).
763 Available at: <https://socialsciences.mcmaster.ca/jfox/Books/Companion/>.

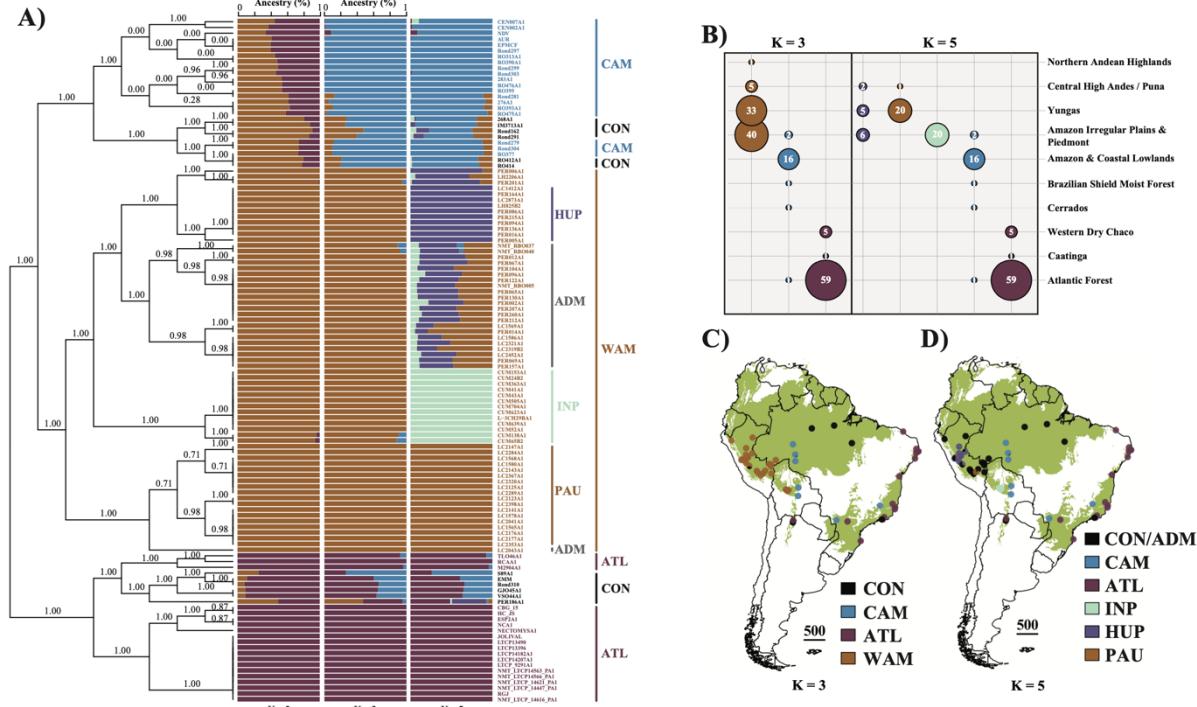
764 78. P. Cingolani, et al., A program for annotating and predicting the effects of single
765 nucleotide polymorphisms, SnpEff: SNPs in the genome of *Drosophila melanogaster* strain
766 w1118; iso-2; iso-3. *Fly* **6**, 80–92 (2012).

767 79. G. E. Griffith, J. M. Omernik, S. H. Azevedo, Ecological classification of the Western
768 Hemisphere. *Unpublished Report* 49 (1998).

769


770 **TABLES**

771 **Table 1: Main characteristics of the identified *L. brasiliensis* groups.** *Ecoregion classification and data was extracted from Griffith et al. (1998) (89). The level 1 ecoregion
 772 'Eastern Highland' encompasses the Atlantic Forest region (a level 2 ecoregion).


Group	No. isolates	Sampled countries	Sampled ecoregions (level 1)*	Median No. SNPs [min - max]	Median No. heterozygous SNPs	Median No. homozygous SNPs	Refs
L1	182	Argentina, Bolivia, Brazil, Peru	Eastern Highland**, Amazonian-Orinocan Lowland, Northern/Central Andes, Gran Chaco	30,158 [7,385 - 31,892]	13,766	15,654	(13, 14, 22, 23) (13, 14, 22, 23)
L2	4	Bolivia, Brazil, Peru	Amazonian-Orinocan Lowland	60,095 [59,879 - 60,181]	4,406	55,773	(8, 9, 12)
L3	9	Brazil	Eastern highlands	25,620 [25,596 - 25,631]	113	25,509	(11)
<i>L. peruviana</i>	31	Peru	Northern/Central Andes	26,024 [25,586 - 26,482]	98	25,664	(13)

773

774 **FIGURES**

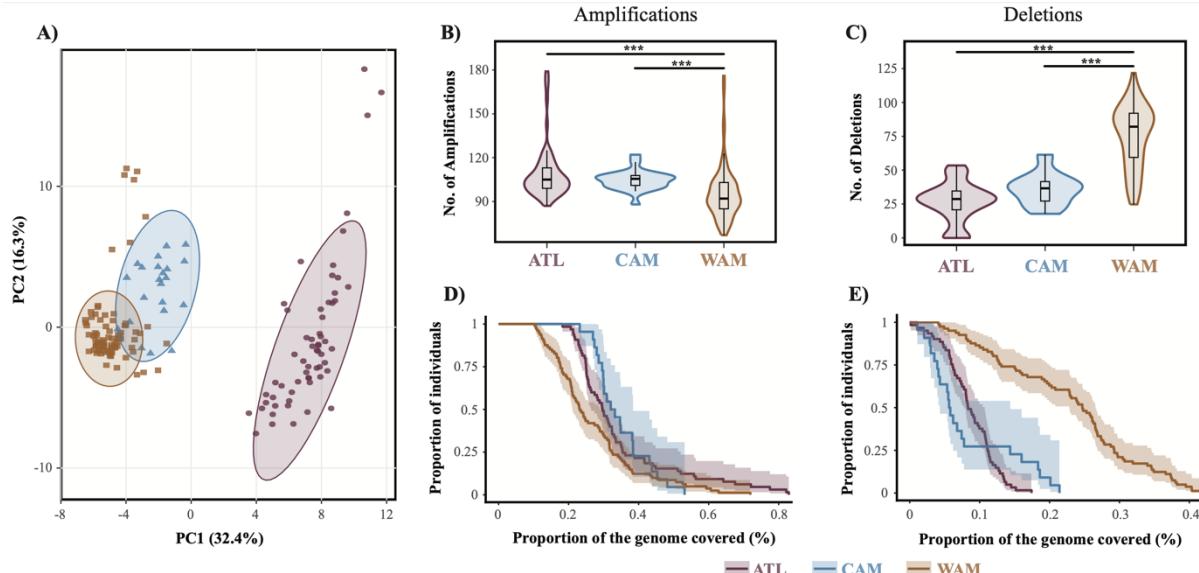
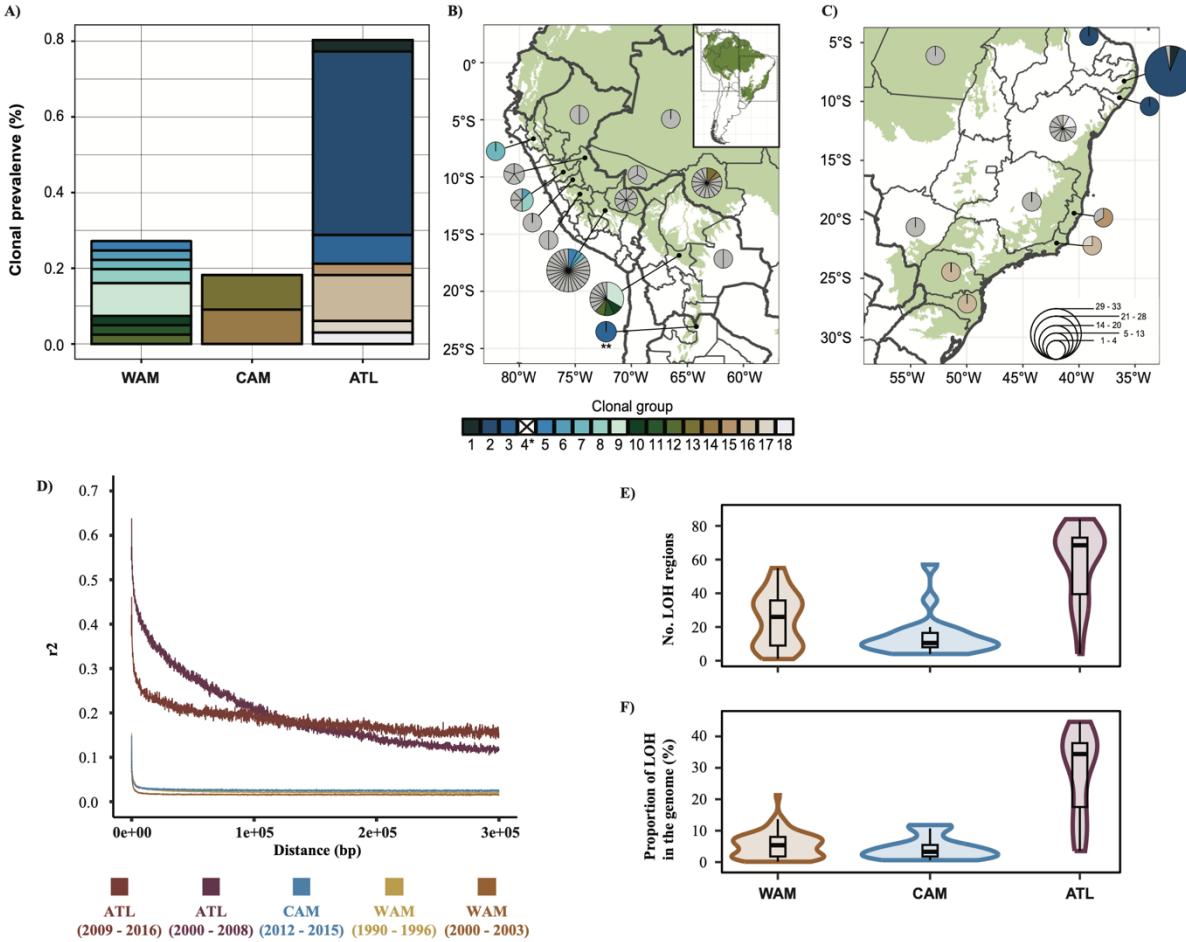


Fig 1. Divergence within the *L. braziliensis* species complex. **A)** A phylogenetic network, based on 695,229 genome-wide SNPs, showing uncorrected p-distances between 222 isolates of the *L. braziliensis* species complex (incl. L1, L3 and *L. peruviana*). **B-C)** Principal component analysis for the 222 isolates showing the first three PC axes. **D-F)** ADMIXTURE barplots showing the estimated ancestry per isolate assuming K=2 (**D**), K=3 (**E**) and K=4 (**F**) ancestral components. **G)** Sample size distribution of *Leishmania* isolates from each group and per ecoregion. The four colors match the four ancestral components as inferred with ADMIXTURE K=4 (**F**). Only isolates with at least 70% ancestry for a specific ancestral component were included.



775

Fig 2. Population genomic structure of *L. braziliensis* L1. A) ADMIXTURE barplots depicting the ancestry per isolate ($N_{\text{unique}} = 116$) assuming K=2, K=3 and K=5 ancestral components. Isolates are labeled according to K=3 ancestral components. Black is used for isolates with uncertain/hybrid ancestry (CON). Outer vertical lines show the major parasite groups (WAM, CAM, ATL, CON) delineated by ADMIXTURE for K=3. Inner vertical lines represent the parasite groups within WAM as inferred by ADMIXTURE for K=5 in this study, which is in accordance with Heeren et al. (2023) (22) (PAU, HUP, INP, ADM). The left bound tree represents the population tree of L1 as inferred by fineSTRUCTURE. Branch support values represent the posterior probability for each inferred clade. **B)** Sample size distribution per ancestral component per ecoregion (level 2; (89)) for all isolates with at least 85% ancestry to a specific group/population. **C-D)** Map of the South American continent showing the L1 population genomic structure, assuming K=3 (C) and K=5 (D) populations. The base map depicts the occurrence of (Sub-) Tropical Moist Broadleaf Forests. Abbreviations: CAM = Central Amazon; WAM = West Amazon; ATL = Atlantic; CON = Conglomerate; PAU = Southern Peru; HUP = Central/Northern Peru; INP = Central Bolivia; ADM = Admixed.

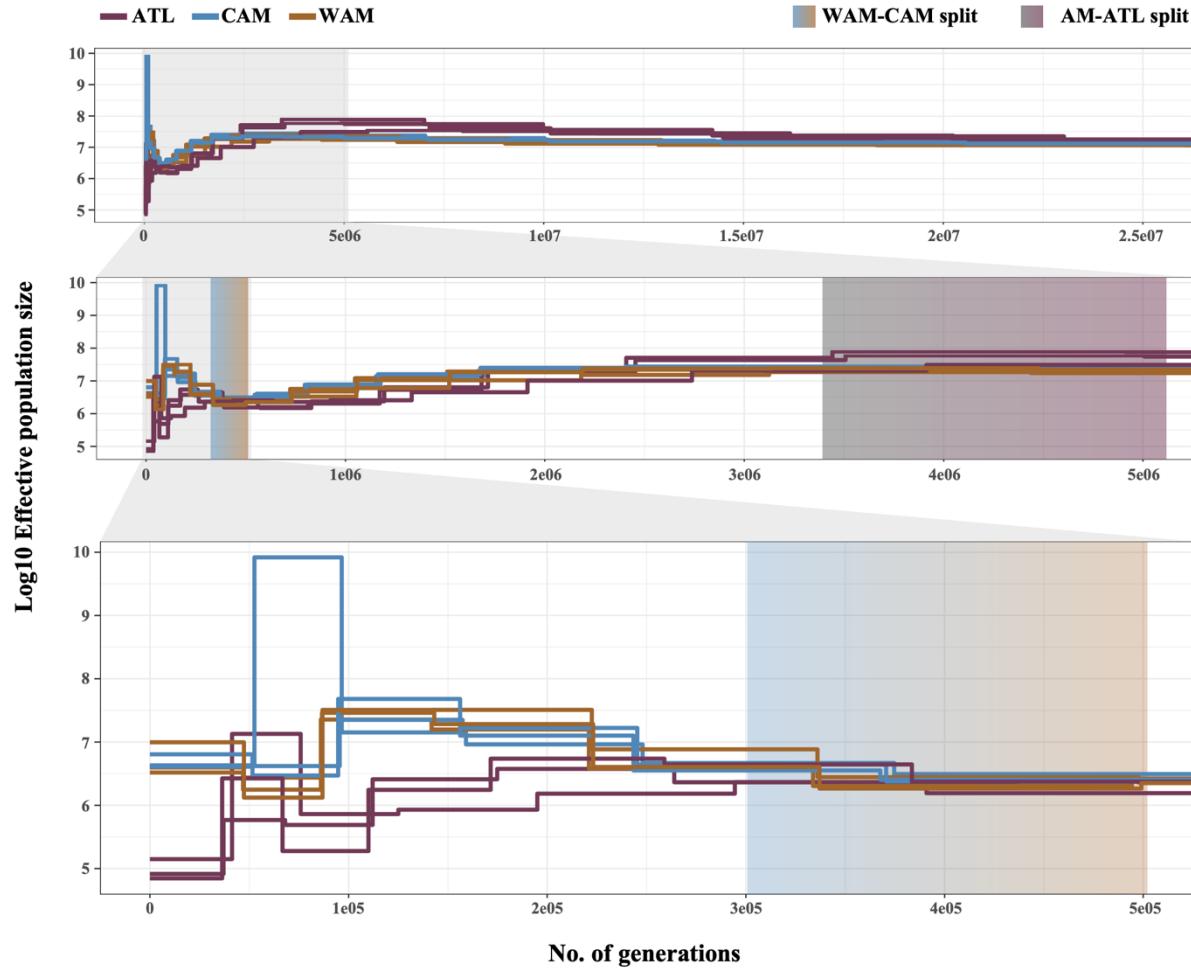

776 **Fig 3. Copy number variations across the major *L. braziliensis* populations.** **A)** Scatterplot showing the first two principal components as calculated based on haploid copy numbers of all CNVs, after removing isolates of clonal group 3 (see methods). Ellipses represent the 95% confidence boundaries of the major parasite populations in the PCA-space. **B-C)** Violin plots summarizing the number of CNVs per parasite genome. **D-E)** Survival curves depicting the CNV burden per *L. braziliensis* population.

Fig 4. Contrasting clonality and population structure in *L. braziliensis* L1. A) Clonal prevalence per population. **B-C)** Distribution of genotypes in the Amazon and along the Atlantic coast, summarized per department/state of the respective country. The size of each pie indicates the number of genotypes found in each locality with each segment representing a unique genotype. Colored segments indicate the different clonal groups that were identified. Note: * clonal group 4 is not included as it consists of two isolates of the CON group; ** clonal group 3, located in Salta, Argentina belongs to ATL. **D)** Linkage disequilibrium decay of the different *L. braziliensis* populations, accounting for spatio-temporal Wahlund effects and population size. **E)** The number of loss-of-heterozygosity (LOH) regions per major population. **F)** Proportion of LOH regions across the genome per major population.

Fig 5. Estimated effective population sizes (Ne) per population for four possible migration scenarios. Each row depicts the Ne estimates per population for a given model of historical migration. WAM, CAM and ATL represent the three major populations as inferred by ADMIXTURE and fineSTRUCTURE (Fig 2A). AM represents the ancestral population prior to the split of WAM and CAM. Four models of historical migration were tested: i) no migration, ii) unidirectional migration from AM to ATL, iii) unidirectional migration from ATL to AM and iv) bidirectional migration between AM and ATL.

Fig 6. Simulated changes in N_e per population through time (in units of generations ago). Simulations were performed in triplicate; on the same sample subsets per population as figure 5. Gradient boxes depict the estimated time of the first population split ($rCCR \approx 0.5$) within the past 25 million generations, between WAM-CAM and AM-ATL based on the relative cross-coalescence rate (Supp. Fig 9,10).

780 **Supplementary information for:**

781 **Evolutionary genomics of a zoonotic parasite circulating across the Neotropical**
782 **realm**

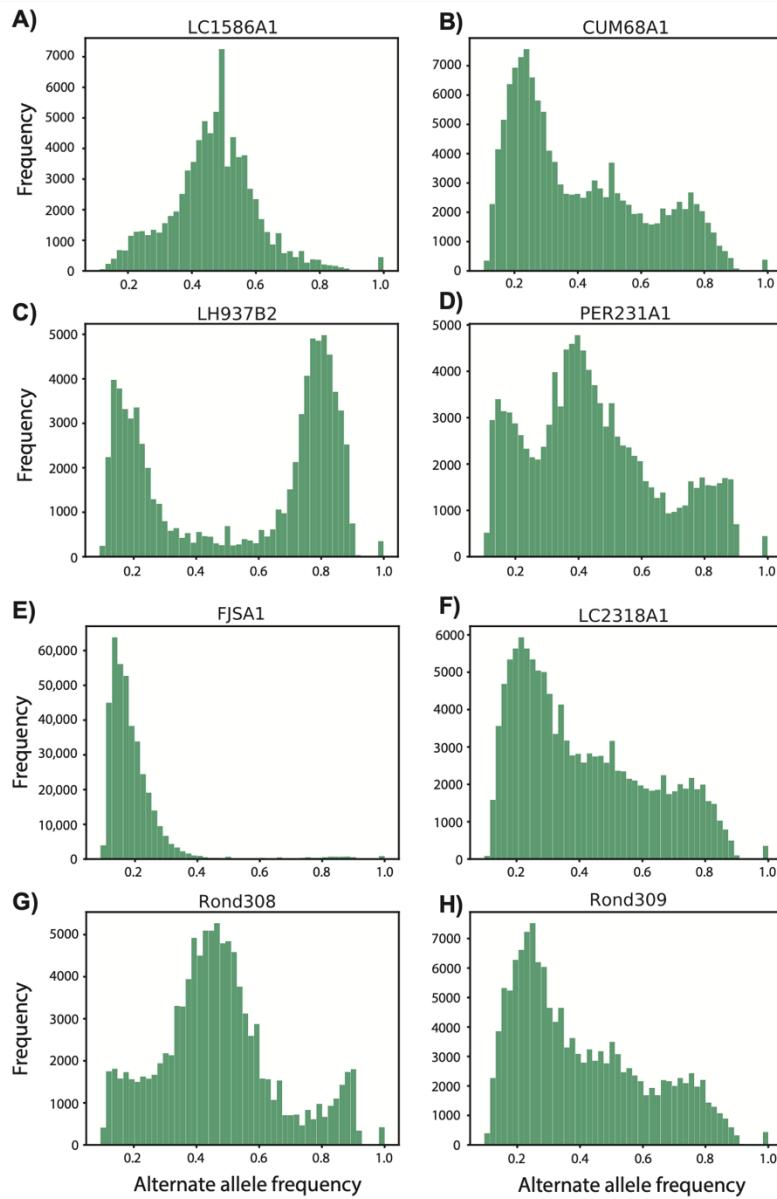
783 Senne Heeren*, Mandy Sanders, Jeffrey Jon Shaw, Sinval Pinto Brandão-Filho, Mariana
784 Côrtes Boité, Lilian Motta Cantanhêde, Khaled Chourabi, Ilse Maes, Alejandro Llanos-
785 Cuentas, Jorge Arevalo, Jorge D. Marco, Philippe Lemey, James A. Cotton, Jean-Claude
786 Dujardin, Elisa Cupolillo*, Frederik Van den Broeck*

787 ***Correspondence:**

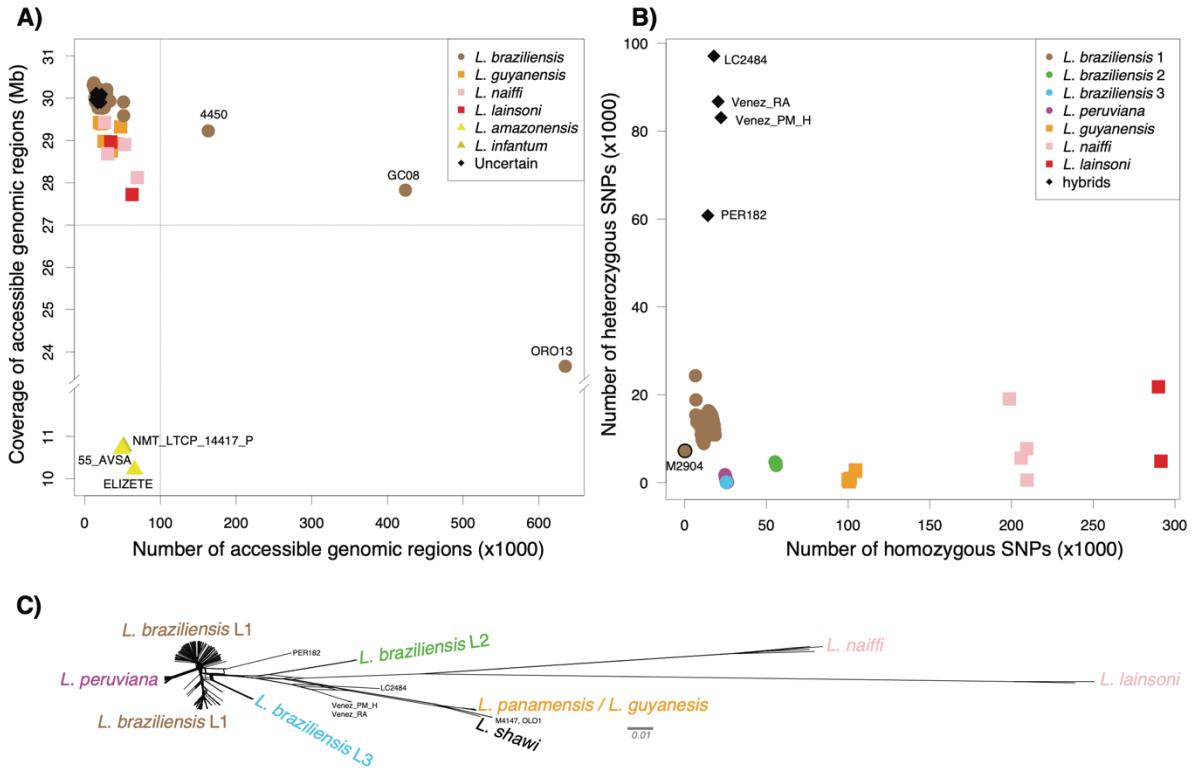
788 Senne Heeren (sheeren@itg.be)

789 Frederik Van den Broeck (fvandenbroeck@gmail.com)

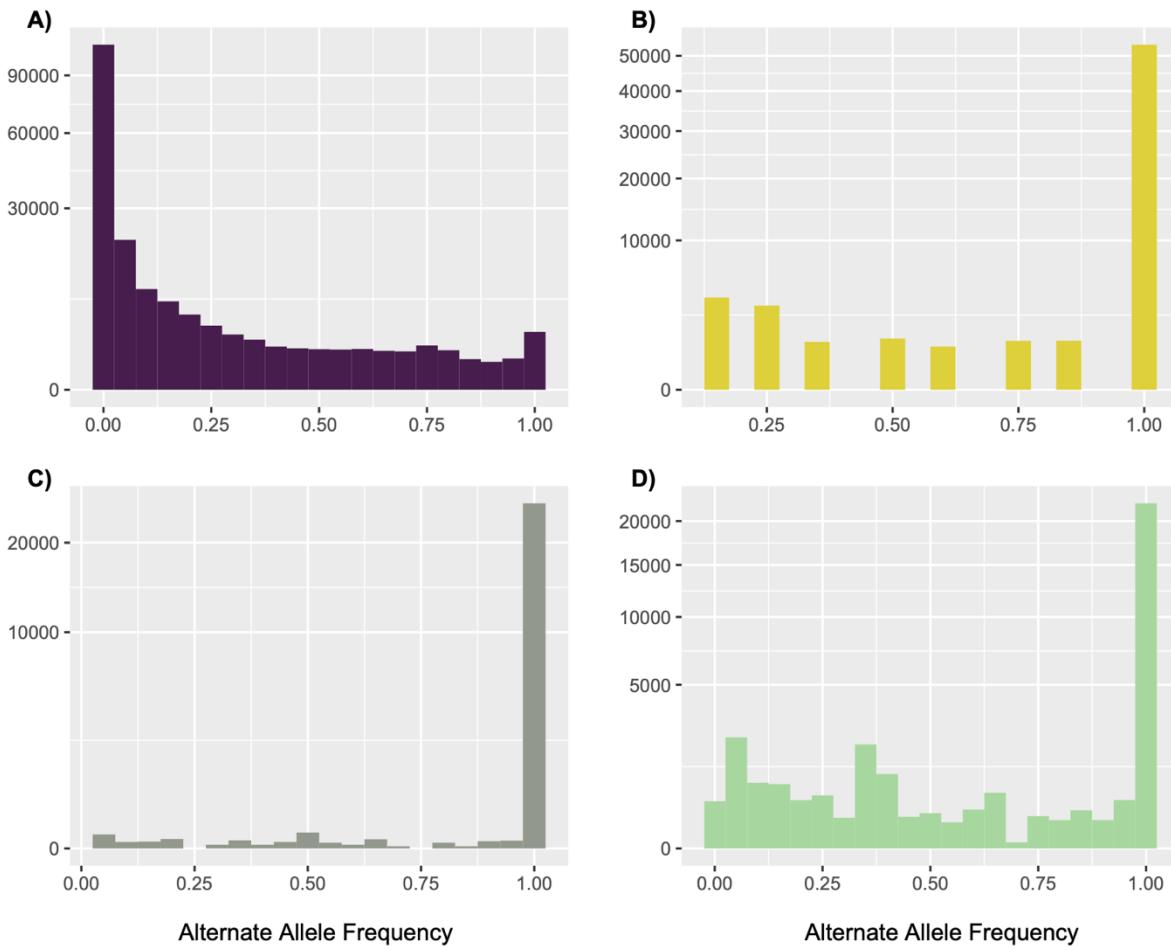
790 Elisa Cupolillo (elisa.cupolillo@ioc.fiocruz.br)

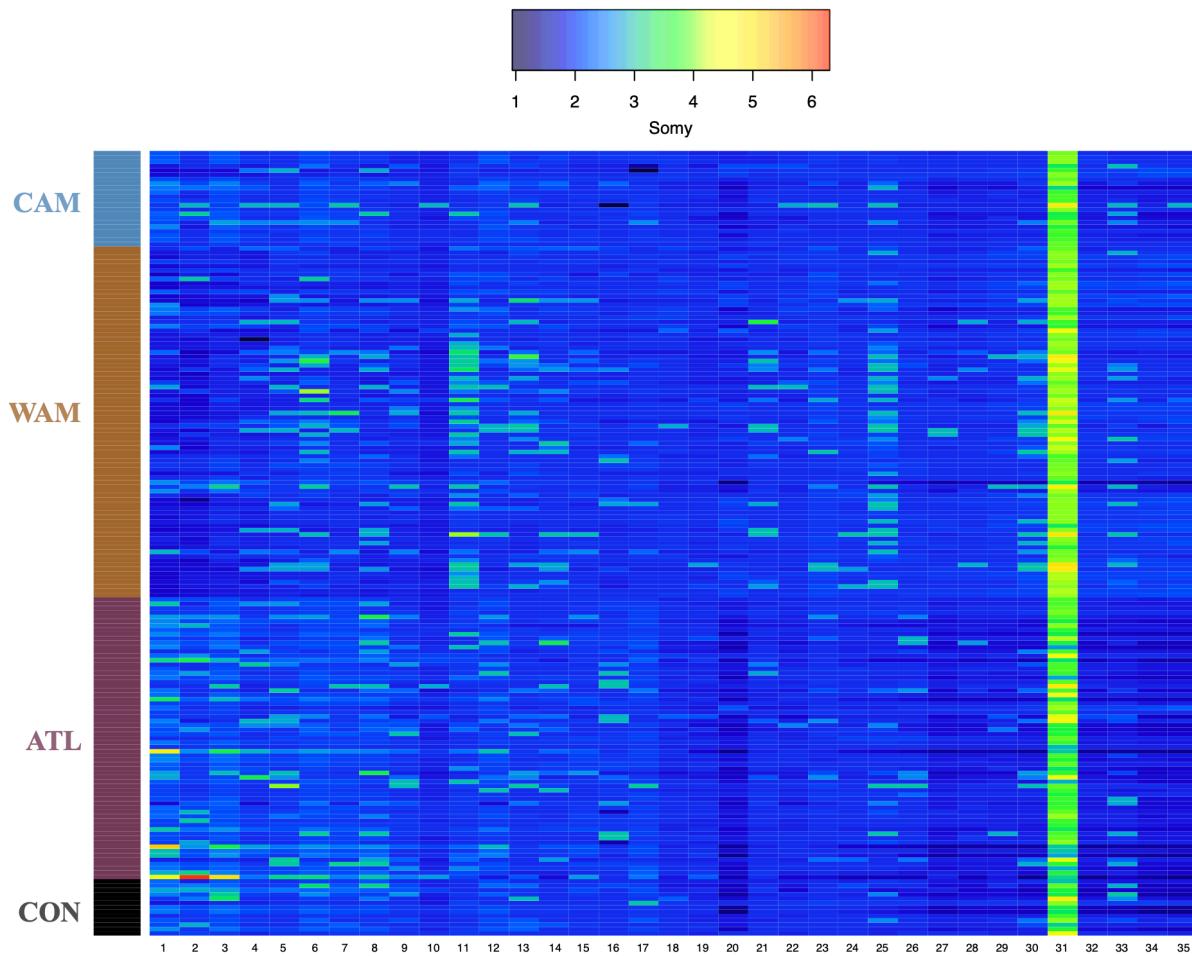

791 **SUPPLEMENTARY RESULTS**

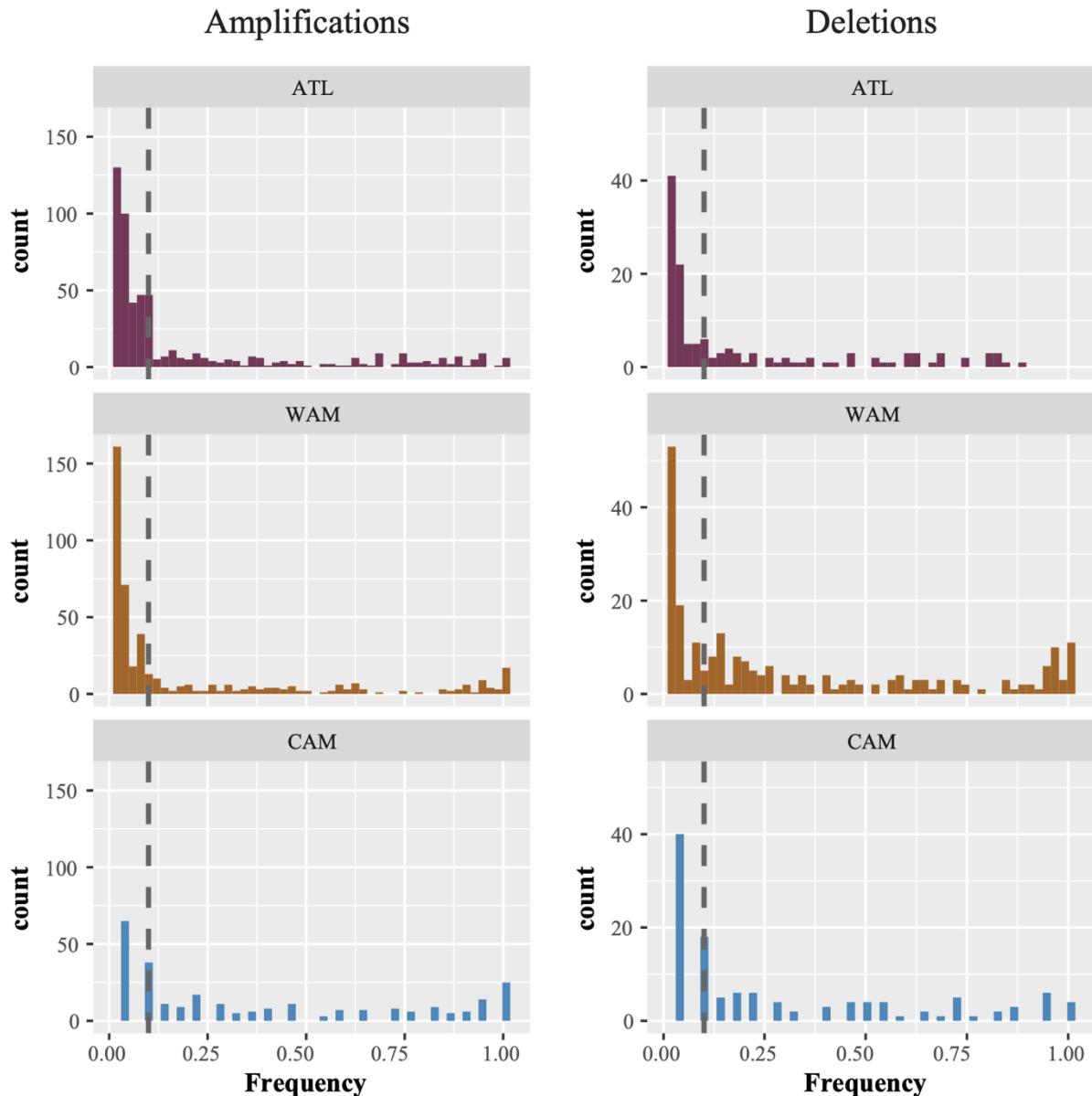
792 **Genomic evidence of interspecific hybridization in *Leishmania* (Viannia) parasites**

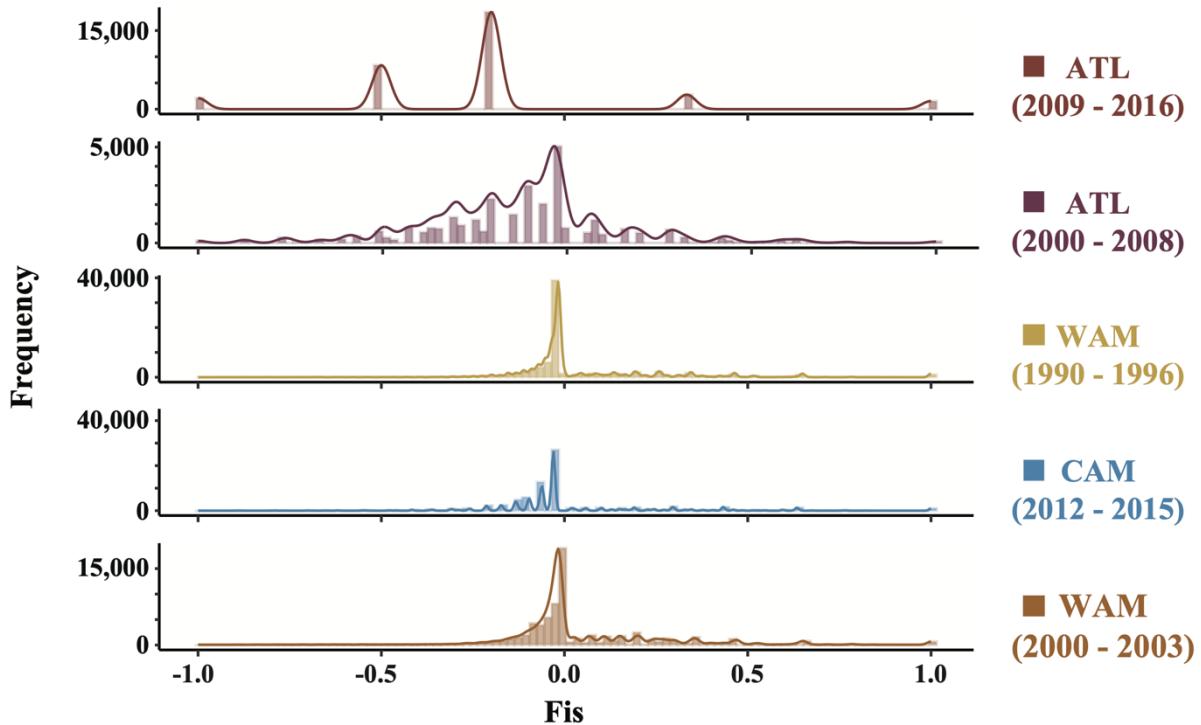

793 Genotyping across the combined accessible genome (25.5 Mb, or 77.7% of the
794 genome) of the 244 genomes disclosed a total of 834,178 bi-allelic Single Nucleotide
795 Polymorphisms (SNPs) called against the reference. Phylogenetic network analyses revealed
796 a similar topological relationship among the major *L. Viannia* species as disclosed earlier with
797 reduced marker sets (1–3). *Leishmania lainsoni* was phylogenetically the most distant species
798 to *L. braziliensis* L1 (Supp. Fig 2B), with an average 290,660 homozygous SNPs called against
799 the *L. braziliensis* M2904 reference, followed by *L. naiffi* (average 205,814 homozygous
800 SNPs), the *L. guyanensis* species complex (average 100,520 homozygous SNPs) and *L. braziliensis*
801 L2 (average 55,709 homozygous SNPs) (Supp. Fig 2B). Two divergent subgroups
802 of the *L. braziliensis* species complex, *L. peruviana* (average 298 heterozygous sites) and *L. braziliensis*
803 L3 (average 106 heterozygous sites), were each devoid of heterozygous sites
804 compared to the remainder of the *L. braziliensis* genomes (average 13,601 heterozygous
805 SNPs) (Supp. Fig 2B,C).

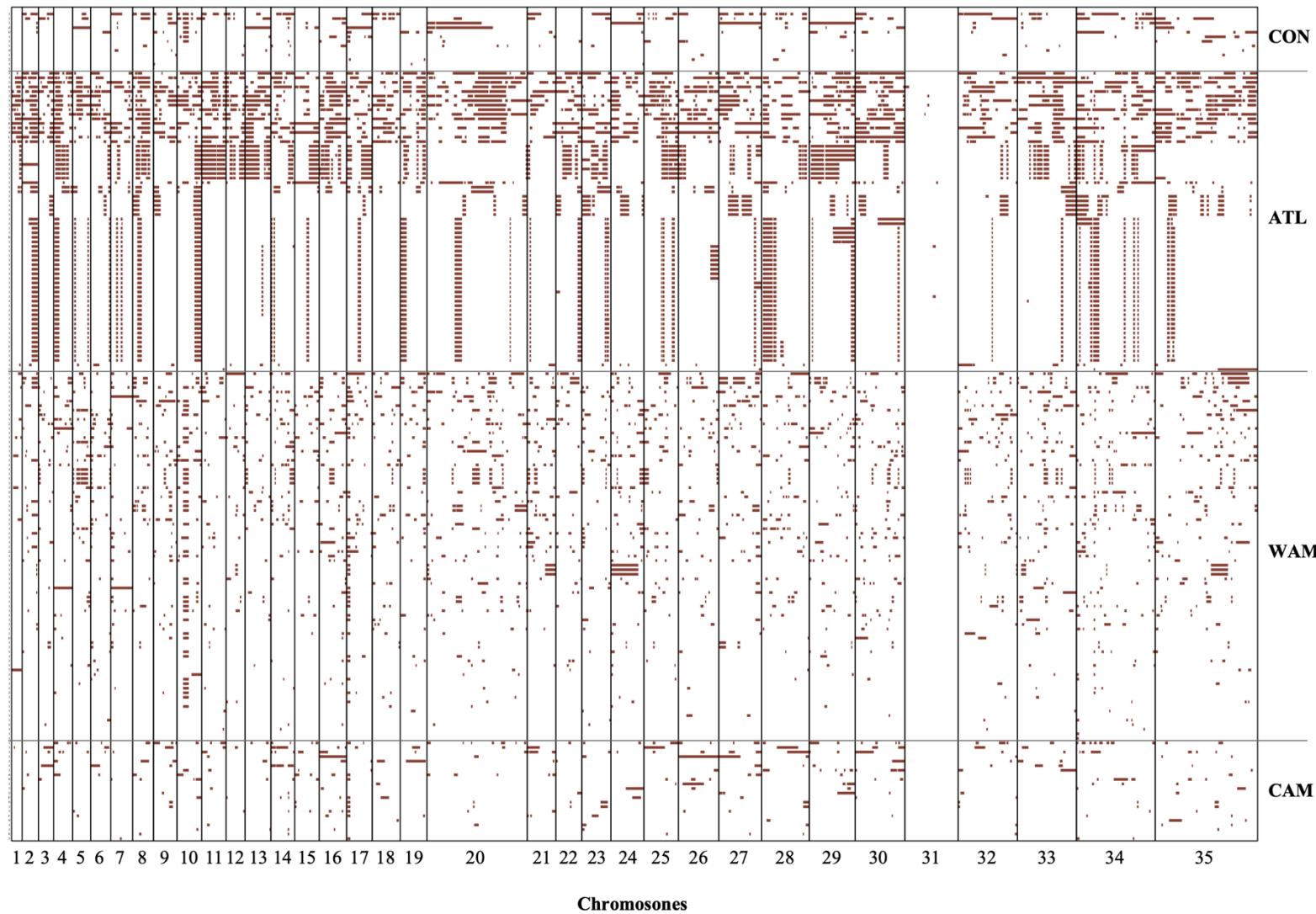
806 The phylogenetic network further revealed an uncertain reticulated ancestry for six
807 *Leishmania* genomes (LC2484, PER182, Venez_RA, Venez_PM, OLO and M4147) (Supp.
808 Fig 2C). The distribution of alternate allele read depth frequencies (ARDF) was centered
809 around 0.5 for all six genomes (Supp. Fig 10), as expected for diploid organisms (both alleles
810 are represented equally). Inspecting the chromosomal ARDF, all putative hybrid isolates
811 revealed to have several genomic regions (or entire chromosomes) that were either largely
812 homozygous or SNP poor amidst highly heterozygous regions (Suppl. Fig 2B). Generating
813 phylogenetic networks based on the SNPs present in these non-heterozygous regions
814 revealed patterns of i) interspecific hybridization between the *L. braziliensis* and *L. guyanensis*
815 species complexes (LC2484, Venez_RA, Venez-PM_H32) (Supp. Fig 12); and ii) hybridization
816 within the *L. guyanensis* species complex between *L. shawi* and *L. guyanensis*/*L. panemensis*
817 (OLO, M4147) (Supp. Fig 13). No clear indications explaining the high heterozygosity/mixed
818 ancestry of PER182 were found. These patterns of inter- and intraspecific hybridization were
819 further substantiated by PCA-based ancestry estimation (PCAAdmix) (Supp. Fig 14) showing
820 more central positions of the hybrid in contrast to their putative parental species.

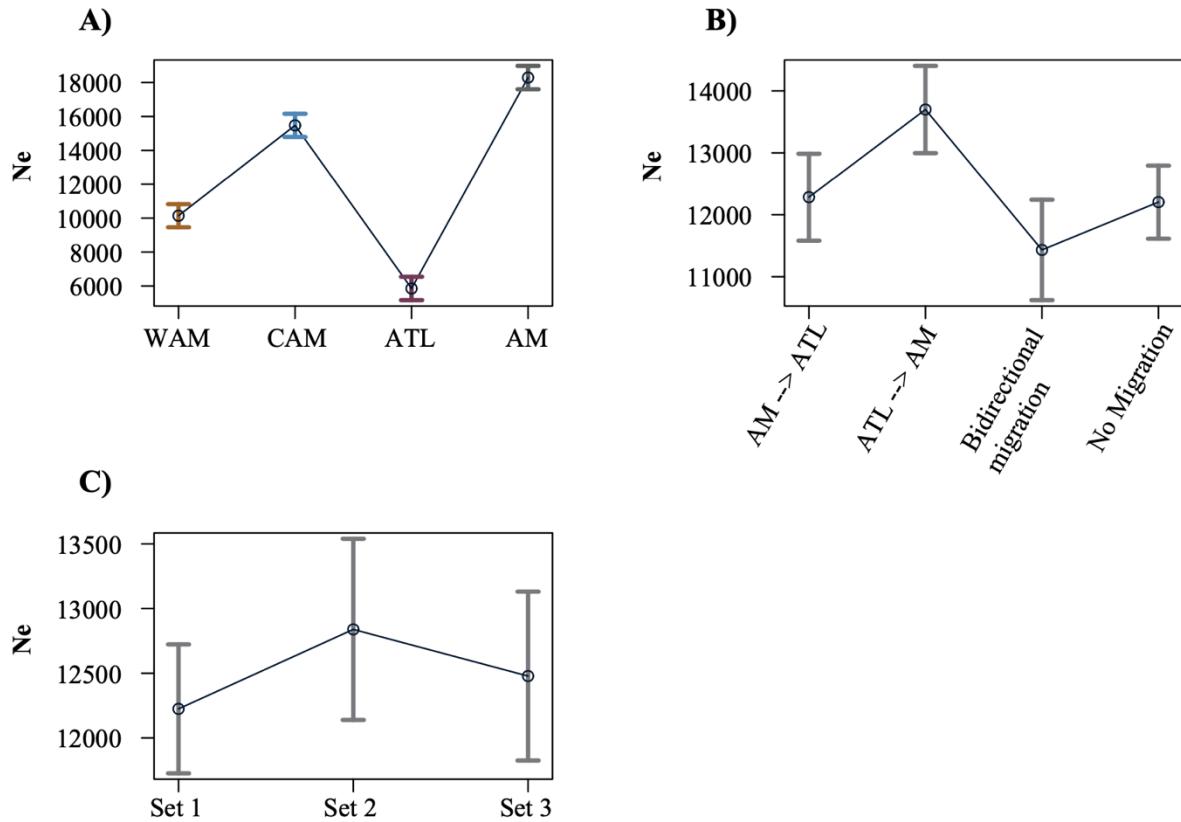

821 **SUPPLEMENTARY FIGURES**

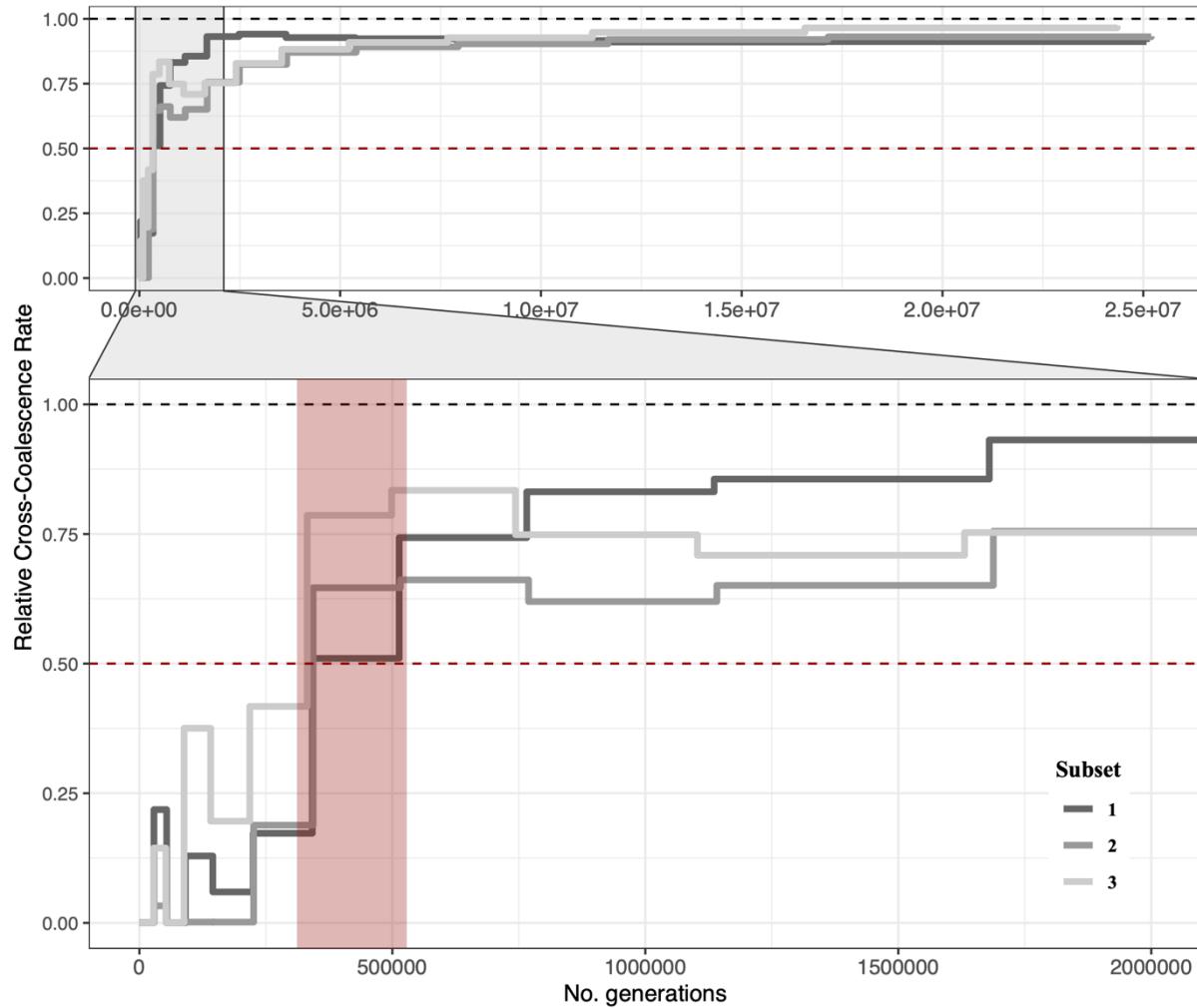

Supp. Fig 1 Removal of isolates based on alternate allele frequency distributions. Assuming diploidy is the ancestral state within the *L. (Vannia)* subgenus (2), the genome-wide distribution of alternate allele frequencies at heterozygous sites should approximate 0.5. Visual inspection of frequency plots confirmed a unimodal distribution centered around 0.5 for 244 isolates. This is exemplified by isolate LC1586A1 (A). Seven isolates were removed for downstream analysis because they showed vastly different distributions (B-H) which might be the result of mixed infections.

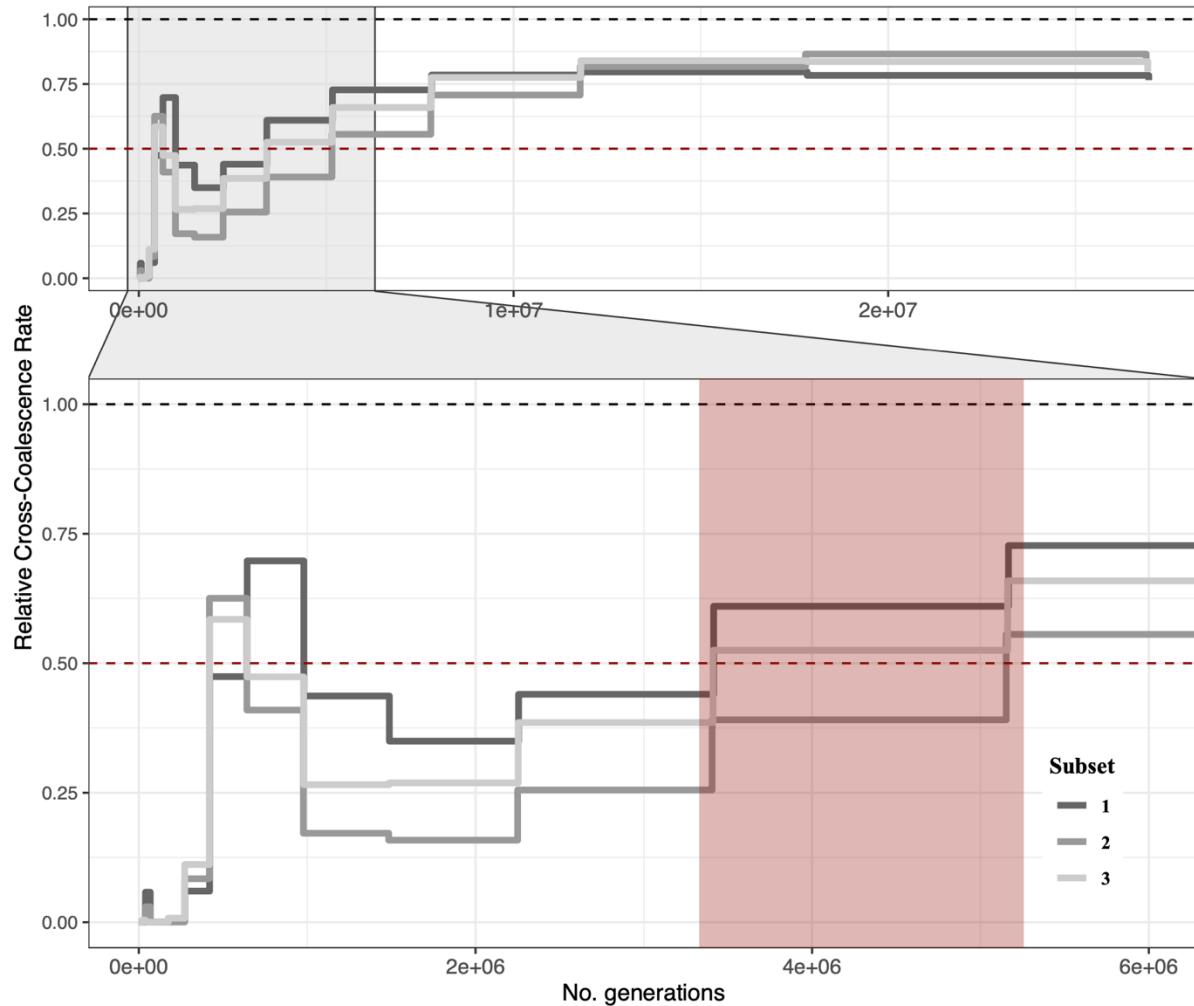

Supp. Fig 2 A) The quality of sequence alignments against the M2904 reference was investigated by characterizing the accessible genome, i.e. genomic regions of sufficient mapping quality (>25), base quality (>25) and read depth (>5). Isolates contained a median 17.8k accessible genomic regions, altogether spanning a median 29.96 Mb (i.e. 91.5% of the haploid genome). Three isolates (55_AVSA, ELIZETE, NMT_LTCP_14417_P) were removed because of an aberrantly low coverage of accessible regions (10.2-10.8 Mb) compared to the other isolates; in silico multi-locus sequencing analysis (MLSA) revealed that these isolates were *Leishmania amazonensis* (55_AVSA, ELIZETE) and *Leishmania infantum* (NMT_LTCP_14417_P) (results not shown). Three other isolates identified as *L. braziliensis* (4450, GC08, ORO13) were also removed because of low median coverages (9x-14x) and fragmented callable genomes. **B)** Inspection of the homozygous and heterozygous SNP counts of the remaining 244 *L. Viannia* isolates. **C)** Phylogenetic network of the 244 *L. (Viannia)* isolates based on 828,314 bi-allelic SNPs.

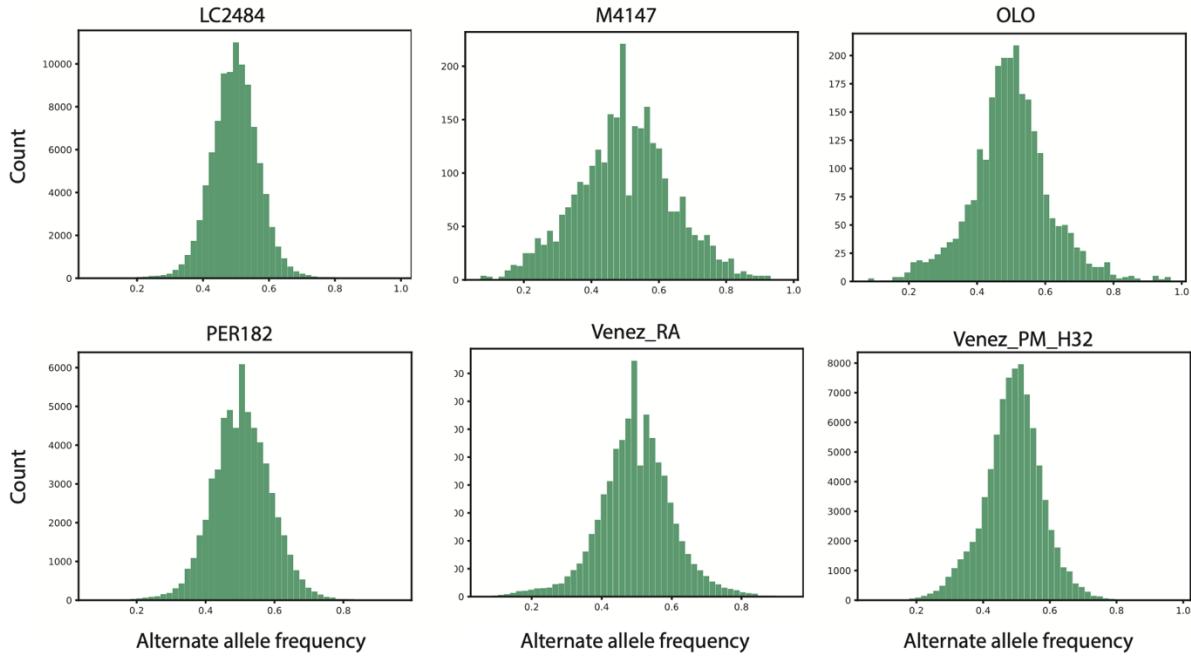

Supp. Fig 3 Population allele frequency spectra for *L. braziliensis* ecotypes L1 (A), L2 (B), L3 (C) and *L. peruviana* (D).


Supp. Fig 4 Variation in chromosome copy numbers across 182 *L. braziliensis* L1 genomes. Each row in the heatmap corresponds to an isolate, which were clustered per major parasite population as inferred by ADMIXTURE and fineSTRUCTURE. CAM= Central Amazon; WAM= West Amazon; ATL= Atlantic; CON= conglomerate.

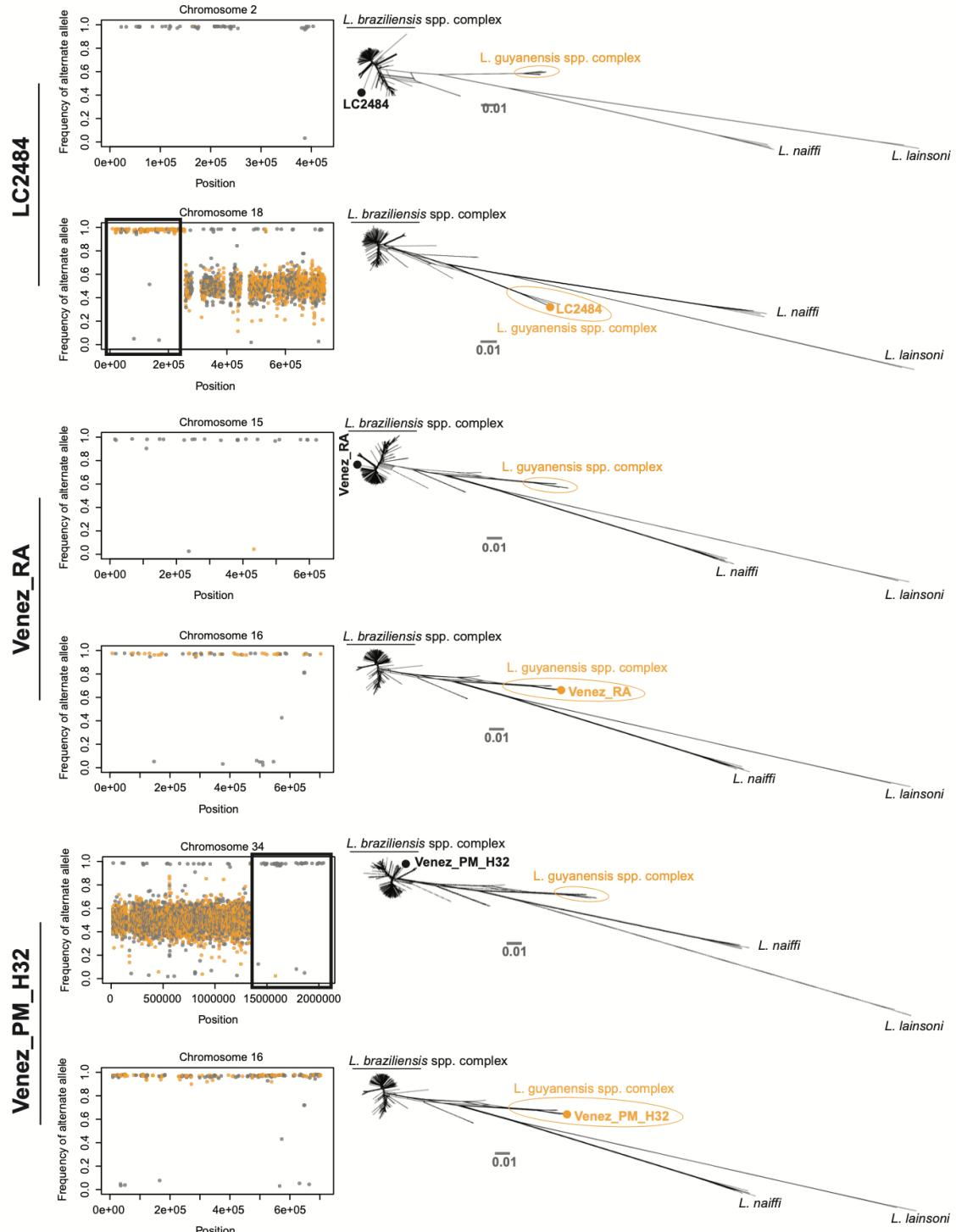

826 **Supp. Fig 5** Frequency distribution of amplifications occurring in the three major L1 populations. (left) Amplifications. (right) deletions.


Supp. Fig 6 Inbreeding coefficient (Fis) distributions for each of the major L1 populations, taking into account spatio-temporal Wahlund effects.

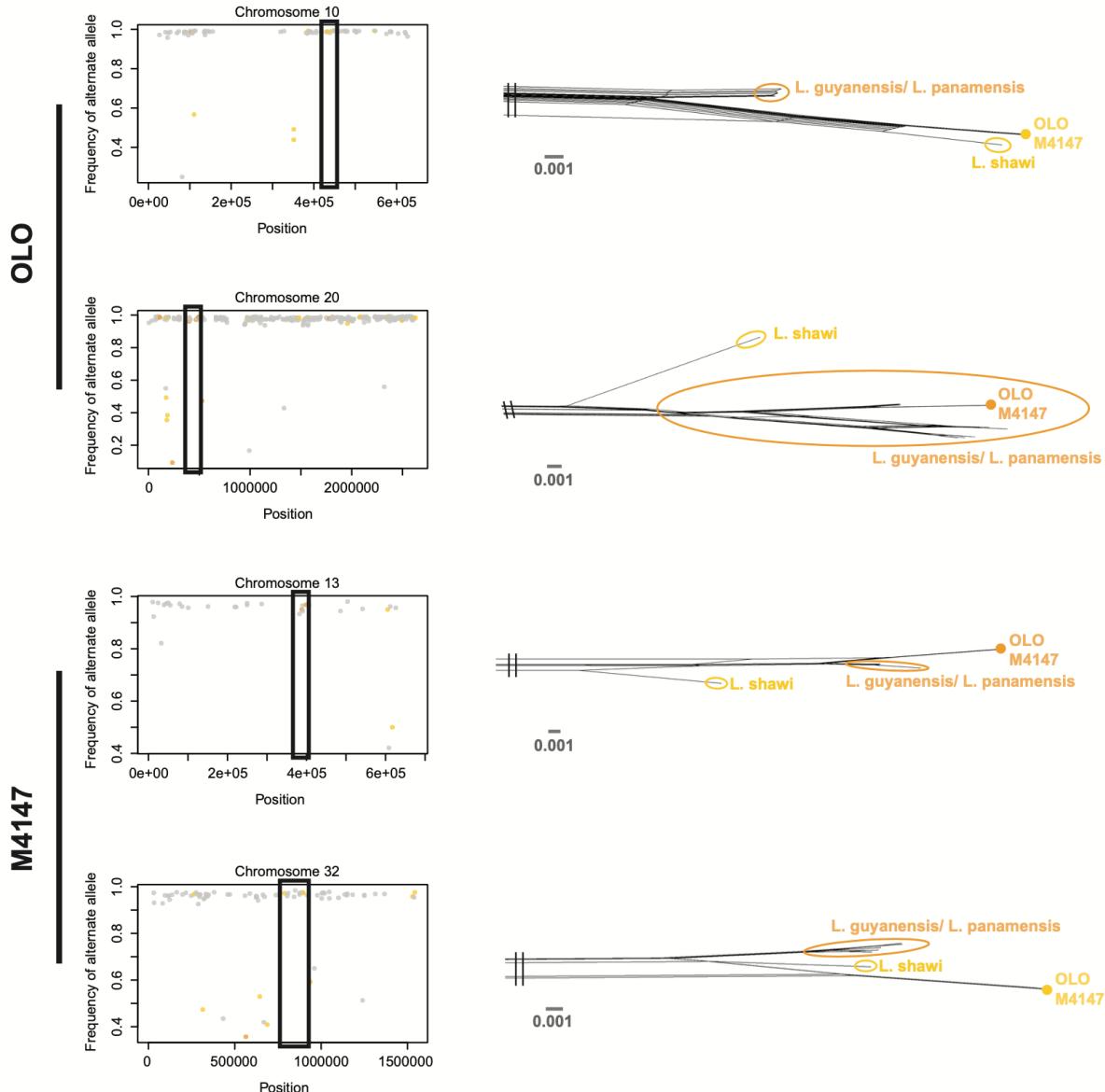

Supp. Fig 7 Loss-of-heterozygosity pattern distribution across the genome in all of the 244 isolates.


Supp. Fig 8 Main effect plots for Ne between the different L1 populations (A), migration model (B) and independent sample subsets (C).

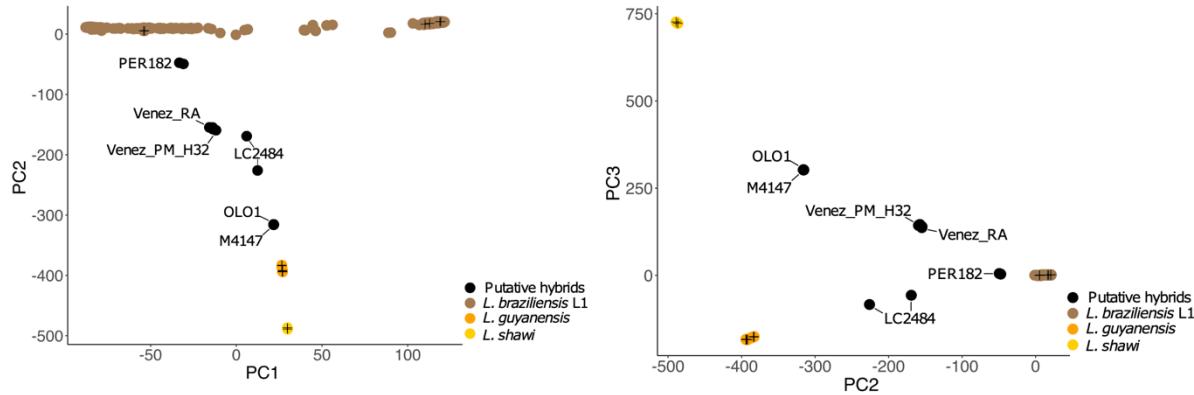
Supp. Fig 9 Relative cross-coalescence rate (rCCR) between the two Amazonian populations (WAM, CAM). Gray lines indicate the three independent runs with different sample subsets. The red box indicates the period where the rCCR first fell to 0.5, a proposed estimate for the split time between the two populations (4).



Supp. Fig 10 Relative cross-coalescence rate (rCCR) between the Amazonian (WAM, CAM) and Atlantic (ATL) populations. Gray lines indicate the three independent runs with different sample subsets. The red box indicates the period where the rCCR first fell to 0.5, a proposed estimate for the split time between the two populations (4).



832


Supp. Fig 11 Alternate allele frequency distribution at heterozygous sites for putative hybrid isolates. Each of the isolates show the expected unimodal distribution around 0.5 assuming diploidy.

Supp. Fig 12 Interspecific hybrids between *L. brasiliensis* and *L. guyanensis*. (Left) chromosome specific frequency distributions of the alternate allele that are partially or almost entirely homozygous. Orange dots represent SNPs that are unique for *L. guyanensis*. (Right) Phylogenetic networks based on SNPs called in the presented chromosome or boxed regions (i.e. homozygous regions).

Supp. Fig 13 Intraspecific hybrids within the *L. guyanensis* species complex. (Left) chromosome specific frequency distributions of the alternate allele that are partially or almost entirely homozygous. Orange dots represent SNPs that are unique for *L. guyanensis/L. panamensis*, yellow dots represent SNPs unique to *L. shawi*. (Right) Phylogenetic networks based on SNPs called in the presented chromosome or boxed regions (i.e. homozygous regions).

Supp. Fig 14 PCA-based ancestry estimation of putative hybrid isolates assuming three putative parental lineages: *L. braziliensis* L1 (brown), *L. guyanensis*/*L. panamensis* (orange) and *L. shawi* (yellow). Plus-signs indicate isolates of the different ancestral lineages (three per lineage) that were used as controls.

835 **REFERENCES**

836 1. [M. C. Boité, I. L. Mauricio, M. A. Miles, E. Cupolillo, New insights on taxonomy, phylogeny and population genetics of *Leishmania* \(Viannia\) parasites based on multilocus sequence analysis. *PLoS Negl. Trop. Dis.* **6**, e1888 \(2012\).](#)

837 2. [S. Coughlan, et al., Leishmania naiffi and Leishmania guyanensis reference genomes highlight genome structure and gene evolution in the Viannia subgenus. *R Soc Open Sci* **5**, 172212 \(2018\).](#)

838 3. [G. Van Der Auwera, et al., Evaluation of four single-locus markers for leishmania species discrimination by sequencing. *J. Clin. Microbiol.* **52**, 1098–1104 \(2014\).](#)

839 4. [S. Schiffels, K. Wang, MSMC and MSMC2: The Multiple Sequentially Markovian Coalescent. *Methods Mol. Biol.* **2090**, 147–166 \(2020\).](#)

840

841

842

843

844

845