

1 Cold seeps are hotspots of deep-sea nitrogen-loss driven by

2 microorganisms across 21 phyla

3 Qiuyun Jiang^{1, 2 #}, Lei Cao^{3 #}, Yingchun Han¹, Shengjie Li⁴, Rui Zhao⁵,
4 Xiaoli Zhang⁶, S. Emil Ruff⁷, Zhuoming Zhao¹, Jiaxue Peng^{1, 8}, Jing Liao¹,
5 Baoli Zhu⁹, Minxiao Wang³, Xianbiao Lin^{10 *}, Xiyang Dong^{1, 2 *}

¹ Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China

² Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China

³ Deep Sea Research Center, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266000, China

⁴ Max Planck Institute for Marine Microbiology, Celsiusstraße 1, Bremen 28359, Germany

⁵ Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

⁶ Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China

⁷ Ecosystems Center and J. Bay Paul Center for Comparative Molecular Biology and

19 Evolution. Marine Biological Laboratory. Woods Hole. MA 02543. USA

⁸ College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China

22 ⁹ Key Laboratory of Agro-Ecological Processes in Subtropical Regions, Taoyuan
23 Agroecosystem Research Station, Institute of Subtropical Agriculture, Chinese
24 Academy of Sciences, Changsha 410000, China

¹⁰ Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China

28 [#] These authors contributed equally to this work.

* Correspondence can be addressed to Xiyang Dong (dongxiyang@tio.org.cn); Xianbiao Lin (linxianbiao@ouc.edu.cn).

31 Abstract

32 Nitrogen bioavailability, governed by the balance of fixation and loss processes, is a
33 key factor regulating oceanic productivity, ecosystem functions, and global
34 biogeochemical cycles. The key nitrogen-loss organisms—denitrifiers and anaerobic
35 ammonium-oxidizing (anammox) bacteria—are not well understood in marine
36 seafloor environments, especially in deep-sea cold seeps. In this study, we combined
37 geochemical measurements, ^{15}N stable isotope tracer analysis, metagenomics,
38 metatranscriptomics, and three-dimensional protein structural simulations to
39 investigate the diversity of denitrifying and anammox microbial communities and
40 their biogeochemical roles in these habitats. Geochemical evidence from 301
41 sediment samples shows significantly higher nitrogen-loss rates in cold seeps
42 compared to typical deep-sea sediments, with an estimated annual nitrogen loss of
43 6.16 Tg from seafloor surface sediments. Examination of a total of 147 million non-
44 redundant genes reveals a high prevalence and active expression of nitrogen-loss
45 genes, including nitrous-oxide reductase (NosZ; 6.88 genes per million or GPM on
46 average), nitric oxide dismutase (Nod; 1.29 GPM), and hydrazine synthase (HzsA;
47 3.35 GPM) in surface sediments. Analysis of 3,164 metagenome-assembled genomes
48 from this habitat has expanded the known diversity of nitrous-oxide reducers to six
49 phyla and nitric oxide-dismutating organisms to one phylum and two new orders,
50 while ten phyla host anammox bacteria going beyond *Planctomycetota*. These
51 microbes show diverse structural adaptations and complex gene cluster arrangements
52 that potentially enable survival in the harsh conditions of cold seeps. These findings
53 suggest that cold seeps, despite their low temperatures, are significant, previously
54 underestimated hotspots of nitrogen loss, potentially contribute substantially to the
55 global nitrogen cycle.

56 **Introduction**

57 Cold seeps are specialized marine environments primarily located along continental
58 slopes and subduction zones, where subsurface fluids rich in hydrogen sulfide and
59 hydrocarbons, such as methane, seep through the seabed¹⁻³. These environments
60 support complex ecosystems centered on the anaerobic oxidation of methane (AOM),
61 a process involving methane-consuming archaea and sulfate-reducing bacteria. All life
62 in these deep-sea oases depends on bioavailable nitrogen to support growth, which is
63 a critical factor limiting biological productivity. Thus, understanding the processes
64 that balance the nitrogen budget in cold seeps is essential^{4, 5}. Diazotrophs, organisms
65 that convert dinitrogen gas (N₂) into bioavailable nitrogen, including e.g. ammonium,
66 nitrite, and nitrate, through biological nitrogen fixation, are widespread in these
67 environments, supported by diverse energy sources from either cultivated or
68 uncultivated lineages⁶. Concurrently, nitrogen-loss microbes convert bioavailable
69 nitrogen back into N₂ to maintain a balanced nitrogen cycle. However, studies on
70 nitrogen-loss processes in deep-sea cold seeps and the responsible microbial
71 communities are relatively limited⁷⁻⁹. Understanding these processes is crucial for
72 comprehending how cold seeps contribute to the broader nitrogen cycle in marine
73 systems.

74 In marine sediments, two primary microbial processes for nitrogen-loss are
75 denitrification and anaerobic ammonium oxidation (anammox)^{10, 11}. Denitrification
76 occurs in two forms: classical and oxygenic. Classical denitrification reduces nitrate
77 (NO₃⁻) to nitrite (NO₂⁻) and then to nitric oxide (NO), which is subsequently
78 converted to nitrous oxide (N₂O). This N₂O is further reduced to N₂ by the enzyme
79 nitrous-oxide reductase (N₂OR), encoded by the *nosZ* gene cluster¹². Oxygenic
80 denitrification simplifies this process by converting NO into N₂ and molecular oxygen
81 (O₂) through the action of nitric oxide dismutase (Nod), bypassing the production of
82 N₂O^{13, 14}. Anammox, on the other hand, combines NO₂⁻ with ammonium (NH₄⁺) to

83 form N₂, providing a more energy-efficient pathway for nitrogen removal without
84 relying on oxygen^{10, 15}. This process includes the reduction of NO₂⁻ to NO, which
85 then reacts with NH₄⁺ to create hydrazine (N₂H₄), a highly reactive and toxic
86 compound with a low redox potential which then is oxidized to N₂. The hydrazine-
87 forming reaction, facilitated by hydrazine synthase (Hzs) is essential for the anammox
88 pathway due to its unique biochemical properties.

89 The relative contributions of denitrification and anammox to nitrogen-loss vary across
90 different marine sediments. Most studies have focused on areas within 1000 meters of
91 water depth, where denitrification typically accounts for over 80% of nitrogen-loss.
92 Denitrification rates in estuarine and coastal environments show a broad range (0–
93 217.9 nmol cm⁻³ h⁻¹)^{11, 16-21}. In contrast, rates in continental shelves, slopes, and deep-
94 sea cold seep sediments vary from 0–82.97 mmol m⁻³ h⁻¹^{17, 19, 22-25}. Meanwhile, in
95 deeper sea sediments (e.g., trenches), anammox contributes to about 50% of nitrogen-
96 loss. Studies by Thamdrup et al.¹¹ in Atacama and Kermadec Trenches show that
97 anammox bacteria are the main drivers of nitrogen loss in these deep-sea
98 environments, whereas denitrification occurs at slower rates and is confined to the
99 surface layers, which are potentially influenced by water depth and the scarcity of
100 reactive organic carbon^{11, 26, 27}. Although anammox plays a dominant role in deep-sea
101 sediments, denitrification can still predominate under certain conditions, particularly
102 in sediments with water depths greater than 1000 meters, where it contributes between
103 40.73% and 88.06% to nitrogen loss^{22, 25, 27}. These observations indicate that both
104 denitrification and anammox may play a role in nitrogen loss at cold seeps. However,
105 the exact contributions of these processes in balancing the nitrogen budget at cold
106 seep sites remain unclear.

107 N₂OR, encoded by *nosZ* clade I and II, is the only enzyme that biologically converts
108 N₂O to N₂²⁸. NosZ clade I is primarily found in some members of *Alpha*-, *Beta*-, and
109 *Gammaproteobacteria* that possess the complete denitrification pathway. In contrast,
110 NosZ clade II has been found in diverse bacterial groups that lack nitrite reductase

111 genes (*nirS* or *nirK*), including *Gemmatimonadetes*, *Verrucomicrobia*,
112 *Gammaproteobacteria*, and *Chloroflexi*²⁹⁻³¹. While NosZ clade I is well-documented,
113 recent studies suggest that NosZ clade II may play a more important role in reducing
114 N₂O in certain ecosystems than previously assumed^{29, 31-33}. The *nod* genes were first
115 identified in the genomes of *Candidatus Methylomirabilis oxyfera*-like bacteria (also
116 known as NC10 or nitrite-dependent methane-oxidizing bacteria)^{14, 34, 35}, which use
117 Nod to generate N₂ and O₂. The generated O₂ is utilized to catalyze methane oxidation,
118 thereby coupling oxygenic denitrification with aerobic methanotrophic pathways in
119 anoxic environments^{34, 36, 37}. These organisms have been detected in globally
120 distributed cold seeps and other seafloor sediments through metagenomic and
121 amplicon sequencing of *pmoA* or 16S rRNA genes³⁸⁻⁴⁰. Other bacteria like the
122 *Gammaproteobacterium* strain *HdN1*, and species from the genera *Sediminibacterium*
123 and *Algoriphagus* (within the phylum *Bacteroidota*)⁴¹, which also possess *nod* genes,
124 may produce oxygen via dismutation, suggesting the potential involvement of other
125 microbes in oxygen production in cold seeps.

126 Known anammox bacteria are all affiliated with the *Planctomycetota* phylum,
127 specifically within five families in the *Brocadiales* order: *Candidatus Scalinduaceae*,
128 *Candidatus Brocadiaceae*, *Candidatus Anammoxibacteraceae*, *Candidatus*
129 *Bathyannammoxibiaceae*, and *Candidatus Subterraneanammoxibiaceae*⁴²⁻⁴⁴. Although
130 these lineages are widely distributed across marine ecosystems and found in
131 sediments from diverse marine environments, pure cultures have not yet been
132 obtained^{27, 45, 46}. Further studies using amplicon sequencing of 16S rRNA, hydrazine
133 dehydrogenase (*hzo*), and *hzsB* genes have discovered diverse anammox bacteria in
134 deep-sea cold seep sediments of the Okhotsk Sea and the South China Sea^{8, 9}. These
135 findings suggest that the deep-sea cold seep environment might harbor novel
136 anammox bacteria outside the *Planctomycetota* phylum.

137 In this study, we aim to investigate the contributions of denitrifying and anammox
138 microbial communities in nitrogen-loss at cold seep habitats, along with their diversity.

139 We first provide geochemical evidence for nitrogen loss in cold seeps, based on data
140 from 301 sediment samples collected from three sites—Lingshui, Haima, and Site F
141 (**Fig. 1 and Supplementary Fig. 1**). This evidence is further supported by
142 measurements of denitrification and anammox activities, conducted through slurry
143 incubation experiments with ^{15}N -labelled tracers. Subsequently, we explore the genes
144 associated with nitrogen loss (*nosZ*, *nod*, and *hzsA*) and the diversity of microbes
145 linked to this process. This is achieved through sequence- and structure-based
146 analyses using a detailed gene and genome catalogue compiled from 165
147 metagenomes from 16 cold seep sites. Our findings reveal that cold seeps are
148 overlooked areas for nitrogen loss in marine sediments under high pressure and low
149 temperature. Nitrogen-loss in this habitat is mediated by diverse microbial
150 populations, including newly identified phyla of anammox bacteria, contributing to
151 this process.

152 **Results and discussion**

153 **Geochemical evidence for nitrogen-loss in cold seeps**

154 A total of 301 sediment samples from 33 cores with depths of 0–36 cm below the
155 seafloor (cmbsf) were collected from three different cold seeps—Lingshui, Haima,
156 and Site F (**Supplementary Fig. 1**). These sites represent different stages of cold seep
157 activity with varying methane seeping intensity⁴⁷. Correspondingly, sulfate (SO_4^{2-})
158 concentrations in the porewater showed coherent downcore variations, either
159 decreasing dramatically or remaining relatively stable depending on methane fluxes
160 (**Fig. 1a and Supplementary Table 1**). The predominant form of dissolved inorganic
161 nitrogen was ammonium (NH_4^+ ; **Fig. 1b**), with the highest concentrations found at
162 Site F (8.6–867.2 μM , average 266.0 μM) and lower concentrations at Lingshui and
163 Haima (averaged at 61.5 and 15.0 μM , respectively). Porewater nitrate (NO_3^-) and
164 nitrite (NO_2^-) concentrations (averaged at 1.6 and 0.6 μM , respectively) were
165 generally lower than NH_4^+ across all sites (**Fig. 1c-d**). Following this, we detected the

166 signature of active N_2 production, as evident by the downcore increasing
167 concentrations of N_2 (1.89–6.12%) in two cores, with $\delta^{15}\text{N}$ values in the range of -
168 3.08–6.11‰ (**Fig. 1e-f**). The $\delta^{15}\text{N}$ values of N_2 indicated that Site F-14 (-3.09–0.10‰)
169 suggest intensive denitrification and anammox activities, indicating significant
170 nitrogen consumption through these processes^{48, 49}. Together, our extensive
171 geochemical measurements indicate the occurrence of nitrogen loss in cold seep
172 sediments.

173 Total organic carbon (TOC), total nitrogen (TN), and TOC:TN ratio varied
174 considerably between sites, generally decreasing with sediment depth (**Fig. 1g-i**).
175 TOC levels in Lingshui, Haima, and Shenu (non-seep; $n = 12$) sites were much
176 higher than those in Site F. Enzymes involved in microbial nitrogen-loss processes
177 require metal cofactors⁵⁰⁻⁵², which were abundant in all studied sediments. In
178 Lingshui, copper (Cu^{2+}) reached the highest concentration, averaging 26.6 nM, while
179 zinc (Zn^{2+}) peaked in Haima, averaging 100.4 nM (**Fig. 1j-k**). Calcium (Ca^{2+})
180 displayed a decreasing trend in Site F, while iron (Fe^{2+}) was highest in Haima,
181 averaging 11.9 µM (**Fig. 1l-m**).

182 **Significant potential nitrogen-loss rates in cold seeps**

183 We examined potential nitrogen-loss rates and the contribution of anammox to N_2
184 production by conducting slurry experiments with nitrogen isotope tracing on
185 sediment samples up to 36 cm deep from Lingshui, Haima, and Shenu
186 (**Supplementary Fig. 1**) at 4 °C. We detected both denitrification and anammox, with
187 rates significantly higher in cold seep regions ($n = 37$) compared to non-seep regions
188 ($n = 11$; $P < 0.0001$; **Fig. 2b and Supplementary Table 2**). In cold seeps, average
189 potential denitrification rates were measured at $2.81 \pm 4.53 \text{ nmol cm}^{-3} \text{ h}^{-1}$, and
190 anammox rates were $0.17 \pm 0.25 \text{ nmol cm}^{-3} \text{ h}^{-1}$. In contrast, non-seep regions had
191 denitrification and anammox rates of only $0.1 \pm 0.07 \text{ nmol cm}^{-3} \text{ h}^{-1}$ and 0.02 ± 0.02
192 $\text{nmol cm}^{-3} \text{ h}^{-1}$, respectively. It should be noted that the lesser importance of anammox

193 (18.3 \pm 12.73%) in the non-seep sediments is mainly attributed to higher organic
194 carbon contents (0.99 \pm 0.08%) (**Fig. 1g**), which favor denitrification over anammox^{11,}
195 ²².

196 Although the anammox contributions measured here were lower than that in many
197 previous studies in deep-sea sediments (**Fig. 2a**), they were comparable to values
198 measured in sediments from continental slope^{25, 27} and deep-sea²⁶ environments.
199 Denitrification is the primary nitrogen-loss process in these environments, with
200 anammox contributing to roughly 27.44 \pm 29.96% of the total nitrogen-loss in cold
201 seeps (**Supplementary Fig. 2**). The rich organic carbon and tight correlation between
202 denitrification rates and TOC contents in cold seeps ($P < 0.01$; **Supplementary Fig.**
203 **3a**) suggest that heterotrophic denitrification is a likely metabolic pathway⁷. A tight
204 correlation between anammox and denitrification rates was both observed in cold
205 seeps and non-seep ($P < 0.01$; **Supplementary Fig. 3c and d**), aligning with the fact
206 that denitrification from nitrate to nitrite provides the necessary NO_2^- for anammox in
207 marine sediments^{53, 54}. Despite low-temperature conditions, several cold seep sites—
208 specifically Haima-6, Haima-7, Haima-8, Lingshui-10, and Lingshui-11—exhibited
209 exceptionally high rates of nitrogen loss (up to 17.65 \pm 1.24 nmol cm^{-3} h^{-1} ;
210 **Supplementary Fig. 2 and Supplementary Table 2**) possibly related to abundant
211 carbon sources (1.01–2.37%; **Supplementary Table 1**). These rates are comparable
212 to those in estuarine and coastal environments with higher temperatures, as well as
213 other known cold seep sites such as those in the Gulf of Mexico, but are considerably
214 higher than typical deep-sea sediments (**Figure 2a and Supplementary Table 3**).

215 These findings suggest that certain denitrifying or anammox microbes have adapted
216 or evolved to thrive in deep-sea cold seeps with low temperature, high hydrostatic
217 pressure, and stable carbon and energy supply. Although our experiments did not
218 replicate the high hydrostatic pressure found in natural settings, research has shown
219 that N_2 production rates measured in the laboratory closely matched those observed *in*
220 *situ* using a benthic lander in hadal sediments of the Atacama Trench¹¹. We

221 extrapolated the potential nitrogen-loss rates measured in our study across the
222 globally estimated seepage area using methods from a previous study²⁴. Given that the
223 total active seep areas in Haima is about 350 km²⁵⁵ and the sediment mean bulk dry
224 density of about 1.3 g cm⁻³⁵⁶, and considering the more than 900 global cold seeps⁵⁷,
225 we estimate the global cold seep area to be approximately 3.15×10⁵ km². The
226 estimated nitrogen-loss flux from denitrification and anammox in the surface
227 sediments (0–5 cm) of cold seeps is around 6.16 Tg N per year. This represents about
228 2.05% of the global marine sediment nitrogen-loss flux (300 Tg N per year)⁵⁸,
229 highlighting that cold seeps, despite covering only about 0.087% of the global marine
230 area, are significant nitrogen-loss hotspots in marine sediments. However, it should be
231 noted that cold seep areas are not yet precisely described in the studies, and this
232 estimate is merely possible, as cold seep areas can vary significantly in size.

233 **Diverse nitrogen-loss genes are mainly found to be abundant in surface
234 sediments**

235 Using a gene catalog of 147 million non-redundant genes from cold seeps⁵⁹, we
236 delved into the diversity of genes linked to nitrogen loss, focusing on nitrous-oxide
237 reductase (NosZ), nitric oxide dismutase (Nod), and hydrazine synthase (HzsA)
238 (**Supplementary Fig. 4**). We identified 530 NosZ sequences containing cupredoxin-
239 related protein active domains (**Supplementary Fig. 5**). These sequences are
240 categorized into two groups based on their signal peptides: clade I (n = 164) utilizes
241 the twin-arginine translocation (Tat) pathway⁶⁰, while clade II (n = 366) has an
242 additional c-type heme domain at the C-terminus, associated with the secretory (Sec)
243 pathway^{30, 33}. Furthermore, we discovered a sequence-divergent branch called
244 NosZG7 (n = 27), which, despite sequence differences, showed structural congruence
245 with canonical NosZ (**Supplementary Fig. 5b**). In addition, we identified 151 Nod
246 sequences, all bearing conserved catalytic site residues similar to those of nitric oxide
247 dismutase⁴¹ from the NO-dismutating bacterium *Methylomirabilis oxyfera*
248 (**Supplementary Fig. 6**). The sequence-divergent branches Cluster1 (n = 28) and

249 Cluster5 ($n = 8$) were only found through phylogenetic and structural analysis,
250 respectively. We also identified 644 HzsA sequences with hydrazine synthase alpha
251 subunit domains and the pentacoordinated *c*-type heme⁵². The HzsA sequences were
252 classified into six clades, with five branches identified through structural analysis as
253 divergent from those of known anammox bacteria (**Supplementary Fig. 7**). Notably,
254 while no *hzsA* and *nod* protein sequences were detected in mobile genetic elements
255 (MGEs), we found 31 *nosZ* sequences in MGEs, with clade I ($n = 24$;
256 **Supplementary Fig. 8**) being more prevalent than clade II ($n = 7$). This suggests that
257 horizontal gene transfer via MGEs may contribute to the diversification of *nosZ*-
258 bearing denitrifying microorganisms in deep-sea cold seeps⁶¹.

259 The average abundances of *nosZ*, *nod*, and *hzsA* genes were 4.84, 0.90 and 2.78 genes
260 per million (GPM; 0–6855 cmbsf; **Fig. 2c**, **Supplementary Fig. 9a** and
261 **Supplementary Table 4**), respectively. These abundances are one-quarter that of the
262 reductive *dsrA* gene (averaging 21.32 GPM), indicative of sulfate reduction, and only
263 one-tenth of the oxidative *mcrA* gene (averaging 46.15 GPM), which is indicative of
264 methane oxidation. Similarly, they are one-tenth of the *nifH* gene (averaging 55.45
265 GPM), associated with nitrogen fixation. This imbalance between genes for nitrogen
266 fixation and nitrogen loss suggests that there might be additional pathways for
267 nitrogen loss or the active assimilation of ammonium. The expression levels of
268 nitrogen-loss genes indicate that microbial nitrogen-loss processes are active,
269 particularly at the surface of cold seep sediments, with average values of 2.38
270 transcripts per million (TPM) for *nosZ*, 0.20 TPM for *nod*, and 0.48 TPM for *hzsA*
271 (**Fig. 2d**, **Supplementary Fig. 9b** and **Supplementary Table 5**). Specifically, *nosZ*
272 clade II genes were more abundant than clade I genes ($P < 0.0001$; **Fig. 2c**,
273 **Supplementary Fig. 9a** and **Supplementary Table 4**). The expression level of *nosZ*
274 clade II genes (averaging 3.71 TPM) was also higher than that of *nosZ* clade I genes
275 (averaging 1.13 TPM; $P < 0.0001$; **Supplementary Fig. 9b**), indicating that *nosZ*
276 clade II may play a more important role in N₂O consumption in cold seeps^{29, 32, 33}.
277 The distributions of *nosZ*, *nod*, and *hzsA* genes varied with sediment depth (0–300

278 cmbsf), showing generally negative trends with increasing depth, indicating
279 diminished nitrogen-loss activity deeper in the sediments (**Fig. 2e**). However, within
280 the shallow surface layers (up to 40 cmbsf), the abundance of *nosZ*, *nod*, and *hzsA*
281 genes positively correlated with depth ($P < 0.05$; **Supplementary Fig. 9c and**
282 **Supplementary Table 7**). Additionally, cold seep nitrogen-loss gene abundance
283 exhibited statistically significant differences across surface and middle/depth depths,
284 decreasing with sediment depth, with lower abundances in deeper sediments.
285 Specifically, gene abundances ranged from 1.29 to 6.88 GPM at the surface (0–50
286 cmbsf), 0.08 to 1.41 GPM in the middle depth (50–500 cmbsf), and 0.20 to 0.98 GPM
287 in deep sediments (>500 cmbsf) ($P < 0.0001$; **Fig. 2c, e and Supplementary Table 4**).

288 **Diverse denitrifiers across multiple phyla exhibit considerable structural**
289 **diversity**

290 From a cold seep genome catalog of 3,164 metagenome-assembled genomes (MAGs),
291 we identified 142 *nosZ* sequences, which were categorized into *nosZ* clade I ($n = 52$)
292 and *nosZ* clade II ($n = 90$) based on phylogenetic and structural analyses
293 (**Supplementary Fig. 10 and Supplementary Table 8**). The relative abundance of
294 the MAGs that comprised *nosZ* genes ranged from 0.0001 to 0.0263% in the 165
295 sediment samples of cold seeps (**Supplementary Table 8**). Nitrous oxide reductase
296 (N₂OR) is a copper-dependent enzyme that assembles into tightly linked, head-to-tail
297 homodimers of 130 kDa, incorporating both a mixed-valent Cu_A center and a unique,
298 tetranuclear Cu_Z site⁶². This arrangement allows N₂O to bind across the Cu_Z site
299 bridging the two copper centers⁶³. Structurally, both cold seep *nosZ* clades I and II
300 N₂ORs feature a Cu_Z active site within the N-terminal seven-bladed β -propeller
301 domain and a Cu_A site in the C-terminal cupredoxin domain, without any
302 transmembrane α -helices (**Supplementary Figs. 11-12**). Their N-terminal
303 configurations differ to align with their physiological functions (**Fig. 3a**), adopting
304 signal peptides⁶⁴ for either the Tat pathway in clade I or the Sec pathway in clade II
305 (**Supplementary Figs. 11-12 and Supplementary Table 14**). Additionally, some

306 *nosZ* clade II variants possess a C-terminal α -helix (**Fig. 3a, Supplementary Figs.**
307 **11b, 12b**), potentially enhancing the stability of their active sites. Critically, the Cu_A
308 and Cu_Z sites within each monomer are too far apart (40 \AA) for effective electron
309 transfer, but adjacent monomers have their Cu_A and Cu_Z sites just 10 \AA apart,
310 facilitating electron flow⁶². Consequently, the C-terminal α -helix of *nosZ* clade II
311 surrounds the periphery of Cu_A and Cu_Z sites of adjacent monomers in the structure.
312 We used all the above-described structural features to query the metagenomic datasets
313 and detect *nosZ* genes with very high confidence and resolution.

314 The distribution of the 142 *nosZ* genes across MAGs spans one archaeal and 18
315 bacterial phyla, reflecting the wide phylogenetic breadth of nitrous-oxide reducers in
316 these environments (**Supplementary Fig. 10a and Supplementary Table 8**). The
317 most common phyla containing *nosZ* genes are *Pseudomonadota* (n = 56) and
318 *Bacteroidota* (n = 36), with fewer occurrences in *Campylobacterota*, *Myxococcota*,
319 *Chloroflexota*, *Desulfobacterota*, *Gemmatimonadota* and other phyla (**Fig. 3a**). *NosZ*
320 clade I genes are present in *Alphaproteobacteria*, *Gammaproteobacteria*, and a few
321 other phyla, while clade II genes are more widespread, found in 15 bacterial groups
322 and the archaeal phylum *Thermoplasmatota* (**Supplementary Fig. 10 and**
323 **Supplementary Table 8**). This reveals six additional phyla (*Campylobacterota*,
324 *Desulfobacterota*, *Krumholzibacteriota*, *Myxococcota*, *Planctomycetota* and
325 *Zixibacteria*) capable of reducing nitrous oxide, considerably expanding the known
326 genetic diversity of N₂O reducers in deep-sea cold seep sediments. Most clade II
327 MAGs contain multiple *nosZ* genes, with six MAGs containing two copies and one
328 containing three copies, contrasting with the single *nosZ* gene typically found in clade
329 I MAGs from cold seeps (**Fig. 3b, Supplementary Fig. 13 and Supplementary**
330 **Table 12**). Notably, we identified a MAG, RS_10_sbin_88, from
331 *Gammaproteobacteria* that carries one copy of both *nosZ* clade I and II genes. The
332 *nosZ* clade I genes of *Pseudomonadota* were transcribed at high levels, up to 150.71
333 TPM, while *nosZ* clade II genes were transcribed at moderate to high levels in several

334 phyla, up to 41.92–200.31 TPM, especially in *Campylobacterota* and
335 *Pseudomonadota* (**Supplementary Table 9-10**).

336 The *nos* gene clusters, essential for N₂OR maturation and function, show substantial
337 differences between the *nosZ* clade I and clade II. The *nos* clusters of *nosZ* clade II
338 contain more genes than those of clade I (**Fig. 3b and Supplementary Fig. 13**). Both
339 clades share three ABC transporter complex genes (*nosD*, *nosF* and *nosY*) and a
340 copper chaperone gene (*nosL*) necessary for assembling the CuZ center⁶⁵, typical of
341 denitrifier *nos* clusters of clade I. There is no evidence suggesting differences in the
342 copper transport process from NosL to NosZ via NosD between the clades⁵¹. Unlike
343 clade I, the *nos* clusters of clade II lack the *nosR* gene, typically associated with
344 electron transfer to NosZ⁵¹. Instead, they feature three extra genes coding for a 4Fe-4S
345 dicluster domain protein, an iron-dependent transcriptional regulator, and a *c*-type
346 cytochrome oxidase (**Fig. 3b and Supplementary Fig. 13**), which are likely involved
347 in electron transport and Sec pathway translocation for functional integration with the
348 cytochrome *c* maturation system.

349 Additionally, from 3,164 MAGs, we identified five *nod* genes characterized by
350 conserved enzymatic active center residues, distinguishing them from the related
351 nitric oxide reductase (*nor*) by the substitution of “Thr” with “Ile”, “His” with “Asp”,
352 and “Glu” with “Gln”⁴¹ (**Fig. 4**). The relative abundance of MAGs comprising *nod*
353 genes ranged from 0.0004 to 0.0133% in the 165 samples of cold seeps
354 (**Supplementary Table 15**). Structurally, the nitric oxide dismutase from cold seeps
355 consistently exhibited conserved α -helix domains—four enzymes had 14 α -helices,
356 and one had 13, reflecting notable structural conservation (**Supplementary Fig. 14a-e**
357 and **Supplementary Table 16**). These *nod* genes are found in five MAGs across two
358 bacterial phyla, indicating a broader presence of oxygenic denitrifiers than previously
359 understood (**Fig. 4a-b and Supplementary Table 15**)^{13, 34, 41}. Specifically, three of
360 these MAGs are attributed to the *Planctomycetota* phylum (two from UBA1135 and
361 one from *Scalinduaceae*), and two to the *Bacteroidota* phylum (as *Maribacter_A*

362 *sp023141835* and *Cecembia rubra* from the orders *Flavobacteriales* and
363 *Cytophagales*, respectively). This expanded diversity suggests more widespread
364 bacterial capabilities for nitric oxide dismutation at cold seeps than previously
365 appreciated through metagenomic or environmental studies⁶⁶. The gene cluster for
366 nitric oxide dismutase in UBA1135 is conserved across two genomes, featuring a
367 helix-turn-helix domain and electron transport-associated proteins, including
368 ferredoxin oxidoreductase and a 4Fe-4S dicluster domain (**Supplementary Table 17**).
369 In *Cecembia rubra*, the *nod* gene cluster includes not only the standard *nos* cluster
370 (*nosZ*, *nosD*, *nosF*, *nosY*, *nosL*) but also elements that regulate nitric oxide signaling
371 and electron transport. However, in the other two MAGs from *Scalinduaceae* and
372 *Maribacter_A* *sp023141835*, the genes downstream of *nod* are categorized as having
373 domains of unknown function. Additionally, most of these *nod*-containing MAGs
374 possess genes for other nitrogen metabolic processes (**Supplementary Table 15**) such
375 as genes for hydroxylamine dehydrogenase (*hao*), nitric oxide reduction (*nor*), nitrous
376 oxide reduction (*nosZ*), nitrate reduction (*nap/nir*), nitrite reduction to nitric oxide (*nir*)
377 and nitrite reduction to ammonia (*nrf/nir*).

378 **Anammox capabilities are found in multiple phyla beyond *Planctomycetota***

379 Further analyses of the 3,164 MAGs identified 265 *hzsA* genes, the diagnostic gene of
380 bacteria capable of anammox (**Fig. 5a; Supplementary Table 18**). The relative
381 abundances of these *hzsA*-containing MAGs ranged from 0.0002% to 0.0201% in the
382 165 samples from cold seeps (**Supplementary Table 18**). These *hzsA* gene sequences,
383 characterized by a motif binding to a pentacoordinated *c*-type heme in the hydrazine
384 synthase alpha subunit⁵², were distributed across 94 bacterial MAGs spanning 10
385 bacterial phyla (**Supplementary Fig. 15 and Supplementary Table 18**). This
386 distribution extends beyond the previously recognized anammox bacteria of the
387 *Brocadiales* order within the *Planctomycetota* phylum^{42-44, 67}. These *hzsA*-containing
388 MAGs are members of *Planctomycetota* (n = 55), *Bacteroidota* (n = 16),
389 *Acidobacteriota* (n = 10), *Verrucomicrobiota* (n = 6), *Sumerlaeota* (n = 1),

390 *JABMQX01* (n = 1), *Calditrichota* (n = 1), *Desulfobacterota* (n = 1), *Fibrobacterota*
391 (n = 1), *Gemmatimonadota* (n = 1) and *Zixibacteria* (n = 1) (**Supplementary Fig. 15**
392 and **Supplementary Table 18**). The *hzsA* genes of *Acidobacteriota*, *Bacteroidota*,
393 *Calditrichota*, *Planctomycetota* and *Sumerlaeota* were transcribed at moderate to high
394 levels, up to 56.75–414.23 TPM, whereas fewer transcripts from *Verrucomicrobiota*
395 were detected (**Supplementary Tables 19**).

396 Among the 94 MAGs, 27 contain 42 *hzd* genes, which encode hydrazine
397 dehydrogenase for oxidizing N₂H₄ to N₂ (**Supplementary Table 21**). Notably, only
398 two belong to the *Ca. Scalinduaceae* family within the *Planctomycetota* phylum, and
399 both do not contain the complete *hzsBC* genes (**Fig. 6** and **Supplementary Table 22**).
400 However, 37 MAGs do contain these genes (**Supplementary Tables 22-23**), forming
401 a multienzyme complex HZS- $\alpha\beta\gamma^{68}$. Of these, five MAGs comprise multiple *hzsABC*
402 clusters and are associated with *Phycisphaerae* (n = 3), *Verrucomicrobiae* (n = 1), and
403 *Bacteroidia* (n = 1). These findings considerably broaden the recognized phylogenetic
404 diversity and environmental presence of anammox bacteria.

405 We then carefully examined the five MAGs with multiple *hzsABC* clusters and two
406 *Scalinduaceae* MAGs, confirming they were not contaminated during binning
407 (**Supplementary Table 24**). We found that the MAGs not only shared a similar gene
408 cluster arrangement (**Fig. 6a**; **Supplementary Table 22**) but also structural
409 similarities with known anammox bacteria (**Fig. 5a**). In addition to the essential
410 genetic machinery for anammox metabolism, including hydrazine synthase (*hzs*) for
411 converting NO and NH₄⁺ to N₂H₄, and hydrazine dehydrogenase (*hzd*) for oxidizing
412 N₂H₄ to N₂, the MAGs also possess additional nitrogen metabolic processes such as
413 genes for nitrate reduction (*nap/nir*), nitrite reduction to nitric oxide (*nir*) and nitrite
414 reduction to ammonia (*nrf/nir*)⁶⁹ (**Fig. 6b** and **Supplementary Table 25**). Notably,
415 we identified a MAG affiliating with *Verrucomicrobiae*, FR_S1_sbin_24, which
416 contains at least two copies of the *hzsA*, *hzsB*, and *hzsC* genes in a single contig (**Fig.**
417 **6a** and **Supplementary Table 22**), interspersed with several unknown proteins and

418 upstream genes related to *c*-type cytochromes and Ca-activated chloride channels.
419 This MAG also encodes both hydroxylamine oxidoreductase (Hao) for nitrite
420 reduction⁷⁰ and NosZ (**Fig. 6b**), suggesting a versatile metabolic capability.

421 Both traditional and novel HzsA proteins encoded in the seven MAGs are structured
422 into three distinct domains (**Fig. 5a**, **Supplementary Figs. 16a, b, and 17a, b**): a six-
423 bladed β -propeller N-terminal domain, a middle domain that binds a pentacoordinated
424 *c*-type heme (heme α I), and a C-terminal domain featuring a bis-histidine-coordinated
425 *c*-type heme (heme α II)⁵². The heme α I substantially differs from typical heme *c* sites
426 by coordinating a zinc ion. Traditional HzsA proteins lack an N-terminal
427 transmembrane α -helix (**Supplementary Fig. 16c, d**), as do the novel HzsA proteins
428 described here (**Supplementary Fig. 17c, d**). However, only the novel HzsA proteins
429 include N-terminal signal peptides indicative of the Sec secretion pathway
430 (**Supplementary Fig. 17e, f**). Additionally, these proteins exhibit significant variation
431 in their C-terminal structures, particularly the novel HzsA proteins, which include a
432 C-terminal α -helix that may stabilize the binding at the heme α I active center (**Fig. 5a**
433 and **Supplementary Figs. 16a, b, 17a, b**). These proteins assemble into one or two
434 heterotrimer complexes as predicted by AlphaFold Multimer (**Fig. 5c**,
435 **Supplementary Fig. 22**). In each complex, one of the β and γ subunits of the novel
436 HzsA are fused into a single polypeptide chain, consistent with earlier studies⁷¹. The
437 novel HzsA proteins retain essential domains for heme binding and electron transfer,
438 indicating they are functionally capable of catalyzing anammox reactions. Structural
439 adaptations, such as N-terminal signal peptides and C-terminal α -helices, optimize
440 these proteins for the unique conditions of cold seeps, showcasing the evolutionary
441 adaptability of anammox bacteria in nitrogen cycling.

442 **Conclusions**

443 In the past, gene annotations primarily relied on sequence similarity, which often
444 overlooked genes that are distantly related yet functionally similar. However, over

445 long evolutionary time scales, multiple substitutions at the same site can cause
446 uncertainty in sequence alignment. Structures evolve at a slower rate than the
447 underlying sequence mutations and are more conserved, emphasizing the importance
448 of protein structural analysis⁷². By employing protein structural similarities and
449 phylogenetic analysis, we have discovered that the NosZ clade II is notably more
450 diverse and abundant in deep-sea cold seeps than previously assumed. This diversity
451 may have significant implications for the role of NosZ clade II in N₂O consumption in
452 cold seeps. Members of the *Planctomycetota* phylum, as well as the orders
453 *Flavobacteriales* and *Cytophagales*, might be notable contributors to nitrogen loss
454 through nitric oxide dismutation. These organisms might also act as oxygen producers
455 which could be linked to the aerobic methane and sulfide oxidation within anoxic
456 layers of cold seep ecosystems⁷³. Crucially, our findings also indicate that anammox
457 bacteria are found in multiple phyla (e.g. *Bacteroidota*, *Acidobacteriota*, and
458 *Verrucomicrobiota*) beyond *Planctomycetota*, and that these overlooked lineages
459 actively express anammox genes. Our findings highlight the importance of nitrogen
460 loss through denitrification and anammox processes at cold seeps. Overall, this study
461 provides evidence supporting the presence of numerous novel, cold-adapted microbial
462 lineages involved in denitrification (including oxygenic denitrification) and anammox
463 processes. It establishes cold seeps as considerable nitrogen-loss hotspots in the deep
464 sea and as important contributors to the global nitrogen cycle, broadening the
465 recognized roles of cold seeps beyond serving as oases of diversity, productivity, and
466 methane removal.

467 Materials and methods

468 Sampling and geochemical measurements

469 A total of 301 samples from 33 push cores were collected by a remotely operated
470 vehicle (ROV) at Lingshui, Haima and Site F cold seeps in the South China Sea
471 between 2020 and 2023 (**Supplementary Fig. 1**). Upon retrieval on deck, sediment

472 cores were immediately placed in a helium-filled glove bag. Porewater was extracted
473 at 2-cm depth intervals using Rhizon samplers with 0.2 μm pore size (Rhizosphere,
474 Netherlands). Collected porewater samples for used for metal analysis were acidified
475 to pH \sim 2 with HNO₃ (Optima grade, Thermo Scientific, USA), and stored at 4 °C
476 before analysis. For nitrogen gas measurement in sediments, 3 mL of sediments at 2-
477 cm intervals was transferred using a 5 mL cut-off syringe into a 22 mL serum vial,
478 which was then crimp-sealed and stored at 4 °C. Samples of porewater and sediment
479 for analyzing nutrients, sulfate, and calcium were stored at -20 °C until analysis.

480 The concentrations of N₂ along with its $\delta^{15}\text{N}$ values in the headspace gas were
481 measured using gas chromatography with thermal conductivity detection (Agilent,
482 USA) and a continuous-flow isotope-ratio mass spectrometer (SerCon, UK). The
483 concentrations of ammonium (NH₄⁺), nitrite (NO₂⁻), and nitrate (NO₃⁻) in porewater
484 were determined using a Quattro continuous flow analyzer (SEAL Analytical AA3,
485 Germany). Sulfate (SO₄²⁻) and calcium (Ca²⁺) concentrations were determined using a
486 Dionex Ion Chromatograph (Thermo Scientific Dionex, USA). Dissolved metals (Fe²⁺,
487 Cu²⁺ and Zn²⁺) in porewater were measured using ICP-MS (Thermo Scientific, USA).
488 Sediment total organic carbon (TOC) and total nitrogen (TN) were measured using a
489 Vario Micro Cube elemental analyzer (Elementar, Germany), after the sediments were
490 treated with 1 M HCl to remove carbonates.

491 **Determination of nitrogen-loss rates**

492 Nitrogen-loss rates were determined using 37 samples from 8 push cores (Lingshui-
493 10/-11, Haima-3/-4/-5/-6/-7/-8) collected by an ROV during 2023 from the cold seeps
494 of Lingshui and Haima, with water depths ranging from 1350 to 1822 meters.
495 Additionally, 11 samples from 3 push cores (Shenhu-1/-2/-3) were collected from the
496 non-seep area in Shenhu, at depths of 489 to 1457 meters in the South China Sea
497 (**Supplementary Fig. 1**). Potential nitrogen-loss rates were measured using N
498 isotope-tracing techniques as follows^{74, 75}.

499 Briefly, slurries were prepared using collected sediments and artificial seawater
500 matching *in situ* salinity, at a sediment/water volume ratio of 1:7. The mixture was
501 purged with helium for 30 min and stirred vigorously to ensure homogeneity. Gas-
502 tight borosilicate vials (Labco Exetainers) were then filled with slurries under a
503 helium atmosphere. Subsequently, the vials were pre-incubated at near *in situ*
504 temperature (4 °C) for 48 h to remove residual NO_x^- ($\text{NO}_3^- + \text{NO}_2^-$) and dissolved
505 oxygen. The slurries were divided into three groups, each amended with different
506 nitrogen compounds in helium-purged stock solutions: (1) $^{15}\text{NH}_4^+$ (99.12%), (2)
507 $^{15}\text{NH}_4^+ + ^{14}\text{NO}_3^-$, and (3) $^{15}\text{NO}_3^-$ (99.21%). The final concentration of ^{15}N compounds
508 in each vial was 75 μM . To halt the incubation, 200 μL of 50% ZnCl_2 solution was
509 injected into each vial. The ^{15}N labeled N_2 were measured using a membrane inlet
510 mass spectrometer (MIMS, HPR-20, Hiden Analytical, UK). Denitrification and
511 anammox rates were estimated from the accumulation of $^{29}\text{N}_2$ and $^{30}\text{N}_2$ during the
512 slurry incubation^{16, 74}. The respective contributions of denitrification and anammox to
513 $^{29}\text{N}_2$ production were quantified using equation (1).

514
$$P_{29} = A_{29} + D_{29} \quad (1)$$

515 where P_{29} ($\text{nmol cm}^{-3} \text{ h}^{-1}$) denotes the total $^{29}\text{N}_2$ production rates, D_{29} ($\text{nmol cm}^{-3} \text{ h}^{-1}$)
516 and A_{29} ($\text{nmol cm}^{-3} \text{ h}^{-1}$) denote the production rates of $^{29}\text{N}_2$ from denitrification and
517 anammox, respectively. Here, D_{29} was obtained by equation (2), assuming random
518 paring of ^{14}N and ^{15}N from $^{14}\text{NO}_3^-$ or $^{15}\text{NO}_3^-$ ^{76, 77}.

519
$$D_{29} = P_{30} \times 2 \times (1 - F_N) \times F_N^{-1} \quad (2)$$

520 where P_{30} ($\text{nmol cm}^{-3} \text{ h}^{-1}$) denotes the total $^{30}\text{N}_2$ production rates, F_N (%) denotes the
521 fraction of ^{15}N in NO_3^- , which was obtained from the added $^{15}\text{NO}_3^-$ and the measured
522 residual ambient NO_x^- , ranging from 97.8% to 99.7%. The potential rates of
523 denitrification and anammox were quantified by equations (3) and (4).

524
$$D_t = D_{29} + 2 \times P_{30} \quad (3)$$

525
$$A_{29} = P_{29} - D_{29} \quad (4)$$

526 where D_t and A_{29} ($\text{nmol cm}^{-3} \text{ h}^{-1}$) denote the denitrification and anammox rates,
527 respectively. By convention, the percent of N_2 production accounted for anammox is
528 abbreviated as ra (%).

529 **Metagenomic data processing**

530 The metagenomic datasets from 165 samples were collected from 16 cold seep sites
531 worldwide, including oil and gas seeps, methane seeps, gas hydrates, asphalt
532 volcanoes, and mud volcanoes (**Supplementary Fig. 1**). Non-redundant gene and
533 genome catalogs were constructed as described in our previous study⁵⁹. Briefly,
534 metagenomic sequence data were quality controlled and assembled into contigs.
535 Protein-coding sequences were then predicted and clustered to create a non-redundant
536 gene catalog consisting of 147,289,169 representative clusters. Salmon (v1.10.2)⁷⁸
537 was used to calculate gene abundance in each metagenome, which was then
538 normalized to genes per million (GPM). Functional annotations were performed using
539 eggNOG-mapper (v2.1.9) with default parameters^{79, 80}.

540 Contigs longer than 1000 bp were selected for subsequent binning, and the produced
541 metagenome-assembled genomes (MAGs) underwent dereplication at 95% average
542 nucleotide identity⁵⁹. A total of 3,164 representative MAGs were obtained. The
543 relative abundance of each MAG was calculated using CoverM (v0.6.1;
544 <https://github.com/wwood/CoverM>; parameters: -m relative_abundance --trim-min
545 0.10 --trim-max 0.90 --min-read-percent-identity 0.95 --min-read-aligned-percent
546 0.75). The taxonomy of each MAG was assigned using GTDB-Tk v2.1.1 with
547 reference to GTDB R207 database⁸¹.

548 **Identification of nitrous oxide reductase gene (*nosZ*)**

549 For *nosZ* gene database search (see workflow in **Supplementary Fig. 4a**), we first
550 queried protein sequences from the non-redundant gene catalog and 3,164 MAGs
551 against NCycDB⁸² using DIAMOND (version 2.0.14)⁸³ in blastp mode (-k 1 -e 0.0001
552 -p 5). Subsequently, the *nosZ* reference sequences (n = 403) from the Greening lab
553 metabolic marker gene databases⁸⁴ were used to search for potential *nosZ* sequences
554 in the non-redundant gene catalog and 3,164 MAGs with DIAMOND blastp (version
555 2.0.14; --id 50)⁸³. Additionally, hidden Markov models (HMMs) of *nosZ* clade I (TAT-
556 dependent nitrous-oxide reductase) and *nosZ* clade II (Sec-dependent nitrous-oxide
557 reductase) were obtained from NCBI's Protein Family Models using accession
558 "TIGR04244.1"⁸⁵ and "TIGR04246.1"⁸⁶, respectively. These HMMs were used to
559 screen proteins from the non-redundant gene catalog and 3,164 MAGs with
560 hmmsearch in HMMER v3.3.2 using the parameter -E 1e-5. All *nosZ* genes identified
561 with the above three methods were merged, and any sequences shorter than 400
562 amino acids were excluded.

563 The phylogenetic trees of the amino acid sequences of filtered genes were constructed
564 to validate the phylogenetic clades of *nosZ* against reference sequences. Sequences
565 were aligned using MUSCLE (v3.8.1551)⁸⁷ and trimmed with TrimAL (v1.4.1)⁸⁸ with
566 default settings. Maximum-likelihood trees were constructed with IQ-TREE
567 (v2.2.0.3)⁸⁹ with the "-m MFP -B 1000" options. The produced tree was visualized
568 and beautified using Interactive tree of life (iTOL; v6)⁹⁰. Meanwhile, ESMFold⁹¹ was
569 applied to predict the structure for each filtered gene. The 154 reference protein
570 structures of NosZ were downloaded from AlphaFoldDB⁹² and Protein Data Bank
571 (PDB)⁹³. A structural tree of NosZ was constructed using Foldtree
572 (https://github.com/DessimozLab/fold_tree) based on a local structural alphabet⁹⁴ and
573 visualized using iTOL (v6)⁹⁰. The structure of each gene in both the phylogenetic and
574 structural trees was predicted using AlphaFold2⁹⁵ and aligned against PDB using
575 Foldseek (v8.ef4e960)⁹⁶ with parameters "--tmscore-threshold 0.5 -e 0.001".

576 Cupredoxin-related protein active domains of nitrous-oxide reductase were
577 investigated against the ECOD (Evolutionary Classification Of protein Domains)
578 database⁹⁷ with a TM-score > 0.5 using Foldseek easy-search module⁹⁶.

579 **Identification of nitric oxide dismutase gene (*nod*)**

580 For *nod* gene database search (see workflow in **Supplementary Fig. 4b**), we initially
581 downloaded reference protein sequences (n = 1036) in NCBI's databases to build an
582 HMM model (available at <https://doi.org/10.6084/m9.figshare.25650927>). Then, *nod*
583 genes in the non-redundant gene catalog and 3,164 MAGs were extracted using the
584 above HMM model with hmmsearch in HMMER v3.3.2 using “-E 1e-5”. All potential
585 *nod* genes shorter than 200 amino acids were excluded from further analysis.
586 Following the methodology used for *nosZ* genes, these *nod* genes underwent
587 verification through phylogenetic and structural trees. The reference protein structures
588 for 44 Nod proteins were predicted using AlphaFold2⁹⁵. The structures of the filtered
589 *nod* genes were then predicted using AlphaFold2 and aligned with the reference
590 protein structures using Foldseek (v8.ef4e960)⁹⁶. Additionally, diagnostic amino acid
591 residues in the active center of the enzyme⁴¹ were identified in all proteins with a TM-
592 score > 0.5 using MAFFT (EMBL-EBI)⁹⁸ and visualized with Jalview⁹⁹.

593 **Identification of hydrazine synthase and hydrazine dehydrogenase**

594 To identify *hzsA* genes (see workflow in **Supplementary Fig. 4c**), protein sequences
595 in the non-redundant gene catalog and 3,164 MAGs were firstly searched against
596 NCycDB⁸², with the program DIAMOND blastp (version 2.0.14)⁸³. Then, reference
597 *hzsA* sequences (n = 14) from the Greening lab metabolic marker gene databases⁸⁴
598 were used to searched for potential *hzsA* sequences in the non-redundant gene catalog
599 and 3,164 MAGs with DIAMOND blastp (version 2.0.14; --id 50)⁸³. Additionally,
600 *hzsA* genes of non-redundant gene catalog and 3,164 MAGs were extracted using
601 HMMER v3.3.2 with the HMM profile “PF13486” from the InterPro database⁵². All
602 identified *hzsA* genes were merged, and sequences shorter than 400 amino acids were

603 filtered out. These genes were then verified by constructing phylogenetic and
604 structural trees. The structure of each gene was predicted using AlphaFold2⁹⁵ and
605 aligned with PDB⁹³ using Foldseek (v8.ef4e960)⁹⁶. Additionally, the active domain of
606 the hydrazine synthase alpha subunit was searched in protein structures with a TM-
607 score > 0.5 using Foldseek's easy-search module⁹⁶.

608 To ensure the accuracy of identifying MAGs with *hzsA* genes, MAGpurify (v2.1.2)
609 was used to detect contamination in MAGs through a combination of features and
610 algorithms including phylo-markers, clade-markers, tetra-freq, GC-content, and
611 known-contam¹⁰⁰. Additionally, *hzsB* and *hzsC* sequences in MAGs were extracted
612 with HMMER v3.3.2 using the “nitro.cycle.sub.hmm” model from the Metascan
613 metabolic HMM database¹⁰¹. To further refine our search, the protein complexes of
614 the novel clade hydrazine synthase (HzsABC) were predicted using AlphaFold (v2.0;
615 model_preset = multimer)⁹⁵. All structures were visualized and exported as images
616 using PyMOL (<http://www.pymol.org>)¹⁰². Additionally, the *hzd* gene associated with
617 hydrazine dehydrogenase was identified in MAGs containing *hzsA* genes. To begin,
618 we searched for reference protein sequences (n = 49) in NCBI's databases to construct
619 the HMM model (available at <https://doi.org/10.6084/m9.figshare.25650927>).
620 Subsequently, *hzd* genes were extracted using hmmsearch in HMMER, applying the
621 “-E 1e-5” parameter. The structures were then predicted using AlphaFold2 and
622 aligned with reference proteins in the PDB databases using Foldseek (v8.ef4e960)
623 with settings “--tmscore-threshold 0.5 -e 0.001”.

624 MAG annotations and topological structure predictions

625 The MAGs were annotated using DRAM (v1.3.5)¹⁰³ and Prokka (v1.14.6)¹⁰⁴ with the
626 default settings against KEGG, Pfam, MEROPS and dbCAN databases. Gene context
627 was visualized using Chiplot (<https://www.chiplot.online/>), with the files produced by
628 DRAM and Prokka as the input. DeepTMHMM (v1.0.24)¹⁰⁵ and SignalP (v6.0)¹⁰⁶
629 were employed to predict transmembrane topology and signal peptides of NosZ, Nod

630 and HzsA proteins, respectively.

631 **Identification of *nifH*, *dsrA*, *mcrA* and mobile genetic elements**

632 To identify *nifH* genes associated with nitrogen fixation, protein sequences in the non-
633 redundant gene catalog was first searched against NCycDB⁸², using the program
634 DIAMOND (version 2.0.14)⁸³ as mentioned above. Then, we utilized *nifH* reference
635 sequences (n = 1271) from the Greening lab metabolic marker gene databases⁸⁴ to
636 search for potential *nifH* sequences in the non-redundant gene catalog using
637 DIAMOND blastp (version 2.0.14; --id 50)⁸³. Subsequently, *nifH* genes were
638 extracted using the NCBI's Protein Family Models with HMM accession
639 "TIGR01287.1" by HMMER v3.3.2. Subsequently, *nifH* genes were extracted using
640 NCBI's Protein Family Models with the HMM accession "TIGR01287.1" via
641 HMMER v3.3.2. The genes were then verified through phylogenetic analysis as
642 described in our previous study⁶. Conserved motifs (CXXR)⁶ were analyzed using
643 MAFFT(EMBL-EBI)⁹⁸ and visualized with Jalview⁹⁹.

644 For the identification of *dsrA* and *mcrA* genes, associated with sulfate reduction and
645 anaerobic methane oxidation respectively, we employed eggNOG-mapper (v2.1.9;
646 default parameters) for initial detection^{79, 80}. The reductive *dsrA* genes were further
647 detected using DiSco (v1.0.0)¹⁰⁷, while oxidative *mcrA* genes were confirmed via
648 phylogenetic analysis as described in our previous study⁵⁹. Classification of contigs
649 belonging to mobile genetic elements (plasmids, proviruses and viruses) was
650 performed using Genomad v.1.5.0 with default parameters¹⁰⁸.

651 **Transcriptional activities of nitrogen-loss genes**

652 A total of 33 samples from various cold seeps—Haima, Qiongdongnan Basin, Shenu
653 area, and Jiaolong—were analyzed for metatranscriptomes, as outlined in our
654 previous study¹⁰⁹. Briefly, raw reads were quality filtered (parameters: --skip-
655 bmtagger) using Read_QC module within the metaWRAP (v1.3.2) pipeline¹¹⁰.

656 SortMeRNA (v2.1)¹¹¹ was employed to remove ribosomal RNA from quality-
657 controlled reads using default settings. The abundances of transcripts for *nosZ*, *nod*
658 and *hzsA* genes were quantified by mapping filtered reads to a non-redundant gene
659 catalog and genes of MAGs using Salmon (v.1.9.0; parameters: -validateMappings -
660 meta)⁷⁸. The results were expressed in transcripts per million (TPM).

661 **Statistical analyses**

662 Statistical analyses were performed using R v4.2.3. The normality of the data was
663 assessed using Shapiro–Wilk tests prior to further analyses. The Kruskal–Wallis rank-
664 sum test was used to compare the abundances of nitrogen-loss genes across different
665 depths, and their rates across different types of environments. Student's *t*-tests were
666 utilized to examine differences in the relative abundance of *nosZ*, *nod*, and *hzsA* genes
667 at varying depths, as well as nitrogen-loss rates across non-seep and cold seep
668 environments. Pairwise comparisons of environmental factors were conducted using
669 Pearson's correlation coefficients. Additionally, relationships between the relative
670 abundance of *nosZ*, *nod* and *hzsA* genes and environmental factors was analyzed
671 using Mantel tests.

672 **Data availability**

673 The non-redundant gene catalog and the metagenome-assembled genomes (MAGs)
674 catalog can be accessed at <https://doi.org/10.6084/m9.figshare.22568107>. The MAGs
675 containing *nosZ*, *nod*, and *hzsA* genes, along with the protein structures and
676 phylogenetic trees for NosZ, Nod, and HzsA, as well as all the HMM models
677 developed in this study, are available at <https://doi.org/10.6084/m9.figshare.25650927>.
678 All additional data supporting the findings of this study are provided within the article
679 and its Supplementary Information Files.

680 **Code availability**

681 The present study did not generate codes, and mentioned tools used for the data
682 analysis were applied with default parameters unless specified otherwise.

683 **References**

- 684 1. Vigneron, A. et al. Contrasting pathways for anaerobic methane oxidation in Gulf of Mexico
685 cold seep sediments. *mSystems* **4**, e00091-00018 (2019).
- 686 2. Dong, X. et al. Thermogenic hydrocarbon biodegradation by diverse depth-stratified microbial
687 populations at a Scotian Basin cold seep. *Nature Communications* **11**, 5825 (2020).
- 688 3. Niu, M., Fan, X., Zhuang, G., Liang, Q. & Wang, F. Methane-metabolizing microbial
689 communities in sediments of the Haima cold seep area, northwest slope of the South China
690 Sea. *FEMS Microbiology Ecology* **93**, fix101 (2017).
- 691 4. Tyrrell, T. The relative influences of nitrogen and phosphorus on oceanic primary production.
692 *Nature* **400**, 525-531 (1999).
- 693 5. Zehr, J.P. & Capone, D.G. Changing perspectives in marine nitrogen fixation. *Science* **368**,
694 eaay9514 (2020).
- 695 6. Dong, X. et al. Phylogenetically and catabolically diverse diazotrophs reside in deep-sea cold
696 seep sediments. *Nature Communications* **13**, 4885 (2022).
- 697 7. Bowles, M. & Joye, S. High rates of denitrification and nitrate removal in cold seep sediments.
698 *The ISME Journal* **5**, 565-567 (2011).
- 699 8. Shao, S. et al. Deep-sea methane seep sediments in the Okhotsk Sea sustain diverse and
700 abundant anammox bacteria. *FEMS Microbiology Ecology* **87**, 503-516 (2014).
- 701 9. Wu, J. et al. Unexpectedly high diversity of anammox bacteria detected in deep-sea surface
702 sediments of the South China Sea. *FEMS Microbiology Ecology* **95** (2019).
- 703 10. Devol, A.H. Denitrification, anammox, and N₂ production in marine sediments. *Annual
704 Review of Marine Science* **7**, 403-423 (2015).
- 705 11. Thamdrup, B. et al. Anammox bacteria drive fixed nitrogen loss in hadal trench sediments.
706 *Proceedings of the National Academy of Sciences* **118** (2021).
- 707 12. Zumft, W.G. & Kroneck, P.M. Respiratory transformation of nitrous oxide (N₂O) to dinitrogen
708 by Bacteria and Archaea. *Advances in Microbial Physiology* **52**, 107-227 (2006).
- 709 13. Zhu, B. et al. Nitric oxide dismutase (*nod*) genes as a functional marker for the diversity and
710 phylogeny of methane-driven oxygenic denitrifiers. *Frontiers in Microbiology* **10**, 1577
711 (2019).
- 712 14. Ettwig, K.F. et al. Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. *Nature*
713 **464**, 543-548 (2010).
- 714 15. Kartal, B., Kuenen, J.v. & Van Loosdrecht, M. Sewage treatment with anammox. *Science* **328**,
715 702-703 (2010).
- 716 16. Trimmer, M., Nicholls, J.C. & Deflandre, B. Anaerobic ammonium oxidation measured in
717 sediments along the Thames estuary, United Kingdom. *Applied and Environmental
718 Microbiology* **69**, 6447-6454 (2003).

719 17. Rysgaard, S., Glud, R.N., Risgaard-Petersen, N. & Dalsgaard, T. Denitrification and anammox
720 activity in Arctic marine sediments. *Limnology and Oceanography* **49**, 1493-1502 (2004).

721 18. Teixeira, C., Magalhães, C., Joye, S.B. & Bordalo, A.A. Potential rates and environmental
722 controls of anaerobic ammonium oxidation in estuarine sediments. *Aquatic Microbial Ecology*
723 **66**, 23-32 (2012).

724 19. Brin, L.D., Giblin, A.E. & Rich, J.J. Environmental controls of anammox and denitrification
725 in southern New England estuarine and shelf sediments. *Limnology and Oceanography* **59**,
726 851-860 (2014).

727 20. Huang, F., Lin, X. & Yin, K. Effects of marine produced organic matter on the potential
728 estuarine capacity of NO_x^- removal. *Science of The Total Environment* **812**, 151471 (2022).

729 21. Zhang, X. et al. Dynamics of benthic nitrate reduction pathways and associated microbial
730 communities responding to the development of seasonal deoxygenation in a coastal
731 mariculture zone. *Environmental Science & Technology* **57**, 15014-15025 (2023).

732 22. Engström, P., Dalsgaard, T., Hulth, S. & Aller, R.C. Anaerobic ammonium oxidation by nitrite
733 (anammox): implications for N_2 production in coastal marine sediments. *Geochimica et*
734 *Cosmochimica Acta* **69**, 2057-2065 (2005).

735 23. Trimmer, M., Engström, P. & Thamdrup, B. Stark contrast in denitrification and anammox
736 across the deep Norwegian trench in the Skagerrak. *Applied and Environmental Microbiology*
737 **79**, 7381-7389 (2013).

738 24. Lin, X. et al. Nitrogen losses in sediments of the East China Sea: spatiotemporal variations,
739 controlling factors, and environmental implications. *Journal of Geophysical Research: Biogeosciences* **122**, 2699-2715 (2017).

741 25. Rich, J.J., Arevalo, P., Chang, B.X., Devol, A.H. & Ward, B.B. Anaerobic ammonium
742 oxidation (anammox) and denitrification in Peru margin sediments. *Journal of Marine Systems*
743 **207**, 103122 (2020).

744 26. Engström, P., Penton, C.R. & Devol, A.H. Anaerobic ammonium oxidation in deep-sea
745 sediments off the Washington margin. *Limnology and Oceanography* **54**, 1643-1652 (2009).

746 27. Na, T. et al. N_2 production through denitrification and anammox across the continental margin
747 (shelf-slope-rise) of the Ulleung Basin, East Sea. *Limnology and Oceanography* **63**, S410-
748 S424 (2018).

749 28. Zhang, L., Wüst, A., Prasser, B., Müller, C. & Einsle, O. Functional assembly of nitrous oxide
750 reductase provides insights into copper site maturation. *Proceedings of the National Academy
751 of Sciences* **116**, 12822-12827 (2019).

752 29. Xu, X. et al. NosZ clade II rather than clade I determine *in situ* N_2O emissions with different
753 fertilizer types under simulated climate change and its legacy. *Soil Biology and Biochemistry*
754 **150** (2020).

755 30. Sanford, R.A. et al. Unexpected nondenitrifier nitrous oxide reductase gene diversity and
756 abundance in soils. *Proceedings of the National Academy of Sciences* **109**, 19709-19714
757 (2012).

758 31. Lin, Y., Hu, H.W., Deng, M., Yang, P. & Ye, G. Microorganisms carrying nosZ I and nosZ II
759 share similar ecological niches in a subtropical coastal wetland. *Science of The Total
760 Environment* **870**, 162008 (2023).

761 32. Jones, C.M. et al. Recently identified microbial guild mediates soil N_2O sink capacity. *Nature
762 Climate Change* **4**, 801-805 (2014).

763 33. Hallin, S., Philippot, L., Loffler, F.E., Sanford, R.A. & Jones, C.M. Genomics and ecology of
764 novel N₂O-reducing microorganisms. *Trends in Microbiology* **26**, 43-55 (2018).

765 34. Yao, X. et al. Methane-dependent complete denitrification by a single *Methylomirabilis*
766 bacterium. *Nature Microbiology* **9**, 464-476 (2024).

767 35. Zhu, B. et al. A novel *Methylomirabilota* methanotroph potentially couples methane oxidation
768 to iodate reduction. *mLife* **1**, 323-328 (2022).

769 36. Schmitz, E.V., Just, C.L., Schilling, K., Streeter, M. & Mattes, T.E. Reconnaissance of
770 oxygenic denitrifiers in agriculturally impacted soils. *mSphere*, e00571-00522 (2023).

771 37. Zhu, B. et al. Long-read amplicon sequencing of nitric oxide dismutase (*nod*) genes reveal
772 diverse oxygenic denitrifiers in agricultural soils and lake sediments. *Microbial Ecology* **80**,
773 243-247 (2020).

774 38. Jing, H., Wang, R., Jiang, Q., Zhang, Y. & Peng, X. Anaerobic methane oxidation coupled to
775 denitrification is an important potential methane sink in deep-sea cold seeps. *Science of The
776 Total Environment* **748**, 142459 (2020).

777 39. Jiang, Q., Jing, H., Liu, H. & Du, M. Biogeographic distributions of microbial communities
778 associated with anaerobic methane oxidation in the surface sediments of deep-sea cold seeps
779 in the South China Sea. *Frontiers in Microbiology* **13**, 1060206 (2022).

780 40. Ruff, S.E. et al. A global atlas of subsurface microbiomes reveals phylogenetic novelty, large
781 scale biodiversity gradients, and a marine-terrestrial divide. *bioRxiv*, 2024.2004. 2029.591682
782 (2024).

783 41. Ruff, S.E. et al. Hydrogen and dark oxygen drive microbial productivity in diverse
784 groundwater ecosystems. *Nature Communications* **14**, 3194 (2023).

785 42. Suarez, C. et al. Metagenomic evidence of a novel family of anammox bacteria in a subsea
786 environment. *Environmental Microbiology* **24**, 2348-2360 (2022).

787 43. Zhao, R., Biddle, J.F. & Jørgensen, S.L. Introducing *Candidatus* Bathyanammoxibiaceae, a
788 family of bacteria with the anammox potential present in both marine and terrestrial
789 environments. *ISME Communications* **2** (2022).

790 44. Zhao, R., Le Moine Bauer, S. & Babbin, A.R. “*Candidatus* Subterraneanammoxibiaceae,” a
791 new anammox bacterial family in globally distributed marine and terrestrial subsurfaces.
792 *Applied and Environmental Microbiology* **89**, e00800-00823 (2023).

793 45. Yang, Y. et al. Activities and metabolic versatility of distinct anammox bacteria in a full-scale
794 wastewater treatment system. *Water Research* **206**, 117763 (2021).

795 46. Cao, W., Guan, Q., Li, Y., Wang, M. & Liu, B. The contribution of denitrification and
796 anaerobic ammonium oxidation to N₂ production in mangrove sediments in Southeast China.
797 *Journal of Soils and Sediments* **17**, 1767-1776 (2017).

798 47. Feng, D. South China Sea Seeps Ch. 1. (Springer Nature Singapore, Singapore; 2023).

799 48. Kuypers, M.M.M., Marchant, H.K. & Kartal, B. The microbial nitrogen-cycling network.
800 *Nature Reviews Microbiology* **16**, 263-276 (2018).

801 49. Tirola, M.A., Rissanen, A.J., Sarpakunnas, M., Arvola, L. & Nykänen, H. Stable isotope
802 profiles of nitrogen gas indicate denitrification in oxygen-stratified humic lakes. *Rapid
803 Communications in Mass Spectrometry* **25**, 1497-1502 (2011).

804 50. Lu, Y. et al. The content of trace element iron is a key factor for competition between
805 anaerobic ammonium oxidation and methane-dependent denitrification processes.
806 *Chemosphere* **198**, 370-376 (2018).

807 51. Müller, C. et al. Molecular interplay of an assembly machinery for nitrous oxide reductase.
808 *Nature* **608**, 626-631 (2022).

809 52. Dietl, A. et al. The inner workings of the hydrazine synthase multiprotein complex. *Nature*
810 **527**, 394-397 (2015).

811 53. McTigue, N., Gardner, W., Dunton, K. & Hardison, A. Biotic and abiotic controls on co-
812 occurring nitrogen cycling processes in shallow Arctic shelf sediments. *Nature Communications* **7**, 13145 (2016).

813 54. Zhao, R. et al. Geochemical transition zone powering microbial growth in subsurface
814 sediments. *Proceedings of the National Academy of Sciences* **117**, 32617-32626 (2020).

815 55. Li, J. et al. Deep sea cold seeps are a sink for mercury and source for methylmercury.
816 *Communications Earth & Environment* (2024).

817 56. Lin, H. et al. Mercury methylation by metabolically versatile and cosmopolitan marine
818 bacteria. *The ISME Journal* **15**, 1810-1825 (2021).

819 57. Feng, J. et al. Tracing the century-long evolution of microplastics deposition in a cold seep.
820 *Advanced Science* **10**, 2206120 (2023).

821 58. Codispoti, L.A. et al. The oceanic fixed nitrogen and nitrous oxide budgets: Moving targets as
822 we enter the anthropocene? *Scientia Marina* **65**, 85-105 (2001).

823 59. Han, Y. et al. A comprehensive genomic catalog from global cold seeps. *Scientific Data* **10**,
824 596 (2023).

825 60. Graf, D.R., Jones, C.M. & Hallin, S. Intergenomic comparisons highlight modularity of the
826 denitrification pathway and underpin the importance of community structure for N₂O
827 emissions. *PLoS One* **9**, e114118 (2014).

828 61. Zhao, J. et al. Novel viral communities potentially assisting in carbon, nitrogen, and sulfur
829 metabolism in the upper slope sediments of Mariana Trench. *mSystems* **7**, e01358-01321
830 (2022).

831 62. Pomowski, A., Zumft, W.G., Kroneck, P.M.H. & Einsle, O. N₂O binding at a [4Cu:2S]
832 copper-sulphur cluster in nitrous oxide reductase. *Nature* **477**, 234-237 (2011).

833 63. Gorelsky, S.I., Ghosh, S. & Solomon, E.I. Mechanism of N₂O reduction by the μ_4 -S
834 tetrานuclear Cu₂ cluster of nitrous oxide reductase. *Journal of the American Chemical Society*
835 **128**, 278-290 (2006).

836 64. Bagos, P.G., Nikolaou, E.P., Liakopoulos, T.D. & Tsirigos, K.D. Combined prediction of Tat
837 and Sec signal peptides with hidden Markov models. *Bioinformatics* **26**, 2811-2817 (2010).

838 65. Bennett, S.P. et al. NosL is a dedicated copper chaperone for assembly of the Cu₂ center of
839 nitrous oxide reductase. *Chemical Science* **10**, 4985-4993 (2019).

840 66. Ruff, S.E. et al. Widespread occurrence of dissolved oxygen anomalies, aerobic microbes, and
841 oxygen-producing metabolic pathways in apparently anoxic ecosystems. *Zenodo* (2024).

842 67. Lodha, T., Narvekar, S. & Karodi, P. Classification of uncultivated anammox bacteria and
843 *Candidatus* Uabimicrobium into new classes and provisional nomenclature as *Candidatus*
844 Brocadia classis nov. and *Candidatus* Uabimicrobium classis nov. of the phylum
845 *Planctomycetes* and novel family *Candidatus* Scalinduaceae fam. nov to accommodate the
846 genus *Candidatus* Scalindua. *Systematic and Applied Microbiology* **44**, 126272 (2021).

847 68. Strous, M. et al. Deciphering the evolution and metabolism of an anammox bacterium from a
848 community genome. *Nature* **440**, 790-794 (2006).

849 69. Kartal, B. et al. How to make a living from anaerobic ammonium oxidation. *FEMS*

851 70. *Microbiology Reviews* **37**, 428-461 (2013).

852 70. Ferousi, C. et al. Characterization of a nitrite-reducing octaheme hydroxylamine
853 oxidoreductase that lacks the tyrosine cross-link. *Journal of Biological Chemistry* **296** (2021).

854 71. van de Vossenberg, J. et al. The metagenome of the marine anammox bacterium ‘*Candidatus*
855 *Scalindua profunda*’ illustrates the versatility of this globally important nitrogen cycle
856 bacterium. *Environmental Microbiology* **15**, 1275-1289 (2013).

857 72. Illergård, K., Ardell, D.H. & Elofsson, A. Structure is three to ten times more conserved than
858 sequence—a study of structural response in protein cores. *Proteins: Structure, Function, and*
859 *Bioinformatics* **77**, 499-508 (2009).

860 73. Ruff, S.E. et al. Global dispersion and local diversification of the methane seep microbiome.
861 *Proceedings of the National Academy of Sciences* **112**, 4015-4020 (2015).

862 74. Thamdrup, B. & Dalsgaard, T. Production of N₂ through anaerobic ammonium oxidation
863 coupled to nitrate reduction in marine sediments. *Applied and Environmental Microbiology* **68**,
864 1312-1318 (2002).

865 75. Song, G. et al. Response of benthic nitrogen cycling to estuarine hypoxia. *Limnology and*
866 *Oceanography* **66**, 652-666 (2021).

867 76. Nielsen, L.P. Denitrification in sediment determined from nitrogen isotope pairing. *FEMS*
868 *Microbiology Letters* **86**, 357-362 (1992).

869 77. Risgaard-Petersen, N., Nielsen, L.P., Rysgaard, S., Dalsgaard, T. & Meyer, R.L. Application of
870 the isotope pairing technique in sediments where anammox and denitrification coexist.
871 *Limnology and Oceanography: Methods* **1**, 63-73 (2003).

872 78. Patro, R., Duggal, G., Love, M.I., Irizarry, R.A. & Kingsford, C. Salmon provides fast and
873 bias-aware quantification of transcript expression. *Nature Methods* **14**, 417-419 (2017).

874 79. Cantalapiedra, C.P., Hernández-Plaza, A., Letunic, I., Bork, P. & Huerta-Cepas, J. eggNOG-
875 mapper v2: functional annotation, orthology assignments, and domain prediction at the
876 metagenomic scale. *Molecular Biology and Evolution* **38**, 5825-5829 (2021).

877 80. Huerta-Cepas, J. et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically
878 annotated orthology resource based on 5090 organisms and 2502 viruses. *Nucleic Acids*
879 *Research* **47**, D309-D314 (2019).

880 81. Parks, D.H. et al. GTDB: an ongoing census of bacterial and archaeal diversity through a
881 phylogenetically consistent, rank normalized and complete genome-based taxonomy. *Nucleic*
882 *Acids Research* **50**, D785-D794 (2022).

883 82. Tu, Q. et al. NCycDB: a curated integrative database for fast and accurate metagenomic
884 profiling of nitrogen cycling genes. *Bioinformatics* **35**, 1040-1048 (2019).

885 83. Buchfink, B., Reuter, K. & Drost, H.G. Sensitive protein alignments at tree-of-life scale using
886 DIAMOND. *Nature Methods* **18**, 366-368 (2021).

887 84. Leung, P.M. & Greening, C. Greening lab metabolic marker gene databases. (2020).

888 85. Heikkilä, M.P., Honisch, U., Wunsch, P. & Zumft, W.G. Role of the Tat transport system in
889 nitrous oxide reductase translocation and cytochrome *cd* 1 biosynthesis in *Pseudomonas*
890 *stutzeri*. *Journal of Bacteriology* **183**, 1663-1671 (2001).

891 86. Liu, X. et al. The *nos* gene cluster from gram-positive bacterium *Geobacillus*
892 *thermodenitrificans* NG80-2 and functional characterization of the recombinant NosZ. *FEMS*
893 *microbiology Letters* **289**, 46-52 (2008).

894 87. Edgar, R.C. MUSCLE: multiple sequence alignment with high accuracy and high throughput.

895 88. *Nucleic Acids Research* **32**, 1792-1797 (2004).

896 88. Capella-Gutiérrez, S., Silla-Martínez, J.M. & Gabaldón, T. trimAl: a tool for automated
897 alignment trimming in large-scale phylogenetic analyses. *Bioinformatics* **25**, 1972-1973
898 (2009).

899 89. Nguyen, L.-T., Schmidt, H.A., Von Haeseler, A. & Minh, B.Q. IQ-TREE: a fast and effective
900 stochastic algorithm for estimating maximum-likelihood phylogenies. *Molecular Biology and*
901 *Evolution* **32**, 268-274 (2015).

902 90. Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree
903 display and annotation. *Nucleic Acids Research* **49**, W293-W296 (2021).

904 91. Lin, Z. et al. Evolutionary-scale prediction of atomic-level protein structure with a language
905 model. *Science* **379**, 1123-1130 (2023).

906 92. Varadi, M. et al. AlphaFold Protein Structure Database: massively expanding the structural
907 coverage of protein-sequence space with high-accuracy models. *Nucleic Acids Research* **50**,
908 D439-D444 (2022).

909 93. Berman, H.M. et al. The protein data bank. *Nucleic Acids Research* **28**, 235-242 (2000).

910 94. Moi, D. et al. Structural phylogenetics unravels the evolutionary diversification of
911 communication systems in gram-positive bacteria and their viruses. *BioRXiv*, 2023.2009.
912 2019.558401 (2023).

913 95. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. *Nature* **596**, 583-
914 589 (2021).

915 96. van Kempen, M. et al. Fast and accurate protein structure search with Foldseek. *Nature*
916 *Biotechnology*, 1-4 (2023).

917 97. Cheng, H. et al. ECOD: an evolutionary classification of protein domains. *PLoS*
918 *Computational Biology* **10**, e1003926 (2014).

919 98. Madeira, F. et al. The EMBL-EBI search and sequence analysis tools APIs in 2019. *Nucleic*
920 *Acids Research* **47**, W636-W641 (2019).

921 99. Waterhouse, A.M., Procter, J.B., Martin, D.M., Clamp, M. & Barton, G.J. Jalview Version 2--a
922 multiple sequence alignment editor and analysis workbench. *Bioinformatics* **25**, 1189-1191
923 (2009).

924 100. Nayfach, S., Shi, Z.J., Seshadri, R., Pollard, K.S. & Kyprides, N.C. New insights from
925 uncultivated genomes of the global human gut microbiome. *Nature* **568**, 505-510 (2019).

926 101. Cremers, G., Luecker, S. & op den Camp, H., Edn. 1 (2022).

927 102. DeLano, W.L. Pymol: An open-source molecular graphics tool. *CCP4 Newslett. Protein*
928 *Crystallogr* **40**, 82-92 (2002).

929 103. Shaffer, M. et al. DRAM for distilling microbial metabolism to automate the curation of
930 microbiome function. *Nucleic Acids Research* **48**, 8883-8900 (2020).

931 104. Seemann, T. Prokka: rapid prokaryotic genome annotation. *Bioinformatics* **30**, 2068-2069
932 (2014).

933 105. Hallgren, J. et al. DeepTMHMM predicts alpha and beta transmembrane proteins using deep
934 neural networks. *BioRxiv*, 2022.2004. 2008.487609 (2022).

935 106. Teufel, F. et al. SignalP 6.0 predicts all five types of signal peptides using protein language
936 models. *Nature Biotechnology* **40**, 1023-1025 (2022).

937 107. Neukirchen, S. & Sousa, F.L. DiSCo: a sequence-based type-specific predictor of Dsr-
938 dependent dissimilatory sulphur metabolism in microbial data. *Microbial Genomics* **7** (2021).

939 108. Camargo, A.P. et al. Identification of mobile genetic elements with geNomad. *Nature Biotechnology*, 1-10 (2023).

940 109. Dong, X. et al. A vast repertoire of secondary metabolites potentially influences community dynamics and biogeochemical processes in cold seeps. *Science Advances* **10**, eadl2281 (2024).

941 110. Uritskiy, G.V., DiRuggiero, J. & Taylor, J. MetaWRAP—a flexible pipeline for genome-resolved metagenomic data analysis. *Microbiome* **6**, 1-13 (2018).

942 111. Kopylova, E., Noé, L. & Touzet, H. SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. *Bioinformatics* **28**, 3211-3217 (2012).

943

944

945

946

947

948 **Acknowledgements**

949 The work was supported by National Science Foundation of China (No. 92351304, No. 42376115 and No. 42030407), Natural Science Foundation Project of Xiamen City (No. 3502Z202373076), Natural Science Foundation of Fujian Province (No. 2023J06042), Scientific Research Foundation of Third Institute of Oceanography, MNR (No. 2022025 and No. 2023022). SER was supported by the Simons Foundation (824763) and funds from the Human Frontier Science Program (RGEc34/2023). We thank Chengpeng Li and Xinyue Liu for assistance in determining geochemical parameters, Weichao Wu for providing sediment samples, and Chris Greening for helpful discussions. We also express our gratitude to the captains, crews, and pilots of the *R/V KEXUE* as well as the ROV *Faxian* operation team for their support in collecting the samples.

960 **Author contributions**

961 XD and QJ designed this study. QJ and ZZ performed the omics analysis. LC, JP and MW analyzed environmental factors. XL analyzed nitrogen-loss rates. YH contributed 962 to discussions and methodology. SL, RZ, XZ, SER and BZ participated in discussions 963 and data interpretations. LC, MW and JL collected cold seep sediment samples. QJ, 964 XL, LC, and XD wrote the paper, with input from other authors.

966 **Competing interests**

967 The authors declare no competing interests.

968 **Figure legends**

969 **Figure 1. Geochemical characteristics of sediment and porewater in the cold**
970 **seeps.** (a-d) Depth concentration profiles of nutrients (SO_4^{2-} , NH_4^+ , NO_3^- and NO_2^-) in
971 porewater (0-26 cmbsf, n = 221) collected from Lingshui, Haima and Site F cold
972 seeps. (e-f) Depth profiles of N_2 and their $\delta^{15}\text{N}$ values in the headspace gas of Site F-
973 10 and Site F-14 cold seep sediments. (g-i) Depth profiles of TOC, TN and TOC: TN
974 in cold seep sediments (0-36 cmbsf, n = 163) collected from Lingshui, Haima, and
975 Site F cold seeps. (j-m) Depth concentration profiles of dissolved metals (Cu^{2+} , Zn^{2+} ,
976 Ca^{2+} and Fe^{2+}) in porewater (0-26 cmbsf, n = 221) collected from Lingshui, Haima
977 and Site F cold seeps. Black, green, orange and dark blue points represent the
978 concentration of geochemical parameters in Lingshui cold seep, Haima cold seep, Site
979 F cold seep and Shenu non-seep, respectively. Detailed data can be found in
980 **Supplementary Table 1.**

981 **Figure 2. Potential N_2 production rates in sediments from various environments**
982 **and relative abundance patterns of nitrogen-loss genes in cold seep sediments.** (a)
983 Potential N_2 production rates (denitrification and anammox) and the percentage of N_2
984 production attributed to anammox (ra, %) in sediments from various environments.
985 DEN, ANA and ra represent denitrification rates, anammox rates, and the proportion
986 of N_2 produced by anammox, respectively. P values for differences across
987 environments were computed using Kruskal-Wallis rank-sum tests. (b) Potential N_2
988 production rates (denitrification and anammox) and the percent of N_2 production
989 attributed to anammox (ra, %) in non-seep and cold seeps sediments. P values for
990 differences between non-seep and cold seeps were computed using student's t-test. (c)
991 Relative abundance of *nosZ*, *nod*, *hzsA*, *nifH*, reductive *dsrA* and oxidative *mcrA*
992 genes across different sediment samples, measured as genes per million (GPM) for
993 metagenomes. Inserted plots show the abundance of nitrogen-loss genes: all *nosZ*
994 genes (dark blue), *nosZ* Clade I genes (orange), *nosZ* Clade II genes (green), *nod*

995 genes (dark red), *hzsA* genes (dark purple), *nifH* genes (brown), reductive *dsrA* genes
996 (pink), and oxidative *mcrA* genes (dark yellow). *P* values for differences across genes
997 were computed using Kruskal-Wallis rank-sum tests. (d) Expression levels of *nosZ*,
998 *nod*, *hzsA* and *nifH* genes across different sediment samples, measured as transcripts
999 per million (TPM) for metatranscriptomes. Inserted plots show the transcriptional
1000 abundance of nitrogen-loss genes. *P* values for differences across genes were
1001 computed using Kruskal-Wallis rank-sum tests. (e) Relationships between relative
1002 abundance (GPM) of genes (*nosZ*, *nod*, *hzsA*) and depths (cmbsf) of cold seep
1003 sediment samples. Each point represents the average gene abundance for a sample,
1004 with linear regression lines and *R* values for each gene group shown in corresponding
1005 colors. Detailed data are provided in **Supplementary Tables 2-5**.

1006 **Figure 3. Structure trees of NosZ and nos clusters from genomes harboring**
1007 **Clade I or Clade II nosZ genes.** (a) Structure trees created with Foldtree and
1008 affiliated taxonomic phylum of NosZ in MAGs. *nosZ* Clade I (NosZG1, NosZG2) is
1009 shown in orange, while *nosZ* Clade II (NosZG3, NosZG4, NosZG5, NosZG6,
1010 NosZG8) is shown in green. NosZG8, belonging to *nosZ* Clade II, was only found
1011 through structural analysis. Scale bar indicates the mean number of substitutions per
1012 site. Surrounding the tree, the affiliated taxonomic phylum and AlphaFold-predicted
1013 3D structures of representative NosZ are displayed. (b) Comparison of *nos* clusters
1014 from genomes harboring Clade I or Clade II *nosZ* genes. The *nos* clusters of Clade II
1015 harbor the atypical *nosZ* and encode predicted iron-sulfur-binding proteins (labeled
1016 “4Fe-4S” or “2Fe-2S”) and *c*-type cytochromes (*cy-c*). Accessory genes (*nosD*, *nosF*,
1017 *nosL*, and *nosY*) are generally conserved across *nos* clusters with both typical (Clade I)
1018 and atypical *nosZ*. Non-colored genes in the operons have no orthologs in any other
1019 known *nos* cluster. *nosR* and *nosX* are associated exclusively with typical *nos* clusters.
1020 Details for the taxonomy and annotations of *nosZ*-containing contig are provided in
1021 **Supplementary Tables 8, 11-12**.

1022 **Figure 4. Trees and alignment of Nod recovered from 3,164 cold seep MAGs.** (a)

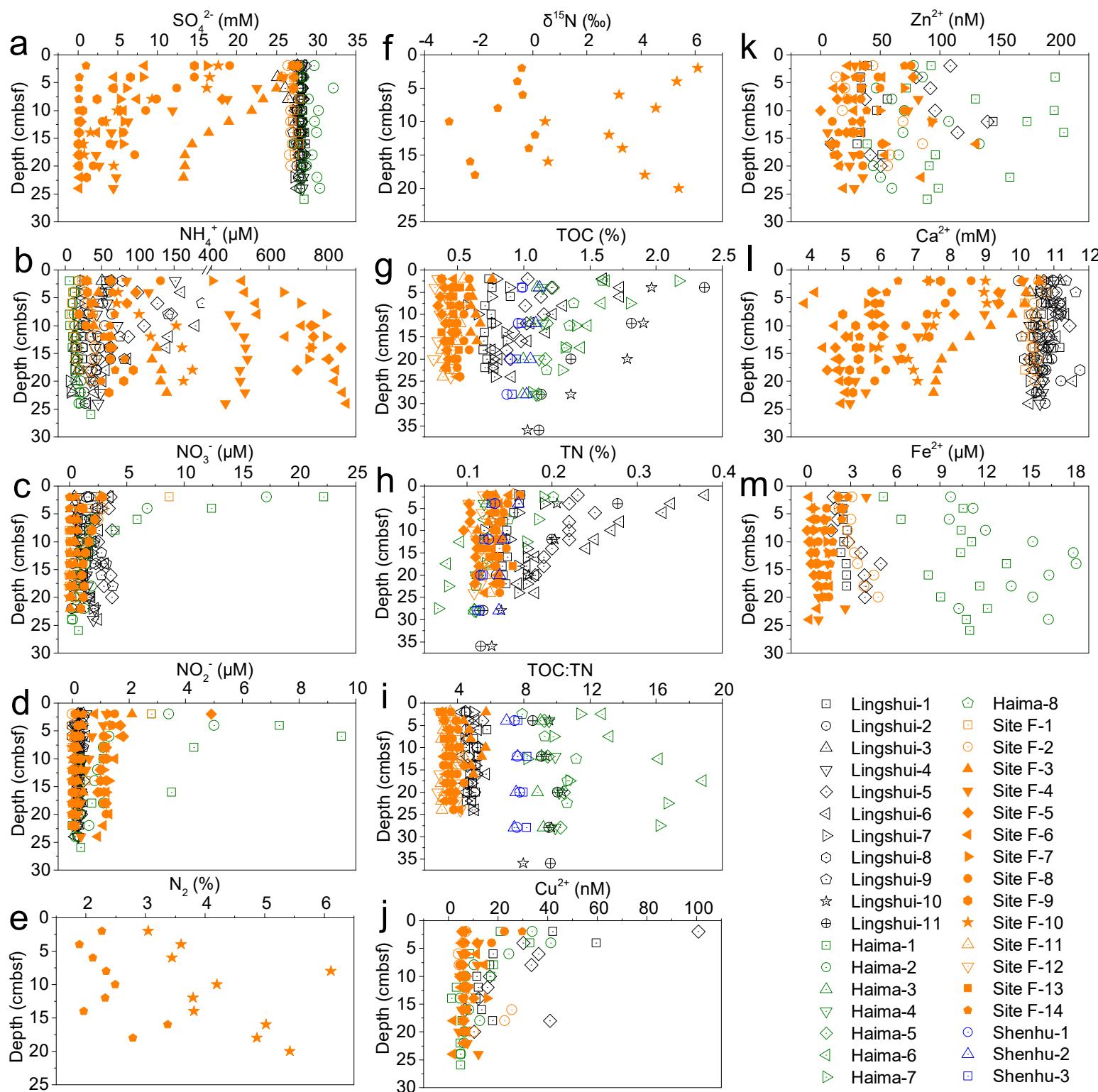
1023 Maximum-likelihood phylogenetic tree of *nod* genes. (b) Structure tree of Nod created
1024 with Foldtree. Each Nod is labeled in dark blue and dark green in phylogenetic tree
1025 and structure tree, respectively. Scale bar indicates the mean number of substitutions
1026 per site. (c) Alignment of Nod and reference sequences. It shows the same diagnostic
1027 substitutions as the putative *nod* gene of the known NO-dismutating microbe
1028 *Methyloirabilis oxyfera*. Details for Nod MAGs are provided in **Supplementary**
1029 **Tables 15**.

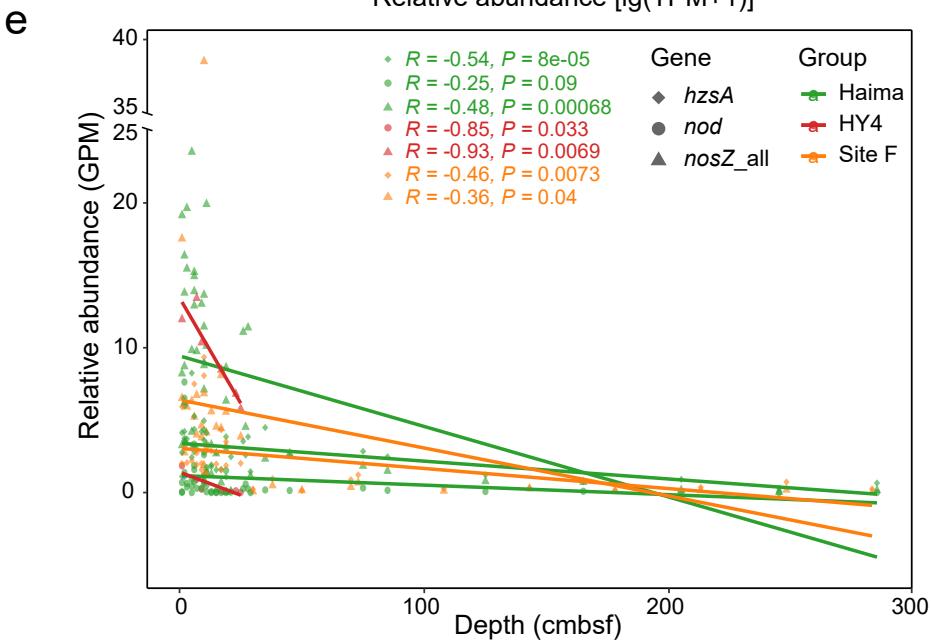
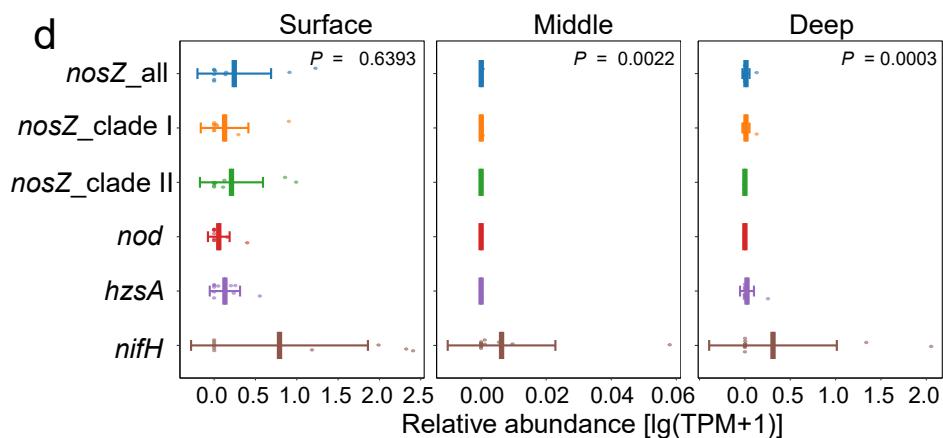
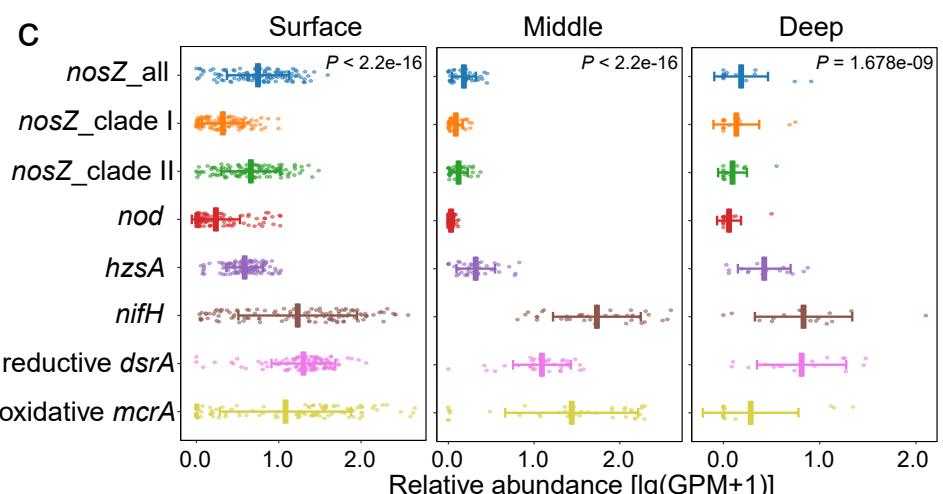
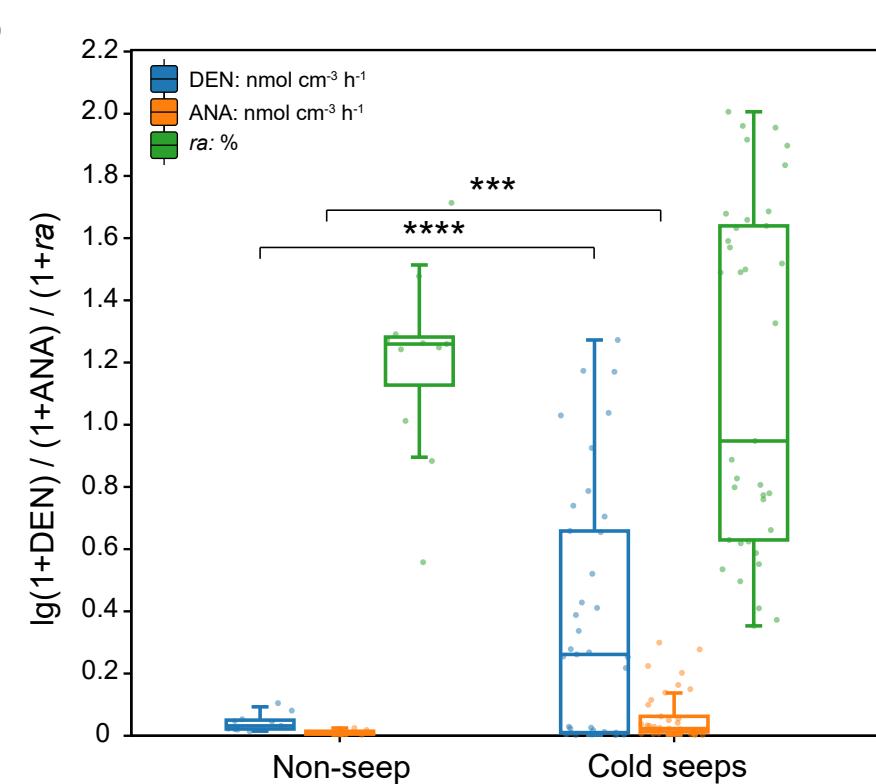
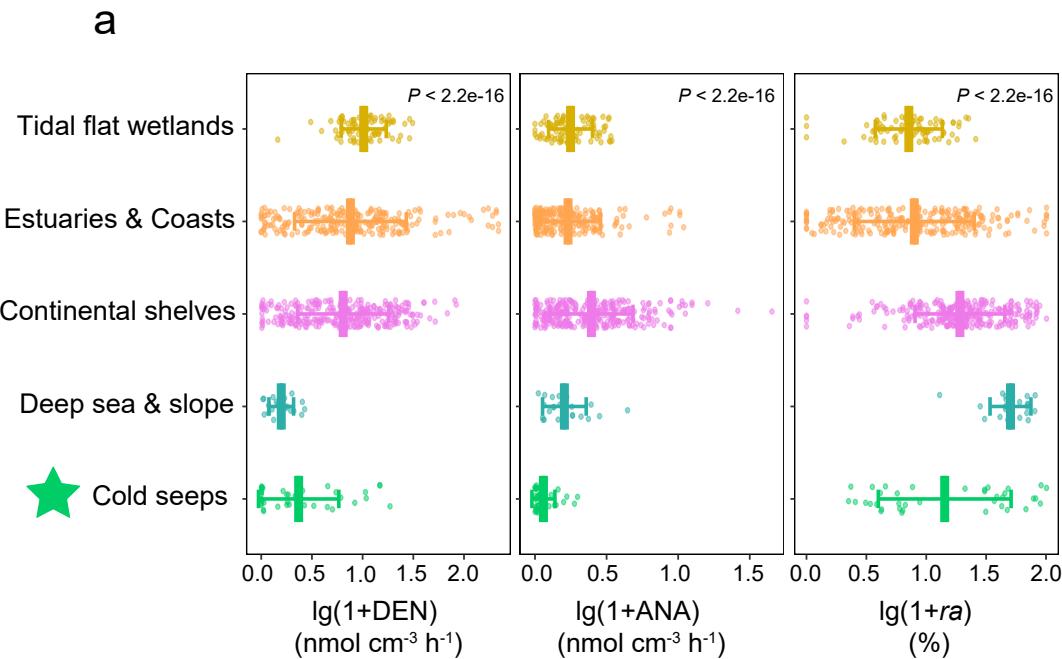
1030 **Figure 5. Structure tree of HzsA recovered from 3,164 cold seep MAGs created**

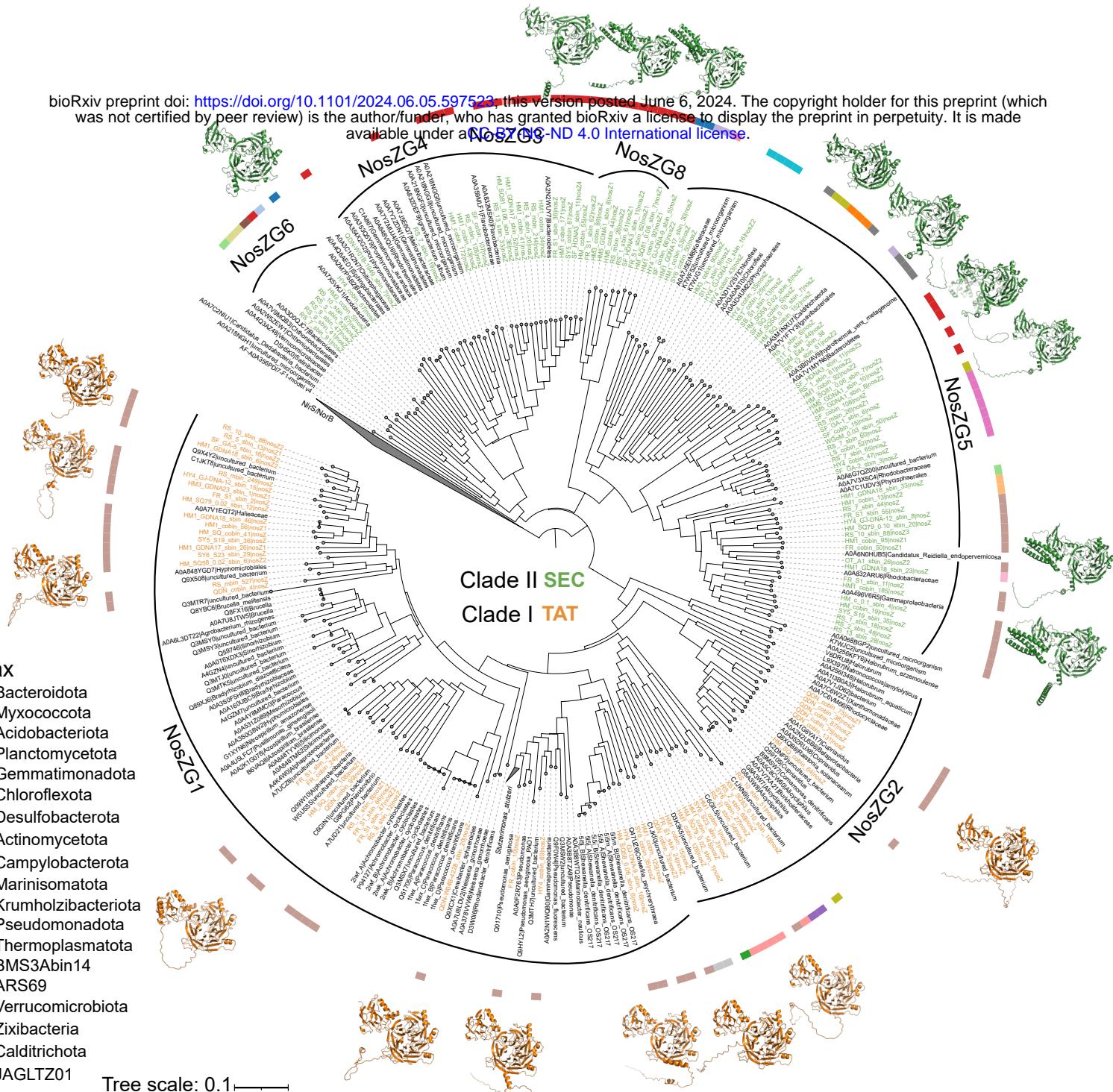
1031 **with Foldtree and predicted structure of HZS.** (a) Structure tree created with
1032 Foldtree and affiliated taxonomic phylum of HzsA in MAGs. Each cold seep HzsA is
1033 labeled in blue in the structure tree. Scale bar indicates the mean number of
1034 substitutions per site. Surrounding the tree, the affiliated taxonomic phylum and
1035 AlphaFold-predicted 3D structures of representative HzsA are displayed. (b)
1036 Reference structure of HZS in 5C2V belonging to *Candidatus Kuenenia*
1037 *stuttgartiensis* (*Planctomycetota*) and (c) FR_S1_sbin_24 belonging to
1038 *Verrucomicrobiales* (*Verrucomicrobiota*). In the HZS complex structure: α -subunits
1039 are colored green and yellow, β -subunits are colored blue and pink, and γ -subunits are
1040 colored grey and magenta. Details for the taxonomy of *hzsA*-containing contig are
1041 provided in **Supplementary Tables 18**.

1042 **Figure 6. Comparison of *hzs* gene clusters and metabolic features from**

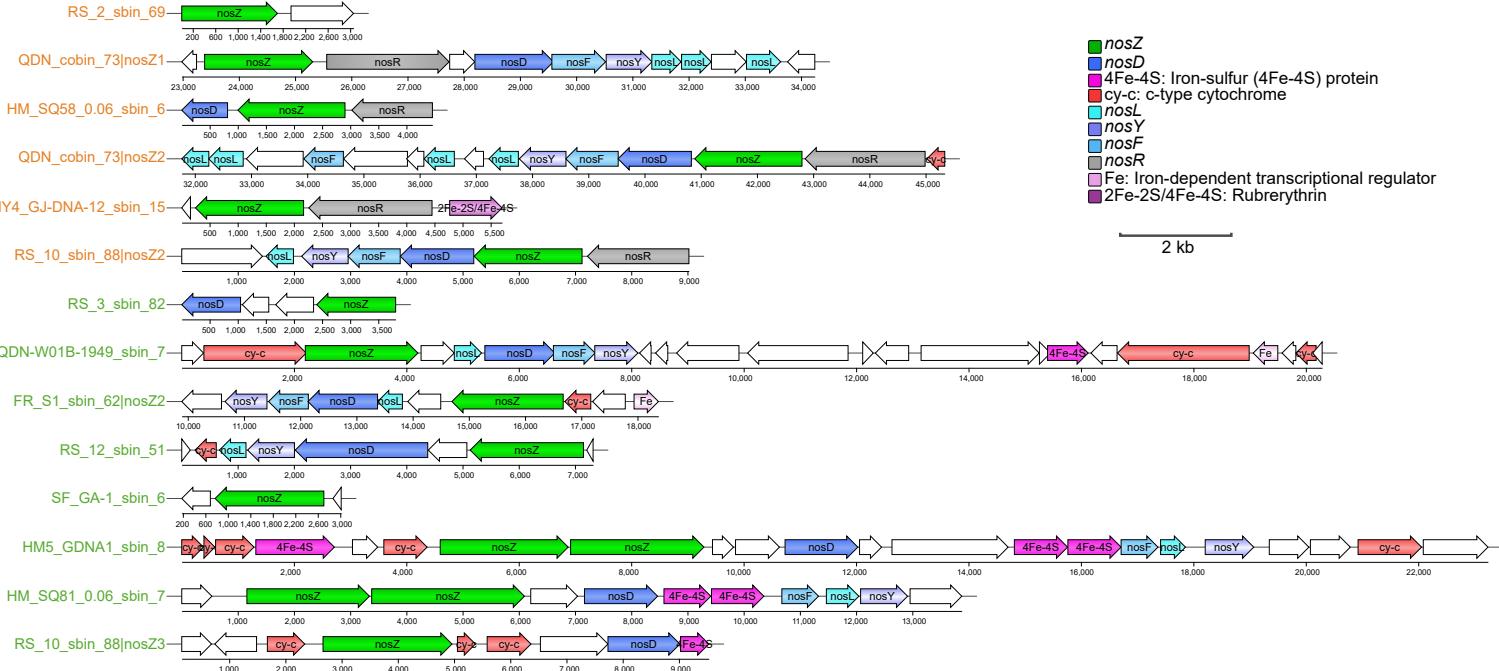
1043 **traditional and novel genomes harboring *hzsABC* genes.** (a) Conservation of key

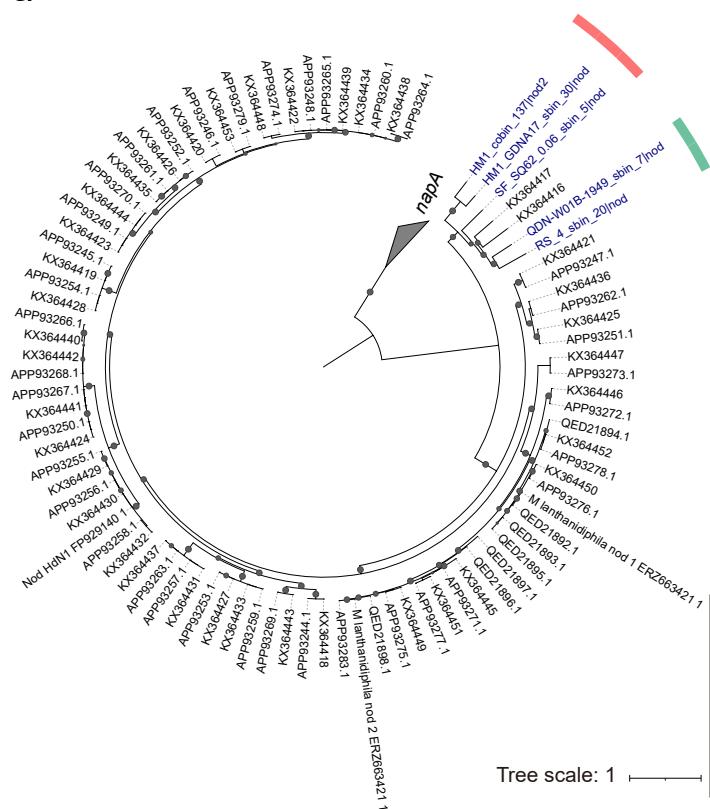

1044 genes encoding hydrazine metabolism in anammox bacteria genomes. (b) Comparison

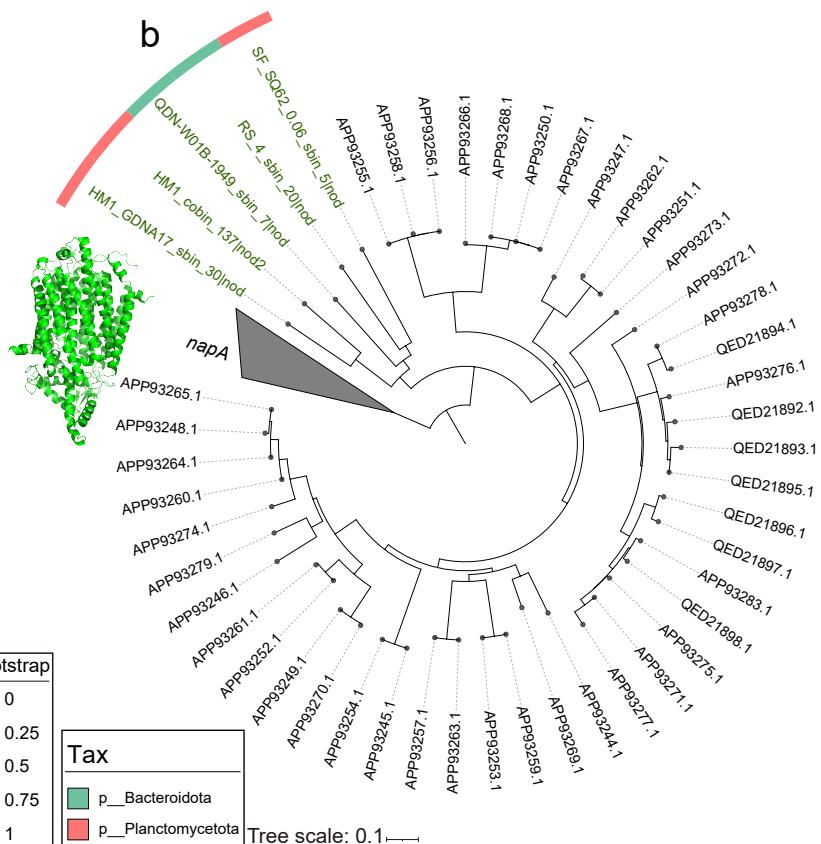





1045 of metabolic potential of anammox bacteria. Filled circles represent the presence of

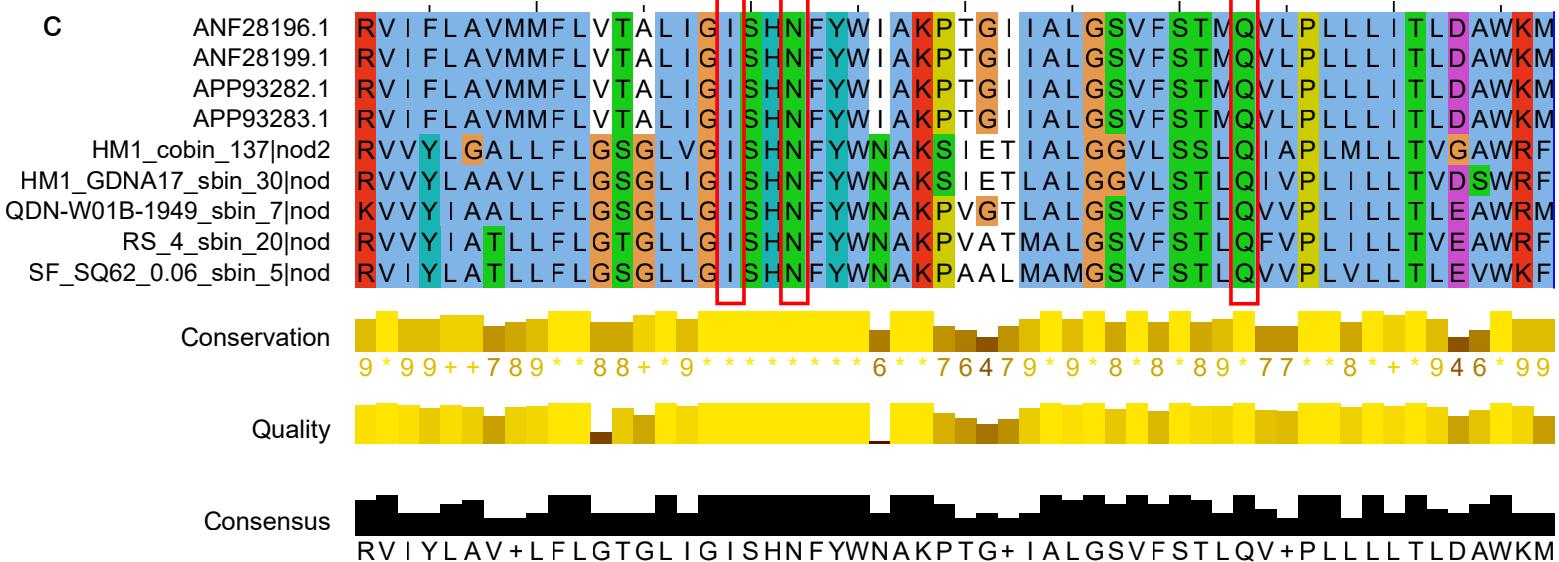

1046 genes encoding the metabolic process, grey circles denote partial presence, and open

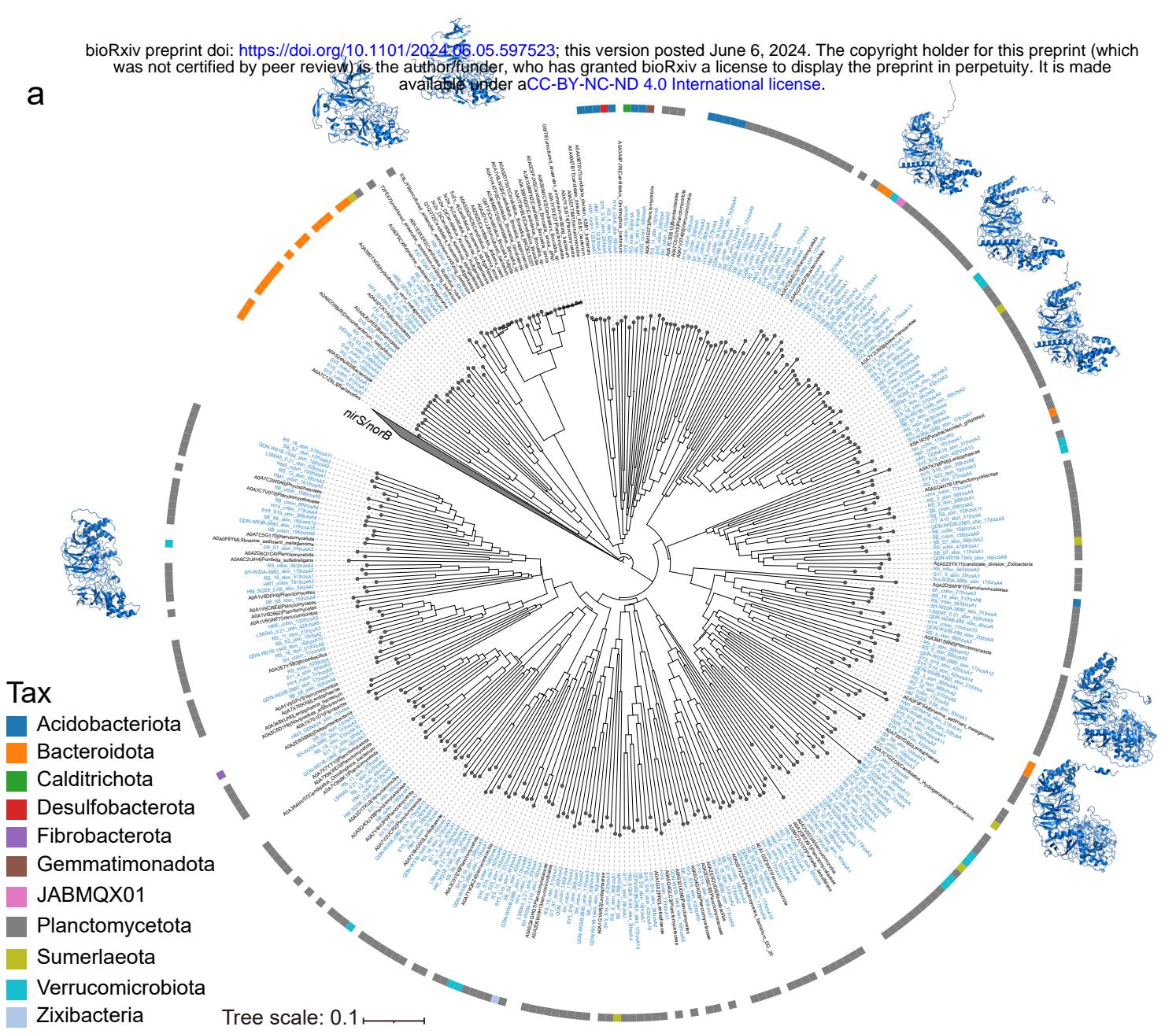
1047 circles indicate absence. Details for *hzsA*-containing annotations are provided in

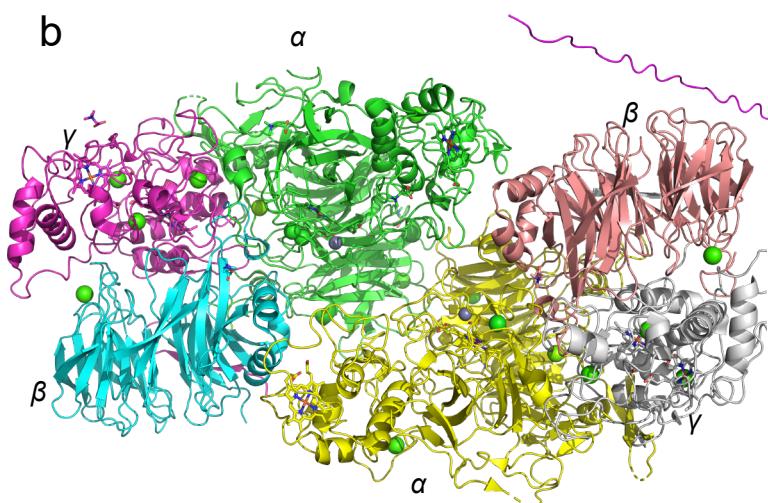

1048 **Supplementary Tables 20-23**.

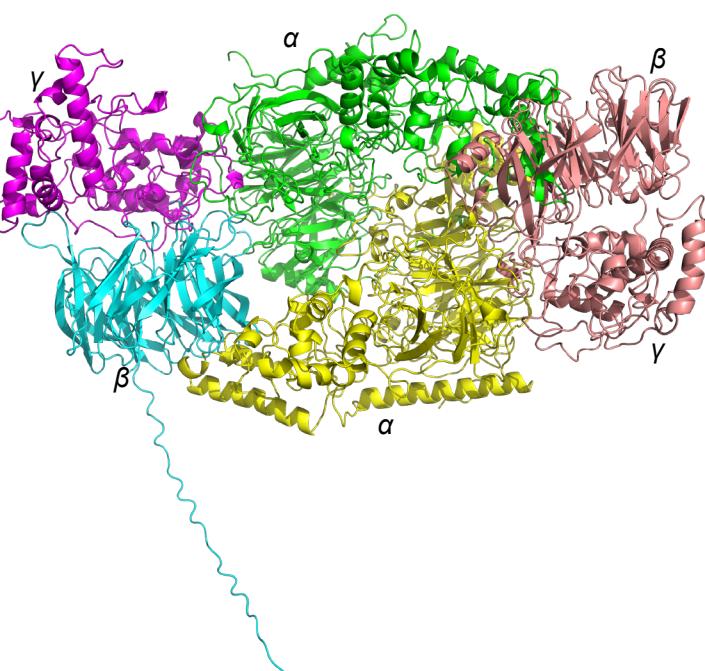


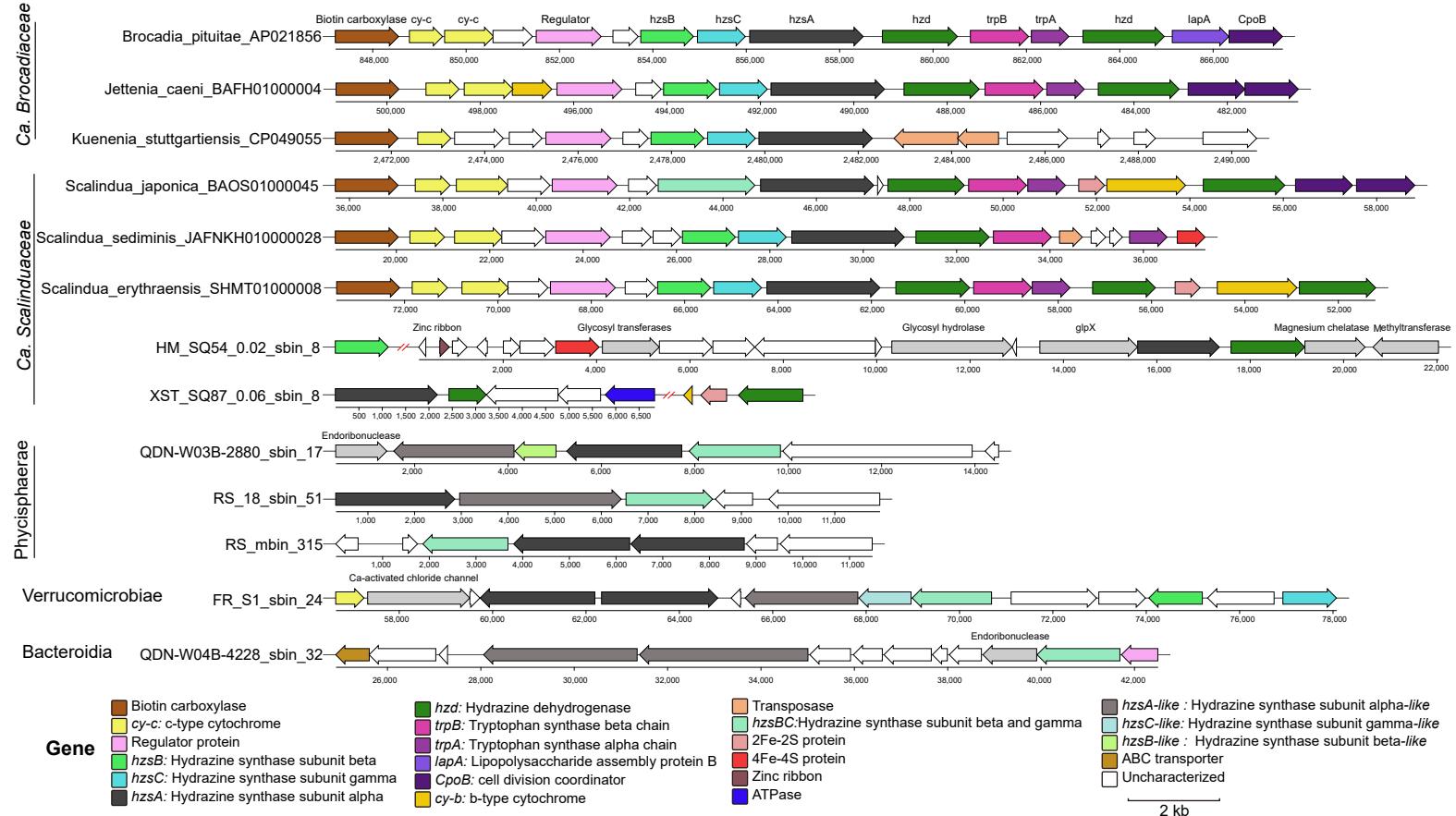

b

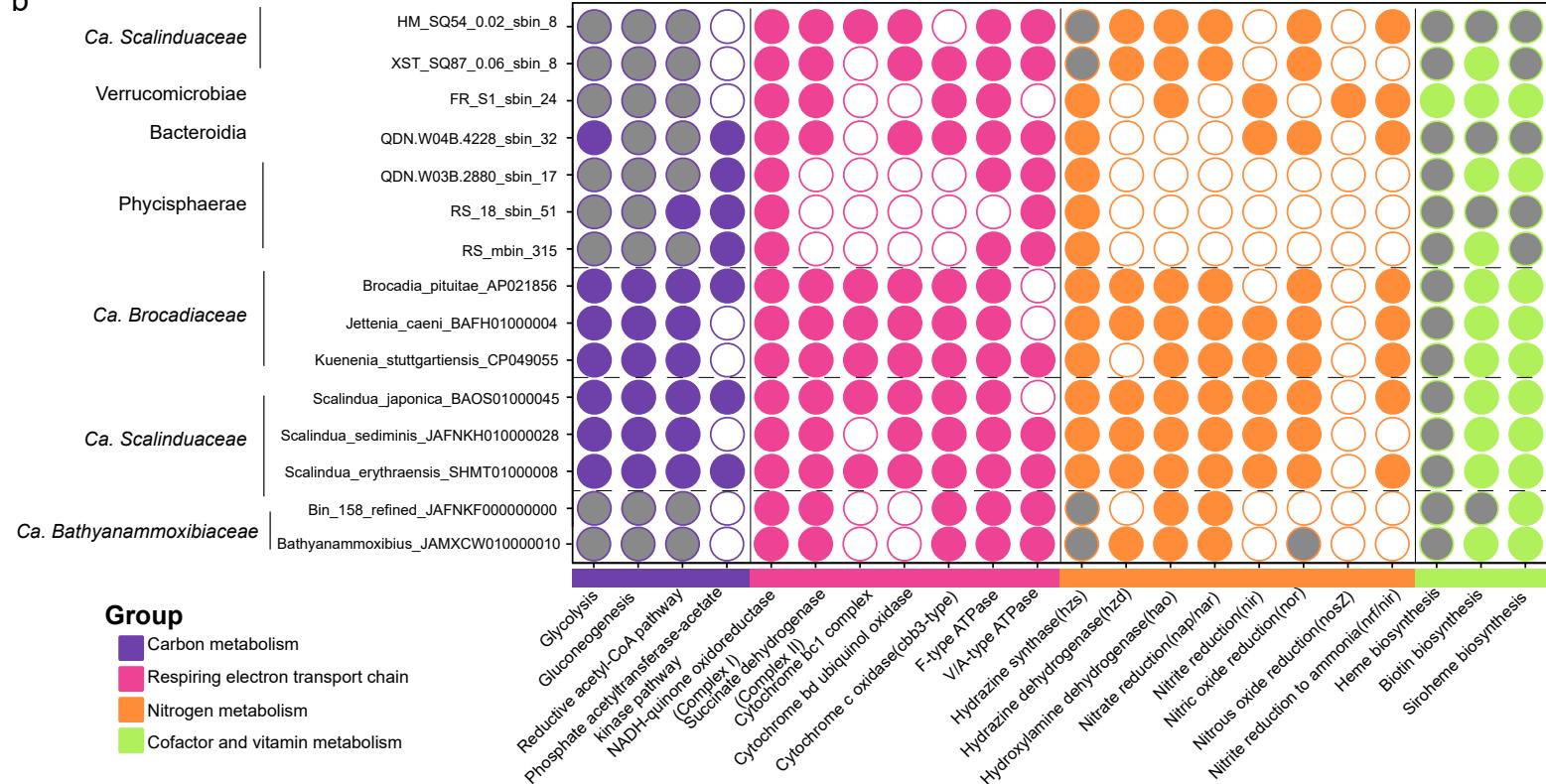

a


b


c


a


b


c

a

b

