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Abstract

Anti-cancer drug response prediction (DRP) using cancer cell lines plays a vital
role in stratified medicine and drug discovery. Recently there has been a surge of
new deep learning (DL) models for DRP that improve on the performance of their
predecessors. However, different models use different input data types and neural
network architectures making it hard to find the source of these improvements.
Here we consider multiple published DRP models that report state-of-the-art
performance in predicting continuous drug response values. These models take
the chemical structures of drugs and omics profiles of cell lines as input. By
experimenting with these models and comparing with our own simple benchmarks
we show that no performance comes from drug features, instead, performance is
due to the transcriptomics cell line profiles. Furthermore, we show that, depending
on the testing type, much of the current reported performance is a property of
the training target values. To address these limitations we create novel models
(BinaryET and BinaryCB) that predict binary drug response values, guided by
the hypothesis that this reduces the noise in the drug efficacy data. Thus, better
aligning them with biochemistry that can be learnt from the input data. BinaryCB
leverages a chemical foundation model, while BinaryET is trained from scratch
using a transformer-type model. We show that these models learn useful chemical
drug features, which is the first time this has been demonstrated for multiple DRP
testing types to our knowledge. We further show binarising the drug response
values is what causes the models to learn useful chemical drug features. We also
show that BinaryET improves performance over BinaryCB, and over the published
models that report state-of-the-art performance.

1 Introduction

Anti-cancer drug response prediction (DRP) has three main aims that, if delivered, would each
improve patient outcomes or decrease treatment costs. These aims are to: (a) repurpose existing
drugs, (b) tailor more effective treatments to specific groups or individuals and (c) help discover novel
drugs. Cancer cell lines are at the heart of most DRP studies because they give a proxy for patient
data while offering an abundance of publicly available drug screening data [1]. Several large-scale
public databases provide drug response measurements and omics cell line profiles. These include
the Genomics of Drug Sensitivity in Cancer (GDSC) [2], the cancer cell line encyclopedia (CCLE)
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and the Cancer Therapeutic Response Portal (CTRP) [3]. See [1, 4] for in-depth comparisons of
the different databases. These databases typically contain hundreds of thousands of drug response
measurements. For example, GDSC2 has 969 cell lines screened for up to 297 drugs (although not all
cell lines have been screened for all drugs).

The availability of such datasets has resulted in a surge in new deep learning (DL) methods for
predicting drug efficacy [5, 6, 7, 8, 9, 10, 11, 12]. The dominant paradigm for DRP models is to
take omics profiles of cancer cell lines and drug structures as inputs to predict drug response. Such
models have been reported to show state-of-the-art performance [7, 8, 9, 10]. See [12] for a review of
DL methods in DRP. DRP models typically feed each of the two inputs (cell line and drug) through
separate branches, to encode these inputs. They then use the fused encoded representations to predict
how effective the input drug is for the input cell line. Figure 1 shows a diagrammatic representation of
this. Earlier DRP models used the same subnetwork architectures for the drug and cell line branches,
e.g. tCNNS used two subnetworks made from convolutional layers [13]. More recent models have
used different subnetworks for the branches to leverage the different modalities of the input data.

Typically DRP models have used convolutional or dense layers for the cell line branches [13, 7, 8, 9,
14, 15, 16, 17, 18]. In addition to these layers, there have been DRP models that use transformers [7],
and graph convolutional layers [16, 9, 15] for their drug branches. There is a large variation in the
architectures of the drug branches because drugs are three-dimensional chemical substances made
of atoms bonded together. Therefore, there are many different ways to both numerically represent
drugs and extract features from these representations. Due to the above, there are multiple differences
in the representation of data and network structures of DRP models. Thus, when a new model
outperforms an old one it is not clear if the improvement comes from enhancements to the model’s
architecture, a better representation of the input data or a combination of the two. To compound this
problem, DRP models are normally trained and tested in three different ways corresponding to the
three different aims of DRP and it is standard for only one testing type to be used for ablation studies.
Furthermore, the results and metrics can be stratified in two different ways, which we will show can
also significantly impact the reported performance. However, this has been overlooked in previous
studies.

Thus, in this paper, we look at how the different data types and subnetworks of three models, with
reported state-of-the-art performance, impact their performance for DRP for the three testing types.
These testing types are (1) mixed set (2) cancer blind and (3) drug blind testing where evaluation is
done using unseen drug cell line pairs, cell lines and drugs respectively. The three models we use
are tCNNS [13], DeepTTA [7], and GraphDRP [9]. Each of these models uses different drug branch
architectures. tCNNS uses convolutional layers, DeepTTA uses a transformer and GraphDRP uses
graph convolutional layers. We also introduce three simple but effective null hypothesis benchmarks,
one for each testing type. These benchmarks do not use any omics data or drug structures. The
benchmarks test how much performance improvement using omics data and drug structures adds and
show how much performance can be attributed to patterns in the training truth values. This study
shows that, for multiple testing types and models, all or most of the performance can be attributed
to patterns in the training truth values. Furthermore, we find that, for multiple testing types, no
performance comes from input chemical drug structures and instead, performance is due to the
transcriptomics profiles.

For all of the above the models are trained and tested using continuous response values, as was done
for the original implementations of these models [13, 7, 9] and is typical for DRP [17]. However,
there is significant experimental noise in these response values due to the complex nature of the wet
lab experiments [19, 20]. Thus, we hypothesise that the models are overfitting to the experimental
noise in these values rather than learning chemically relevant features that are predictive of drug
sensitivity and that, by binarising these response values, to remove some of the experimental noise
the models can instead learn useful chemical features, resulting in better performance.

We test this by creating two novel transformer-based models BinaryET (encoder transformer), and
BinaryCB (binary ChemBERTa) that predict binary drug response values. BinaryCB uses the
chemical foundation model ChemBERTa [21, 22], for its drug branch. ChemBERTa is pre-trained
using a large corpus of SMILES strings and has a BERT-like architecture [23]. In contrast, we train
BinaryCB from scratch. We then conduct ablation studies on BinaryET and BinaryCB, removing the
drug branch to show the models learn useful drug features. To our knowledge, this is the first time
chemical drug structures have been shown to improve performance across multiple DRP testing types.
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Figure 1: The general architecture of the models considered in this paper. Separate branches are used
to encode the omics profiles and drug structures before being combined and fed through an MLP.

Comparing BinaryET with BinaryCB shows that the chemical foundational model does not improve
performance. Re-training DeepTTA with binarised truth values we find that it can also learn useful
chemical drug features, showing that binarising the drug response values is what causes the models
to learn useful drug features. Furthermore, we show that BinaryET improves performance over
the published models that report state-of-the-art performance. We highlight our main contributions
below:

• For mixed set testing we find that our null hypothesis benchmark outperforms the published
models with reported state-of-the-art performance thus, performance can be explained
entirely by patterns in the truth values.

• We show that for cancer blind testing, no performance is due to the drug structures instead
performance is driven by transcriptomics profiles, with metric stratification significantly
impacting results.

• We introduce BinaryET and BinaryCB models predicting binary drug response values,
hypothesising reduced experimental noise and improved alignment with biochemistry. Bina-
ryCB employs ChemBERTa, a RoBERTa-like chemical foundation model, while BinaryET
uses transformer encoder layers trained from scratch.

• We find that BinaryET and BinaryCB effectively leverage chemical drug structures and that
binarizing response values are key to learning useful drug features.

• We find BinaryET outperforms BinaryCB and the SOTA models re-trained with binary
response values.

2 Related Work

Chen and Zhang [24] recreated a number of DL DRP models to compare performance. Li et al. [25]
investigate interpretable DL DRP models to see if interpretability comes at the cost of performance.
Li et al. also show the strong performance of null hypothesis benchmarks compared to the DL
models. However, due to the challenging nature of recreating models from disparate codebases and
implementations there is limited work that involves previously published DRP models [12].

Prior work that aims to understand deep learning models in other applications has provided many
invaluable insights and improvements. These insights come from an understanding of how the models
work[26, 27, 28, 29, 30]. But also from an understanding of the metrics used to evaluate the models
[31, 32].Where it is vital that the metrics track what researchers are trying to measure and reflect the
applications of the models in practice. Thus, there is significant potential and scope to explore DL
DRP models and the source of their performance, both in terms of how the metrics are calculated and
the models themselves.

Large models pre-trained using chemical drug structures have shown strong performance and have
been observed to exhibit scaling laws [33, 21, 22, 34] leading some researchers to name them
chemical foundation models [21, 35]. These models have been utilised for many downstream tasks
[36, 21, 22, 34]. However, to our knowledge, they have not yet been applied in DRP.

3 Methods

To make the definition of DRP more concrete consider xc
i and xd

j representation of the ith cell line and
jth drug respectively and associated truth value yi,j . Here yi,j is the drug response value associated
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Figure 2: The different ways of splitting response values. Each square represents the efficacy of drug
j for cell line i. The blue and red squares represent training and testing response values respectively.
The input drug and cell line representations are also split into the appropriate set, given by the
response. The purple boxes represent how the predictions for the null benchmarks introduced in
section 3.4 are calculated.

with the (i, j) cell line drug pair, which describes how effective the jth drug is at killing the ith cell
line. For example, y could be an IC50 value, the concentration of a drug needed to reduce the activity
of a cell line by 50%.

A DRP model, M created by a learning algorithm takes xc
i and xd

j as inputs and predicts for the
corresponding truth value ˆyi,j such that M(xc

i , x
d
j ) = ŷi,j .

3.1 Evaluating DRP models

The aim of drug response prediction is to find a model using T that performs well on unseen data.
This can be done by evaluating the model on some held-out testing data E. There are three common
ways of constructing T and E corresponding to the three different objectives for DRP as outlined in
the introduction.

1. Mixed-set: any drug and any cell line can be in either T or E, but a drug cell line pair can
only be in one set.

2. Cancer-blind: cell lines in T can not be in E, but all drugs are be in both sets.
3. Drug-blind: drugs in T can not be in E, but all cell lines are in both either set.

Figure 2 diagrammatically shows these different splits.

Using mixed-set testing shows if the model could be used for drug repurposing. This is because, for
a given dataset a cell line in this dataset is typically not evaluated against all drugs in the dataset.
Therefore, the model can be used to evaluate drug cell line pairs that have not yet been explored. This
is a quick and inexpensive way to predict if a known drug (drug in the training set) can be repurposed
for a known cancer subtype. Cancer-blind testing shows if the model could be used to find candidate
drugs that might be effective for cancer sub-types, not in the training set. This would be useful in
drug discovery, where cancer cell lines can be used to narrow down candidate drugs. Furthermore,
cancer-blind testing is a suitable method for simulating how good a model would be in a stratified
medicine context. Where the model would need to predict efficacy for samples it was not trained on.
For example to predict if a drug, or set of drugs, is suitable for new patients. A model that performs
well using drug-blind testing could be used to find novel anti-cancer drugs from just its structure.
This is because the model would be able to predict the responses of a candidate drug to known cell
lines.

3.2 Stratification of results in metric calculations

There are two inputs to DRP models. Thus, metrics can be stratified in two different ways, by cell
line or by drug. We consider cancer blind testing in the following to make our examples concrete. We
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define stratifying results by cell line as finding a metric for each cell line in the test set individually,
across all drugs, before averaging the results. Similarly, we define stratifying the results by drug as
finding a metric for each drug, across all cell lines in the test set, before averaging the results. In
contrast, a non-stratified metric is found once across all cell line drug pairs in the testing set without
averaging. Thus, there are three different ways performance metrics can be reported. In DRP studies
this is typically not discussed and only stratification by cell line is reported. However, as we will
show, how results are stratified makes a big impact on cancer blind testing results.

The two different methods for stratification correspond to evaluating the model for distinct problems
the model could be applied to. Stratifying by cell line corresponds to simulating the performance
in a clinical stratified medicine context which aims to recommend a drug out of all the drugs the
model is trained on, for a new patient. A model that performs well using this testing would also be
directly useful in a drug discovery context where cell lines are used to narrow down candidate drugs.
Specifically, the model could be used, to rank treatments from the set of all drugs the model has been
trained on for an unseen cancer sub-type.

In contrast, stratifying by drug corresponds to simulating the performance in a clinical stratified
medicine context where there is a set of new patients and you want to recommend if a given drug
should be taken for each of these patients. This is typically the scenario in which DRP models are
applied to [11, 10, 37, 38]. The corresponding application in a drug discovery context directly using
cell lines, is where you have a candidate drug that has already been screened for some cell lines and
you can then use the model to screen a set of many unseen cancer sub-types for efficacy. We provide
the equations for calculating the stratified metrics in Appendix B.

3.3 Datasets and models

At a high level, our model, BinaryET consists of three subnetworks: a drug and cell line branch and a
regressor, as shown in figure 1. Each branch separately encodes the input data before the outputs of
the branches are concatenated and passed through a regressor. For our cell line branch, we used all
the transcriptomic features for our cell line profiles as input to a three-layer multilayer perceptron
(MLP). For our drug branch, we used SMILES strings tokenized with the ChemBERTa tokenizer [22]
implemented in Hugging Face [39]. We then used the tokenized SMILES strings as input to a stack
of transformer encoder layers [40]. We then passed the concatenated outputs of the two branches
through a 3-layer MLP, that predicted the binarised response value of the input drug cell line pair.
For BinaryCB we replaced the drug branch of BinaryET with ChemBERTa and fine-tuned the whole
model during training. For further details of the datasets used and how we binarised the response
IC50 values see Appendix D. For model hyperparameters see Appendix G.

An 80%, 10%, 10% train, validation, and test split was used for all testing and the validation data
was used to select hyperparameters and the optimal number of epochs. We ran the models for three
train test splits and for each split, we ran the model for three different seeds. We also repeated this for
each of the testing types, mixed set, cancer blind and drug blind. This same training protocol was
also used for the published models that we recreated. See Appendix E for further details on how we
recreated these models to predict both continuous and binary response values.

3.4 Null Hypothesis Benchmarks

We create three null hypothesis benchmarks, (1) drug average (2) cell line (CL) average and (3)
marker benchmark, for use in cancer blind, drug blind and mixed set testing respectively. None of
these benchmarks use any omics data or drug structures. We note that the drug and CL average
benchmarks have recently been shown to have strong performance [14, 25] but have not yet been
fully explored. The benchmarks are defined as follows:

Drug average benchmark: predictions for response values for a given drug in the test set were
simply calculated as the mean of all response values for that drug in the training set. This is shown in
figure 2 under the cancer blind split. The figure shows that for a given drug, a row in the figure, the
average is calculated across cell lines in the training set (the boxes in blue). This average is then the
prediction for the cell line drug pairs in the test set for that drug (the red boxes). Thus, for the drug
average benchmark the prediction for the drug, d, and any cell line, c,∈ Ctest, ŷdctest is given by
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ŷdctest =

∑
c∈Ctrain

ydc

ndCtrain

.

The sum runs over all cell lines in the training set c ∈ Ctrain where drug cell line pair (d, c) has an
associated response value ydc. ndCtrain

is the number of drug cell line pairs in the training set that
include d. Note that due to missing response values ndCtrain can be different for different drugs.

CL average benchmark: the above was done with cell lines instead of drugs. Thus, the prediction
for the cell line, c and any drug in the testing set d ∈ Dtest is given by

ŷdtestc =

∑
d∈Dtrain

ydc

ncDtrain

.

Where nDtrainc is the number of drug cell line pairs in the training set that include c. Similarly Figure
2 shows the predictions of the CL average benchmark under the drug blind split.

Marker benchmark: we define a marker representation of either a cell line or drug to mean a vector
that uniquely identifies that cell line or drug but doesn’t have any biological or chemical properties.
Here, we use a column vector to achieve this, by one-hot encoding each drug or cell line. The marker
benchmark took cell line and drug inputs as marker representations and fed them through an MLP.

We hypothesised each benchmarks were effective for similar reasons:

• Drug average benchmark: there are drugs that are generally effective at killing most cell
lines and other drugs that are ineffective for most cell lines.

• CL average benchmark: there are cell lines that are generally harder or easier to kill for most
drugs.

• Marker benchmark: all drugs and cell lines are in the training set for mixed-set evaluation.
Thus, a combination of the above properties can be learnt during training for inference.

Importantly, all of the null hypothesis benchmarks allowed us to see if adding omics data or drug
structures improves performance and how much of model performance can be attributed to the above
property of the data.

4 Results and Discussion

4.1 Cancer blind testing with continuous drug response values

Table 1 shows the results of cancer blind testing for the published model’s drug average benchmark
and DeepTTA-DB. We created DeepTTA minus drug branch (DeepTTA-DB) to see how much impact
chemical drug structures have on cancer blind performance. For DeepTTA-DB instead of DeepTTA’s
transformer drug branch, we simply feed in a one-hot encoded marker representation of the drugs. See
appendix C for details of the metrics we report. The reported performance difference seen between
the stratified and non-stratified results (defined in section 3.2) shows that cell line stratification is an
easier problem. This is expected and is due to the statistics of the response values specifically due to
observation 1:
Observation 1. Much of the variance in the response values between drugs can be explained by the
average behaviour of the drugs.

We note that Observation 1 is a direct implication of the hypothesis made in section 3.4, that there are
drugs that are generally effective or ineffective. The drug average benchmark clearly demonstrates
Observation 1 as it is directly built to reflect this property. Thus, when we test across all of the
drugs, Observation 1 boosts the performance of the models. In contrast with drug stratification where
performance is evaluated for a given drug, the variance cannot be explained by Observation 1 as
we are looking across cell lines for that drug. This is again shown by the drug average benchmark
that predicts the same value, for a given drug across all cell lines, and thus, gives an R2 ∼ 0
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and has an undefined Pearson correlation coefficient. This is also why the models have a much
better performance differential compared with the benchmark, for drug than cell line stratification.
This shows the importance of considering how results are stratified, whereas DRP studies typically
only report cell line stratified metrics and to our knowledge do not consider drug stratification.
Furthermore, it shows that deep learning models can have the most impact for a drug stratified use
case. Interestingly previous work using learning curves found that the performance of the drug
average benchmark plateaued at larger dataset sizes but models using omics data did not. This
suggests that the performance differential to the benchmark will increase as more data is collected
[14].

Table 1 also shows the drug average benchmark outperforms both of the models that use genomic cell
line profiles, tCNNS and GraphDRP, in terms of all metrics bar drug stratified Pearson correlation.
Thus, these models are not generally learning useful features above those that can be derived
from Observation 1. On the other hand, the two models that use transcriptomic cell line profiles,
DeepTTA and DeepTTA-DB comfortably outperform the benchmark for all metrics. This suggests
that transcriptomic profiles play a key role in cancer blind testing. To further explore this result we
constructed tCNNS_Tran and GraphDRP_Tran, where we replaced the genomic cell line profiles
of tCNNS and GraphDRP with transcriptomic profiles with all genes as features. The results
for these models are shown in Table 12 in Appendix H. The table shows that tCNNS_Tran and
GraphDRP_Tran both outperform the benchmark further showing that the strong performance is
caused by the transcriptomic cell line profiles. There is also a strong theoretical justification for this
result. Many of the processes in cancer can not be explained by genomic profiles (mutation and
copy number variation data) alone [41]. In contrast, transcriptomics operates at the level of post-
transcription so contains vital information about biochemical pathways, important for understanding
diseases, that genomics does not [42]. Therefore, transcriptomics describes parts of the biology of
cancer that genomics can not.

Table 1: Metrics for cell line and drug stratified cancer blind testing, for three models from the
literature: tCNNS, DeepTTA, GraphDRP, DeepTTA-DB (a model that we create), and our null
hypothesis drug average benchmark. See appendix C for details of the metrics we report. The
best model performance per metric is highlighted in bold for this and the following tables. The
uncertainties in this and all tables are the standard deviations across three model seeds.

Method MSE
CL strat

Pear
CL strat

R2
CL strat

Pear
drug strat

R2
drug strat

tCNNS 2.41 ± 0.04 0.870 ± 0.003 0.61 ± 0.01 0.16 ± 0.02 -0.21 ± 0.01
GraphDRP 2.41 ± 0.08 0.872 ± 0.004 0.60 ± 0.01 0.220 ± 0.009 -0.26 ± 0.06
Drug Average 2.190 0.884 0.640 N/A -0.012
DeepTTA-DB 1.575 ± 0.009 0.902 ± 0.001 0.743 ± 0.004 0.526 ± 0.009 0.257 ± 0.004
DeepTTA 1.57 ± 0.02 0.904 ± 0.002 0.743 ± 0.005 0.523 ± 0.006 0.253 ± 0.008

Table 1 also shows that DeepTTA-DB and DeepTTA perform equally within the margin of uncertainty.
Therefore, the performance is due to the omics branch, further confirming that the transcriptomic
cell line profiles cause the performance improvement seen over the drug average benchmark. We
further explore this result by removing the drug branch from tCNNS_Tran and GraphDRP_Tran
to create tCNNS_Tran-DB and GraphDRP_Tran-DB. As with DeepTTA-DB, tCNNS_Tran-DB
and GraphDRP_Tran-DB are tCNNS_Tran and GraphDRP_Tran with a one-hot encoded marker
representation of the drugs used in place of the respective drug branches. The results for these models
are shown in Table 12 in Appendix H. The table shows that removing the drug branch from both
models does not impact performance. This supports the above discussion, that the performance
improvements over the benchmark are due to the transcriptomic cell line profiles and the models do
not learn useful representations from the chemical drug structures.

We note that it is expected that for cancer blind testing transcriptomics profiles will contribute more
than chemical drug profiles. This is because, in cancer blind testing, all drugs are in both the training
and testing set. Therefore, the model can learn the distribution of the drug’s efficacy during training
and directly use this information in the test set. This is demonstrated by the drug average benchmark
that shows good performance, on the test set, only using the distribution of the drug efficacy in the
train set. In contrast, the cell lines tested on are unseen, therefore the omics profiles are required for
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the model to discriminate on. This is because, for a given drug, there is no other way for the model to
differentiate its prediction than with the cell line profiles.

We repeated the above analysis for two further test train splits. The values of all metrics are similar to
those in table 1. Furthermore, the results agree with the conclusions arrived at in the above discussion.
The results for two other test train splits are shown in Appendix H. We also experiment with first
scaling the truth values to be between zero and one using the same method as in [13] before re-training
and testing the models and found consistent results (Table 13 in Appendix H) Thus, showing the
robustness of our results to different methods of scaling the response values.

4.2 Mixed set and drug blind testing with continuous drug response values

Table 2: Metrics for mixed set testing for three models from the literature and our null hypothesis
marker benchmark. The published models do not outperform the benchmark for any metric. Note
Transcript and mol graph are used as shorthand for transcriptomic and molecular graph respectively.

Method Drug
branch

Omics
branch MSE Pear R2

tCNNS SMILES Genomics 1.256 ± 0.004 0.9104 ± 0.0003 0.8283 ± 0.0005
GraphDRP Mol graph Genomics 1.06 ± 0.04 0.930 ± 0.001 0.856 ± 0.005
DeepTTA SMILES Transcript 0.98 ± 0.01 0.931 ± 0.001 0.866 ± 0.002
Marker Benchmark Marker Marker 0.88 ± 0.01 0.9379 ± 0.0007 0.880 ± 0.001

Table 2 shows the results of mixed set testing for the three published models and the marker benchmark.
It shows that none of the published models outperform the marker benchmark, for all metrics. The
marker benchmark does not use omics data or chemical drug features. This means the performance of
the model comes from the truth values in the training set. Therefore, the published models are unable
to use omics or drug data to improve performance over what information can be gained from the truth
values in the training set. The marker benchmark is so successful because, in mixed set testing, every
drug and cell line in the test set is also in the training set while unique drug cell line pairs are only in
the training or testing set. Therefore, the model has ample information on the distribution of response
values for any cell line or drug in the training set to learn from. Thus, rather than having to learn
important cell lines or drug features, it can just use these distributions for predictions. We repeated
the above analysis for two further test train splits to increase the reliability of our results. The results
for these splits support Table 2 and are shown in Appendix I. We also note that DRP studies typically
do their ablation studies for this testing type, limiting their usefulness in light of the above.

To further investigate this result we created marker versions of each of the literature models. We did
this by replacing the drug branches and omics inputs of the models with a marker representation before
re-training and testing the models. The results given in Appendix I show that all marker versions of
the models outperform the original models. This supports the hypothesis that the models are learning
the distribution of efficacy/susceptibility of drugs/cell lines by associating the IC50 values with a
marker representation of the inputs, instead of learning biological or chemically relevant features
from the input omics or chemical structures and removing the omics/chemical input features allows
the model to more easily do this. These results show the importance of using marker representations
to benchmark DRP models for mixed set testing.

For drug blind testing we found a much greater variation in performance between stratified and
non-stratified testing than we found for cancer blind testing. There was also a greater variation
between different train test splits than we found for the other testing types. The results for all splits,
stratified and non-stratified testing are shown in Appendix J. These results show that while there are
large differences between the test train splits, for each split there are metrics that outperform the CL
average benchmark. Therefore, the omics and drug structures can provide a benefit for non-stratified
drug blind testing. However, more needs to be done to improve the model’s drug blind testing abilities
so that they outperform the benchmark consistently by improving model stability.

4.3 Evaluation of BinaryET

Table 3 shows the results for drug stratified cancer blind testing using binary response values. It
shows our model, BinaryET outperforms all other models that had previously reported state-of-the-art
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performance, across all metrics. All models outperform the drug average benchmark for AUC and
AUPR. We note that by definition the drug average benchmark has an AUC of 0.5, as is seen in table 3.
The results for two further train test splits are shown in Appendix K, they support the results in table
3. Appendix K also shows the metrics for the same set of results but with cell line stratification and
without stratification. It supports the result from table 3 that BinaryET outperforms all other models.
However, unlike in table 3 the drug average benchmark outperforms GraphDRP and tCNNS for
both AUC and AUPR. These results also support the difference between cell line and drug stratified
metrics seen for continuous response values.

Table 3: Metrics for drug stratified drug blind
testing for BinaryET (ours) compared with the
published models, retrained to predict binary
response values, and the null hypothesis drug
average benchmark.

Method AUC AUPR

Drug Average 0.500 0.320
tCNNS 0.598 ± 0.008 0.40 ± 0.01
GraphDRP 0.6173 ± 0.0009 0.421 ± 0.007
DeepTTA 0.747 ± 0.008 0.53 ± 0.02
BinaryET 0.771 ± 0.003 0.569 ± 0.004

Table 4 shows the results for the ablation study
where we remove the drug branch from BinaryET.
The table shows for all splits and ways of stratifying
the results removing the drug branches decreases
the performance of our model. Therefore, Bina-
ryET is able to extract useful representations from
the chemical drug structures. Appendix K shows
this result also holds for DeepTTA. This is in con-
trast to the results we found when continuous truth
values are used (Table 1). Thus, binarising the truth
values allows the models to successfully leverage
chemical drug structures. We hypothesise that this
is because due to the experimental noise in the con-
tinuous response values, they do not fully reflect the
underlying causal biochemistry of the experiment.
Thus, there are not chemically relevant features that are predictive of continuous drug sensitivity
that the models can learn, over what can be learnt from the transcriptomics. Then, binarising these
response values removes some of the experimental noise better aligning the binary response values
with underlying biochemistry, which the input chemical drug structures can explain allowing models
to learn useful features from these inputs.

Table 4: Ablation study for BinaryET removing the drug branch BinaryET-DB, for all types of
stratified cancer blind testing.

Stratification type BinaryET
AUC

BinaryET-DB
AUC

BinaryET
AUPR

BinaryET-DB
AUPR

Drug Strat 0.771 ± 0.003 0.76 ± 0.01 0.569 ± 0.004 0.55 ± 0.02
Cell Line Strat 0.9305 ± 0.0006 0.928 ± 0.001 0.822 ± 0.002 0.817 ± 0.001
No Strat 0.9158 ± 0.0006 0.913 ± 0.001 0.8084 ± 0.0002 0.8033 ± 0.0008

Table 5 shows the results for BinaryCB, where we have replaced the drug branch in BinaryET with
ChemBERTa. We have evaluated different versions of ChemBERTa pre-trained using databases
of SMILES strings of different sizes, from 40, 000 SMILES strings from the ZINC database to
77, 000, 000 from the PubChem database. The table also shows the results for an ablation of
BinaryCB, Marker DB where we replace the drug branch with a marker drug input. The table
also includes results for a model with the same architecture and hyperparameters as BinaryCB but
without any pre-training (No PT) which is the same as BinaryET with different hyperparameters. The
tables show that while BinaryCB does learn useful chemical drug features, the pre-training does not
provide any performance improvements over training a model from scratch. The table also shows that
increasing the pre-training size of ChemBERTa does not improve performance. Furthermore, moving
from ZINC to PubChem leads to a drop in performance despite an order of magnitude increase in the
number of SMILES strings used for pre-training. A possible reason for this is that the distribution of
SMILES strings taken to train ChemBERTa from PubChem may be further away from anticancer
drugs than those that were chosen from ZINC.

Table 6 shows the results for mixed set testing with binary response values. It shows that our model,
BinaryET, outperforms all other models that had previously reported state-of-the-art performance. In
contrast to the continuous case, all models outperform the null hypothesis benchmark. However, it
still performs comparatively to the models suggesting that much of the performance is due to patterns
directly inferred from the training truth values. Furthermore, the table shows that removing the drug
branch from BinaryET decreases the performance. Thus, BinaryET also learns useful information
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Table 5: Pefomrance of BinaryCB with different versions of ChemBERTa used for the drug branch.
Performance is the average of three model seeds on the validation set.

BCE (Loss) AUC AUPR

zinc40k 0.3448 ± 0.0003 0.9169 ± 0.0002 0.8561 ± 0.0002
zinc100k 0.345 ± 0.001 0.9170 ± 0.0006 0.8558 ± 0.0006
zinc250k 0.3432 ± 0.0006 0.9169 ± 0.0002 0.8564 ± 0.0003
Pub5M 0.354 ± 0.001 0.9140 ± 0.0005 0.8512 ± 0.0005
Pub10M 0.357 ± 0.003 0.914 ± 0.002 0.851 ± 0.002
Pub77M 0.360 ± 0.001 0.9123 ± 0.0006 0.849 ± 0.001
Marker DB 0.3502 ± 0.0007 0.9136 ± 0.0001 0.8506 ± 0.0005
No PT 0.3429 ± 0.0007 0.917 ± 0.001 0.857 ± 0.001
BinaryET 0.342 ± 0.002 0.919 ± 0.001 0.858 ± 0.002

from its drug branch for mixed-set in addition to cancer blind testing. The results for two further train
test splits are shown in appendix L, they agree with the results in table 6.

Table 6: Metrics for mixed-set testing for BinaryET (ours) compared with the published models,
retrained to predict binary response values, and the null hypothesis marker average benchmark

AUC AUPR

Marker benchmark 0.9276 ± 0.0001 0.8634 ± 0.0001
tCNNS 0.928 ± 0.001 0.863 ± 0.001
GraphDRP 0.9376 ± 0.0007 0.882 ± 0.001
DeepTTA 0.9435 ± 0.0008 0.892 ± 0.001
BinaryET-DB 0.9458 ± 0.0006 0.896 ± 0.001
BinaryET 0.9470 ± 0.0004 0.8983 ± 0.0008

5 Conclusion

In this paper we recreated three drug response prediction (DRP) models, that have reported state-
of-the-art performance. We also created null hypothesis benchmarks that did not use omics data
or chemical features to help understand the published model’s sources of performance. These
benchmarks showed strong performance relative to the models suggesting that they should be
used when evaluating future DRP research. They also revealed that for multiple testing types, the
performance could partially or fully be explained by patterns in the training truth values. For cancer
blind testing we found, using ablation studies, that none of the model performance comes from
their chemical drug structures, instead, it is due to the transcriptomics cell line profiles. To address
these limitations we created BinaryET and BinaryCB, to predict binary drug response values guided
by the hypothesis that this will remove some of the experimental noise allowing them to learn
useful chemical features. We find this to be the case for multiple testing types. Furthermore, we
show BinaryET improves upon the performance of the models that have reported state-of-the-art
performance.
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A Appendix / supplemental material

B Calculating stratified metrics

For a cell line stratified metric MCstrat,

MCstrat =

∑
c∈C

Mc

Nc
. (1)

Where the sum runs over, C all cell lines in the test set and Nc is the number of cell lines in the test
set. Mc is the metric M for cell line c such that

Mc = f(yc, ŷc).

Where yc and ŷc are the truth values and predicted values for the cell line drug pairs that include c
respectively. f is a function that gives metric M for example it could be the mean squared error. In
contrast drug-stratified metric is instead given by MDstrat,

MDstrat =

∑
d∈D

Md

Nd
(2)

Where the sum runs over, D all drugs and Nd is the number of drugs. Md is the metric M for drug d
such that

Md = f(yd, ŷd).

Where yd and ŷd are the truth values and predicted values for all drug cell lines pairs that include d ,
and are in the test set.

Similarly, drug stratified drug blind testing is defined by equation 2 but with the sum only running
over drugs in the testing set, and Nd giving the number of drugs in the testing set. Furthermore, cell
line stratified drug blind testing is defined by equation 1 but with the sum running over all cell lines,
and where yc, ŷc are only the truth and predicted values for the drug cell line pairs in the test set that
contain c.

A non-stratified M is simply given by

M = f(y, ŷ).

Where y and ŷ are the truth values and predicted values for the cell line drug pairs in the test set
respectively.

C Metrics reported

When evaluating models that predicted continuous drug response values we calculate Mean squared
error (MSE), Pearson correlation coefficient (Pear) and the Coefficient of determination (R2). We
report Pear and R2 for both cell line (CL) stratification and drug stratification as well as non-
stratification, as described above.

When evaluating models that predicted binary drug response values we calculate the area under the
receiver operating characteristic curve (AUC) and the area under the precision-recall curve (AUPR).

D Dataset details

Across this study, we used transcriptomic cell line profiles from the genomics of drug sensitivity in
cancer database (GDSC) [2]. For drug response data we used IC50 values from GDSC2, where IC50
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is the standard measure of drug response and was used in the original papers for tCNNS DeepTTA
and GraphDRP. These downloaded IC50 values were continuous measurements. Thus, we binarised
them for the second part of our study when considering binary drug efficacy. We used the same
method to binarise the IC50 values as Liu et al. [8], where a drug is considered ineffective if its IC50
value is more than the maximum concentration used during screening. We downloaded SMILES
representations of the drugs from PubChem [43].

Table 7 shows the full dataset size used when training and testing the modles for both binary and
continuous IC50 values. Only cell lines that had IC50 values and both genomics and transcriptomics
cell line profiles were kept. Four drugs were removed when binarising IC50 values as they had
multiple maximum concentration values. We note that not all drug cell line pairs have IC50 values in
GDSC2. Thus, we also removed drug cell line pairs without IC50 values, hence why we have less
than 163, 624 and 160, 008 drug cell line pairs for continuous and binary IC50 values respectively.

Table 7: Dataset size for binary and continuous IC50 values. An %80, %10, %10 train validation test
split was used. For drug-stratified binary cancer blind splitting the number of drugs we tested was
147, 153, 148 for train test split 1, 2, and 3 respectively, due to AUC and AUPR not being defined for
the drugs removed.

Number of
cell lines

Number of
drugs

Number of
drug cell line pairs

Continuous 904 181 147,713
Binary 904 177 144,101

Table 8: Number of positive and negative examples after data splitting for binary response values.
S1 Negative S1 Positive S2 Negative S2 Positive S3 Negative S3 Positive

train 79359 35910 79448 35898 79439 36013
test 10637 4047 10015 4394 10151 4230
val 9339 4809 9872 4474 9745 4523

E Details of published models used

For genomics cell line profiles we used genomics data from the genomics of drug sensitivity in
cancer database (GDSC) [2]. Genomics profiles that included, genetic mutation and copy number
variations information, were used to recreate tCNNS and GraphDRP. For transcriptomic profiles, we
used transcriptomics data from GDSC. Transcriptomics profiles were used to recreate DeepTTA. We
only kept cell lines that were in all three of the above datasets. Thus, 904 cell lines were used in the
following analysis.

The omics data in GDSC has already undergone standard preprocessing. Where the transcriptomics
data is preprocessed using the robust multi-array analysis algorithm (RMA) [44]. This is the same
data that was used in DeepTTA. Similarly, we directly used the binary genomics data from GDSC as
was done in tCNNS and GraphDRP. Furthermore, the IC50 values provided by GDSC are natural
logarithm transformed.

SMILES (simplified molecular-input line-entry system) and molecular graphs were used as the
drug representations with chemical properties. SMILES were used in the tCNNS and DeepTTA
models, while molecular graphs were used in the GraphDRP model. In a SMILES representa-
tion, each molecule is represented as a string of characters. In molecular graph representations of
molecules/drugs, each node represents an atom in the molecule and each edge represents a bond
between the atoms. Only drugs with SMILES strings were kept, leading to us using 181 drugs for the
following analysis.

When retraining and testing these models with binary response values we used binary cross entropy
for the loss function.
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F Hardwear

Models were trained using nvidia A100 GPUs, each model was trained on one GPU.

G Model hyperparameters

The model hyperparameters for BinaryET are shown in table 9.

For the marker benchmark, 3 dense hidden layers were for the MLP with 4096 neurons per layer,
with ReLU activation, followed by an output dense layer with one node.

Table 9: BinaryET hyperparameters the first 6 parameters refer to the drug branch (Transformer
encoder layers).

Hyperparameters Value

Nb transformer (TF) encoder layers 8
Nb attetion heads 8
TF feed forward dim 2048
Embedding dimension 128
Dropout 0.01
layer_norm_eps 1e-05
Activation relu
Nb classifier nodes layer 1 1024
Nb classifier nodes layer 2 256
Nb classifier nodes layer 3 64
Loss binary cross entropy
Batch size 128
Peak learning rate 5e-05
Optimiser AdamW
learning rate scheduler cosine with warmup
epochs 100
Nb warm up learing rate steps 384

H Cancer blind testing

This section shows the tables for additional cancer blind testing with continuous response values.
Table 10 shows two additional train test splits for tCNNS, GraphDRP, DeepTTA-DB and DeepTTA.

Table 12 shows the results for tCNNS and GraphDRP but by replacing the genomics cell line profiles
with transcriptomics profiles, (tCNNS_Tran an GraphDRP_Tran). It also shows these results for
tCNNS_Tran-DB and GraphDRP_Tran-DB, removing the drug branch from the respective models.
Where these tables show that adding transcriptomics cell line profiles causes the models to outperform
the drug average benchmark. Furthermore, removing the drug features does not decrease performance.

Table 13 shows the results for first scaling the truth values to be between zero and one using the
same method as in [13] before re-training and testing the models. The results agree with using the
original method of pre-processing the repose values (log scaling). Specifically, they show that the
null drug average benchmark outperforms the models that use genomics profiles and the models that
use transcriptomics features outperform the benchmark. Furthermore, removing the drug features
does not decrease the performance of DeepTTA.
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Table 10: Metrics for cancer blind testing for the second and thrid test train split.

Split Method MSE Pear
CL strat

R2
CL strat

Pear
drug strat

R2
drug strat

MSE
drug strat

2

tCNNS 2.4 ± 0.005 0.864 ± 0.002 0.620 ± 0.004 0.21 ± 0.04 -0.12 ± 0.03 2.45 ± 0.03
GraphDRP 2.45 ± 0.05 0.867 ± 0.002 0.61 ± 0.01 0.24 ± 0.01 -0.19 ± 0.05 2.48 ± 0.04
Drug Average 2.303 0.877 0.634 N/A -0.010 2.334
DeepTTA-DB 1.71 ± 0.02 0.898 ± 0.001 0.725 ± 0.004 0.507 ± 0.007 0.23 ± 0.01 1.73 ± 0.03
DeepTTA 1.72 ± 0.02 0.8991 ± 0.0008 0.720 ± 0.003 0.514 ± 0.006 0.236 ± 0.006 1.74 ± 0.02

3

tCNNS 2.7 ± 0.1 0.865 ± 0.003 0.57 ± 0.02 0.15 ± 0.02 -0.17 ± 0.03 2.69 ± 0.07
GraphDRP 2.7 ± 0.2 0.872 ± 0.002 0.56 ± 0.03 0.22 ± 0.02 -0.17 ± 0.09 2.7 ± 0.1
Drug Average 2.546 0.877 0.602 N/A -0.018 2.505
DeepTTA-DB 1.679 ± 0.009 0.8982 ± 0.0007 0.7303 ± 0.0009 0.573 ± 0.005 0.312 ± 0.004 1.676 ± 0.008
DeepTTA 1.70 ± 0.01 0.897 ± 0.001 0.724 ± 0.003 0.573 ± 0.004 0.305 ± 0.008 1.70 ± 0.01

Table 11: Cancer blind testing with no stratification (apart from last col MSE drug strat, which is
only marginally different from the non-stratfied metric due to a different number of cell lines being
evaluated for each drug caused by missing truth values). For three train test splits

Train test split Method MSE Pear R2 MSE
drug strat

1

tCNNs 2.42 ± 0.04 0.819 ± 0.004 0.660 ± 0.006 2.44 ± 0.03
GraphDRP 2.42 ± 0.08 0.827 ± 0.003 0.66 ± 0.01 2.43 ± 0.08
Drug Average 2.191 0.832 0.692 2.189
DeepTTA-DB 1.57 ± 0.01 0.883 ± 0.001 0.779 ± 0.002 1.57 ± 0.01
DeepTTA 1.57 ± 0.02 0.883 ± 0.002 0.779 ± 0.003 1.57 ± 0.02

2

tCNNs 2.412 ± 0.009 0.818 ± 0.002 0.664 ± 0.001 2.45 ± 0.03
GraphDRP 2.47 ± 0.05 0.821 ± 0.002 0.657 ± 0.007 2.48 ± 0.04
Drug Average 2.312 0.824 0.678 2.334
DeepTTA-DB 1.72 ± 0.02 0.873 ± 0.001 0.760 ± 0.003 1.73 ± 0.03
DeepTTA 1.73 ± 0.02 0.874 ± 0.001 0.759 ± 0.002 1.74 ± 0.02

3

tCNNs 2.7 ± 0.1 0.801 ± 0.006 0.64 ± 0.01 2.69 ± 0.07
GraphDRP 2.7 ± 0.1 0.815 ± 0.003 0.64 ± 0.02 2.7 ± 0.1
Drug Average 2.523 0.812 0.658 2.505
DeepTTA-DB 1.674 ± 0.009 0.880 ± 0.001 0.773 ± 0.001 1.676 ± 0.008
DeepTTA 1.70 ± 0.01 0.8790 ± 0.0008 0.770 ± 0.002 1.70 ± 0.01
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Table 12: Cancer blind cell line stratified metrics for tCNNS and GraphDRP but by replacing the
genomics cell line profiles with transcriptomics profiles, (tCNNS_Tran an GraphDRP_Tran) and for
CNNS_Tran-DB and GraphDRP_Tran-DB, removing the drug branch from the respective models

Train test split Method MSE Pear R2

1

tCNNS 2.41 ± 0.04 0.870 ± 0.003 0.61 ± 0.01
GraphDRP 2.41 ± 0.08 0.872 ± 0.004 0.60 ± 0.01
Drug Average 2.190 0.884 0.640
tCNNS_Tran 1.83 ± 0.05 0.8865 ± 0.0005 0.698 ± 0.008
tCNNS_Tran-DB 1.78 ± 0.04 0.8919 ± 0.0009 0.702 ± 0.007
GraphDRP_Tran 1.77 ± 0.02 0.898 ± 0.002 0.714 ± 0.004
GraphDRP_Tran-DB 1.56 ± 0.01 0.9062 ± 0.0008 0.743 ± 0.003

2

tCNNS 2.4 ± 0.005 0.864 ± 0.002 0.620 ± 0.004
GraphDRP 2.45 ± 0.05 0.867 ± 0.002 0.61 ± 0.01
Drug Average 2.303 0.877 0.634
tCNNS_Tran 2.05 ± 0.05 0.875 ± 0.003 0.67 ± 0.01
tCNNS_Tran-DB 1.94 ± 0.04 0.884 ± 0.001 0.685 ± 0.007
GraphDRP_Tran 1.87 ± 0.06 0.898 ± 0.001 0.70 ± 0.01
GraphDRP_Tran-DB 1.71 ± 0.03 0.9001 ± 0.0007 0.723 ± 0.004

3

tCNNS 2.7 ± 0.1 0.865 ± 0.003 0.57 ± 0.02
GraphDRP 2.7 ± 0.2 0.872 ± 0.002 0.56 ± 0.03
Drug Average 2.546 0.877 0.602
tCNNS_Tran 2.07 ± 0.06 0.873 ± 0.002 0.67 ± 0.01
tCNNS_Tran-DB 2.00 ± 0.02 0.883 ± 0.001 0.676 ± 0.005
GraphDRP_Tran 1.93 ± 0.07 0.892 ± 0.003 0.69 ± 0.01
GraphDRP_Tran-DB 1.75 ± 0.01 0.8968 ± 0.0006 0.718 ± 0.003

Table 13: Cell line stratified cancer blind testing for models trained and tested with response values
scaled between zero and one. The drug average benchmark outperforms the models that use genomics
profiles and the models that use transcriptomics features outperform the benchmark. Furthermore,
removing the drug features does not decrease the performance of DeepTTA.

MAE cl strat Pear cl strat R2 cl strat Pear drug strat R2 drug strat

tCNNS 0.0291 ± 0.0001 0.861 ± 0.005 0.578 ± 0.003 0.152 ± 0.004 -0.24 ± 0.01
GraphDRP 0.0293 ± 0.0001 0.86 ± 0.01 0.59 ± 0.02 0.161 ± 0.008 -0.25 ± 0.03
Drug Average 0.027 0.885 0.642 N/A -0.013
DeepTTA-DB 0.0225 ± 0.0002 0.906 ± 0.002 0.7503 ± 0.0009 0.538 ± 0.002 0.274 ± 0.004
DeepTTA 0.0227 ± 0.0001 0.905 ± 0.001 0.746 ± 0.005 0.524 ± 0.009 0.26 ± 0.01
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I Mixed set testing

This section shows the tables for mixed set testing for additional train test splits for continuous
drug response values. Note that all mixed set testing metrics calculated here were non stratified, so
calculated once for all model predictions.

This section also shows the results for the marker versions of each of the literature models in Table
15. Here we removed the drug branches of the models and instead simply fed in a one-hot encoded
marker representation of the drugs as we did when creating DeepTTA-DB. We also replaced the
omics inputs of the models with a one-hot encoded marker representation before re-training and
testing the models.

Table 14: Non stratified mixed set testing for train test splits 2 and 3.
Train test split Method MSE Pear R2

2

tCNNS 1.25 ± 0.01 0.9114 ± 0.0007 0.830 ± 0.001
GraphDRP 1.08 ± 0.02 0.9312 ± 0.0006 0.854 ± 0.003
DeepTTA 0.973 ± 0.009 0.9317 ± 0.0008 0.868 ± 0.001
marker benchmark 0.890 ± 0.001 0.9375 ± 0.0001 0.8789 ± 0.0002

3

tCNNS 1.31 ± 0.01 0.9060 ± 0.0007 0.819 ± 0.002
GraphDRP 1.047 ± 0.009 0.93 ± 0.0008 0.856 ± 0.001
DeepTTA 1.00 ± 0.01 0.9290 ± 0.0007 0.863 ± 0.001
marker benchmark 0.904 ± 0.006 0.9359 ± 0.0005 0.8757 ± 0.0009

Table 15: mixed set testing with maker inputs to the literature models using the original dataset. The
table shows omics and drug features do not improve model performance. Bold gives best metric by
model type.

tCNNS Marker tCNNS DeepTTA Marker DeepTTA GraphDRP Marker GraphDRP

MSE 1.256 ± 0.004 1.172 ± 0.009 0.98 ± 0.01 0.937 ± 0.004 1.06 ± 0.04 0.849 ± 0.003
Pear 0.9104 ± 0.0003 0.9167 ± 0.0005 0.931 ± 0.001 0.9341 ± 0.0003 0.930 ± 0.001 0.9404 ± 0.0003
R2 0.8283 ± 0.0005 0.840 ± 0.001 0.866 ± 0.002 0.8719 ± 0.0005 0.856 ± 0.005 0.8840 ± 0.0004

J Drug blind testing

This section shows the tables for non stratified drug blind testing for all three train test splits.

Table 16: Metrics for non-stratified drug blind testing for three train test splits. The metrics in bold
are better than, or have bounds better than, the CL average benchmark.

Train test split Method MSE Pear R2

GraphDRP 11.0 ± 3 -0.0 ± 0.2 -0.5 ± 0.4

1 DeepTTA 7.5 ± 0.5 0.28 ± 0.07 -0.04 ± 0.07
tCNNs 7.0 ± 1 0.3 ± 0.1 0.0 ± 0.2
CL Average 6.493 0.318 0.093

GraphDRP 6.0 ± 1 0.3 ± 0.2 -0.1 ± 0.2

2 DeepTTA 5.6 ± 0.2 0.42 ± 0.03 -0.02 ± 0.04
tCNNs 6.4 ± 0.8 0.3 ± 0.1 -0.2 ± 0.2
CL Average 4.999 0.348 0.090

GraphDRP 11.2 ± 0.8 0.06 ± 0.08 -0.27 ± 0.09

3 DeepTTA 7.7 ± 0.6 0.47 ± 0.01 0.13 ± 0.07
tCNNs 6.7 ± 0.2 0.52 ± 0.04 0.24 ± 0.02
CL Average 8.113 0.288 0.082
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Table 17: Metrics for drug stratified drug blind testing for three train test splits. The metrics in bold
are better than, or have bounds better than, the CL average benchmark. Or better than zero for the
case of Pear where the CL average benchmark is undefined.

Train test split Method MSE Pear R2

1

GraphDRP 10.0 ± 3 0.552 ± 0.007 -4.0 ± 2
DeepTTA 7.2 ± 0.5 0.55 ± 0.03 -2.3 ± 0.3
tCNNs 7.0 ± 1 0.54 ± 0.03 -2.3 ± 0.6
CL Average 6.228 0.612 -2.154

2

GraphDRP 6.0 ± 1 0.54 ± 0.01 -2.4 ± 0.6
DeepTTA 5.4 ± 0.2 0.584 ± 0.009 -2.4 ± 0.1
tCNNs 6.0 ± 1 0.57 ± 0.01 -2.6 ± 0.5
CL Average 4.988 0.627 -2.180

3

GraphDRP 10.5 ± 0.6 0.58 ± 0.04 -4.9 ± 0.5
DeepTTA 8.0 ± 1 0.61 ± 0.01 -3.2 ± 0.5
tCNNs 6.3 ± 0.2 0.621 ± 0.001 -1.9 ± 0.2
CL Average 7.633 0.659 -3.279

Table 18: Metrics for cell line stratified drug blind testing for three train test splits. The metrics in
bold are better than, or have bounds better than, the CL average benchmark.

Train test split Method MSE Pear R2

1

GraphDRP 11.0 ± 3 -0.2 ± 0.2 -0.7 ± 0.5
DeepTTA 7.5 ± 0.5 0.1 ± 0.1 -0.18 ± 0.09
tCNNs 7.0 ± 1 0.2 ± 0.2 -0.1 ± 0.2
CL Average 6.503 N/A -0.023

2

GraphDRP 6.0 ± 1 0.1 ± 0.2 -0.3 ± 0.3
DeepTTA 5.6 ± 0.2 0.30 ± 0.04 -0.19 ± 0.04
tCNNs 6.4 ± 0.8 0.1 ± 0.1 -0.4 ± 0.2
CL Average 5.001 N/A -0.057

3

GraphDRP 11.2 ± 0.8 -0.1 ± 0.1 -0.4 ± 0.1
DeepTTA 7.7 ± 0.6 0.407 ± 0.008 0.04 ± 0.08
tCNNs 6.7 ± 0.2 0.47 ± 0.06 0.17 ± 0.03
CL Average 8.125 N/A -0.010

K Binary cancer blind testing

This section shows the tables for cancer blind testing for binary response values.
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Table 19: Drug and cell line (CL) stratified cancer blind testing for all three train test splits, for binary
response values.

Train test Split Method Drug Strat
AUC

Drug Strat
AUPR

CL Strat
AUC

CL Strat
AUPR

1

Drug Average 0.500 0.320 0.916 0.801
tCNNS 0.598 ± 0.008 0.40 ± 0.01 0.905 ± 0.001 0.771 ± 0.005
GraphDRP 0.6173 ± 0.0009 0.421 ± 0.007 0.911 ± 0.001 0.787 ± 0.002
DeepTTA-DB 0.739 ± 0.006 0.53 ± 0.01 0.924 ± 0.001 0.812 ± 0.002
DeepTTA 0.747 ± 0.008 0.53 ± 0.02 0.926 ± 0.002 0.814 ± 0.003
BinaryET-DB 0.76 ± 0.01 0.55 ± 0.02 0.928 ± 0.001 0.817 ± 0.001
BinaryET 0.771 ± 0.003 0.569 ± 0.004 0.9305 ± 0.0006 0.822 ± 0.002

2

Drug Average 0.500 0.352 0.915 0.819
tCNNS 0.63 ± 0.01 0.456 ± 0.002 0.9129 ± 0.0009 0.813 ± 0.002
GraphDRP 0.631 ± 0.008 0.46 ± 0.02 0.912 ± 0.002 0.814 ± 0.004
DeepTTA-DB 0.777 ± 0.009 0.60 ± 0.02 0.931 ± 0.003 0.840 ± 0.005
DeepTTA 0.785 ± 0.002 0.620 ± 0.008 0.934 ± 0.002 0.845 ± 0.003
BinaryET-DB 0.781 ± 0.009 0.60 ± 0.01 0.931 ± 0.003 0.839 ± 0.006
BinaryET 0.79 ± 0.01 0.61 ± 0.02 0.934 ± 0.003 0.846 ± 0.006

3

Drug Average 0.500 0.339 0.917 0.817
tCNNS 0.588 ± 0.008 0.427 ± 0.005 0.9055 ± 0.0008 0.785 ± 0.004
GraphDRP 0.599 ± 0.008 0.43 ± 0.01 0.9109 ± 0.0009 0.803 ± 0.001
DeepTTA-DB 0.785 ± 0.007 0.6 ± 0.008 0.9308 ± 0.0007 0.8390 ± 0.0005
DeepTTA 0.789 ± 0.005 0.601 ± 0.003 0.932 ± 0.001 0.842 ± 0.002
BinaryET-DB 0.795 ± 0.003 0.608 ± 0.002 0.933 ± 0.001 0.841 ± 0.004
BinaryET 0.798 ± 0.003 0.613 ± 0.005 0.9348 ± 0.0006 0.844 ± 0.001

Table 20: Non stratified cancer blind testing
Train test split Method AUC AUPR

1

Drug Average 0.884 0.746
tCNNS 0.878 ± 0.001 0.735 ± 0.004
GraphDRP 0.8830 ± 0.0009 0.7468 ± 0.0009
DeepTTA 0.9101 ± 0.0008 0.799 ± 0.002
BinaryET 0.9158 ± 0.0006 0.8084 ± 0.0002

2

Drug Average 0.877 0.761
tCNNS 0.879 ± 0.003 0.766 ± 0.001
GraphDRP 0.881 ± 0.002 0.774 ± 0.003
DeepTTA 0.920 ± 0.002 0.841 ± 0.004
BinaryET 0.919 ± 0.003 0.840 ± 0.005

3

Drug Average 0.886 0.765
tCNNS 0.879 ± 0.001 0.757 ± 0.003
GraphDRP 0.8829 ± 0.0006 0.765 ± 0.002
DeepTTA 0.9212 ± 0.0008 0.837 ± 0.001
BinaryET 0.9239 ± 0.0005 0.840 ± 0.001
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Table 21: Ablation study for DeepTTA for multiple split types and testing type, the table shows that
removing the drug branch decreases performance. For given split and testing time the bold metric
gives the best performance between DeepTTA and DeepTTA-DB.

Strat type Train test
split

DeepTTA
AUC

DeepTTA-DB
AUC

DeepTTA
AUPR

DeepTTA-DB
AUC

Drug strat
1 0.747 ± 0.008 0.739 ± 0.006 0.53 ± 0.02 0.53 ± 0.01
2 0.785 ± 0.002 0.777 ± 0.009 0.620 ± 0.008 0.60 ± 0.02
3 0.789 ± 0.005 0.785 ± 0.007 0.601 ± 0.003 0.6 ± 0.008

CL strat
1 0.926 ± 0.002 0.924 ± 0.001 0.814 ± 0.003 0.812 ± 0.002
2 0.934 ± 0.002 0.931 ± 0.003 0.845 ± 0.003 0.840 ± 0.005
3 0.932 ± 0.001 0.9308 ± 0.0007 0.842 ± 0.002 0.8390 ± 0.0005

No strat
1 0.9101 ± 0.0008 0.909 ± 0.002 0.799 ± 0.002 0.799 ± 0.003
2 0.920 ± 0.002 0.917 ± 0.003 0.841 ± 0.004 0.836 ± 0.005
3 0.9212 ± 0.0008 0.9196 ± 0.0009 0.837 ± 0.001 0.834 ± 0.001

L Binary mixed set testing

This section shows the tables for mixed set testing for binary response values.

Table 22: Mixed set testing for train test split 2 and 3 with binary response values.
Methods AUC AUPR

Marker 0.9286 ± 0.0003 0.8691 ± 0.0005
tCNNS 0.9263 ± 0.0009 0.864 ± 0.002
GraphDRP 0.9354 ± 0.0004 0.880 ± 0.002
DeepTTA 0.9406 ± 0.0009 0.891 ± 0.003
BinaryET-DB 0.9451 ± 0.0005 0.8975 ± 0.0009
BinaryET 0.946 ± 0.001 0.9 ± 0.002
Marker 0.9284 ± 0.0001 0.8648 ± 0.0003
tCNNS 0.9244 ± 0.0006 0.8576 ± 0.0007
GraphDRP 0.9339 ± 0.0005 0.875 ± 0.001
DeepTTA 0.9435 ± 0.0002 0.8923 ± 0.0002
BinaryET-DB 0.9455 ± 0.0007 0.896 ± 0.001
BinaryET 0.9466 ± 0.0007 0.898 ± 0.001
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