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Abstract. Fluorescence microscopy is an indispensable tool for biolog-
ical discovery but image quality is constrained by desired spatial and
temporal resolution, sample sensitivity, and other factors. Computational
denoising methods can bypass imaging constraints and improve signal-to-
noise ratio in images. However, current state of the art methods are com-
monly trained in a supervised manner, requiring paired noisy and clean
images, limiting their application across diverse datasets. An alternative
class of denoising models can be trained in a self-supervised manner,
assuming independent noise across samples but are unable to generalize
from available unpaired clean images. A method that can be trained with-
out paired data and can use information from available unpaired high-
quality images would address both weaknesses. Here, we present Baikal,
a first attempt to formulate such a framework using Denoising Diffusion
Probabilistic Models (DDPM) for fluorescence microscopy images. We
first train a DDPM backbone in an unconditional manner to learn gen-
erative priors over complex morphologies in microscopy images. We then
apply various conditioning strategies to sample from the trained model
and propose an optimal strategy to denoise the desired image. Exten-
sive quantitative comparisons demonstrate better performance of Baikal
over state of the art self-supervised methods across multiple datasets. We
highlight the advantage of generative priors learnt by DDPMs in denois-
ing complex Flywing morphologies where other methods fail. Overall,
our DDPM based denoising framework presents a new class of denoising
methods for fluorescence microscopy datasets that achieve good perfor-
mance without collection of paired high-quality images. Github repo:
https://github.com/scelesticsiva/denoising/tree/main
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Denoising Diffusion Probabilistic Model on Clean Images
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Fig. 1. Overview of the proposed method. Training stage - a DDPM backbone is
trained using only unpaired high quality images. Inference Stage - image is denoised
by sampling from the trained backbone. Three strategies are explored to guide the
sampling process namely Forward-Backward, Mixing and Repaint.

1 Introduction

Fluorescence microscopy is a widely used technique to study biological phe-
nomena. Advancements in optical techniques [7] and development of better flu-
orescent sensors have pushed the limits of image collection. However de-
sired imaging conditions like spatio-temporal resolution, duration for time-lapse
imaging, phototoxicity and photobleaching for sensitive samples etc. constrain
imaging parameters such as laser power, exposure time and frame-rate leading
to acquisition of noisy images .

Several computational denoising methods have been developed for both sin-
gle images and videos
@ that can bypass imaging constraints and generate clean images.
These methods fall into one of the two categories: 1) paired-denoising methods
like CARE offer best denoising performance, however these methods require
large paired datasets of noisy and high quality images for training that are ex-
tremely time-consuming to collect. 2) self-supervised denoising methods such as
Noise2Noise (N2N) [18], Noise2Void (N2V) [15], Noise2Self [1] etc. can be trained
using only noisy images. However, these methods assume pixel-wise indepen-
dent noise, achieving worse performance in situations where spatially correlated
(structured) noise is present as shown in . To account for structured noise,
modifications of self-supervised denoising methods have been proposed such as
StructN2V , SSID etc. Here, we consider a common scenario where an
unpaired dataset of clean images is available but not paired noisy-clean data.
Unpaired clean images may provide important morphological priors to denoising
methods in extreme noise scenarios. Previous methods are not designed to take
advantage of such unpaired images.
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Generative Adversarial Network (GAN) based approaches have been pro-
posed for fluorescence microscopy image restoration using unpaired datasets
[21,)29]. Howvwer GAN models suffer from instability during training thus lead-
ing to lower adoption among community. Denoising Diffusion Probabilistic Mod-
els (DDPMs) [13] have recently demonstrated superior performance over GANs
in learning generative distribution of natural images and high quality image-
synthesis [9,/35[36]. But suitability and applicability of DDPMs for fluorescence
microscopy denoising task has not been shown yet.

Our method, which we term Baikal, leverages a Denoising Diffusion Proba-
bilistic Model (DDPM) [13] for learning generative priors from unpaired clean
images. DDPMs have been applied for denoising data from several modalities
such as PET, MRI, CT ([11}[23}[38]|43]. However fluorescence microscopy data
generation and noise characteristics differ significantly from these modalities [2].
Thus it is not clear whether DDPMs would work for denoising fluorescence mi-
croscopy images. We explore this question in this work by leveraging DDPM in a
two step framework. First a diffusion model is trained only on clean images. Next,
conditional sampling is used to generate clean predictions of the noisy images.
In this work, we empirically evaluate several conditional samplers on multiple
open-source datasets [42]. The proposed framework has several advantages over
previous methods - 1) it does not require paired data as paired-denoising meth-
ods for training, 2) the DDPM backbone learns important morphological priors
from unpaired clean images to guide denoising, 3) it is widely applicable across
datasets with varying noise properties. Our contributions are as follows,

— We demonstrate the first application of Diffusion Models for denoising fluo-
rescence microscopy images.

— We systematically evaluate the applicability of several conditional sampling
strategies designed for inpainting tasks for denoising and suggest an optimal
strategy for fluorescence microscopy datasets.

— We evaluate whether outputs from self-supervised methods can better guide
conditional samplers.

2 Methods

Our goal is to generate a clean image © € X given a noisy fluorescence image y €
Y. Self-supervised methods only use ) to generate clean images. Paired-denoising
methods use paired clean and noisy acquisitions { X', Y} to generate clean images.
Here, we propose a two step method for denoising flourescence microscopy images
when unpaired clean and noisy images are available (Fig. [1)). First a generative
backbone is trained to model clean data. Next, adapting several samplers from
the inpainting literature [24] we evaluate them on three datasets of varying
morphological properties. In addition, if self-supervised predictions are available
for noisy images, we evaluate their utility on the performance of samplers.
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Fig. 2. Comparison of random samples from a) diffusion model trained on clean images
and b) real clean images for Planaria, Flywing and Tribolium datasets. Similarity of
images generated by diffusion model to clean images highlight their capability to learn
data distribution
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2.1 Generative backbone on clean images

Our generative backbone is trained as a DDPM [13] on unpaired clean images X.
DDPMs are generative latent variable models that learn a model distribution
pe(x) that approximate data distribution ¢(x). The forward diffusion process
applies Gaussian noise to the images until they become indistinguishable from
random Gaussian noise for T steps &g — 1 — x29, ..., 7. Variance schedule is

given by 1, ..., Br.

q(x|xe—1) := N(fﬂt; V1= Bxi_1, B d) (1)

The reverse process goes in the opposite direction to generate images from ran-
dom mnoise xr — ®Tr_; — TT_2,..., 29 Where xp ~ N(0,I). py denotes the
neural network trained to denoise x; at every time step t. Variances of the re-
verse process are also learned unless otherwise specified.

po(xi—1]s) == N (21—1;5 pro(4, 1), Xo (x4, 1)) (2)

2.2 Conditional samplers as denoisers

Once the generative backbone is trained on clean images, we denoise an image
Yo € Y by generating a (predicted) clean image o conditioned on yo. We
adapt conditional sampling methods proposed in the inpainting literature [24]
and evaluate their performance in the context of denoising fluorescence images.
All conditional samplers in this work first forward diffuse the noisy image yo to
arbitrary time step ¢ utilizing the closed form expression for forward process as

follows,

q(yelyo) = N (ye; Varyo, (1 — o I) (3)
where a; := 1 — §; and a; := szl a,. To evaluate N2V predictions for their
utility in our proposed denoising method, we replace yo with y{'2" and its corre-

sponding forward diffused as yV2V. Once noisy images yo are forward diffused,

different conditional sampling methods differ in the inputs to pg (x4, t).

Forward-Backward (FB): Here, first the noisy image yo is forward diffused
to ¢’ steps such that only the underlying signal is preserved. Next, the reverse
process is run by setting &y = yy (only at ¢ = ') to generate denoised x( from
noisy yo. The reverse step is given as follows,

po(@i—1]ze) = N(@i—1; po(20, 1), Xo(4,1)) (4)

Intuitively, since the DDPM is trained only on clean images, at the end of the
reverse process, our hope is that the generated sample will approximate the
denoised image (i.e. g ~ x). However one disadvantage of this sampler is that
the original signal destroyed during forward diffusion is lost forever and the
network might not be able to recover all the components of the clean image when

running the reverse process. To run on N2V predictions, we replace x4 = y;’y 2V,
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Mixing: In forward-backward sampler the generation process at each time step
(except for t = t') is independent of the noisy image yo (i.e.) each generative step
is dependent only on the previously generated image. Additionally, information
once destroyed is not recoverable in forward-backward denoising. Thus to feed
the network all the information that was present in the original noisy image at
every time step and to further guide the generation process, we compute the
weighted average of the reverse sample x; and the forward diffused noisy image
y; and treat them as inputs to pg.

to = po((1 — we)xs + wiye, t) (5)

Since higher weights for the noisy image in the later stages of the generative
process could yield noisy generations, we monotonically decrease the weights w;
during the reverse process (i.e) wy > w;—1. To run on N2V predictions, we replace
y: = y¥?V when taking the weighted combination, but use forward noised yq as
y; only for t = t/. A disadvantage of this sampler is that, as we re-introduce noisy
image at every time step by taking weighted combination, it replaces denoised
pixels by noisy pixels reverting denoising.

Repaint: Although weighted combinations of y; and DDPM outputs at each
time step x; guide the generation process, some of the denoised pixels in x; are
replaced with noisy pixels, thus reverting the denoising process. Additionally,
mixing once at each time step may not be enough to ensure semantic consistency.
This is because the mixing input y; at each time step is independent of the
DDPM output x; at that time step. Thus, although the DDPM tries to predict
the denoised output at the next time step using both y; and x;, it may not be
able to correct any inconsistency in the previous step. Thus, to ensure semantic
consistency, similar to Repaint [24], we repeat the reverse step multiple times.
Since pg is trained as a denoiser, we use it for maintaining semantic consistency.
Concretely, starting at a time step ¢, we run the the generation process for U
steps, while mixing x; and y; at each time step, to generate x; ;. Next, x;_y is
taken as input to the time step ¢ and generation process is repeated again several
times (See Algorithm 1). Our strategy is different from the original Repaint, in
that, empirically we found repainting every step yielded worse results compared
to repainting in intervals. Additionally, we stop mixing in the later stages of
generation to avoid replacing denoised pixels by noisy pixels resulting in better
results as shown in Fig[d|(right).

3 Experiments

3.1 Dataset & Training

We evaluate our framework on three open source fluorescence microscopy datasets
[42] with distinct morphological labelling to highlight the generalizability of
Baikal. These include - 1) nuclei labeled embryos of Tribolium castaneum, 2)
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Algorithm 1 Repaint
Input: noisy image yo, starting time step IV, mixing stop time step n, mixing weight
scheduler f, repaint blocks size U, repaint repeats R
QOutput: denoised output xo
L.y~ ~ q(y~|yo) using Eq. (3)
2.z =yn,t'=N,t=N
3. while ¢/ >=0do

4 for r=1,..., R do

4 Ty = Xy

5. for t =t',...,max(t' — U,0) do

6. xi—1 ~ po(xi—1|x:) using Eq. (4)

7 ift>=n

8. Ye—1 ~ q(Yi—1|yo) using Eq. (3)
10. i1 = (1 —we)xe1 + weye—1
11. end if

12. end for

14. end for

15. t'=t-U

nuclei labeled embryos of the planarian S. mediterranea and 3) boundary la-
belled eplithelia of the fruit fly Drosophila Melanogaster. The datasets provide
noisy and high quality images that were acquired at low and high laser powers,
respectively. The test sets provided in the datasets were not normalized as the
train set. Thus, for fair evaluation, we split the provided train sets into train,
eval and test sets in the ratio 80 : 10 : 10. We provide all qualitative and quanti-
tative results on test splits. We train diffusion backbone using the DifFace [45]
codebaseﬂ on clean images from the train set.

Planaria and Tribolium datasets include noisy and clean 3D volumes, thus
for these datasets we train the diffusion backbone treating each 2D z-plane as
individual image. Random z-plane images sampled from trained diffusion model
for these datasets are shown in Fig[2] During inference, each individual z-plane is
denoised independently by the trained diffusion model for these datasets. In com-
parison, Drosophila dataset consisted of 3D noisy images and 2D max-projected
clean images. Thus for Drosophila dataset, we trained diffusion model on max-
projected 2D clean images. Random max-projected images sampled from trained
diffusion model for Drosophila dataset are shown in Fig[2] During inference on
Drosophila dataset, each z-plane is denoised individually using the trained model.
Subsequently, denoised 3D stack is max-projected for metrics evaluation. Thus,
our framework does not require training a separate projector network as done
previously [42].

Images sampled from diffusion model look perceptually similar to the clean
images from corresponding datasets Figl2] thus highlighting the superior capa-
bility of diffusion models to learn data-distribution. Such information learnt by

* https://github.com/zsyOAOA /DifFace
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Datasets Planaria Tribolium Flywing
Methods SSIM MSE PSNR SSIM MSE PSNR SSIM MSE PSNR
Noise 0.153 0.137 8.95 0.160 0.150 9.11 0.121 0.587 2.38
N2V |15] 0.296 0.055 15.58 0.208 0.074 11.55 0.174 0.576 2.46
SSID [19] 0.27 0.073 15.76 0.257 0.06 14.91 0.221 0.18 7.61

Forward Backward - Noise 0.339 0.049 16.71 0.260 0.052 14.71 0.260 0.209 6.94
Forward Backward - N2V 0.327 0.055 16.78 0.199 0.065 12.29 0.102 0.572 2.49

Mixing - Noise 0.317 0.056 14.25 0.229 0.058 13.68 0.241 0.220 6.69
Mixing - N2V 0.333 0.055 16.74 0.237 0.054 13.81 0.175 0.393 4.12
Repaint - Noise 0.386 0.050 17.55 0.458 0.028 19.47 0.290 0.190 7.38
Repaint - N2V 0.328 0.057 16.85 0.396 0.029 18.20 0.110 0.625 2.10
CARE™" [42] 0.488 0.034 19.08 0.638 0.019 22.69 0.175 0.221 7.25

Table 1. SSIM(1), MSE({) and PSNR(?1) metrics on test sets. “CARE is trained using
paired dataset.

the diffusion backbone can provide important cues during denoising in extreme
noise scenarios and is the key adavantage of our proposed method.

3.2 Quantitative results

We compare Baikal against state of the art methods for denoising fluorescence
microscopy images. These include self-supervised method N2V [15] and paired-
denoising method CARE [42]. We train both methods using author provided
code and hyperparameters on the same train sets as used for training diffusion
backbones. For the Tribolium dataset, we observed bad performance of N2V
due to correlated noise in the input images and therefore trained structN2V (3]
using a square mask of size 5x5 pixels around each masked pixel. For the Flywing
dataset, since only 2D clean images were available, we trained CARE on max-
projected noisy images without using a projector network as done previously [42].
We report SSIM [41], MSE and PSNR metrics to compare performance of all
methods. To be consistent with CARE, we evaluate metrics on 3D datasets by
first max-projecting them across the z-plane dimension.

We observe from Table[T] that a simple conditional sampler like Forward-
Backward achieves better performance than N2V across all three datasets signi-
fying the advantage of generative priors provided by the diffusion model. Surpris-
ingly, when N2V predictions were used as input to Forward-Backward sampler,
the performance drops. We hypothesize that this could be because N2V predic-
tions destroy underlying signal leading to sub-optimal generations. Furthermore,
we observe Repaint with mixing noisy image is the best conditional sampler
for all three datasets trailing only behind paired-denoising method CARE (see
Fig. N2V required manual tuning of the masks during training to work on
Tribolium images with correlated noise profiles. In addition, CARE required a
separate projector network [42] to be trained when 3D noisy and 2D clean images
in Flywing data are available. In contrast, our proposed approach does not re-
quire any modifications while training the diffusion models on different datasets
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Fig. 3. SSIM(1), MSE({) and PSNR/(1) metrics on test sets of Planaria (Top), Trbolium
(Middle) and Flywing (Bottom) datasets. *“CARE is trained using paired dataset.
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Fig. 4. Hyperparameter effects on SSIM accuracy evaluated on Planaria dataset. (Left
panel) Starting time step. (Center panel) Mixing stop time step and mixing weights
schedule. (Right panel) Mixing stop time step and number of repaint repeats.

spanning different noise profiles and projections thus making it easy to use in
practical settings.
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Noisy SSID

Fig. 5. Denoising performance of methods for Planaria dataset. Numbers indicate
SSIM w.r.t clean images. Arrows highlight examples of features preserved by our
method but missed by other methods.

3.3 Ablations

To observe the sensitivity of the hyperparameters in different samplers, we vary
critical parameters in each sampler and report the corresponding performance
achieved on Planaria dataset. As seen from Fig (left), increasing t' leads to
cleaner generations for forward-backward sampler and the performance plateaus
after 100 time steps. For mixing sampler Fig (middle), mixing at time steps
closer to t = 0 leads to decrease in performance as it re-introduces noisy pixels
in the denoised output thus reverting denoising. Further, the annealing sched-
ule for the weights minimally affects the results. In the Repaint sampler Fig[]
(right), increasing the number of repeats significantly improves the performance
supporting our argument that semantic consistency is improved by repainting.
Additionally best results are obtained when mixing is stopped after ¢ = 50 while
repainting continues.
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Fig. 6. Denoising performance of methods for Tribolium dataset. Numbers indicate
SSIM w.r.t clean images.

3.4 Qualitative results

Qualitative comparisons highlight more advantages of our proposed framework.
We observe N2V predictions contain horizontal artifacts in Planaria dataset
(Fig Supplementary Fig & Supplementary Fig@. Presence of such artifacts
in N2V denoised images have been reported before . Further, N2V suffers
from bad performance on the Tribolium dataset due to the presence of corre-
lated noise (Fig@, Supplementary Fig & Supplementary Fig even after tun-
ing the masking window size. Finally, it fails to recover cell boundaries in Flywing
data in extremely noisy regions (Figm , Supplementary Fig & Supplementary
Fig@. In contrast, the best conditional sampler performs well across all scenar-
ios. Notably in the Flywing dataset, Baikal is able to recover cell boundaries
in extremely noisy regions (highlighted by arrows in Fig. In addition, while
CARE predictions achieve high SSIM accuracy, qualitatively the cellular struc-
tures look extremely smooth, removing any subcellular features (Fig Fig@.
In comparison, Baikal is able to preserve such subcellular features (highlighted
by arrows).
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Fig. 7. Denoising performance of methods for Flywing dataset. Numbers indicate SSIM
w.r.t clean images. Arrows highlight examples of features preserved by our method but
missed by other methods.

4 Conclusion

We demonstrate for the first time, to the best of our knowledge, application of
Diffusion Models for denoising fluorescence microscopy images without needing
paired training data. Baikal opens up future avenues for tackling other common
tasks in fluorescence microscopy like de-blurring, isotropic reconstruction and
super-resolution.
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Fig. 1. Qualitative examples comparing performance of diffusion model based denois-
ing strategies - Forward-Backward, Mixing, and Repainting. Sample predictions for
Planaria, SSIM in brackets. (Top left panel) Noisy and Clean images. (Bottom left
panel) N2V and CARE predictions. (Right panel) Conditional diffusion denoising
using noisy image and N2V prediction as inputs.
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Fig. 2. Qualitative examples comparing performance of diffusion model based denois-
ing strategies - Forward-Backward, Mixing, and Repainting. Sample predictions for
Tribolium, SSIM in brackets. (Panels are same as Supplementary Fig.?7)
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Fig. 3. Qualitative examples comparing performance of diffusion model based denois-
ing strategies - Forward-Backward, Mixing, and Repainting. Sample predictions for
Flywing, SSIM in brackets. (Panels are same as Supplementary Fig.??)
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Fig. 4. Additional examples of denoising performance of methods for Planaria dataset.
Numbers indicate SSIM w.r.t clean images.
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Fig. 5. Additional examples of denoising performance of methods for Tribolium
dataset. Numbers indicate SSIM w.r.t clean images.
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Fig. 6. Additional examples of denoising performance of methods for Flywing dataset.
Numbers indicate SSIM w.r.t clean images.
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