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ABSTRACT

Recent studies have shown that large language models (LLMs) can accurately
predict neural activity measured using electrocorticography (ECoG) during nat-
ural language processing. To predict word-by-word neural activity, most prior
work has estimated and evaluated encoding models within each electrode and
subject—without evaluating how these models generalize across individual brains.
In this paper, we analyze neural responses in 8 subjects while they listened to
the same 30-minute podcast episode. We use a shared response model (SRM) to
estimate a shared information space across subjects. We show that SRM signifi-
cantly improves LLM-based encoding model performance. We also show that we
can use this shared space to denoise the individual brain responses by projecting
back into the individualized electrode space, and this process achieves a mean 38%
improvement in encoding performance. The strongest improvement was observed
for brain areas specialized for language comprehension, specifically in the superior
temporal gyrus (STG) and inferior frontal gyrus (IFG). Critically, estimating a
shared space allows us to construct encoding models that better generalize across
individuals.

1 INTRODUCTION

Recent advances in the field of natural language processing have showcased the exceptional perfor-
mance of large language models (LLMs) across various natural language tasks such as text generation,
translation, summarization, and question-answering (Devlin et al., 2019; Brown et al., 2020; Manning
et al., 2020). In parallel, recent studies in human neuroscience have begun positioning LLMs as
computational models of human brain activity during context-rich, real-world language processing
(Schrimpf et al., 2021; Caucheteux & King, 2022; Goldstein et al., 2022; Kumar et al., 2022; Toneva
et al., 2022). In these works, researchers use encoding models to estimate a linear mapping between
internal representations—i.e. embeddings—extracted from an LLM and measurements of human
brain activity, word-by-word during natural language comprehension. This simple approach of
linearly “aligning” the LLM’s internal feature space to human brain features has yielded remarkably
good prediction performance in both functional magnetic resonance imaging (fMRI) and electrocor-
ticography (ECoG). The high spatiotemporal resolution of invasive ECoG recordings, in particular,
promises to provide finer-grained insights into shared representations and processes between LLMs
and the brain (Goldstein et al., 2022; Cai et al., 2023; Goldstein, Wang, et al., 2023; Mischler et al.,
2024; Zada et al., 2023; Goldstein et al., 2024).
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When exposed to the same natural language stimulus, such as a spoken story, human neural activity
converges on stimulus features ranging from basic acoustic attributes to more complex linguistic
and narrative elements (Lerner et al., 2011; Honey et al., 2012; Hasson et al., 2015). However,
while a coarse alignment exists across individual brains (Nastase et al., 2019; 2021), the finer
cortical topographies for language representation exhibit significant idiosyncrasies among individuals
(Fedorenko et al., 2010; Nieto-Castañón & Fedorenko, 2012; Braga et al., 2020; Lipkin et al., 2022).
To address this, hyperalignment techniques have been developed in fMRI research to aggregate
information across subjects into a unified information space while overcoming the misalignment
of functional topographies across subjects (Haxby et al., 2011; Chen et al., 2015; Guntupalli et al.,
2016; Haxby et al., 2020; Feilong et al., 2023). Unlike fMRI, where there is putative voxelwise
correspondence during acquisition, ECoG presents a more difficult correspondence problem because
each subject has a different number of electrodes in different locations (with placement guided by
clinical considerations, not research goals). Thus, how to best aggregate electrodes across individuals
is a matter of ongoing research (e.g., Owen et al., 2020). For this reason, encoding models are
typically constructed separately at each electrode within individual subjects and are not assessed for
their generalization to new subjects (e.g., Schrimpf et al., 2021; Goldstein et al., 2022).

In this paper, we measured the neural responses of eight ECoG subjects implanted with invasive
intracranial electrodes while they listened to a natural language stimulus. We develop a shared
response model (SRM; Chen et al., 2015) to aggregate neural activity and isolate a stimulus-driven
shared feature space that is shared across individuals. In parallel, we use LLMs to extract contextual
embeddings for each word of the podcast. We then build encoding models to estimate a linear
mapping from the contextual embeddings to the shared neural features (Van Uden et al., 2018;
Nastase et al., 2020). We show that the SRM yields significantly higher encoding performance than
the original individual-specific electrodes. Moreover, we show that we can use this shared space to
“denoise” individual subject responses by projecting from the shared space back into the individual
electrode space. We find that the SRM-reconstructed data yields the largest improvement in brain
areas specialized for language comprehension. Finally, we demonstrate that the SRM allows us to
construct encoding models that better generalize across subjects.

2 MATERIALS AND METHOD

2.1 DATA COLLECTION AND PROCESSING

We recorded the neural activity of eight participants (4 reported female, 20–48 years) using ECoG.
Participants were presented with a 30-minute audio podcast “So a Monkey and a Horse Walk Into a
Bar, Act One: Monkey in the Middle” from the This American Life podcast. We manually transcribed
the story and aligned it to the audio by labeling the onset and offset of each word. An independent
listener manually evaluated the alignment. There were a total of 5,013 words in the podcast. Using the
Hugging Face environment (Wolf et al., 2019), we supplied the transcript to the large language model
GPT-2 XL (Radford et al., 2019). For each word, a 1600-dimensional contextual embedding was
extracted from the final layer of the model. The meaning of the embedding for each word (excluding
the first word) was contextualized by the preceding words in the podcast stimulus. These embeddings
were reduced to 50 dimensions using principal component analysis (PCA) for the core encoding
analyses, based on Goldstein et al. (2022).

For ECoG data collection, 917 electrodes were placed on the left hemisphere and 233 on the right
hemisphere. The ECoG data were sampled at 512 Hz. Line noise harmonics were excluded. We used
a band-pass filter to extract activity in the high gamma range of 70-200 Hz.

2.2 ENCODING MODELS

We use contextual word embeddings to predict held-out neural data for individual electrodes or SRM
features (see below). First, we extracted gamma power in 200 ms windows at 161 lags ranging from
-2000 ms to +2000 ms in 25 ms increments for epochs indexed to each word’s onset. For each lag at
a given electrode, we then estimated electrode-wise encoding models using ordinary least-squares
multiple linear regression: this yields a linear mapping to predict word-by-word neural activity
from the associated contextual embeddings (Naselaris et al., 2011; Huth et al., 2016). We employ
10-fold cross-validation to assess the performance of these models in predicting neural responses for

2

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 6, 2024. ; https://doi.org/10.1101/2024.06.04.597448doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.04.597448
http://creativecommons.org/licenses/by-nd/4.0/


held-out, temporally-contiguous segments of the stimulus. We evaluated out-of-sample prediction by
computing the Pearson correlation between the predicted and the actual signal for each held-out test
set.

In comparing the encoding performance alignment methods, we performed paired t-tests between
the two correlation scores across folds for each lag. To correct for multiple tests across 161 lags, we
control the false discovery rate (FDR) at .01 (Benjamini & Hochberg, 1995). Lags with FDR less
than .01 are considered to be significant.

2.3 ELECTRODE SELECTION

To select a subset electrodes involved in language processing, following Goldstein et al. (2022), we
first estimated encoding performance using non-contextual GloVe embeddings (Pennington et al.,
2014) at 161 lags ranging from -2000 ms to +2000 ms in 25 ms increments for epochs indexed to
each word’s onset. To evaluate the statistical significance of GloVe-based encoding performance, we
performed a randomization test. For each of the electrodes and lags, we randomized the phase of the
signal so as to disrupt the temporal alignment while preserving the autocorrelation, then re-estimated
the GloVe based encoding models. We repeated this procedure for 5,000 phase randomizations to
construct a null distribution from the maximum encoding performance across lags for each electrode.
We calculated p-values for each electrode as the percentile of the actual encoding performance relative
to 5,000 phase-randomized samples from the null distribution. We controlled the false discovery rate
(FDR; Benjamini & Hochberg, 1995) at q = .01 across electrodes. If the q-value of the electrode
was less than .01, it was selected for further analysis. This yielded 184 electrodes (150 in the left
hemisphere, 34 in the right hemisphere) across subjects (see Table S1 for a detailed description of
electrode coverage).

2.4 SHARED RESPONSE MODEL

Although all the subjects listened to the same story, both the placement of their electrodes and the
functional properties of similarly placed electrodes will tend to differ from individual to individual.
We use a shared response model (SRM; Chen et al., 2015) to aggregate ECoG data across subjects
into a common information space that accounts for different electrode placement and functional
topographies across individuals. SRM learns subject-specific transformations that map from each
subject’s idiosyncratic functional space into a shared space based on a subset of training data, then
uses these learned transformations to map a subset of test data into the shared space.

To clarify this, let {Xi ∈ Re×d}mi=1 be the training data (e electrodes over d time points) for m
subjects. We use this training dataset to learn subject-specific bases Wi ∈ Re×k (where k is a
hyperparameter that corresponds to the number of components in the new, shared space) and a
shared matrix S ∈ Rk×d, such that Xi = WiS + Ei, where Ei is an error term corresponding to
deviation from the subject’s original brain activity. The bases Wi represent the individual functional
topographies, while S represents latent features that capture components of the response that are
shared across subjects. For the solution to be unique, Wi is subject to the constraint of linearly
independent columns and Wi is assumed to have orthonormal columns, WT

i Wi = Ik (Chen et al.,
2015). The following optimization problem is solved to estimate Wi and the shared response S:

min
Wi,S

∑
i

∥Xi −WiS∥2F

s.t. WT
i Wi = Ik

(1)

The S and W parameters of the SRM model are jointly estimated using a constrained EM algorithm.
We can utilize the learned subject-specific bases to project data from shared space back into the
individual shared response subspace (Si) to reconstruct a “denoise” version of the data in the original
electrode space Xi:

Si = WT
i Xi

X̂i = WiSi

X̂i = WiW
T
i Xi

(2)
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Figure 1: SRM improves model-based encoding performance. (A) Encoding model performance
based on SRM (orange) and control analysis based on PCA (blue) with matched dimensionality (k =
5). As a control analysis, PCA aggregates neural signals across subjects with the same dimensionality
reduction and the same orthogonality constraint, but does not align neural response trajectories across
subjects. Encoding performance is averaged across features. The red dots at bottom indicate lags
with a significant difference between SRM and PCA-based encoding model performance across folds
(FDR controlled at .01). Error bands indicate standard error of the mean across cross-validation
folds. (B) Encoding model performance based on the original neural activity in each subject (N = 8).
Encoding performance is averaged across electrodes within each subject.

3 RESULTS

3.1 LINGUISTIC ENCODING IN SHARED SPACE

We estimated a shared response model (SRM; Chen et al., 2015) on a training subset of the data (9
out of 10 segments of the story stimulus) across 8 subjects with 5 shared features (hyperparameter
k = 5). We selected k = 5 shared features to maximize the number of eligible subjects, given
that subject S4 had only eight electrodes survive the electrode selection procedure. This fitting
procedure yields a shared space and the corresponding subject-specific weights (Wi). We projected
each subject’s training data into the shared space and averaged the reduced-dimension data across
subjects (Strain). Next, we estimated encoding models using the same training data, comprising the
average word-by-word time series across subjects in the reduced-dimension shared space. We used
linear least-squares regression to estimate a weight matrix to predict the shared neural activity from
contextual embeddings (reduced to 50 dimensions using PCA) extracted from GPT-2 XL (Radford et
al., 2019). To evaluate encoding model performance, we first use the subject-specific weights Wi

to project the test data (corresponding to the left-out test segment of story stimulus) into the shared
space estimated from the training data, and average across subjects: Stest = 1/m

∑m
i=1 W

T
i Xtest

i .

We then use the encoding weights estimated from the training set to generate model-based predictions
of neural activity in shared space from the contextual embeddings for the left-out training segment of
the story stimulus. We evaluate these model-based predictions by computing the Pearson correlation
between predicted and actual neural activity for each shared feature. In this way, both the shared
response model and the encoding models are estimated and evaluated within the same 10-fold cross-
validation procedures (Van Uden et al., 2018; Nastase et al., 2020). We repeated this analysis for lags
from 2000 ms before word onset to 2000 ms after with a 25 ms stride, fitting and evaluating separate
encoding models at each lag.

When using contextual embeddings to predict shared features, we observed strong encoding per-
formance with peak accuracy (averaged across shared features) of 0.38 roughly 200ms after word
articulation (Fig. 1A). SRM dramatically outperforms typical electrode-wise encoding performance
using the same embeddings and cross-validation scheme (Fig. 1B). This improvement, however, could
be driven by the fact SRM reduces dimensionality by aggregating signals across electrodes. As a
control analysis, we instead aggregated electrodes across subjects using principal component analysis
(PCA) with dimensionality k = 5 and reassessed encoding performance in the PCA-based shared
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space. PCA similarly reduces dimensionality with the same orthogonality constraint as SRM, without
aligning individual subjects into a shared feature space. We found that SRM achieves significantly
higher encoding performance than PCA (p < .01, FDR corrected; Fig. 1A). This control analysis
shows that the stronger encoding performance is not simply due to the decreased dimensionality of
the shared space.

3.2 RECONSTRUCTING ELECTRODE ACTIVITY VIA THE SHARED SPACE

We hypothesize that projecting an individual subject’s neural activity into the reduced-dimension
shared space and then back into electrode space will effectively denoise the individual-subject data
and increase encoding model performance. First, we transform the individual subject data into the
reduced-dimension shared subspace Si by multiplying it with the learned, subject-specific weights
from SRM training. We then use the transpose of the subject-specific weights to reconstruct their
electrode data for both the training and the test sets, as shown in equation 2. Then, we perform
an encoding analysis for each subject using the SRM-reconstructed data and compare it with the
encoding performances using the subjects’ original neural data (Fig. 2). The SRM-reconstructed
data significantly improved encoding performance at numerous lags for each subject (p < .01 for
all subjects, FDR corrected), with an average 38% improvement in peak model performance across
subjects.

Figure 2: Reconstructing electrode activity via the shared space. At center, electrode placement is
shown for all subjects (N = 8). Electrode-wise encoding performance is shown for each subject-
based electrode activity reconstructed from the shared space (orange) and original electrode activity
(blue). Encoding performance is averaged across electrodes within each subject. Error bands indicate
standard error of the mean encoding performance across folds. The red markers at bottom indicate
lags with a significant difference between encoding performance for SRM-reconstructed and original
electrodes across folds (FDR controlled at .01)

3.3 LOCALIZING IMPROVED ENCODING PERFORMANCE WITH SRM RECONSTRUCTION

To map out which brain regions improve most when reconstructing electrode activity from the shared
space, we quantified the difference in encoding model performance between SRM-reconstructed data
and the original data for each electrode separately (Fig. S1). Qualitatively, the largest improvements
were found in the inferior frontal gyrus (IFG) and the superior temporal gyrus (STG). Table
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1 reports the number of electrodes at varying ranges of improvement. Out of 184 electrodes,
encoding performance nominally improved in 168 electrodes when reconstructed from the shared
space, with a maximum improvement of 0.33. We further examined improvements in encoding
performance of SRM-reconstructed data for different areas of the language network (Fig. 3). We
observed that SRM reconstruction yields significantly better encoding performance compared
to the original electrode data in IFG, anterior STG (aSTG), and middle STG (mSTG) (p < .01,
FDR corrected). While caudal STG (cSTG), angular gyrus (AG), and temporal pole (TP) show
nominal improvement in encoding performance, these improvements are not significant after correct-
ing for multiple lags; this may in part be due to the relatively fewer number of electrodes in these areas.

Figure 3: Comparison of encoding performance for SRM-reconstructed data and original electrode
data for different regions of the language network. At center, electrode placement is shown for all
subjects (N = 8). Electrode-wise encoding performance values for lags spanning -2000 ms to +2000
ms lags are shown for each brain area based on electrode activity reconstructed from the shared space
(orange) and original electrode activity (blue). Encoding performance is averaged across electrodes
within each brain area. Error bands indicate standard error of the mean encoding performance
across folds. The red markers at bottom indicate lags with a significant difference between encoding
performance for SRM-reconstructed and original electrodes across folds (FDR controlled at .01
across lags). cSTG: caudal superior temporal gyrus, mSTG: middle superior temporal gyrus, aSTG:
anterior superior temporal gyrus, TP: temporal pole, AG: angular gyrus, IFG: inferior frontal gyrus.

Table 1: Improvement in electrode-wise encoding performance with SRM-reconstructed versus
original electrode data. Differences were computed between the respective maximum encoding
performance values across lags for SRM-reconstructed and original electrode data.

rSRM − roriginal Number of electrodes

> 0.20 24
0.15–0.20 12
0.10–0.15 43
0.05–0.10 50
0.01–0.05 39
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3.4 GENERALIZING ENCODING MODELS ACROSS SUBJECTS VIA THE SHARED SPACE

In the previous analyses, we showed that SRM can improve encoding performance—but, like in prior
work (e.g. Goldstein et al., 2022), those encoding models were estimated and evaluated in individual
subjects. The shared space captures the shared, stimulus-driven features of brain activity and retains
subject-specific mappings to and from the shared space. SRM should therefore allow us to build
encoding models that generalize to new subjects who have received the same stimulus (Van Uden et
al., 2018; Nastase et al., 2020). To test this hypothesis, we estimated both SRM and encoding models
in a subset of training subjects (for a training segment of the story stimulus), then evaluated encoding
model performance on a left-out subject (for the left-out test segment of the story). We first estimate
a shared space (S) for N˘1 training subjects based on the training segments of the story. In this case,
SRM training data does not include the neural data of the test subject. We can estimate encoding
models from the N˘1 training subjects in this shared space.

Next, we must estimate a transformation to project the test subject’s data into the shared space derived
from the training subjects. The shared space (S) derived from the training subjects is used as a
template, and we calculate a subject-specific weight matrix Wj to rotate the left-out subject j into the
pre-existing shared space, using the data Xtrain

j from the training segments of the story. To achieve
this, we minimize the mean squared error minWj ,WT

j Wj=Ik ∥Xj −WjS∥2F to find Wj . The shared
space S is not affected by aligning a left-out subject in this way. Now, we transform the test subject’s
neural activity for the test segment of the story into the shared space (estimated from other subjects)
using Wj estimated from the training segments of the story: Stest

j = WT
j Xtest

j . Finally, we evaluate
the encoding models estimated from other subjects’ data and training segments of the story. We use
the encoding weights trained on the shared space (S), combined with the embeddings for the test
segment to generate predictions for the left-out subject (Stest

j ). We carry out this process for each lag
for all subjects (leave-one-subject-out).

Using SRM, we obtain cross-subject encoding performance (Fig. 4a, orange) comparable to the
performance observed when encoding models are estimated and evaluated in individual subjects
(Fig. 1b). For a more direct comparison, we implemented a control analysis using PCA: we estimate
PCA across N − 1 training subjects to learn a PCA-based reduced-dimension space (with matching
dimensionality and orthogonality constraints to SRM) from the training story segments; we then
calculate a W transformation like above to project the test subject onto reduced-dimension PCA
reduced space using the left-out subject’s training story segments. Finally, we estimate encoding
models in the reduced-dimension PCA space from the training subjects and the training story
segments. We project the left-out subject’s test segment into the shared space to evaluate the model-
based predictions. Cross-subject encoding performance is nominally better with SRM than with
PCA.

To extend this cross-subject encoding analysis from the reduced-dimension shared space to the
original electrode space, we first project N − 1 subjects to a SRM shared space (S) using the training
segments of the story. Next, we calculate the weight matrix Wj to rotate the left-out subject j into the
shared space. Now we can use Wj to project data from N −1 from the shared space back into the test
subject’s space: Xtrain = WjS. This allows us to estimate encoding models based strictly on other
subjects’ data in the test subject’s original electrode space: Xtest = WjW

T
j Xtest

j . Cross-subject
encoding performance in across all the test subject’s SRM-reconstructed electrode space nominally
outperforms within-subject encoding models in the original electrode space (Fig. 4b). In both of these
analyses, we show that an SRM estimated from N − 1 subjects can be used to find a set of shared
features that generalize to a new subject with a different number and placement of electrodes. Given
a shared stimulus, SRM can provide a robust enough linkage across disparate, individual-specific
electrodes to allow us to build encoding models that generalize to a left-out individual.

3.5 QUANTIFYING SHARED INFORMATION ACROSS SUBJECTS

How well can we reconstruct a novel subject’s neural responses to a novel stimulus based on the
neural activity of other subjects? To quantify the quality of the shared space without reference to an
encoding model, we estimated a shared space based on the training segments of the story in N − 1
subjects, then reconstructed neural activity for the left-out test segment in a left-out subject. We
then correlate the reconstructed neural activity for the test subject j with the subject’s actual neural
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Figure 4: Cross-subject encoding performance via the shared space. In cross-subject encoding, both
SRM and encoding models are estimated from N − 1 subjects and model-based predictions are
tested against a left-out subject. (A) Cross-subject encoding performance in SRM-based shared space
(orange) compared to PCA control. Encoding performance is averaged across features in shared space.
(B) Cross-subject encoding performance in the test-subject’s SRM-reconstructed electrode space
compared to within-subject encoding performance in original electrode space. Encoding performance
is averaged across subjects and SRM features (a) or electrodes (b). Error bands indicate standard
error of the mean encoding performance across subjects.

activity. High correlations indicate that the shared space robustly captures shared information that
generalizes across subjects. To elaborate, first, we train an SRM model on the training data for N − 1
subjects except j using Eq. 1. Then, using the training data Xj for subject j, we find the matrix
Wj mapping subject j into the pre-existing shared space by minimizing the mean squared error of
minWj ,WT

j Wj=Ik ∥Xj −WjS∥2F .

Next, we average the shared responses for the test segment across N − 1 subjects except j using
Stest = 1/m

∑
i ̸=j W

T
i Xtest

i . With this shared response for the test data, we reconstruct the test
data for subject j (based strictly on data from N − 1) by Xr

test = WjStest. Finally, we calculate the
correlation across words between Xr

test and Xj
test for each electrode. We repeat this process for each

test subject for all the test segments at the word onset. We find that SRM-based reconstruction based
on the neural activity of other subjects yields .25 correlation on average (Table 2).

Table 2: SRM reconstruction quality based on other subjects’ data transformed via the shared space
into the test subject’s electrode space. Correlation between SRM-reconstructed and original test data
(with standard error of the mean correlation across test sets).

Subject Correlation between SRM-
reconstructed and original data

S1 0.28 ± 0.008
S2 0.21 ± 0.006
S3 0.21 ± 0.012
S4 0.23 ± 0.011
S5 0.29 ± 0.008
S6 0.32 ± 0.009
S7 0.20 ± 0.009
S8 0.23 ± 0.007

Average 0.25 ± 0.009

3.6 EXPLORING SRM ENCODING ACROSS DIFFERENT MODELS PARAMETERS

Lastly, we explored encoding performance in the shared space across several different sets of model
features. We first examined how encoding model performance varies across layers for GPT-2 XL:
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we extracted contextual embeddings from all 48 layers of GPT-2 XL and repeated our encoding
analysis for both shared features and original electrodes at lags ranging from –2000 ms to +2000 ms
relative to word onset. In both cases, we found that intermediate layers yield the highest prediction
performance in human brain activity (Fig. S2a,S2b), consistent with prior work (Schrimpf et al.,
2021; Caucheteux & King, 2022; Goldstein, Ham, et al., 2023; Kumar et al., 2022). Next, we
evaluated encoding models for two different types of word embeddings: contextual (GPT-2 XL) and
non-contextual (GloVe) embeddings (Pennington et al. 2014; note that GloVe encoding was initially
used to select electrodes). We found that contextual embeddings yield dramatically higher encoding
performance that non-contextual embeddings, both for original electrode data and in the shared space
(Fig. S2c,S2d; similarly to prior work, e.g., Schrimpf et al. 2021; Goldstein et al. 2022; Kumar et al.
2022. Finally, we repeat our SRM encoding analysis with several open source GPT models ranging
from 125M to 20B parameters: neo-125M, large-774M, neo-1.3B, XL-1.5B, neo-2.7B, neo-20B.
SRM yields improved encoding performance for all models and we observe a weak trend consistent
with previously reported results (Antonello et al., 2023) where larger models yield better encoding
performance (Fig. S2e, S2f).

4 DISCUSSION

Many recent studies have begun to employ encoding models to predict neural responses during
natural language processing using contextual embeddings derived from LLMs (Schrimpf et al., 2021;
Caucheteux & King, 2022; Goldstein et al., 2022; Toneva et al., 2022; Cai et al., 2023; Goldstein,
Wang, et al., 2023; Mischler et al., 2024; Zada et al., 2023). Our study demonstrates that aligning
the neural activity in each brain into a shared, stimulus-driven feature space significantly enhances
encoding performance. This shared space isolates stimulus-driven latent features in neural activity
across both subjects and electrodes, while effectively filtering out subject-specific idiosyncrasies
(Haxby et al., 2011; Chen et al., 2015; Haxby et al., 2020). Our results illustrate that this shared space
exhibits stronger alignment with LLM embeddings than a control model using PCA (with matching
dimensionality) to aggregate signals across subjects.

SRM and other hyperalignment methods were developed, initially with fMRI, to estimate a shared
information space aligned across subjects (Haxby et al., 2011; Chen et al., 2015; Guntupalli et al.,
2016; Feilong et al., 2018; Van Uden et al., 2018; Haxby et al., 2020; Nastase et al., 2020; Feilong et
al., 2023). ECoG acquisition presents a more challenging correspondence problem due to varying
electrode numbers and placement across subjects (Owen et al., 2020). Electrode placement is often
arbitrary, based on clinical considerations, yielding both redundancies and gaps in coverage, which
can hamper model generalization. In most ECoG research (e.g., Goldstein et al., 2022; Cai et al., 2023;
Mischler et al., 2024), electrodes are simply pooled across subjects to construct a “supersubject”. No
mapping from one subject to another is attempted, and, critically, whether encoding models actually
generalize across subjects has not been investigated. In the current manuscript, we extend SRM
to ECoG data and demonstrate several ways in which aggregating electrode signals into a shared
information space can improve encoding model performance.

The shared features estimated by SRM are linear combinations of signals across electrodes and
subjects (Chen et al., 2015). To more easily interpret these signals, we reconstructed electrode-space
activity from the reduced-dimension shared space. This allows us to “denoise” individual data via the
shared space. We found that SRM-reconstruction improves encoding performance in most electrodes
(a mean 38% improvement), particularly in brain areas associated with language processing, such as
the IFG and STG. These areas both (a) contain more electrodes than other areas and (b) may be most
closely entrained to linguistic features of the shared stimulus (e.g. Goldstein et al., 2022; 2024).

The vast majority of prior work fitting electrode-wise linguistic encoding models does not evaluate
whether models generalize across individual subjects (Goldstein et al. 2022; Goldstein, Wang, et
al. 2023; Mischler et al. 2024; cf. Zada et al. 2023). Our findings show that, by estimating both
SRM and encoding models on a subset of training subjects and stimuli, the shared space can be
used to build encoding models that robustly generalize to new subjects and stimuli. We show that
cross-subject encoding performance via the shared space matches or even exceeds within-subject
encoding performance. This generalization likely hinges on using a rich, naturalistic stimulus (like
a spoken story) to obtain a diverse sampling of brain states, which ultimately yields a more robust,
generalizable shared space (Haxby et al., 2011; 2020). This kind of generalization—allowing us to
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precisely predict neural activity in previously unseen subjects—can provide a way to circumvent the
scarcity of individual-subject data, which is particularly egregious with ECoG recordings in epilepsy
patients. Given a shared, naturalistic stimulus, SRM allows us to leverage previously collected data
from a larger group of subjects in a single individual’s idiosyncratic electrode space—which may
accelerate research on individualized brain decoding and brain-computer interfaces (e.g. Metzger et
al., 2023; Willett et al., 2023).

We show that SRM improves model-based encoding performance and provides a basis for robustly
generalizing encoding models across individual subjects. SRM is a data-driven, unsupervised
algorithm that isolates stimulus-driven features of neural activity and aligns them across individuals.
What are these stimulus-driven features? For a naturalistic, spoken language stimulus, we hypothesize
that these features likely capture the structure of real-world language supporting comprehension,
production, and ultimately communication. Using contextual embeddings derived from an LLM, we
confirm this hypothesis by showing that SRM improves model-based encoding performance. That is,
we show that by aligning neural signals across subjects, we more closely converge on the shared set
of linguistic features encoded by individual brains and LLMs.
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SUPPLEMENTARY INFORMATION

Table S1: Electrode localization to different brain areas for each subject. STG: superior temporal
gyrus, aMTG: anterior middle temporal gyrus, pMTG: posterior middle temporal gyrus, TP: temporal
pole, AG: angular gyrus, IFG: inferior frontal gyrus, MFG: middle frontal gyrus, PostCG: postcentral
gyrus.

Subjects Right Hemisphere Left Hemisphere

IFG STG AG TP Precentral Parietal PostCG aMTG pMTG Premotor MFG Other Total

S1 15 15
S2 18 16 1 1 1 6 43
S3 10 2 3 1 2 1 19
S4 3 1 1 2 1 8
S5 2 11 18 5 2 1 1 40
S6 3 6 1 1 1 12
S7 5 3 4 1 1 1 1 16
S8 2 19 1 2 1 1 1 3 1 31

184
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Figure S1: Electrode-wise differences in encoding model performance between SRM-reconstructed
data and the original electrode data. Differences were computed between the respective maximum
encoding performance values across lags for SRM-reconstructed and original electrode data.
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Figure S2: Exploring SRM encoding across different model features. (A) Encoding performance
across all the layers of GPT-2 XL for both shared space (left) and original electrode data (right).
(B) Comparison of encoding performance for contextual embeddings from GPT-2 XL (orange) and
non-contextual embeddings from GloVe (blue) in both the shared space (left) and original electrode
data (right). (D) Encoding performance across different sizes of GPT models for both shared space
and original electrode data. In all cases, the error bands indicate the standard error of the mean across
folds.

Code availability: https://github.com/pritamarnab/SRM-Encoding
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