

1 **Uncovering nitroxoline activity spectrum, mode of action and** 2 **resistance across Gram-negative bacteria**

3 Elisabetta Cacace^{1,2*}, Manuela Tietgen^{1*}, Meike Steinhauer¹, André Mateus², Tilman G.
4 Schultze¹, Marina Eckermann³, Marco Galardini^{4,5}, Vallo Varik², Alexandra Koumoutsi²,
5 Jordan J. Parzeller¹, Federico Corona², Askarbek Orakov⁶, Michael Knopp², Amber Brauer-
6 Nikonow⁶, Peer Bork⁶, Celia V. Romao⁷, Michael Zimmermann⁶, Peter Cloetens³, Mikhail M.
7 Savitski², Athanasios Typas², Stephan Göttig^{1#}

8
9 ¹Goethe University Frankfurt, University Hospital, Institute for Medical Microbiology and
10 Infection Control, Frankfurt, Germany.

11 ²European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany.

12 ³European Synchrotron Radiation Facility (ESRF), Grenoble, France.

13 ⁴Institute for Molecular Bacteriology, TWINCORE Centre for Experimental and Clinical
14 Infection Research, a joint venture between the Hannover Medical School (MHH) and the
15 Helmholtz Centre for Infection Research (HZI), Hannover, Germany.

16 ⁵Cluster of Excellence RESIST (EXC 2155), Hannover Medical School (MHH), Hannover,
17 Germany.

18 ⁶European Molecular Biology Laboratory, Structural and Computational Biology Unit,
19 Heidelberg, Germany.

20 ⁷Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa,
21 Oeiras, Portugal.

22
23 *These authors contributed equally.

24 #Correspondence: goettig@med.uni-frankfurt.de

28 **Abstract**

29 Nitroxoline is a bacteriostatic quinoline antibiotic, considered a metal chelator inhibiting the
30 activity of RNA-polymerase¹. Its clinical indications are limited to uncomplicated urinary tract
31 infections (UTIs), with a clinical susceptibility breakpoint only available for *Escherichia coli*².
32 By testing > 1,000 clinical isolates, here we demonstrate a much broader activity spectrum
33 and species-specific bactericidal activity, including multidrug-resistant Gram-negative bacteria
34 for which therapeutic options are limited due to resistance. By combining systematic genetic
35 and proteomic approaches with direct measurement of intracellular metals, we dissect
36 nitroxoline perturbation of metal homeostasis and unveil additional effects on bacterial
37 physiology. We show that nitroxoline affects outer membrane integrity, synergizing with large-
38 scaffold antibiotics and resensitizing colistin-resistant Enterobacteriaceae *in vitro* and *in vivo*.
39 We further characterise resistance mechanisms across *E. coli*, *Acinetobacter baumannii* and
40 *Klebsiella pneumoniae*, recapitulating known *E. coli* resistance determinants and uncovering
41 novel and conserved mechanisms across species, demonstrating their common effect on
42 nitroxoline efflux.

43

44 Introduction

45 Nitroxoline (8-hydroxy-5-nitroquinoline) is a quinoline-derivative (**Fig. 1a**) and FDA-approved
46 antibiotic, used for more than 50 years as treatment and prophylaxis of acute and recurrent
47 UTIs in several European and Asian countries²⁻⁴. Because of its excellent safety profile^{3,5-7}
48 and activity against different organisms, nitroxoline has been recently proposed to be
49 repurposed as antituberculosis⁸, antifungal^{9,10}, antiviral^{11,12}, antiparasitic¹³ and anticancer¹⁴⁻¹⁷
50 agent.

51
52 Nitroxoline has been shown to exert bacteriostatic activity against a broad range of Gram-
53 negative and Gram-positive species^{18,19}. Despite its long-standing use, information on
54 nitroxoline PK/PD profile remains sparse²⁰, with the only clinical breakpoint defined for *E. coli*
55 from uncomplicated UTIs^{2,21}. Metal chelation is assumed to underpin its general mode of
56 action²², with reports on inhibition of biofilm formation^{23,24} and metallo-β-lactamases^{25,26}.
57 Nitroxoline has also been proposed to affect the activity of RNA-polymerase by chelation of
58 Mg²⁺ and Mn²⁺²², and the activity of methionine aminopeptidases⁵. However, it remains
59 unclear whether it acts as a metal chelator, sequestering essential metals, or as a
60 metallophore, leading to metal stress, and which metals are differentially affected.

61
62 Nitroxoline resistance seems to be rare in *E. coli*²⁷, with only a few resistance mechanisms
63 identified to date *in vitro*. This includes the overexpression of the tripartite efflux pump EmrAB-
64 TolC as a result of first-step mutations in the *emrR* gene (encoding a transcriptional repressor
65 of the pump), and second-step mutations in *marR* and *lon*, conferring a higher *tolC* expression
66 and resistance²⁸.

67
68 Here we propose nitroxoline as a broader antibiotic against many Gram-negative species. We
69 challenge previous knowledge of nitroxoline as a bacteriostatic agent, demonstrating
70 bactericidal activity on pathogens for which therapeutic options are limited, such as *A. baumannii*. We uncover strong synergies of nitroxoline with several antibiotics, including
71 colistin, resensitizing colistin-resistant Enterobacteriaceae *in vitro* and *in vivo*. Combining
72 systems-based approaches with direct measurements of OM integrity and intracellular metal
73 concentrations, we establish that nitroxoline acts as a zinc and copper metallophore and
74 perturbs OM integrity. Finally, we show that the most recurring resistance mechanism across
75 different pathogenic Enterobacteriaceae is the upregulation of Resistance-Nodulation-Division
76 (RND) efflux pumps. Overall, we provide *in vitro* and *in vivo* evidence of nitroxoline's ability to
77 act, alone or in combination, against hard-to-treat bacterial pathogens, and provide further
78 mechanistic understanding of its mode of action and resistance.

80

81 Results

82 Nitroxoline has a broad activity spectrum against Gram-negative bacteria

83 Although nitroxoline (**Fig. 1a**) has been used for decades against uncomplicated UTIs and has
84 a good safety profile^{3,5-7}, minimum inhibitory concentration (MIC) distributions are available
85 from EUCAST only for eight bacterial species and seven genera¹⁹, with a clinical breakpoint
86 determined only for *E. coli*² (**Fig. 1b**). To investigate whether nitroxoline could be repurposed
87 against other bacterial pathogens, we systematically profiled its susceptibility against 1,000-
88 1,815 strains from 34 Gram-negative species. This set included some of the most relevant
89 pathogens in the current antimicrobial resistance crisis, such as *A. baumannii*, *Burkholderia*

91 *cenocepacia* complex and *Stenotrophomonas maltophilia* (**Fig. 1b-c, Extended Data Fig. 1a-**
92 **b**).

93
94 We measured MICs in three orthogonal ways (**Fig. 1b, Methods**): broth microdilution (1,000
95 isolates, **Fig. 1c**), disk diffusion (1,815 isolates, **Extended Data Fig. 1a**) and agar dilution
96 (1,004 isolates, **Extended Data Fig. 1b**). We observed good concordance between this study
97 and EUCAST¹⁹ for the eight overlapping species (**Extended Data Fig. 1c**) and across the
98 three methods, with the best agreement between broth and agar dilutions (Pearson
99 correlation, R = 0.94) (**Extended Data Fig. 1d-f**).

100
101 From these results, we confirmed that several Gram-negative species were comparably or
102 more susceptible to nitroxoline than *E. coli* (median MIC = 4 µg/ml for broth and agar dilution,
103 lower than the EUCAST breakpoint of 16 µg/ml for *E. coli*²). For *E. coli* we confirmed this value,
104 except for one strain out of 251 clinical isolates with MIC two-fold the breakpoint. Nitroxoline
105 was active against Enterobacterales (median broth MIC: 4 µg/ml) and Moraxellaceae, which
106 had the lowest MIC values (median broth MIC: 2 µg/ml) and comprise pathogens for which
107 therapeutic options are currently limited, such as *A. baumannii*. Only *P. aeruginosa* exhibited
108 a median MIC of 32 µg/ml above the clinical breakpoint (**Fig. 1c**). Overall, these results
109 indicate nitroxoline as a promising antibacterial option against Enterobacterales and
110 *Acinetobacter* spp.

111
112 **Nitroxoline is active against intracellular *Salmonella* Typhi and bactericidal against**
113 ***A. baumannii***

114 *Salmonella* spp. were among the most susceptible species to nitroxoline (average MIC in
115 broth: 3.45 µg/ml; maximum MIC in broth: 8 µg/ml in only 1/11 tested strains) (**Fig. 1c**,
116 **Extended Data Fig. 1a-b**). Since *Salmonella* can invade and persist in the host
117 intracellularly²⁹, we tested whether nitroxoline could also act on intracellular *Salmonella* Typhi,
118 the leading serovar responsible for enteric fever³⁰. Using an *in vitro* infection assay (gentamicin
119 protection assay³¹, **Methods**), we showed that nitroxoline treatment results in a strong
120 decrease (> 97% compared to solvent control) of intracellular *S. Typhi* in infected HeLa cells,
121 for both clinical isolates tested (**Fig. 1d**).

122
123 As other metal chelators³², nitroxoline is classically considered bacteriostatic³³. While we
124 confirmed this in *E. coli* for concentrations eight-times its average MIC in broth (32 µg/ml)
125 (**Extended Data Fig. 2a**), we detected partial bactericidal activity (decrease of at least 3 log₁₀
126 colony-forming units (CFU) /ml at 24 hours³⁴) against *A. baumannii*, for concentrations as low
127 as 8 µg/ml, i.e. three times its average MIC of *A. baumannii* in broth (2.79 µg/ml) (**Fig. 1e**,
128 **Extended Data Fig. 2b, Methods**). Cells released their cytoplasmic content and lysed as
129 early as 4.5 hours of incubation with the drug (**Fig. 1f, Supplementary Videos 1-2, Methods**).
130 To our knowledge, this is the first evidence of nitroxoline's bactericidal activity.

131
132 **Nitroxoline antagonises beta-lactams and synergises with colistin**

133 To explore potential combinatorial regimens, we tested nitroxoline in combination with 32
134 antibiotics in *E. coli* BW25113. The drug panel included all main classes of antibiotics used
135 against Gram-negative bacteria, but also other metal chelators and antibiotics only effective
136 against Gram-positive bacteria, such as vancomycin (**Methods, Supplementary Table 2**).

137

138 We uncovered extensive antagonism with beta-lactams (bactericidal cell-wall targeting drugs)
139 including penicillins, cephalosporins and carbapenems (**Fig. 2a, Extended Data Fig. 3,**
140 **Supplementary File**). Like other antagonisms between bactericidal and bacteriostatic drugs
141 (such as nitroxoline at the concentration tested here), these interactions could be based on
142 the fact that bactericidal drugs are more effective on actively dividing cells, and slowing down
143 division with a bacteriostatic agent can alleviate their action³⁵.
144

145 One of the most potent synergies of nitroxoline was with the OM-targeting drug colistin (**Fig.**
146 **2a, Extended Data Fig. 3**), whose toxicity limits its therapeutic use as last-resort agent³⁶.
147 Nitroxoline could therefore be used to lower colistin concentrations required to achieve
148 therapeutic success, preventing toxicity. To explore this possibility, we tested whether
149 nitroxoline could not only potentiate colistin action on sensitive strains, but also resensitize
150 colistin-resistant strains. We showed that the addition of nitroxoline at sub-MIC concentration
151 (0.75 µg/ml) decreases the MIC of *E. coli* and *K. pneumoniae* colistin-resistant strains (clinical
152 and experimentally generated) from 2- to 4-fold, even below colistin EUCAST breakpoint
153 (2 µg/ml)² in three cases (**Fig. 2b, Supplementary File**). To confirm this synergy *in vivo*, we
154 infected *Galleria mellonella* larvae with an *mcr-1* positive, colistin-resistant *K. pneumoniae*
155 clinical isolate (**Methods, Supplementary Table 1**). The addition of nitroxoline improved the
156 survival of the infected larvae by two-fold at 72 hours post-infection compared to the
157 monotherapy with colistin or nitroxoline alone (**Fig. 2c**).
158

159 **Nitroxoline perturbs the OM in *E. coli***

160 In addition to colistin, nitroxoline synergised with all large-scaffold antibiotics, including drugs
161 that are normally excluded by the OM and therefore are not active against Gram-negative
162 bacteria, such as macrolides, rifampicin, novobiocin and vancomycin (**Fig. 2a, Extended Data**
163 **Fig. 3**). Altogether, this suggested a direct effect of nitroxoline on the OM permeability.
164

165 To obtain a broader view on nitroxoline's direct and indirect effects, we performed two-
166 dimensional thermal proteome profiling (2D-TPP)³⁷ on *E. coli* BW25113. Briefly, we exposed
167 bacterial samples to multiple nitroxoline concentrations and subjected whole-cell or lysed
168 samples to a gradient of temperatures, capturing nitroxoline effects on both abundance and
169 stability of proteins (**Methods**). While changes in lysates will typically only detect direct
170 target(s) of drugs, whole-cell changes provide a snapshot of both direct and indirect effects.
171 We could not detect any significant change in lysate samples, suggesting that nitroxoline does
172 not directly target a protein. In whole-cell samples we observed a decrease in the
173 abundance/stability of OM proteins (OMPs) and members of LPS biosynthesis and trafficking
174 (Lpt) machinery (**Fig. 3a, Extended Data Fig. 4a-b, Supplementary Table 3**).
175

176 We combined this data with chemical genetics, in which we systematically mapped nitroxoline
177 effects on the fitness of deletion mutants of every non-essential gene in *E. coli*^{38,39}. We found
178 that mutants involved in similar processes, including LPS biosynthesis and transport, were
179 more sensitive to nitroxoline, except for mutants involved in the first reactions of heptose
180 incorporation into LPS inner core biosynthesis (*gmhA*, *gmhB* and *waaC*), which were more
181 resistant (**Fig. 3b, Extended Data Fig. 4c, Supplementary Table 4**). This suggests the
182 heptosyl-Kdo₂ moiety of the lipopolysaccharide inner core as a minimum requirement for
183 nitroxoline activity, since deletion of mutants catalysing most downstream LPS biosynthetic
184 reactions, starting with *waaF*, are more sensitive to nitroxoline.
185

186 To provide direct evidence of nitroxoline's effect on the OM, we quantified OM disruption using
187 the hydrophobic probe 1-N-phenylnaphthylamine (NPN), which emits fluorescence upon
188 exposure of the OM phospholipid layer⁴² (**Methods**). Sub-MIC concentrations of nitroxoline
189 resulted in a significantly higher fluorescence than control samples (unexposed to any drug or
190 to the non-OM-affecting antibiotic chloramphenicol). As positive controls, we used OM-
191 targeting antibiotic polymyxin B and EDTA, another metal chelator that disrupts OM by
192 sequestering LPS-stabilizing divalent cations⁴³. Although lower than in positive controls, OM
193 disruption by nitroxoline occurred even at 1/9 MIC (0.225 µg/ml, MIC = 2 µg/ml in *E. coli*
194 *BW25113*, **Fig. 3c**).

195
196 To corroborate nitroxoline's action on the OM, we tested its activity against the OM-defective
197 *E. coli* strain *lptD4213*⁴⁰ and in OM-perturbing conditions (0.5% SDS and 0.8 or 0.4 mM
198 EDTA)⁴¹ using an efficiency of plating (EOP) assay (**Methods**). The *lptD4213* mutant was
199 more susceptible to nitroxoline than wild-type *E. coli* (**Extended Data Fig. 4d**), in agreement
200 with LptD decreased stability (**Fig. 3a**, **Extended Data Fig. 4b**) and with its loss-of-fitness
201 already observed in the chemical genetic data, where the *lptD4213* mutant was included³⁸
202 (**Fig. 3b**). Furthermore, nitroxoline synergized with the OM-perturbing conditions at
203 concentrations 10-fold lower than MIC (**Fig. 3d**, **Extended Data Fig. 4e**).

204
205 It is possible that nitroxoline acts similarly as EDTA, chelating metals necessary for the stability
206 of the OM⁴². While EDTA action is based on chelation of both Mg²⁺ and Ca²⁺, the two main
207 cations involved in LPS stability⁴³, nitroxoline has been shown to preferentially complex with
208 Mn²⁺ and Mg²⁺, with no effect of Ca²⁺ supplementation on its MIC²². This could explain
209 nitroxoline's smaller effect than EDTA on OM integrity (**Fig. 3c**). However, the abundance of
210 OMPs and Lpt machinery proteins was also altered (**Fig. 3a**, **Extended Data Fig. 4a-b**),
211 suggesting an effect of nitroxoline on the regulation of the levels of these proteins.

212
213 **Nitroxoline acts as a zinc and copper metallophore**
214 Nitroxoline is reported to chelate Mn²⁺ and Mg²⁺ and reach the intracellular milieu²², but a
215 broader and more resolved view of its effects on metal homeostasis is missing. From the 2D-
216 TPP (**Fig. 3a**, **Extended Data Fig. 4a**) and chemical genetic data (**Fig. 3b**, **Extended Data**
217 **Fig. 4c**), we identified distinct profiles for proteins involved in the import, intracellular utilisation,
218 and export of metals, consistent with responses to copper (**Fig. 4a**) and zinc (**Fig. 4b**)
219 increase.

220
221 At nitroxoline concentration around MIC (2 µg/ml), we observed an increased abundance of
222 the copper-exporting P-type ATPase CopA (twenty-fold) and the multicopper oxidase CueO
223 (five-fold), which upon Cu(I) excess remove copper from the cytoplasm and oxidise it in the
224 periplasm, respectively⁴⁴ (**Fig. 4a**, **Supplementary Table 3**). A similar effect has been
225 reported for other quinolines, forming complexes with copper^{45,46}, which may be extruded in
226 the periplasm by CopA as a copper-overload defence mechanism. We observed similar effects
227 for zinc, with the stabilisation of the zinc-responsive regulators Zur and ZntR and consistent
228 changes in Zur- and ZntR-regulated proteins, such as subunits of the zinc importer ZnuABC
229 (repressed by Zur) and the exporter ZntA (positively regulated by ZntR)⁴⁷ (**Fig. 4b**).
230 Accordingly, Δ zntR and Δ znuB were more sensitive to nitroxoline (**Fig. 3b**, **Supplementary**
231 **Table 4**).

232

233 Zinc and copper intoxication has been associated with the disruption of iron-sulfur (Fe-S)
234 clusters⁴⁸⁻⁵¹ and a compensatory induction of iron-uptake proteins (derepressed by Fur), and
235 Fe-S cluster biogenesis (*suf* genes, induced by IscR). Accordingly, upon nitroxoline exposure
236 we observed decreased stability of Fur and an associated increase of Fur-repressed proteins
237 involved in enterobactin biosynthesis (EntABF), recycling (Fes), receptor (FepA) and importing
238 system (FepBCDG)⁵². The stability of IscR increased, with the associated decrease of *isc*
239 operon and increase of *suf* operon members⁵³ (**Fig. 3a, Extended Data Fig. 4f**). The
240 increased abundance of the manganese importer MntH has also been reported as a
241 consequence of copper stress⁵⁴ (**Fig. 4c**). Since MntH is repressed by Fur, its increase is
242 consistent with the observed Fur destabilisation (**Extended Data Fig. 4f**).
243

244 To confirm the impact of these effects on intracellular metal concentrations, we performed
245 synchrotron-based nano-X-ray-fluorescence (XRF) on nitroxoline treated and untreated
246 *E. coli*, confirming a four-fold copper, two-fold zinc, and ten-fold manganese increase in
247 treated cells (**Fig. 4d**). Overall, our data suggest pleiotropic effects of nitroxoline on metal
248 homeostasis, consistent with its activity as ionophore for copper, previously reported for
249 clioquinol in cancer cells⁴⁶, and zinc, as shown for other quinolines⁵⁵.
250

251 **Nitroxoline resistance is based on conserved mechanisms across species**

252 Our results suggest that nitroxoline does not have a direct protein target, but rather exerts
253 pleiotropic effects on OM integrity and metal homeostasis, which might underpin the previously
254 observed low frequency of resistance development^{3,7,23,27,56}. To explore resistance
255 mechanisms across different species, we evolved resistance to nitroxoline *in vitro* in three
256 species: *E. coli*, for which nitroxoline is already used, and two Gram-negative species,
257 *K. pneumoniae* and *A. baumannii*, for which nitroxoline could be repurposed considering its
258 low MIC (**Fig. 1c, Extended Data Fig. 1a-b**).
259

260 We performed whole-genome sequencing (WGS) on 12 *E. coli*, 8 *K. pneumoniae* and 6
261 *A. baumannii* sensitive and evolved resistant strains (fold increase MIC ≥ 4 compared to
262 parental sensitive strain) (**Methods, Fig. 5a, Supplementary Table 1**), and performed
263 proteomics on a subset of them (**Fig. 5b, Extended Data Fig. 5a-b, Supplementary Table**
264 **5**). Mutations across species primarily affected transcriptional repressors of RND-type efflux
265 pumps: *emrR* (previously reported in *E. coli*²⁸), *oqxR* (*K. pneumoniae*), *adeL* and *tetR/acrR*
266 (*A. baumannii*) (**Fig. 5a**).
267

268 We found *emrR* mutations in all 12 evolved nitroxoline-resistant *E. coli* strains (**Fig. 5a**). This
269 is consistent with previous reports²⁸ and our chemical genetic data, where the *emrR* deletion
270 mutant was more resistant and the knockouts of its regulated pump *emrAB* were more
271 sensitive to nitroxoline (**Fig. 3b**). To verify the clinical relevance of these mutations, we
272 assessed them in 14 clinical isolates with reduced susceptibility (MIC ≥ 8 μ g/ml, i.e. at least
273 two times the median MIC measured in this study for *E. coli*), finding distinct mutations from
274 experimentally evolved strains (**Extended Data Fig. 5c**). We also found *emrR* mutations in
275 two *K. pneumoniae* nitroxoline-resistant strains, which, as previously shown for *E. coli*²⁸, had
276 higher EmrA and TolC protein levels. An *A. baumannii* resistant strain, although lacking any
277 mutation of efflux pump regulators, also exhibited a four-fold increase in EmrA levels (**Fig. 5b**,
278 **Supplementary Table 5**).
279

280 Surprisingly, we did not detect any increase in EmrA and only a slight (< 2-fold) increase of
281 TolC in three *E. coli* *emrR*-mutated strains, which showed instead a decreased abundance of
282 porins OmpD, OmpF and LamB (**Fig. 5b**). For at least two of these strains (2_R1 and 2_R4),
283 this could depend on missense mutations of *envZ*, that regulates porin expression via
284 OmpR^{57,58}, increased in these strains (**Fig. 5b**). Alternatively, porin abundance changes could
285 be explained by mutations in the *lon* gene (**Fig. 5a**), previously associated with nitroxoline
286 resistance²⁸ and resulting in the stabilization of the Lon protease substrate MarA⁵⁹, which
287 regulates the expression of several drug resistance determinants, including porins^{60,61}, and is
288 also increased in these strains (**Fig. 5b**). Given the unexpected proteome changes in *emrR*-
289 mutated *E. coli*, we sought to confirm the functional relevance of these mutations,
290 complementing a strain carrying a recurring missense mutation (D109V, **Extended Data Fig.**
291 **5c**) with wild-type *emrR*, thereby restoring nitroxoline susceptibility (**Fig. 5c**).
292

293 The most frequent genetic alterations in *K. pneumoniae* resistant strains were mutations in
294 *oqxR*, the transcriptional repressor of the OqxAB efflux pump, in agreement with recent
295 reports⁵⁶. We identified *oqxR* mutations in 5/8 experimentally evolved *K. pneumoniae* strains
296 and in all 14 clinical isolates sequenced (**Fig. 5d**). We identified a mutational hotspot, common
297 to clinical isolates and experimentally evolved strains: a duplication of eight amino acids
298 (G60_67dup) resulting in a loop addition (**Fig. 5d, Extended Data Fig. 5d**). This mutation also
299 emerged in a patient after a four-month prophylaxis with nitroxoline (*K. pneumoniae* urine
300 isolate 8_R1, **Fig. 5a**), confirming its relevance for *in vivo* evolution of resistance. Accordingly,
301 *oqxR*-mutated strains coclustered in the proteomics data (**Fig. 5b, Extended Data Fig. 5b**)
302 and showed an increased abundance of OqxA (BepF), OqxB (OqxB3) and TolC (**Fig. 5b**,
303 **Supplementary Table 5**). To further demonstrate the impact of this duplication on resistance,
304 we complemented a G60_67dup-positive strain with wild-type *oqxR*, restoring nitroxoline
305 susceptibility (**Fig. 5c**).
306

307 In resistant *A. baumannii* the most common mutations affected two transcriptional regulators:
308 *adeL*, repressing the expression of the efflux pump AdeFG(BepF)-OprC, and a transcriptional
309 regulator of the *acrR/tetR* family (**Fig. 5a, Extended Data Fig. 5e-f**). We performed proteomics
310 on a strain carrying an *adeL* mutation resulting in a premature stop codon, which accordingly
311 showed an increased abundance of all components of the efflux pump AdeFG-OprC (**Fig. 5b**).
312 Another resistant strain, although not carrying any mutation in efflux pump regulators,
313 exhibited a four-fold increase in EmrA abundance, which could explain its resistance (**Fig. 5b**).
314

315 From the mutational spectrum and proteomic changes that we observed across species,
316 increased drug efflux via RND pumps appeared as a conserved strategy to achieve nitroxoline
317 resistance. To verify this hypothesis, we tested the impact of the efflux pump inhibitors (EPI)
318 1-(1-naphthylmethyl)-piperazine (NMP) and phenylalanine-arginine β -naphthylamide (PA β N)
319 on nitroxoline susceptibility. We observed a decrease in nitroxoline MIC both in resistant and
320 susceptible strains, independent of their specific mutations and generally more marked for
321 PA β N, previously reported as an inhibitor of RND pumps in *E. coli*⁶² and of AdeFG in
322 *A. baumannii*⁶³ (**Fig. 5e, Extended Data Fig. 5g, Methods**).
323
324
325
326

327 **Discussion**

328 The alarming spread of antimicrobial resistance is aggravated by the slow development of
329 new compounds. This is not only due to the experimental challenge of developing novel
330 compounds, ideally with novel bacterial targets and low resistance potential, but also to
331 economic hurdles in bringing new compounds to the clinic. In this context, repurposing already
332 approved drugs, with known PK/PD and toxicity profile, holds great potential to accelerate the
333 clinical translation of novel antibacterial strategies.

334

335 With nitroxoline, we show how revisiting the spectrum and mode of action of an FDA-approved
336 drug opens new therapeutic possibilities for some of the most challenging bacterial species in
337 the current AMR scenario like colistin-resistant Enterobacteriaceae and *A. baumannii*. In
338 addition to its usage as single drug, we demonstrate nitroxoline as a powerful synergizer in
339 combination with other drugs, sensitizing *E. coli* to antibiotics normally bottlenecked by the
340 OM and active only against Gram-positive species. Additionally, nitroxoline resensitized
341 colistin-resistant Enterobacteriaceae, independently of the species and the colistin resistance
342 determinant, including *in vivo* against an *mcr-1* positive *K. pneumoniae* clinical isolate. While
343 further studies are needed to verify nitroxoline's adequate therapeutic concentrations beyond
344 its current UTI indications, our results, as well as recent anti-cancer formulations for other
345 anatomical regions than the bladder^{15,64,65}, suggest that the activity that we demonstrate *in*
346 *vitro* and *in vivo* could also be achieved in humans for novel therapeutic uses.

347

348 Despite its decade-long use, the mode of action of nitroxoline has remained elusive. Here, we
349 revisit its activity with systems-biology approaches, such as chemical genetics, 2D-TPP and
350 high-throughput drug combinatorial testing. The integration of this data uncovered new effects,
351 such as nitroxoline's action on the OM, on the abundance of OMPs and members of the Lpt
352 machinery (**Fig. 3a-b, Extended Data Fig. 4a-e**).

353

354 Nitroxoline has classically been considered a metal chelator: using the 2D-TPP and chemical
355 genetics and directly measuring intracellular metals, we propose a novel activity as
356 metallophore, causing copper and zinc accumulation in the cell, and thereby metal
357 stress/toxicity. This hypothesis is further supported by the conserved physiological responses
358 across various species upon nitroxoline exposure, such as the increase of the copper and zinc
359 exporters, of siderophores (likely as a response to the damage of FeS clusters by metal
360 stress), and of phenols and polyamines, known to act as antioxidants particularly upon metal
361 intoxication (**Fig. 3a-b, 4a-c, Supplementary Fig. 7-8, 9a**).

362

363 Considering our results, the broad antibacterial spectrum against Gram-negative bacteria
364 could be attributed to the fact that nitroxoline (i) seems to lack a specific protein target, (ii) has
365 pleiotropic effects on the OM and OMP levels and (iii) acts as an ionophore inducing
366 intracellular metal intoxication for zinc and copper. We highlighted critical species-specific
367 differences in nitroxoline's mode of action, such as its bactericidal activity in *A. baumannii*,
368 challenging the definition of nitroxoline as a bacteriostatic agent, and pointing towards
369 envelope damage. Since drugs can be bacteriostatic or bactericidal depending on the strain
370 considered⁶⁶, future studies should explore the conservation of such activity across multiple
371 *A. baumannii* strains and its mechanistic underpinnings.

372

373 We also revealed cross-species mechanisms for resistance, such as the regulation of efflux
374 pumps, part of the RND superfamily prevalent in Gram-negative bacteria. A few shared
375 responses were previously observed for another quinoline, chloroxine⁴⁵, including the increase
376 of MarA, also resulting in efflux pump upregulation or porin downregulation (as we showed for
377 *E. coli*) and of the nitroreductases NfsA and NfsB. While this could suggest cross-resistance
378 between nitroxoline and nitrofuran antibiotics, for which this is the most common resistance
379 determinant, this has been previously disproven at least in *E. coli*²⁸. Importantly, neither
380 through resistance evolution nor in naturally occurring resistant isolates could we detect
381 mutations on potential protein targets, in concordance with previous reports²⁸ and with our 2D-
382 TPP results, which did not identify any protein stabilization in lysates. This supports the
383 absence of a specific protein target for nitroxoline and excludes, to the best of our knowledge,
384 an important potential resistance mode.

385

386 In summary, we show how revisiting a compound used for decades with systems approaches
387 can reveal a novel spectrum, mode of action and resistance mechanisms, offering new and
388 safe therapeutic possibilities against hard-to-treat bacterial species.

389

390

391 **Methods**

392 **Bacterial strains and growth conditions**

393 All strains used in this study are listed in Supplementary Table 1. Unless otherwise specified,
394 bacteria were grown in cation-adjusted Müller-Hinton (MH II) broth at 37 °C with continuous
395 shaking at 180 rpm in 5 ml for overnight cultures and in 50 µL in microtiter plates. For growth
396 on solid medium, MH II was supplemented with 1.5% agar.

397

398 **MIC measurement and efflux pump inhibitor supplementation**

399 Antimicrobial susceptibility was determined by disc diffusion (Kirby Bauer assay), agar dilution
400 (nitroxoline concentration range: 0.125-128 µg/ml) and broth microdilution (range: 0.125-64
401 µg/ml) as previously described⁶⁷. MICs and zone of inhibitions were evaluated and interpreted
402 according to EUCAST². Efflux pumps, 1-(1-Naphthylmethyl)-piperazine (NMP) and
403 Phenylalanine-Arginine β-naphthylamide dihydrochloride (PAβN) were diluted in 25 g/L stock
404 solutions in DMSO and used as previously described⁶⁸.

405

406 **Species phylogeny analysis**

407 A phylogeny tree was constructed from the Genome Taxonomy Database (GTDB) bacterial
408 reference tree (release 08-RS214⁶⁹) using the ETE toolkit⁷⁰. The GTDB taxonomy decorating
409 the tree was then used to convert genome IDs to their corresponding species names. The tree
410 was visualized using the R package ggtree⁷¹.

411

412 **Time-kill curves**

413 A bacterial suspension in 0.9% NaCl (McFarland standard of 0.5) was prepared from overnight
414 cultures, diluted 1:100 in 10 ml of MH II broth and incubated at 37 °C with continuous shaking
415 for 30 h with a two-fold dilution series of nitroxoline (1/2-16x MIC), or DMSO as no-drug control.
416 100 µL of cells were collected at specified time intervals, serially diluted in PBS (10⁰ to 10⁻⁹
417 dilutions) and spread onto blood agar plates. Cell viability was determined by counting colony-
418 forming units (CFUs).

419

420 **A. baumannii time-lapse imaging**

421 Cells were grown overnight, diluted to an OD_{600nm} of 0.01 and grown for 3 h at 37 °C, as
422 described in the “Growth conditions” section. Cells were then spotted on MHII + 1% agarose
423 pads, supplemented or not with 8 µg/ml of nitroxoline (four-fold MIC) between a glass slide
424 and a coverslip. Slides were sealed with Valap to avoid coverslip shifting. Imaging was
425 performed at room temperature every 15 minutes for 10 hours over three distinct points of the
426 slides for each condition using a Nikon Eclipse Ti inverted microscope, equipped with a Nikon
427 DS-Qi2 camera, a Nikon Plan Apo Lambda ×60 oil Ph3 DM phase-contrast objective. Images
428 were acquired with NIS-Elements AR4.50.00 software and processed with Fiji v.2.9.0/1.53t.
429

430 **Gentamicin protection assay and quantification of intracellular *Salmonella***

431 HeLa cells were cultivated in cell culture flasks (75 cm²) with RPMI medium. One day prior to
432 infection, cells were seeded into 24-well plates (10⁵ cells per well). S. Typhi clinical isolates
433 (**Supplementary Table 1**) were grown overnight in LB medium and subcultured (1:33) for
434 three hours at 37 °C with shaking. Bacteria were harvested (13,000 x g, 5 min), resuspended
435 in RPMI medium and subsequently used for infection at a multiplicity of infection (MOI) 100
436 for 10 minutes. After discarding the supernatant, cells were washed with PBS, incubated for
437 40 minutes in RPMI with 100 µg/ml gentamicin to eliminate extracellular bacteria. Cells were
438 then washed twice with PBS and incubated with RPMI with 5 µg/ml nitroxoline (previously
439 tested to exclude toxicity on HeLa cells alone) or DMSO as a vehicle control for 7 hours.
440 Infected cells were washed with PBS, lysed with 1% Triton-X and 0.1% SDS, and serial
441 dilutions in PBS (10⁰ – 10⁻³) were plated on LB agar. Plates were incubated overnight at 37 °C
442 and bacterial colonies were counted in at least four independent experiments in two technical
443 replicates.
444

445 **Concentration pretesting for checkerboard assay and data analysis**

446 12 two-fold serial dilutions of nitroxoline and 32 other compounds (**Supplementary Table 2**)
447 were arrayed in technical duplicates in 384-well plates (ref. 781271 by Greiner BioOne) and
448 inoculated with *E. coli* K-12 at a starting OD_{600nm} of 0.001. Plates were sealed with breathable
449 membranes incubated at 37 °C with continuous shaking and OD_{600nm} was measured every 30
450 minutes for 14 hours. The background, corresponding to the OD_{600nm} at the first time point,
451 was subtracted from each measurement for each well. The point at the transition from
452 exponential to stationary phase was detected for each well and corresponding OD_{600nm}
453 normalised by the median of the corresponding value of the no-drug controls present in each
454 plate (n = 16). For each drug, the IC75, i.e. the concentration at which 75% of the growth was
455 inhibited, was identified in the resulting dose-response curves for each drug. For the
456 checkerboard assay, eight evenly spaced concentrations were then selected, with the highest
457 one corresponding to the IC75 and the lowest one corresponding to the no-drug control.
458 Nitroxoline was tested in almost all combinations at IC50 to be ideally placed to discover
459 synergies as potential combinatorial regimens. All experiments were conducted in biological
460 duplicates (i.e. plates inoculated with overnight cultures from distinct colonies).
461

462 **Checkerboard assay and data analysis**

463 Pairwise combinations of nitroxoline with 32 compounds (**Supplementary Table 2**) were
464 tested in a checkerboard microdilution assay. Drugs were arrayed in 8 x 8 checkerboards
465 using the eight concentrations previously selected. Growth was measured in the same
466 conditions and data was analysed as for the concentration pretesting. The OD_{600nm} at the
467 transition between the exponential and stationary phase, after background subtraction, was

468 normalised by the median of the corresponding value of the no-drug controls present in each
469 plate (n = 6). This value was used to calculate Bliss interaction scores ε ⁷² for each drug-drug
470 concentration combination as follows:

471

472 [eq.1]
$$\varepsilon = f_{d1,d2} - f_{d1} * f_{d2}$$

473

474 where $f_{d1,d2}$ corresponds to the observed fitness in the presence of the drug combination, and
475 f_{d1} and f_{d2} correspond to the fitness in the presence of the two single drugs. We therefore
476 obtained 49 ε scores for each checkerboard replicate. All experiments were conducted in at
477 least two biological replicates, resulting in at least 98 ε scores for each combination. Synergies
478 and antagonisms were assigned when the first and third quartile of the ε distribution,
479 respectively, exceeded |0.1| and the median ε exceeded |0.03|. Cumulative Bliss scores for
480 each combination were considered as first quartile, third quartile and median, for synergies,
481 antagonisms and neutral interactions, respectively.

482

483 **Resensitization of colistin-resistant strains by nitroxoline**

484 Cells were pre-cultured as in “Growth conditions”, growth was measured and data was
485 analysed as in “Concentration pretesting for checkerboard assay and data analysis” in plates
486 containing eight two-fold dilutions of colistin, supplemented or not with nitroxoline at 0.75
487 $\mu\text{g/ml}$. The strains used are listed in Supplementary Table 1.

488 **Two-dimensional thermal proteome profiling (2D-TPP)**

489 Cells were grown overnight, diluted 1000-fold and grown until $\text{OD}_{578\text{nm}} \sim 0.6$ at 37 °C, as
490 described in the “Growth conditions” section. After addition of nitroxoline at the selected
491 concentrations (0.02, 0.08, 0.4 and 2 $\mu\text{g/ml}$) or a vehicle-treated control, cultures were
492 incubated at 37 °C for 10 minutes. After 4,000 x g centrifugation for 5 min, cells were washed
493 with 10 ml PBS containing the drug at the appropriate concentrations and resuspended in the
494 same buffer to an $\text{OD}_{578\text{nm}}$ of 10. 100 μL of this suspension was then aliquoted to ten wells of
495 a PCR plate that was centrifuged at 4,000 x g for 5 min. 80 μL of the supernatant was removed
496 before exposing the plate to a temperature gradient for 3 minutes in a PCR machine (Agilent
497 SureCycler 8800), followed by 3 minutes at room temperature. Cells were lysed with 30 μL
498 lysis buffer (final concentration: 50 $\mu\text{g/ml}$ lysozyme, 0.8% NP-40, 1x protease inhibitor
499 (Roche), 250 U/ml benzonase and 1 mM MgCl₂ in PBS) for 20 minutes, shaking at room
500 temperature, followed by three freeze-thaw cycles. Protein aggregates were removed by
501 centrifuging the plate at 2,000 x g and filtering the supernatant at 500 x g through a 0.45 μm
502 filter plate (Millipore, ref: MSHVN4550) for 5 minutes at 4 °C. Protein digestion, peptide
503 labelling, and MS-based proteomics were performed as previously described⁷³.

504

505 **2D-TPP data analysis**

506 Data were pre-processed and normalised as previously described⁷⁴, using the *E. coli* K-12
507 strain Uniprot FASTA (Proteome ID: UP000000625), modified to include known contaminants
508 and the reversed protein sequences, to perform peptide and protein identification. Data
509 analysis was performed using the R package TPP2D⁷⁵. In brief, a null-model, assuming that
510 the soluble protein fraction depends only on temperature, and an alternative model, assuming
511 a sigmoidal dose-response function for each temperature tested, were fitted to the data. For
512 each protein, an F-statistic was obtained from the comparison of the residual sum of squares

513 (RSS) of the two models. Abundance or thermal stability effect size were calculated for each
514 protein as:

515

516 [eq.2]
$$\text{sign}(k) \sqrt{RSS^0 - RSS^1}$$

517

518 where k is the slope of the dose-response model fitted across temperatures and drug
519 concentrations, RSS⁰ and RSS¹ correspond to the residual sum of squares of the null (pEC50
520 linearly scaling with temperature) and alternative model, respectively⁷⁵.

521

522 **Gene Ontology (GO) enrichment**

523 The enrichment analysis was performed on proteomes of *E. coli* BW251113 for the 2D-TPP
524 data and for the proteomics data, and of the strains listed in Supplementary Table 1 as used
525 for “nitroxoline resistance evolution” for the analysis of proteomics data on sensitive and
526 resistant strains. Proteomes were annotated using GOs downloaded from
527 <http://geneontology.org/> (release 2022-11-03). For each GO term, the enrichment of input
528 protein sets (hits corresponding to FDR < 0.05) against the background (all detected proteins)
529 was tested using Fisher’s exact test. P-values were corrected for multiple testing using the
530 Benjamini-Hochberg procedure.

531

532 **Nitroxoline MIC in *E. coli* *IptD4213***

533 Cells were grown as in “Growth conditions”. Growth was measured as in “Concentration
534 pretesting for checkerboard assay and data analysis” upon exposure to seven nitroxoline two-
535 fold dilutions in *E. coli* BW25113 and *E. coli* *IptD4213*. Data was analysed as in
536 “Resensitization of colistin-resistant strains by nitroxoline”. Experiments were conducted in
537 three biological replicates.

538

539 **Evaluation of drug combination therapy using the *G. mellonella* infection model**

540 Larvae of the greater wax moth (*Galleria mellonella*) were infected with *Klebsiella pneumoniae*
541 and treated with single drugs or drug combinations as previously described⁷⁶. Caterpillars
542 were purchased from Valomolia (Strasbourg, France). Stock solutions of colistin and
543 nitroxoline were freshly prepared with 20 mM sodium acetate buffer (pH 5). Drug toxicity was
544 preliminarily determined by injecting larvae with serial dilutions of single drugs and
545 combinations. Non-toxic concentrations of the drugs were used for further experiments.
546 Bacteria were grown overnight as described in “Growth conditions”, harvested at an OD_{600nm}
547 of 0.2, washed with PBS and adjusted to 5.6x10⁷ cfu/ml corresponding to a median lethal dose
548 of 60-70% after 24 h, as determined in preliminary experiments. Groups of 10 caterpillars per
549 condition were injected with 10 µL of the bacterial suspension into the haemocoel via the last
550 right proleg and incubated at 37 °C. One hour post-infection caterpillars were injected into the
551 last left proleg with 10 µL of single drugs or drug combinations (0.1 µg/ml colistin and 0.1 µg/ml
552 nitroxoline). Survival was monitored for 72 h. Each strain-drug combination was evaluated in
553 three independent experiments. The statistical analysis was performed using the log-rank test.

554

555 **Efficiency of plating (EOP) assay**

556 Cells were grown overday for 8 hours as in “Growth conditions” and ten-fold serially diluted
557 eight times. From each dilution, 3 µL were spotted onto MH II plates supplemented or not with
558 0.8 mM EDTA-0.5% SDS, 0.45 µg/ml nitroxoline, and a combination of the two conditions.

559 Spots were allowed to dry and the plates were incubated overnight at 37 °C. Experiments
560 were conducted in four biological replicates for each condition.

561

562 ***N*-phenylnaphthylamine (NPN)-fluorescence assay for OM damage**

563 The assay was conducted as previously described⁷⁷. Briefly, cells were grown overnight as
564 described in the “Growth conditions” section and diluted to an OD_{600nm} = 0.5 in 5 mM pH 7.2
565 HEPES buffer (Sigma Aldrich). 100 µl of the cell suspension, together with 50 µl drugs diluted
566 in HEPES buffer at the appropriate concentrations and 50 µl *N*-phenyl-1-naphthylamine (NPN)
567 diluted in HEPES to a final concentration 10 µM, were added to a black 96-well plate with
568 clear-bottomed wells. Controls included all possible combinations of cells, drugs and NPN,
569 each of them separately, and a plain buffer control. Fluorescence was measured immediately
570 on a Tecan Safire2 plate reader using an excitation wavelength of 355 nm and an emission
571 wavelength of 405 nm. Fluorescence measurements were obtained every 30 s for 10 min.
572 After averaging across the 20 replicated measurements, the NPN Uptake Factor was
573 calculated as follows:

574 [eq.3]
$$\frac{Fluorescence_{drug+cells+NPN} - Fluorescence_{drug+cells-NPN}}{Fluorescence_{drug-cells+NPN} - Fluorescence_{drug-cells-NPN}}$$

575

576 Finally, the uptake values of samples containing drugs were compared to the no-drug control.
577 Positive controls included 10 µg/ml polymyxin B and 0.4 mM EDTA. As a negative control, a
578 non-OM-perturbing antibiotic (chloramphenicol) at its MIC (8 µg/ml) was included. Because of
579 quenching between the NPN emission wavelength and nitroxoline excitation wavelength,
580 nitroxoline concentrations higher than 2 µg/ml showed a linear decrease in fluorescence and
581 were not used. Experiments were conducted in four biological replicates.

582

583 **Measurement of metal abundance and distribution via synchrotron radiation-induced 584 X-ray fluorescence nano-imaging**

585 Experiments were performed at the Nano-imaging beamline ID16A of the European
586 Synchrotron Radiation Facility (ESRF). *E. coli* BW25113 cells were grown overnight in LB as
587 described in “Growth conditions”, subcultured until reaching OD_{600nm} 0.1 and treated for 15
588 minutes with nitroxoline (1 µg/ml) or 0.1% DMSO at 37 °C. After washing twice in PBS, 10 µL
589 were mounted on silicon nitride membranes (Silson, Southam, UK, 1.5 mm × 1.5 mm × 0.5
590 µm) before cryo-fixation using a freeze plunger (EM GP, Leica) with 1 s blotting time. A 17
591 keV X-ray beam was focused to a 45 nm horizontal × 37 nm vertical spot by a pair of multilayer-
592 coated Kirkpatrick-Baez mirrors located 185 meters downstream of the undulator source with
593 a high flux of 4.1×10¹¹ ph/s. The samples were rastered through the focal spot of the beam
594 under a vacuum of 10⁻⁷ mbar at -179 °C. XRF spectra were measured using a pair of element
595 silicon drift diode detectors (7-element detector Vortex-ME7, Hitachi, and 16-element detector)
596 to subsequently quantify elements by their K-level emission lines. Low-resolution and fast-
597 position mapping by combined X-ray phase contrast and XRF coarse scans in low-dose mode
598 (6.1×10¹⁰ ph/s) were performed using a scan step size of 300 × 300 nm² and a dwell time of
599 100 ms to identify bacteria. XRF fine scans in high-dose mode (2.49×10¹¹ ph/s) were then
600 performed with a step size of either 30 × 30 or 15 × 15 nm² and a dwell time of 50 ms to obtain
601 quantitative elemental density maps from individual point spectra. After fitting and normalizing
602 the data with PyMca XRF spectral analysis software, mean intracellular elemental area density
603 (ng/mm²) were calculated from at least two different areas from two independent experiments.

604

605 ***E. coli* chemical genetic screen**

606 Nitroxoline was tested on the *E. coli* whole-genome single-gene deletion mutant Keio
607 collection³⁹ as previously described³⁸. The collection (two independent clones per mutant),
608 which was cryopreserved in 384-well plates, was arrayed in 1536-colony format using a Rotor
609 HDA (Singer Instruments). Cells were grown at 37 °C for 10 hours and pinned on LB-plates,
610 with or without nitroxoline (2 µg/ml) in three replicates. After 16 hours of incubation at 37 °C,
611 plates were imaged using a controlled-light setup (splmager, S&P Robotics) and an 18-
612 megapixel Canon EOS Rebel T3i camera. Mutant growth was calculated by quantifying colony
613 opacity, estimated with the Iris software⁷⁸. To account for the better growth at the edges of a
614 plate, two outermost columns/rows were multiplicatively adjusted to the median opacity of the
615 plate⁷⁹. Mutant fitness was then estimated as a fraction of the plate median opacity. A change
616 in mutant fitness was quantified as a multiplicative change per condition using a two-sided
617 unpaired t-test. The resulting t-statistic was empirical Bayes' moderated⁸⁰ and corresponding
618 p-values were adjusted for multiple testing (Benjamini-Hochberg correction⁸¹)
619 (**Supplementary Table 4**).
620

621 **Experimental resistance evolution**

622 Nitroxoline-sensitive clinical isolates and reference strains of *E. coli*, *K. pneumoniae* and
623 *A. baumannii* (**Supplementary Table 1**) were exposed to increasing nitroxoline
624 concentrations from 0.5x MIC to 4x MIC (two-fold dilution steps) in LB as previously
625 described²⁸. A defined bacterial inoculum (McFarland 0.5, corresponding to 10⁸ bacteria/ml)
626 was passaged every 24 hours for at least 7 days in 5 ml LB. In case of bacterial growth,
627 nitroxoline concentration was increased two-fold. The MIC of the strains was measured using
628 broth microdilution and agar dilution as described before.
629

630 **Genome sequencing and single nucleotide polymorphism (SNP) analysis**

631 Experimentally evolved strains were defined as resistant if MIC fold increase ≥ 4 compared to
632 parental strain. Clinical isolates were considered resistant if their MIC was at least two times
633 the median species MIC measured in this study (**Fig. 1c, Extended Data Fig. 1a-b**). Genome
634 sequencing was performed for all isolates using short-read technology (MiSeq platform;
635 Illumina, San Diego, CA) generating 150 or 250 bp paired-end reads and >100-fold average
636 coverage. After quality trimming of the reads, *de novo* assembly and scaffolding was
637 conducted using SPAdes version 3.12.0 with standard parameters. Annotation was done with
638 Prokka version 1.14.6⁸². SNP analysis was performed using snippy
639 (<https://github.com/tseemann/snippy>) to compare isogenic nitroxoline susceptible and
640 resistant strains. Deletions were analysed using an in-house script. Clinical isolates were
641 further compared to annotated reference genomes (GCF_000258865.1, GCF_000750555.1
642 and Bioproject PRJNA901493) to determine mutations in genes encoding for efflux pump
643 regulators with an in-house script.
644

645 **Structural alignment and annotation of OqxR, EmrR, AdeL, AcrR/TetR**

646 Amino acid changes in mutated proteins from nitroxoline-resistant clinical isolates were
647 mapped onto protein features extracted from Proteins API⁸³ using a custom-script, adapted
648 from the software mutplot⁸⁴ (UniProt IDs used: EmrR: P0ACR9; AdeL: A0A059ZJX1;
649 AcrR/TetR: A0A245ZZS0). Because OqxR in *K. pneumoniae* lacks a UniProt ID and feature
650 annotation, we searched for its closest, feature-annotated, structural homolog with Foldseek
651 using the 3Di/AA mode⁸⁵. The highest-ranking protein (E-value 7.58E-07, score 265) with
652 available domain annotation was another Rrf2 transcription factor, NsrR from *S. enterica*
653 *subsp. enterica* serovar Typhimurium LT2 (AF-Q8ZKA3-F1-model_v4). Structures were

654 visualized using Mol* Viewer⁸⁶ from PDB⁸⁷. Alignment of wild-type and mutated OqxR
655 structures were performed using the Pairwise Structure Alignment tool on RCSB PDB⁸⁸.
656 Amino acid sequences of the wild-type and mutated forms can be found in the **Supplementary**
657 **File**.

658

659 **Complementation of nitroxoline resistant isolates**

660 Clinical isolates with *emrR* or *oqxR* mutations were transformed with pTOPO expression
661 plasmids (pCR-Blunt II-TOPO, Invitrogen) harboring the wild-type gene (pTOPO_*emrR* or
662 pTOPO_*oqxR*) via electroporation as previously described⁸⁹. For this purpose, bacteria were
663 grown over night as described in "Growth conditions". On the next day, cells were harvested
664 subcultivated (1:100 dilution) until an OD_{600nm} of 0.4-0.6 was reached. Cells were harvested
665 (13,000 x g, 3 min), washed once in 500 µL 300 mM ice-cold sucrose, and transformed with
666 500 ng of plasmid DNA with a Gene Pulser Xcell electroporator (Bio-Rad) with 2.2 kV, 200 Ω,
667 and 25 µF settings. Cells were recovered in SOC medium at 37 °C for one hour (with shaking
668 at 180 rpm) and plated on LB agar plates with kanamycin (30 mg/L for *E. coli* and 100 mg/L
669 for *K. pneumoniae* and *A. baumannii*) for selection of transformants, subsequently used for
670 MIC testing.

671

672 **Proteome profiling of mutant strains**

673 Cells were grown overnight as described in "Growth conditions", diluted to OD_{600nm} = 0.05 in
674 3 ml LB, grown until reaching OD_{600nm} = 0.5. Nitroxoline-sensitive strains were treated with 1x
675 MIC nitroxoline (0.5-4 µg/ml depending on the strain) or with the DMSO control for 10 min.
676 Nitroxoline-resistant strains were exposed only to DMSO. After 4,000 x g centrifugation for
677 5 min, 2 ml aliquots were washed with 1 ml PBS (containing the drug at the appropriate
678 concentration for drug-exposed samples). The final pellets were frozen at -20 °C until analysis,
679 when they were resuspended in lysis buffer (final concentration: 2% SDS, 250 U/ml
680 benzonase and 1 mM MgCl₂ in PBS) and immediately incubated at 99 °C for 10 min. Protein
681 digestion, peptide labelling, and MS-based proteomics were performed as previously
682 described⁹⁰. Limma analysis was performed similarly as previously described⁹⁰ to determine
683 proteins that were significantly up or downregulated.

684

685 **Orthology analysis of resistant strains**

686 All complete genomes belonging to the *A. baumannii*, *E. coli* and *K. pneumoniae* species were
687 downloaded from NCBI RefSeq using ncbi-genome-download⁹¹. Newly sequenced genomes
688 were annotated using prokka, with default parameters⁸². The pangenome for each of the three
689 species was computed separately using panaroo with the "--clean-mode strict --
690 merge_paralogs" options⁹². One or more protein sequences for each gene were then sampled
691 in the three pangenomes, giving priority to parental sensitive strains. If a gene was not present
692 in any of these "focal" strains, a random strain was selected. Sampled protein sequences were
693 annotated using egnog-mapper, with the following parameters: "--target_orthologs one2one -
694 -go_evidence all --tax_scope Bacteria --pfam_realign realign"⁹³. GO terms associated with
695 each gene cluster were recovered using this automatic annotation. We further expanded this
696 set by querying the NCBI protein database using Biopython's Entrez interface⁹⁴. This was
697 possible because we used complete genomes from RefSeq. We then combined the two
698 annotation sets to derive a set of GO terms for each gene cluster in the three species.

699

700 **Data availability**

701 Source data for all figures is available with this manuscript. The mass spectrometry proteomics
702 data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository
703 with the dataset identifiers PXD050778 (reviewer id: reviewer_pxd050778@ebi.ac.uk; OlbUIX9I)
704 and PXD050827 (reviewer id: reviewer_pxd050827@ebi.ac.uk; zckFx69i).

705

706

707 **Author contribution**

708 E.C., M.T. and S.G. conceived and designed the study. S.G. and A.T. supervised the study.
709 E.C., M.T., M.S. and S.G. designed the experiments. M.S. and S.G. performed and analysed
710 the MIC testing of clinical isolates; M.T., M.S. and J.J.P. analysed resistant mutants. M.T. and
711 J.P. performed time-kill experiments and *S. Typhi* intracellular killing assay. M.T. and M.S.
712 performed efflux-pump inhibitor experiments. M.S. performed nitroxoline resistance evolution
713 and sequencing of resistant clones. M.T. performed *G. mellonella* infection experiments. M.T.,
714 M.E., C.R., P.C. and S.G. performed the XRF experiment. E.C. performed and analysed the
715 time-lapse microscopy, drug pretesting and combination screen with the help of M.K., *E. coli*
716 *lptD4213* MIC testing, experiments on colistin-resistant *Enterobacteriaceae*, EOP and NPN
717 assays. E.C. and A.O. performed the phylogeny analysis. A.M. performed the 2D-TPP and
718 proteomics experiments and E.C. analysed the data. M.G. performed the orthology analysis
719 of resistant strains. A.K. and F.C. performed the chemical genetic pretesting and screen; V.V.
720 analysed the data. T.G.S. analysed the genome sequences and performed the SNP analysis.
721 E.C. and S.G. wrote the manuscript with input from all authors. All authors approved the final
722 version.

723

724

725 **Acknowledgements**

726 S.G. was supported by the Rolf. M. Schwiete-Stiftung. A.T., V.V., F.C., A.B.-N. and M.Z. were
727 supported by EMBL. M.K. was supported by Vetenskapsrådet 2019-00666. A.M. was supported
728 by a fellowship from the EMBL Interdisciplinary Postdoc (EI3POD) programme under Marie
729 Skłodowska-Curie Actions COFUND (grant number 664726). M.G. was funded by the Deutsche
730 Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence
731 Strategy - EXC 2155 - project number 390874280. A. O. and P.B. were supported by
732 the German Federal Ministry of Education and Research (LAMarCK, 031L0181A to P.B.). M.M.S.
733 was supported by the Allen Distinguished Investigator award through the Paul G. Allen Frontiers
734 Group". We thank ESRF for granting beamtime on ID16A through experiment LS-3269 (DOI
735 10.15151/ESRF-ES-1346211120).

736

737

738 **Figures**

739 **Figure 1. Nitroxoline is active beyond UTI pathogens, including intracellular bacteria,
740 and exerts bactericidal activity. a.** Nitroxoline structure. **b.** Overlap between Gram-negative
741 bacterial genera or species tested with three orthogonal susceptibility testing methods in this
742 study and according to EUCAST¹⁹. All seven EUCAST-specific entries are genera for which
743 species resolution is missing. **c.** Nitroxoline is active against many Gram-negative bacterial
744 species. MICs were determined against 30 bacterial species in broth microdilution (Methods).
745 The total number of strains tested is indicated next to species, ordered by phylogeny according
746 to GTDB⁶⁹ (Methods), which classifies *E. coli* and *Shigella* as the same species. Multiple

747 species are aggregated for *Salmonella* spp., *Shigella* spp., and *Burkholderia cenocepacia*
748 complex. The clinical breakpoint for *E. coli* (16 µg/ml) is indicated (black line). **d.** Nitroxoline is
749 active against intracellular *S. Typhi*. Intracellular bacterial counts were assessed with the
750 gentamicin protection assay in two *S. Typhi* clinical isolates (Methods, **Supplementary Table**
751 **1**). Cell counts were determined before and after treatment with nitroxoline (5 µg/ml) or solvent
752 control (DMSO) at 7 hours p.i. (MOI 100, 10 minutes incubation). Mean and standard error are
753 shown across four independent experiments. ns p > 0.05; * ≤ p 0.05; ** p ≤ 0.01 (two-sided
754 Welch's *t*-test). **e.** Nitroxoline is bactericidal against *A. baumannii* ATCC 19606^T (Methods).
755 Mean and standard deviation across at least three biological replicates are shown for each
756 condition. The no-drug control is shown in Extended Data Fig. 2d. **f.** Nitroxoline induces lysis
757 in *A. baumannii* ATCC 19606^T. White arrowheads mark release of cytoplasmic material and
758 loss of the pericellular halo. Representative images of phase-contrast videos were acquired
759 after 8 µg/ml nitroxoline treatment (4 x MIC, Methods, **Supplementary Video 1**). Scale bar
760 denotes 5 µm.

761
762 **Figure 2. Nitroxoline interacts with other antibiotics in *E. coli* and resensitizes colistin-
763 resistant *E. coli* and *K. pneumoniae*.** **a.** Nitroxoline interacts with several antibiotics in
764 *E. coli*. Nitroxoline combinations were tested in 8 x 8 broth microdilution checkerboards in
765 *E. coli* BW25113 (**Extended Data Fig. 3**). Bliss interaction score distributions are shown for
766 each combination. Median (central line), first (lower hinge) and third quartile (upper hinge) are
767 shown for each boxplot. Whiskers correspond to 1.5 x IQR from each hinge. The numbers
768 stand for cumulative Bliss scores for each combination (Methods). **b.** Nitroxoline resensitizes
769 colistin-resistant *K. pneumoniae* and *E. coli*. Growth (endpoint OD_{595nm} corresponding to the
770 beginning of stationary phase for the untreated control for each strain, Methods) was
771 measured in the presence of serial two-fold dilutions of colistin, supplemented or not with 0.75
772 µg/ml nitroxoline and normalised by no-drug controls. Three *K. pneumoniae* and two *E. coli*
773 strains (dashed lines) and their isogenic colistin-resistant descendants (solid lines) were
774 tested, including experimentally evolved and clinical isolates (framed in black, Methods,
775 **Supplementary Table 1**). One *K. pneumoniae* clinical isolate carries the *mcr-1* positive
776 natural plasmid pKP2442 and therefore lacks a parental strain. Mean and standard error
777 across four biological replicates are shown. Empty vector controls and full growth curves are
778 shown in the Supplementary File. **c.** Nitroxoline resensitizes a colistin-resistant *K. pneumoniae*
779 clinical isolate *in vivo*. *G. mellonella* larvae were infected with the indicated isolate and treated
780 with single drugs or their combination. The percentage of surviving treated and untreated
781 (solvent-only control) larvae was monitored over time. The mean and standard error are shown
782 across four independent experiments for each condition. p = 0.0255 and p=0.0098 comparing
783 colistin-nitroxoline with colistin and untreated, respectively (log-rank test). NX, nitroxoline;
784 COL, colistin.

785
786 **Figure 3. Nitroxoline directly perturbs the OM in *E. coli*.** **a.** Nitroxoline decreases
787 abundance and stability of outer membrane protein and Lpt machinery. Volcano plots
788 depicting abundance or stability changes upon nitroxoline exposure in whole-cell 2D-TPP.
789 Effect size and statistical significance (Methods) are represented on the x- and y- axis,
790 respectively. For visualisation purposes, the F-statistic was linearly transformed to 1 when 0.
791 Proteins are color-coded according to their annotation, derived from Gene Ontology (GO)
792 (**Extended Data Fig. 4a**). **b.** Nitroxoline effects profiled by chemical genetics on an *E. coli*
793 whole-genome single-gene deletion mutant library³⁹. Effects are expressed as multiplicative
794 changes of mutant fitness compared to the plate median (approximating wild-type) and

795 significance was obtained from an empirical Bayes' moderated t-statistics, Benjamini-
796 Hochberg adjusted (Methods, **Supplementary Table 4**). Genes are color-coded as in Fig. 3a
797 (GO in **Extended Data Fig. 4b**). **c.** Nitroxoline directly affects OM permeability. NPN
798 fluorescence upon exposure of *E. coli* BW25113 to nitroxoline. Positive (polymyxin B, EDTA)
799 and negative (chloramphenicol, untreated samples) controls are shown. Data points represent
800 the average for each of four biological replicates per condition, across fluorescence
801 measurements every 30 s over 10 minutes. The horizontal line and error bars indicate mean
802 and standard error. ns p > 0.05; ** p ≤ 0.01; *** p ≤ 0.001; **** p ≤ 0.0001 (two-sided Welch's
803 t-test using the chloramphenicol control as reference group). **d.** Nitroxoline is more potent
804 upon chemical perturbation of the OM. EOP assays with 10-fold serial dilutions of *E. coli*
805 BW25113 cells plated onto no-drug control plates, 0.5% SDS–0.8 mM EDTA, 0.45 µg/ml
806 nitroxoline, or a combination of the two conditions. Four biological replicates were tested for
807 each condition. For all concentrations tested, including synergistic ones at which growth can
808 be observed, see **Extended Data Fig. 5c**.
809

810 **Figure 4. Nitroxoline increases intracellular levels of copper and zinc. a-c.** Nitroxoline
811 affects metal homeostasis inducing copper and zinc detoxification responses, as determined
812 by 2D-TPP. Abundance and thermal stability profiles of the Cu(I) exporter CopA, the
813 periplasmic copper oxidase CueO (**a**), the transcriptional regulators Zur and ZntR, zinc
814 importer ZnuA and exporter ZntA (**b**), and the manganese importer MntH (**c**), are shown. **d.**
815 Nitroxoline increases intracellular levels of copper, zinc and manganese. Synchrotron-based
816 nano-XRF measurements on *E. coli* untreated or exposed to nitroxoline (1 µg/ml), expressed
817 as elemental areal density (ng/cm²). The mean and standard error across ≥ 5 cells are shown
818 (Methods). ns p > 0.05; * p ≤ 0.05; ** p ≤ 0.01 (two-sided Welch's t-test).
819

820 **Figure 5. Resistance to nitroxoline is associated with efflux pump upregulation across**
821 **species. a.** Whole-genome sequencing of experimentally evolved nitroxoline-resistant strains
822 (**Supplementary Table 1, 6**). Nitroxoline MIC values are indicated below each strain. Mutation
823 effects are color-coded. Strains on which proteomics was performed (**Fig. 5b**) are indicated in
824 bold. *K. pneumoniae* strains whose sensitive parental strain lacks *oqxR* are marked with an
825 asterisk. The in-patient evolved *K. pneumoniae* clinical isolate 8_R1 is indicated in italics. **b.**
826 Protein abundance changes in nitroxoline-resistant strains. Selected proteins annotated as
827 efflux pumps or porins are shown and clustered according to Pearson's correlation. Hits are
828 marked with an asterisk (adjusted p-value ≤ 0.05 and at least two-fold abundance change,
829 Methods). For all proteome changes of resistant strains see **Extended Data Fig. 6a-b** and
830 **Supplementary Table 5**. Species are color-coded as in Fig. 5a. **c.** Wild-type *emrR* and *oqxR*
831 complementation restores nitroxoline susceptibility. The experimentally evolved *E. coli* strain
832 1_R4 with *emrR* D109V mutation (**Fig. 5a, Extended Data Fig. 6c**) and *K. pneumoniae* strain
833 4_R1 harbouring the *oqxR* G60-L67 duplication (**Fig. 5a, d**) are shown. Nitroxoline MIC was
834 measured by broth microdilution (Methods). **d.** Amino acid changes resulting from *oqxR*
835 mutations. The domain annotation of OqxR was obtained from its closest annotated structural
836 homolog NsrR (Methods). **e.** Efflux-pump inhibitors resensitize nitroxoline-resistant strains.
837 Nitroxoline MIC was measured by broth microdilution (Methods). Resistant strains are shown
838 as shaded plots next to their parental sensitive strains. For results on all strains see **Extended**
839 **Data Fig. 5g**. p-values are only shown when significant: * p ≤ 0.05; ** p ≤ 0.01 (one-sided
840 Welch's t-test).
841
842

843

844 **Extended Data Figures**

845 **Extended Data Figure 1. Nitroxoline MIC measurement via disk diffusion and agar**
846 **dilutions and agreement across the different assays and with EUCAST. a-b.** MIC
847 measurements via disk diffusion (a) and agar dilution (b). Sensitivity is expressed as inhibition
848 zone diameter (mm) (a) or $\mu\text{g}/\text{ml}$ (b) (Methods). Each value is annotated and color-coded
849 according to the number of strains it was measured in. Multiple species are aggregated for
850 *Salmonella* spp., *Shigella* spp., *Burkholderia cenocepacia complex* and *Psychrobacter* spp.
851 (Source Data ED Fig. 1a-b). **c.** Concordance between MICs measured in broth dilution in this
852 study and according to EUCAST¹⁹ for the eight overlapping species. **d-f.** Concordance
853 between MICs measured across three orthogonal methods: agar dilution and disk diffusion
854 (d), broth and agar dilution (e), broth dilution and disk diffusion (f). Pearson's correlation
855 coefficient and p-value are shown. Disk diffusion results are expressed as in Extended Data
856 Fig. 1a.

857

858 **Extended Data Figure 2. Bactericidal activity of nitroxoline. a.** Nitroxoline is bacteriostatic
859 against *E. coli* BW25113 at concentrations up to 4 x MIC (16 $\mu\text{g}/\text{ml}$) and bactericidal from 8 x
860 MIC (32 $\mu\text{g}/\text{ml}$). Results are represented as in Fig. 1e. **b.** Time-kill curves for nitroxoline in *A.*
861 *baumannii* ATCC 19606^T (Fig. 1e) including the no-drug control. Results are represented as
862 in Fig. 1e.

863

864 **Extended Data Figure 3. Checkerboard microdilution of nitroxoline combinations with**
865 **32 antimicrobials.** Drugs were tested in combination with nitroxoline in 8 x 8 broth
866 microdilution checkerboards. The median fitness (OD_{595} at 7.5 h normalized by no-drug
867 controls) across at least two biological replicates is shown (**Supplementary File**).

868

869 **Extended Data Figure 4. Nitroxoline perturbs the OM and affects metal homeostasis in**
870 ***E. coli*. a.** GO enrichment of 2D-TPP abundance and stability changes (**Fig. 3a**,
871 **Supplementary Table 3**). Significantly enriched GO terms are shown (adjusted p-value <
872 0.05, Fisher's exact test). Dot size represents the number of hit proteins for each term, dot
873 colour the adjusted p-value, label colour highlights GO terms related to OM or LPS, metal
874 homeostasis, and respiration. **b.** Nitroxoline affects the abundance and stability of the LPS
875 transport machinery. In the thermal stability profiles of Lpt system members, protein fold
876 change is shown for each temperature and nitroxoline concentration. **c.** GO enrichment of
877 chemical genetics hits (**Fig. 3b, Supplementary Table 4**). Results are represented as in
878 Extended Data Fig. 4a. **d.** Nitroxoline is more potent upon genetic perturbation of the OM.
879 Nitroxoline susceptibility in *E. coli* BW25113 and its OM-defective derivative strain,
880 carrying the *IptD4213* mutation⁴⁰. Data is shown as in Fig. 2b. For full growth curves see
881 Supplementary File. **e.** Lower concentrations of nitroxoline and EDTA were tested than in Fig.
882 3d (EOP assay, Methods) to show the first dosage at which growth was visible upon
883 combination. **f.** Nitroxoline induces effects in 2D-TPP consistent with iron-sulfur cluster
884 disruption. Thermal profiles are represented as in Extended Data Fig. 4b.

885

886 **Extended Data Figure 5. Nitroxoline resistance is based on conserved mechanisms**
887 **across species. a.** Volcano plots of abundance changes in proteomics of resistant strains
888 compared to isogenic sensitive strains. Effect size and statistical significance (Methods) are
889 represented on the x- and y- axis, respectively. Data points are colour-coded according to their

890 conservation across or within-species. For sensitive strains see Supplementary File. **b.** Protein
891 abundance changes in nitroxoline-resistant strains. Only significant and strong changes
892 (adjusted p-value ≤ 0.01 , $|\log_2$ fold-change (abundance)| ≥ 2) are included (**Supplementary**
893 **Table 5**). Proteins and strains are clustered according to Pearson's correlation. Results are
894 represented as in Fig. 5b. **c.** Amino acid changes from *emrR* mutations in clinical and
895 experimentally evolved nitroxoline-resistant isolates. Results are represented as in Fig. 5d. **d.**
896 Superimposition of mutated and wild-type OqxR structure. The G60-L67 duplication loop is
897 highlighted in green (**Methods, Supplementary File**). **e-f.** Amino acid changes from *adeL* (**e**)
898 and *acrR/tetR* (**f**) mutations in clinical and experimentally evolved nitroxoline-resistant isolates.
899 Results are represented as in Fig. 5d. **g.** Efflux-pump inhibitors resensitize nitroxoline-resistant
900 strains. Results are represented as in Fig. 5e.

901

902

903 **Supplementary Tables**

904 **Supplementary Table 1.** All the strains used in this study, their genotype, antibiotic resistance
905 and nitroxoline MIC, except for those shown in Fig. 1b-c and Extended Data Fig. 1a-b (see
906 Source Data).

907

908 **Supplementary Table 2.** The drugs tested in combination with nitroxoline in *E. coli* BW25113,
909 their chemical class and highest concentration tested.

910

911 **Supplementary Table 3.** 2D-TPP data from *E. coli* BW25113 whole-cell samples exposed to
912 nitroxoline (Methods).

913

914 **Supplementary Table 4.** Mutant fitness as log(fold change) and FDR from the chemical
915 genetic screen performed on the *E. coli* Keio collection with nitroxoline (Methods).

916

917 **Supplementary Table 5.** Proteomics data from nitroxoline-sensitive and resistant strains
918 listed in Supplementary Table 1 and annotated with their orthologous groups (Methods).

919

920

921 **Supplementary File**

922 Supplementary Figs. 1-9.

923

924

925 **Supplementary Videos**

926 **Supplementary Videos 1-2.** Time-lapse of *A. baumannii* growing on cation-adjusted Mueller-
927 Hinton-agarose 1% pad, supplemented (**1**) or not (**2**) with 8 μ g/ml nitroxoline.

928

929 **References**

- 930 1. Fraser, R. S. & Creanor, J. Rapid and selective inhibition of RNA synthesis in yeast by 8-
931 hydroxyquinoline. *Eur. J. Biochem.* **46**, 67–73 (1974).
- 932 2. The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for
933 interpretation of MICs and zone diameters. Version 14.0, 2024. <http://www.eucast.org>.
- 934 3. Naber, K. G., Niggemann, H., Stein, G. & Stein, G. Review of the literature and individual
935 patients' data meta-analysis on efficacy and tolerance of nitroxoline in the treatment of
936 uncomplicated urinary tract infections. *BMC Infect. Dis.* **14**, 628 (2014).
- 937 4. Kranz, J. *et al.* Uncomplicated Bacterial Community-Acquired Urinary Tract Infection in
938 Adults. *Dtsch. Arztebl. Int.* **114**, 866–873 (2017).
- 939 5. Repac Antić, D., Parčina, M., Gobin, I. & Petković Didović, M. Chelation in Antibacterial
940 Drugs: From Nitroxoline to Cefiderocol and Beyond. *Antibiotics (Basel)* **11**, (2022).
- 941 6. Lambert-Zechovsky, N. *et al.* Clinical study and effect of nitroxoline on fecal flora in
942 children. *Pathol. Biol.* **35**, 669–672 (1987).
- 943 7. Kranz, J. *et al.* The 2017 Update of the German Clinical Guideline on Epidemiology,
944 Diagnostics, Therapy, Prevention, and Management of Uncomplicated Urinary Tract
945 Infections in Adult Patients. Part II: Therapy and Prevention. *Urologia Internationalis* vol.
946 100 271–278 Preprint at <https://doi.org/10.1159/000487645> (2018).
- 947 8. Hoffmann, A. M., Wolke, M., Rybníkář, J., Plum, G. & Fuchs, F. In vitro Activity of
948 Repurposed Nitroxoline Against Clinically Isolated Mycobacteria Including Multidrug-
949 Resistant *Mycobacterium tuberculosis*. *Front. Pharmacol.* **13**, 906097 (2022).
- 950 9. Fuchs, F. *et al.* Antifungal activity of nitroxoline against *Candida auris* isolates. *Clin.*
951 *Microbiol. Infect.* **27**, 1697.e7-1697.e10 (2021).
- 952 10. Cherdtrakulkiat, R. *et al.* Derivatives (halogen, nitro and amino) of 8-hydroxyquinoline with
953 highly potent antimicrobial and antioxidant activities. *Biochem Biophys Rep* **6**, 135–141
954 (2016).
- 955 11. Zhang, Z.-R. *et al.* Generation and characterization of Japanese encephalitis virus
956 expressing GFP reporter gene for high throughput drug screening. *Antiviral Res.* **182**,
957 104884 (2020).
- 958 12. Ibáñez de Garayo, M., Liu, W., Rondeau, N. C., Damoci, C. B. & Miranda, J. J. L.
959 Rationally repurposed nitroxoline inhibits preclinical models of Epstein-Barr virus-
960 associated lymphoproliferation. *J. Antibiot.* **74**, 763–766 (2021).
- 961 13. Matthew T. Laurie, Corin V. White, Hanna Retallack, Wesley Wu, Matthew S. Moser, Judy
962 Sakanari, Kenny Ang, Christopher Wilson, Michelle R. Arkin, Joseph L. DeRisi.
963 Repurposing the quinoline antibiotic nitroxoline to treat infections caused by the brain-
964 eating amoeba *Balamuthia mandrillaris*. *biorXiv* (2018) doi:10.1101/331785.
- 965 14. Chang, W.-L., Hsu, L.-C., Leu, W.-J., Chen, C.-S. & Guh, J.-H. Repurposing of nitroxoline
966 as a potential anticancer agent against human prostate cancer: a crucial role on
967 AMPK/mTOR signaling pathway and the interplay with Chk2 activation. *Oncotarget* **6**,
968 39806–39820 (2015).
- 969 15. Veschi, S. *et al.* Effects of repurposed drug candidates nitroxoline and nelfinavir as single
970 agents or in combination with erlotinib in pancreatic cancer cells. *J. Exp. Clin. Cancer*
971 *Res.* **37**, 236 (2018).
- 972 16. Xu, N. *et al.* Nitroxoline inhibits bladder cancer progression by reversing EMT process
973 and enhancing anti-tumor immunity. *J. Cancer* **11**, 6633–6641 (2020).
- 974 17. Mitrović, A. *et al.* Organoruthenated Nitroxoline Derivatives Impair Tumor Cell Invasion
975 through Inhibition of Cathepsin B Activity. *Inorg. Chem.* **58**, 12334–12347 (2019).

976 18. Wykowski, R., Fuentefria, A. M. & de Andrade, S. F. Antimicrobial activity of clioquinol
977 and nitroxoline: a scoping review. *Arch. Microbiol.* **204**, 535 (2022).

978 19. European Committee on Antimicrobial Susceptibility Testing. Nitroxoline: Rationale for
979 the clinical breakpoints, version 1.0 2016, <http://www.eucast.org>.

980 20. Wijma, R. A., Huttner, A., Koch, B. C. P., Mouton, J. W. & Muller, A. E. Review of the
981 pharmacokinetic properties of nitrofurantoin and nitroxoline. *J. Antimicrob. Chemother.*
982 **73**, 2916–2926 (2018).

983 21. Hof, H., Bertsch, D., Passek, D. & Schwarz, R. [Nitroxoline - an option for the antibiotic
984 treatment of urinary tract infections]. *Urologe A* **56**, 167–171 (2017).

985 22. Pelletier, C., Prognon, P. & Bourlioux, P. Roles of divalent cations and pH in mechanism
986 of action of nitroxoline against *Escherichia coli* strains. *Antimicrob. Agents Chemother.*
987 **39**, 707–713 (1995).

988 23. Sobke, A. *et al.* The urinary antibiotic 5-nitro-8-hydroxyquinoline (Nitroxoline) reduces the
989 formation and induces the dispersal of *Pseudomonas aeruginosa* biofilms by chelation of
990 iron and zinc. *Antimicrob. Agents Chemother.* **56**, 6021–6025 (2012).

991 24. Abouelhassan, Y. *et al.* Nitroxoline: a broad-spectrum biofilm-eradicating agent against
992 pathogenic bacteria. *Int. J. Antimicrob. Agents* **49**, 247–251 (2017).

993 25. Principe, L. *et al.* Zinc Chelators as Carbapenem Adjuvants for Metallo-β-Lactamase-
994 Producing Bacteria: In Vitro and In Vivo Evaluation. *Microb. Drug Resist.* **26**, 1133–1143
995 (2020).

996 26. Proschak, A. *et al.* Nitroxoline and its derivatives are potent inhibitors of metallo-β-
997 lactamases. *Eur. J. Med. Chem.* **228**, 113975 (2022).

998 27. Kresken, M. & Körber-Irrgang, B. In vitro activity of nitroxoline against *Escherichia coli*
999 urine isolates from outpatient departments in Germany. *Antimicrob. Agents Chemother.*
1000 **58**, 7019–7020 (2014).

1001 28. Puertolas-Balint, F., Warsi, O., Linkevicius, M., Tang, P.-C. & Andersson, D. I. Mutations
1002 that increase expression of the EmrAB-TolC efflux pump confer increased resistance to
1003 nitroxoline in *Escherichia coli*. *J. Antimicrob. Chemother.* **75**, 300–308 (2020).

1004 29. Dandekar, T., Astrid, F., Jasmin, P. & Hensel, M. *Salmonella enterica*: a surprisingly well-
1005 adapted intracellular lifestyle. *Front. Microbiol.* **3**, 164 (2012).

1006 30. GBD 2017 Typhoid and Paratyphoid Collaborators. The global burden of typhoid and
1007 paratyphoid fevers: a systematic analysis for the Global Burden of Disease Study 2017.
1008 *Lancet Infect. Dis.* **19**, 369–381 (2019).

1009 31. Elsinghorst, E. A. Measurement of invasion by gentamicin resistance. in *Methods in*
1010 *Enzymology* vol. 236 405–420 (Academic Press, 1994).

1011 32. Paterson, J. R. *et al.* Insights into the Antibacterial Mechanism of Action of Chelating
1012 Agents by Selective Deprivation of Iron, Manganese, and Zinc. *Appl. Environ. Microbiol.*
1013 **88**, e0164121 (2022).

1014 33. Wagenlehner, F. M. E. *et al.* Urinary concentrations and antibacterial activities of
1015 nitroxoline at 250 milligrams versus trimethoprim at 200 milligrams against uropathogens
1016 in healthy volunteers. *Antimicrob. Agents Chemother.* **58**, 713–721 (2014).

1017 34. French, G. L. Bactericidal agents in the treatment of MRSA infections--the potential role
1018 of daptomycin. *J. Antimicrob. Chemother.* **58**, 1107–1117 (2006).

1019 35. Ocampo, P. S. *et al.* Antagonism between bacteriostatic and bactericidal antibiotics is
1020 prevalent. *Antimicrob. Agents Chemother.* **58**, 4573–4582 (2014).

1021 36. Nation, R. L., Rigatto, M. H. P., Falci, D. R. & Zavascki, A. P. Polymyxin Acute Kidney
1022 Injury: Dosing and Other Strategies to Reduce Toxicity. *Antibiotics (Basel)* **8**, (2019).

1023 37. Mateus, A., Määttä, T. A. & Savitski, M. M. Thermal proteome profiling: unbiased
1024 assessment of protein state through heat-induced stability changes. *Proteome Sci.* **15**, 13
1025 (2016).

1026 38. Nichols, R. J. *et al.* Phenotypic landscape of a bacterial cell. *Cell* **144**, 143–156 (2011).

1027 39. Baba, T. *et al.* Construction of *Escherichia coli* K-12 in-frame, single-gene knockout
1028 mutants: the Keio collection. *Mol. Syst. Biol.* **2**, 2006.0008 (2006).

1029 40. Ruiz, N., Falcone, B., Kahne, D. & Silhavy, T. J. Chemical conditionality: a genetic
1030 strategy to probe organelle assembly. *Cell* vol. 121 307–317 (2005).

1031 41. Mahoney, T. F., Ricci, D. P. & Silhavy, T. J. Classifying β-Barrel Assembly Substrates by
1032 Manipulating Essential Bam Complex Members. *J. Bacteriol.* **198**, 1984–1992 (2016).

1033 42. Vaara, M. Agents that increase the permeability of the outer membrane. *Microbiol. Rev.*
1034 **56**, 395–411 (1992).

1035 43. Schneck, E. *et al.* Quantitative determination of ion distributions in bacterial
1036 lipopolysaccharide membranes by grazing-incidence X-ray fluorescence. *Proc. Natl.*
1037 *Acad. Sci. U. S. A.* **107**, 9147–9151 (2010).

1038 44. Argüello, J. M., Raimunda, D. & Padilla-Benavides, T. Mechanisms of copper
1039 homeostasis in bacteria. *Front. Cell. Infect. Microbiol.* **3**, 73 (2013).

1040 45. Anglada-Girotto, M. *et al.* Combining CRISPRi and metabolomics for functional
1041 annotation of compound libraries. *Nat. Chem. Biol.* (2022) doi:10.1038/s41589-022-
1042 00970-3.

1043 46. Tardito, S. *et al.* Copper-dependent cytotoxicity of 8-hydroxyquinoline derivatives
1044 correlates with their hydrophobicity and does not require caspase activation. *J. Med.*
1045 *Chem.* **55**, 10448–10459 (2012).

1046 47. Choi, S.-H. *et al.* Zinc-dependent regulation of zinc import and export genes by Zur. *Nat.*
1047 *Commun.* **8**, 15812 (2017).

1048 48. Macomber, L. & Imlay, J. A. The iron-sulfur clusters of dehydratases are primary
1049 intracellular targets of copper toxicity. *Proc. Natl. Acad. Sci. U. S. A.* **106**, 8344–8349
1050 (2009).

1051 49. Chillappagari, S. *et al.* Copper stress affects iron homeostasis by destabilizing iron-sulfur
1052 cluster formation in *Bacillus subtilis*. *J. Bacteriol.* **192**, 2512–2524 (2010).

1053 50. Xu, Z. *et al.* Zinc excess increases cellular demand for iron and decreases tolerance to
1054 copper in *Escherichia coli*. *J. Biol. Chem.* **294**, 16978–16991 (2019).

1055 51. Li, J. *et al.* Zinc Toxicity and Iron-Sulfur Cluster Biogenesis in *Escherichia coli*. *Appl.*
1056 *Environ. Microbiol.* **85**, (2019).

1057 52. Faraldo-Gómez, J. D. & Sansom, M. S. P. Acquisition of siderophores in gram-negative
1058 bacteria. *Nat. Rev. Mol. Cell Biol.* **4**, 105–116 (2003).

1059 53. Mettert, E. L. & Kiley, P. J. Coordinate regulation of the Suf and Isc Fe-S cluster
1060 biogenesis pathways by IscR is essential for viability of *Escherichia coli*. *J. Bacteriol.* **196**,
1061 4315–4323 (2014).

1062 54. Saenkham, P., Ritter, M., Donati, G. L. & Subashchandrabose, S. Copper primes
1063 adaptation of uropathogenic *Escherichia coli* to superoxide stress by activating
1064 superoxide dismutases. *PLoS Pathog.* **16**, e1008856 (2020).

1065 55. Scavo, S. & Oliveri, V. Zinc ionophores: chemistry and biological applications. *J. Inorg.*
1066 *Biochem.* **228**, 111691 (2022).

1067 56. Deschner, F. *et al.* Nitroxoline resistance is associated with significant fitness loss and
1068 diminishes in vivo virulence of *Escherichia coli*. *Microbiol Spectr* e0307923 (2023).

1069 57. Hsing, W. & Silhavy, T. J. Function of conserved histidine-243 in phosphatase activity of
1070 EnvZ, the sensor for porin osmoregulation in *Escherichia coli*. *J. Bacteriol.* **179**, 3729–
1071 3735 (1997).

1072 58. Gerken, H., Vuong, P., Soparkar, K. & Misra, R. Roles of the EnvZ/OmpR Two-
1073 Component System and Porins in Iron Acquisition in *Escherichia coli*. *MBio* **11**, (2020).

1074 59. Nicoloff, H. & Andersson, D. I. Lon protease inactivation, or translocation of the lon gene,
1075 potentiate bacterial evolution to antibiotic resistance. *Mol. Microbiol.* **90**, 1233–1248
1076 (2013).

1077 60. Cohen, S. P., McMurry, L. M. & Levy, S. B. marA locus causes decreased expression of
1078 OmpF porin in multiple-antibiotic-resistant (Mar) mutants of *Escherichia coli*. *J. Bacteriol.*
1079 **170**, 5416–5422 (1988).

1080 61. Correia, S., Poeta, P., Hébraud, M., Capelo, J. L. & Igrejas, G. Mechanisms of quinolone
1081 action and resistance: where do we stand? *J. Med. Microbiol.* **66**, 551–559 (2017).

1082 62. Bohnert, J. A. & Kern, W. V. Selected arylpiperazines are capable of reversing multidrug
1083 resistance in *Escherichia coli* overexpressing RND efflux pumps. *Antimicrob. Agents
1084 Chemother.* **49**, 849–852 (2005).

1085 63. Cortez-Cordova, J. & Kumar, A. Activity of the efflux pump inhibitor phenylalanine-
1086 arginine β-naphthylamide against the AdeFGH pump of *Acinetobacter baumannii*. *Int. J.
1087 Antimicrob. Agents* **37**, 420–424 (2011).

1088 64. Lazovic, J. *et al.* Nitroxoline induces apoptosis and slows glioma growth in vivo. *Neuro.
1089 Oncol.* **17**, 53–62 (2015).

1090 65. Mitrović, A. *et al.* Addition of 2-(ethylamino)acetonitrile group to nitroxoline results in
1091 significantly improved anti-tumor activity in vitro and in vivo. *Oncotarget* **8**, 59136–59147
1092 (2017).

1093 66. Khusainov, I. *et al.* The killing of human gut commensal *E. coli* ED1a by tetracycline is
1094 associated with severe ribosome dysfunction. *bioRxiv* 2023.07.06.546847 (2023)
1095 doi:10.1101/2023.07.06.546847.

1096 67. Fuchs, F. & Hamprecht, A. Susceptibility of carbapenemase-producing Enterobacterales
1097 (CPE) to nitroxoline. *J. Antimicrob. Chemother.* **74**, 2934–2937 (2019).

1098 68. Kern, W. V. *et al.* Effect of 1-(1-naphthylmethyl)-piperazine, a novel putative efflux pump
1099 inhibitor, on antimicrobial drug susceptibility in clinical isolates of *Escherichia coli*. *J.
1100 Antimicrob. Chemother.* **57**, 339–343 (2006).

1101 69. Parks, D. H. *et al.* GTDB: an ongoing census of bacterial and archaeal diversity through
1102 a phylogenetically consistent, rank normalized and complete genome-based taxonomy.
1103 *Nucleic Acids Res.* **50**, D785–D794 (2022).

1104 70. Huerta-Cepas, J., Serra, F. & Bork, P. ETE 3: Reconstruction, Analysis, and Visualization
1105 of Phylogenomic Data. *Mol. Biol. Evol.* **33**, 1635–1638 (2016).

1106 71. Yu, G., Smith, D. K., Zhu, H., Guan, Y. & Lam, T. T.-Y. Ggtree: An r package for
1107 visualization and annotation of phylogenetic trees with their covariates and other
1108 associated data. *Methods Ecol. Evol.* **8**, 28–36 (2017).

1109 72. Bliss, C. I. THE TOXICITY OF POISONS APPLIED JOINTLY1. *Ann. Appl. Biol.* **26**, 585–
1110 615 (1939).

1111 73. Mateus, A. *et al.* Thermal proteome profiling in bacteria: probing protein state in vivo. *Mol.
1112 Syst. Biol.* **14**, e8242 (2018).

1113 74. Becher, I. *et al.* Thermal profiling reveals phenylalanine hydroxylase as an off-target of
1114 panobinostat. *Nat. Chem. Biol.* **12**, 908–910 (2016).

1115 75. Kurzawa, N. *et al.* A computational method for detection of ligand-binding proteins from
1116 dose range thermal proteome profiles. *Nat. Commun.* **11**, 5783 (2020).

1117 76. Cacace, E. *et al.* Systematic analysis of drug combinations against Gram-positive
1118 bacteria. *Nat Microbiol* (2023) doi:10.1038/s41564-023-01486-9.

1119 77. Helander, I. M. & Mattila-Sandholm, T. Fluorometric assessment of gram-negative
1120 bacterial permeabilization. *J. Appl. Microbiol.* **88**, 213–219 (2000).

1121 78. Kritikos, G. *et al.* A tool named Iris for versatile high-throughput phenotyping in
1122 microorganisms. *Nat Microbiol* **2**, 17014 (2017).

1123 79. Collins, S. R., Schuldiner, M., Krogan, N. J. & Weissman, J. S. A strategy for extracting
1124 and analyzing large-scale quantitative epistatic interaction data. *Genome Biol.* **7**, R63
1125 (2006).

1126 80. Ritchie, M. E. *et al.* limma powers differential expression analyses for RNA-sequencing
1127 and microarray studies. *Nucleic Acids Res.* **43**, e47 (2015).

1128 81. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: A practical and powerful
1129 approach to multiple testing. *J. R. Stat. Soc.* **57**, 289–300 (1995).

1130 82. Seemann, T. Prokka: rapid prokaryotic genome annotation. *Bioinformatics* **30**, 2068–
1131 2069 (2014).

1132 83. Nightingale, A. *et al.* The Proteins API: accessing key integrated protein and genome
1133 information. *Nucleic Acids Res.* **45**, W539–W544 (2017).

1134 84. Zhang, W., Wang, C. & Zhang, X. Mutplot: An easy-to-use online tool for plotting complex
1135 mutation data with flexibility. *PLoS One* **14**, e0215838 (2019).

1136 85. van Kempen, M. *et al.* Fast and accurate protein structure search with Foldseek. *Nat.*
1137 *Biotechnol.* (2023) doi:10.1038/s41587-023-01773-0.

1138 86. Sehnal, D. *et al.* Mol* Viewer: modern web app for 3D visualization and analysis of large
1139 biomolecular structures. *Nucleic Acids Res.* **49**, W431–W437 (2021).

1140 87. Berman, H. M. *et al.* The Protein Data Bank. *Nucleic Acids Res.* **28**, 235–242 (2000).

1141 88. Prlic, A. *et al.* Pre-calculated protein structure alignments at the RCSB PDB website.
1142 *Bioinformatics* **26**, 2983–2985 (2010).

1143 89. Choi, K.-H., Kumar, A. & Schweizer, H. P. A 10-min method for preparation of highly
1144 electrocompetent *Pseudomonas aeruginosa* cells: application for DNA fragment transfer
1145 between chromosomes and plasmid transformation. *J. Microbiol. Methods* **64**, 391–397
1146 (2006).

1147 90. Mateus, A. *et al.* The functional proteome landscape of *Escherichia coli*. *Nature* **588**, 473–
1148 478 (2020).

1149 91. Blin, Kai. ncbi-genome-download (0.3.3). Zenodo.
1150 <https://doi.org/10.5281/zenodo.8192486>. (2023).

1151 92. Tonkin-Hill, G. *et al.* Producing polished prokaryotic pangenomes with the Panaroo
1152 pipeline. *Genome Biol.* **21**, 180 (2020).

1153 93. Huerta-Cepas, J. *et al.* Fast Genome-Wide Functional Annotation through Orthology
1154 Assignment by eggNOG-Mapper. *Mol. Biol. Evol.* **34**, 2115–2122 (2017).

1155 94. Cock, P. J. A. *et al.* Biopython: freely available Python tools for computational molecular
1156 biology and bioinformatics. *Bioinformatics* **25**, 1422–1423 (2009).

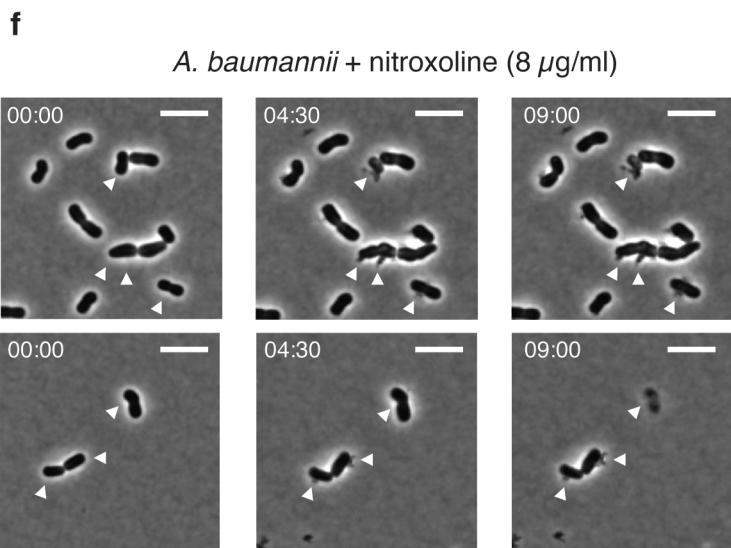
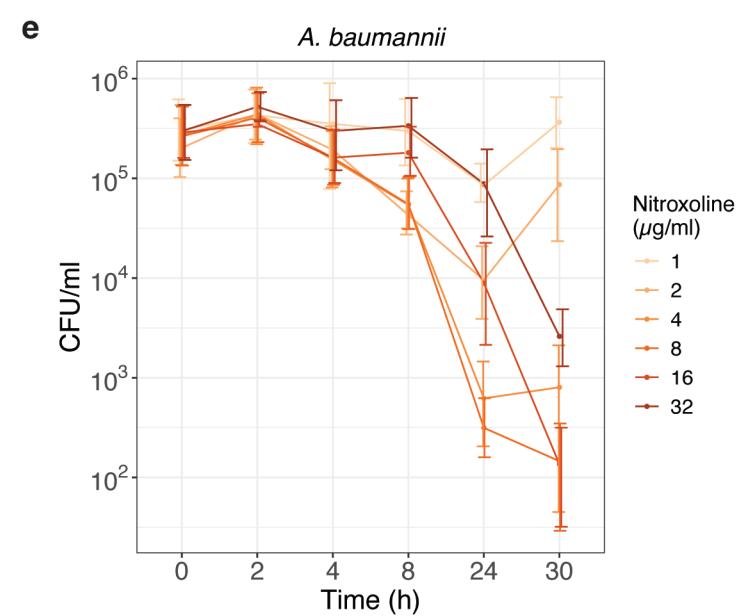
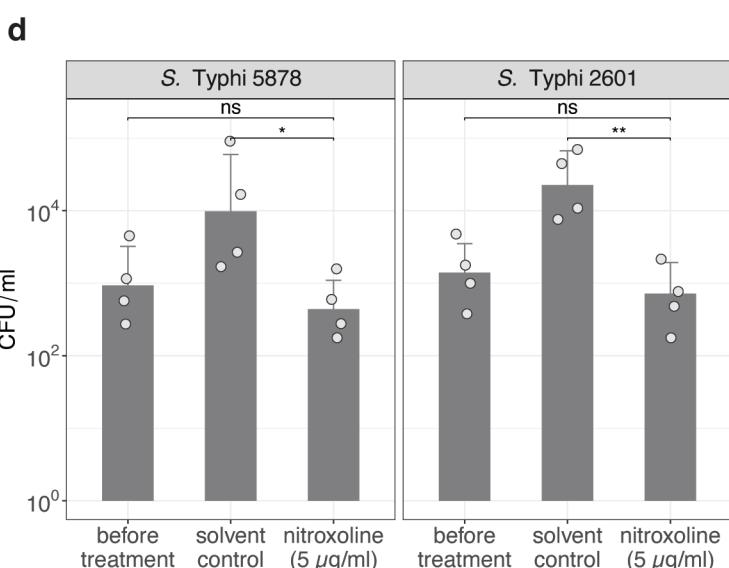
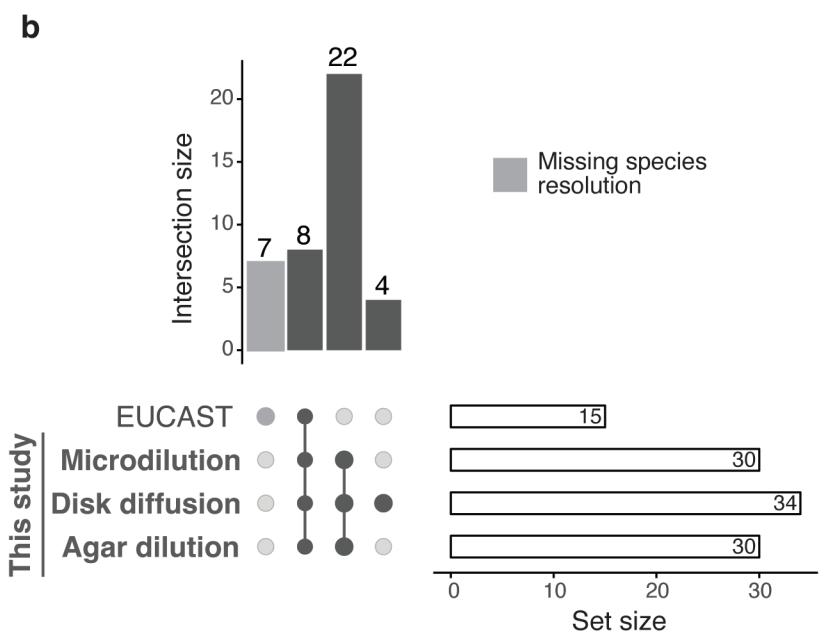
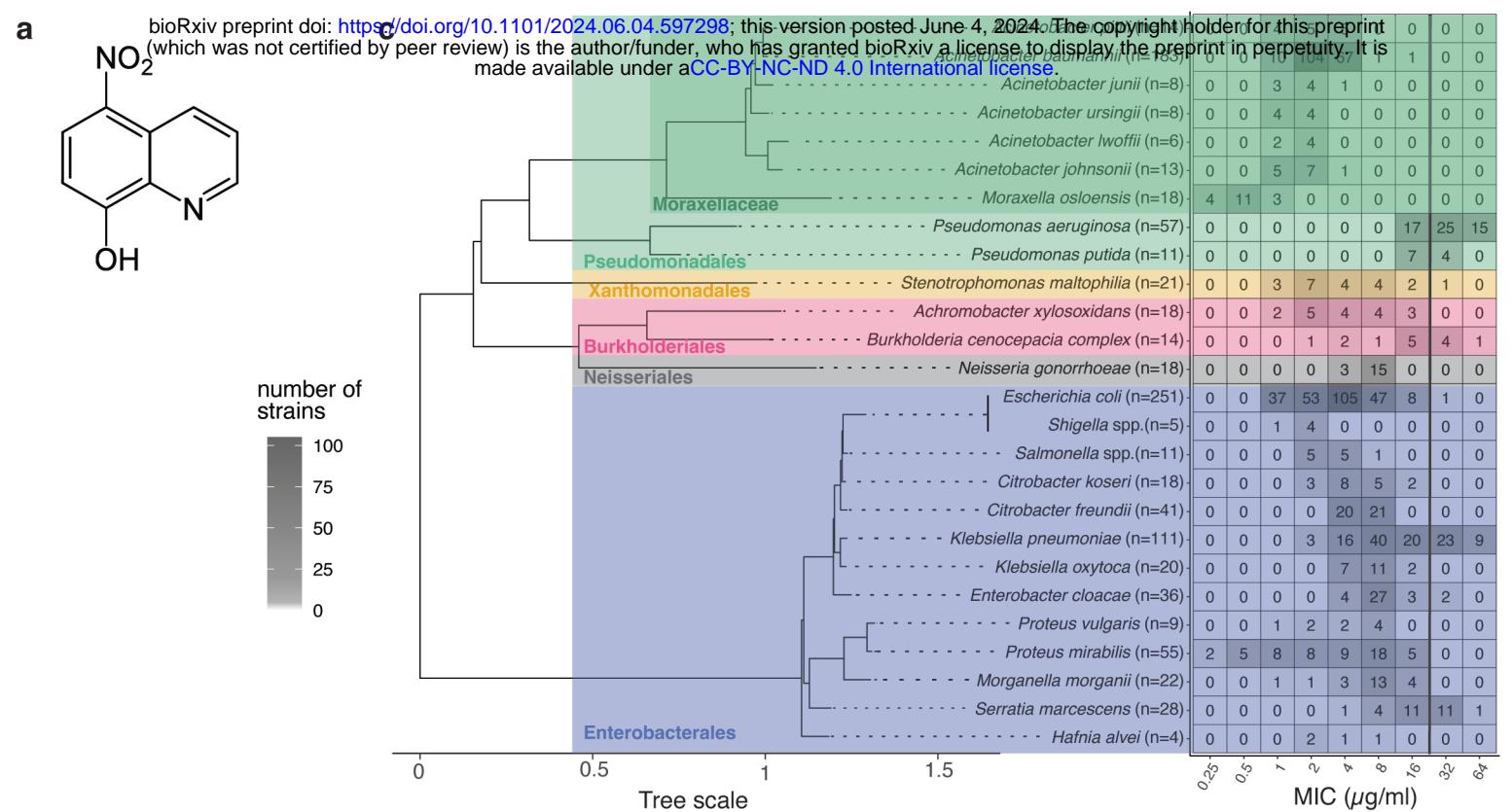
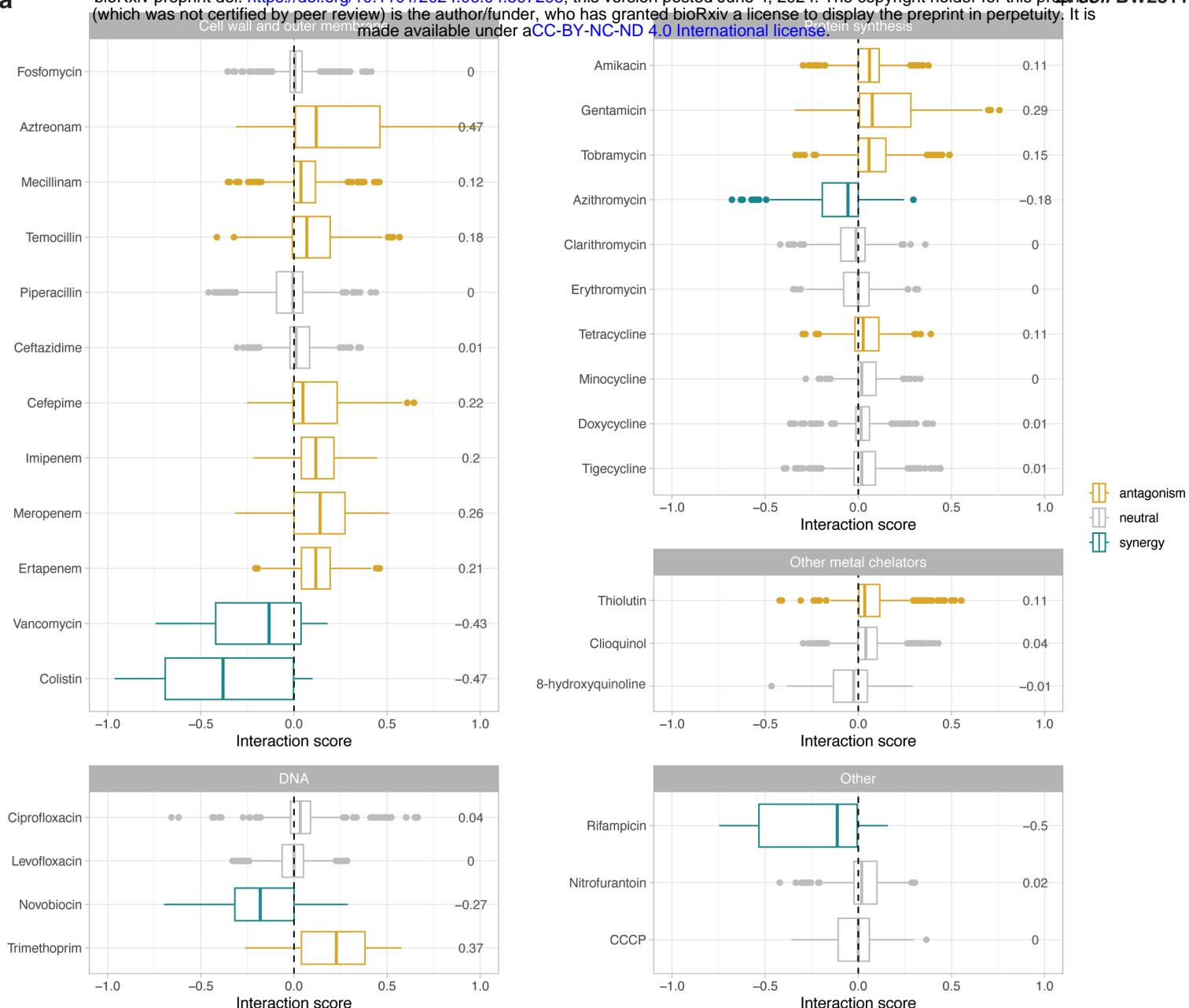







Figure 1

a

b

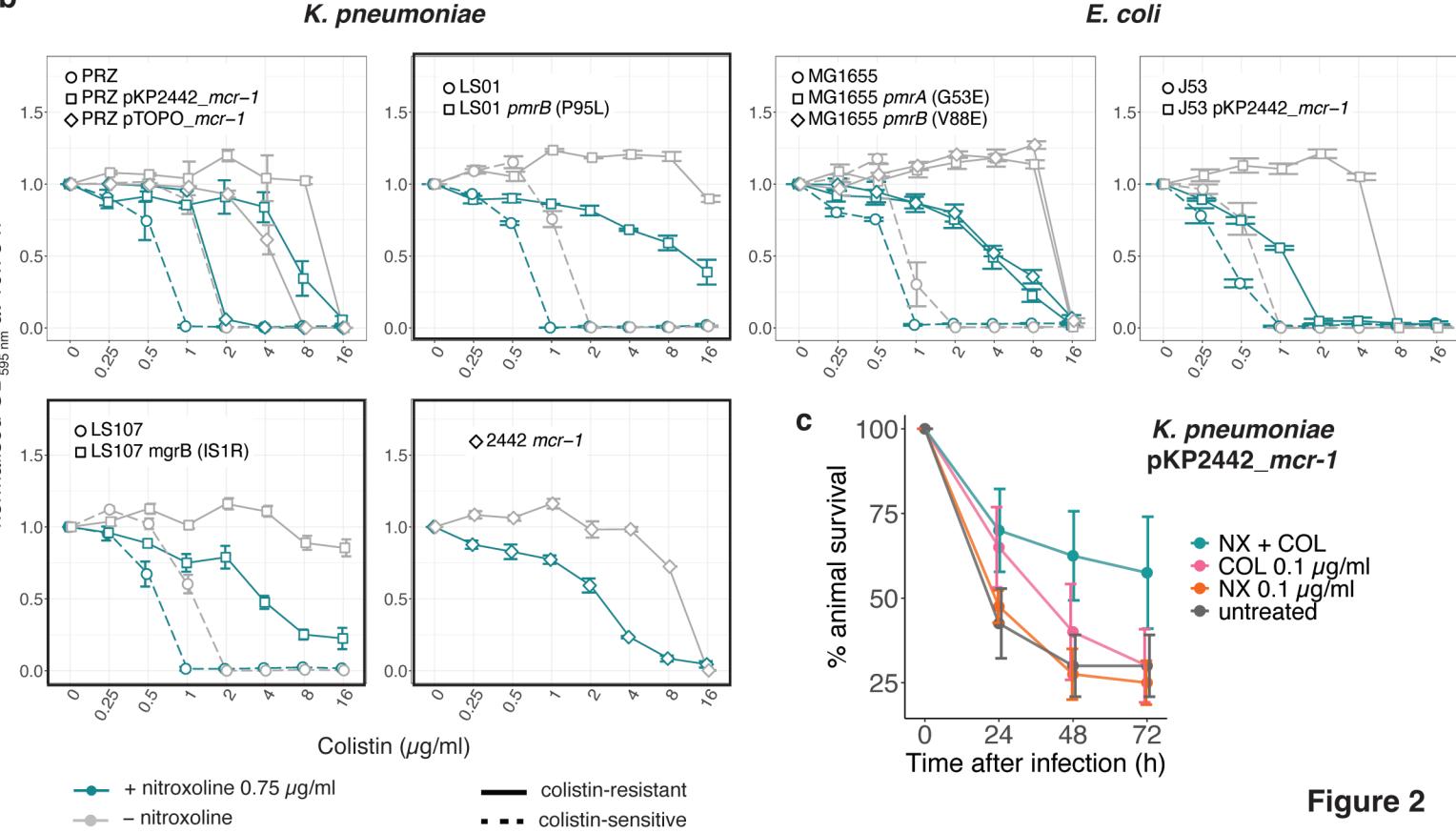


Figure 2

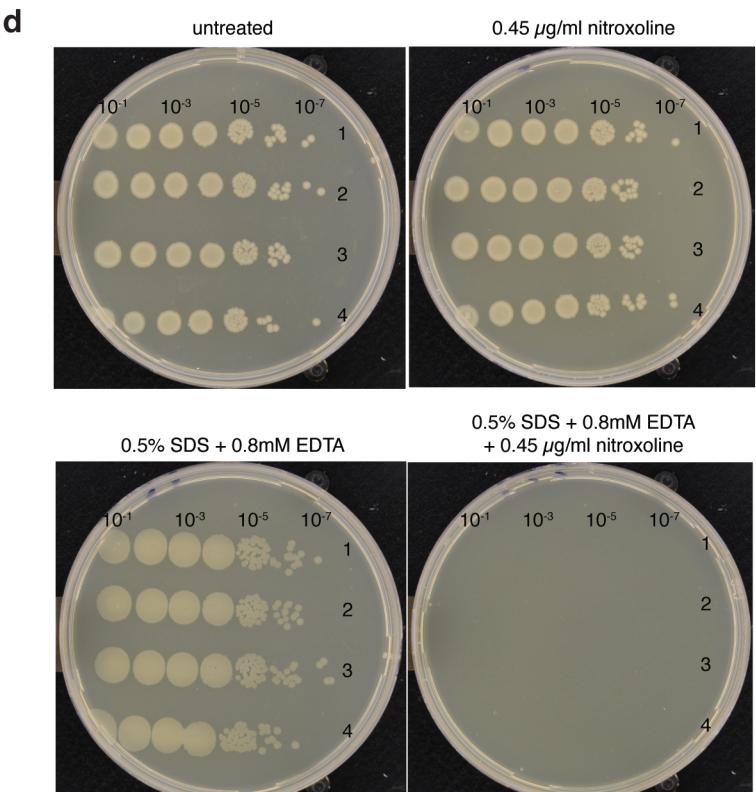
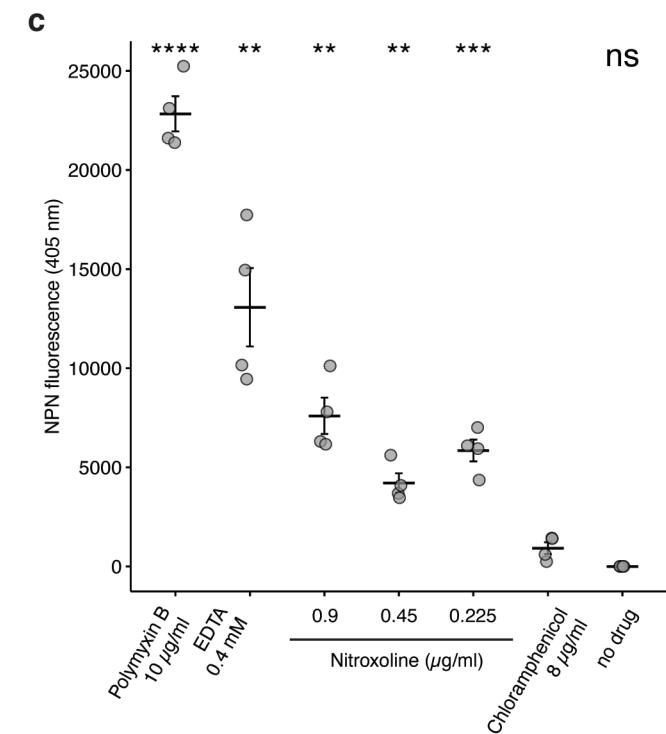
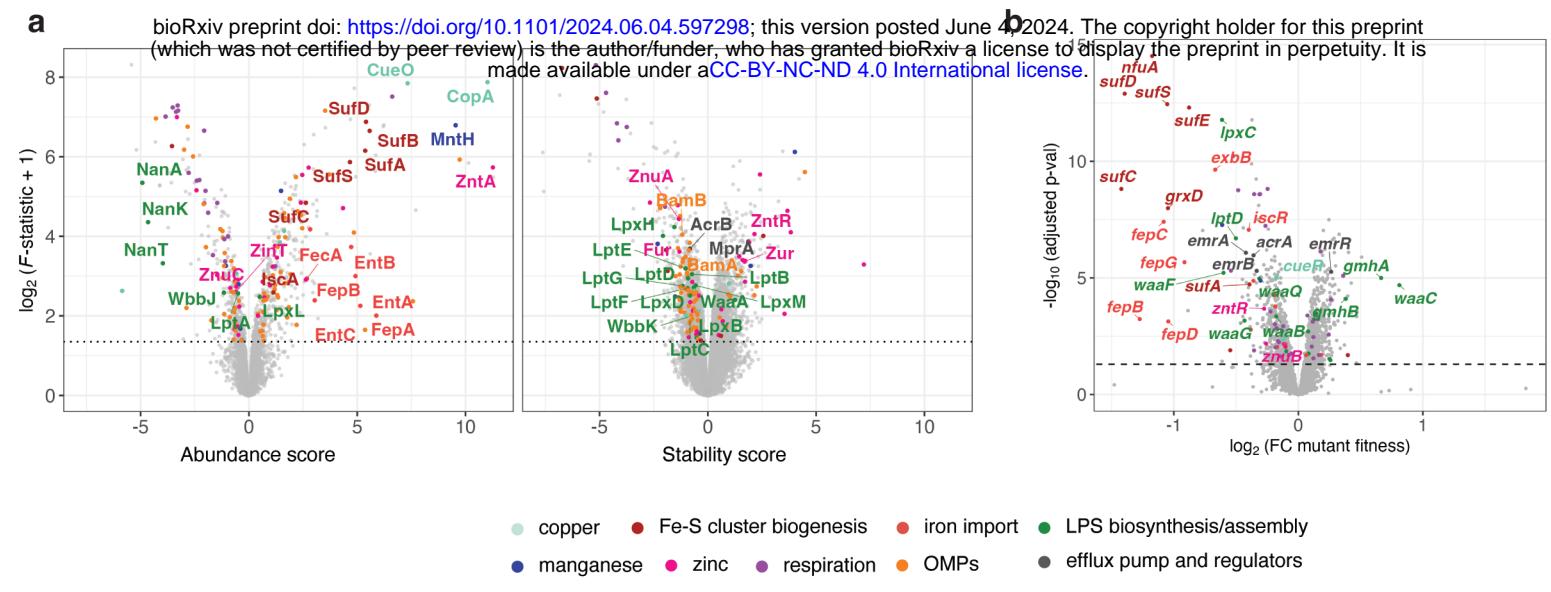
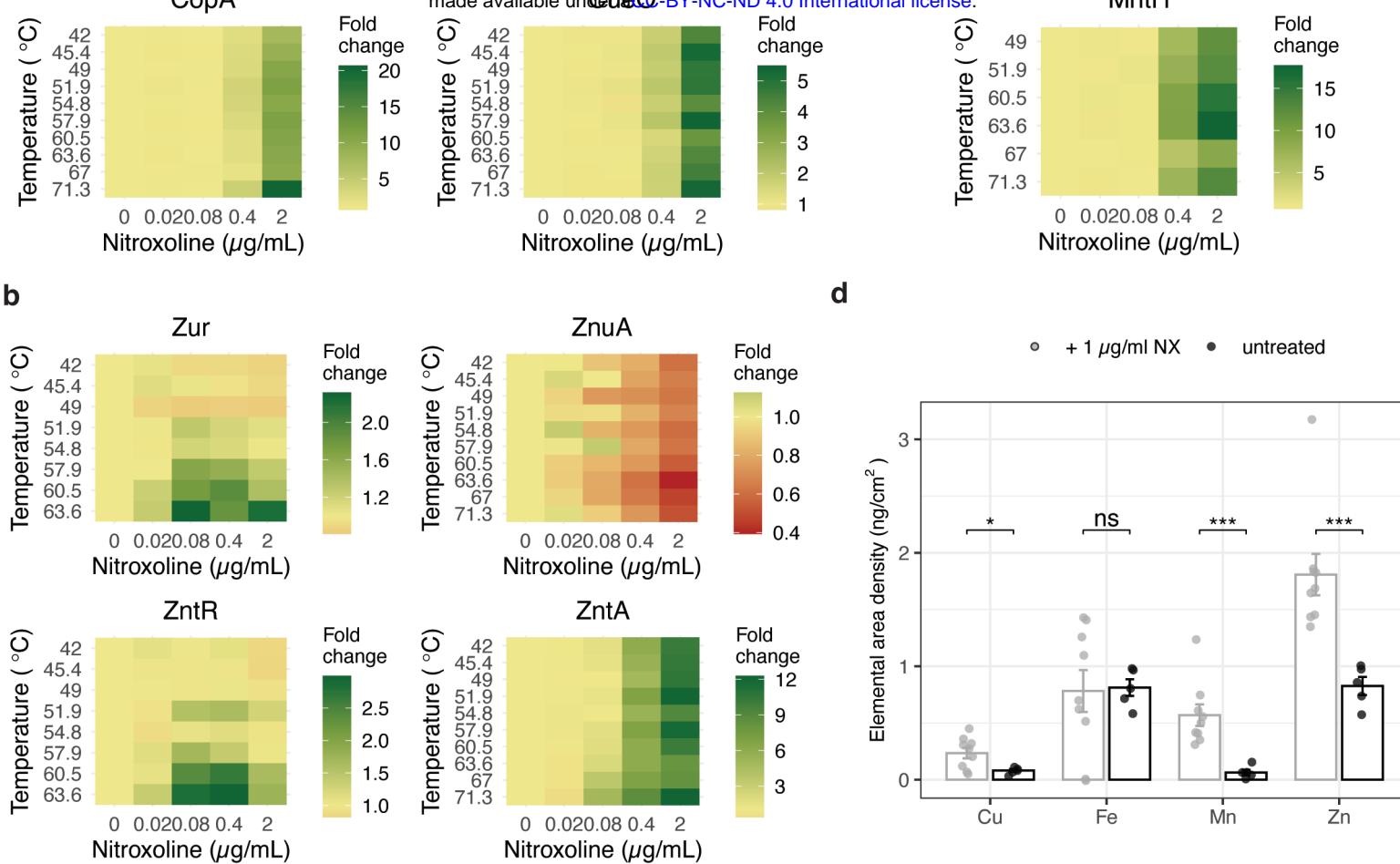
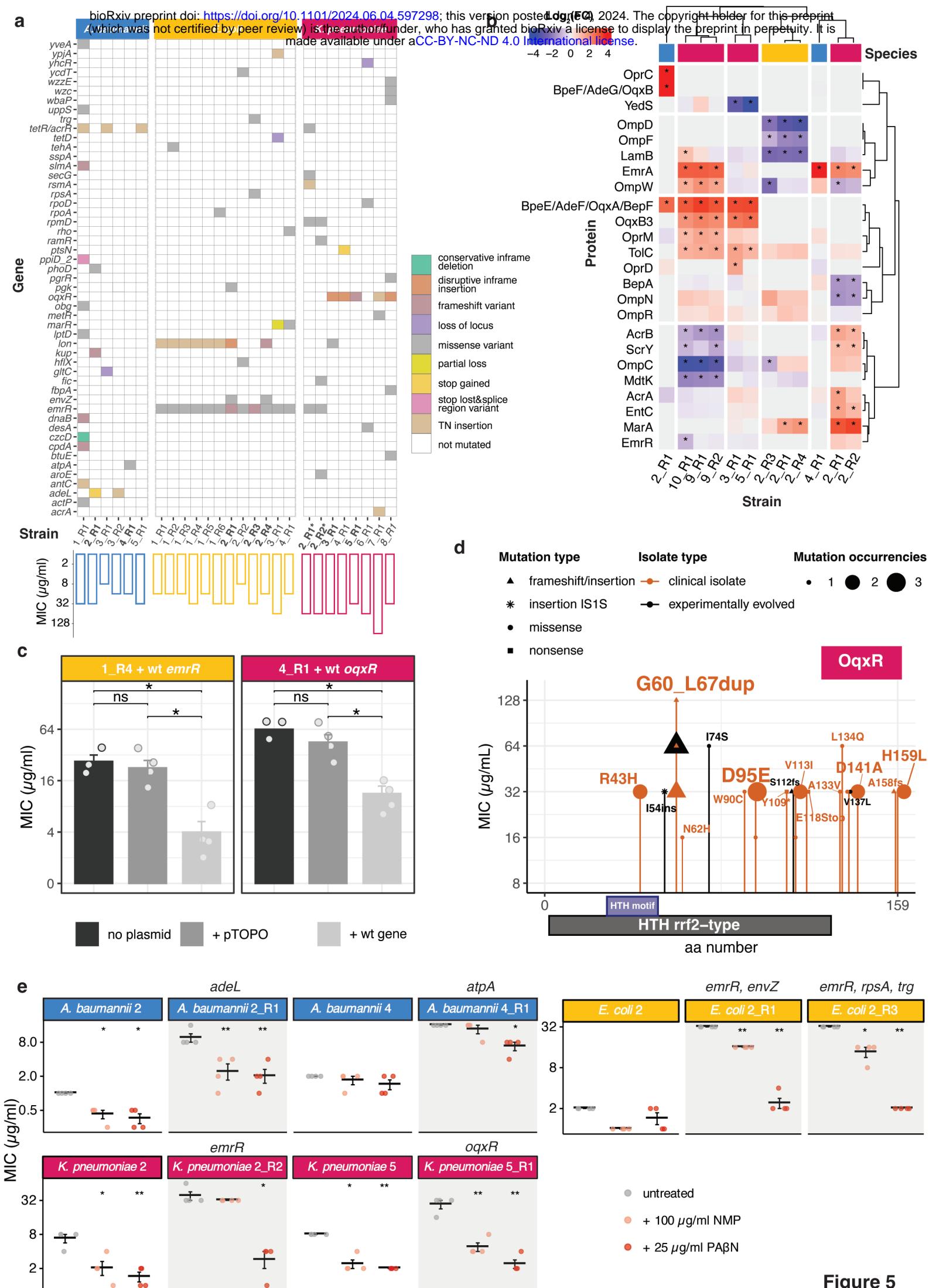
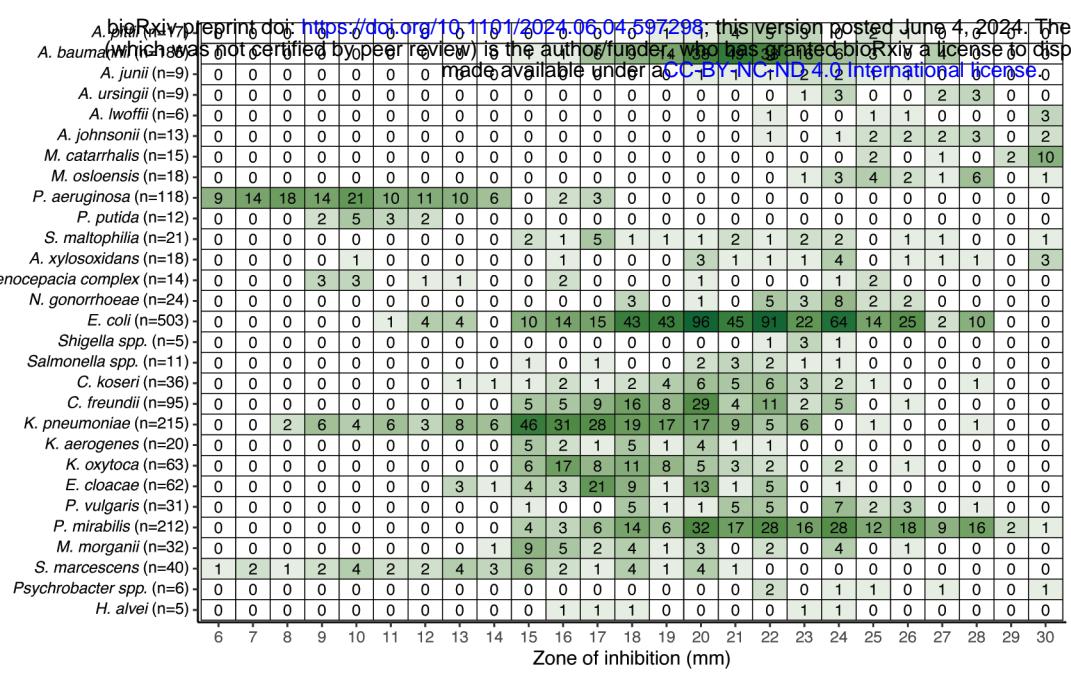
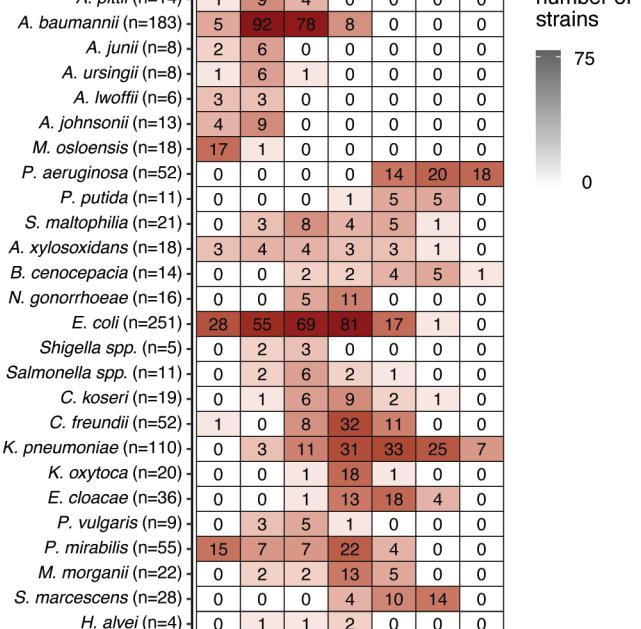
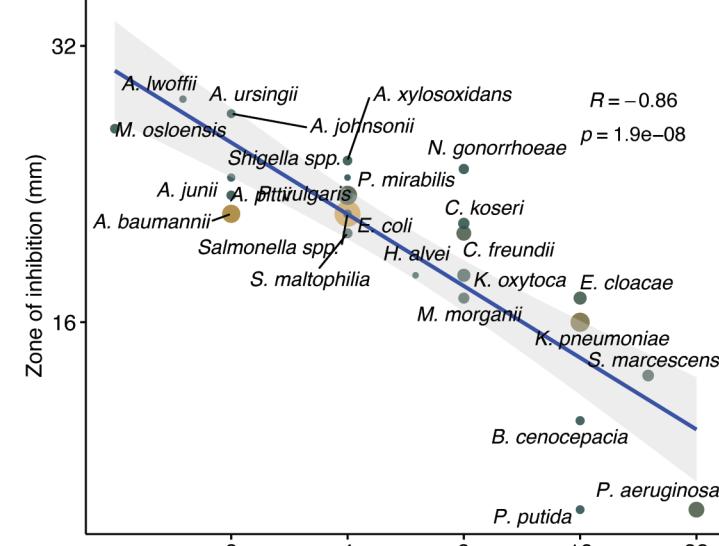
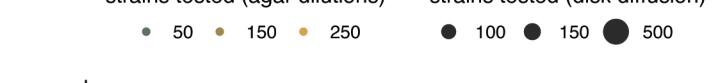




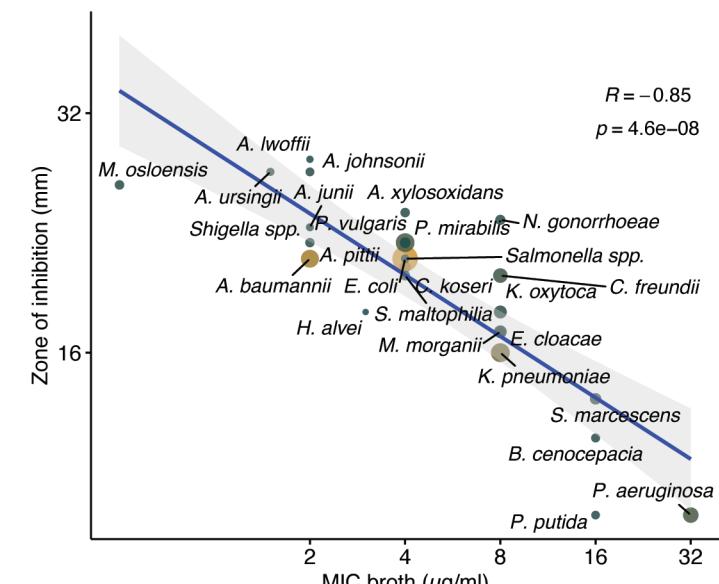
Figure 3

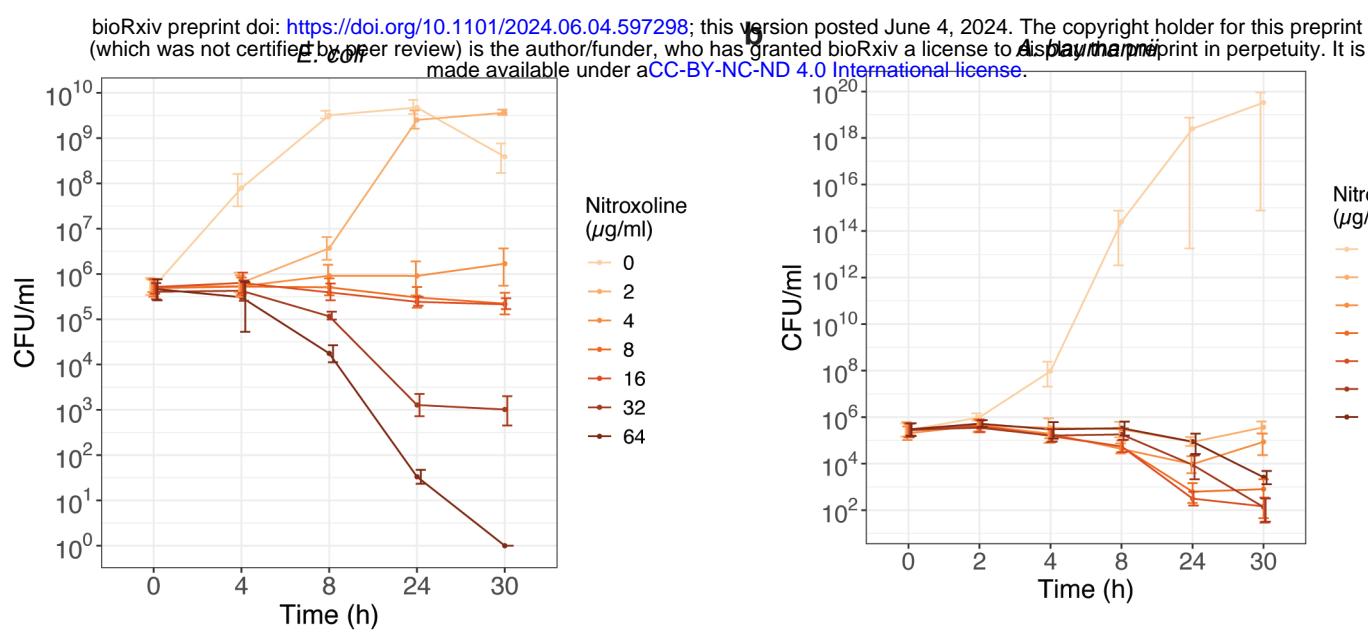




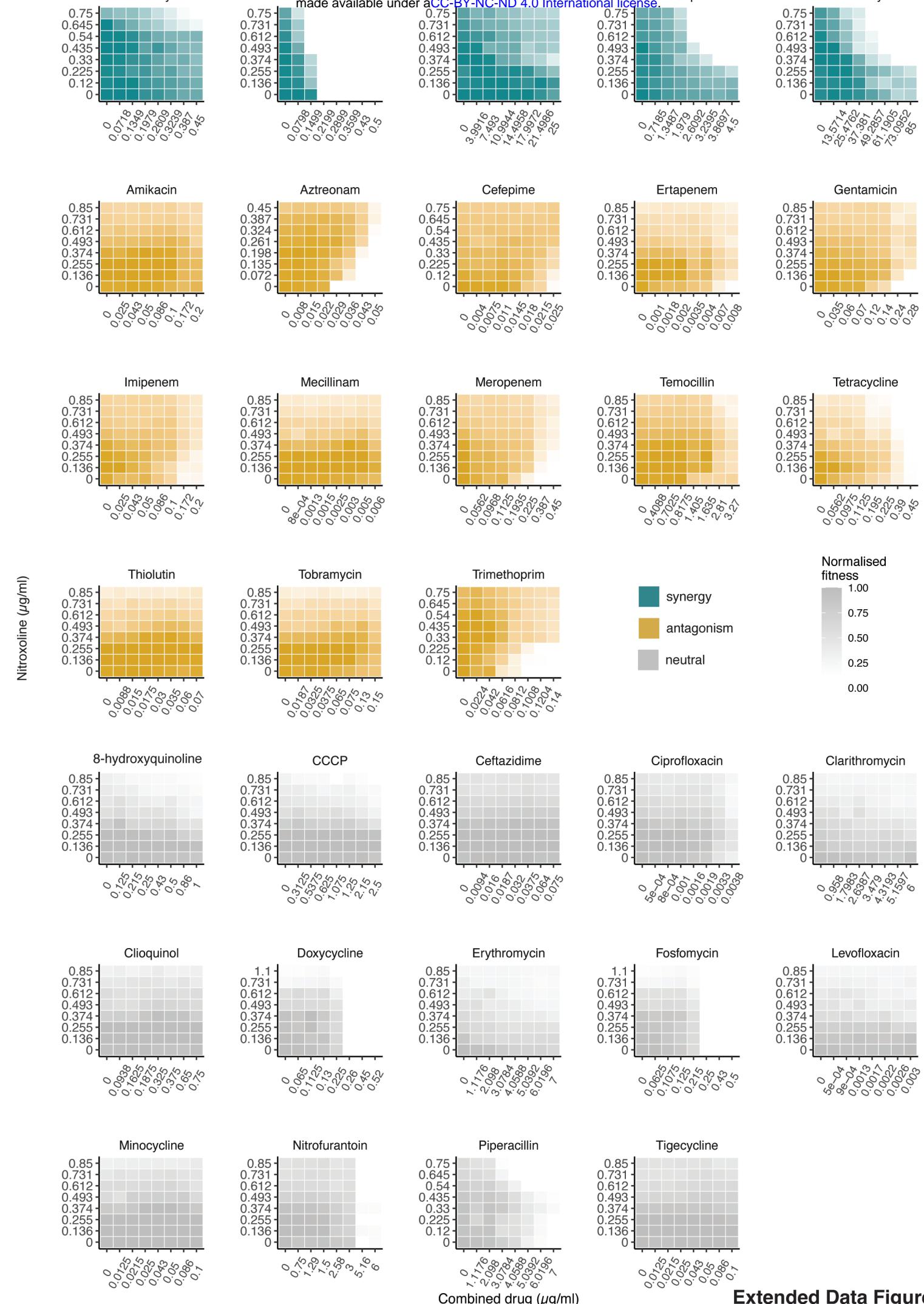

Figure 4

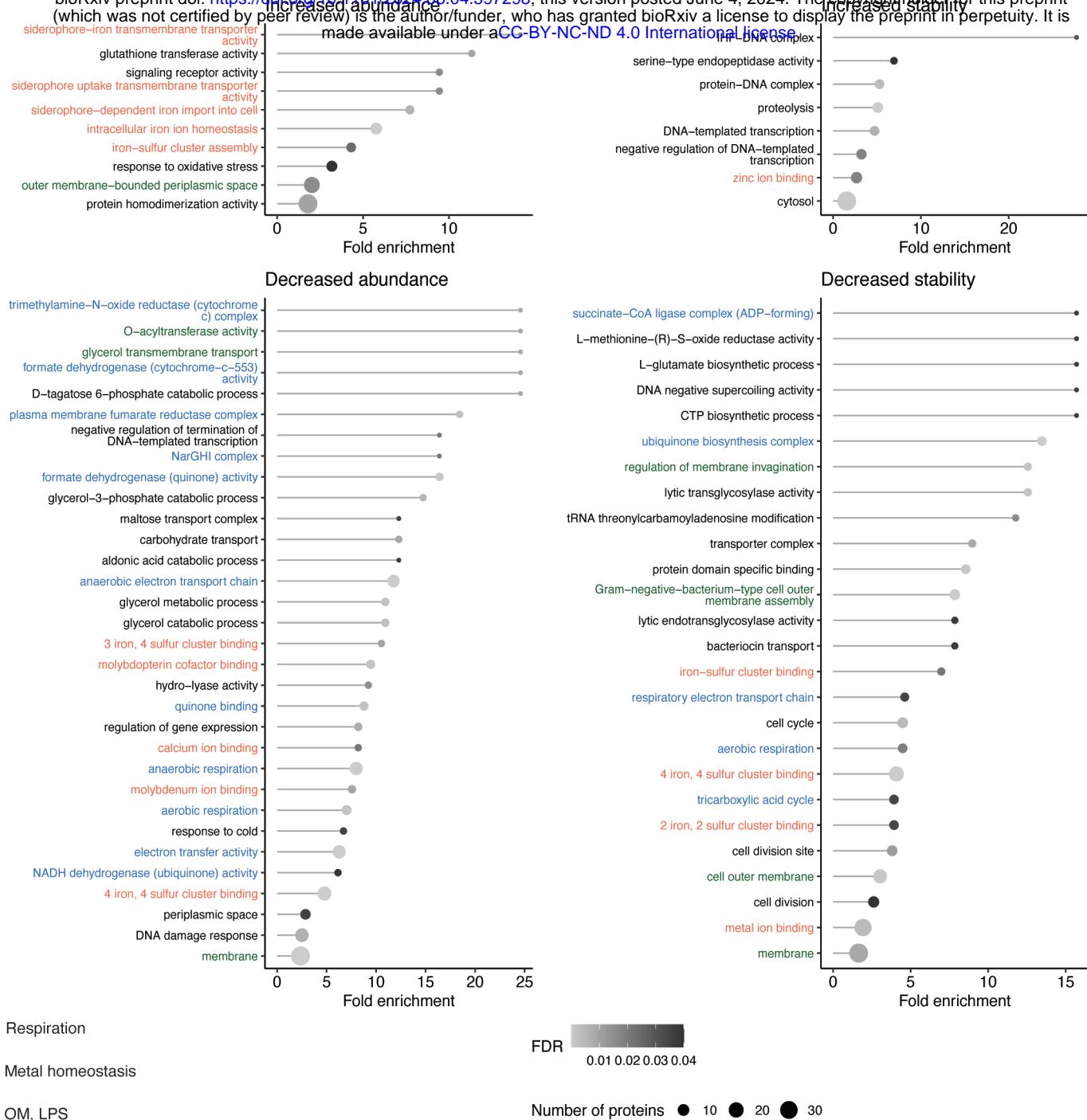


a

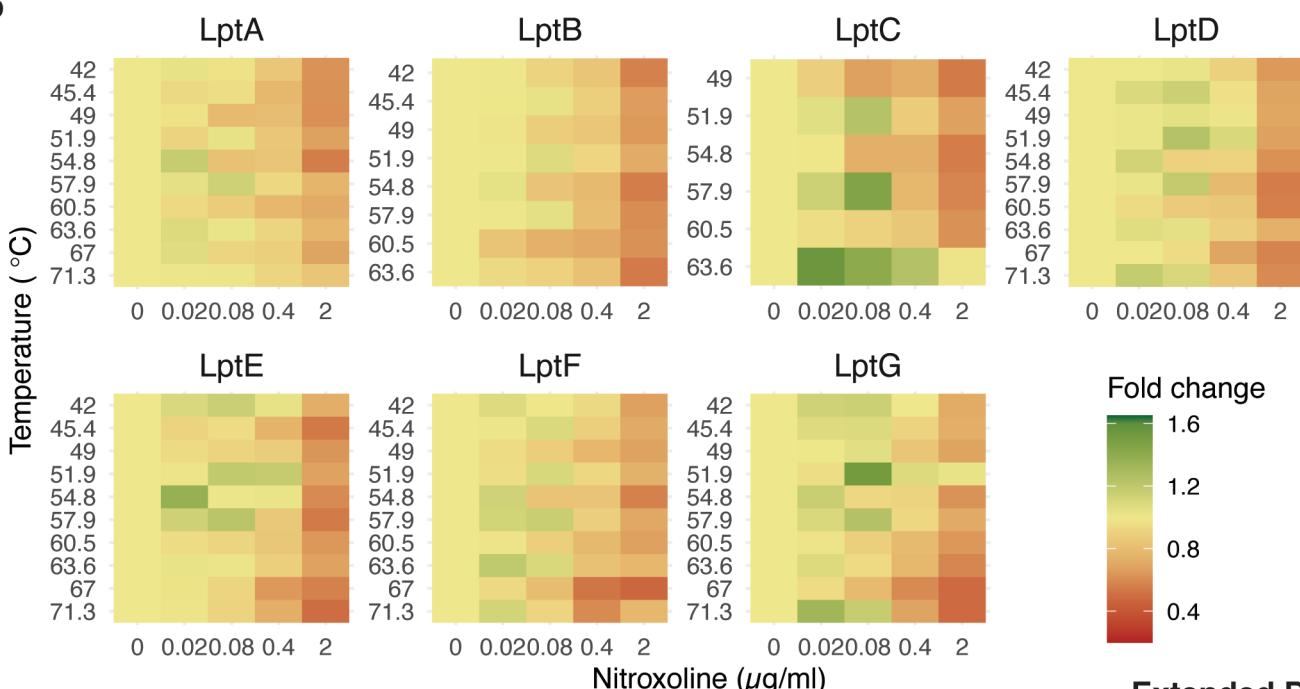
b

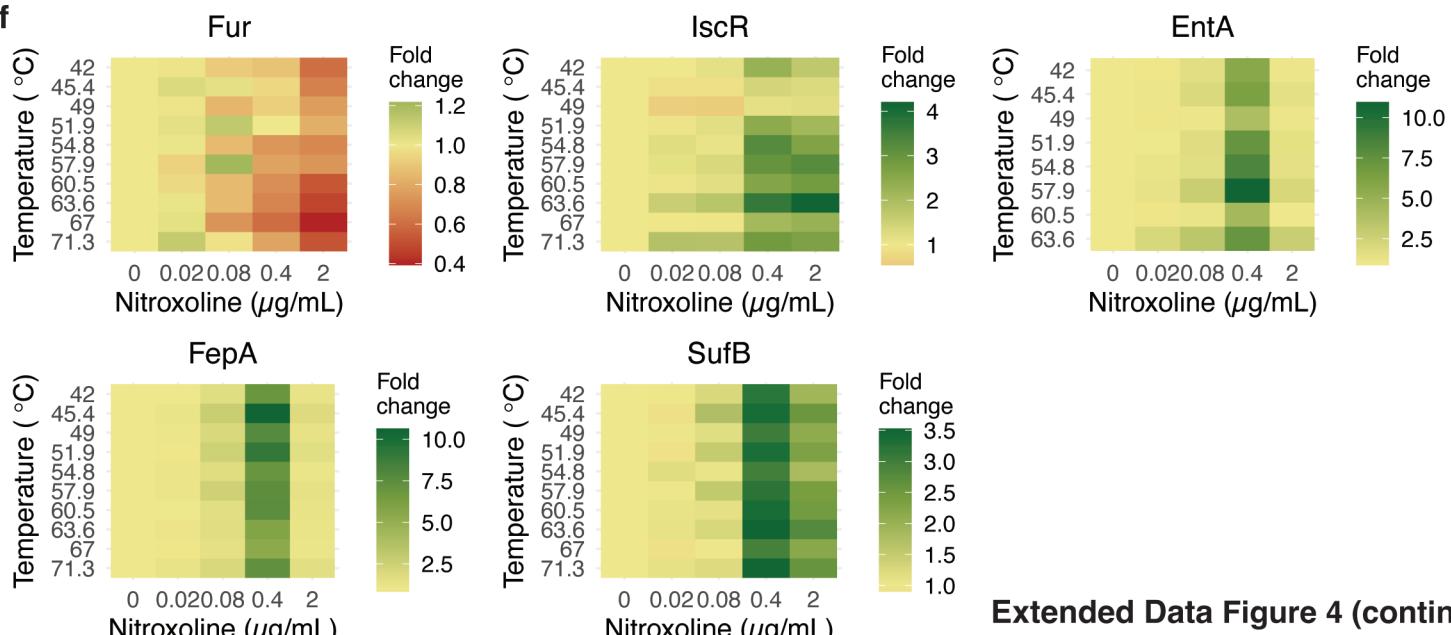
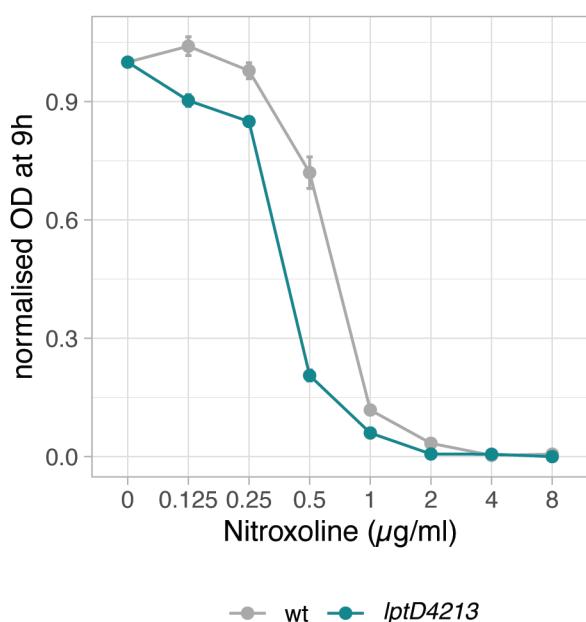
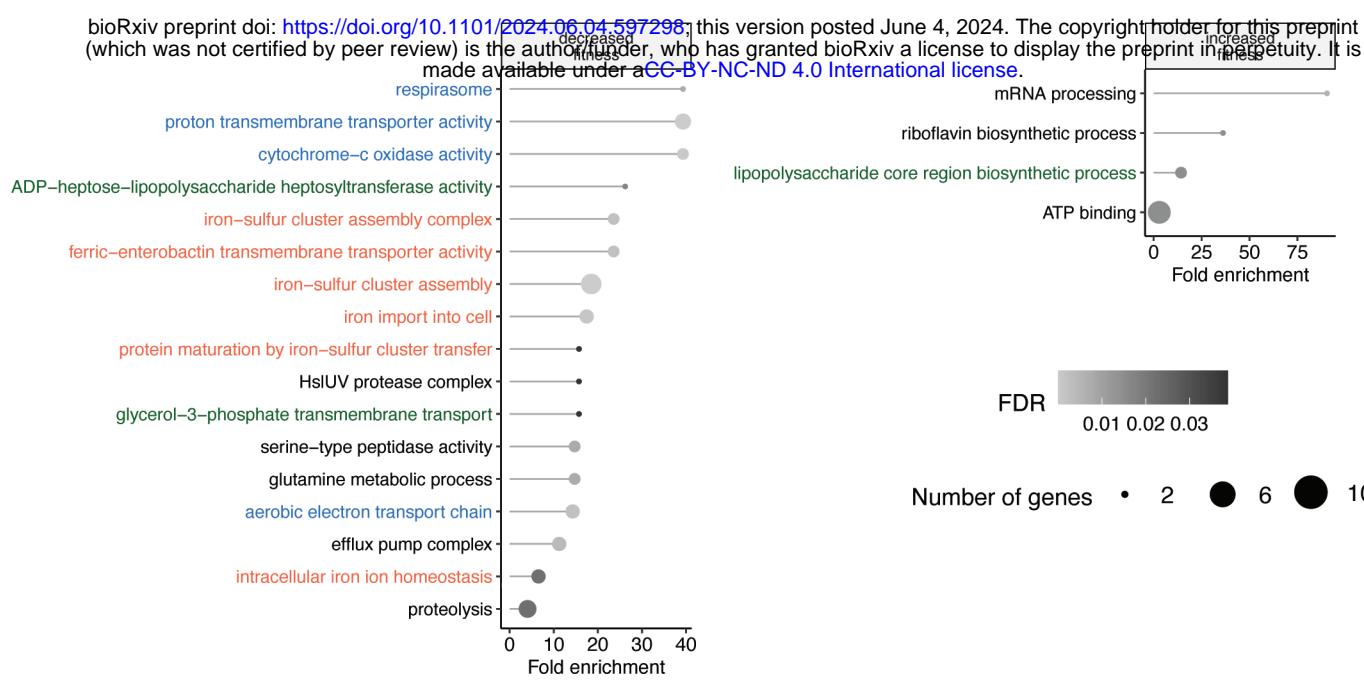

c

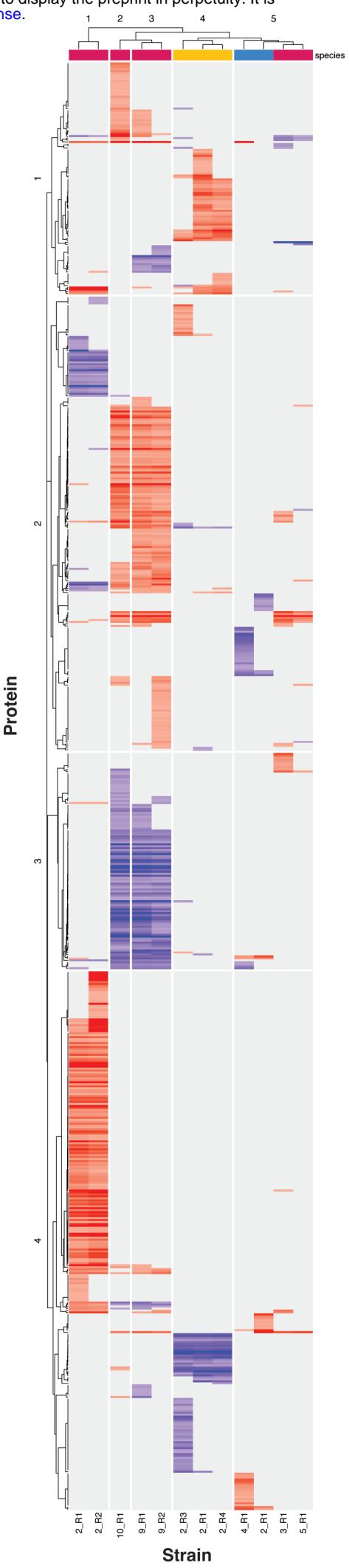
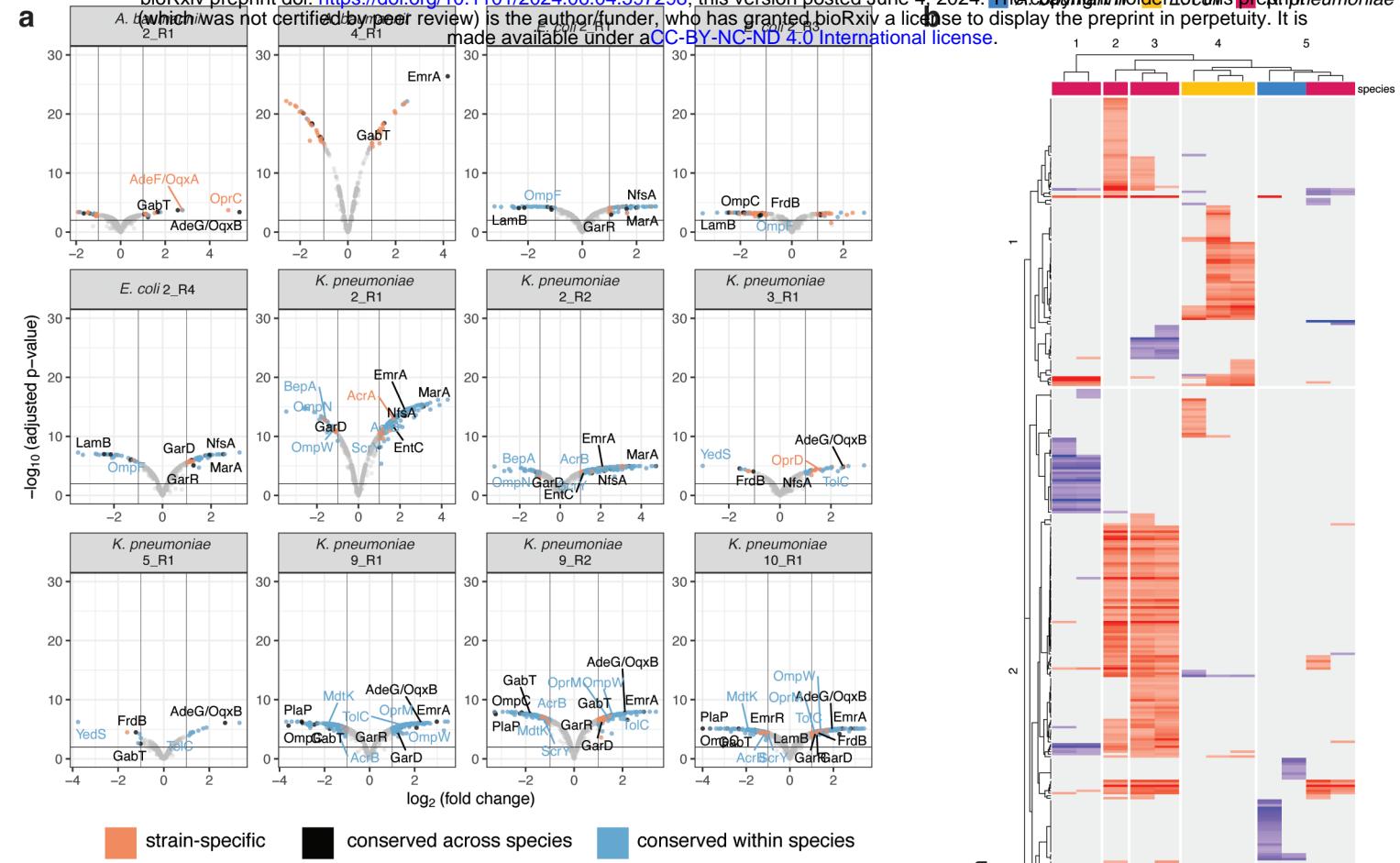


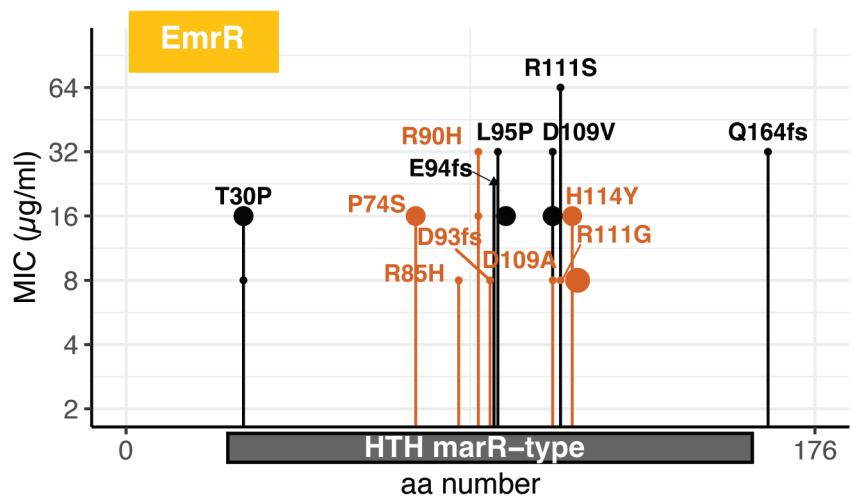
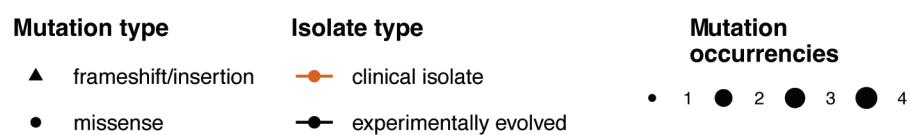

e

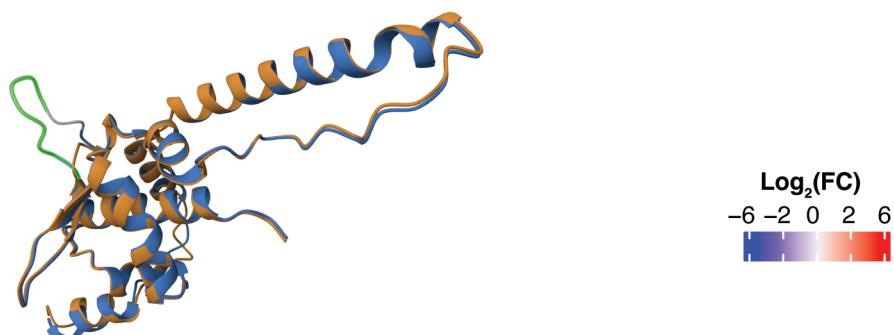

f


a

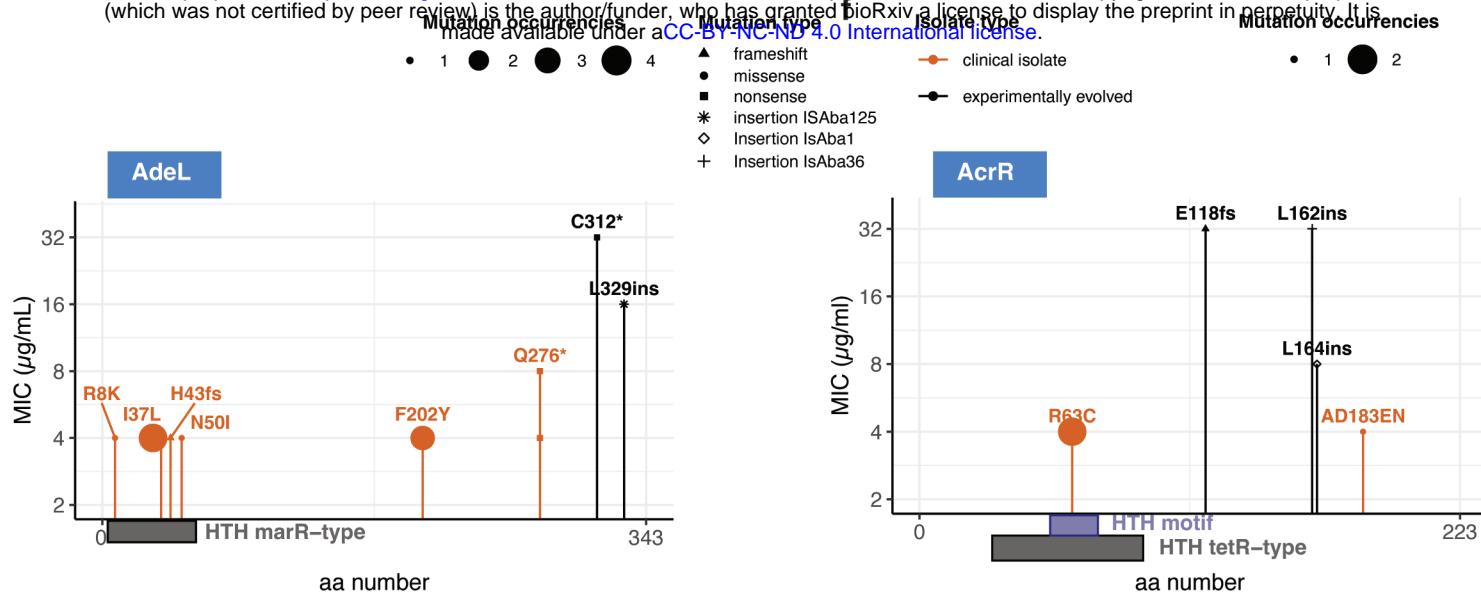






a

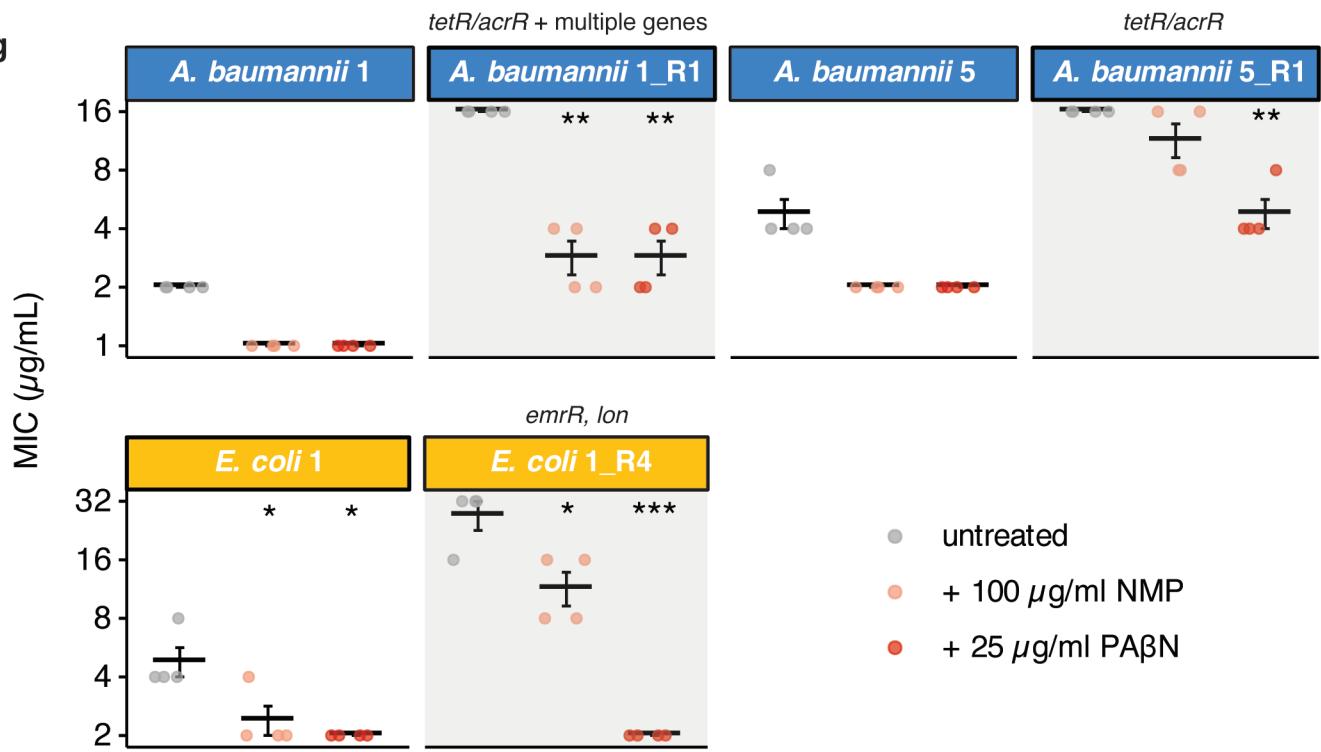


b



c



d



Extended Data Figure 5

e

g

