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Abstract

Colorectal cancer (CRC) is the second-deadliest cancer in the world, yet a deeper
understanding of spatial patterns of gene expression in the tumor microenvironment (TME)
remains elusive. Here, we introduce the Visium HD platform (10x Genomics) and use it to
investigate human CRC and normal adjacent mucosal tissues from formalin fixed paraffin
embedded (FFPE) samples. The first assay available on Visium HD is a probe-based spatial
transcriptomics workflow that was developed to enable whole transcriptome single cell scale
analysis. We demonstrate highly refined unsupervised spatial clustering in Visium HD data that
aligns with the hallmarks of colon tissue morphology and is notably improved over earlier Visium
assays. Using serial sections from the same FFPE blocks we generate a single cell atlas of our
samples, then we integrate the data to comprehensively characterize the immune cell types
present in the TME, specifically at the tumor periphery. We observed enrichment of two
pro-tumor macrophage subpopulations with differential gene expression profiles that were

localized within distinct tumor regions. Further characterization of the T cells present in one of
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the samples revealed a clonal expansion that we were able to localize in the tissue using in situ
gene expression analysis. In situ analysis also allowed us to perform in-depth characterization
of the microenvironment of the clonally expanded T cell population and we identified a third
macrophage subpopulation with gene expression profiles consistent with an anti-tumor
response. Our study provides a comprehensive map of the cellular composition of the CRC
TME and identifies phenotypically and spatially distinct immune cell populations within it. We
show that the single cell-scale resolution afforded by Visium HD and the whole transcriptome
nature of the assay allows investigations into cellular function and interaction at the tumor

periphery in FFPE tissues, which has not been previously possible.

Introduction

Colorectal cancer (CRC) accounted for 9.4% of cancer-related deaths (0.9 million) in
2020, and its global incidence is predicted to double by 20352, Its poor overall 5-year survival
rate highlights the need for better early detection and prognostic biomarkers that can be used in
future disease management strategies®. During the past decade, there has been growing
evidence that tumor heterogeneity is best described at the transcriptome level, rather than with
classical histological or mutation-centered disease classifications*. Therefore, technologies that
refine our understanding of the tumor microenvironment (TME), including the diverse roles of
innate and adaptive immune responses and cellular crosstalk in CRC, have the potential to
inform better clinical intervention strategies.

Sequencing-based genomics technologies have played an important role in building our
current knowledge of CRC biology*~. However, bulk sequencing approaches, which average
the data from cells and tissues, are confounded by the complexities of the tumor

microenvironment (TME) and intratumor heterogeneity. Single cell transcriptomics (scRNA-seq)
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technologies have in part filled this gap and allowed for detailed exploration of the cell types
within the TME in CRC? '8, While these studies add critical single cell level resolution to our
understanding of CRC, they lack any information about the organization of the cells within the
tissue. Spatial transcriptomics technologies offer a solution. Several commercial technologies
are currently available for discovery-based spatial transcriptomics, including Visium CytAssist
Spatial Gene Expression (“Visium v2”, 10x Genomics), STOmics (BGl), and Curio Seeker (Curio
Bioscience). Other published methods include Seq-Scope'’, Nova-ST', Open-ST'°, HDST%,
DBiT-seq?', Pixel-seq?, and XYZeg?. These methods have enabled the localization of cell types
within tissues, which is critical for understanding the interaction between cells in the TME of
CRC?*?"_ However, these technologies lack resolution at the single cell scale, or are typically
only compatible with fresh frozen tissues, and as such, a deep understanding of tumor
organization based on readily available biobanked samples remains elusive.

Here, we introduce Visium HD Spatial Gene Expression (“Visium HD”) and demonstrate
its use as a discovery platform for profiling CRC in multiple patients using FFPE tissue blocks.
Visium HD slides provide a dramatically increased oligonucleotide barcode density over the
Visium v2 slides (11,000,000 continuous features in a 6.5 mm Visium HD capture area,
compared to 5,000 features with gaps between them in a 6.5 mm Visium v2 capture area). The
single cell scale resolution of Visium HD allowed us to map distinct populations of immune cells,
specifically macrophages and T cells, and evaluate differential gene expression at the tumor
boundary to explore the potential contribution of these immune cell populations in the TME.

Using an FFPE compatible single cell workflow (the probe-based, Chromium Single Cell
Gene Expression Flex) we also generated a multi-patient single cell reference dataset from a
larger cohort of FFPE samples and used it to refine our ability to identify distinct cell types. We
used this dataset to deconvolve the Visium HD data bins, validating the cell type populations
identified by Visium HD and subsequently using the integrated data to comprehensively map the

cellular composition and molecular signatures of the TME in CRC. To better understand the
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interaction between the tumor and its surroundings, we examined the peripheral region that
surrounds the tumor by 50 um. This analysis allowed us to spatially map distinct subpopulations
of macrophages to specific regions of the tumor, and compare their transcriptomic profiles which
indicate they may exert pro-tumor roles via different pathways. This level of TME
characterization was only possible at the resolution of Visium HD, which allowed us to
specifically interrogate the cells in closest proximity to the tumor which are likely to have the
greatest impact on tumor progression.

With any new technology, validation of findings with an orthogonal approach is critical. To
validate the spatial accuracy of Visium HD, we analyzed a subset of genes using an
independent spatial technology (Xenium In Situ Gene Expression) and saw strong concordance
between the different technology readouts. Next, we mapped macrophages, tumor
subpopulations, and T cells that we had observed in the TME via Visium HD data, at single cell
resolution using the Xenium technology. Xenium corroborated the presence of the two pro-tumor
macrophage subpopulations in different niches and allowed us to pinpoint the location of the T
cells within the TME. Using Xenium, we were also able to detect a clonally expanded T cell
population and the cellular microenvironment in which it resides, revealing an anti-tumor niche
with a third macrophage subpopulation.

Our study underscores the importance of using high resolution spatial technologies in
exploring the heterogeneity of tumor biology. These advanced tools are crucial for precisely
mapping the diverse immune cell niches within CRC and elucidating the complex interactions
between these cells and their microenvironment. By leveraging spatial technologies, we can
gain a detailed understanding of spatial variations in cell types and subpopulations, and
cell-to-cell relationships, which are key to developing targeted therapies and personalized
medicine approaches. The combination of whole transcriptome and targeted in situ spatial

technologies used in our investigation provides deeper insights into the complex and dynamic
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nature of the TME, highlighting the importance of spatial context in understanding cancer

heterogeneity and progression.

Results

Visium HD specifications and performance

In this study, we included five patients with colorectal adenocarcinoma (Table 1), from
which we obtained FFPE (CRC n = 5, and normal adjacent tissue (NAT) n = 3) blocks. Serial
sections of FFPE tissues were prepared and selected samples were included to benchmark the
technology performance or to explore the TME using Visium HD. Additionally, selected serial
sections from the same FFPE blocks were used to generate a single cell RNA-seq dataset and

for evaluation via in situ gene expression (Figure 1).
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Figure 1. Analysis of CRC and NAT samples using Visium HD. Serial tissue sections were
taken from colorectal adenocarcinoma (CRC, n = 5 samples) and normal adjacent tissues
(NAT, n = 3 samples) FFPE blocks. A subset of samples were selected and analyzed with the
Visium HD assay (n = 3 CRC and n = 2 NAT). Sections from the same FFPE blocks were
assayed with single cell RNA-seq (Chromium Single Cell Gene Expression Flex; n = 8). Serial
sections were analyzed with Xenium In Situ gene expression (n = 4 CRC) and assayed via the
Visium v2 assay (n = 1 CRC and n = 2 NAT). Single cell data were used to create a reference
dataset for cell type annotation. In situ data were used for validation of the findings from the
Visium HD data and for subsequent analyses. Technology performance comparisons were
performed using data from matched datasets.
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The Visium HD assay enables spatial gene expression analysis with probes targeting the
whole transcriptome at single cell scale. Visium HD slides contain two 6.5 x 6.5 mm capture
areas within a 8 x 8 mm fiducial frame, where each capture area consists of ~11 million 2 x 2 um
squares arranged in a continuous array of uniquely barcoded oligonucleotides (Figure 2A).
Importantly, the 2 ym squares are directly adjacent to each other, resulting in a continuous lawn
of capture oligonucleotides with no gaps between features, representing an improvement over
earlier Visium slides, which have 55 um circular capture areas with gaps between them (Figure
2B). For downstream analysis, the 2 ym data can be used directly or collated into larger bins to
increase the coverage of the data; the Space Ranger (v3.0) pipeline outputs the 2 ym data and
data binned at 8 and 16 um resolution (unless otherwise described, the 8 ym binned data were
used in this study). To assess the increased resolution afforded by Visium HD, we analyzed
serial sections from a normal colon mucosa sample run on Visium v2 and Visium HD. Visium
HD generated notably higher resolution data, as shown in the improved unsupervised
clustering, both in terms of the total number of clusters detected (18 clusters in Visium HD vs. 3
clusters in Visium v2), and the ability to map them to morphological features of the colon
mucosal tissue (Figure 2C). Next, we assessed the correlation between Visium v2 and Visium
HD data using serial sections of colon samples (2 NAT samples and 1 CRC sample, Figure 2D
and Supplemental Figure 1). Our data show a strong correlation between UMI counts at the
whole transcriptome level at similar sequencing depth across an entire tissue (matched tissue
areas), highlighting that the data obtained from each assay are highly comparable in terms of
sensitivity across the colon tissues analyzed (R? = 0.82, Figure 2D; R? = 0.81 and 0.90,
Supplemental Figure 1). To remove any potential bias arising from off-target probe binding
events, i.e., probes binding to genomic DNA (gDNA), which could introduce sensitivity biases in
this analysis, we compared the UMI counts for the subset of probes that spanned only

exon-exon junctions (7,605 probes out of 54,580). The estimated fraction of molecules
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(measured by the number of UMIs) arising from gDNA was 4.1% in Visium v2 and 0.5% in
Visium HD. When comparing counts from the probes spanning exon-exon junctions, we
observed a stronger correlation between assays (R? = 0.92, Figure 2D; R? = 0.93 and 0.96,
Supplemental Figure 1), indicating that the increased resolution of the Visium HD assay
maintains the high assay sensitivity of Visium v2.

In array-based spatial technologies, MRNA must migrate from the tissue to come into
contact with a primer (or vice versa, the primer must come into contact with the mRNA
molecule). However, because transcript migration does not occur linearly, if the tissue
placement and subsequent molecular biology reactions are not carefully controlled, the spatial
accuracy of mRNA detection may be impacted, i.e., transcripts may be detected away from their
origin. Similar to the Visium v2 assay, Visium HD utilizes a controlled environment to transfer
analytes from tissues to the capture arrays (the CytAssist instrument), improving spatial
accuracy of RNA detection®2°. Poor transcript spatial accuracy has the potential to impact
biological interpretations, thus we sought to assess this in samples run through the Visium HD
workflow. For this analysis, we evaluated two NAT samples and one CRC sample (Figure 2E).
We selected genes that are known to be localized within glands of normal colon mucosal tissue
(goblet cell gene markers: CLCA1, FCGBP, MUC?2). In each tissue section, we manually
selected four random regions of interest (ROIs) matching colon glands (“source masks”) and
their immediate adjacent regions containing lamina propria (“adjacent masks”) and measured
the transcript localization accuracy of the selected goblet cell gene markers. Across each
sample, the majority of transcripts were localized in their expected morphological locations
within the source masks (98.3 — 99%), and only a small proportion (0.97 — 1.73%) were in
adjacent masks (Figure 2E), demonstrating the high spatial accuracy of mRNA detection

obtained from Visium HD.
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Figure 2. Visium HD Spatial Gene Expression slide architecture and performance. A.
Visium HD slide with two 6.5 x 6.5 mm capture areas, each containing a continuous lawn of
uniquely barcoded 2 x 2 ym squares, which are binned to 8 ym squares for downstream
analysis. B. Visium HD slides, compared to Visium v2, which have spots of 55 ym diameter
spaced 100 um apart. C. Comparison of serial sections of a representative normal colon
mucosa sample P3 NAT. Visium HD detects eighteen clusters that closely correspond to tissue
morphology, while Visium v2 detects three clusters. D. Sensitivity comparison between Visium
HD and Visium v2 on representative sample P3 NAT. Left plot shows expression levels of all
probes (whole transcriptome); the right plot shows only probes spanning an exon-exon splice
junction. Diagonal lines represent x = y. E. Transcript localization accuracy analysis performed
across four randomly selected regions of interest (ROIs) per tissue section for selected goblet
cell gene markers (CLCA1, FCGBP, MUC?2); source masks are colon gland structures, adjacent
masks are the immediately adjacent regions containing lamina propria. Images show selected
ROls in a representative normal sample P3 NAT; red lines outline the source mask, yellow lines
the adjacent mask. Table shows the median percentage of localized transcripts in the source
and adjacent masks, the density of selected transcripts in both masks, and the distance of
selected transcripts from source masks (*). Four ROls in each colon sample were included in
this analysis.

Visium HD reveals the spatial landscape of CRC tumors at single cell scale

To characterize the spatial landscape of the CRC samples, sections from three blocks
(P1 CRC, P2 CRC and P5 CRC) were selected for profiling using Visium HD. The resulting
unsupervised clusters aligned with the expected morphological features, highlighting the spatial
organization of the samples (Figure 3A). Since each section was analyzed independently, the
results were patient specific and thus limited our ability to perform cell type comparisons
between sections. To ensure we had the most refined and consistent cell type labels across all
samples, we generated a single cell reference atlas from serial FFPE sections of CRC and NAT
(n = 8 blocks, Table 1), which included the same three blocks selected for Visium HD. This
approach enabled us to sample and profile 245,494 cells (after quality control analysis), which
gave us more power for cellular annotations. We then applied differential gene expression
(DGE) analysis to identify marker genes between these clusters. We manually classified the
graph-based clusters into ten broad cell types, denoted as level 1 annotations. For level 2
annotations, we repeated the clustering process within each level 1 cluster, maintaining 25 PCs

but adjusting the resolution parameter to 0.1 to prevent over-splitting. We identified marker
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genes through DGE and annotated cell types manually based on published cell gene markers
(Supplemental Figure 2). We then used this annotated single cell dataset as a reference to
deconvolve the HD data, assigning a homogeneous set of cell type labels across the different
samples (See Methods and Figure 3B). To compare the Visium HD unsupervised clustering
results with the deconvolved labels, we plotted confusion matrices for each sample as
heatmaps and observed that the most prominent cell types were also detected by unsupervised
clustering (Figure 3C). These findings confirm that the expected cell types in the colon mucosa
can be identified based on the Visium HD data alone and deconvolution using single cell data is
not required. However, deconvolution based on single cell data and assignment of uniform
labels is useful for performing comparisons between samples.

The deconvolved Visium HD data provided a highly resolved map of the cell types
observed in the single cell reference data, aligning with tissue morphology. For example, we
mapped most goblet cells and enterocytes in the normal mucosa, cancer-associated fibroblasts
and tumor cells were mapped to the tumor area, and multiple immune cell types were mapped
throughout the tissue sections (Figure 3B). We observed that each patient sample was
associated with a major and distinct tumor cell type (Supplemental Figure 3 and Supplemental
Figure 4) mapped onto the morphological tumor regions across each tissue section. We
validated the spatial arrangement of these cell labels in Visium HD with the expression of well
known markers such as PIGR (goblet cells and enterocytes), CEACAM6 (tumor) and COL71A1

(fibroblasts) (Figure 3D).


https://doi.org/10.1101/2024.06.04.597233
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.04.597233; this version posted June 5, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

-1 14
m2 mi5
w3 m16
w4 m7
5 18
m6 w19
m7 w2
] 21
me m 22
- 10 = 23
= 1n 24
w12 25
- 13
W Adipocyle ™ Neutrophil
W CAF W ONK
©D4T cell pbC
W CD8 Cytotoxic T cell W Pericyles
W cDCI W Plasma
W Endothelial W Proliferating Fibroblast
Enteric Glial = Prolicrating Immunc 1
W Enterocyte m Proliferating Macrophages
 Epithelial ™ SM Stress Response.

Fibroblast
= Goblet

W Lymphatic Endothelial
™ Macrophage

= Mast

= Mature B

o Memory B

' Smooth Muscle

W mRegDC W Unknown IIl (SM)
= Myofibroblast W Vascular Fibroblast
® Neuroendoctine = vsm

C
[ —
1 1 o e
I » L NN s i Proportion (%)
i m s
—| T 1 100
i [ I ImERE]
n 1 o 75
s g
] : : : 50
4 ;n L - 14
F s ARE : 25
M n 20
i : O s 0
i : :

PIGR

Normalized Log
Expression
8

6

CEACAM6

4

2

COL1A1

Figure 3. Spatial mapping of CRC samples using Visium HD reveals high resolution,
accurate transcript mapping. A. Spatial mapping of three CRC samples (P1 CRC, P2 CRC
and P5 CRC) with 8 um bins colored based on unsupervised clustering. B. Spatial mapping of
the same three CRC samples with 8 um bins colored by cell types predicted by deconvolution
using the single cell reference dataset. C. Confusion matrices denoting the relationship
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between the unsupervised clusters (rows) and labels assigned by deconvolution labels
(columns). Data is scaled by row. D. Validation of selected cellular gene markers with known
spatial localization: PIGR (goblet cells and enterocytes), CEACAMG6 (tumor) and COL1A1
(fibroblasts). Samples correspond to those in A. For each sample, the tissue-level view is
shown on the left, with the inset as a black box, and the inset view is shown on the right. Scale
bars: black = 1 mm; blue = 80 ym.

Macrophages are enriched at the tumor boundary

Given that immune cell dynamics are known to play a key role in CRC progression, we
wanted to characterize the immune cell populations within the TME of our CRC samples. We
focused on the tumor boundary region so that we could understand immune cell dynamics and
function in these tumors. Taking advantage of the improved resolution afforded by Visium HD,
we used distance-based analysis to resolve the cellular composition of tumor boundary, an
analysis that is not possible to do at the resolution of Visium v2. We selected all barcoded 8 ym
bins within 50 um of the regions we had labeled as tumor cells via spot deconvolution (Figure
4A) that include only a determined single cell type (i.e. not a mixture of, or undetermined cell
types). Once the set of barcodes in these tumor peripheral regions was defined, we quantified
the composition of cell types present in the 50 um region peripheral to the tumor. When
compared to the rest of the tissue, cancer associated fibroblasts (CAF) were the most prominent
cell type, while macrophages were consistently identified as the most abundant immune cell
type, across all tissue blocks studied (Figure 4B). We corroborated these findings, which were
derived from the cell type annotation, by examining the expression of known macrophage

(C1QC) and CAF (COL1A1) markers (Figure 4A).
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Figure 4. Cellular composition of the tumor periphery in each CRC section. A. Analysis of
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column shows the 6.5 x 6.5 mm capture area, the second column shows the zoomed in view,
the third column shows the corresponding expression of C1QC (macrophages), and the fourth
column shows the corresponding expression of COL71A1 (fibroblasts). Scale bars: green = 1
mm; black = 125 um. B. Dot plot with the proportion of cell types in the tumor periphery (blue)
and the rest of the tissue section (gray) for the three different blocks.

Transcriptomic analysis of the macrophage-enriched tumor regions reveals two
macrophage subpopulations

As the most abundant immune cell type in the tumor periphery, we focused our analysis
on the tumor regions enriched with macrophages to gain insights on their interplay with the
TME. First, we evaluated if these cells presented heterogeneous gene expression signatures
and spatial locations within the tumor region. To do this, we selected the 8 ym bins deconvolved
as macrophages around the tumor region to perform an independent unsupervised clustering
analysis. We found two macrophage subpopulations with specific gene expression profiles

mainly defined by expression of SELENOP or SPP1 genes (Figure 5A). We then took
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advantage of the whole transcriptome nature of the assay and performed an enrichment
analysis of the differentially expressed genes to further characterize these macrophage
subpopulations. We observed that SELENOP* macrophages were differentially enriched for
pathways such as TNF-a signaling via NFK-, apoptosis pathways, and UV response to DNA
damage. Meanwhile, SPP1" macrophages were enriched for coagulation, cholesterol
homeostasis, and upregulation of KRAS signaling pathways (Figure 5B).

To add the spatial context of these macrophage subpopulations in the TME, we identified
highly enriched regions using density estimation (see Methods) and observed that the
SELENOP* and SPP1* macrophages were mostly in different spatial niches in the tissue (Figure
5C). Analysis of the gene expression profiles of the tumor cells close to these macrophage
subpopulations revealed that the different macrophage subpopulations were localized in tumor
regions with differential gene expression profiles. Tumor cells in areas enriched for SPP1*
macrophages showed differential expression of TGFBI, while tumor regions closer to
SELENOP* macrophages were enriched for REG1A and REG 1B (Figure 5D). Both TGFBI and

the REG gene families have been implicated in tumor progression.
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Figure 5. Identification and localization of two macrophage subpopulations in the tumor
microenvironment. A. Dot plot showing expression profiles of two distinct macrophage
subpopulations identified at the boundary in the tumor samples studied. B. Bar plot showing the
enriched gene sets for the macrophage subpopulations identified. C. Kernel density maps
showing the differential spatial localization of SELENOP* and SPP1* macrophages and how
they are associated with tumor areas. D. Heatmap showing the expression of REG family genes
(REG1A or REG3A) and TGFBI in the CRC sections. Scale bar = 1 mm.

Characterization and spatial localization of T cells in the TME

The recruitment and function of T cells into the TME has been suggested to be
associated with the dynamics of the cells in the tumor niches, and has long been associated
with favorable disease outcomes®’. As with most solid tumor types, CRC tumors are typically

cold tumors, which have implications to immunotherapy interventions®'. However, since our
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investigation employs high resolution spatial technologies, we wanted to leverage this to
specifically explore T cell localization and behavior at the tumor boundary. In our initial analysis,
we only included bins predicted to contain only one cell type (singlet 8 um bins). However, we
observed that the tumor periphery region (50 pm around the tumor) displayed enrichment in the
number of bins labeled as doublets (two cell types co-existing in the same bin) compared to the
rest of the tissue (Figure 6A). This finding is expected, given the known cellular heterogeneity at
the boundary of morphologically distinct regions. We found that most T cells were assigned to
doublet bins or rejected (the algorithm was unable to predict the cell type), and therefore
excluded from our initial analysis, making it more challenging to spatially localize these immune
subpopulations (Supplemental Figure 5). To overcome this, we first identified regions enriched
in either CD4" or CD8" T cells, independent of whether they were assigned to a singlet or
doublet bin (Figure 6B), and performed nuclei segmentation on these regions. We then
leveraged the higher resolution 2 ym binned data and assigned the corresponding 2 pm bins
that were located within the nuclei polygons to create a gene by nuclei UMI count matrix for
further processing. Following this strategy, we were able to identify T cells at the tumor
boundary (Figure 6C), but observed that cells expressing CD8A and CD4 were sparsely
distributed. We also examined the expression of known T cell markers in this region (TRAC,
CD3) and other cell type markers such as PECAM1 (endothelial), IGKC (plasma), COL1A1
(CAF), SPP1 or SELENOP (macrophages), and CEACAMS (tumor) (Supplemental Figure 6) to
obtain a fine grained map of the cell types in these areas of the tissue. This analysis allowed us
to identify and localize both CD4 and CD8 T cells at the tumor periphery but not in the
surrounding normal tissue, suggesting that these infiltrating lymphocytes may be playing an

active anti-tumor role.
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Figure 6. Spatial localization of T cells in the tumor microenvironment. A. Barplot showing
the proportion of each 8 um bin class (singlet, doublet, rejected) for each tissue region. B.
Density maps showing the spatial location of CD8+ and CD4+ T cells in the different samples.
C. Zoomed-in view of regions with bins labeled by deconvolution results at 8 um (left), nuclei
segmentation results in the zoomed-in regions (center) and normalized expression of CD4 and
CD8A (right) of the transformed UMI matrix by grouping 2 ym bins within each of the segmented
nuclei. Scale bars: black = 1 mm; yellow = 50 ym.
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Xenium in situ analysis validates Visium HD findings and reveals the spatial distribution
of clonally expanded T cells in the TME

To further investigate the spatial distribution of immune cells within the TME and to
validate findings from the Visium HD data, we profiled the samples using the Xenium Analyzer.
Xenium is an in situ spatial analysis platform that provides subcellular resolution for a targeted
set of genes. We have previously shown that Xenium is ~8.4x more sensitive on a per-gene
basis than Visium v2 on a cohort of breast cancer samples®?, and thus we wanted to use
Xenium to validate our Visium HD findings and interrogate the T cell populations more closely.
We first set out to benchmark the sensitivity of Xenium with Visium HD in this study. We used
the Xenium Human Colon gene expression panel (322 genes) and a custom add-on panel
targeting 100 additional genes, which was designed to target diverse immune populations we
observed in the Visium HD data (Supplemental Table 1). The panel was used with the
Multimodal Cell Segmentation workflow, which allows segmentation of cells based on boundary
stains and morphology rather than relying on nuclear expansion alone. To compare the Xenium
data to the Visium HD data, we limited the Visium HD data to the 422 genes on the Xenium
panel, and found that Xenium was ~5.7x more sensitive on a per-gene basis. However, when
we compare total transcripts identified in the shared region, we see that Visium HD captures
~6.5x more transcripts than Xenium due to its whole transcriptome nature (Supplemental Figure
7). Both of these results are in line with our previously published comparisons. We expect some
differences in sensitivity gains due to differences in the specific genes that are included on the
Xenium panels and the nature of the samples used in each study.

We then sought to validate our findings to confirm that the subtypes and localization of
macrophages we had observed in the Visium HD data were correct. Consistent with the Visium
HD findings, Xenium revealed heterogeneity within both tumor cells and macrophage
populations (Figure 7A, 7B). SELENOP*/STAB1*- macrophages were found near REG1A* tumor

cells (Figure 7C, 7D) while SPP1* macrophages were localized in close proximity to
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TGFBI*-tumor cells (Figure 7E, 7F). Interestingly, we observed that cancer associated
fibroblasts (CAFs) which localized at the border of TGFBI* tumor also expressed MMP11 (Figure
7E, 7F), a matrix metalloproteinase that breaks down ECM and is associated with poorer
prognosis®. This colocalization of SPP1* macrophages, TGFBI' tumor cells, and MMP11* CAFs
within the TME may suggest a coordinated effort to promote tumorigenesis.

To better understand the T cell response at play we wanted to explore the clonality of the
antigen recognizing T cell receptors (TCRs) of the T cells in and around the CRC tumors. To do
this, we obtained dissociated tumor cells from the same patient samples and isolated the T
cells. We then profiled the TCR clonality of these T cells using the Single Cell Immune Profiling
v2 workflow. This analysis revealed a clonotype with 11% representation within the T cell
population of sample P5 CRC (TRAV38-1 TRAJ58; TRAB38-2/DV8 TRAJ57; TRBV4-2,
TRBJ2-1. Supplemental Table 2), but no expansions in the other samples. To confirm this was a
novel clonotype specific to this patient tumor and not present due to on ongoing or prior

infection, we searched VDJdb (https://vdjdb.cdr3.net/) and found no known matches to the

CDRa3 sequences, indicating that this clonotype recognises to a neoepitope specific to this
tumor.

As expanded clonotypes demonstrate an active adaptive immune response, we sought
to localize these cells within the tissue to better understand the role they were playing in the
TME. We designed probes targeting the CDR3 regions of the two alpha and one beta chains of
the overlapping expanded clonotypes and included them in the Xenium custom add-on panel
(for probe sequences, see Methods). Xenium analysis showed clusters of clonally expanded T
cells residing closely to tumor cells and within gut-associated lymphoid tissues (Figure 7G).
Gene expression signatures identified these T cells as CD8" cytotoxic T lymphocytes
(expressing CD8A, PRF1, NKG7, GZMA, and GZMK genes) (Figure 7H). Interestingly, these T
cells were localized within CXCL9/CXCL10/CXCL11 foci, where STAB1" macrophages, B cells,

and endothelial cells are present and contributing to the expression of these chemokines
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(Figure 7H), known to recruit immune cells to the tumor site®. This observation was validated in
the corresponding region of the Visium HD data (Figure 71). TRAC" T cells were identified near
CEACAMS* tumor cells, SELENOP*/C1QC" macrophages, and JCHAIN* B cells. SELENOP
and JCHAIN were not included in the Xenium gene panel but we could include them in our
analysis based on the Visium HD data, highlighting the complementary strengths of Xenium and

Visium HD technologies.
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Figure 7. Xenium in situ confirms the existence and localization of macrophage subtypes
and clonally expanded T cells in the tumor microenvironment. A, B. Expression of REG1A
and TGFBI transcripts (right panels) and SPP1 (bottom left panel) within tumor region (top left
panel). C, D. STAB1* macrophages near REG1A* tumor cells. STAB1 was used to visualize the
macrophage subtype co-expressing SELENOP. E, F. SPP1* macrophages shown in proximity of
TGFBI'" tumor cells and MMP11* cancer associated fibroblasts. G. Combined expression of
clonotype TRA1/TRA2/TRB in sample P5 CRC. H. Clonally expanded CD8 cytotoxic T cells
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reside closely to tumor cells and within CXCL9/CXCL10/CXCL11 foci. I. Zoom in view of the
same regions using Visium HD with 2 ym bins assigned to segmented nuclei. Bins are colored
by the normalized log UMI counts of CEACAMS, SELENOP, C1QC, JCHAIN, TRAC, and
CXCL9. Scale bars: 2 mmin A, B, G; 100 umin C, D, E, F; 20 ymin H; 50 pm in I.

Discussion

The advent of spatial transcriptomics has enabled a more comprehensive understanding
of cellular tissue dynamics in health and disease, and is particularly relevant in the oncology
field where the localization of specific cell types in the TME can have prognostic implications. By
enabling precise mapping of tumor microenvironments, these technologies reveal the complex
spatial relationships and interactions among cells, which are crucial for understanding tumor
progression and resistance to therapy. However, existing technologies have limitations related to
resolution, tissue compatibility, or ease of use. In this study, we introduced Visium HD, the next
generation of the Visium technology, and used it to explore the TME in FFPE colon
adenocarcinoma samples.

It has been recognized that the two most important quality parameters of
sequencing-based spatial technologies are the sensitivity of mMRNA capture per unit area and
the spatial accuracy of the mMRNA detection?®. By using a subset of our sample cohort (two NAT
and one CRC sample), we demonstrated that Visium HD retained similar gene detection
sensitivity when compared to the Visium v2 assay, at a comparable sequencing depth. The
improved resolution of the Visium HD array yields a larger number of clusters, identified via
unsupervised clustering, that are well aligned with tissue morphology. To assess the spatial
robustness of the assay, we quantified the abundance of canonical markers of normal colon
epithelial cells in their expected location and adjacent cells, demonstrating that Visium HD has
high transcript spatial localization accuracy. Together, these results demonstrate the high

sensitivity, resolution, and accuracy of the Visium HD technology.
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These features enabled us to perform an in depth analysis of a subset of three FFPE
colon adenocarcinoma samples. The unsupervised clustering analysis of these samples allowed
us to detect a broad range of cell types within each sample, however, the intra-patient
heterogeneity made comparison between samples challenging. To ensure consistency in our
cell type annotation and to increase our confidence in cell type calling, we generated a single
cell reference dataset containing representative normal and diseased states. We then used this
single cell dataset for deconvolution of Visium HD data from all of our samples. We adapted
existing deconvolution methods that were designed based on Visium v2 to be performant with
the dramatically increased number of ‘spots’ (now bins) that are present in Visium HD. Our
analysis shows that per section unsupervised clustering analysis of Visium HD data yields
similar cellular annotations for the main cell types found within tissue sections compared to the
deconvolution method. While the inclusion of the single cell reference data provides an added
benefit for a consistent cellular annotation strategy across multiple samples and identification of
rare cell types, it is not a requirement for sample analysis using Visium HD.

The interactions of immune cells in the TME of CRC are poorly understood, hindering
the development of new therapies®. For example, tumor-associated macrophages (TAMs) have
been shown by several studies to exert pro-tumor activity; however, their role in CRC
progression and the ability to predict disease outcomes based on macrophage infiltration are
controversial. These controversial associations could be due to simultaneous accumulation of
M1-like (pro-inflammatory) and M2-like (anti-inflammatory) macrophages and their spatial
distribution within the tumor regions, leading to distinct functional activities within the TME3¢. It
has been hypothesized that undifferentiated tumor cells at the invasion front, where the tumor
tissue meets and interacts with the surrounding normal tissue, could polarize macrophages
toward the M2-like phenotype (SPP1* macrophages)®. Therefore, we wanted to explore the
immune cell composition of the area immediately surrounding the tumor, to see what role

immune cells were playing. In each sample, we identified distinct tumor cell types that were
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mapped to the morphological tumor regions in each tissue section, and applied a periphery
analysis to interrogate areas within 50 pym of the tumor boundary. We observed a consistent
enrichment of CAFs and macrophages in CRC tumor regions across all samples. CAFs are the
most abundant non-immune cell types in the vicinity of CRC tumors, and TAMs are known to be
the most prevalent immune cell types in the TME, recruited by cytokines released by tumor cells
and CAFs. The presence of CAFs and SPP7+ macrophages are known to be highly correlated,
and their presence is negatively correlated with lymphocyte infiltration and predict a poor patient
survival®,

We next sought to understand the functional profiles of the macrophages identified in the
tumor regions of our samples. Independent unsupervised clustering analysis of the gene
signatures associated with the 8 ym bins labeled as macrophages found in tumor regions
revealed two heterogeneous M2-like subpopulations, labeled as SPP1* and SELENOP*
macrophages. These populations were specifically enriched within distinct spatial locations of
the tumor, across two of the CRC tissue sections evaluated (only SELENOP* macrophages
were mapped within tumor regions in sample P5 CRC). SELENOP* macrophages co-localized
with tumor cell populations marked by expression of REG family genes, which are known to be
highly expressed in CRC and associated with metastasis, advanced tumor stage and poor
prognosis®. SPP1* macrophages co-localized with tumor cell populations marked by expression
of TGFBI, which has been reported to be associated with poorer prognosis®. Previous
scRNA-seq studies have shown that SPP1* macrophages are enriched in tumor tissue, exerting
pro-tumor and pro-metastatic roles®%. They may also regulate CAF through TGFB1, thereby
promoting the secretion of MMPs and collagen to remodel the ECM, contributing to the
resistance to PD-L1 blocking immunotherapy®. Pathway enrichment analysis of the upregulated
gene expression profiles from both macrophage subpopulations revealed pathways consistent
with pro-tumor activity. However, different pathways were dominant in each subpopulation,

indicating that both subpopulations of macrophages identified here may exert pro-tumor effects,
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but do so by suppressing the immune response and contributing to tumor progression via
different mechanisms. The resolution gains afforded by the increased density of the Visium HD
arrays provided us with the ability to pinpoint the location of these subpopulations and the tumor
cells they are interacting with, providing key insights into their behavior and the cellular
dynamics of the TME. This is biologically meaningful because anti-PD-1 therapy is currently only
effective for a minority of CRC patients, and disrupting the interactions of SPP71+ macrophages
and CAFs has been proposed as a potential therapeutic strategy?’.

The interesting dynamics we observed in the macrophage subpopulations led us to
explore the immune cell populations in the tumors further, and we turned our attention to the
adaptive immune response, specifically T cells. T cell infiltration into CRC tumors has long been
associated with favorable outcomes, suggesting a possible role for immunoediting in controlling
tumor growth*®4'. Our analysis of Visium HD data at 8 um bin size allowed us to clearly identify
T cells in the microenvironment of the tumors we examined. However, we saw fewer T cells than
anticipated based on the single cell data. Reanalyzing the data in this region using higher
resolution (2 um bins), enabled us to improve our capacity to identify T cells within the TME,
since many were lost due to their small size and colocalization with other cells at 8 ym
resolution. The 2 ym analysis also allowed us to improve accuracy, and pinpoint the location of
the T cells in the tumor and surrounding areas, but even with this granular view we see that
there is only a sparse presence of T cells in the TME. This resolution level flexibility was useful
for answering specific biological questions, in this case the smaller bins provide critical insights
for the analysis of T cells, but it was not necessary for the analysis of the larger macrophages.
We anticipate that in the future more sophisticated analysis methods would be able to take full
advantage of the 2 um resolution data. Development of spatially aware methods that are able to
include information from neighboring bins during unsupervised clustering would provide more

accurate cell type annotations.
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Finally, we wanted to explore the nature of the T cells we identified and better
understand their function in the TME. Single cell TCR profiling allowed us to identify an
expanded TCR clonotype within the more advanced cancer P5 CRC sample (stage IV-A, Table
1), suggesting an active immune response in this tumor. Using Xenium we mapped, for the first
time, the location of clonally expanded T cells within the CRC TME, at single cell resolution.
Xenium analysis revealed a co-localization of these clonally expanded T cells with cells
expressing CXCL9, CXCL10, and CXCL11 chemokines, which are known to attract cytotoxic T
lymphocytes®. Consistent with this finding, these expanded T cells expressed cytotoxic genes,
including PRF1, GZMA, and GZMK. Notably, macrophages within these regions emerged as the
primary source of the CXCL9, CXCL10, and CXCL11 expression, suggesting their contribution
to T cell recruitment and potential anti-tumor activity. This finding suggests that despite the
overall immunosuppressive environment in the microenvironment of these tumors, there are
niches where anti-tumor immune responses may be taking place. This is an important
observation as the balance between the pro- and anti-tumor macrophages influences tumor
progression and response to therapy. Further research into the plasticity of macrophages and
their ability to switch between these states could provide potential targets for therapeutic
strategies in cancer treatment*>43,

High definition spatial technologies are providing increasingly granular insights into
cellular behavior in the TME. Given the poor survival rates of many cancers, identification of
better predictive prognostic biomarkers that can be used in clinical strategies are needed. The
ability to visualize and analyze tumors using cutting edge spatial technologies not only
enhances our comprehension of cancer biology but also guides the development of targeted
therapies and has the potential to identify biomarkers that can meet this need. Our results
highlight some of the insights that can be gleaned by studying immune cell populations in the

TME with high definition, whole transcriptome, spatial technologies and pave the way for future
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studies that will fill gaps in our understanding of tumor evolution, progression, and provide

insights for therapeutic advances.

Data Availability

All datasets are available for download here:
https://www.10xgenomics.com/products/visium-hd-spatial-gene-expression/dataset-human-crc

Code Availability

Custom scripts used for this paper that are available on GitHub at:
https://github.com/10XGenomics/HumanColonCancer_VisiumHD
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An overview of the experimental design is presented in Figure 1. We included samples from five

patients with colon adenocarcinoma (two males, three females, ages 58-72, pre-treatment) in this study.

From each patient, we included CRC FFPE blocks and NAT blocks for a subset of three patients (bringing

the total to eight FFPE blocks), and we obtained paired fresh frozen dissociated tumor cells (DTCs),

essential for immune profiling analysis, alongside the three selected FFPE blocks used for spatial profiling
(Table 1).

Table 1. Samples evaluated in this study

Sample | Colon region Stage Sex | Age | Visium HD Visium Xenium Chromium | Chromium
v2 Flex TCR
P1 CRC Sigmoid l-A F 72 Included Included Included
P2 CRC Sigmoid Unknown | M 60 Included Included Included Included
P2 NAT Included
P3 CRC | Transversum | Unknown | M 83 Included
P3 NAT Included Included Included
P4 CRC | Not specified l-A F 61 Included
P5 CRC | Not specified IV-A F 58 Included Included Included Included
P5 NAT Included Included

CRC = Colorectal cancer, NAT = normal adjacent tissue. NAT was available for P2, P3 and P5.

Tissue sectioning

5 pm sections were taken from the FFPE tissue blocks with a microtome (Epredia HM3558S).

Sections were adjacent or near-adjacent (within 5-10 um of each other). Sectioning followed the Xenium

In Situ for FFPE - Tissue Preparation Guide (CG000578, Rev C) for the Xenium workflow, or the Visium

CytAssist Spatial Gene Expression for FFPE — Tissue Preparation Guide (CG000518, Rev C) for the

Visium workflows.

Visium HD Spatial Gene Expression

tissues and H&E / IF staining. However, the Visium HD workflow requires new HD slides that require

Like first-generation Visium assays, the Visium HD assay is compatible with FFPE-embedded

thawing, washes, and equilibration in appropriate buffers. Visium HD slides also feature high-resolution

fiducials for subpixel image alignment, and a dispensing pad and spacer for CytAssist compatibility. We
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first placed FFPE tissue sections on plain glass slides for deparaffinization, H&E staining and imaging
following the Visium HD FFPE Tissue Preparation Handbook (CG000684). Probe hybridization, probe
ligation, slide preparation, probe release, extension, library construction, and sequencing followed the
Visium HD Spatial Gene Expression Reagent Kits User Guide (CG000685). Sequencing was performed
on an lllumina NovaSeq 6000 with paired-end reads (43 cycles Read 1, 10 cycles i7, 10 cycles i5, 50
cycles Read 2). We used Space Ranger v3.0 to map FASTQ files to the human reference, detect the
tissue section, align the sequencing data to the microscope image and the CytAssist image, and output

gene-barcode matrices for further analysis.

Visium CytAssist Spatial Gene Expression for FFPE

We ran Visium CytAssist Spatial Gene Expression for FFPE (“Visium v2”) on a subset of samples
to demonstrate technological improvements of Visium HD. 5 ym FFPE serial sections were placed on
standard glass slides and H&E-stained following the Demonstrated Protocol Visium CytAssist Spatial
Gene Expression for FFPE — Deparaffinization, H&E Staining, Imaging & Decrosslinking (CG000520).
Imaging was performed on the slide scanner Olympus V200 at 20x magnification. The CytAssist
instrument was used to facilitate the transfer of transcriptomic probes from the standard glass slide to the
Visium CytAssist Spatial Gene Expression Slide, v2, 11 mm capture area. Probe hybridization, probe
ligation, release, extension, pre-amplification, and library preparation followed the Visium CytAssist
Spatial Gene Expression Reagent Kits User Guide (CG000495). Sequencing was performed on the
NovaSeq 6000 (28 cycles Read 1, 10 cycles i7, 10 cycles i5, 90 cycles Read 2). Flow cells were
demultiplexed using the mkfastq command in Space Ranger (v3.0). FASTQs were aligned to the human
(GRCh38) reference with Space Ranger v3.0.

Chromium Single Cell Gene Expression Flex

We collected Chromium Single Cell Gene Expression Flex data (10x Genomics) to create a
sample-specific annotated reference atlas. Cells were dissociated from 50 um FFPE curls from CRC
tissue samples (n=5 patients) and a subset of paired normal adjacent tissues (n = 3 patients) using the
Demonstrated Protocol for Isolation of Cells from FFPE Tissue Sections for Chromium Fixed RNA
Profiling (CG000632). The FFPE curls used for this analysis were serial to the sections used for the
Visium HD assay, to ensure that the single cell reference atlas would closely represent the tissue
analyzed with the spatial analysis. Flex library preparation followed the Chromium Fixed RNA Profiling for
Multiplexed Samples User Guide (CG000527, RevD). Each sample was hybridized with a unique probe
barcode in an individual reaction. After hybridization, samples were multiplexed in equal cell proportions,
washed, and processed collectively, across multiple GEM lanes as technical replicates, using the
Chromium X instrument. Libraries were sequenced on an lllumina NovaSeq 6000 with paired-end
dual-indexing (28 cycles Read 1, 10 cycles i7, 10 cycles i5, 90 cycles Read 2). Flow cells were

demultiplexed using the mkfastq command in Cell Ranger (v8.0.0). Cell Ranger v8.0.0 (10x Genomics)
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was used to align reads in FASTQ format to the human probe set and reference genome (GRCh38),
producing feature-barcode matrices for analysis. Each GEM well was processed using a separate
instance of the cellranger multi pipeline. Finally, we aggregated matrices across all eight tissue blocks
with the cellranger aggr pipeline.

After sequencing, we aggregated the single cell data and analyzed it as a combined dataset from
all patients. To build the atlas, we used Seurat v5* to import the H5 file produced by the cellranger aggr
pipeline. We filtered the data on quality control metrics including the number of features, the number of
UMIs per barcode, and the percentage of mitochondrial UMlIs. We retained barcodes with fewer than 25%
mitochondrial UMIs, as tumors are expected to have higher mitochondrial expression.

We then plotted the distribution of UMIs and genes per barcode, excluding the top and bottom
2.5% of the distribution to account for outliers. Given the dataset's large size, we adopted the
sketch-based analysis approach in Seurat (https://satijalab.org/seurat/articles/seurat5_sketch_analysis),
sampling 15% of the entire dataset (~37,000 cells) for downstream analysis. Using Seurat, we identified
variable features, scaled the data, performed PCA, identified neighbors, and conducted graph-based
clustering (retaining 25 principal components (PCs) with a resolution parameter of 0.6). We then applied
differential gene expression (DGE) analysis to identify marker genes within these clusters. We manually
classified the graph-based clusters into ten broad cell types, denoted as level 1 annotations. For level 2
annotations, we repeated the clustering process within each level 1 cluster, maintaining 25 PCs but
adjusting the resolution parameter to 0.1 to prevent over-splitting. We identified marker genes through
DGE and annotated cell types manually. After completing the annotations on the subsampled data, we
extended the annotations to the entire single cell dataset.

When single cell datasets were segregated per patient, different proportions of cell types as well
as distinct types of tumor cells were revealed that were differently enriched per patient, highlighting the
inter-patient heterogeneity of CRC samples. We further validated these findings by performing a
differential expression analysis, which revealed patient specific tumor signatures (Supplemental Figures 3
and 4).

Single Cell Inmune Profiling

Single cell immune profiling relies on poly-A-based 5° mRNA capture and targeted sequencing and
assembly of the V(D)J regions, therefore fresh frozen dissociated tumor cells (DTCs) are necessary. We
used DTCs that were obtained from the same tumor samples as our FFPE blocks to obtain TCR profiling
data on three samples (Table 1). Cryovials were thawed in a water bath for 2—3 minutes at 37°C with
gentle shaking. Thawed cells were transferred into a 15 mL centrifuge tube containing 9 mL of
pre-warmed complete growth medium (RPMI + 10% FBS) and the centrifuged at 150 rcf for 10 minutes at
room temperature using a swinging bucket rotor. All but ~200 yL of the supernatant was removed and
then the pellet was resuspended in this remaining 200 pL, followed by the addition of 200 uL of complete

media. Cells were strained using a 40 ym Flowmi cell strained and transferred to a 1.5 mL Eppendorf
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tube before being counted on a Cellaca MX using AOPI. 5 uL of CD3 BV510 stain and 2.5uL of CD45
APC was added to the cell suspension and it was incubated on ice for 30 minutes in the dark. Cells were
then centrifuged at 300 rcf for 10 minutes at 4°C. The supernatant was removed without disturbing the
cell pellet and 1 mL of chilled PBS + 10% FBS added to the tube with gentle mixing. Cells were
centrifuged at 300 rcf for 10 minutes at 4°C and the pellet resuspended in 250 pL of chilled PBS + 10%
FBS. Cells were then sorted on a SONY MA900 cell sorter. Live single DTCs were gated using forward
scatter (relative size) and back scatter (relative granularity) and 7AAD for live/dead cell discrimination.
CDA45 and CD3 were used to identify T cells. Sorts were performed on a 100 pm nozzle at 20 psi sheath
pressure. The sample pressure was set to low-medium with a consistent event rate maintained
throughout the sort. Cells were sorted into 30 uyL 10% FBS in PBS, in a pre-coated 1.5 mL Eppendorf
tube and then directly loaded onto the 10x chip for generation of 5’ gene expression and TCR libraries
following the Chromium Next GEM Single Cell 5’ Reagent Kits v2 (Dual Index) User Guide (CG000331)
on the Chromium X instrument. Libraries were sequenced on an Illlumina NovaSeq 6000 with paired-end
dual-indexing (28 cycles Read 1, 10 cycles i7, 10 cycles i5, 90 cycles Read 2). Flow cells were
demultiplexed using the mkfastq command in Cell Ranger (v8.0.0). We used Cell Ranger v8.0.0 (10x
Genomics) to process FASTQ data for both gene expression and TCR libraries. The cellranger count
pipeline was used to align 5' reads to the reference genome (GRCh38) and output gene-barcode matrices
that could be used to cluster cells and run differential gene expression. We used the cellranger vdj

pipeline to assemble TCR sequences and group cells into clonotypes based on their CDR3 sequences.

Xenium In Situ

We ran Xenium In Situ on sample P1 CRC, P2 CRC, and P5 CRC to validate Visium HD results,
providing a direct comparison for gene sensitivity, and to map a clonal expansion of T-cells detected in
sample P5 CRC. The 10x Genomics Xenium Human Colon Gene Expression Panel (322 genes) was
supplemented with an additional 100 genes chosen to characterize the TME (for the complete gene list
see Supplemental Table 1). Three genes, each with unique probesets, were designed for the two alpha
and one beta chains of the TCR clonotype identified from the Single Cell Immune Profiling data in sample
P5 CRC. The other 97 genes included markers that were enriched in different subsets of tumor cells from
the single cell reference atlas and from the Visium HD data. They include marker genes for macrophages,
neutrophils, cancer-associated fibroblasts, granulocytes, chemokines, and other TME markers. The panel
was designed using Xenium Panel Designer following the guidance in the Xenium Add-on Panel Design
Technical Note (CG000643, RevB).

During the Xenium Analyzer workflow, the Xenium In Situ Cell Segmentation Solution uses a
Multi-Tissue Stain Mix to identify cell boundaries (cell segmentation) in an automated fashion. The
solution includes antibodies for labeling membranes, antibodies for labeling cell interiors, a universal
interior label for ribosomal RNA, and a DAPI stain for nuclei. Probe hybridization, ligation, amplification,

cell segmentation staining, and autofluorescence quenching followed the Xenium In Situ Gene
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Expression with Morphology-based Cell Segmentation Staining User Guide (CG000749). The Xenium
Onboard Analysis pipeline v2.0.0 (10x Genomics) was run directly on the instrument for imaging

processing, cell segmentation, image registration, decoding, deduplication, and secondary analysis.

Design of TCR clonotype probes

Custom probes for Xenium were developed to target three CDR3 sequences identified by VDJ
sequencing. One 40 bp probe was designed for each CDR3, centered on the CDR3 with some overhang
into the adjacent framework regions. These probes were designed following the specifications in the
Species Standalone Custom and Advanced Custom Panel Design for Xenium In Situ Technical Note
(CG000683. Rev C). Probe sequences are shown in Table 2.

Table 2. TCR Clonotype Xenium Probes

Chain Probe Sequence
TRA 1 Probe 1 ATGTATTTCTGTGCCCTAGTAGAAGAAACCAGTGGCTCTA
TRA 1 Probe 2 TGCCCTAGTAGAAGAAACCAGTGGCTCTAGGTTGACCTTT
TRA 1 Probe 3 TAGAAGAAACCAGTGGCTCTAGGTTGACCTTTGGGGAAGG
TRA 2 Probe 1 GATGTATTTCTGTGCTTATAGGAGCGCTTTAACTCAGGGC
TRA 2 Probe 2 TATAGGAGCGCTTTAACTCAGGGCGGATCTGAAAAGCTGG
TRA 2 Probe 3 TTTAACTCAGGGCGGATCTGAAAAGCTGGTCTTTGGAAAG
TRB Probe 1 CCCTCGGCTAGCAGCTACAATGAGCAGTTCTTCGGGCCAG

Visium v2 to HD sensitivity comparison

We assessed the sensitivity of Visium HD compared to Visium v2 on a gene-by-gene basis. Matched
areas were manually selected in Loupe and probe-barcode matrices from each dataset, generated by
Space Ranger, were imported into Seurat v5* using the read10xh5() function. We utilized the ggplot2 R
package to graph per-probe UMI counts. The data were displayed on a Log10 +1 scale, with Spearman
correlations calculated as r?. Our comparison spanned all probes across the entire transcriptome and
specifically focused on probes crossing an exon-exon splice junction. This latter comparison helps
exclude most probes that could target genomic DNA (gDNA) or be susceptible to off-target effects. For
more details on genomic DNA see Visium CytAssist Spatial Gene Expression for FFPE: Robust Data
Analysis with Minimal Impact of Genomic DNA Technical Note (CG000605, Rev A).
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Spatial accuracy

To measure spatial accuracy of mRNA detection, we identified morphologically distinct regions of interest
(ROIs) and then pinpointed marker genes unique to each ROI. These marker genes should be expressed
only in squares directly beneath their corresponding ROI. Using QuPath v0.4.4%, we selected four ROls
within normal colon mucosal glands (hereinafter referred to as “source masks”) and areas of adjacent
muscularis mucosae (“adjacent masks”), choosing three goblet cell marker genes (CLCA1, FCGBP,
MUC2). We mapped the locations of all transcripts for these marker genes and calculated the proportion
of accurately localized transcripts for each of the four ROls. For the remaining transcripts, we determined
the Euclidean distance from the edge of the nearest source mask to the square of transcript detection.
Additionally, we calculated the densities of the marker genes within both the source and adjacent masks
for each ROI.

Spot deconvolution

Spot deconvolution was used to classify and label bins with cell types derived from the single cell atlas.
We ran spacexr*® using doublet mode, which restricts any given bin to at most two cell types. Spacexr is
an open source package, and we modified the code to improve runtime due to the increased ‘spot’
number possible with Visium HD. In Visium HD, there is a maximum upper limit of 11,222,500 barcoded 2
pm bins within a 6.5 x 6.5 mm capture area, whereas Visium v2 has a maximum of approximately 14,000
barcoded 55 um spots within an 11 x 11 mm capture area (or 5,000 barcoded 55 pm spots within an 6.5 x

6.5 mm capture area). The minimum UMI threshold was 100.

Characterizing the tumor periphery

Using the deconvolution results, we used a custom script to identify the peripheral region (up to 50 ums
from the tumor). Briefly, for each tumor bin, we selected all other bins within 50 ym that were not
classified as tumor. We also removed any tumor bin that had less than 25 tumor neighbors, to reduce
isolated tumor bins in the tissue. Then, we obtained the cell type proportions in the peripheral region, and

compared those proportions to cell types observed in the rest of the tissue.

Immune density analysis

To map the locations of specific immune cell types in the CRC samples, we used the coordinates for each
bin and their labels provided by deconvolution. We counted only bins that were labeled as singlets. We
used a 2D kernel density estimation to select regions enriched in a given cell type. Density values were

scaled to a maximum of 1.

Distance / local / regional analysis
After identifying regions enriched with immune cells, we selected the top three regions exhibiting the

highest macrophage density (within bins categorized as tumor tissue) and delineated these areas as
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Regions of Interest (ROIs) with a radius of 350 ym. Additionally, we identified a "cold" region lacking
immune infiltration. To identify genes associated with elevated immune cell density, we used differential
gene expression (DGE) analysis. Subsequent enrichment analysis of differentially expressed genes
(ranked by log, fold change) used the Hallmark gene sets linked to specific biological pathways*’,

https://www.gsea-msigdb.org/gsea/msigdb/human/collections.jsp).

Nuclei Segmentation

To segment nuclei from the H&E images and assign 2 uym bins to the identified nuclei, we followed the
analysis guide “Nuclei Segmentation and Custom Binning of Visium HD Gene Expression Data"
(https://www.10xgenomics.com/analysis-guides/segmentation-visium-hd). The segmentation procedure
was run on the full section using stardist*®. We used affine transformations to preserve the segmentation
polygons when subsetting the image to specific regions of interest. Once the 2 um bins were assigned to
the corresponding nuclei polygons, the data was transformed to create a gene by nuclei UMI count matrix

for further processing.
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