

1 **TNBC response to paclitaxel phenocopies interferon response which reveals cell cycle-associated
2 resistance mechanisms**

3 **Authors:** Nicholas L Calistri¹, Tiera A. Liby¹, Zhi Hu¹, Hongmei Zhang¹, Mark Dane¹, Sean M. Gross¹, Laura M.
4 Heiser^{1,2,#}

5 1 Biomedical Engineering Department, Oregon Health & Science University, Portland Oregon

6 2 Knight Cancer Institute, Oregon Health & Science University, Portland Oregon

7 # Corresponding author: heiserl@ohsu.edu

8 **ABSTRACT**

9 Paclitaxel is a standard of care neoadjuvant therapy for patients with triple negative breast cancer (TNBC);
10 however, it shows limited benefit for locally advanced or metastatic disease. Here we used a coordinated
11 experimental-computational approach to explore the influence of paclitaxel on the cellular and molecular
12 responses of TNBC cells. We found that escalating doses of paclitaxel resulted in multinucleation, promotion of
13 senescence, and initiation of DNA damage induced apoptosis. Single-cell RNA sequencing (scRNA-seq) of
14 TNBC cells after paclitaxel treatment revealed upregulation of innate immune programs canonically associated
15 with interferon response and downregulation of cell cycle progression programs. Systematic exploration of
16 transcriptional responses to paclitaxel and cancer-associated microenvironmental factors revealed common
17 gene programs induced by paclitaxel, IFNB, and IFNG. Transcription factor (TF) enrichment analysis identified
18 13 TFs that were both enriched based on activity of downstream targets and also significantly upregulated after
19 paclitaxel treatment. Functional assessment with siRNA knockdown confirmed that the TFs FOSL1, NFE2L2
20 and ELF3 mediate cellular proliferation and also regulate nuclear structure. We further explored the influence of
21 these TFs on paclitaxel-induced cell cycle behavior via live cell imaging, which revealed altered progression
22 rates through G1, S/G2 and M phases. We found that ELF3 knockdown synergized with paclitaxel treatment to
23 lock cells in a G1 state and prevent cell cycle progression. Analysis of publicly available breast cancer patient
24 data showed that high ELF3 expression was associated with poor prognosis and enrichment programs

25 associated with cell cycle progression. Together these analyses disentangle the diverse aspects of paclitaxel
26 response and identify ELF3 upregulation as a putative biomarker of paclitaxel resistance in TNBC.

27 **Key words:** triple negative breast cancer (TNBC), single-cell RNA sequencing (scRNA-seq), transcription factor,
28 cell cycle, interferon response, live-cell imaging

29

30 INTRODUCTION

31 Triple negative breast cancer (TNBC) is an aggressive form of breast cancer that affects 10-20% of all breast
32 cancer patients and is characterized by its lack of expression of estrogen, progesterone and HER2 receptors[1].

33 The standard of care for TNBC patients primarily relies on conventional anthracycline and taxane-based
34 chemotherapy regimens, and few next-generation therapies have shown efficacy in patients with this disease[2].

35 Paclitaxel, a taxane-based chemotherapeutic commonly used in TNBC treatment[3], targets microtubules to
36 disrupt the formation of the mitotic spindle, resulting in cell cycle arrest and apoptosis. While 22% of TNBC
37 patients treated with paclitaxel achieve pathological complete response, the outcome for those with residual
38 disease is relatively poor[4, 5]. Moreover, paclitaxel monotherapy only achieves a median 5.5 month progression
39 free survival in patients with locally advanced or metastatic disease[6]. Therefore, there is a need to better
40 understand the molecular basis of paclitaxel response and mechanisms of resistance that may be targeted for
41 therapeutic benefit.

42 Phenotypic plasticity enables malignant cells to rapidly adapt to therapeutic challenge[7] and can also drive
43 acquired drug resistance[8]. Adaptive responses often involve activation of new transcription factors which in
44 turn upregulate programs that repress immune activation[9], grant tolerance to DNA replication stress[10], or
45 enable evasion of apoptosis [11]. Single-cell RNA sequencing (scRNA-seq) is a powerful approach to investigate
46 the subtle but critical differences in transcriptional landscape that distinguish cellular phenotypic states and to
47 identify molecular programs associated with different therapeutic sensitivities[12]. Single cell methods such as
48 scRNA-seq enable heterogeneous populations to be deconvolved into discrete states to identify the gene
49 regulatory mechanisms that contribute to drug resistance [13, 14].

50 To elucidate the adaptive responses of TNBC cells to paclitaxel, we performed deep single-cell RNA sequencing
51 of HCC1143 TNBC cells before and after paclitaxel treatment. Paclitaxel induced a range of phenotypic changes,

52 including altered cell cycle phase distribution, increased proportion of multinucleated cells, increased expression
53 of senescence and DNA damage associated biomarkers, and upregulation of interferon-related gene programs.
54 Comparison of gene expression profiles from paclitaxel treated versus IFNB or IFNG treated cells enabled
55 identification of genes that were uniquely upregulated after paclitaxel treatment, including a suite of transcription
56 factors. Functional assessment with siRNA knockdown confirmed that many of these TFs are critical for
57 mediating resistance to paclitaxel. Using live-cell imaging, we probed the temporal dynamics of these functional
58 responses, which demonstrated that knockdown of ELF3, FOSL1 and IRF9 synergize with paclitaxel to slow cell
59 cycle progression. Together, these analyses identify upregulation of ELF3, FOSL1 and IRF9 as important
60 regulators of cell cycle progression that mediate response to paclitaxel, and which may serve as biomarkers of
61 response.

62

63 RESULTS

64 Paclitaxel modulates multiple cancer-associated phenotypes

65 We identified phenotypic changes induced by paclitaxel by treating HCC1143 TNBC cells for 72 hours with
66 paclitaxel, followed by fixation and staining with DAPI (DNA), CellMask (cytoplasmic marker), Tubulin Beta 3
67 (TUBB3, microtubule component), p16/p15 (senescence) and cPARP (DNA damage induced apoptosis) (**Figure**
68 **1A**). We quantified total DAPI intensity to assess cell cycle status[15] and observed two distinct peaks in the
69 DMSO treated sample, representing diploid (G0/G1, mode = 119 A.U) and tetraploid (G2/early M, mode = 222
70 A.U.) states associated with cycling cells (**Figure 1B**). Intermediate paclitaxel doses (0.01nM-1nM) resulted in
71 an enrichment of cells in the diploid to sub-diploid range, consistent with paclitaxel's known side-effect of
72 chromosomal disruption[16, 17]. The highest paclitaxel dose tested (81nM) resulted in an increased fraction of
73 cells in diploid and tetraploid states and a broader distribution of nuclear intensities, indicating significant
74 dysregulation of nuclear content. This dysregulation of nuclear content also correlated with a dose-dependent
75 reduction in cell numbers and an increase in the proportion of multinucleated cells (**Figure 1C**). The fraction of
76 multinucleated cells plateaued around 9nM paclitaxel, with ~25% of surviving cells harboring two or more nuclear
77 structures for all higher dosages.

78 We further assessed adaptive cellular responses by analyzing biomarkers associated with senescence
79 (p16/p15), DNA damage induced apoptosis (cPARP), and microtubule component (TUBB3). TUBB3
80 overexpression has been associated with resistance to multiple microtubule targeting drugs, and consistent with
81 this, we found a dose-dependent relationship between TUBB3 expression and paclitaxel concentration[18, 19].
82 There was also a positive association between both cytoplasmic and nuclear p16/p15 staining and paclitaxel
83 dose (**Figure 1D**). Additionally, we observed a strong correlation between p16/p15 and TUBB3 expression at
84 the single cell level across paclitaxel concentrations, suggesting that the TUBB3 highly expressing cells
85 represent a senescent subpopulation of cells (**Supplemental Figures 1A,1B**, Pearson correlation = 0.70, $r^2 =$
86 0.48). Increasing doses of paclitaxel induced a corresponding increase in the fraction of cPARP positive cells
87 (DMSO: 6%, 81nM Paclitaxel: 28% cPARP positive), indicating induction of DNA damage driven apoptosis
88 (**Figure 1E, Supplemental Figure 1C**). Higher paclitaxel doses resulted in a significantly higher proportion of
89 mononucleated cells staining positive for cPARP as compared to multinucleated (19.4% mononucleated cells
90 and 7.1% multinucleated cells cPARP positive at 81nM paclitaxel, proportions test $p = 0.017$), suggesting that
91 multinucleated cells are less likely to undergo DNA damage-induced apoptosis. Together this suggests that the
92 multinucleated cells that survive paclitaxel treatment are cell cycle arrested and also less likely to undergo DNA
93 damage-induced apoptosis than mononucleated cells.

94 **Cells surviving paclitaxel treatment halt cycling and upregulate interferon response genes**

95 To assess paclitaxel-induced molecular programs, we performed 10X Genomics single-cell whole transcriptome
96 sequencing of HCC1143 cells treated with either DMSO vehicle control or 1nM paclitaxel for 24 hours or 72
97 hours (**Figure 2A**). After quality control filtering that required cells to have a minimum of 3000 unique genes and
98 a maximum of 25% mitochondrial counts, we recovered 3194 total cells (513 – 1106 cells per condition) with a
99 mean UMI count of 63,668 (**Supplemental Figure 2A**).

100 We examined drug-induced changes in cell cycle distribution by assigning cell cycle status to each individual cell
101 using aggregate expression of canonical gene programs for S and G2/M[18,19]. In agreement with our imaging
102 results, we observed an enrichment in the fraction of G1 cells after paclitaxel treatment as compared to time-
103 matched vehicle control (**Figure 2B**). Unsupervised clustering tended to group cells by treatment condition and
104 cell cycle phase (**Supplemental Figures 2B, 2C, 2D**).

105 We analyzed time-matched conditions to identify significantly differentially expressed genes induced by
106 paclitaxel treatment (Wilcoxon rank sum test, absolute log2 fold-change > 0.5, Benjamini Hochberg FDR < 0.01).
107 This revealed a time-dependent change in molecular programs with 66 significantly upregulated and 57
108 significantly downregulated genes after 24 hours of paclitaxel treatment, and 256 significantly upregulated genes
109 and 58 significantly downregulated genes after 72 hours (**Supplemental Figure 2E**). Reactome pathway
110 enrichment analysis revealed that the significantly upregulated genes from the 24-hour paclitaxel treated sample
111 were enriched for multiple programs related to Interferon Signaling and Translation (**Figures 2C-D**,
112 **Supplemental Data 2**). Programs uniquely upregulated after 72 hours of paclitaxel treatment include Response
113 to Chemical Stress, Cell Cycle Progression and Antigen Processing-Cross presentation (**Figure 2E-F**). The
114 ontologies enriched after 72-hour paclitaxel treatment had low overlap with those at 24 hours (Jaccard Index =
115 0.023, **Supplemental Figure 2F**). Notably, the Neutrophil Degranulation pathway was significantly enriched at
116 both time points, with upregulated genes related to antigen presentation (HLA-B, HLA-C, B2M) and differentiation
117 (CD47, CD55, CD59, CD63). Paclitaxel treatment also induced significant upregulation of the pro-tumorigenic
118 chemokines CXCL1 and CXCL8 (**Supplemental Figure 2G**)[20-23]. Together this shows that TNBC cells that
119 survive paclitaxel treatment have altered surface marker expression and produce tumor supportive chemokines.

120 **Paclitaxel response activates canonical interferon response genes**

121 Despite gene enrichment consistent with interferon response, the paclitaxel treated cells showed no evidence of
122 autocrine signaling, indicating that paclitaxel induces interferon response pathways in a non-canonical manner
123 (**Supplemental Figure 3A**). To disentangle the paclitaxel response signature from true interferon response, we
124 performed a second scRNA-seq experiment with HCC1143 cells that were treated for 72 hours with 7
125 perturbations that target ligand-receptor pairs known to play an important role in normal and pathological breast
126 tissue[24, 25]: Interferon-Beta (IFNB), Interferon-Gamma (IFNG), Transforming Growth Factor Beta (TGFB),
127 Oncostatin-M (OSM), Lymphotoxin Alpha (LTA), Notch Inhibitor (NOTCHi) and combination of Notch Inhibitor
128 and Interferon-Beta (NOTCHi_IFNB). Cells were treated for 72 hours and then harvested and sequenced with
129 the 10X Genomics scRNA-seq pipeline. After quality control filtering, we recovered 4231 total cells (295 – 725
130 cells per condition, **Supplemental Figure 3B**).

131 Overall, the scRNA-seq data revealed that the treated cells largely grouped by perturbation (Normalized Mutual
132 Information = 0.58, **Figure 3A**) and cell cycle state (Normalized Mutual Information = 0.28, **Supplemental Figure**

133 3C). The IFNB, IFNG, TGFB, NOTCHi and NOTCHi_IFNB conditions all had an increase in proportion of G1
134 cells compared to control, suggesting these ligands are cytostatic in this cell line (**Supplemental Figure 3D**).
135 Based on the observation that paclitaxel induced Interferon related pathways, we next sought to evaluate the
136 similarity in transcriptional response between paclitaxel and the ligand perturbations. To that end, we computed
137 the differential expression of all genes for each perturbation compared to time-matched vehicle control and then
138 evaluated the pairwise Pearson correlation of log2 fold-change values (**Figure 3B**). The IFNB and IFNG
139 conditions were the most strongly correlated (Pearson correlation = 0.86), indicating a conserved impact on
140 transcription despite acting through different receptors. We found that the 72-hour paclitaxel condition was highly
141 correlated with the interferon treatments (IFNB Pearson correlation = 0.57, IFNG Pearson correlation = 0.47) as
142 compared to the other single-agent perturbations (0.0, 0.11, 0.18, 0.38 Pearson correlation with OSM, LTA,
143 NOTCHi and TGFB respectively).

144 While type 1 and type 2 interferons primarily exhibit antitumor effects through activation of the immune system,
145 some studies have found they have direct effects through induction of cell cycle arrest or apoptosis in malignant
146 cells[26, 27]. To better understand the overlapping transcriptional responses of paclitaxel and interferon, we next
147 sought to differentiate between pathways that were uniquely induced by paclitaxel response or that represent
148 common responses induced by paclitaxel or interferon perturbation. Reactome pathway enrichment analysis
149 revealed that the 140 genes upregulated after paclitaxel treatment but not after IFNG or IFNB ("paclitaxel-
150 unique") were enriched in molecular programs related to wound healing, protein folding, and intrinsic apoptotic
151 signaling pathway (**Figure 3C**), whereas the 117 genes upregulated by all three treatments ("paclitaxel-shared")
152 were associated with defense response to virus and antigen presentation (**Figure 3D**).

153 We hypothesized that the strong overlap in interferon and paclitaxel transcriptional responses was driven by a
154 shared increase in transcription factor (TF) activity through activation of cytosolic DNA sensing pathways[28,
155 29]. We identified enriched TFs in our paclitaxel-unique and paclitaxel-shared gene signatures using ChEA3[30],
156 which evaluates the expression of gene targets downstream from a TF of interest. DDIT3, JUN, KLF6, and ATF3
157 emerged as enriched transcription factors across both the paclitaxel-unique and paclitaxel-shared gene
158 signatures (**Figure 3E**). The paclitaxel-unique genes were enriched for TFs in the Immediate-Early Gene family,
159 including JUN (JUN, JUNB, JUND) and FOS (FOS, FOSL1, FOSB)[31]. TFs enriched from the shared gene list
160 were associated with activity of Interferon Regulatory Factors (IRF1/IRF7/IRF9) and Basic Leucine Zipper family

161 (BATF2/BATF3), both related to antiviral response and regulation of antigen-presenting cells[32-34]. The high
162 activity of IRF7 is consistent with activation of the cytosolic nucleotide sensor RIGI, suggesting that the nuclear
163 damage induced by paclitaxel drives an increase in cytosolic RNA or DNA [35].

164 **Inhibition of paclitaxel-induced transcription factors alters proliferation and nuclear morphology**

165 We used siRNA knockdown in three basal-like TNBC cell lines (HCC1143, HCC1806, MDA-MB-468) to
166 functionally assess prioritized TFs implicated in modulating response to paclitaxel. We nominated a panel of 13
167 TFs for functional testing, based on ChEA3 analysis and change in gene expression after 24 or 72 hours of
168 paclitaxel treatment (**Figure 3F**, Log2FC > 0.25, Benjamini-Hochberg FDR < 0.01). Most of the TFs included in
169 this panel were either subunits of (ATF3, FOSL1, JUN, JUNB, MAFF)[36] or known interactors with (ELF3, IRF7,
170 DDIS3, NFE2L2)[37-40] the AP-1 transcription factor family. Dysregulation of the AP-1 pathway is associated
171 with multiple tumorigenic phenotypes including enhanced cellular growth, proliferation, and survival[41]. To
172 functionally assess the role of these TFs in paclitaxel response, cells were transfected with siRNA for 24 hours,
173 then treated for 72 hours with paclitaxel or DMSO, and subsequently fixed and stained with DAPI (nuclear
174 marker) and CellMask (cytoplasmic marker). The resultant images were subjected to quantitative image analysis
175 to identify nuclear and cellular masks, followed by quantification of total cell number and fraction of multinucleated
176 cells for each condition.

177 First, we analyzed the influence of TF knock-down on cell count after 72 hours to evaluate their effects on cell
178 viability. We found that knockdown of 3 of 13 TFs (NFE2L2, IRF7, MAFF) in the absence of paclitaxel significantly
179 reduced cell numbers for at least one cell line (Student's t-test, p<0.05, **Figure 4A** green bars, **Supplemental**
180 **Figure 4A**). We then examined the influence of TF knock-down in the presence of paclitaxel to test our
181 hypothesis that upregulation of these TFs mediates adaptive resistance. Knockdown of 5 of 13 TFs (NFE2L2,
182 ELF3, IRF7, FOSL1, PLSCR1) in combination with paclitaxel significantly lowered cell count in at least one cell
183 line compared to paclitaxel alone (Student's t-test, p < 0.05, **Figure 4A** purple bars, **Supplemental Figure 4A**).

184 We hypothesized that these 13 TFs may also be involved in cytokinesis, based on our observation that escalating
185 paclitaxel dose was associated with an increased fraction of multinucleated cells (**Figure 1C**). We found that
186 siRNA knockdown alone caused a significant increase in the fraction of multinucleated cells for 6 of 13 TFs for
187 at least one cell line (NFE2L2, ELF3, SP100, FOSL1, MAFF, and ATF3. Proportions test, p < 0.05. **Figure 4B**,

188 **Supplemental Figure 4B).** Additionally, knockdown for 11 of 13 TFs in the presence of paclitaxel resulted in
189 significantly increased fraction of multinucleated cells as compared to paclitaxel alone, for at least once cell line.
190 These findings suggest an important role for these transcription factors in maintaining nuclear structure and
191 achieving symmetric cytokinesis in proliferating breast cancer cells.

192 We comprehensively analyzed the influence of siRNA knockdown across cell lines and drug conditions. Here,
193 we considered each siRNA an independent sample and each combination of cell line (HCC1143, HCC1806,
194 MDA-MB-468), treatment (DMSO, paclitaxel) and phenotype (relative cell count, fraction multinucleated) as 12
195 independent features (**Supplemental Figure 4C**). Principal component analysis applied to the transformed data
196 revealed that our positive and negative growth controls separated along Component 1 (**Figure 4C**). To identify
197 the TFs that had the greatest overall impact on phenotype, we computed the Euclidean feature-distance
198 (distance for z-scored features) to identify TFs that induced the greatest feature-distance from siNonTarget
199 positive growth control. We found that ELF3, FOSL1, and NFE2L2 knockdown had the largest Euclidean feature-
200 distance (**Figure 4D**) and additionally separated from the rest of the panel via hierarchical clustering
201 (**Supplemental Figure 4C**), indicating that knockdown had a strong effect on both proliferation and regulation
202 of nuclear morphology across the three TNBC cell lines. Protein quantification for ELF3, FOSL1 and NFE2L2
203 confirmed that the siNonTarget+Paclitaxel induced an accumulation of protein compared to vehicle control, and
204 the targeted siRNA+Paclitaxel reduced protein levels to below the siNonTarget+Vehicle level (**Supplemental**
205 **Figures 5A-B**).

206 **ELF3 and FOSL1 mediate cell cycle progression under paclitaxel treatment**

207 Motivated by the observation that many anti-cancer drugs act by targeting the cell cycle, we next explored the
208 influence of prioritized TFs on cell cycle progression by leveraging a genetically engineered HCC1143 cell cycle
209 reporter cell line. The cell cycle state of HDHB-mClover-NLS-mCherry HCC1143 cells can be determined by
210 quantification of relative HDHB-mClover (nuclear translocating cell cycle reporter) intensity within the cytoplasm
211 compared to the nuclear signal marked by NLS-mCherry (stable nuclear localization)[42, 43]. Cells in G1 cell
212 cycle phase have near-equal nuclear and cytoplasmic HDHB-mClover expression, cells in S/G2 cell cycle
213 phases exclude the HDHB-mClover from the nucleus, and cells in M phase concentrate the HDHB-mClover
214 expression to the nucleus. Here we focused on NFE2L2, ELF3 and FOSL1, which induced the largest phenotypic
215 effects; we additionally tested IRF9 which has been previously linked to anti-microtubule chemotherapy

216 resistance [44]. Reporter cells were subjected to siRNA transfection for 24 hours and then treated with either
217 1nM paclitaxel or DMSO. Treated cells were imaged every 15 minutes for 72 hours. Nuclear and cytoplasmic
218 masks were segmented with custom trained Cellpose[45] models and the resultant data used to classify cells
219 into four ‘phase’ assignments based on HDHB-mClover expression and their number of nuclei (**Figure 5A**).
220 Mononucleated cells were assigned as ‘G1’, ‘S/G2’ or ‘M’ phase and multinucleated cells assigned to either ‘M’
221 or ‘multinucleated’ phase based on localization of the HDHB-mClover signal (**Supplemental Figure 6A**).

222 As chemotherapeutic drugs often have peak efficacy during a specific cell cycle phase, we next asked whether
223 the combination of paclitaxel treatment and siRNA knockdown altered the dynamics of cell cycle progression.
224 To that end, we trained a Markov Model on the live-cell data, which enabled us to infer transition rates and the
225 average time spent in each of the four phases for a given treatment condition[42, 46]. This approach uses the
226 change in fraction of cells in each cell cycle phase over time (**Figure 5B**) to learn cell cycle-specific transition
227 rates, which represent the fraction of cells that transition from one phase to another phase within a 1-hour
228 timestep (**Supplemental Figure 6B**). We constrained our model such that proliferating cells can either
229 successfully complete the cell cycle or undergo mitotic failure into a permanent multinucleated phase (**Figure**
230 **5C**).

231 We compared the model output to the observed phase counts and found similar trends over time and for all
232 treatment conditions (**Supplemental Figures 6C, 6D**). We used a local polynomial regression (second order
233 LOESS) as a reference and found that our Markov model output compared favorably, with a Root Squared Mean
234 Error (RMSRE) of only 0.0809 in excess of the LOESS fit (**Supplementary Figures 7A, 7B**). Additionally, we
235 used the Chi-squared test to evaluate whether there was a significant compositional difference between the
236 experimental data and Markov output. This approach found that greater than 95% of timepoints had no significant
237 difference for all conditions except for DMSO+siFOSL1 (**Supplemental Figure 7C**). For the DMSO+siFOSL1
238 condition, the model and experimental data agreed for the first 60 hours but diverged during the last 12 hours,
239 with the model predicting fewer M phase cells than observed in the experimental data.

240 We next leveraged the model’s learned transition rates to calculate the rate of mitotic failure for each condition
241 and to better understand how the combination of siRNA knockdown and paclitaxel treatment compared to siRNA
242 knockdown alone. The Markov model framework enabled calculation of the mitotic failure rate as the ratio of M->
243 >multinucleated transition rate over the sum of M->G1 and M->multinucleated transition rates (**Figure 5D**).

244 siRNA knockdown of ELF3 alone had the largest effect without paclitaxel and increased the mitotic failure rate
245 by 18.1% (DMSO+siNonTarget = 6.4%, DMSO+siELF3 = 24.5%), while inhibition of FOSL1, NFE2L2 or IRF9
246 had limited effects (DMSO+siFOSL1 = 7.5%, DMSO+siIRF9 = 7.7%, DMSO+siNFE2L2 = 10.8%). Combination
247 siRNA knockdown and paclitaxel treatment resulted in higher mitotic failure rates for ELF3, FOSL1, and NFE2L2
248 (PTX+siNonTarget = 45.9%, PTX+siELF3 53.6%, PTX+siFOSL1 = 55.8%, PTX+siNFE2L2 = 61.2%) These
249 findings implicate ELF3, FOSL1 and NFE2L2 in nuclear morphology maintenance and cytokinesis completion
250 necessary for successful mitosis.

251 Through this model we aimed to assess how the combination of siRNA knockdown and paclitaxel synergized to
252 disrupt the cell cycle and transitions between phases. For each individual or combination perturbation, we
253 computed the inferred phase duration for G1, S/G2 and M phases using the model's homotypic transition rates,
254 which represent the fraction of cells that remain in the same phase through the timestep (**Figure 5E**). The
255 inhibition of ELF3 alone strongly increased cell cycle duration (DMSO+siNonTarget = 49 hours, DMSO+siELF3
256 = 115 hours), with substantial increases to the time spent in G1 (DMSO+siNonTarget = 7.9 hours, DMSO+siELF3
257 = 33.5 hours) and S/G2 (DMSO+siNonTarget = 37.7 hours, DMSO+siELF3 = 72.1 hours) phases. The
258 combination of paclitaxel treatment and siRNA knockdown resulted in the longest cell cycle durations for both
259 the PTX+siELF3 (160 hours) and PTX+siIRF9 (159 hours) conditions compared to PTX+siNonTarget (84.4
260 hours). To further assess the therapeutic impact of siRNA knockdown and paclitaxel combination treatments, we
261 used a Highest Single Agent (HSA) model to compare the inferred phase duration under combination paclitaxel
262 + siRNA to the highest inferred phase duration for a single agent (either paclitaxel alone or siRNA alone, **Figure**
263 **5F**)[47]. In this approach a duration ratio less than 1 indicates antagonism (siRNA + paclitaxel results in shorter
264 inferred phase duration than highest single agent), a duration ratio of 1 means there is no benefit of combination
265 compared to highest single agent, and a duration ratio greater than 1 indicates a positive synergistic effect
266 (siRNA + paclitaxel results in longer inferred phase duration than highest single agent). We found that although
267 knockdown of NFE2L2 alone resulted in longer cell cycle phases, these changes were not particularly synergistic
268 with paclitaxel treatment. In contrast, IRF9 knockdown resulted in increased duration ratios of all three phases
269 compared to HSA (G1: 1.93, S/G2: 1.87, M: 1.8), while FOSL1 knockdown resulted in increased duration ratios
270 for G1 and M phases (1.96, 2.19 ratios respectively). ELF3 knockdown showed the greatest synergy for the G1

271 phase, with a G1 duration ratio of 2.55, indicating that the combination of ELF3 knockdown with paclitaxel
272 treatment strongly inhibits cell cycle progression out of G1.

273 Motivated by these ELF3 findings, we hypothesized that ELF3 expression may be predictive of overall survival
274 in breast cancer. To that end we assessed the METABRIC[48] breast cancer cohort and used ELF3 expression
275 to stratify patients into three categories: 'high' (Upper quartile of ELF3 expression), 'mid' (Inter quartile range of
276 ELF3 expression), and 'low' (Lower quartile of ELF3 expression). We found that ELF3 expression was prognostic
277 in both directions, with ELF3-high tumors having significantly shorter recurrence free survival (HR = 1.21, p value
278 = 0.025, Cox Proportional Hazard) and ELF3-low tumors having a significantly longer overall survival (HR = 0.77,
279 p value = 0.004, Cox Proportional Hazard) compared to the ELF3-mid tumors (**Figure 5G**). We then compared
280 the gene expression between the ELF3-high and ELF3-low groups and found that the ELF3-high tumors were
281 significantly enriched for MSigDB hallmarks related to cell cycle progression (HALLMARK_G2M_CHECKPOINT:
282 NES = 1.99, Benjamini-Hochberg FDR = 5.0e-8, HALLMARK_E2F_TARGETS: NES = 1.94, Benjamini-
283 Hochberg FDR = 2.9e-7, **Figure 5H, Supplemental Figure 8A**). We also found that the ELF3-low tumors were
284 enriched for MSigDB hallmarks related to Allograft Rejection and Epithelial to Mesenchymal Transition (NES = -
285 2.14, Benjamini-Hochberg FDR = 4.1e-11, and NES = -1.95, Benjamini-Hochberg FDR = 6.1e-8 respectively).
286 These results support our experimental *in vitro* findings that ELF3 activity contributes to continued malignant cell
287 proliferation, and that high ELF3 expression in human breast cancer is associated with cell cycle progression
288 and is also a negative predictor of progression free survival.

289 DISCUSSION

290 Paclitaxel is a cornerstone therapy for TNBC and is an important component of first line neoadjuvant treatment
291 for newly detected disease. Despite this, less than 20% of breast cancer patients treated with combination
292 neoadjuvant therapy (paclitaxel followed by combination fluorouracil + doxorubicin + cyclophosphamide) achieve
293 pathological complete response (pCR), and 47% of TNBC patients without pCR have recurrent disease within
294 10 years[49]. Although long-term chemotherapy resistance is often facilitated by clonal selection for growth-
295 permissive mutations[50-52], newer molecular profiling techniques have revealed that short-term adaptive
296 responses are possible through rapid epigenetic changes without acquisition of new mutations [53, 54]. In this
297 study, we sought to identify adaptive responses that emerge after paclitaxel treatment and that may be targeted
298 to deepen therapeutic response. To that end, we characterized the phenotypic and transcriptional responses of

299 TNBC cells to paclitaxel, with a focus on changes in cell number, multinucleation, and transcription factor
300 programs. Using siRNA knockdown, live-cell imaging, and computational modeling, we identified several TFs that
301 phenocopied key aspects of paclitaxel response, including reduced proliferation rates and an increased
302 proportion of multinucleated cells. ELF3 knockdown *in vitro* was synergistic with paclitaxel treatment and
303 suppressed G1 to S/G2 cell cycle progression. Analysis of the METABRIC breast cancer cohort revealed that
304 high expression of ELF3 was associated with worse outcome and higher cell-cycle related pathway activity.
305 Together, these findings support the idea that upregulation and activation of ELF3 is an early and transcriptionally
306 based mechanism of paclitaxel resistance in TNBC.

307 Many drug and gene manipulation studies focus primarily on viability or other cell count proxies at a terminal
308 timepoint[55-58]. While such cell viability studies have proven valuable, more recent studies have demonstrated
309 that chemotherapies modulate multiple cancer-associated hallmarks, including cell cycle phase behavior,
310 senescence and nuclear morphology[42, 59, 60]. Further, there is evidence that the complex behavior of cellular
311 systems are inherently dynamic, and their complex behaviors are better understood with measures that capture
312 temporal behavior[43, 61-63]. While our live-cell studies captured important changes in cell cycle dynamics and
313 the population distribution of various cell cycle states, no single metric captures the complete biological response.
314 Future studies could deploy a richer panel of reporter molecules to gain deeper insights into other aspects of the
315 response, including the timing and order of transcription factor activation, activation of specific cell cycle
316 checkpoints, and activation of senescence or apoptotic pathways[64-66].

317 In this study we identified dual roles of the transcription factor ELF3 that contribute to paclitaxel tolerance by: 1)
318 permitting cells to transition from G1 to S/G2, and 2) enabling successful division into two mononuclear daughter
319 cells. These findings were enabled by a Markov Model of cell cycle progression built on population level cell
320 count data which learned the transition rates between cell cycle phases and inferred cell cycle phase
321 durations[42, 46]. While the inferred cell cycle durations represent an accurate prediction of the population's
322 average behavior, they cannot inform whether this arises from a homogenous or heterogeneous distribution of
323 cell cycle durations. This is of particular interest in the case of cancer treatment, as a small population of cells
324 with a fitness advantage may eventually overtake the other populations, thus achieving therapeutic
325 resistance[67]. An alternative approach could track individual cells and their progeny to build complete lineages
326 with accompanying cell cycle timing information. Lineage based approaches tend to be relatively low throughput

327 due to the computational and experimental requirements, but offer the opportunity to discern between
328 heterogenous states of differing cycling speeds[46]. Another limitation of our Markov Model's implementation is
329 the assumption that transition rates are static throughout the duration of observations. While the output of the
330 model mapped well within the 72-hour measurement window, there was some divergence at the end of the
331 experiment that may suggest a weakening of either siRNA or paclitaxel effect. Incorporation of temporal
332 information could be used to the current model implementation and could be useful for predicting combination
333 drug effects and optimizing the drug schedule for maximum disruption of cell cycle progression.

334 Paclitaxel inhibits cell growth by simultaneously promoting microtubule assembly and inhibiting microtubule
335 depolymerization, which results in mitotic checkpoint failure and subsequent apoptosis or senescent arrest[68,
336 69]. The *in vitro* experimentation performed in this study represents an extensive investigation into the phenotypic
337 and molecular responses of TNBC cells to paclitaxel, however we acknowledge that tumors are comprised of
338 diverse cell types and intercellular signaling molecules can influence therapeutic response in breast cancer and
339 other malignancies[70-72]. Indeed, the tumor microenvironment is known to have a significant impact on drug
340 response through cell-cell interaction and alterations to extracellular matrix[73, 74]. While we did not include
341 stromal cells in our study, our findings of paclitaxel induced upregulation chemokines (CXCL1, CXCL8) support
342 the idea that malignant cells that persist through paclitaxel treatment will have differential interactions with the
343 immune system as compared to treatment-naïve cells. Tumor-derived CXCL1 is known to recruit
344 immunosuppressive myeloid cells that inhibit CD8⁺ T cell infiltration[75]. The chemokine CXCL8 plays multiple
345 pro-tumorigenic roles including recruitment of immunosuppressive neutrophils[76], promotion of
346 angiogenesis[77] and maintenance of breast cancer stem cells[78]. Future studies that more deeply consider
347 the influence of stromal and immune cells signals in modulating therapeutic response will be needed to better
348 understand the complete system of factors involved in paclitaxel resistance.

349 As key regulators of multiple molecular programs, many transcription factors are known to contribute to cancer-
350 associated phenotypes[79] and therapeutic response[80, 81]. Our study found that the ETS family transcription
351 factor ELF3 was upregulated during early response to paclitaxel treatment, and siRNA knockdown of ELF3 was
352 synergistic with paclitaxel treatment at slowing cell line growth. Other studies have found that high ELF3 activity
353 is associated with inhibition of epithelial to mesenchymal transition [82]. Furthermore, inhibition of ELF3 was
354 found to reduce proliferation across a number of cancer models including lung adenocarcinoma[83],

355 neuroendocrine carcinoma[84] and prostate cancer[85]. Circulating tumor cells have elevated ELF3 expression
356 in both murine models and human breast cancer[86]. Conserved dysregulation of ELF3 across cancer types
357 may be related to its genomic location (loci 1q32) which is commonly amplified across cancers[87, 88] and also
358 encodes for a number the cancer related genes including MDM4 (p53 suppressor)[89, 90].

359 Taken together, this work has identified ELF3 upregulation as an acquired mechanism of paclitaxel resistance.
360 These findings support the development of pharmacological agents that inhibit ELF3 activity and could be used
361 in combination with paclitaxel to further improve patient outcomes. While it has been historically difficult to
362 develop targeted transcription factor inhibitors due to their lack of enzymatic activity, recent advances, such as
363 targeted siRNA nanoparticles and indirect inhibition through targeting multiple interacting proteins, have made
364 pharmacomodulation of transcription factors more tenable[91-93]. Until such therapies are developed, ELF3 may
365 serve as a useful biomarker which predicts the development of paclitaxel resistance and continued malignant
366 proliferation.

367 METHODS

368 Cell culture: HCC1143 (ATCC), HCC1806 and MDA-MB-468 cells were authenticated by STR profiling and
369 tested negative for mycoplasma. HCC1143 and HCC1806 cells were cultured in RPMI 1640 with L-glutamine
370 (cat. 11875119, Life Technologies Inc.) supplemented with 10% fetal bovine serum (#16000-044, Gibco). MDA-
371 MB-468 cells were cultured in DMEM (#11965-092, Life Technologies Inc.) supplemented with 10% fetal bovine
372 serum (#16000-044, Gibco). All lines were incubated at 37C with 5% CO₂. For perturbation experiments, cells
373 were seeded into appropriate assay vessel for 24 hours prior to treatment with either vehicle control (DMSO;
374 PBS) or perturbation (table below).

<u>Perturbation</u>	<u>Shorthand</u>	<u>Concentration used for scRNA-seq</u>	<u>Source</u>	<u>Identifier</u>	<u>Vehicle</u>
Paclitaxel	PTX	1nM	LC Labs	P-9600	0.1% DMSO
Notch Inhibitor	NOTCHi	1uM	Millipore Sigma	BM0018-5MG	0.1% PBS
Interferon Beta	IFNB	20ng/mL	PBL Assay Science	11410-2	0.1% PBS
Interferon Gamma	IFNG	20ng/mL	R&D Systems	385-IR-100	0.1% PBS
Transforming Growth Factor Beta	TGFB	10ng/mL	Biotechne	7754BH005	0.1% PBS
Lymphotoxin	LT	10ng/mL	Biotechne	8884-LY-025	0.1% PBS
Oncostatin M	OSM	10ng/mL	Cell Signaling Technology	5367SC	0.1% PBS

376 Fixed cell assays: Cells were plated at 3000 cells in 100ul of complete media per well in a 96 well plate (#08-
377 772-225, FisherScientific). After 24 hours, an additional 100ul of either vehicle (0.1% DMSO) or paclitaxel
378 containing complete media was added. After 72 hours cells were fixed with 4% Formaldehyde (#28908,
379 ThermoFisher Scientific) for 15 minutes at room temperature, then permeabilized with 0.3% Triton X-100 (#X100-
380 100ML, Sigma Aldrich) for 10 minutes at room temperature, then washed twice with PBS. Fixed cells were
381 blocked with 1% BSA (A7906-100G, Millipore Sigma) in PBS for 1 hour at room temperature and then stained
382 overnight with 1:100 anti-CDKN2A/p16INK4A+CDKN2B/p15INK4B-AF644 (#ab199756, Abcam), and 1:100
383 anti-cPARP-AF647 (#6987S, Cell Signaling Technology) or 1:500 anti-TUBB3-AF647 (#ab190575, Abcam)
384 overnight at 4C. Each well was washed twice with room temp PBS then stained with 0.5ug/mL DAPI (4083S,
385 Cell Signaling Technology) in PBS for 15 minutes at room temperature. Following DAPI staining, wells were
386 washed once with PBS, then stained with 1:20,000 HCS CellMask in PBS (Orange: #H32713, Green: #H32714,
387 Invitrogen) for 15 minutes at room temperature. Wells were washed twice with room temperature PBS and then
388 4 fields of view per well imaged on an InCell 6000 (GE Healthcare). Images were segmented with two custom
389 Cellpose[45] models to segment the nucleus (from DAPI channel) and cytoplasm (from HCS Cellmask channel).
390 Image quantification was performed in R (v4.3.1) using EBImage (v4.42.0), and cells were annotated based on
391 the number of distinct nuclei segmented within each cytoplasmic mask.

392 scRNA-seq library preparation and sequencing: Experiment 1 (DMSO 24 hour, DMSO 72 hour, Paclitaxel 24
393 hour, Paclitaxel 72 hour): Each condition had a single-cell RNA library prepared using 10X Genomics Single Cell
394 3' v2 kits and sequenced on an Illumina NextSeq 500 for 500e6 reads per library.

395 Experiment 2: All conditions were multiplexed using Hashtag Oligonucleotide barcoding technology (TotalSeq-
396 B, Biolegend) following manufacturer standard protocol. A paired feature-barcode library and mRNA library were
397 generated using the Single Cell 3' v3 kit (10X Genomics) following manufacturer instructions and then sequenced
398 on an Illumina NovaSeq for 800e6 reads.

399 scRNA-seq data processing: For both experiments; raw base call files were converted to FASTQ format with
400 bcl2fastq (Illumina). Cellranger count (v6.0.2) was used to align reads to the GRCh38 transcriptome (GRCh38-
401 2020-A, accessed from 10X Genomics) and count UMI reads. The R package Seurat[94, 95] (4.0.5) was used
402 to perform variable feature identification, linear and nonlinear dimensionality reduction, unsupervised clustering
403 and differential gene expression.

404 Variance Stabilizing Transformation was used to identify the top 2000 variable genes and Principal Component
405 Analysis (PCA) was used to reduce these 2000 genes to 10 components for UMAP embedding and unsupervised
406 clustering. Differential expression analysis was performed using the FindMarkers function of Seurat with default
407 parameters. Geneset enrichment analysis was performed with the R package clusterProfiler[96] (v4.8.2) using
408 significantly upregulated genes compared to time-matched vehicle control ($\text{abs}(\text{avg_log2FC}) > 0.5$, Benjamini
409 Hochberg FDR < 0.05).

410 Transcription Factor Enrichment Analysis: Significantly upregulated genes ($\text{avg_log2FC} > 0.5$, Benjamini
411 Hochberg FDR < 0.05) were computed for paclitaxel, IFNB and IFNG treated samples compared to time-matched

412 vehicle treated cells. ChEA3 enrichment analysis was performed with default settings using R code from the
413 CHEA3 API documentation (<https://maayanlab.cloud/chea3/>) to perform an online query using either the genes
414 uniquely upregulated in paclitaxel treated cells, or those shared between paclitaxel and either of the interferon
415 responses. The top 15 ranked transcription factors from both the paclitaxel unique and paclitaxel-interferon
416 shared TF enrichment lists were considered when nominating siRNA knockdown targets. Any TF that also had
417 at least 0.25 log2 fold change for paclitaxel at either 24 or 72 hours compared to vehicle control was included in
418 the siRNA knockdown panel.

419 siRNA Knockdown: Cells were plated in 90ul of serum free media per well of a 96 well plate. 24 hours later,
420 siRNA knockdown mixture was prepared using a cell-line optimized concentration of Lipofectamine RNAiMAX
421 (cat 13778075-075, Invitrogen) and siRNA (Horizon Discovery ON-TARGETplus) following RNAiMAX
422 recommended protocol. The final concentration of siRNA per well was 1pmol and the final volume of RNAiMAX
423 per well was 75nL for HCC1143, and 37.5nL for HCC1806 or MDA-MB-468 in 100uL of cell containing volume.
424 24 hours after siRNA transfection cells were treated with an addition of 100uL complete media containing either
425 DMSO vehicle control or paclitaxel.

426 Protein isolation: Protein isolation: siRNA knockdown of HCC1143 cells was performed using the siNonTarget,
427 siELF3, siFOSL1, and siNFE2L2 pools as described above. After 24 hours of knockdown, perturbation containing
428 media was added such that media volume doubled and had a final concentration of either 0.1% DMSO (vehicle
429 control) or 1nM Paclitaxel. After 72 hours of perturbation, cells were washed with 4C PBS then lysed by 5 minute
430 incubation at 4C with RIPA buffer (R0278, Sigma) supplemented with 1X Halt Protease and Phosphatase
431 Inhibitor Cocktail (1861281, Thermo Scientific). Remaining cells were scraped from the plate and lysate was
432 snap frozen in liquid nitrogen then stored at -80C overnight. The following day lysate was clarified by
433 centrifugation at 21,130 x g for 10 minutes at 4C. The supernatant was collected and the protein concentration
434 was immediately quantified. Remaining protein was stored at -80C.

435 Western Blot: Protein quantification was performed using the Western Simple protocol on the Jess capillary
436 western machine using the 12-230 kDa cartridge and following manufacturer instructions (Biotechne). Primary
437 antibodies targeting the protein products of ELF3 (anti-ESE1, ab133521, Abcam), FOSL1 (anti-FRA1, sc28310,
438 Santa Cruz), and NFE2L2 (anti-NRF2, HPA043438-1, Sigma) were used at 1:50 dilution. Lysates were loaded
439 at a concentration of 2mg/mL and volume of 5uL per capillary well, and the Anti-rabbit detection kit (DM-001,
440 Biotechne). was used to quantify primary antibody levels. Peak quantification was performed using the included
441 Compasssoftware with default settings (v6.3.0, Biotechne).

442

443 HDHB reporter live-cell assays: siRNA knockdown and drug treatment was performed as described above, and
444 then the plate was loaded on an Incucyte S3 (Sartorius) and cells imaged every 15 minutes for 72 hours post
445 drug treatment. At each timepoint 4 fields of view were captured at 20x magnification in each well using the
446 phase, red and green channels. A cytoplasmic mask was computed from the mean of normalized red/green
447 channel, and a nuclear mask was computed from the red channel using custom trained Cellpose[45] models.

448 Image quantification was performed in R (v4.3.1) using EBImage (v4.42.0). An additional perinuclear ring mask
449 was computed as the 11 pixel dilation from the nuclear mask, but still bound by the cytoplasmic mask. To
450 determine mClover localization thresholds for cell cycle assignment, 250 cell images were randomly selected
451 and manually assigned to the G1, S/G2 or M cell cycle state based on mClover localization. The mClover
452 intensity ratios were then used to determine thresholds for automated cell cycle phase calling which was applied
453 to the rest of the data set (**Supplemental Figure 5A**). Mononuclear cells with a Perinuclear:Nuclear mean
454 intensity ratio greater than 0.8 and Nuclear:Cytoplasmic total intensity less than 0.5 were assigned to the S/G2
455 phase. Mononuclear and Multinuclear cells with a Nuclear:Cytoplasmic total intensity ratio greater than 0.8 and
456 Perinuclear:Nuclear mean intensity ratio less than 0.8 were assigned to the 'M' phase. The remainder of
457 mononuclear cells were assigned 'G1', and the remainder of multinucleated cells were assigned 'Multinucleated'.

458 Markov modeling: The 5-frame moving average of cell count per cell cycle phase was downsampled to one value
459 per hour and used to train a markov model for each unique siRNA (NonTarget, ELF3, FOSL1, NFE2L2, IRF9,
460 PLK1) +/- paclitaxel condition. The transition matrix of the model was constrained such that cells could remain
461 in their current phase, progress through the cell cycle (G1 → S/G2, S/G2 → M, M → G1 with replication) or
462 transition from M phase to an absorbing (permanent) multinucleated phase. Models were trained for 15 epochs,
463 and the first epoch was seeded with an identity transition matrix. 3000 random transition matrices were generated
464 each epoch, and the 5 with lowest error were used as seeds for the following epoch. The prior best performing
465 matrices were updated with randomly generated matrices at a learning rate of 0.1 for the first epoch, halving
466 every 2 epochs.

467 The prediction for counts for each future state (S_{n+1}) is calculated as the product of the counts at the prior state
468 (S_n) by the transition matrix (P) and the replication matrix (RM).

$$469 \quad RM = \begin{matrix} G1 & 1 & 1 & 0 & 0 \\ S/G2 & 0 & 1 & 1 & 0 \\ M & 2 & 0 & 1 & 1 \\ Multi. & 0 & 0 & 0 & 1 \end{matrix}$$

$$471 \quad P = \begin{matrix} G1 & ? & ? & 0 & 0 \\ S/G2 & 0 & ? & ? & 0 \\ M & ? & 0 & ? & ? \\ Multi. & 0 & 0 & 0 & ? \end{matrix}$$

$$472 \quad S_{n+1} = S_n * P * RM$$

473 The error of the markov predicted cell counts (c_{exp}) compared to observed counts (c_{obs}) was computed as the
474 arithmetic mean of the Root Mean Squared Relative Error (RMSRE) of each cell cycle phase across all predicted
475 timepoints. The noise floor of RMSRE was estimated with a second-order loess fit with span of 0.75 (loess
476 function from R package 'stats', v4.3.1).

477

$$RMSRE = \sqrt{\frac{1}{n} * \sum \frac{(c_{exp} - c_{obs})^2}{{c_{obs}}^2}}$$

478 The mitotic success rate (MSR) of each condition was computed as the ratio of M-to-G1 transition ($P_{M,G1}$) to the
479 sum of the transition rates for M-to-G1 ($P_{M,G1}$) and M-to-multinucleated ($P_{M,Multi}$):

480

$$MSR = \frac{P_{M,G1}}{P_{M,G1} + P_{M,Multi}}$$

481

482 The expected duration of G1, S/G2 and M cell cycle phases was calculated from the homotypic transition rates
483 as[97]:

484

$$For i == j: ExpectedDuration_{i,j} = \frac{1}{1 - P_{i,j}}$$

485

486 Metabric survival and microarray analysis: The Metabric[48] microarray and patient metadata was accessed
487 through cbioportal[98-100] and analyzed using R (v4.3.2) and the 'survival' package (v3.5.7). The z-scored
488 microarray expression data was used to categorize patients into 'high' (highest expressing quartile), 'mid' (first
489 to third expressing quartile) or 'low' (lowest expressing quartile) based on expression of ELF3. For survival
490 analysis, patients were filtered to those with microarray data and then Kaplan-meier survival curves were
491 generated with the 'ggsurvfit' package (v1.0.0). Cox proportional hazard statistics were calculated with the
492 'coxph' function of the 'survival' package (v3.5.7). Differential expression was calculated from the log normalized
493 microarray data using the 'wilcoxauc' function from the 'presto' package (v1.0.0). Significantly differentially
494 expressed genes ($abs(logFC) > 0.5$ and adjusted $p < 0.05$) were used to compute MSigDB hallmark GSEA
495 using the 'clusterprofiler' (v4.10.1) and 'msigdbr' (v7.5.1) packages.

496 Full reagent list:

reagent	short hand	type	source	identifier
bioRxiv preprint doi: https://doi.org/10.1101/2024.06.04.554521 ; this version posted June 6, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.				
HCC1143				CRL-2321
HCC1806	-	cell line	ATCC	CRL-2335
MDA-MB-468	-	cell line	ATCC	HTB-132
RPMI 1640	RPMI	reagent	Life Technologies	11875119
DMEM	DMEM	reagent	Life Technologies	11965-092
Fetal Bovine Serum	FBS	reagent	Gibco	16000-044
				D8418-250ML
Dimethyl Sulfoxide	DMSO	reagent	Millipore Sigma	
Phosphate Buffered Saline	PBS	reagent	Gibco	14190235
Paclitaxel	PTX	reagent	LC Labs	P-9600
Interferon-Beta	IFNB	reagent	PBL Assay Science	11410-2
Interferon-Gamma	IFNG	reagent	R&D Systems	385-IR-100
Human Oncostatin M	OSM	reagent	Cell Signaling Technology	5367SC
Recombinant Human Lymphotxin alpha1/beta2 protein	LT	reagent	Biotechne	8884-LY-025
Recombinant Human TGFB-Beta 1	TGFB	reagent	Biotechne	7754BH005
BMS-906024	NOTCHi	reagent	Millipore Sigma	BM0018-5MG
16% Formaldehyde (w/v)	-	reagent	ThermoFisher Scientific	28908
Triton X-100	-	reagent	Millipore Sigma	X100-100ML
Normal Goat Serum Blocking Solution	-	reagent	MP Biomedicals	#0219135680
Lipofectamine RNAiMAX transfection Reagent	-	reagent	ThermoFisher Scientific	13778075
Bovine Serum Albumin	BSA	reagent	Millipore Sigma	A7906-100G
RIPA buffer	-	reagent	Sigma	P0278
100X Halt Protease and Phosphatase Inhibitor Cocktail	-	reagent	ThermoFisher Scientific	1861281
anti-CDKN2A/p16INK4A+CDKN2B/p15INK4B-AF644	p16	antibody	Abcam	ab199756
anti-cPARP-AF647	cPARP	antibody	Cell Signaling Technology	6987S
anti-TUBB3-AF647	TUBB3	antibody	Abcam	ab190575
HCS CellMask Green	CellMask Green	stain	Invitrogen	H32713
HCS CellMask Orange	CellMask Orange	stain	Invitrogen	H32714
DAPI	DAPI	stain	Cell Signaling Technology	4083S
anti-ESE1	-	antibody	Abcam	ab133621
Fra1 Antibody (C-12)	-	antibody	Santa Cruz	sc-28310
Anti-NFE2L2 antibody produced in rabbit	-	antibody	Millipore Sigma	HPA043438
siATF3 Smartpool	siATF3	siRNA	Hoizon Discovery	L-008663-00
siDDIT3 Smartpool	siDDIT3	siRNA	Hoizon Discovery	L-004819-00
siELF3 Smartpool	siELF3	siRNA	Hoizon Discovery	L-016080-00

siFOSL1 Smartpool	siFOSL1	siRNA	Hoizon Discovery	L-004341-00
siIRF7 Smartpool	siIRF7	siRNA	Hoizon Discovery	L-011810-00
siIRF9 Smartpool	siIRF9	siRNA	Hoizon Discovery	L-020858-00
siJUNB Smartpool	siJUNB	siRNA	Hoizon Discovery	L-003269-00
siJUN Smartpool	siJUN	siRNA	Hoizon Discovery	L-003268-00
siKIF11 Smartpool	siKIF11	siRNA	Hoizon Discovery	L-003317-00
siKLF6 Smartpool	siKLF6	siRNA	Hoizon Discovery	L-021441-00
siMAFF Smartpool	siMAFF	siRNA	Hoizon Discovery	L-003903-00
siNFE2L2 Smartpool	siNFE2L2	siRNA	Hoizon Discovery	L-003755-00
siPLK1 Smartpool	siPLK1	siRNA	Hoizon Discovery	L-003290-00
siPLSCR1 Smartpool	siPLSCR1	siRNA	Hoizon Discovery	L-003729-00
siSP100 Smartpool	siSP100	siRNA	Hoizon Discovery	L-015307-00
ON-TARGETplus Non-targeting Control	siNonTarget	siRNA	Hoizon Discovery	D-001810-10
ON-TARGETplus GAPD Control	siGAPD	siRNA	Hoizon Discovery	D-001830-10

497

498

499 **Data Availability**

500 Single Cell RNA-seq data is available on the Gene Expression Omnibus with study ID: GSE266934
501 (<https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE266934>). The raw images and processed data from
502 immunofluorescent stained HCC1143 are available on Zenodo: (doi: 10.5281/zenodo.11237850). The raw
503 images and processed data from the siRNA panel, and the processed data from live-cell imaging study are
504 available on Zenodo (doi: 10.5281/zenodo.11238552). The raw images from the live-cell experiments are
505 available upon request.

506 **Code Availability**

507 All code related to data processing and figure generation are available on Github
508 (https://github.com/HeiserLab/PTX_manuscript).

509 **Contributions**

510 N.L.C., T.A.L., Z.H., S.M.G. and L.M.H. designed experiments. N.L.C., T.L. and Z.H. performed experiments.
511 N.L.C., H.Z. and M.D. performed data analysis. N.L.C. and L.M.H. wrote the manuscript with input from all
512 authors.

513 **Acknowledgements**

514 We thank Drs. Tahereh Ziglari and Ferdinando Pucci for assistance with proteomic validation of siRNA
515 knockdown. OHSU Massively Parallel Sequencing Shared Resource receives support from the OHSU Knight
516 Cancer Institute NCI Cancer Center Support Grant P30CA069533. This work was supported by the Jayne
517 Koskinas Ted Giovanis Foundation for Health and Policy and NIH research grant U54-CA209988 (L.M.H.).
518 N.L.C. acknowledges funding from the NCI/NIH under award number T32CA254888. The Jayne Koskinas Ted
519 Giovanis Foundation for Health and Policy is a private foundation committed to critical funding of cancer

520 research. The opinions, findings, conclusions or recommendations expressed in this material are those of the
521 author(s) and not necessarily those of the Jayne Koskinas Ted Giovanis Foundation for Health and Policy or its
522 respective directors, officers, or staff.

523 **Supplementary information**

524 Supplemental data 1: contains differential gene expression results for all scRNA-seq perturbation studies
525 compared to time-matched vehicle control.

526 Supplemental data 2: contains ontology enrichment results for all scRNA-seq experiments.

527 Supplemental data 3: contains differential gene expression results for between ELF3-high and ELF3-low
528 samples from the Metabric cohort.

529 Supplemental data 4: contains MsigDB GSEA results for ELF3-high and ELF3-low samples from the Metabric
530 cohort.

531

532

References

1. Bauer, K.R., et al., *Descriptive analysis of estrogen receptor (ER)-negative, progesterone receptor (PR)-negative, and HER2-negative invasive breast cancer, the so-called triple-negative phenotype*. *Cancer*, 2007. **109**(9): p. 1721-1728.
2. Early Breast Cancer Trialists' Collaborative, G., *Comparisons between different polychemotherapy regimens for early breast cancer: meta-analyses of long-term outcome among 100 000 women in 123 randomised trials*. *The Lancet*, 2012. **379**(9814): p. 432-444.
3. Mustacchi, G. and M. De Laurentiis, *The role of taxanes in triple-negative breast cancer: literature review*. *Drug Design, Development and Therapy*, 2015: p. 4303.
4. Liedtke, C., et al., *Response to Neoadjuvant Therapy and Long-Term Survival in Patients With Triple-Negative Breast Cancer*. *Journal of Clinical Oncology*, 2023. **41**(10): p. 1809-1815.
5. Foulkes, W.D., I.E. Smith, and J.S. Reis-Filho, *Triple-Negative Breast Cancer*. *New England Journal of Medicine*, 2010. **363**(20): p. 1938-1948.
6. Schmid, P., et al., *Atezolizumab and Nab-Paclitaxel in Advanced Triple-Negative Breast Cancer*. *New England Journal of Medicine*, 2018. **379**(22): p. 2108-2121.
7. Labrie, M., et al., *Therapy resistance: opportunities created by adaptive responses to targeted therapies in cancer*. *Nature Reviews Cancer*, 2022. **22**(6): p. 323-339.
8. Burstein, M.D., et al., *Comprehensive genomic analysis identifies novel subtypes and targets of triple-negative breast cancer*. *Clin Cancer Res*, 2015. **21**(7): p. 1688-98.
9. Spranger, S. and T.F. Gajewski, *Impact of oncogenic pathways on evasion of antitumour immune responses*. *Nat Rev Cancer*, 2018. **18**(3): p. 139-147.
10. Baillie, K.E. and P.C. Stirling, *Beyond Kinases: Targeting Replication Stress Proteins in Cancer Therapy*. *Trends Cancer*, 2021. **7**(5): p. 430-446.
11. Nguyen, C.D.K. and C. Yi, *YAP/TAZ Signaling and Resistance to Cancer Therapy*. *Trends Cancer*, 2019. **5**(5): p. 283-296.
12. Lawson, D.A., et al., *Tumour heterogeneity and metastasis at single-cell resolution*. *Nature Cell Biology*, 2018. **20**(12): p. 1349-1360.
13. Aibar, S., et al., *SCENIC: single-cell regulatory network inference and clustering*. *Nat Methods*, 2017. **14**(11): p. 1083-1086.
14. Obradovic, A., et al., *Single-cell protein activity analysis identifies recurrence-associated renal tumor macrophages*. *Cell*, 2021. **184**(11): p. 2988-3005 e16.
15. Ferro, A., et al., *Blue intensity matters for cell cycle profiling in fluorescence DAPI-stained images*. *Lab Invest*, 2017. **97**(5): p. 615-625.
16. Zasadil, L.M., et al., *Cytotoxicity of paclitaxel in breast cancer is due to chromosome missegregation on multipolar spindles*. *Sci Transl Med*, 2014. **6**(229): p. 229ra43.
17. Speyer, C.L., et al., *Riluzole synergizes with paclitaxel to inhibit cell growth and induce apoptosis in triple-negative breast cancer*. *Breast Cancer Res Treat*, 2017. **166**(2): p. 407-419.
18. Lee, K.M., et al., *Class III β -tubulin, a marker of resistance to paclitaxel, is overexpressed in pancreatic ductal adenocarcinoma and intraepithelial neoplasia*. *Histopathology*, 2007. **51**(4): p. 539-546.
19. Stengel, C., et al., *Class III beta-tubulin expression and in vitro resistance to microtubule targeting agents*. *Br J Cancer*, 2010. **102**(2): p. 316-24.
20. Sawant, K.V., et al., *Chemokine CXCL1 mediated neutrophil recruitment: Role of glycosaminoglycan interactions*. *Sci Rep*, 2016. **6**: p. 33123.
21. Cambier, S., M. Gouwy, and P. Proost, *The chemokines CXCL8 and CXCL12: molecular and functional properties, role in disease and efforts towards pharmacological intervention*. *Cell Mol Immunol*, 2023. **20**(3): p. 217-251.
22. Xiong, X., et al., *CXCL8 in Tumor Biology and Its Implications for Clinical Translation*. *Front Mol Biosci*, 2022. **9**: p. 723846.
23. Wang, N., et al., *CXCL1 derived from tumor-associated macrophages promotes breast cancer metastasis via activating NF- κ B/SOX4 signaling*. *Cell Death Dis*, 2018. **9**(9): p. 880.
24. Gross, S.M., et al., *A multi-omic analysis of MCF10A cells provides a resource for integrative assessment of ligand-mediated molecular and phenotypic responses*. *Commun Biol*, 2022. **5**(1): p. 1066.
25. Krishna, B.M., et al., *Notch signaling in breast cancer: From pathway analysis to therapy*. *Cancer Lett*, 2019. **461**: p. 123-131.

- 585 26. Arico, E., et al., *Type I Interferons and Cancer: An Evolving Story Demanding Novel Clinical Applications*. Cancers
586 (Basel), 2019. **11**(12).
- 587 27. Jorgovanovic, D., et al., *Roles of IFN-gamma in tumor progression and regression: a review*. Biomark Res, 2020. **8**:
588 p. 49.
- 589 28. Chiu, Y.H., J.B. Macmillan, and Z.J. Chen, *RNA polymerase III detects cytosolic DNA and induces type I interferons*
590 *through the RIG-I pathway*. Cell, 2009. **138**(3): p. 576-91.
- 591 29. Yu, L. and P. Liu, *Cytosolic DNA sensing by cGAS: regulation, function, and human diseases*. Signal Transduct Target
592 Ther, 2021. **6**(1): p. 170.
- 593 30. Keenan, A.B., et al., *ChEA3: transcription factor enrichment analysis by orthogonal omics integration*. Nucleic Acids
594 Research, 2019. **47**(W1): p. W212-W224.
- 595 31. Bahrami, S. and F. Drablos, *Gene regulation in the immediate-early response process*. Adv Biol Regul, 2016. **62**: p.
596 37-49.
- 597 32. Jefferies, C.A., *Regulating IRFs in IFN Driven Disease*. Front Immunol, 2019. **10**: p. 325.
- 598 33. Guler, R., et al., *Batf2 differentially regulates tissue immunopathology in Type 1 and Type 2 diseases*. Mucosal
599 Immunol, 2019. **12**(2): p. 390-402.
- 600 34. Liu, J., et al., *Batf3(+) DCs and type I IFN are critical for the efficacy of neoadjuvant cancer immunotherapy*.
601 Oncoimmunology, 2019. **8**(2): p. e1546068.
- 602 35. Rehwinkel, J. and M.U. Gack, *RIG-I-like receptors: their regulation and roles in RNA sensing*. Nat Rev Immunol,
603 2020. **20**(9): p. 537-551.
- 604 36. Garces de Los Fayas Alonso, I., et al., *The Role of Activator Protein-1 (AP-1) Family Members in CD30-Positive
605 Lymphomas*. Cancers (Basel), 2018. **10**(4).
- 606 37. Otero, M., et al., *E74-like factor 3 (ELF3) impacts on matrix metalloproteinase 13 (MMP13) transcriptional control
607 in articular chondrocytes under proinflammatory stress*. J Biol Chem, 2012. **287**(5): p. 3559-72.
- 608 38. Kim, T.H., C. Kern, and H. Zhou, *Knockout of IRF7 Highlights its Modulator Function of Host Response Against Avian
609 Influenza Virus and the Involvement of MAPK and TOR Signaling Pathways in Chicken*. Genes (Basel), 2020. **11**(4).
- 610 39. Li, T., et al., *DDIT3 and KAT2A Proteins Regulate TNFRSF10A and TNFRSF10B Expression in Endoplasmic Reticulum
611 Stress-mediated Apoptosis in Human Lung Cancer Cells*. J Biol Chem, 2015. **290**(17): p. 11108-18.
- 612 40. Belanova, A.A., et al., *Effects of JUN and NFE2L2 knockdown on oxidative status and NFE2L2/AP-1 targets
613 expression in HeLa cells in basal conditions and upon sub-lethal hydrogen peroxide treatment*. Mol Biol Rep, 2019.
614 **46**(1): p. 27-39.
- 615 41. Mirzaei, H., et al., *The AP-1 pathway; A key regulator of cellular transformation modulated by oncogenic viruses*.
616 Rev Med Virol, 2020. **30**(1): p. e2088.
- 617 42. Gross, S.M., et al., *Analysis and modeling of cancer drug responses using cell cycle phase-specific rate effects*. Nat
618 Commun, 2023. **14**(1): p. 3450.
- 619 43. Spencer, S.L., et al., *The proliferation-quiescence decision is controlled by a bifurcation in CDK2 activity at mitotic
620 exit*. Cell, 2013. **155**(2): p. 369-83.
- 621 44. Luker, K.E., et al., *Overexpression of IRF9 Confers Resistance to Antimicrotubule Agents in Breast Cancer Cells1*.
622 Cancer Research, 2001. **61**(17): p. 6540-6547.
- 623 45. Stringer, C., et al., *Cellpose: a generalist algorithm for cellular segmentation*. Nature Methods, 2021. **18**(1): p. 100-
624 106.
- 625 46. Mohammadi, F., et al., *A lineage tree-based hidden Markov model quantifies cellular heterogeneity and plasticity*.
626 Commun Biol, 2022. **5**(1): p. 1258.
- 627 47. Palmer, A.C. and P.K. Sorger, *Combination Cancer Therapy Can Confer Benefit via Patient-to-Patient Variability
628 without Drug Additivity or Synergy*. Cell, 2017. **171**(7): p. 1678-1691 e13.
- 629 48. Curtis, C., et al., *The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups*.
630 Nature, 2012. **486**(7403): p. 346-52.
- 631 49. Symmans, W.F., et al., *Long-Term Prognostic Risk After Neoadjuvant Chemotherapy Associated With Residual
632 Cancer Burden and Breast Cancer Subtype*. J Clin Oncol, 2017. **35**(10): p. 1049-1060.
- 633 50. Foo, J. and F. Michor, *Evolution of acquired resistance to anti-cancer therapy*. J Theor Biol, 2014. **355**: p. 10-20.
- 634 51. Nussinov, R., C.J. Tsai, and H. Jang, *Anticancer drug resistance: An update and perspective*. Drug Resist Updat,
635 2021. **59**: p. 100796.
- 636 52. Lukow, D.A., et al., *Chromosomal instability accelerates the evolution of resistance to anti-cancer therapies*. Dev
637 Cell, 2021. **56**(17): p. 2427-2439 e4.

- 638 53. Abu Samaan, T.M., et al., *Paclitaxel's Mechanistic and Clinical Effects on Breast Cancer*. Biomolecules, 2019. **9**(12).
- 639 54. Hashemi, M., et al., *EMT mechanism in breast cancer metastasis and drug resistance: Revisiting molecular*
640 *interactions and biological functions*. Biomed Pharmacother, 2022. **155**: p. 113774.
- 641 55. Heiser, L.M., et al., *Subtype and pathway specific responses to anticancer compounds in breast cancer*. Proc Natl
642 Acad Sci U S A, 2012. **109**(8): p. 2724-9.
- 643 56. Barretina, J., et al., *The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity*.
644 *Nature*, 2012. **483**(7391): p. 603-7.
- 645 57. Yang, W., et al., *Genomics of Drug Sensitivity in Cancer (GDSC): a resource for therapeutic biomarker discovery in*
646 *cancer cells*. Nucleic Acids Res, 2013. **41**(Database issue): p. D955-61.
- 647 58. Chan, Y.T., et al., *CRISPR-Cas9 library screening approach for anti-cancer drug discovery: overview and*
648 *perspectives*. Theranostics, 2022. **12**(7): p. 3329-3344.
- 649 59. Guillon, J., et al., *Chemotherapy-induced senescence, an adaptive mechanism driving resistance and tumor*
650 *heterogeneity*. Cell Cycle, 2019. **18**(19): p. 2385-2397.
- 651 60. Kim, C.J., et al., *Nuclear morphology predicts cell survival to cisplatin chemotherapy*. Neoplasia, 2023. **42**: p.
652 100906.
- 653 61. Pargett, M., et al., *Single-Cell Imaging of ERK Signaling Using Fluorescent Biosensors*. Methods Mol Biol, 2017.
654 **1636**: p. 35-59.
- 655 62. Netterfield, T.S., et al., *Biphasic JNK-Erk signaling separates the induction and maintenance of cell senescence after*
656 *DNA damage induced by topoisomerase II inhibition*. Cell Syst, 2023. **14**(7): p. 582-604 e10.
- 657 63. Ender, P., et al., *Spatiotemporal control of ERK pulse frequency coordinates fate decisions during mammary acinar*
658 *morphogenesis*. Dev Cell, 2022. **57**(18): p. 2153-2167 e6.
- 659 64. Grant, G.D., et al., *Accurate delineation of cell cycle phase transitions in living cells with PIP-FUCCI*. Cell Cycle, 2018.
660 **17**(21-22): p. 2496-2516.
- 661 65. Wang, Y., et al., *Real-time imaging of senescence in tumors with DNA damage*. Sci Rep, 2019. **9**(1): p. 2102.
- 662 66. Balderstone, L.A., et al., *Development of a fluorescence-based cellular apoptosis reporter*. Methods Appl Fluoresc,
663 **2018**. **7**(1): p. 015001.
- 664 67. Nam, A.S., R. Chaligne, and D.A. Landau, *Integrating genetic and non-genetic determinants of cancer evolution by*
665 *single-cell multi-omics*. Nat Rev Genet, 2021. **22**(1): p. 3-18.
- 666 68. Schiff, P.B., J. Fant, and S.B. Horwitz, *Promotion of microtubule assembly in vitro by taxol*. Nature, 1979. **277**(5698):
667 p. 665-667.
- 668 69. Weaver, B.A., *How Taxol/paclitaxel kills cancer cells*. Mol Biol Cell, 2014. **25**(18): p. 2677-81.
- 669 70. Khalaf, K., et al., *Aspects of the Tumor Microenvironment Involved in Immune Resistance and Drug Resistance*.
670 *Front Immunol*, 2021. **12**: p. 656364.
- 671 71. Deepak, K.G.K., et al., *Tumor microenvironment: Challenges and opportunities in targeting metastasis of triple*
672 *negative breast cancer*. Pharmacol Res, 2020. **153**: p. 104683.
- 673 72. Ma, L., et al., *Tumor Cell Biodiversity Drives Microenvironmental Reprogramming in Liver Cancer*. Cancer Cell, 2019.
674 **36**(4): p. 418-430 e6.
- 675 73. Pitt, J.M., et al., *Targeting the tumor microenvironment: removing obstruction to anticancer immune responses*
676 *and immunotherapy*. Ann Oncol, 2016. **27**(8): p. 1482-92.
- 677 74. Xiao, Y. and D. Yu, *Tumor microenvironment as a therapeutic target in cancer*. Pharmacol Ther, 2021. **221**: p.
678 107753.
- 679 75. Hu, J., et al., *Regulation of tumor immune suppression and cancer cell survival by CXCL1/2 elevation in glioblastoma*
680 *multiforme*. Science Advances, 2021. **7**(5): p. eabc2511.
- 681 76. Yang, M., et al., *Tumour-associated neutrophils orchestrate intratumoural IL-8-driven immune evasion through*
682 *Jagged2 activation in ovarian cancer*. Br J Cancer, 2020. **123**(9): p. 1404-1416.
- 683 77. Heidemann, J., et al., *Angiogenic effects of interleukin 8 (CXCL8) in human intestinal microvascular endothelial cells*
684 *are mediated by CXCR2*. J Biol Chem, 2003. **278**(10): p. 8508-15.
- 685 78. Choi, H.S., et al., *Disruption of the NF-kappaB/IL-8 Signaling Axis by Sulconazole Inhibits Human Breast Cancer*
686 *Stem Cell Formation*. Cells, 2019. **8**(9).
- 687 79. Rhodes, D.R., et al., *Mining for regulatory programs in the cancer transcriptome*. Nat Genet, 2005. **37**(6): p. 579-
688 83.
- 689 80. Margolin, A.A., et al., *ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian*
690 *cellular context*. BMC Bioinformatics, 2006. **7 Suppl 1**(Suppl 1): p. S7.

- 691 81. Wang, K., et al., *Genome-wide identification of post-translational modulators of transcription factor activity in*
692 *human B cells*. Nat Biotechnol, 2009. **27**(9): p. 829-39.
- 693 82. Subbalakshmi, A.R., et al., *The ELF3 transcription factor is associated with an epithelial phenotype and represses*
694 *epithelial-mesenchymal transition*. J Biol Eng, 2023. **17**(1): p. 17.
- 695 83. Enfield, K.S.S., et al., *Epithelial tumor suppressor ELF3 is a lineage-specific amplified oncogene in lung*
696 *adenocarcinoma*. Nat Commun, 2019. **10**(1): p. 5438.
- 697 84. Horie, M., et al., *An integrative epigenomic approach identifies ELF3 as an oncogenic regulator in ASCL1-positive*
698 *neuroendocrine carcinoma*. Cancer Sci, 2023. **114**(6): p. 2596-2608.
- 699 85. Archer, L.K., et al., *ETS transcription factor ELF3 (ESE-1) is a cell cycle regulator in benign and malignant prostate*.
700 FEBS Open Bio, 2022. **12**(7): p. 1365-1387.
- 701 86. Fina, E., et al., *Gene signatures of circulating breast cancer cell models are a source of novel molecular*
702 *determinants of metastasis and improve circulating tumor cell detection in patients*. J Exp Clin Cancer Res, 2022.
703 **41**(1): p. 78.
- 704 87. Mermel, C.H., et al., *GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-*
705 *number alteration in human cancers*. Genome Biology, 2011. **12**(4): p. R41.
- 706 88. Mesquita, B., et al., *Frequent copy number gains at 1q21 and 1q32 are associated with overexpression of the ETS*
707 *transcription factors ETV3 and ELF3 in breast cancer irrespective of molecular subtypes*. Breast Cancer Res Treat,
708 2013. **138**(1): p. 37-45.
- 709 89. Riemschneider, M.J., C.B. Knobbe, and G. Reifenberger, *Refined mapping of 1q32 amplicons in malignant*
710 *gliomas confirms MDM4 as the main amplification target*. Int J Cancer, 2003. **104**(6): p. 752-7.
- 711 90. Veerakumarasivam, A., et al., *High-resolution array-based comparative genomic hybridization of bladder cancers*
712 *identifies mouse double minute 4 (MDM4) as an amplification target exclusive of MDM2 and TP53*. Clin Cancer
713 Res, 2008. **14**(9): p. 2527-34.
- 714 91. Francois, M., P. Donovan, and F. Fontaine, *Modulating transcription factor activity: Interfering with protein-protein*
715 *interaction networks*. Semin Cell Dev Biol, 2020. **99**: p. 12-19.
- 716 92. Ngamchedrakul, W. and W. Yantasee, *siRNA therapeutics for breast cancer: recent efforts in targeting*
717 *metastasis, drug resistance, and immune evasion*. Transl Res, 2019. **214**: p. 105-120.
- 718 93. Wolpaw, A.J., et al., *Drugging the "Undruggable" MYCN Oncogenic Transcription Factor: Overcoming Previous*
719 *Obstacles to Impact Childhood Cancers*. Cancer Res, 2021. **81**(7): p. 1627-1632.
- 720 94. Butler, A., et al., *Integrating single-cell transcriptomic data across different conditions, technologies, and species*.
721 Nature Biotechnology, 2018. **36**(5): p. 411-420.
- 722 95. Satija, R., et al., *Spatial reconstruction of single-cell gene expression data*. Nature Biotechnology, 2015. **33**(5): p.
723 495-502.
- 724 96. Yu, G., et al., *clusterProfiler: an R Package for Comparing Biological Themes Among Gene Clusters*. OMICS: A
725 Journal of Integrative Biology, 2012. **16**(5): p. 284-287.
- 726 97. Dudel, C. and M. Myrskylä, *Estimating the number and length of episodes in disability using a Markov chain*
727 *approach*. Population Health Metrics, 2020. **18**(1).
- 728 98. Cerami, E., et al., *The cBio cancer genomics portal: an open platform for exploring multidimensional cancer*
729 *genomics data*. Cancer Discov, 2012. **2**(5): p. 401-4.
- 730 99. de Bruijn, I., et al., *Analysis and Visualization of Longitudinal Genomic and Clinical Data from the AACR Project*
731 *GENIE Biopharma Collaborative in cBioPortal*. Cancer Res, 2023. **83**(23): p. 3861-3867.
- 732 100. Gao, J., et al., *Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal*. Sci Signal,
733 2013. **6**(269): p. pl1.

734

735

736 **Figure 1: Paclitaxel modulates multiple cancer associated phenotypes. 1A)** Representative fluorescent
737 images showing HCC1143 cells treated with DMSO or Paclitaxel at the listed doses for 72 hours and stained
738 with DAPI, p16-INK4A, and TUBB3. **1B)** Ridgeplot showing impact of paclitaxel treatment on DAPI total
739 nuclear intensity as a proxy for nuclear content. Dashed lines indicate local maxima in the DMSO control
740 condition corresponding with 2N and 4N nuclear state. **1C)** Normalized cell count and fraction of multinucleated
741 cells for HCC1143 treated with serial titration of Paclitaxel for 72 hours. Error bar indicates SEM across 6
742 replicates. **1D)** Barplots showing mean TUBB3 and p16/p15 cytoplasmic staining intensity for triplicate wells of
743 HCC1143 treated with a range of Paclitaxel and normalized to paired DMSO control (horizontal line).
744 Significance assessed with Dunnett's test. **1E)** Barplot comparing the fraction of cPARP positive cells for
745 mononucleated (magenta) versus multinucleated (cyan) cells within the same treatment condition. cPARP
746 positive threshold was set to the 99th quantile of DMSO treated cells total cPARP nuclear intensity
747 (Supplemental Figure 1C). Significance assessed with proportions test. For all statistics: * = $p < 0.05$, ** =
748 $p < 0.01$, *** = $p < 0.001$.

749 **Figure 2: Cells surviving paclitaxel treatment halt cycling and upregulate interferon response genes.**
750 **2A)** UMAP color coded by treatment condition. DMSO_24 = 0.1% DMSO for 24 hours, DMSO_72 = 0.1%
751 DMSO for 72 hours, PTX_24 = 1nM Paclitaxel for 24 hours, PTX_72 = 1nM Paclitaxel for 72 hours. **2B)** Barplot
752 showing proportion of each condition assigned to G1, S, or G2M cell cycle state based on transcriptional
753 profile. **2C,2D)** Volcano plot of differentially expressed genes for Paclitaxel treatment versus DMSO at 24 (2C)
754 and 72 (2D) hours. Differentially expressed genes (black) determined with cutoffs of Benjamini Hochberg
755 corrected $p < 0.05$ and absolute Log2FoldChange > 0.5 . **2D)** Reactome pathway enrichment results for genes
756 significantly upregulated after paclitaxel treatment at 24 hours. Size indicates the number of genes upregulated
757 within the pathway, color indicates significance. **2E)** Volcano plot of differentially expressed genes for
758 Paclitaxel treatment versus DMSO at 72 hours. Differentially expressed genes (black) determined with cutoffs
759 of Benjamini Hochberg corrected $p < 0.05$ and absolute Log2FoldChange > 0.5 . **2F)** Reactome pathway
760 enrichment results for genes significantly upregulated after paclitaxel treatment at 72 hours. Size indicates the
761 number of genes upregulated within the pathway, color indicates significance.

762 **Figure 3: Paclitaxel response activates canonical interferon response genes. 3A)** UMAP showing the
763 scRNA-seq landscape for ligand perturbations. IFNB = Interferon-Beta, OSM = Oncostatin-M, NOTCHi_IFNB =
764 Notch inhibitor + Interferon-Beta, NOTCHi = Notch inhibitor, TGFB = Transforming Growth Factor Beta, IFNG =
765 Interferon-Gamma, LTA = Lymphotoxin-Alpha, PBS = Phosphate Buffered Saline (control). **3B)** Heatmap
766 showing the Pearson correlation for all gene log2 fold-change between perturbation versus time-matched
767 control. Inset number and color indicate correlation. **3C,D)** Gene enrichment map for Paclitaxel uniquely
768 upregulated (3C) and Paclitaxel+Interferon shared upregulated (3D) genes. Color indicates significance, size
769 indicates number of upregulated genes, and lines connect ontologies with shared elements. **3E)** ChEA3
770 transcription factor enrichment ranks computed from 140 Paclitaxel uniquely upregulated genes (x axis) versus
771 120 Paclitaxel-Interferon shared upregulated genes (y axis). Lower rank indicates higher imputed activity. TFs
772 to the lower right of the diagonal have higher imputed activity within the PTX+IFN shared upregulated gene
773 set, and TFs to the upper left of the diagonal have higher imputed activity within the PTX uniquely upregulated
774 gene set. **3F)** Bar plot showing Average Log2FC from paclitaxel treated scRNA-seq data for the 24 top ranked
775 transcription factors (intersect of top 15 ranked for PTX unique or PTX shared individually). Transcription factor
776 names in red had differential upregulation (average log2 fold-change > 0.25 , FDR < 0.01) at either 24 or 72
777 hours of paclitaxel treatment compared to vehicle control.

778 **Figure 4: Inhibition of paclitaxel-induced transcription factors alters proliferation and nuclear**
779 **morphology. 4A-B)** Barplots showing relative cell count (A) and proportion of multinucleated cells (B). Cell
780 count is normalized to the same cell-line DMSO + siNonTarget control. Bars show the mean of three cell lines,
781 and error bar indicates SEM. Relative cell count statistics computed with Fisher's multi test applied to Two-
782 tailed Student's T-test per cell line, and fraction multinucleated statistics computed with Fisher's multi test
783 applied to proportions test per cell line. Heatmap of all values in Supplement 4A, 4B. Not shown: secondary
784 positive growth (siGAPD) and negative growth (siKIF11) controls **4C)** Principal Component results for each
785 siRNA knockdown where each combination of cell line (HCC1143, HCC1806, MDA-MB-468), feature (relative
786 cell count, fraction multinucleated) and condition (DMSO, PTX) is considered a feature (Supplemental Figure

787 4C). **4D**) The Euclidean feature-distance from NonTarget control for each siRNA. Heatmap of scaled feature
788 values in Supplemental Figure 4C. For all statistics: * = $p < 0.05$, ** = $p < 0.01$, *** = $p < 0.001$.

789 **Figure 5: ELF3 and FOSL1 mediate cell cycle progression under paclitaxel treatment. 5A)**

790 Representative images showing the HCC1143 cell cycle reporter line and a mitotic event occurring over 105
791 minutes. Orange text indicates automatically assigned cell cycle for the processed images. **5B)** Relative
792 (normalized to total cell number at earliest time point) cell count for each phase over time for each siRNA
793 condition +/- paclitaxel (PTX). **5C)** Schematic showing the underlying structure of permitted transitions used in
794 the Markov Model. **5D)** Mitotic failure rate computed from Markov model transition rates. Mitotic failure rate is
795 calculated as the ratio of M->multinucleated transitions divided by the sum of M->G1 and M->multinucleated
796 transition rates. **5F)** PTX + siRNA synergy computed as the ratio of inferred phase duration for combination
797 (siRNA + PTX) versus Highest Single Agent (HSA, highest duration for either siRNA or PTX treatment alone).
798 Value of 1 indicates no change in combination, values greater than 1 indicate synergy and values less than 1
799 indicate antagonism. **5G)** Overall survival for the Metabric breast cancer cohort stratified by ELF3 mRNA
800 expression. High = top quartile of ELF3 expression, IQR = inner quartile range of ELF3 expression, and low =
801 lowest quartile of ELF3 expression. **5H)** MSigDB Gene Set Enrichment (GSEA) results for ELF3 high versus
802 ELF3 group. Horizontal line represents a FDR threshold of 0.05.

803 **Supplementary Figure 1: S1A)** Density plot showing the distribution of cells for all conditions (DMSO + PTX).
804 X axis shows mean intensity for p15/p16, y axis shows Mean Intensity for TUBB3 in arbitrary units (A.U.). R^2
805 squared shown for Pearson correlation (p -value $< 2.2e-16$). **S1B)** Breakout plots showing the same information
806 as S1A. Control (DMSO) shown for every inset plot, and paclitaxel (PTX) for the nM dose listed above. **S1C)**
807 Breakout plots showing the Normalized DAPI total intensity versus Normalized cPARP nuclear total intensity.
808 Horizontal line indicates threshold for calling a cell 'cPARP positive', color indicates whether the cell is
809 mononucleated (red) or multinucleated (blue).

810 **Supplementary Figure 2: S2A)** Violin plots of scRNA-seq QC metrics for the four conditions. Horizontal lines
811 indicate the first, second and third quartiles. **S2B)** Breakout plots showing the same UMAP as Figure 2A split
812 by condition and color coded by cell cycle phase. **S2C)** Number of clusters computed from Louvain clustering
813 applied across a sweep of resolutions. **S2D)** The Normalized Mutual Information (NMI) between cluster label
814 and biological label (treatment x cell cycle phase) computed across a sweep of Louvain clustering resolutions.
815 The NMI values indicate that there is a high degree in overlap of information between unsupervised cluster
816 labels and known biological labels. **S2E,F)** Euler plot showing the overlap in significantly upregulated genes
817 (SF2E) and enriched Reactome pathways (SF2F) between paclitaxel at 24 hours (PTX24) and 72 hours
818 (PTX72) compared to time matched control. **F2G)** Barplots showing mean expression of chemokines CXCL1
819 and CXCL8 which were significantly upregulated in both paclitaxel conditions compared to time matched
820 control.

821 **Supplementary Figure 3: S3A)** Heatmap showing expression for interferon ligands (gray) and receptors
822 (black) for each of the paclitaxel scRNA-seq conditions. **S3B)** Violin plots of scRNA-seq QC metrics for the
823 ligand perturbation conditions. Horizontal lines indicate the first, second and third quartiles. **S3C)** The same
824 ligand perturbation scRNA-seq UMAP as Figure 3A, but color coded by cell cycle phase assignment. **S3D)** Bar
825 plot indicating the proportion of cells assigned to each cell cycle phase for each condition.

826 **Supplementary Figure 4: S4A)** Heatmap of relative cell count (Normalized to NonTarget) for each siRNA +/-
827 1nM Paclitaxel (PTX) condition for the three Triple Negative Breast Cancer cell lines tested. GAPD and
828 NonTarget siRNA are positive growth controls, KIF11 and PLK1 are negative growth controls. Significance
829 assessed via t-test versus the same-drug (DMSO or PTX) NonTarget condition with Bonferroni Correction (p -
830 values: *: < 0.05 , **: < 0.01 , ***: < 0.001). **S4B)** Heatmap representing the proportion of multinucleated cells for
831 each siRNA +/- 1nM Paclitaxel (PTX) condition for the three Triple Negative Breast Cancer cell lines tested.
832 GAPD and NonTarget siRNA are positive growth controls, KIF11 and PLK1 are negative growth controls.
833 Significance assessed via proportions test versus the same-drug (DMSO or PTX) NonTarget condition with
834 Bonferroni Correction (p -values: *: < 0.05 , **: < 0.01 , ***: < 0.001).

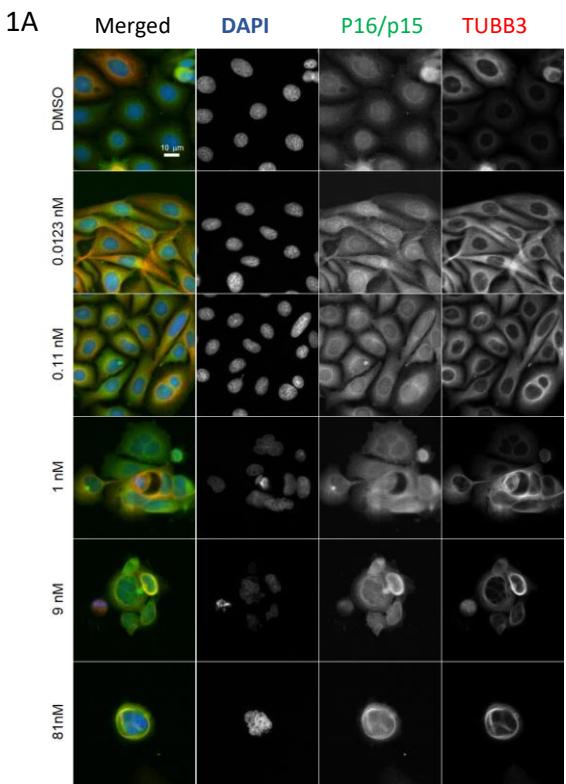
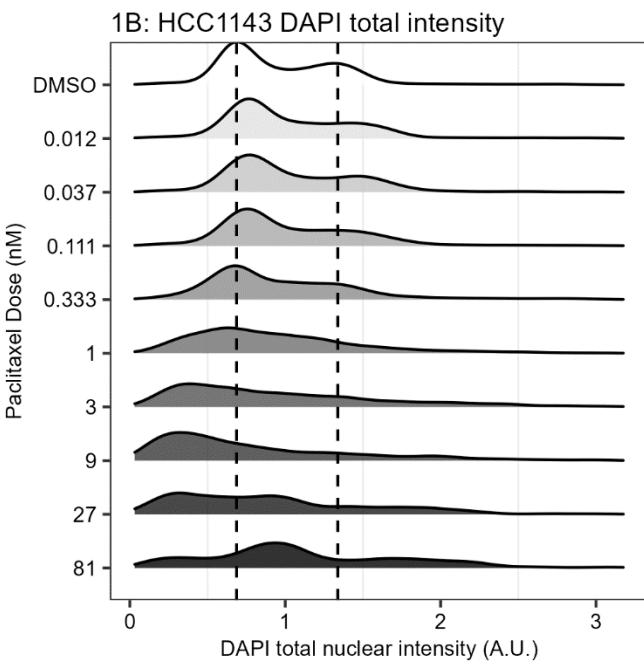
835 **Supplementary Figure 5: S5A)** siRNA knockdown validation blots showing spectra images from
836 ProteinSimple/WesternSimple protocol for ESE1 (ELF3), FRA1 (FOSL1) and NRF2 (NFE2L2) knockdown after
837 72 hours of treatment with either 0.1% DMSO or 1nM Paclitaxel. **S5B)** Quantification of the images above.
838 Total signal indicates the sum of peak area for the +/- 10% range around the highest intensity peak.

839 **Supplementary Figure 6: S6A)** HDHB-mClover reporter intensities plot colored by manual assignment. 250
840 images of cells were randomly selected and manually assigned a cell cycle state (G1, M, S/G2) based on cell
841 morphology and mClover intensity. The manual assignment was used to select Total Intensity Ratio (Nuclear
842 vs cytoplasmic) and Mean intensity ratio (Perinuclear versus Nuclear) as defining features for automatic cell
843 cycle assignment. Black lines represent thresholds used for automated cell cycle assignment. **S6B)** Heatmap
844 showing the heterotypic (between different states) transition rates learned by the Markov model for each
845 unique siRNA +/- Paclitaxel (PTX) condition. Inset number is the transition rate and color is the z-score of row.
846 **S6C, SF6D)** Cell count over time plots for each of the DMSO (S6C) and PTX (S6D) treated conditions showing
847 the experimental data (black dots) and Markov values (red line) predicted using the learned transition rates and
848 initial time point.

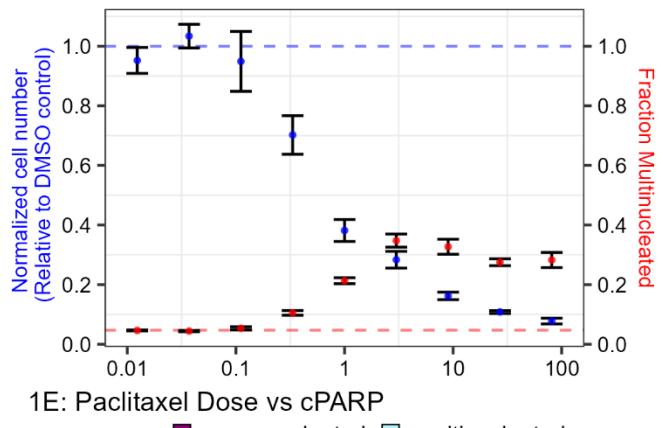
849 **Supplementary Figure 7: S7A)** Representative plot showing the smoothed experimental counts (5-timepoint
850 rolling mean) versus a Loess fit for the siNonTarget + Paclitaxel condition. **S7B)** Dot plots showing the Root
851 Mean Squared Relative Error (RMSRE) for the Markov Model (black dots) over each training epoch versus the
852 Loess fit (green line). Loess fit represents an estimate of the 'noise floor' of the measurement. **S7C)** Model
853 rejection rate for each condition computed from the Chi-squared test applied between the experimental and
854 model predicted composition for each single time point. A nominal Chi-squared p value < 0.05 was considered
855 a significantly different timepoint. A rejection rate of 0% means that there was no significant difference in
856 phenotype composition at any timepoint.

857 **Supplementary Figure 8: S8A)** Volcano plot showing differentially expressed genes for the Metabric ELF3
858 high group versus ELF3 low group. Genes to the right (positive Log2FC) are significantly upregulated in the
859 ELF3 high group and genes to the left (negative Log2FC) are significantly upregulated in the ELF3 low group.
860
861
862
863
864
865
866
867
868

869
870
871

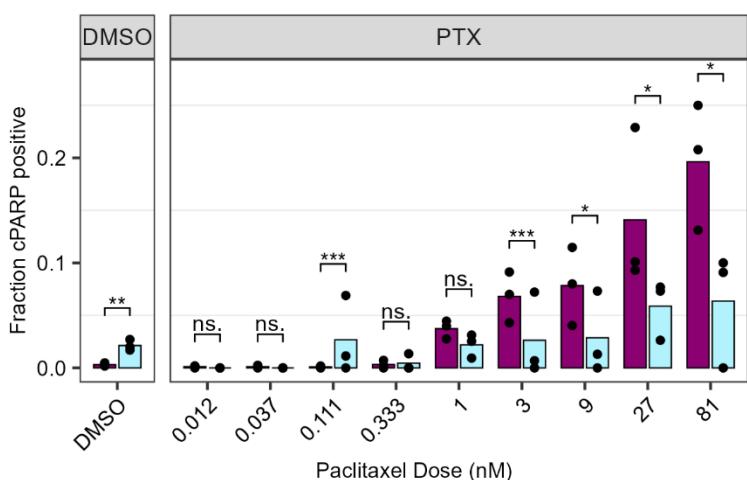


1C: PTX dose alters cell count and multinucleation

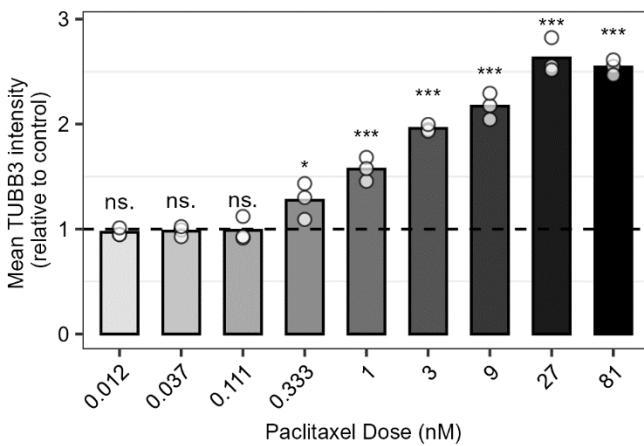
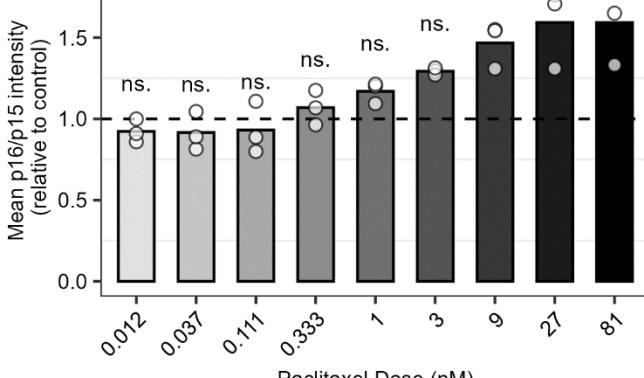


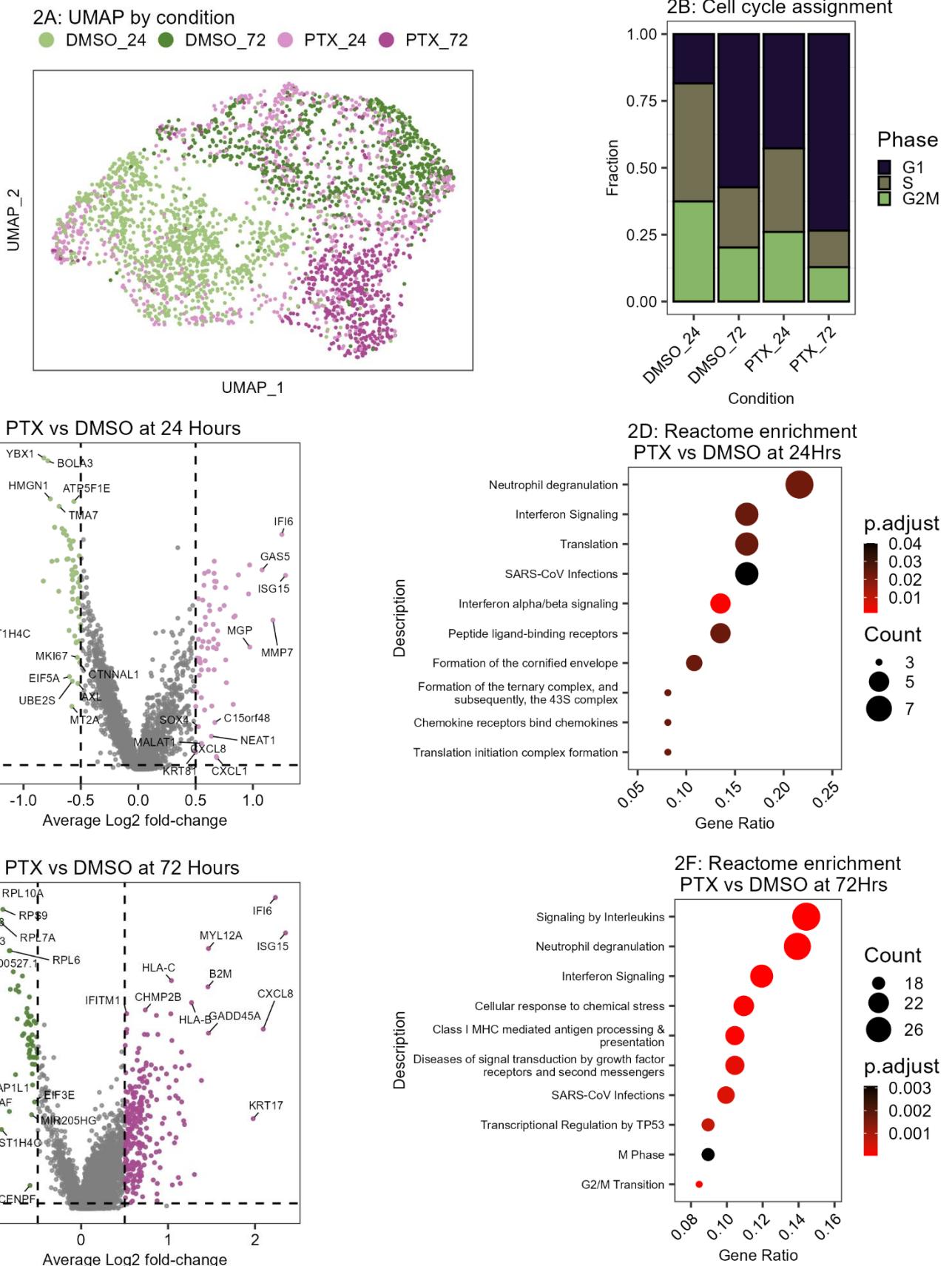
1E: Paclitaxel Dose vs cPARP

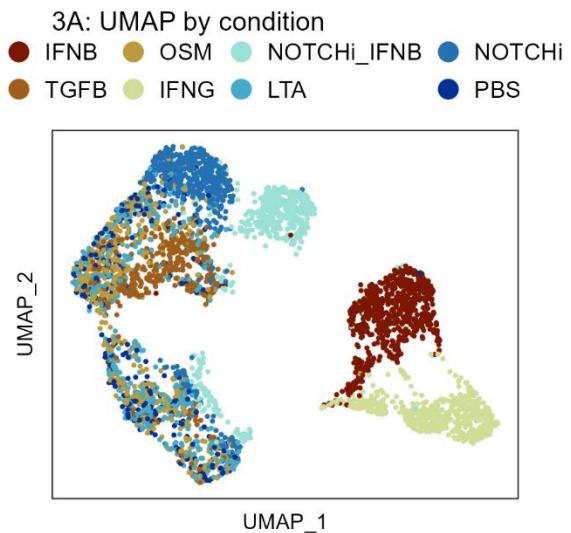
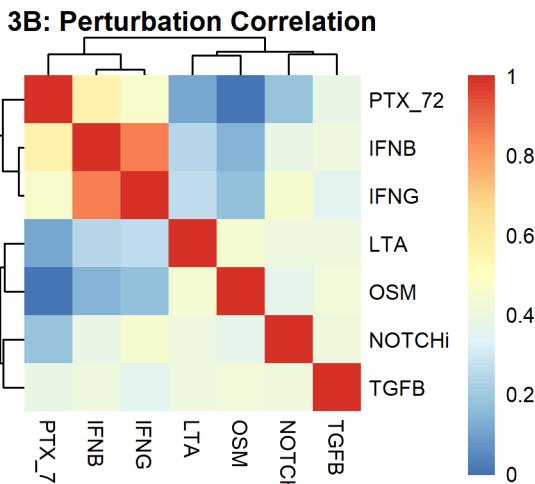
■ mononucleated ■ multinucleated



1D: Staining intensity per dose

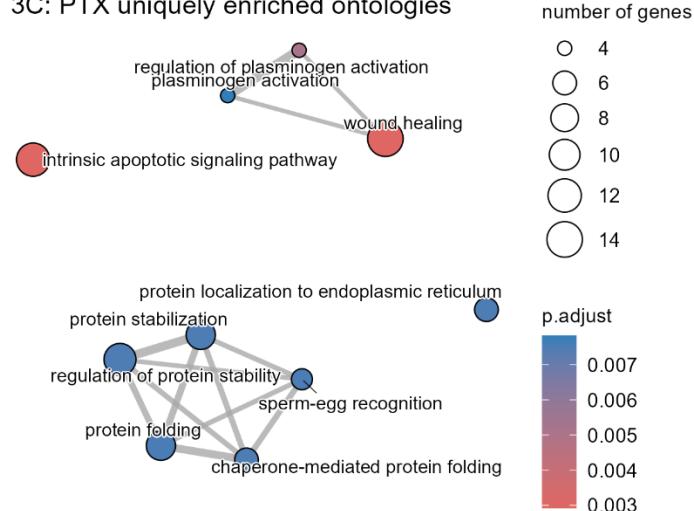




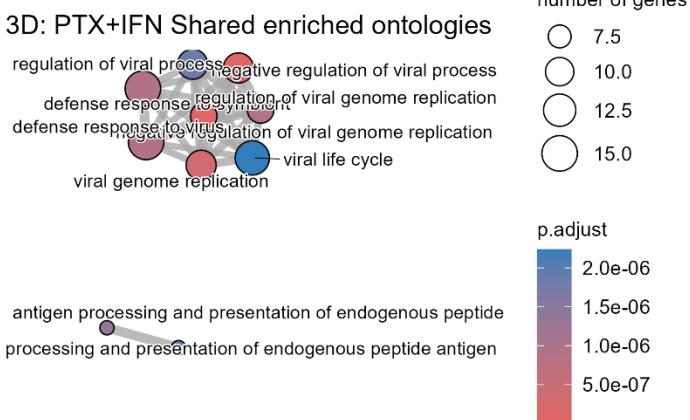


873

3C: PTX uniquely enriched ontologies

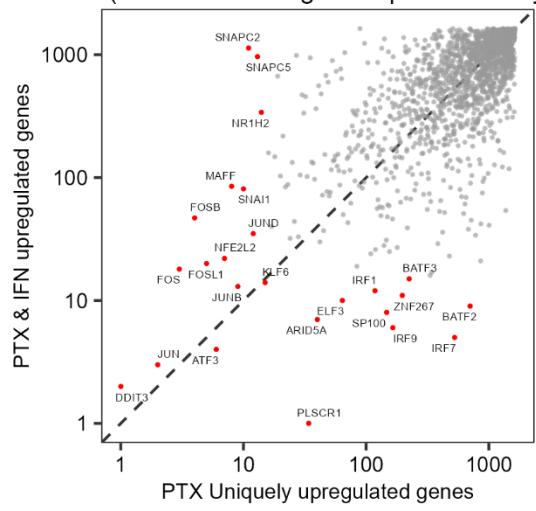


3D: PTX+IFN Shared enriched ontologies

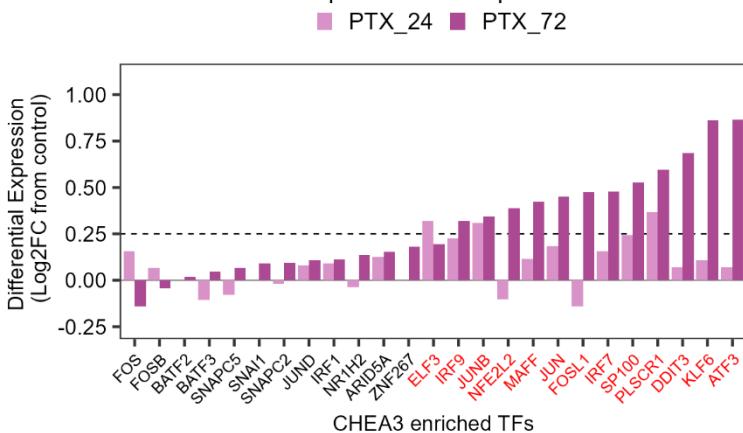


874

3E: Chea3 Rank
(Lower rank = higher imputed activity)



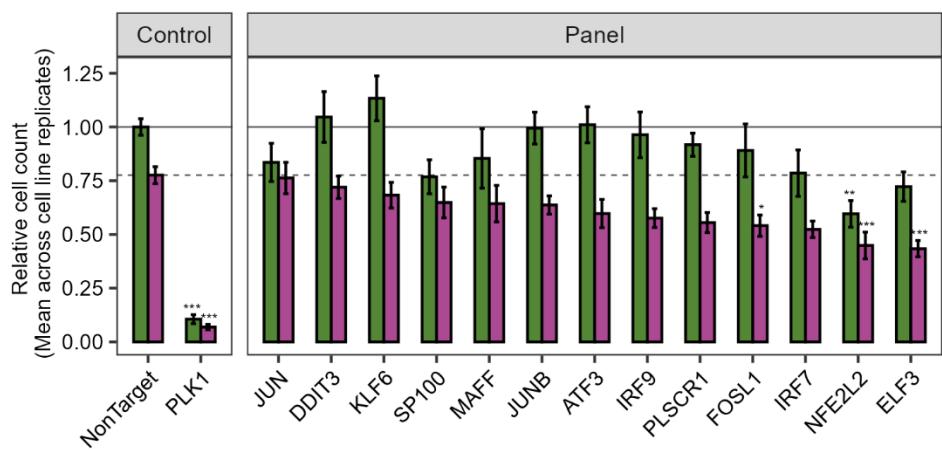
3F: Differential expression for top CHEA3 TFs



875

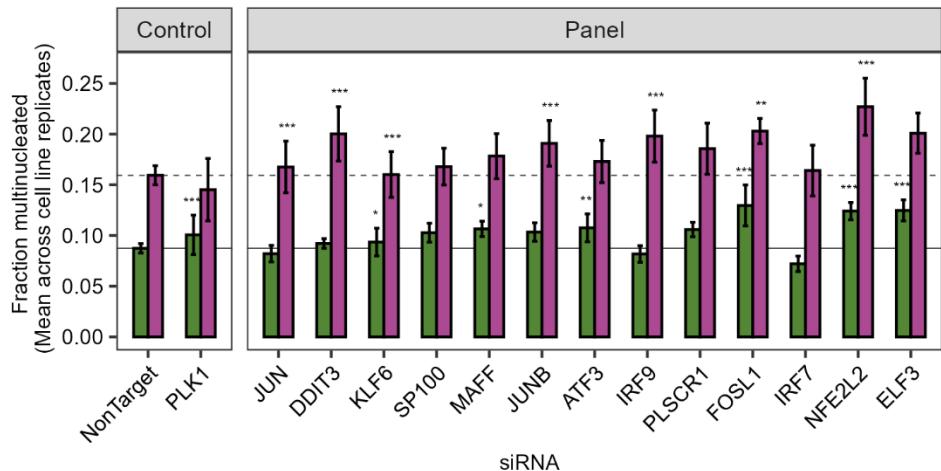
4A: siRNA impact on cell count

■ DMSO ■ 1nM PTX



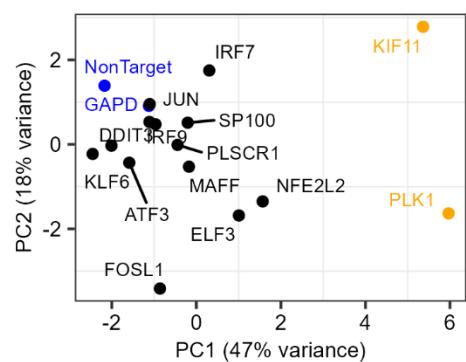
4B: siRNA impact on Multinucleation

■ DMSO ■ 1nM PTX



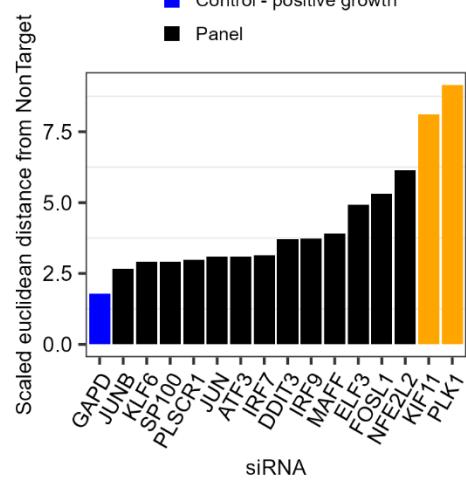
4C: PCA of siRNA phenotypes

- Control - negative growth
- Control - positive growth
- Panel

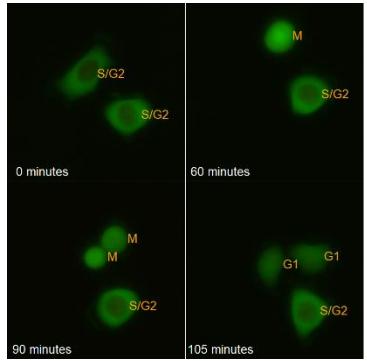


4D: siRNA total impact

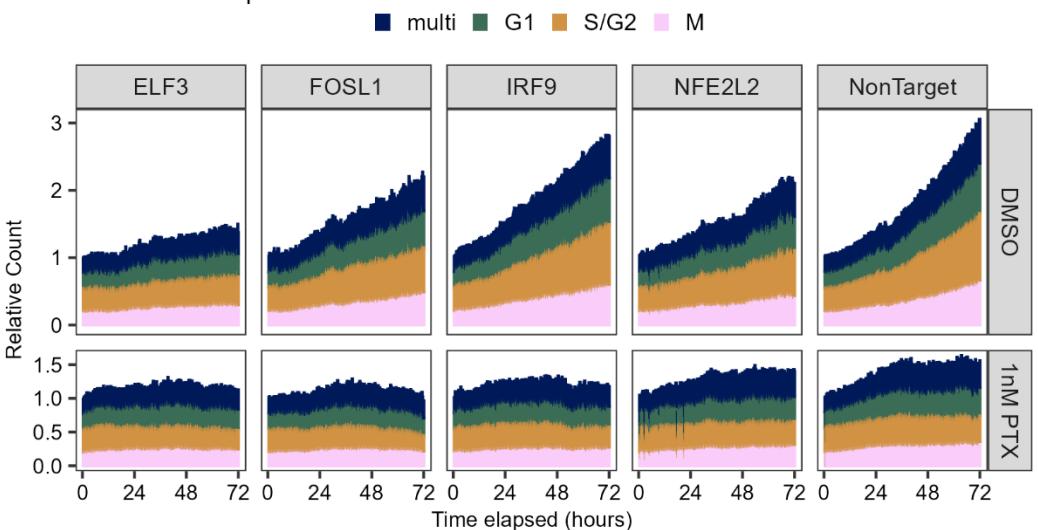
- Control - negative growth
- Control - positive growth
- Panel



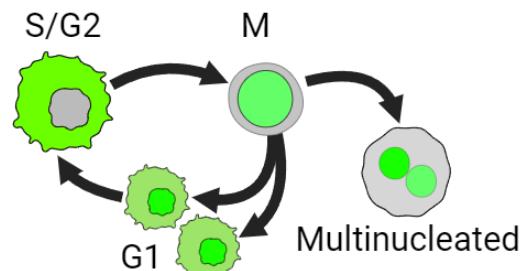
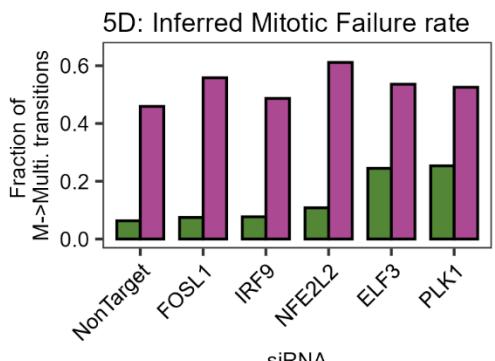
5A: Cell cycle reporter



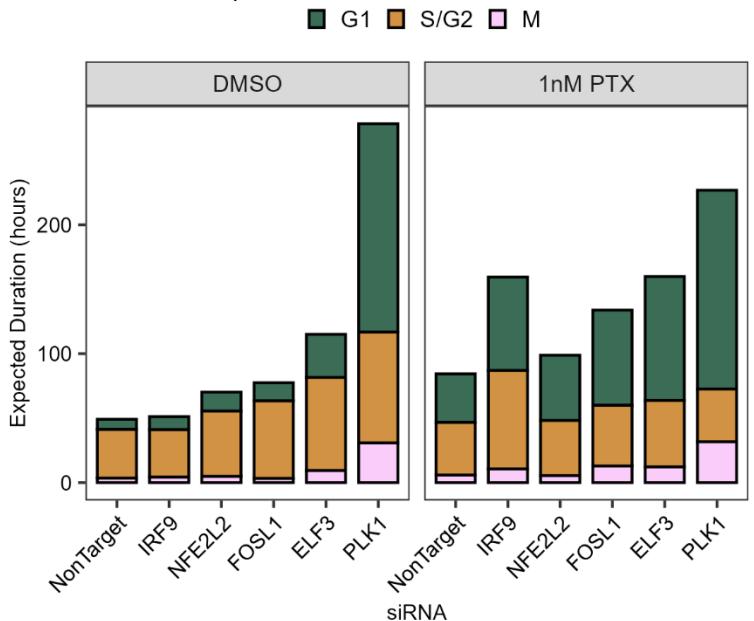
5B: HCC1143 phases over time



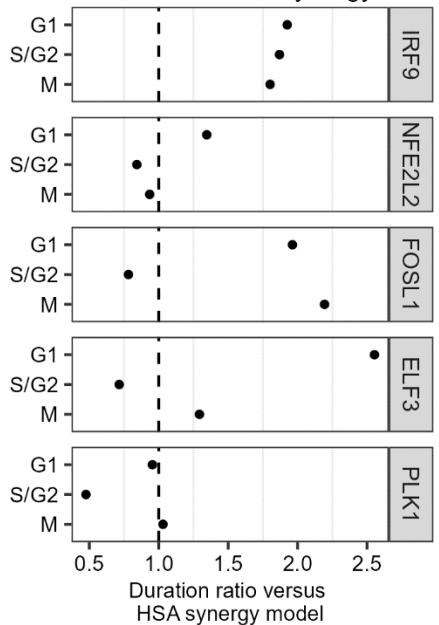
5C: Model constraints



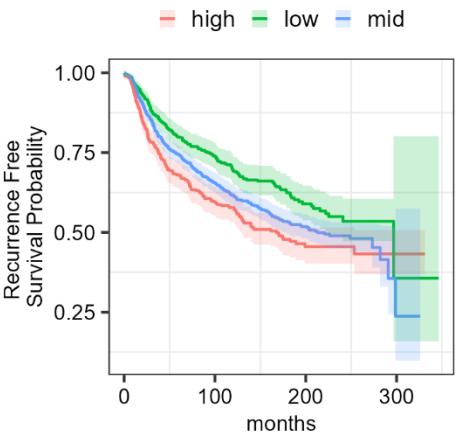
5E: Inferred phase duration



5F: PTX + siRNA synergy



5G: ELF3 delineates outcome



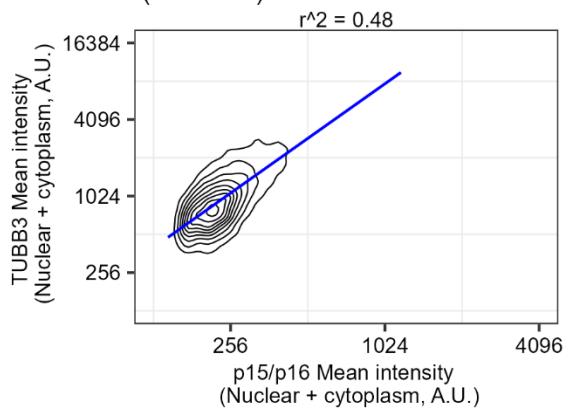
Characteristic	HR [†]	95% CI [†]	p-value
elf3_factor	—	—	
high	1.23	1.07, 1.41	0.004
low	0.83	0.72, 0.96	0.012

[†] HR = Hazard Ratio, CI = Confidence Interval

5H: MSigDB GSEA results: ELF3 high vs ELF3 low

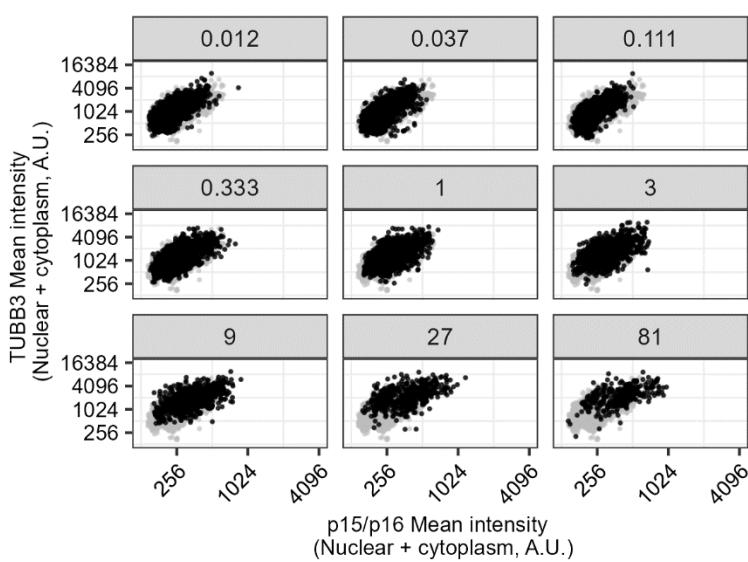


S1A: TUBB3 vs p15/p16
(all doses)



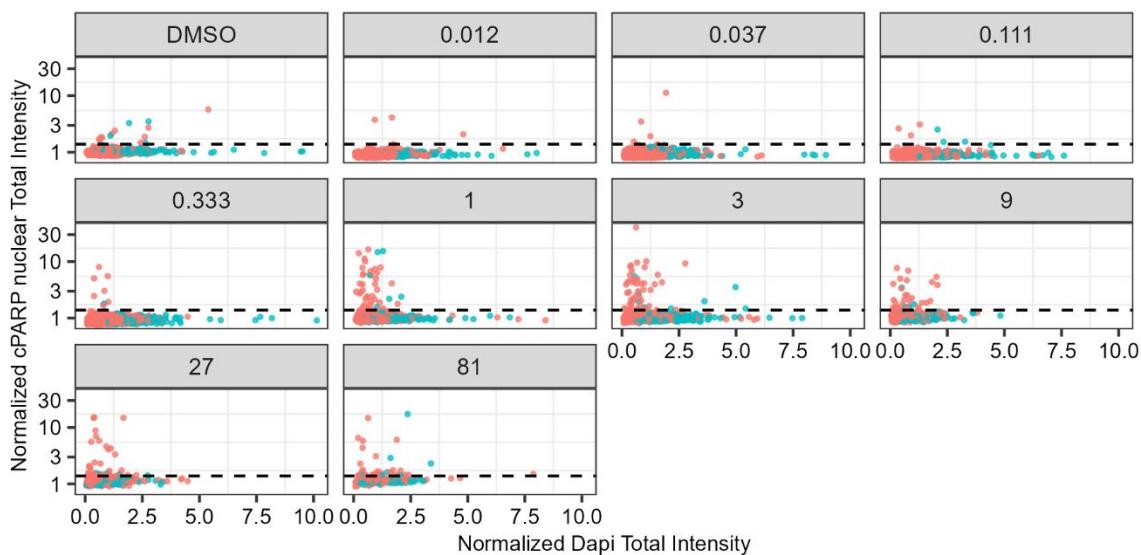
S1B: TUBB3 vs p15/p16 by PTX dose

treatment ● DMSO ● Paclitaxel

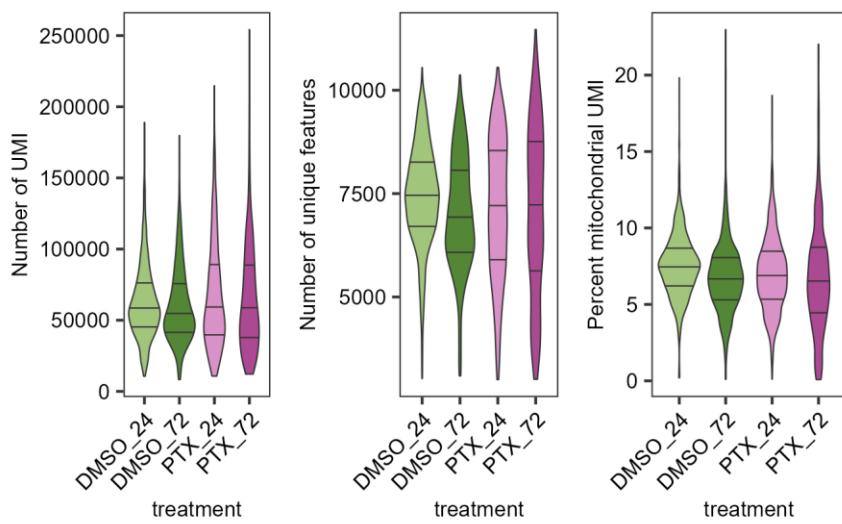


S1C: cPARP vs DAPI total intensity

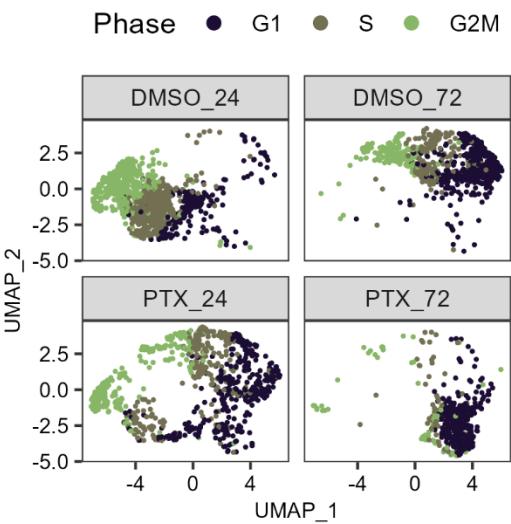
multinucleated ● FALSE ● TRUE



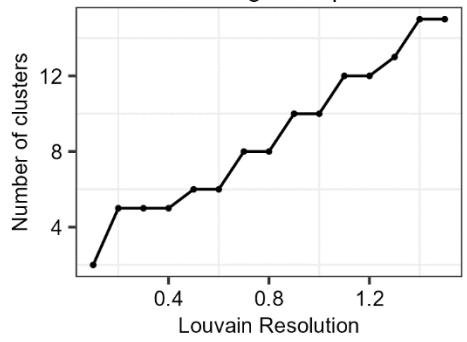
S2A: scRNA-seq QC metrics



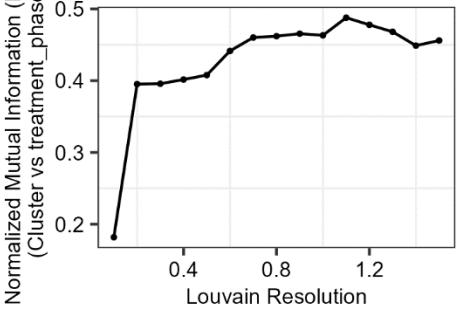
S2B: Cell cycle phase by treatment



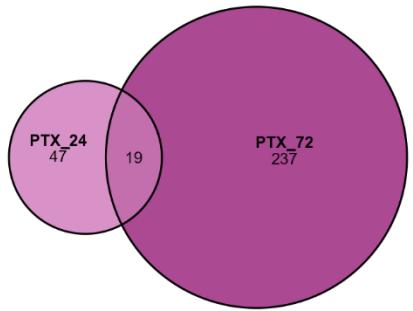
S2C: Clustering sweep



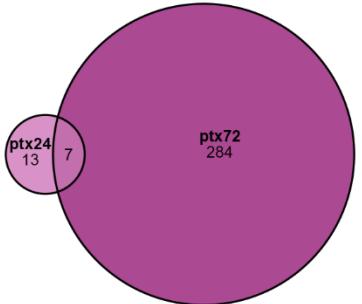
S2D: Cluster NMI with known factors



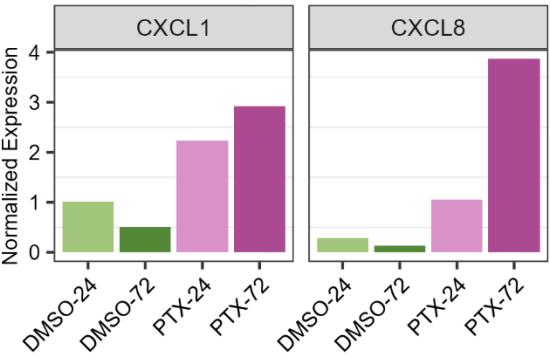
S2E: Overlap in significantly upregulated genes



S2F: Overlap in significantly enriched Reactome pathways

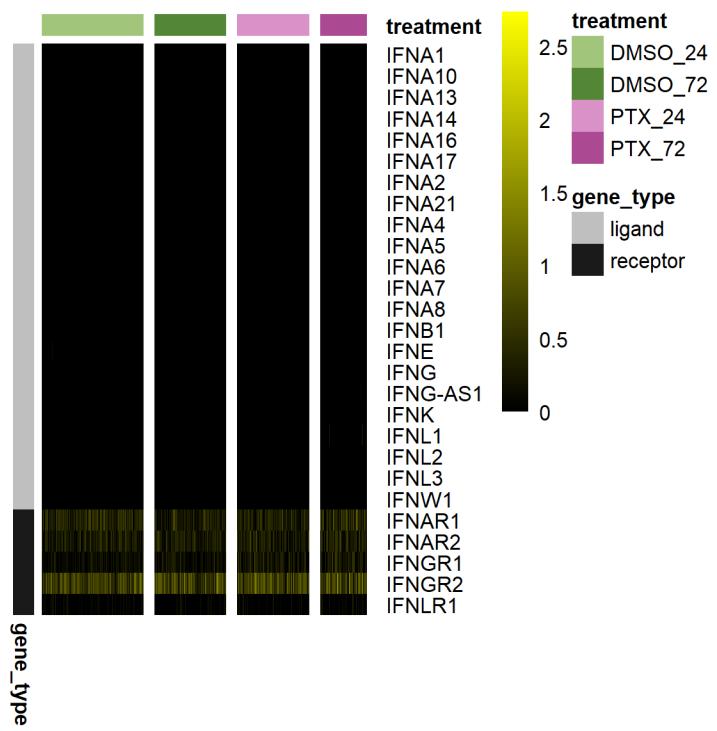


SF2G: Shared upregulated chemokines

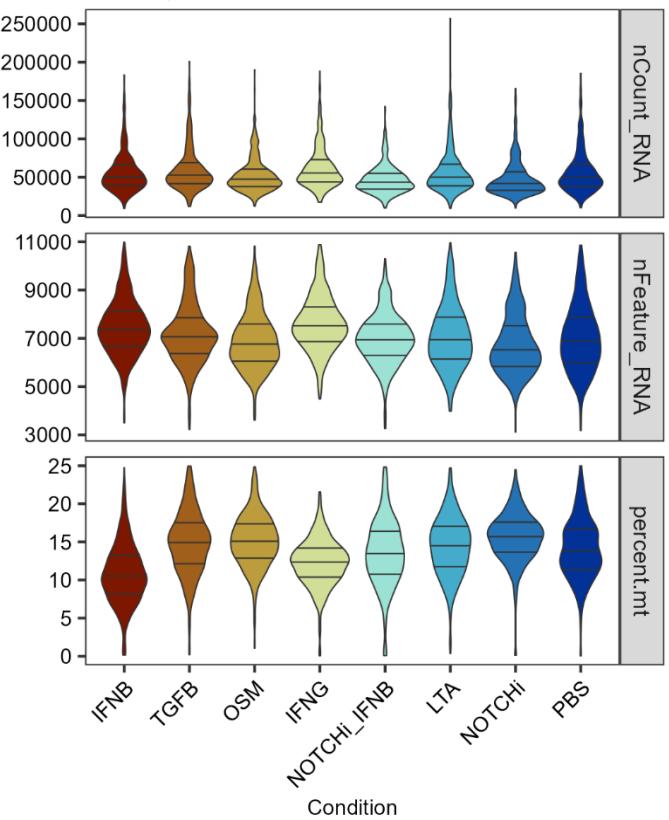


880

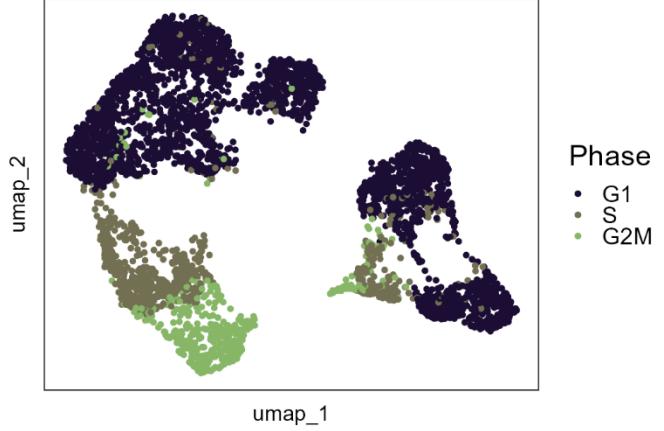
S3A: Interferon gene expression



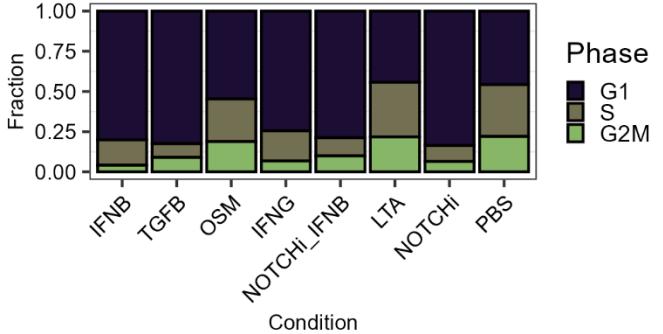
S3B: QC metrics



S3C: UMAP by Cell Cycle Phase



S3D: Cell cycle assignment



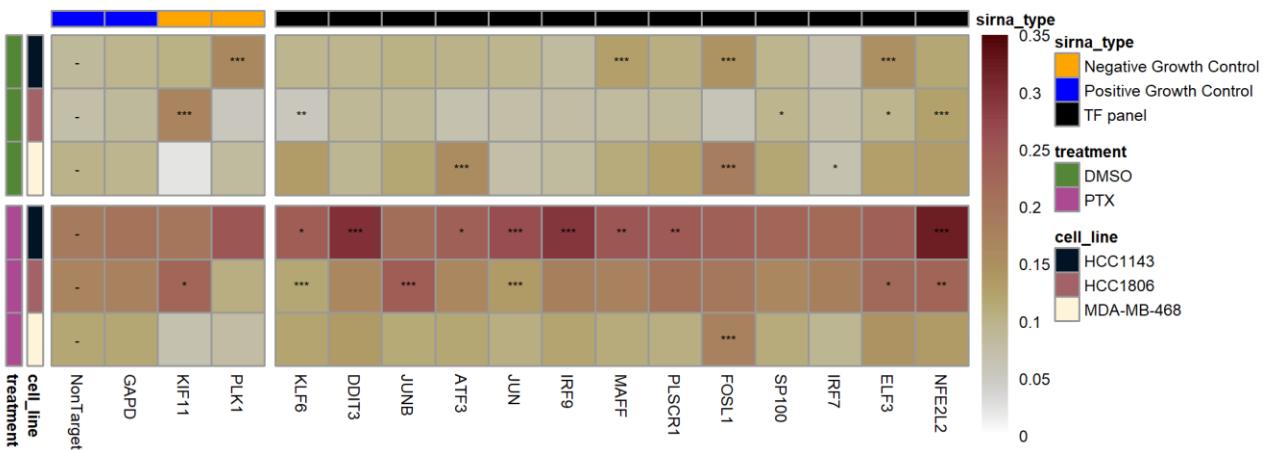
882

883

**S4A: Relative Cell Count at 72 hours
(vs DMSO + NonTarget siRNA)**

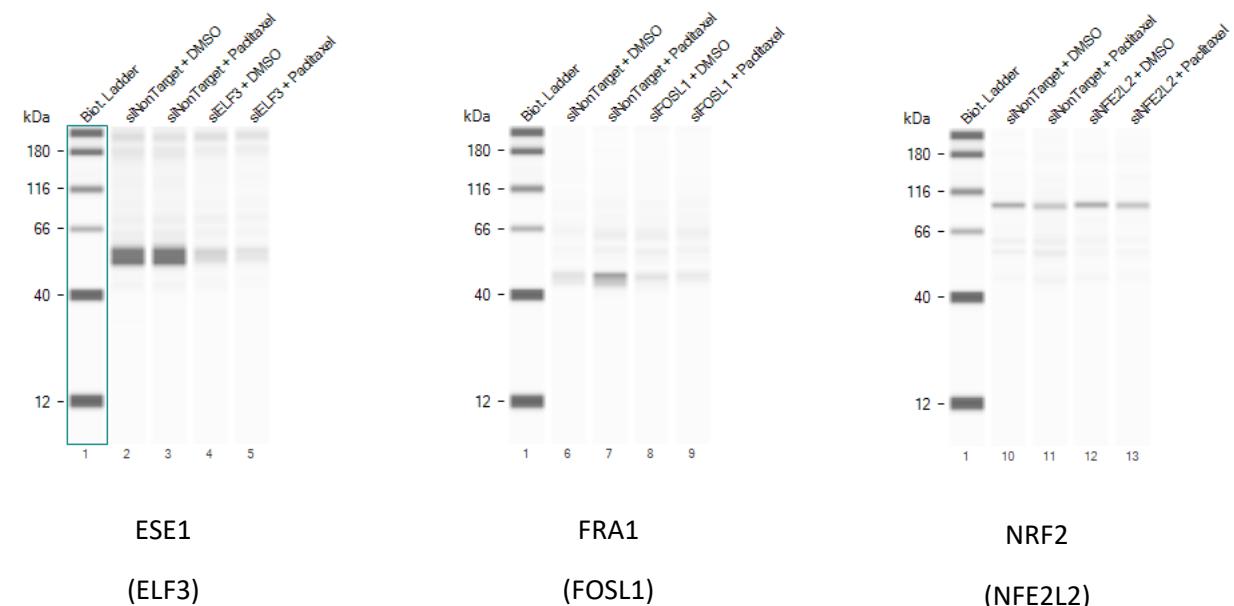
884

S4B: Fraction Multinucleated at 72 hours

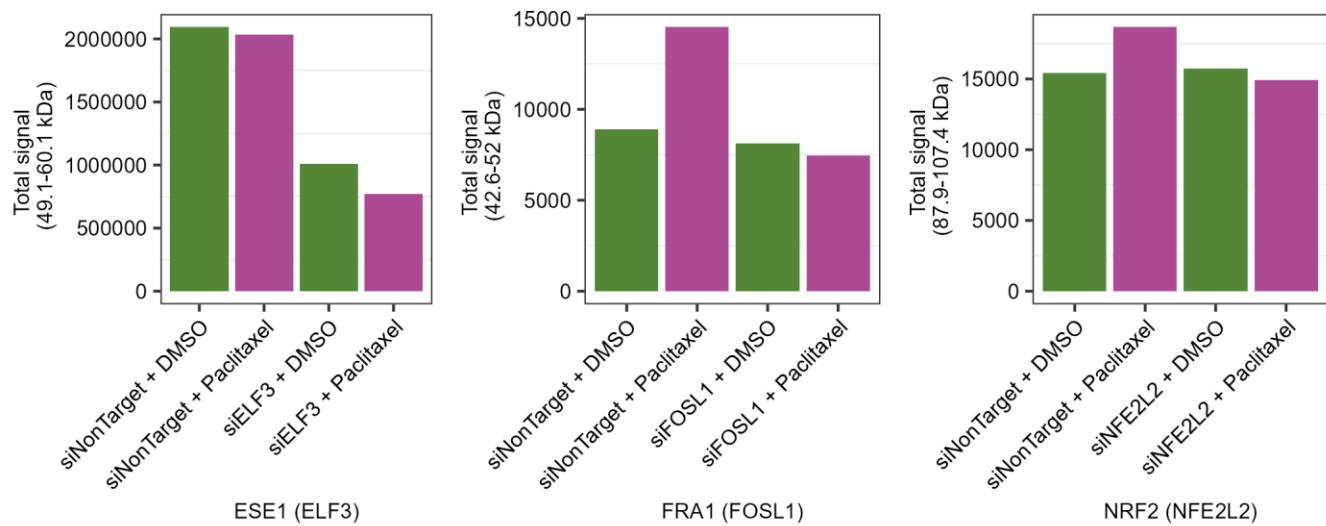


885

S5A: Protein quantification



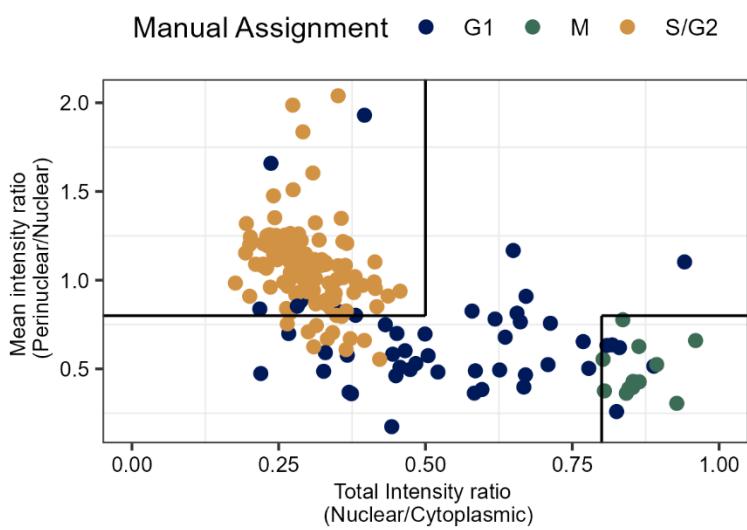
S5B: ProteinSimple siRNA validation



887

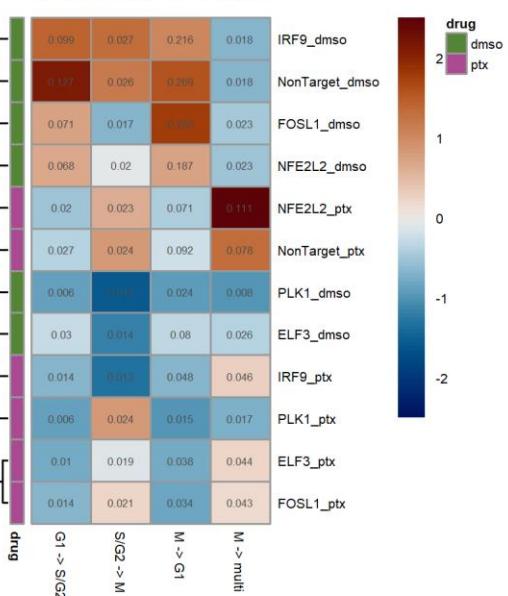
888

S6A: Reporter quantification versus manual assignment

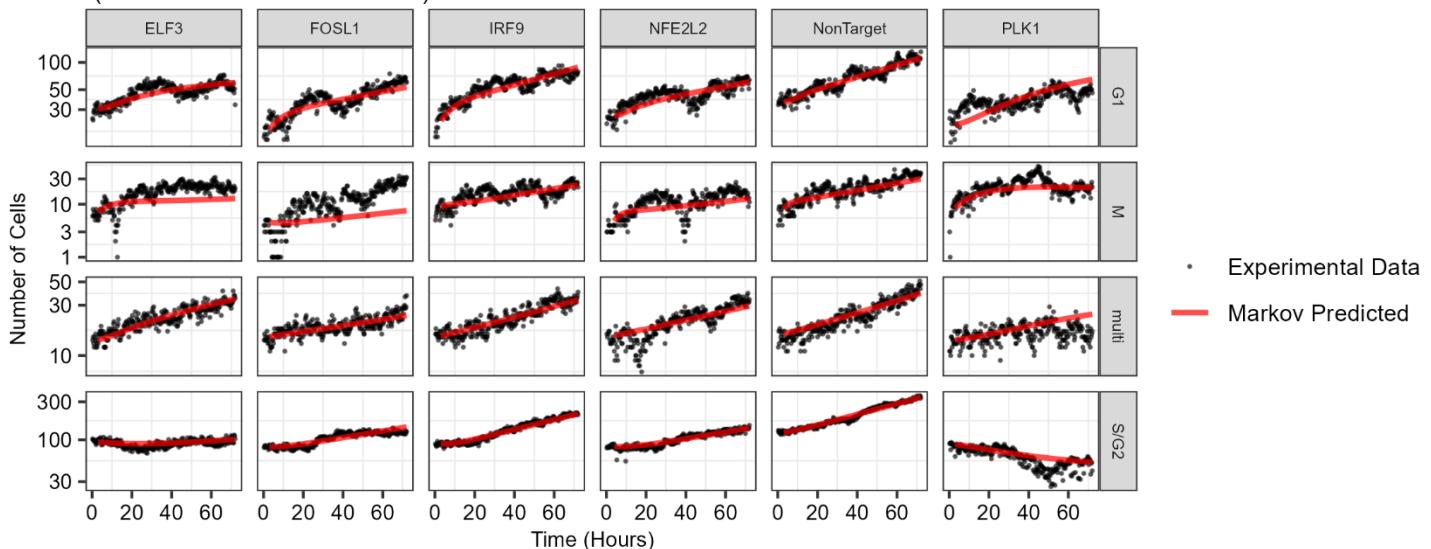


S6B: Heterotypic transition rates

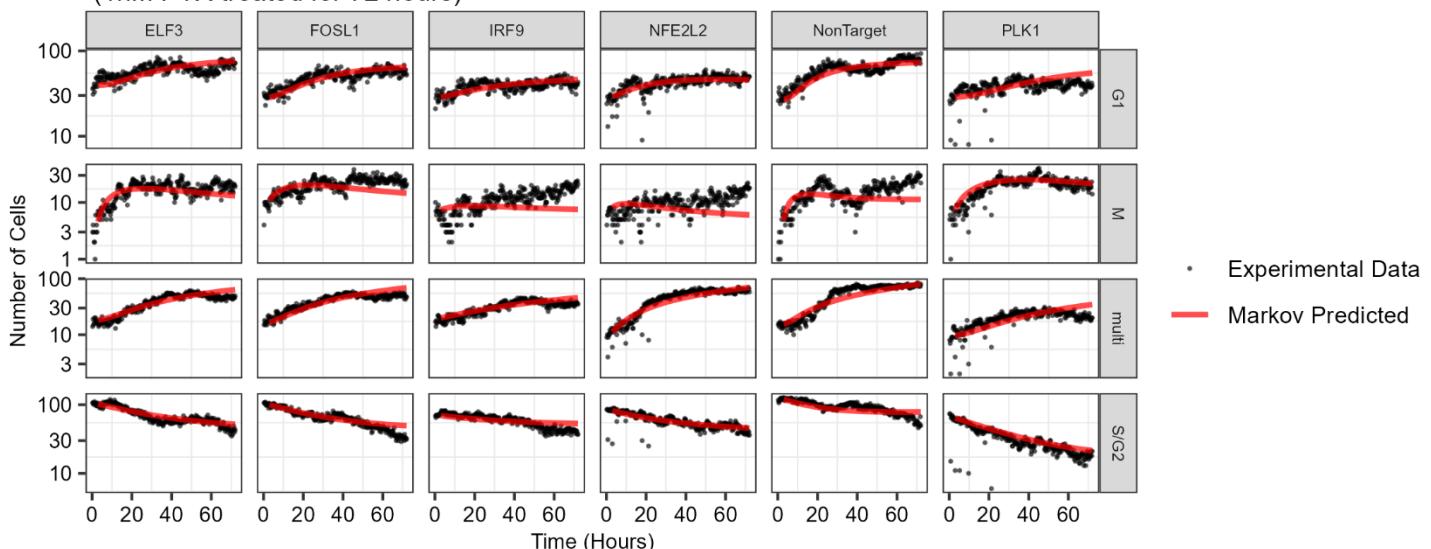
(color z-scored by column)



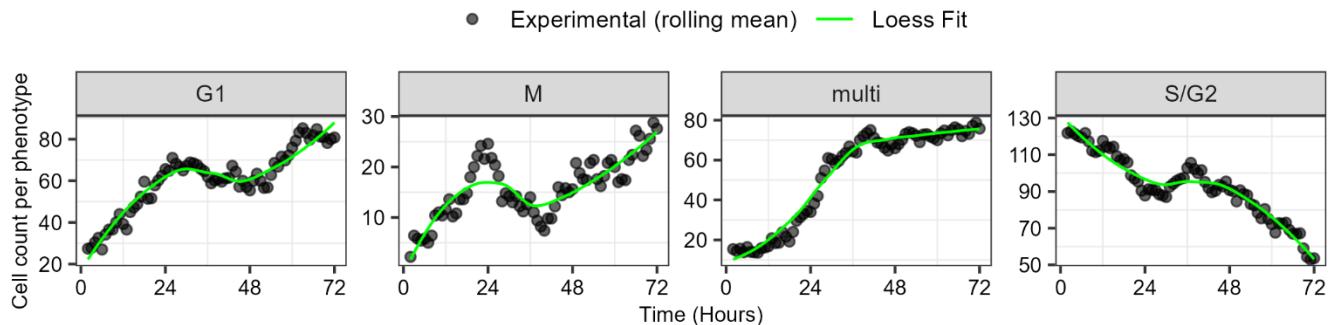
S6C: Observed cell counts vs Markov prediction
(DMSO treated for 72 hours)



S6D: Observed cell counts vs Markov prediction
(1nM PTX treated for 72 hours)

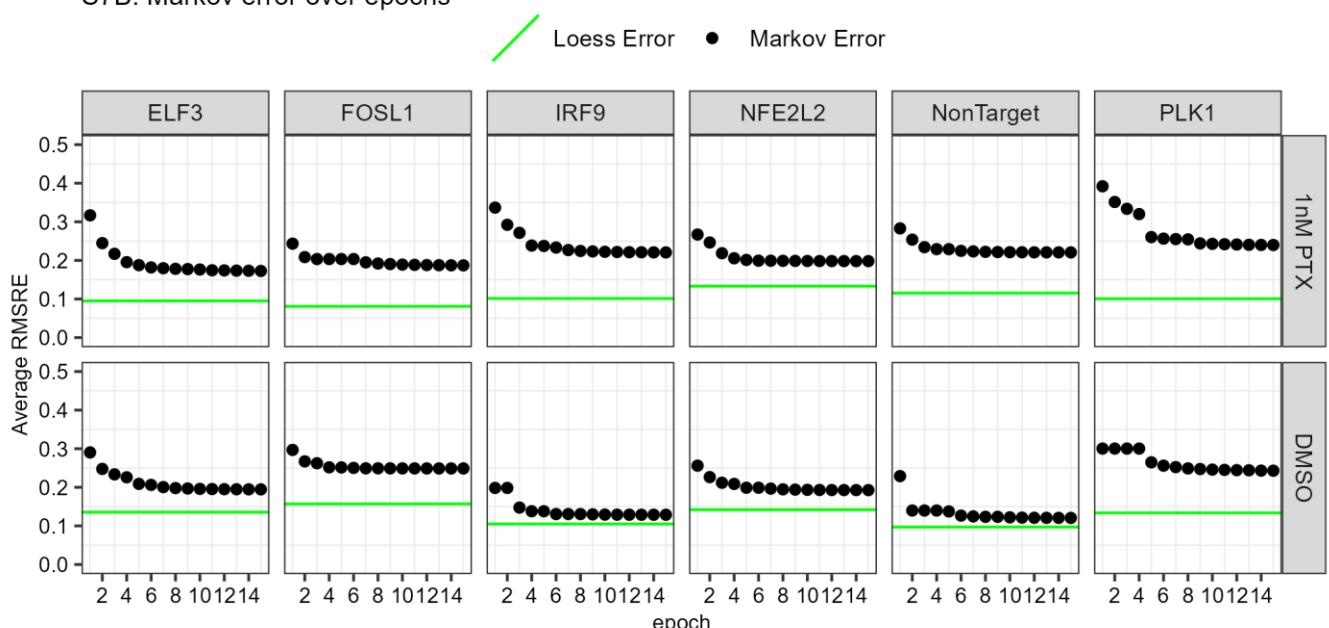


S7A: Representative Loess fit (siNonTarget + PTX)



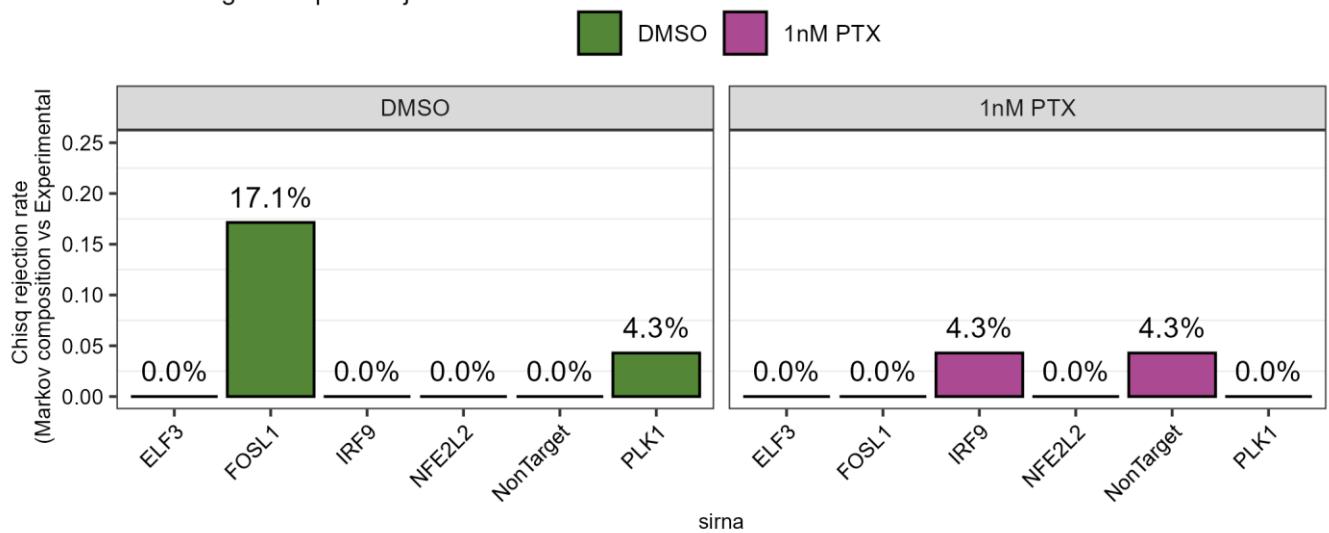
889

S7B: Markov error over epochs



890

S7C: Single timepoint rejection rate



891

S8A: Differential Expression: ELF3 high vs. ELF3 Low

