
TNBC response to paclitaxel phenocopies interferon response which reveals cell cycle-associated 1 

resistance mechanisms  2 

Authors: Nicholas L Calistri1, Tiera A. Liby1, Zhi Hu1, Hongmei Zhang1, Mark Dane1, Sean M. Gross1, Laura M. 3 

Heiser1,2,# 4 

1 Biomedical Engineering Department, Oregon Health & Science University, Portland Oregon 5 

2 Knight Cancer Institute, Oregon Health & Science University, Portland Oregon 6 

# Corresponding author: heiserl@ohsu.edu 7 

ABSTRACT 8 

Paclitaxel is a standard of care neoadjuvant therapy for patients with triple negative breast cancer (TNBC); 9 

however, it shows limited benefit for locally advanced or metastatic disease. Here we used a coordinated 10 

experimental-computational approach to explore the influence of paclitaxel on the cellular and molecular 11 

responses of TNBC cells. We found that escalating doses of paclitaxel resulted in multinucleation, promotion of 12 

senescence, and initiation of DNA damage induced apoptosis. Single-cell RNA sequencing (scRNA-seq) of 13 

TNBC cells after paclitaxel treatment revealed upregulation of innate immune programs canonically associated 14 

with interferon response and downregulation of cell cycle progression programs. Systematic exploration of 15 

transcriptional responses to paclitaxel and cancer-associated microenvironmental factors revealed common 16 

gene programs induced by paclitaxel, IFNB, and IFNG. Transcription factor (TF) enrichment analysis identified 17 

13 TFs that were both enriched based on activity of downstream targets and also significantly upregulated after 18 

paclitaxel treatment. Functional assessment with siRNA knockdown confirmed that the TFs FOSL1, NFE2L2 19 

and ELF3 mediate cellular proliferation and also regulate nuclear structure. We further explored the influence of 20 

these TFs on paclitaxel-induced cell cycle behavior via live cell imaging, which revealed altered progression 21 

rates through G1, S/G2 and M phases. We found that ELF3 knockdown synergized with paclitaxel treatment to 22 

lock cells in a G1 state and prevent cell cycle progression. Analysis of publicly available breast cancer patient 23 

data showed that high ELF3 expression was associated with poor prognosis and enrichment programs 24 
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associated with cell cycle progression. Together these analyses disentangle the diverse aspects of paclitaxel 25 

response and identify ELF3 upregulation as a putative biomarker of paclitaxel resistance in TNBC. 26 

Key words: triple negative breast cancer (TNBC), single-cell RNA sequencing (scRNA-seq), transcription factor, 27 

cell cycle, interferon response, live-cell imaging 28 

 29 

INTRODUCTION 30 

Triple negative breast cancer (TNBC) is an aggressive form of breast cancer that affects 10-20% of all breast 31 

cancer patients and is characterized by its lack of expression of estrogen, progesterone and HER2 receptors[1]. 32 

The standard of care for TNBC patients primarily relies on conventional anthracycline and taxane-based 33 

chemotherapy regimens, and few next-generation therapies have shown efficacy in patients with this disease[2]. 34 

Paclitaxel, a taxane-based chemotherapeutic commonly used in TNBC treatment[3], targets microtubules to 35 

disrupt the formation of the mitotic spindle, resulting in cell cycle arrest and apoptosis. While 22% of TNBC 36 

patients treated with paclitaxel achieve pathological complete response, the outcome for those with residual 37 

disease is relatively poor[4, 5]. Moreover, paclitaxel monotherapy only achieves a median 5.5 month progression 38 

free survival in patients with locally advanced or metastatic disease[6]. Therefore, there is a need to better 39 

understand the molecular basis of paclitaxel response and mechanisms of resistance that may be targeted for 40 

therapeutic benefit. 41 

Phenotypic plasticity enables malignant cells to rapidly adapt to therapeutic challenge[7] and can also drive 42 

acquired drug resistance[8]. Adaptive responses often involve activation of new transcription factors which in 43 

turn upregulate programs that repress immune activation[9], grant tolerance to DNA replication stress[10], or 44 

enable evasion of apoptosis [11]. Single-cell RNA sequencing (scRNA-seq) is a powerful approach to investigate 45 

the subtle but critical differences in transcriptional landscape that distinguish cellular phenotypic states and to 46 

identify molecular programs associated with different therapeutic sensitivities[12]. Single cell methods such as 47 

scRNA-seq enable heterogeneous populations to be deconvolved into discrete states to identify the gene 48 

regulatory mechanisms that contribute to drug resistance [13, 14]. 49 

To elucidate the adaptive responses of TNBC cells to paclitaxel, we performed deep single-cell RNA sequencing 50 

of HCC1143 TNBC cells before and after paclitaxel treatment. Paclitaxel induced a range of phenotypic changes, 51 
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including altered cell cycle phase distribution, increased proportion of multinucleated cells, increased expression 52 

of senescence and DNA damage associated biomarkers, and upregulation of interferon-related gene programs. 53 

Comparison of gene expression profiles from paclitaxel treated versus IFNB or IFNG treated cells enabled 54 

identification of genes that were uniquely upregulated after paclitaxel treatment, including a suite of transcription 55 

factors. Functional assessment with siRNA knockdown confirmed that many of these TFs are critical for 56 

mediating resistance to paclitaxel. Using live-cell imaging, we probed the temporal dynamics of these functional 57 

responses, which demonstrated that knockdown of ELF3, FOSL1 and IRF9 synergize with paclitaxel to slow cell 58 

cycle progression. Together, these analyses identify upregulation of ELF3, FOSL1 and IRF9 as important 59 

regulators of cell cycle progression that mediate response to paclitaxel, and which may serve as biomarkers of 60 

response. 61 

 62 

RESULTS 63 

Paclitaxel modulates multiple cancer-associated phenotypes 64 

We identified phenotypic changes induced by paclitaxel by treating HCC1143 TNBC cells for 72 hours with 65 

paclitaxel, followed by fixation and staining with DAPI (DNA), CellMask (cytoplasmic marker), Tubulin Beta 3 66 

(TUBB3, microtubule component), p16/p15 (senescence) and cPARP (DNA damage induced apoptosis) (Figure 67 

1A). We quantified total DAPI intensity to assess cell cycle status[15] and observed two distinct peaks in the 68 

DMSO treated sample, representing diploid (G0/G1, mode = 119 A.U) and tetraploid (G2/early M, mode = 222 69 

A.U.) states associated with cycling cells (Figure 1B). Intermediate paclitaxel doses (0.01nM-1nM) resulted in 70 

an enrichment of cells in the diploid to sub-diploid range, consistent with paclitaxel’s known side-effect of 71 

chromosomal disruption[16, 17]. The highest paclitaxel dose tested (81nM) resulted in an increased fraction of 72 

cells in diploid and tetraploid states and a broader distribution of nuclear intensities, indicating significant 73 

dysregulation of nuclear content. This dysregulation of nuclear content also correlated with a dose-dependent 74 

reduction in cell numbers and an increase in the proportion of multinucleated cells (Figure 1C). The fraction of 75 

multinucleated cells plateaued around 9nM paclitaxel, with ~25% of surviving cells harboring two or more nuclear 76 

structures for all higher dosages. 77 
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 We further assessed adaptive cellular responses by analyzing biomarkers associated with senescence 78 

(p16/p15), DNA damage induced apoptosis (cPARP), and microtubule component (TUBB3). TUBB3 79 

overexpression has been associated with resistance to multiple microtubule targeting drugs, and consistent with 80 

this, we found a dose-dependent relationship between TUBB3 expression and paclitaxel concentration[18, 19]. 81 

There was also a positive association between both cytoplasmic and nuclear p16/p15 staining and paclitaxel 82 

dose (Figure 1D). Additionally, we observed a strong correlation between p16/p15 and TUBB3 expression at 83 

the single cell level across paclitaxel concentrations, suggesting that the TUBB3 highly expressing cells 84 

represent a senescent subpopulation of cells (Supplemental Figures 1A,1B, Pearson correlation = 0.70, r^2 = 85 

0.48). Increasing doses of paclitaxel induced a corresponding increase in the fraction of cPARP positive cells 86 

(DMSO: 6%, 81nM Paclitaxel: 28% cPARP positive), indicating induction of DNA damage driven apoptosis 87 

(Figure 1E, Supplemental Figure 1C). Higher paclitaxel doses resulted in a significantly higher proportion of 88 

mononucleated cells staining positive for cPARP as compared to multinucleated (19.4% mononucleated cells 89 

and 7.1% multinucleated cells cPARP positive at 81nM paclitaxel, proportions test p = 0.017), suggesting that 90 

multinucleated cells are less likely to undergo DNA damage-induced apoptosis. Together this suggests that the 91 

multinucleated cells that survive paclitaxel treatment are cell cycle arrested and also less likely to undergo DNA 92 

damage-induced apoptosis than mononucleated cells. 93 

Cells surviving paclitaxel treatment halt cycling and upregulate interferon response genes 94 

To assess paclitaxel-induced molecular programs, we performed 10X Genomics single-cell whole transcriptome 95 

sequencing of HCC1143 cells treated with either DMSO vehicle control or 1nM paclitaxel for 24 hours or 72 96 

hours (Figure 2A). After quality control filtering that required cells to have a minimum of 3000 unique genes and 97 

a maximum of 25% mitochondrial counts, we recovered 3194 total cells (513 – 1106 cells per condition) with a 98 

mean UMI count of 63,668 (Supplemental Figure 2A). 99 

We examined drug-induced changes in cell cycle distribution by assigning cell cycle status to each individual cell 100 

using aggregate expression of canonical gene programs for S and G2/M[18,19]. In agreement with our imaging 101 

results, we observed an enrichment in the fraction of G1 cells after paclitaxel treatment as compared to time-102 

matched vehicle control (Figure 2B). Unsupervised clustering tended to group cells by treatment condition and 103 

cell cycle phase (Supplemental Figures 2B, 2C, 2D). 104 
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We analyzed time-matched conditions to identify significantly differentially expressed genes induced by 105 

paclitaxel treatment (Wilcoxon rank sum test, absolute log2 fold-change > 0.5, Benjamini Hochberg FDR < 0.01). 106 

This revealed a time-dependent change in molecular programs with 66 significantly upregulated and 57 107 

significantly downregulated genes after 24 hours of paclitaxel treatment, and 256 significantly upregulated genes 108 

and 58 significantly downregulated genes after 72 hours (Supplemental Figure 2E). Reactome pathway 109 

enrichment analysis revealed that the significantly upregulated genes from the 24-hour paclitaxel treated sample 110 

were enriched for multiple programs related to Interferon Signaling and Translation (Figures 2C-D, 111 

Supplemental Data 2). Programs uniquely upregulated after 72 hours of paclitaxel treatment include Response 112 

to Chemical Stress, Cell Cycle Progression and Antigen Processing-Cross presentation (Figure 2E-F). The 113 

ontologies enriched after 72-hour paclitaxel treatment had low overlap with those at 24 hours (Jaccard Index = 114 

0.023, Supplemental Figure 2F). Notably, the Neutrophil Degranulation pathway was significantly enriched at 115 

both time points, with upregulated genes related to antigen presentation (HLA-B, HLA-C, B2M) and differentiation 116 

(CD47, CD55, CD59, CD63). Paclitaxel treatment also induced significant upregulation of the pro-tumorigenic 117 

chemokines CXCL1 and CXCL8 (Supplemental Figure 2G)[20-23]. Together this shows that TNBC cells that 118 

survive paclitaxel treatment have altered surface marker expression and produce tumor supportive chemokines.  119 

Paclitaxel response activates canonical interferon response genes 120 

Despite gene enrichment consistent with interferon response, the paclitaxel treated cells showed no evidence of 121 

autocrine signaling, indicating that paclitaxel induces interferon response pathways in a non-canonical manner 122 

(Supplemental Figure 3A). To disentangle the paclitaxel response signature from true interferon response, we 123 

performed a second scRNA-seq experiment with HCC1143 cells that were treated for 72 hours with 7 124 

perturbations that target ligand-receptor pairs known to play an important role in normal and pathological breast 125 

tissue[24, 25]: Interferon-Beta (IFNB), Interferon-Gamma (IFNG), Transforming Growth Factor Beta (TGFB), 126 

Oncostatin-M (OSM), Lymphotoxin Alpha (LTA), Notch Inhibitor (NOTCHi) and combination of Notch Inhibitor 127 

and Interferon-Beta (NOTCHi_IFNB). Cells were treated for 72 hours and then harvested and sequenced with 128 

the 10X Genomics scRNA-seq pipeline. After quality control filtering, we recovered 4231 total cells (295 – 725 129 

cells per condition, Supplemental Figure 3B). 130 

Overall, the scRNA-seq data revealed that the treated cells largely grouped by perturbation (Normalized Mutual 131 

Information = 0.58, Figure 3A) and cell cycle state (Normalized Mutual Information = 0.28, Supplemental Figure 132 
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3C). The IFNB, IFNG, TGFB, NOTCHi and NOTCHi_IFNB conditions all had an increase in proportion of G1 133 

cells compared to control, suggesting these ligands are cytostatic in this cell line (Supplemental Figure 3D). 134 

Based on the observation that paclitaxel induced Interferon related pathways, we next sought to evaluate the 135 

similarity in transcriptional response between paclitaxel and the ligand perturbations. To that end, we computed 136 

the differential expression of all genes for each perturbation compared to time-matched vehicle control and then 137 

evaluated the pairwise Pearson correlation of log2 fold-change values (Figure 3B). The IFNB and IFNG 138 

conditions were the most strongly correlated (Pearson correlation = 0.86), indicating a conserved impact on 139 

transcription despite acting through different receptors. We found that the 72-hour paclitaxel condition was highly 140 

correlated with the interferon treatments (IFNB Pearson correlation = 0.57, IFNG Pearson correlation = 0.47) as 141 

compared to the other single-agent perturbations (0.0, 0.11, 0.18, 0.38 Pearson correlation with OSM, LTA, 142 

NOTCHi and TGFB respectively).  143 

While type 1 and type 2 interferons primarily exhibit antitumor effects through activation of the immune system, 144 

some studies have found they have direct effects through induction of cell cycle arrest or apoptosis in malignant 145 

cells[26, 27]. To better understand the overlapping transcriptional responses of paclitaxel and interferon, we next 146 

sought to differentiate between pathways that were uniquely induced by paclitaxel response or that represent 147 

common responses induced by paclitaxel or interferon perturbation. Reactome pathway enrichment analysis 148 

revealed that the 140 genes upregulated after paclitaxel treatment but not after IFNG or IFNB (“paclitaxel-149 

unique”) were enriched in molecular programs related to wound healing, protein folding, and intrinsic apoptotic 150 

signaling pathway (Figure 3C), whereas the 117 genes upregulated by all three treatments (“paclitaxel-shared”) 151 

were associated with defense response to virus and antigen presentation (Figure 3D).  152 

We hypothesized that the strong overlap in interferon and paclitaxel transcriptional responses was driven by a 153 

shared increase in transcription factor (TF) activity through activation of cytosolic DNA sensing pathways[28, 154 

29]. We identified enriched TFs in our paclitaxel-unique and paclitaxel-shared gene signatures using ChEA3[30], 155 

which evaluates the expression of gene targets downstream from a TF of interest. DDIT3, JUN, KLF6, and ATF3 156 

emerged as enriched transcription factors across both the paclitaxel-unique and paclitaxel-shared gene 157 

signatures (Figure 3E). The paclitaxel-unique genes were enriched for TFs in the Immediate-Early Gene family, 158 

including JUN (JUN, JUNB, JUND) and FOS (FOS, FOSL1, FOSB)[31]. TFs enriched from the shared gene list 159 

were associated with activity of Interferon Regulatory Factors (IRF1/IRF7/IRF9) and Basic Leucine Zipper family 160 
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(BATF2/BATF3), both related to antiviral response and regulation of antigen-presenting cells[32-34]. The high 161 

activity of IRF7 is consistent with activation of the cytosolic nucleotide sensor RIGI, suggesting that the nuclear 162 

damage induced by paclitaxel drives an increase in cytosolic RNA or DNA [35].  163 

Inhibition of paclitaxel-induced transcription factors alters proliferation and nuclear morphology 164 

We used siRNA knockdown in three basal-like TNBC cell lines (HCC1143, HCC1806, MDA-MB-468) to 165 

functionally assess prioritized TFs implicated in modulating response to paclitaxel. We nominated a panel of 13 166 

TFs for functional testing, based on ChEA3 analysis and change in gene expression after 24 or 72 hours of 167 

paclitaxel treatment (Figure 3F, Log2FC > 0.25, Benjamini-Hochberg FDR < 0.01). Most of the TFs included in 168 

this panel were either subunits of (ATF3, FOSL1, JUN, JUNB, MAFF)[36] or known interactors with (ELF3, IRF7, 169 

DDIT3, NFE2L2)[37-40] the AP-1 transcription factor family. Dysregulation of the AP-1 pathway is associated 170 

with multiple tumorigenic phenotypes including enhanced cellular growth, proliferation, and survival[41]. To 171 

functionally assess the role of these TFs in paclitaxel response, cells were transfected with siRNA for 24 hours, 172 

then treated for 72 hours with paclitaxel or DMSO, and subsequently fixed and stained with DAPI (nuclear 173 

marker) and CellMask (cytoplasmic marker). The resultant images were subjected to quantitative image analysis 174 

to identify nuclear and cellular masks, followed by quantification of total cell number and fraction of multinucleated 175 

cells for each condition.  176 

First, we analyzed the influence of TF knock-down on cell count after 72 hours to evaluate their effects on cell 177 

viability. We found that knockdown of 3 of 13 TFs (NFE2L2, IRF7, MAFF) in the absence of paclitaxel significantly 178 

reduced cell numbers for at least one cell line (Student’s t-test, p<0.05, Figure 4A green bars, Supplemental 179 

Figure 4A). We then examined the influence of TF knock-down in the presence of paclitaxel to test our 180 

hypothesis that upregulation of these TFs mediates adaptive resistance. Knockdown of 5 of 13 TFs (NFE2L2, 181 

ELF3, IRF7, FOSL1, PLSCR1) in combination with paclitaxel significantly lowered cell count in at least one cell 182 

line compared to paclitaxel alone  (Student’s t-test, p < 0.05, Figure 4A purple bars, Supplemental Figure 4A).  183 

We hypothesized that these 13 TFs may also be involved in cytokinesis, based on our observation that escalating 184 

paclitaxel dose was associated with an increased fraction of multinucleated cells (Figure 1C). We found that 185 

siRNA knockdown alone caused a significant increase in the fraction of multinucleated cells for 6 of 13 TFs for 186 

at least one cell line (NFE2L2, ELF3, SP100, FOSL1, MAFF, and ATF3. Proportions test, p < 0.05. Figure 4B, 187 
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Supplemental Figure 4B). Additionally, knockdown for 11 of 13 TFs in the presence of paclitaxel resulted in 188 

significantly increased fraction of multinucleated cells as compared to paclitaxel alone, for at least once cell line. 189 

These findings suggest an important role for these transcription factors in maintaining nuclear structure and 190 

achieving symmetric cytokinesis in proliferating breast cancer cells.   191 

We comprehensively analyzed the influence of siRNA knockdown across cell lines and drug conditions. Here, 192 

we considered each siRNA an independent sample and each combination of cell line (HCC1143, HCC1806, 193 

MDA-MB-468), treatment (DMSO, paclitaxel) and phenotype (relative cell count, fraction multinucleated) as 12 194 

independent features (Supplemental Figure 4C). Principal component analysis applied to the transformed data 195 

revealed that our positive and negative growth controls separated along Component 1 (Figure 4C). To identify 196 

the TFs that had the greatest overall impact on phenotype, we computed the Euclidean feature-distance 197 

(distance for z-scored features) to identify TFs that induced the greatest feature-distance from siNonTarget 198 

positive growth control. We found that ELF3, FOSL1, and NFE2L2 knockdown had the largest Euclidean feature-199 

distance (Figure 4D) and additionally separated from the rest of the panel via hierarchical clustering 200 

(Supplemental Figure 4C), indicating that knockdown had a strong effect on both proliferation and regulation 201 

of nuclear morphology across the three TNBC cell lines. Protein quantification for ELF3, FOSL1 and NFE2L2 202 

confirmed that the siNonTarget+Paclitaxel induced an accumulation of protein compared to vehicle control, and 203 

the targeted siRNA+Paclitaxel reduced protein levels to below the siNonTarget+Vehicle level (Supplemental 204 

Figures 5A-B). 205 

ELF3 and FOSL1 mediate cell cycle progression under paclitaxel treatment 206 

Motivated by the observation that many anti-cancer drugs act by targeting the cell cycle, we next explored the 207 

influence of prioritized TFs on cell cycle progression by leveraging a genetically engineered HCC1143 cell cycle 208 

reporter cell line. The cell cycle state of  HDHB-mClover/NLS-mCherry HCC1143 cells can be determined by 209 

quantification of relative HDHB-mClover (nuclear translocating cell cycle reporter) intensity within the cytoplasm 210 

compared to the nuclear signal marked by NLS-mCherry (stable nuclear localization)[42, 43]. Cells in G1 cell 211 

cycle phase have near-equal nuclear and cytoplasmic HDHB-mClover expression, cells in S/G2 cell cycle 212 

phases exclude the HDHB-mClover from the nucleus, and cells in M phase concentrate the HDHB-mClover 213 

expression to the nucleus. Here we focused on NFE2L2, ELF3 and FOSL1, which induced the largest phenotypic 214 

effects; we additionally tested IRF9 which has been previously linked to anti-microtubule chemotherapy 215 
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resistance [44]. Reporter cells were subjected to siRNA transfection for 24 hours and then treated with either 216 

1nM paclitaxel or DMSO. Treated cells were imaged every 15 minutes for 72 hours. Nuclear and cytoplasmic 217 

masks were segmented with custom trained Cellpose[45] models and the resultant data used to classify cells 218 

into four ‘phase’ assignments based on HDHB-mClover expression and their number of nuclei (Figure 5A). 219 

Mononucleated cells were assigned as ‘G1’, ‘S/G2’ or ‘M’ phase and multinucleated cells assigned to either ‘M’ 220 

or ‘multinucleated’ phase based on localization of the HDHB-mClover signal (Supplemental Figure 6A).  221 

As chemotherapeutic drugs often have peak efficacy during a specific cell cycle phase, we next asked whether 222 

the combination of paclitaxel treatment and siRNA knockdown altered the dynamics of cell cycle progression. 223 

To that end, we trained a Markov Model on the live-cell data, which enabled us to infer transition rates and the 224 

average time spent in each of the four phases for a given treatment condition[42, 46]. This approach uses the 225 

change in fraction of cells in each cell cycle phase over time (Figure 5B) to learn cell cycle-specific transition 226 

rates, which represent the fraction of cells that transition from one phase to another phase within a 1-hour 227 

timestep (Supplemental Figure 6B). We constrained our model such that proliferating cells can either 228 

successfully complete the cell cycle or undergo mitotic failure into a permanent multinucleated phase (Figure 229 

5C). 230 

We compared the model output to the observed phase counts and found similar trends over time and for all 231 

treatment conditions (Supplemental Figures 6C, 6D). We used a local polynomial regression (second order 232 

LOESS) as a reference and found that our Markov model output compared favorably, with a Root Squared Mean 233 

Error (RMSRE) of only 0.0809 in excess of the LOESS fit (Supplementary Figures 7A, 7B). Additionally, we 234 

used the Chi-squared test to evaluate whether there was a significant compositional difference between the 235 

experimental data and Markov output. This approach found that greater than 95% of timepoints had no significant 236 

difference for all conditions except for DMSO+siFOSL1 (Supplemental Figure 7C). For the DMSO+siFOSL1 237 

condition, the model and experimental data agreed for the first 60 hours but diverged during the last 12 hours, 238 

with the model predicting fewer M phase cells than observed in the experimental data. 239 

We next leveraged the model’s learned transition rates to calculate the rate of mitotic failure for each condition 240 

and to better understand how the combination of siRNA knockdown and paclitaxel treatment compared to siRNA 241 

knockdown alone. The Markov model framework enabled calculation of the mitotic failure rate as the ratio of M-242 

>multinucleated transition rate over the sum of M->G1 and M->multinucleated transition rates (Figure 5D). 243 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 6, 2024. ; https://doi.org/10.1101/2024.06.04.596911doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.04.596911
http://creativecommons.org/licenses/by-nc-nd/4.0/


siRNA knockdown of ELF3 alone had the largest effect without paclitaxel and increased the mitotic failure rate 244 

by 18.1% (DMSO+siNonTarget = 6.4%, DMSO+siELF3 = 24.5%), while inhibition of FOSL1, NFE2L2 or IRF9 245 

had limited effects (DMSO+siFOSL1 = 7.5%, DMSO+siIRF9 = 7.7%, DMSO+siNFE2L2 = 10.8%). Combination 246 

siRNA knockdown and paclitaxel treatment resulted in higher mitotic failure rates for ELF3, FOSL1, and NFE2L2 247 

(PTX+siNonTarget = 45.9%, PTX+siELF3 53.6%, PTX+siFOSL1 = 55.8%, PTX+siNFE2L2 = 61.2%) These 248 

findings implicate ELF3, FOSL1 and NFE2L2 in nuclear morphology maintenance and cytokinesis completion 249 

necessary for successful mitosis. 250 

Through this model we aimed to assess how the combination of siRNA knockdown and paclitaxel synergized to 251 

disrupt the cell cycle and transitions between phases. For each individual or combination perturbation, we 252 

computed the inferred phase duration for G1, S/G2 and M phases using the model’s homotypic transition rates, 253 

which represent the fraction of cells that remain in the same phase through the timestep (Figure 5E). The 254 

inhibition of ELF3 alone strongly increased cell cycle duration (DMSO+siNonTarget = 49 hours, DMSO+siELF3 255 

= 115 hours), with substantial increases to the time spent in G1 (DMSO+siNonTarget = 7.9 hours, DMSO+siELF3 256 

= 33.5 hours) and S/G2 (DMSO+siNonTarget = 37.7 hours, DMSO+siELF3 = 72.1 hours) phases. The 257 

combination of paclitaxel treatment and siRNA knockdown resulted in the longest cell cycle durations for both 258 

the PTX+siELF3 (160 hours) and PTX+siIRF9 (159 hours) conditions compared to PTX+siNonTarget (84.4 259 

hours). To further assess the therapeutic impact of siRNA knockdown and paclitaxel combination treatments, we 260 

used a Highest Single Agent (HSA) model to compare the inferred phase duration under combination paclitaxel 261 

+ siRNA to the highest inferred phase duration for a single agent (either paclitaxel alone or siRNA alone, Figure 262 

5F)[47]. In this approach a duration ratio less than 1 indicates antagonism (siRNA + paclitaxel results in shorter 263 

inferred phase duration than highest single agent), a duration ratio of 1 means there is no benefit of combination 264 

compared to highest single agent, and a duration ratio greater than 1 indicates a positive synergistic effect 265 

(siRNA + paclitaxel results in longer inferred phase duration than highest single agent). We found that although 266 

knockdown of NFE2L2 alone resulted in longer cell cycle phases, these changes were not particularly synergistic 267 

with paclitaxel treatment. In contrast, IRF9 knockdown resulted in increased duration ratios of all three phases 268 

compared to HSA (G1: 1.93, S/G2: 1.87, M: 1.8), while FOSL1 knockdown resulted in increased duration ratios 269 

for G1 and M phases (1.96, 2.19 ratios respectively). ELF3 knockdown showed the greatest synergy for the G1 270 
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phase, with a G1 duration ratio of 2.55, indicating that the combination of ELF3 knockdown with paclitaxel 271 

treatment strongly inhibits cell cycle progression out of G1. 272 

Motivated by these ELF3 findings, we hypothesized that ELF3 expression may be predictive of overall survival 273 

in breast cancer. To that end we assessed the METABRIC[48] breast cancer cohort and used ELF3 expression 274 

to stratify patients into three categories: ‘high’ (Upper quartile of ELF3 expression), ‘mid’ (Inter quartile range of 275 

ELF3 expression), and ‘low’ (Lower quartile of ELF3 expression). We found that ELF3 expression was prognostic 276 

in both directions, with ELF3-high tumors having significantly shorter recurrence free survival (HR = 1.21, p value 277 

= 0.025, Cox Proportional Hazard) and ELF3-low tumors having a significantly longer overall survival (HR = 0.77, 278 

p value = 0.004, Cox Proportional Hazard) compared to the ELF3-mid tumors (Figure 5G). We then compared 279 

the gene expression between the ELF3-high and ELF3-low groups and found that the ELF3-high tumors were 280 

significantly enriched for MSigDB hallmarks related to cell cycle progression (HALLMARK_G2M_CHECKPOINT: 281 

NES = 1.99, Benjamini-Hochberg FDR = 5.0e-8, HALLMARK_E2F_TARGETS: NES = 1.94, Benjamini-282 

Hochberg FDR = 2.9e-7, Figure 5H, Supplemental Figure 8A). We also found that the ELF3-low tumors were 283 

enriched for MSigDB hallmarks related to Allograft Rejection and Epithelial to Mesenchymal Transition (NES = -284 

2.14, Benjamini-Hochberg FDR = 4.1e-11, and NES = -1.95, Benjamini-Hochberg FDR = 6.1e-8 respectively). 285 

These results support our experimental in vitro findings that ELF3 activity contributes to continued malignant cell 286 

proliferation, and that high ELF3 expression in human breast cancer is associated with cell cycle progression 287 

and is also a negative predictor of progression free survival. 288 

DISCUSSION 289 

Paclitaxel is a cornerstone therapy for TNBC and is an important component of first line neoadjuvant treatment 290 

for newly detected disease. Despite this, less than 20% of breast cancer patients treated with combination 291 

neoadjuvant therapy (paclitaxel followed by combination fluorouracil + doxorubicin + cyclophosphamide) achieve 292 

pathological complete response (pCR), and 47% of TNBC patients without pCR have recurrent disease within 293 

10 years[49]. Although long-term chemotherapy resistance is often facilitated by clonal selection for growth-294 

permissive mutations[50-52], newer molecular profiling techniques have revealed that short-term adaptive 295 

responses are possible through rapid epigenetic changes without acquisition of new mutations [53, 54]. In this 296 

study, we sought to identify adaptive responses that emerge after paclitaxel treatment and that may be targeted 297 

to deepen therapeutic response. To that end, we characterized the phenotypic and transcriptional responses of 298 
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TNBC cells to paclitaxel, with a focus on changes in cell number, multinucleation, and transcription factor 299 

programs Using siRNA knockdown, live-cell imaging, and computational modeling, we identified several TFs that 300 

phenocopied key aspects of paclitaxel response, including reduced proliferation rates and an increased 301 

proportion of multinucleated cells. ELF3 knockdown in vitro was synergistic with paclitaxel treatment and 302 

suppressed G1 to S/G2 cell cycle progression. Analysis of the METABRIC breast cancer cohort revealed that 303 

high expression of ELF3 was associated with worse outcome and higher cell-cycle related pathway activity. 304 

Together, these findings support the idea that upregulation and activation of ELF3 is an early and transcriptionally 305 

based mechanism of paclitaxel resistance in TNBC. 306 

Many drug and gene manipulation studies focus primarily on viability or other cell count proxies at a terminal 307 

timepoint[55-58]. While such cell viability studies have proven valuable, more recent studies have demonstrated 308 

that chemotherapies modulate multiple cancer-associated hallmarks, including cell cycle phase behavior, 309 

senescence and nuclear morphology[42, 59, 60]. Further, there is evidence that the complex behavior of cellular 310 

systems are inherently dynamic, and their complex behaviors are better understood with measures that capture 311 

temporal behavior[43, 61-63]. While our live-cell studies captured important changes in cell cycle dynamics and 312 

the population distribution of various cell cycle states, no single metric captures the complete biological response. 313 

Future studies could deploy a richer panel of reporter molecules to gain deeper insights into other aspects of the 314 

response, including the timing and order of transcription factor activation, activation of specific cell cycle 315 

checkpoints, and activation of senescence or apoptotic pathways[64-66]. 316 

In this study we identified dual roles of the transcription factor ELF3 that contribute to paclitaxel tolerance by: 1) 317 

permitting cells to transition from G1 to S/G2, and 2) enabling successful division into two mononuclear daughter 318 

cells. These findings were enabled by a Markov Model of cell cycle progression built on population level cell 319 

count data which learned the transition rates between cell cycle phases and inferred cell cycle phase 320 

durations[42, 46]. While the inferred cell cycle durations represent an accurate prediction of the population’s 321 

average behavior, they cannot inform whether this arises from a homogenous or heterogenous distribution of 322 

cell cycle durations. This is of particular interest in the case of cancer treatment, as a small population of cells 323 

with a fitness advantage may eventually overtake the other populations, thus achieving therapeutic 324 

resistance[67]. An alternative approach could track individual cells and their progeny to build complete lineages 325 

with accompanying cell cycle timing information. Lineage based approaches tend to be relatively low throughput 326 
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due to the computational and experimental requirements, but offer the opportunity to discern between 327 

heterogenous states of differing cycling speeds[46]. Another limitation of our Markov Model’s  implementation is 328 

the assumption that transition rates are static throughout the duration of observations. While the output of the 329 

model mapped well within the 72-hour measurement window, there was some divergence at the end of the 330 

experiment that may suggest a weakening of either siRNA or paclitaxel effect. Incorporation of temporal 331 

information could be used to the current model implementation and could be useful for predicting combination 332 

drug effects and optimizing the drug schedule for maximum disruption of cell cycle progression.  333 

Paclitaxel inhibits cell growth by simultaneously promoting microtubule assembly and inhibiting microtubule 334 

depolymerization, which results in mitotic checkpoint failure and subsequent apoptosis or senescent arrest[68, 335 

69]. The in vitro experimentation performed in this study represents an extensive investigation into the phenotypic 336 

and molecular responses of TNBC cells to paclitaxel, however we acknowledge that tumors are comprised of 337 

diverse cell types and intercellular signaling molecules can influence therapeutic response in breast cancer and 338 

other malignancies[70-72]. Indeed, the tumor microenvironment is known to have a significant impact on drug 339 

response through cell-cell interaction and alterations to extracellular matrix[73, 74]. While we did not include 340 

stromal cells in our study, our findings of paclitaxel induced upregulation chemokines (CXCL1, CXCL8) support 341 

the idea that malignant cells that persist through paclitaxel treatment will have differential interactions with the 342 

immune system as compared to treatment-naïve cells. Tumor-derived CXCL1 is known to recruit 343 

immunosuppressive myeloid cells that inhibit CD8+ T cell infiltration[75]. The chemokine CXCL8 plays multiple 344 

pro-tumorigenic roles including recruitment of immunosuppressive neutrophils[76], promotion of 345 

angiogenesis[77] and maintenance of breast cancer stem cells[78]. Future studies that more deeply consider 346 

the influence of stromal and immune cells signals in modulating therapeutic response will be needed to better 347 

understand the complete system of factors involved in paclitaxel resistance. 348 

As key regulators of multiple molecular programs, many transcription factors are known to contribute to  cancer-349 

associated phenotypes[79] and therapeutic response[80, 81]. Our study found that the ETS family transcription 350 

factor ELF3 was upregulated during early response to paclitaxel treatment, and siRNA knockdown of ELF3 was 351 

synergistic with paclitaxel treatment at slowing cell line growth. Other studies have found that high ELF3 activity 352 

is associated with inhibition of epithelial to mesenchymal transition [82]. Furthermore, inhibition of ELF3 was 353 

found to reduce proliferation across a number of cancer models including lung adenocarcinoma[83], 354 
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neuroendocrine carcinoma[84] and prostate cancer[85]. Circulating tumor cells have elevated ELF3 expression 355 

in both murine models and human breast cancer[86]. Conserved dysregulation of ELF3 across cancer types 356 

may be related to its genomic location (loci 1q32) which is commonly amplified across cancers[87, 88] and also 357 

encodes for a number the cancer related genes including MDM4 (p53 suppressor)[89, 90]. 358 

Taken together, this work has identified ELF3 upregulation as an acquired mechanism of paclitaxel resistance. 359 

These findings support the development of pharmacological agents that inhibit ELF3 activity and could be used 360 

in combination with paclitaxel to further improve patient outcomes. While it has been historically difficult to 361 

develop targeted transcription factor inhibitors due to their lack of enzymatic activity, recent advances, such as 362 

targeted siRNA nanoparticles and indirect inhibition through targeting multiple interacting proteins, have made 363 

pharmacomodulation of transcription factors more tenable[91-93]. Until such therapies are developed, ELF3 may 364 

serve as a useful biomarker which predicts the development of paclitaxel resistance and continued malignant 365 

proliferation. 366 

METHODS 367 

Cell culture: HCC1143 (ATCC), HCC1806 and MDA-MB-468 cells were authenticated by STR profiling and 368 

tested negative for mycoplasma. HCC1143 and HCC1806 cells were cultured in RPMI 1640 with L-glutamine 369 

(cat. 11875119, Life Technologies Inc.) supplemented with 10% fetal bovine serum (#16000-044, Gibco). MDA-370 

MB-468 cells were cultured in DMEM (#11965-092, Life Technologies Inc.) supplemented with 10% fetal bovine 371 

serum (#16000-044, Gibco). All lines were incubated at 37C with 5% CO2. For perturbation experiments, cells 372 

were seeded into appropriate assay vessel for 24 hours prior to treatment with either vehicle control (DMSO; 373 

PBS) or perturbation (table below). 374 

Perturbation Shorthand Concentration used 

for scRNA-seq 

Source Identifier 

 

Vehicle 

Paclitaxel PTX 1nM LC Labs P-9600 0.1% DMSO 

Notch Inhibitor NOTCHi 1uM Millipore Sigma BM0018-5MG 0.1% PBS 

Interferon Beta IFNB 20ng/mL PBL Assay 

Science 

11410-2 0.1% PBS 

Interferon Gamma IFNG 20ng/mL R&D Systems 385-IR-100 0.1% PBS 

Transforming 

Growth Factor Beta 

TGFB 10ng/mL Biotechne 7754BH005 0.1% PBS 

Lymphotoxin LT 10ng/mL Biotechne 8884-LY-025 0.1% PBS 

Oncostatin M OSM 10ng/mL Cell Signaling 

Technology 

5367SC 0.1% PBS 

 375 
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Fixed cell assays: Cells were plated at 3000 cells in 100ul of complete media per well in a 96 well plate (#08-376 

772-225, FisherScientific). After 24 hours, an additional 100ul of either vehicle (0.1% DMSO) or paclitaxel 377 

containing complete media was added. After 72 hours cells were fixed with 4% Formaldehyde (#28908, 378 

ThermoFisher Scientific) for 15 minutes at room temperature, then permeabilized with 0.3% Triton X-100 (#X100-379 

100ML, Sigma Aldrich) for 10 minutes at room temperature, then washed twice with PBS. Fixed cells were 380 

blocked with 1% BSA (A7906-100G, Millipore Sigma) in PBS for 1 hour at room temperature and then stained 381 

overnight with 1:100 anti-CDKN2A/p16INK4A+CDKN2B/p15INK4B-AF644 (#ab199756, Abcam), and 1:100 382 

anti-cPARP-AF647 (#6987S, Cell Signaling Technology) or 1:500 anti-TUBB3-AF647 (#ab190575, Abcam) 383 

overnight at 4C. Each well was washed twice with room temp PBS then stained with 0.5ug/mL DAPI (4083S, 384 

Cell Signaling Technology) in PBS for 15 minutes at room temperature. Following DAPI staining, wells were 385 

washed once with PBS, then stained with 1:20,000 HCS CellMask in PBS (Orange: #H32713, Green: #H32714, 386 

Invitrogen) for 15 minutes at room temperature. Wells were washed twice with room temperature PBS and then 387 

4 fields of view per well imaged on an InCell 6000 (GE Healthcare). Images were segmented with two custom 388 

Cellpose[45] models to segment the nucleus (from DAPI channel) and cytoplasm (from HCS Cellmask channel). 389 

Image quantification was performed in R (v4.3.1) using EBImage (v4.42.0), and cells were annotated based on 390 

the number of distinct nuclei segmented within each cytoplasmic mask. 391 

scRNA-seq library preparation and sequencing: Experiment 1 (DMSO 24 hour, DMSO 72 hour, Paclitaxel 24 392 

hour, Paclitaxel 72 hour): Each condition had a single-cell RNA library prepared using 10X Genomics Single Cell 393 

3’ v2 kits and sequenced on an Illumina NextSeq 500 for 500e6 reads per library. 394 

Experiment 2: All conditions were multiplexed using Hashtag Oligonucleotide barcoding technology (TotalSeq-395 

B, Biolegend) following manufacturer standard protocol. A paired feature-barcode library and mRNA library were 396 

generated using the Single Cell 3’ v3 kit (10X Genomics) following manufacturer instructions and then sequenced 397 

on an Illumina NovaSeq for 800e6 reads. 398 

scRNA-seq data processing: For both experiments; raw base call files were converted to FASTQ format with 399 

bcl2fastq (Illumina). Cellranger count (v6.0.2) was used to align reads to the GRCh38 transcriptome (GRCh38-400 

2020-A, accessed from 10X Genomics) and count UMI reads. The R package Seurat[94, 95] (4.0.5) was used 401 

to perform variable feature identification, linear and nonlinear dimensionality reduction, unsupervised clustering 402 

and differential gene expression. 403 

Variance Stabilizing Transformation was used to identify the top 2000 variable genes and Principal Component 404 

Analysis (PCA) was used to reduce these 2000 genes to 10 components for UMAP embedding and unsupervised 405 

clustering. Differential expression analysis was performed using the FindMarkers function of Seurat with default 406 

parameters. Geneset enrichment analysis was performed with the R package clusterProfiler[96] (v4.8.2) using 407 

significantly upregulated genes compared to time-matched vehicle control (abs(avg_log2FC) >  0.5, Benjamini 408 

Hochberg FDR < 0.05). 409 

Transcription Factor Enrichment Analysis: Significantly upregulated genes (avg_log2FC >  0.5, Benjamini 410 

Hochberg FDR < 0.05) were computed for paclitaxel, IFNB and IFNG treated samples compared to time-matched 411 
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vehicle treated cells. ChEA3 enrichment analysis was performed with default settings using R code from the 412 

CHEA3 API documentation (https://maayanlab.cloud/chea3/) to perform an online query using either the genes 413 

uniquely upregulated in paclitaxel treated cells, or those shared between paclitaxel and either of the interferon 414 

responses. The top 15 ranked transcription factors from both the paclitaxel unique and paclitaxel-interferon 415 

shared TF enrichment lists were considered when nominating siRNA knockdown targets. Any TF that also had 416 

at least 0.25 log2 fold change for paclitaxel at either 24 or 72 hours compared to vehicle control was included in 417 

the siRNA knockdown panel. 418 

siRNA Knockdown: Cells were plated in 90ul of serum free media per well of a 96 well plate. 24 hours later, 419 

siRNA knockdown mixture was prepared using a cell-line optimized concentration of Lipofectamine RNAiMAX 420 

(cat 13778075-075, Invitrogen) and siRNA (Horizon Discovery ON-TARGETplus) following RNAiMAX 421 

recommended protocol. The final concentration of siRNA per well was 1pmol and the final volume of RNAiMAX 422 

per well was 75nL for HCC1143, and 37.5nL for HCC1806 or MDA-MB-468 in 100uL of cell containing volume. 423 

24 hours after siRNA transfection cells were treated with an addition of 100uL complete media containing either 424 

DMSO vehicle control or paclitaxel. 425 

Protein isolation: Protein isolation: siRNA knockdown of HCC1143 cells was performed using the siNonTarget, 426 

siELF3, siFOSL1, and siNFE2L2 pools as described above. After 24 hours of knockdown, perturbation containing 427 

media was added such that media volume doubled and had a final concentration of either 0.1% DMSO (vehicle 428 

control) or 1nM Paclitaxel. After 72 hours of perturbation, cells were washed with 4C PBS then lysed by 5 minute 429 

incubation at 4C with RIPA buffer (R0278, Sigma) supplemented with 1X Halt Protease and Phosphatase 430 

Inhibitor Cocktail (1861281, Thermo Scientific). Remaining cells were scraped from the plate and lysate was 431 

snap frozen in liquid nitrogen then stored at -80C overnight. The following day lysate was clarified by 432 

centrifugation at 21,130 x g for 10 minutes at 4C. The supernatant was collected and the protein concentration 433 

was immediately quantified.  Remaining protein was stored at -80C. 434 

Western Blot:  Protein quantification was performed using the Western Simple protocol on the Jess capillary 435 

western machine using the 12-230 kDa cartridge and following manufacturer instructions (Biotechne).  Primary 436 

antibodies targeting the protein products of ELF3 (anti-ESE1, ab133521, Abcam), FOSL1 (anti-FRA1, sc28310, 437 

Santa Cruz), and NFE2L2 (anti-NRF2, HPA043438-1, Sigma) were used at 1:50 dilution. Lysates were loaded 438 

at a concentration of 2mg/mL and volume of 5uL per capillary well, and the Anti-rabbit detection kit (DM-001, 439 

Biotechne). was used to quantify primary antibody levels. Peak quantification was performed using the  included 440 

Compasssoftware with default settings (v6.3.0, Biotechne). 441 

 442 

HDHB reporter live-cell assays: siRNA knockdown and drug treatment was performed as described above, and 443 

then the plate was loaded on an Incucyte S3 (Sartorious) and cells imaged every 15 minutes for 72 hours post 444 

drug treatment. At each timepoint 4 fields of view were captured at 20x magnificantion in each well using the 445 

phase, red and green channels. A cytoplasmic mask was computed from the mean of normalized red/green 446 

channel, and a nuclear mask was computed from the red channel using custom trained Cellpose[45] models. 447 
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Image quantification was performed in R (v4.3.1) using EBImage (v4.42.0). An additional perinuclear ring mask 448 

was computed as the 11 pixel dilation from the nuclear mask, but still bound by the cytoplasmic mask. To 449 

determine mClover localization thresholds for cell cycle assignment, 250 cell images were randomly selected 450 

and manually assigned to the G1, S/G2 or M cell cycle state based on mClover localization. The mClover 451 

intensity ratios were then used to determine thresholds for automated cell cycle phase calling which was applied 452 

to the rest of the data set (Supplemental Figure 5A). Mononuclear cells with a Perinuclear:Nuclear mean 453 

intensity ratio greater than 0.8 and Nuclear:Cytoplasmic total intensity less than 0.5 were assigned to the S/G2 454 

phase. Mononuclear and Multinuclear cells with a Nuclear:Cytoplasmic total intensity ratio greater than 0.8 and 455 

Perinuclear:Nuclear mean intensity ratio less than 0.8 were assigned to the ‘M’ phase. The remainder of 456 

mononuclear cells were assigned ‘G1’, and the remainder of multinucleated cells were assigned ‘Multinucleated’. 457 

Markov modeling: The 5-frame moving average of cell count per cell cycle phase was downsampled to one value 458 

per hour and used to train a markov model for each unique siRNA (NonTarget, ELF3, FOSL1, NFE2L2, IRF9, 459 

PLK1) +/- paclitaxel condition. The transition matrix of the model was constrained such that cells could remain 460 

in their current phase, progress through the cell cycle (G1 -> S/G2, S/G2 -> M, M -> G1 with replication) or 461 

transition from M phase to an absorbing (permanent) multinucleated phase. Models were trained for 15 epochs, 462 

and the first epoch was seeded with an identity transition matrix. 3000 random transition matrices were generated 463 

each epoch, and the 5 with lowest error were used as seeds for the following epoch. The prior best performing 464 

matrices were updated with randomly generated matrices at a learning rate of 0.1 for the first epoch, halving 465 

every 2 epochs. 466 

The prediction for counts for each future state (Sn+1) is calculated as the product of the counts at the prior state 467 

(Sn) by the transition matrix (P) and the replication matrix (RM). 468 

𝑅𝑀 =  

 𝐺1 𝑆/𝐺2 𝑀 𝑀𝑢𝑙𝑡𝑖.
𝐺1 1 1 0 0

𝑆/𝐺2 0 1 1 0
𝑀 2 0 1 1

𝑀𝑢𝑙𝑡𝑖. 0 0 0 1

    469 

 470 

𝑃 =  

 𝐺1 𝑆/𝐺2 𝑀 𝑀𝑢𝑙𝑡𝑖.
𝐺1 ? ? 0 0

𝑆/𝐺2 0 ? ? 0
𝑀 ? 0 ? ?

𝑀𝑢𝑙𝑡𝑖. 0 0 0 ?

    471 

𝑆𝑛+1 = 𝑆𝑛 ∗ 𝑃 ∗ 𝑅𝑀 472 

The error of the markov predicted cell counts (cexp) compared to observed counts (cobs) was computed as the 473 

arithmetic mean of the Root Mean Squared Relative Error (RMSRE) of each cell cycle phase across all predicted 474 

timepoints. The noise floor of RMSRE was estimated with a second-order loess fit with span of 0.75 (loess 475 

function from R package ‘stats’, v4.3.1). 476 
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𝑅𝑀𝑆𝑅𝐸 =  √
1

𝑛
∗ ∑

(𝑐𝑒𝑥𝑝 − 𝑐𝑜𝑏𝑠)2

𝑐𝑜𝑏𝑠
2

 477 

The mitotic success rate (MSR) of each condition was computed as the ratio of M-to-G1 transition (PM,G1) to the 478 

sum of the transition rates for M-to-G1 (PM,G1) and M-to-multinucleated (PM,Multi): 479 

𝑀𝑆𝑅 =
𝑃𝑀,𝐺1

𝑃𝑀,𝐺1 + 𝑃𝑀,𝑀𝑢𝑙𝑡𝑖
 480 

 481 

The expected duration of G1, S/G2 and M cell cycle phases was calculated from the homotypic transition rates 482 

as[97]: 483 

𝐹𝑜𝑟 𝑖 == 𝑗: 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑖,𝑗 =  
1

1 − 𝑃𝑖,𝑗
 484 

 485 

Metabric survival and microarray analysis: The Metabric[48] microarray and patient metadata was accessed 486 

through cbioportal[98-100] and analyzed using R (v4.3.2) and the ‘survival’ package (v3.5.7). The z-scored 487 

microarray expression data was used to categorize patients into ‘high’ (highest expressing quartile), ‘mid’ (first 488 

to third expressing quartile) or ‘low’ (lowest expressing quartile) based on expression of ELF3. For survival 489 

analysis, patients were filtered to those with microarray data and then Kaplan-meier survival curves were 490 

generated with the ‘ggsurvfit’ package (v1.0.0). Cox proportional hazard statistics were calculated with the 491 

‘coxph’ function of the ‘survival’ package (v3.5.7). Differential expression was calculated from the log normalized 492 

microarray data using the ‘wilcoxauc’ function from the ‘presto’ package (v1.0.0). Significantly differentially 493 

expressed genes (abs(logFC) > 0.5 and adjusted p < 0.05) where used to compute MSigDB hallmark GSEA 494 

using the ‘clusterprofiler’ (v4.10.1) and ‘msigdbr’ (v7.5.1) packages. 495 

Full reagent list: 496 
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reagent shorthand type source identifier 
HCC1143 - cell line ATCC CRL-2321 
HCC1806 - cell line ATCC CRL-2335 
MDA-MB-468 - cell line ATCC HTB-132 

     

RPMI 1640 RPMI reagent Life Technologies 11875119 
DMEM DMEM reagent Life Technologies 11965-092 
Fetal Bovine Serum FBS reagent Gibco 16000-044 

Dimethyl Sulfoxide DMSO reagent Millipore Sigma 
D8418-
250ML 

Phosphate Buffered Saline PBS reagent Gibco 14190235 
Paclitaxel PTX reagent LC Labs P-9600 
Interferon-Beta IFNB reagent PBL Assay Science 11410-2 
Interferon-Gamma IFNG reagent R&D Systems 385-IR-100 

Human Oncostatin M OSM reagent 
Cell Signaling 
Technology 5367SC 

Recombinant Human Lymphotoxin 
alpha1/beta2 protein LT reagent Biotechne 8884-LY-025 
Recombinant Human TGFB-Beta 1 TGFB reagent Biotechne 7754BH005 
BMS-906024 NOTCHi reagent Millipore Sigma BM0018-5MG 

16% Formaldehyde (w/v) - reagent 
ThermoFisher 
Scientific 28908 

Triton X-100 - reagent Millipore Sigma X100-100ML 
Normal Goat Serum Blocking Solution - reagent MP Biomedicals #0219135680 
Lipofectamine RNAiMAX transfection 
Reagent - reagent 

ThermoFisher 
Scientific 13778075 

Bovine Serum Albumin BSA reagent Millipore Sigma A7906-100G 
RIPA buffer - reagent Sigma P0278 
100X Halt Protease and Phosphatase 
Inhibitor Cocktail - reagent 

ThermoFisher 
Scientific 1861281 

     
anti-
CDKN2A/p16INK4A+CDKN2B/p15INK4B-
AF644  p16 antibody Abcam ab199756 

anti-cPARP-AF647  cPARP antibody 
Cell Signaling 
Technology 6987S 

anti-TUBB3-AF647  TUBB3 antibody Abcam ab190575 
HCS CellMask Green CellMask Green stain Invitrogen H32713 
HCS CellMask Orange CellMask Orange stain Invitrogen H32714 

DAPI DAPI stain 
Cell Signaling 
Technology 4083S 

anti-ESE1 - antibody Abcam ab133621 
Fra1 Antibody (C-12) - antibody Santa Cruz sc-28310 
Anti-NFE2L2 antibody produced in rabbit - antibody Millipore Sigma HPA043438 

     

siATF3 Smartpool siATF3 siRNA Hoizon Discovery L-008663-00 

siDDIT3 Smartpool siDDIT3 siRNA Hoizon Discovery L-004819-00 

siELF3 Smartpool siELF3 siRNA Hoizon Discovery L-016080-00 
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 498 

Data Availability 499 

Single Cell RNA-seq data is available on the Gene Expression Omnibus with study ID: GSE266934 500 

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE266934). The raw images and processed data from 501 

immunofluorescent stained HCC1143 are available on Zenodo: (doi: 10.5281/zenodo.11237850). The raw 502 

images and processed data from the siRNA panel, and the processed data from live-cell imaging study are 503 

available on Zenodo (doi: 10.5281/zenodo.11238552). The raw images from the live-cell experiments are 504 

available upon request. 505 

Code Availability 506 

All code related to data processing and figure generation are available on Github 507 

(https://github.com/HeiserLab/PTX_manuscript). 508 
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siFOSL1 Smartpool siFOSL1 siRNA Hoizon Discovery L-004341-00 

siIRF7 Smartpool siIRF7 siRNA Hoizon Discovery L-011810-00 

siIRF9 Smartpool siIRF9 siRNA Hoizon Discovery L-020858-00 

siJUNB Smartpool siJUNB siRNA Hoizon Discovery L-003269-00 

siJUN Smartpool siJUN siRNA Hoizon Discovery L-003268-00 

siKIF11 Smartpool siKIF11 siRNA Hoizon Discovery L-003317-00 

siKLF6 Smartpool siKLF6 siRNA Hoizon Discovery L-021441-00 

siMAFF Smartpool siMAFF siRNA Hoizon Discovery L-003903-00 

siNFE2L2 Smartpool siNFE2L2 siRNA Hoizon Discovery L-003755-00 

siPLK1 Smartpool siPLK1 siRNA Hoizon Discovery L-003290-00 

siPLSCR1 Smartpool siPLSCR1 siRNA Hoizon Discovery L-003729-00 

siSP100 Smartpool siSP100 siRNA Hoizon Discovery L-015307-00 

ON-TARGETplus Non-targeting Control siNonTarget siRNA Hoizon Discovery D-001810-10 

ON-TARGETplus GAPD Control siGAPD siRNA Hoizon Discovery D-001830-10 
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Figure 1: Paclitaxel modulates multiple cancer associated phenotypes. 1A) Representative fluorescent 736 
images showing HCC1143 cells treated with DMSO or Paclitaxel at the listed doses for 72 hours and stained 737 
with DAPI, p16-INK4A, and TUBB3. 1B) Ridgeplot showing impact of paclitaxel treatment on DAPI total 738 
nuclear intensity as a proxy for nuclear content. Dashed lines indicate local maxima in the DMSO control 739 
condition corresponding with 2N and 4N nuclear state. 1C) Normalized cell count and fraction of multinucleated 740 
cells for HCC1143 treated with serial titration of Paclitaxel for 72 hours. Error bar indicates SEM across 6 741 
replicates. 1D) Barplots showing mean TUBB3 and p16/p15 cytoplasmic staining intensity for triplicate wells of 742 
HCC1143 treated with a range of Paclitaxel and normalized to paired DMSO control (horizontal line). 743 
Significance assessed with Dunnett’s test. 1E) Barplot comparing the fraction of cPARP positive cells for 744 
mononucleated (magenta) versus multinucleated (cyan) cells within the same treatment condition. cPARP 745 
positive threshold was set to the 99th quantile of DMSO treated cells total cPARP nuclear intensity 746 
(Supplemental Figure 1C). Significance assessed with proportions test. For all statistics: * = p<0.05, ** = 747 
p<0.01, *** = p<0.001. 748 

Figure 2: Cells surviving paclitaxel treatment halt cycling and upregulate interferon response genes. 749 
2A) UMAP color coded by treatment condition. DMSO_24 = 0.1% DMSO for 24 hours, DMSO_72 = 0.1% 750 
DMSO for 72 hours, PTX_24 = 1nM Paclitaxel for 24 hours, PTX_72 = 1nM Paclitaxel for 72 hours. 2B) Barplot 751 
showing proportion of each condition assigned to G1, S, or G2M cell cycle state based on transcriptional 752 
profile. 2C,2D) Volcano plot of differentially expressed genes for Paclitaxel treatment versus DMSO at 24 (2C) 753 
and 72 (2D) hours. Differentially expressed genes (black) determined with cutoffs of Benjamini Hochberg 754 
corrected p<0.05 and absolute Log2FoldChange > 0.5. 2D) Reactome pathway enrichment results for genes 755 
significantly upregulated after paclitaxel treatment at 24 hours. Size indicates the number of genes upregulated 756 
within the pathway, color indicates significance. 2E) Volcano plot of differentially expressed genes for 757 
Paclitaxel treatment versus DMSO at 72 hours. Differentially expressed genes (black) determined with cutoffs 758 
of Benjamini Hochberg corrected p<0.05 and absolute Log2FoldChange > 0.5. 2F) Reactome pathway 759 
enrichment results for genes significantly upregulated after paclitaxel treatment at 72 hours. Size indicates the 760 
number of genes upregulated within the pathway, color indicates significance. 761 

Figure 3: Paclitaxel response activates canonical interferon response genes. 3A) UMAP showing the 762 
scRNA-seq landscape for ligand perturbations. IFNB = Interferon-Beta, OSM = Oncostatin-M, NOTCHi_IFNB = 763 
Notch inhibitor + Interferon-Beta, NOTCHi = Notch inhibitor, TGFB = Transforming Growth Factor Beta, IFNG = 764 
Interferon-Gamma, LTA = Lymphotoxin-Alpha, PBS = Phosphate Buffered Saline (control). 3B) Heatmap 765 
showing the Pearson correlation for all gene log2 fold-change between perturbation versus time-matched 766 
control. Inset number and color indicate correlation. 3C,D) Gene enrichment map for Paclitaxel uniquely 767 
upregulated (3C) and Paclitaxel+Interferon shared upregulated (3D) genes. Color indicates significance, size 768 
indicates number of upregulated genes, and lines connect ontologies with shared elements. 3E) ChEA3 769 
transcription factor enrichment ranks computed from 140 Paclitaxel uniquely upregulated genes (x axis) versus 770 
120 Paclitaxel-Interferon shared upregulated genes (y axis). Lower rank indicates higher imputed activity. TFs 771 
to the lower right of the diagonal have higher imputed activity within the PTX+IFN shared upregulated gene 772 
set, and TFs to the upper left of the diagonal have higher imputed activity within the PTX uniquely upregulated 773 
gene set. 3F) Bar plot showing Average Log2FC from paclitaxel treated scRNA-seq data for the 24 top ranked 774 
transcription factors (intersect of top 15 ranked for PTX unique or PTX shared individually). Transcription factor 775 
names in red had differential upregulation (average log2 fold-change > 0.25, FDR < 0.01) at either 24 or 72 776 
hours of paclitaxel treatment compared to vehicle control. 777 

Figure 4: Inhibition of paclitaxel-induced transcription factors alters proliferation and nuclear 778 
morphology. 4A-B) Barplots showing relative cell count (A) and proportion of multinucleated cells (B). Cell 779 
count is normalized to the same cell-line DMSO + siNonTarget control. Bars show the mean of three cell lines, 780 
and error bar indicates SEM. Relative cell count statistics computed with Fisher’s multi test applied to Two-781 
tailed Student’s T-test per cell line, and fraction multinucleated statistics computed with Fisher’s multi test 782 
applied to proportions test per cell line. Heatmap of all values in Supplement 4A, 4B. Not shown: secondary 783 
positive growth (siGAPD) and negative growth (siKIF11) controls 4C) Principal Component results for each 784 
siRNA knockdown where each combination of cell line (HCC1143, HCC1806, MDA-MB-468), feature (relative 785 
cell count, fraction multinucleated) and condition (DMSO, PTX) is considered a feature (Supplemental Figure 786 
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4C). 4D) The Euclidean feature-distance from NonTarget control for each siRNA. Heatmap of scaled feature 787 
values in Supplemental Figure 4C. For all statistics: * = p<0.05, ** = p<0.01, *** = p<0.001. 788 

Figure 5: ELF3 and FOSL1 mediate cell cycle progression under paclitaxel treatment. 5A) 789 
Representative images showing the HCC1143 cell cycle reporter line and a mitotic even occurring over 105 790 
minutes. Orange text indicates automatically assigned cell cycle for the processed images. 5B) Relative 791 
(normalized to total cell number at earliest time point) cell count for each phase over time for each siRNA 792 
condition +/- paclitaxel (PTX).  5C) Schematic showing the underlying structure of permitted transitions used in 793 
the Markov Model. 5D) Mitotic failure rate computed from Markov model transition rates. Mitotic failure rate is 794 
calculated as the ratio of M->multinucleated transitions divided by the sum of M->G1 and M->multinucleated 795 
transition rates. 5F) PTX + siRNA synergy computed as the ratio of inferred phase duration for combination 796 
(siRNA + PTX) versus Highest Single Agent (HSA, highest duration for either siRNA or PTX treatment alone). 797 
Value of 1 indicates no change in combination, values greater than 1 indicate synergy and values less than 1 798 
indicate antagonism. 5G) Overall survival for the Metabric breast cancer cohort striated by ELF3 mRNA 799 
expression. High = top quartile of ELF3 expression, IQR = inner quartile range of ELF3 expression, and low = 800 
lowest quartile of ELF3 expression. 5H) MSigDB Gene Set Enrichment (GSEA) results for ELF3 high versus 801 
ELF3 group. Horizontal line represents a FDR threshold of 0.05. 802 

Supplementary Figure 1: S1A) Density plot showing the distribution of cells for all conditions (DMSO + PTX). 803 
X axis shows mean intensity for p15/p16, y axis shows Mean Intensity for TUBB3 in arbitrary units (A.U.). R^2 804 
squared shown for Pearson correlation (p-value < 2.2e-16). S1B) Breakout plots showing the same information 805 
as S1A. Control (DMSO) shown for every inset plot, and paclitaxel (PTX) for the nM dose listed above. S1C) 806 
Breakout plots showing the Normalized DAPI total intensity versus Normalized cPARP nuclear total intensity. 807 
Horizontal line indicates threshold for calling a cell ‘cPARP positive’, color indicates whether the cell is 808 
mononucleated (red) or multinucleated (blue). 809 

Supplementary Figure 2: S2A) Violin plots of scRNA-seq QC metrics for the four conditions. Horizontal lines 810 
indicate the first, second and third quartiles. S2B) Breakout plots showing the same UMAP as Figure 2A split 811 
by condition and color coded by cell cycle phase. S2C) Number of clusters computed from Louvain clustering 812 
applied across a sweep of resolutions. S2D) The Normalized Mutual Information (NMI) between cluster label 813 
and biological label (treatment x cell cycle phase) computed across a sweep of Louvain clustering resolutions. 814 
The NMI values indicate that there is a high degree in overlap of information between unsupervised cluster 815 
labels and known biological labels. S2E,F) Euler plot showing the overlap in significantly upregulated genes 816 
(SF2E) and enriched Reactome pathways (SF2F) between paclitaxel at 24 hours (PTX24) and 72 hours 817 
(PTX72) compared to time matched control. F2G) Barplots showing mean expression of chemokines CXCL1 818 
and CXCL8 which were significantly upregulated in both paclitaxel conditions compared to time matched 819 
control. 820 

Supplementary Figure 3: S3A) Heatmap showing expression for interferon ligands (gray) and receptors 821 
(black) for each of the paclitaxel scRNA-seq conditions. S3B) Violin plots of scRNA-seq QC metrics for the 822 
ligand perturbation conditions. Horizontal lines indicate the first, second and third quartiles. S3C) The same 823 
ligand perturbation scRNA-seq UMAP as Figure 3A, but color coded by cell cycle phase assignment. S3D) Bar 824 
plot indicating the proportion of cells assigned to each cell cycle phase for each condition. 825 

Supplementary Figure 4: S4A) Heatmap of relative cell count (Normalized to NonTarget) for each siRNA +/- 826 
1nM Paclitaxel (PTX) condition for the three Triple Negative Breast Cancer cell lines tested. GAPD and 827 
NonTarget siRNA are positive growth controls, KIF11 and PLK1 are negative growth controls. Significance 828 
assessed via t-test versus the same-drug (DMSO or PTX) NonTarget condition with Bonferroni Correction (p-829 
values: *: < 0.05, **: < 0.01, ***: < 0.001). S4B) Heatmap representing the proportion of multinucleated cells for 830 
each siRNA +/- 1nM Paclitaxel (PTX) condition for the three Triple Negative Breast Cancer cell lines tested. 831 
GAPD and NonTarget siRNA are positive growth controls, KIF11 and PLK1 are negative growth controls. 832 
Significance assessed via proportions test versus the same-drug (DMSO or PTX) NonTarget condition with 833 
Bonferroni Correction (p-values: *: < 0.05, **: < 0.01, ***: < 0.001). 834 
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Supplementary Figure 5: S5A) siRNA knockdown validation blots showing spectra images from 835 
ProteinSimple/WesternSimple protocol for ESE1 (ELF3), FRA1 (FOSL1) and NRF2 (NFE2L2) knockdown after 836 
72 hours of treatment with either 0.1% DMSO or 1nM Paclitaxel. S5B) Quantification of the images above. 837 
Total signal indicates the sum of peak area for the +/- 10% range around the highest intensity peak. 838 

Supplementary Figure 6: S6A) HDHB-mClover reporter intensities plot colored by manual assignment. 250 839 
images of cells were randomly selected and manually assigned a cell cycle state (G1, M, S/G2) based on cell 840 
morphology and mClover intensity. The manual assignment was used to select Total Intensity Ratio (Nuclear 841 
vs cytoplasmic) and Mean intensity ratio (Perinuclear versus Nuclear) as defining features for automatic cell 842 
cycle assignment. Black lines represent thresholds used for automated cell cycle assignment. S6B) Heatmap 843 
showing the heterotypic (between different states) transition rates learned by the Markov model for each 844 
unique siRNA +/- Paclitaxel (PTX) condition. Inset number is the transition rate and color is the z-score of row. 845 
S6C, SF6D) Cell count over time plots for each of the DMSO (S6C) and PTX (S6D) treated conditions showing 846 
the experimental data (black dots) and Markov values (red line) predicted using the learned transition rates and 847 
initial time point. 848 

Supplementary Figure 7: S7A) Representative plot showing the smoothed experimental counts (5-timepoint 849 
rolling mean) versus a Loess fit for the siNonTarget + Paclitaxel condition. S7B) Dot plots showing the Root 850 
Mean Squared Relative Error (RMSRE) for the Markov Model (black dots) over each training epoch versus the 851 
Loess fit (green line). Loess fit represents an estimate of the ‘noise floor’ of the measurement. S7C) Model 852 
rejection rate for each condition computed from the Chi-squared test applied between the experimental and 853 
model predicted composition for each single time point. A nominal Chi-squared p value < 0.05 was considered 854 
a significantly different timepoint. A rejection rate of 0% means that there was no significant difference in 855 
phenotype composition at any timepoint. 856 

Supplementary Figure 8: S8A) Volcano plot showing differentially expressed genes for the Metabric ELF3 857 
high group versus ELF3 low group. Genes to the right (positive Log2FC) are significantly upregulated in the 858 
ELF3 high group and genes to the left (negative Log2FC) are significantly upregulated in the ELF3 low group. 859 
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Merged DAPI P16/p15 TUBB3 1A 
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5C: Model constraints 

5A: Cell cycle reporter 
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S5A: Protein quantification 
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