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ABSTRACT

Paclitaxel is a standard of care neoadjuvant therapy for patients with triple negative breast cancer (TNBC);
however, it shows limited benefit for locally advanced or metastatic disease. Here we used a coordinated
experimental-computational approach to explore the influence of paclitaxel on the cellular and molecular
responses of TNBC cells. We found that escalating doses of paclitaxel resulted in multinucleation, promotion of
senescence, and initiation of DNA damage induced apoptosis. Single-cell RNA sequencing (scRNA-seq) of
TNBC cells after paclitaxel treatment revealed upregulation of innate immune programs canonically associated
with interferon response and downregulation of cell cycle progression programs. Systematic exploration of
transcriptional responses to paclitaxel and cancer-associated microenvironmental factors revealed common
gene programs induced by paclitaxel, IFNB, and IFNG. Transcription factor (TF) enrichment analysis identified
13 TFs that were both enriched based on activity of downstream targets and also significantly upregulated after
paclitaxel treatment. Functional assessment with siRNA knockdown confirmed that the TFs FOSL1, NFE2L2
and ELF3 mediate cellular proliferation and also regulate nuclear structure. We further explored the influence of
these TFs on paclitaxel-induced cell cycle behavior via live cell imaging, which revealed altered progression
rates through G1, S/G2 and M phases. We found that ELF3 knockdown synergized with paclitaxel treatment to
lock cells in a G1 state and prevent cell cycle progression. Analysis of publicly available breast cancer patient

data showed that high ELF3 expression was associated with poor prognosis and enrichment programs
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associated with cell cycle progression. Together these analyses disentangle the diverse aspects of paclitaxel

response and identify ELF3 upregulation as a putative biomarker of paclitaxel resistance in TNBC.

Key words: triple negative breast cancer (TNBC), single-cell RNA sequencing (scRNA-seq), transcription factor,

cell cycle, interferon response, live-cell imaging

INTRODUCTION

Triple negative breast cancer (TNBC) is an aggressive form of breast cancer that affects 10-20% of all breast
cancer patients and is characterized by its lack of expression of estrogen, progesterone and HER2 receptors[1].
The standard of care for TNBC patients primarily relies on conventional anthracycline and taxane-based
chemotherapy regimens, and few next-generation therapies have shown efficacy in patients with this disease[2].
Paclitaxel, a taxane-based chemotherapeutic commonly used in TNBC treatment[3], targets microtubules to
disrupt the formation of the mitotic spindle, resulting in cell cycle arrest and apoptosis. While 22% of TNBC
patients treated with paclitaxel achieve pathological complete response, the outcome for those with residual
disease is relatively poor[4, 5]. Moreover, paclitaxel monotherapy only achieves a median 5.5 month progression
free survival in patients with locally advanced or metastatic disease[6]. Therefore, there is a need to better
understand the molecular basis of paclitaxel response and mechanisms of resistance that may be targeted for

therapeutic benefit.

Phenotypic plasticity enables malignant cells to rapidly adapt to therapeutic challenge[7] and can also drive
acquired drug resistance[8]. Adaptive responses often involve activation of new transcription factors which in
turn upregulate programs that repress immune activation[9], grant tolerance to DNA replication stress[10], or
enable evasion of apoptosis [11]. Single-cell RNA sequencing (ScRNA-seq) is a powerful approach to investigate
the subtle but critical differences in transcriptional landscape that distinguish cellular phenotypic states and to
identify molecular programs associated with different therapeutic sensitivities[12]. Single cell methods such as
scRNA-seq enable heterogeneous populations to be deconvolved into discrete states to identify the gene

regulatory mechanisms that contribute to drug resistance [13, 14].

To elucidate the adaptive responses of TNBC cells to paclitaxel, we performed deep single-cell RNA sequencing

of HCC1143 TNBC cells before and after paclitaxel treatment. Paclitaxel induced a range of phenotypic changes,
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including altered cell cycle phase distribution, increased proportion of multinucleated cells, increased expression
of senescence and DNA damage associated biomarkers, and upregulation of interferon-related gene programs.
Comparison of gene expression profiles from paclitaxel treated versus IFNB or IFNG treated cells enabled
identification of genes that were uniquely upregulated after paclitaxel treatment, including a suite of transcription
factors. Functional assessment with siRNA knockdown confirmed that many of these TFs are critical for
mediating resistance to paclitaxel. Using live-cell imaging, we probed the temporal dynamics of these functional
responses, which demonstrated that knockdown of ELF3, FOSL1 and IRF9 synergize with paclitaxel to slow cell
cycle progression. Together, these analyses identify upregulation of ELF3, FOSL1 and IRF9 as important

regulators of cell cycle progression that mediate response to paclitaxel, and which may serve as biomarkers of

response.

RESULTS

Paclitaxel modulates multiple cancer-associated phenotypes

We identified phenotypic changes induced by paclitaxel by treating HCC1143 TNBC cells for 72 hours with
paclitaxel, followed by fixation and staining with DAPI (DNA), CellMask (cytoplasmic marker), Tubulin Beta 3
(TUBB3, microtubule component), p16/p15 (senescence) and cPARP (DNA damage induced apoptosis) (Figure
1A). We quantified total DAPI intensity to assess cell cycle status[15] and observed two distinct peaks in the
DMSO treated sample, representing diploid (GO/G1, mode = 119 A.U) and tetraploid (G2/early M, mode = 222
A.U.) states associated with cycling cells (Figure 1B). Intermediate paclitaxel doses (0.01nM-1nM) resulted in
an enrichment of cells in the diploid to sub-diploid range, consistent with paclitaxel’s known side-effect of
chromosomal disruption[16, 17]. The highest paclitaxel dose tested (81nM) resulted in an increased fraction of
cells in diploid and tetraploid states and a broader distribution of nuclear intensities, indicating significant
dysregulation of nuclear content. This dysregulation of nuclear content also correlated with a dose-dependent
reduction in cell numbers and an increase in the proportion of multinucleated cells (Figure 1C). The fraction of
multinucleated cells plateaued around 9nM paclitaxel, with ~25% of surviving cells harboring two or more nuclear

structures for all higher dosages.
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We further assessed adaptive cellular responses by analyzing biomarkers associated with senescence
(p16/p15), DNA damage induced apoptosis (cPARP), and microtubule component (TUBB3). TUBB3
overexpression has been associated with resistance to multiple microtubule targeting drugs, and consistent with
this, we found a dose-dependent relationship between TUBB3 expression and paclitaxel concentration[18, 19].
There was also a positive association between both cytoplasmic and nuclear p16/p15 staining and paclitaxel
dose (Figure 1D). Additionally, we observed a strong correlation between p16/pl5 and TUBB3 expression at
the single cell level across paclitaxel concentrations, suggesting that the TUBB3 highly expressing cells
represent a senescent subpopulation of cells (Supplemental Figures 1A,1B, Pearson correlation = 0.70, r'\2 =
0.48). Increasing doses of paclitaxel induced a corresponding increase in the fraction of cPARP positive cells
(DMSO: 6%, 81nM Paclitaxel: 28% cPARP positive), indicating induction of DNA damage driven apoptosis
(Figure 1E, Supplemental Figure 1C). Higher paclitaxel doses resulted in a significantly higher proportion of
mononucleated cells staining positive for cPARP as compared to multinucleated (19.4% mononucleated cells
and 7.1% multinucleated cells cPARP positive at 81nM paclitaxel, proportions test p = 0.017), suggesting that
multinucleated cells are less likely to undergo DNA damage-induced apoptosis. Together this suggests that the

multinucleated cells that survive paclitaxel treatment are cell cycle arrested and also less likely to undergo DNA

damage-induced apoptosis than mononucleated cells.

Cells surviving paclitaxel treatment halt cycling and upregulate interferon response genes

To assess paclitaxel-induced molecular programs, we performed 10X Genomics single-cell whole transcriptome
sequencing of HCC1143 cells treated with either DMSO vehicle control or 1nM paclitaxel for 24 hours or 72
hours (Figure 2A). After quality control filtering that required cells to have a minimum of 3000 unique genes and
a maximum of 25% mitochondrial counts, we recovered 3194 total cells (513 — 1106 cells per condition) with a

mean UMI count of 63,668 (Supplemental Figure 2A).

We examined drug-induced changes in cell cycle distribution by assigning cell cycle status to each individual cell
using aggregate expression of canonical gene programs for S and G2/M[18,19]. In agreement with our imaging
results, we observed an enrichment in the fraction of G1 cells after paclitaxel treatment as compared to time-
matched vehicle control (Figure 2B). Unsupervised clustering tended to group cells by treatment condition and

cell cycle phase (Supplemental Figures 2B, 2C, 2D).
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We analyzed time-matched conditions to identify significantly differentially expressed genes induced by
paclitaxel treatment (Wilcoxon rank sum test, absolute log2 fold-change > 0.5, Benjamini Hochberg FDR < 0.01).
This revealed a time-dependent change in molecular programs with 66 significantly upregulated and 57
significantly downregulated genes after 24 hours of paclitaxel treatment, and 256 significantly upregulated genes
and 58 significantly downregulated genes after 72 hours (Supplemental Figure 2E). Reactome pathway
enrichment analysis revealed that the significantly upregulated genes from the 24-hour paclitaxel treated sample
were enriched for multiple programs related to Interferon Signaling and Translation (Figures 2C-D,
Supplemental Data 2). Programs uniquely upregulated after 72 hours of paclitaxel treatment include Response
to Chemical Stress, Cell Cycle Progression and Antigen Processing-Cross presentation (Figure 2E-F). The
ontologies enriched after 72-hour paclitaxel treatment had low overlap with those at 24 hours (Jaccard Index =
0.023, Supplemental Figure 2F). Notably, the Neutrophil Degranulation pathway was significantly enriched at
both time points, with upregulated genes related to antigen presentation (HLA-B, HLA-C, B2M) and differentiation
(CD47, CD55, CD59, CD63). Paclitaxel treatment also induced significant upregulation of the pro-tumorigenic

chemokines CXCL1 and CXCL8 (Supplemental Figure 2G)[20-23]. Together this shows that TNBC cells that

survive paclitaxel treatment have altered surface marker expression and produce tumor supportive chemokines.

Paclitaxel response activates canonical interferon response genes

Despite gene enrichment consistent with interferon response, the paclitaxel treated cells showed no evidence of
autocrine signaling, indicating that paclitaxel induces interferon response pathways in a hon-canonical manner
(Supplemental Figure 3A). To disentangle the paclitaxel response signature from true interferon response, we
performed a second scRNA-seq experiment with HCC1143 cells that were treated for 72 hours with 7
perturbations that target ligand-receptor pairs known to play an important role in normal and pathological breast
tissue[24, 25]: Interferon-Beta (IFNB), Interferon-Gamma (IFNG), Transforming Growth Factor Beta (TGFB),
Oncostatin-M (OSM), Lymphotoxin Alpha (LTA), Notch Inhibitor (NOTCHi) and combination of Notch Inhibitor
and Interferon-Beta (NOTCHi_IFNB). Cells were treated for 72 hours and then harvested and sequenced with
the 10X Genomics scRNA-seq pipeline. After quality control filtering, we recovered 4231 total cells (295 — 725

cells per condition, Supplemental Figure 3B).

Overall, the scRNA-seq data revealed that the treated cells largely grouped by perturbation (Normalized Mutual

Information = 0.58, Figure 3A) and cell cycle state (Normalized Mutual Information = 0.28, Supplemental Figure
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3C). The IFNB, IFNG, TGFB, NOTCHi and NOTCHi_IFNB conditions all had an increase in proportion of G1
cells compared to control, suggesting these ligands are cytostatic in this cell line (Supplemental Figure 3D).
Based on the observation that paclitaxel induced Interferon related pathways, we next sought to evaluate the
similarity in transcriptional response between paclitaxel and the ligand perturbations. To that end, we computed
the differential expression of all genes for each perturbation compared to time-matched vehicle control and then
evaluated the pairwise Pearson correlation of log2 fold-change values (Figure 3B). The IFNB and IFNG
conditions were the most strongly correlated (Pearson correlation = 0.86), indicating a conserved impact on
transcription despite acting through different receptors. We found that the 72-hour paclitaxel condition was highly
correlated with the interferon treatments (IFNB Pearson correlation = 0.57, IFNG Pearson correlation = 0.47) as

compared to the other single-agent perturbations (0.0, 0.11, 0.18, 0.38 Pearson correlation with OSM, LTA,

NOTCHi and TGFB respectively).

While type 1 and type 2 interferons primarily exhibit antitumor effects through activation of the immune system,
some studies have found they have direct effects through induction of cell cycle arrest or apoptosis in malignant
cells[26, 27]. To better understand the overlapping transcriptional responses of paclitaxel and interferon, we next
sought to differentiate between pathways that were uniquely induced by paclitaxel response or that represent
common responses induced by paclitaxel or interferon perturbation. Reactome pathway enrichment analysis
revealed that the 140 genes upregulated after paclitaxel treatment but not after IFNG or IFNB (“paclitaxel-
unique”) were enriched in molecular programs related to wound healing, protein folding, and intrinsic apoptotic
signaling pathway (Figure 3C), whereas the 117 genes upregulated by all three treatments (“paclitaxel-shared”)

were associated with defense response to virus and antigen presentation (Figure 3D).

We hypothesized that the strong overlap in interferon and paclitaxel transcriptional responses was driven by a
shared increase in transcription factor (TF) activity through activation of cytosolic DNA sensing pathways[28,
29]. We identified enriched TFs in our paclitaxel-unique and paclitaxel-shared gene signatures using ChEA3[30],
which evaluates the expression of gene targets downstream from a TF of interest. DDIT3, JUN, KLF6, and ATF3
emerged as enriched transcription factors across both the paclitaxel-unique and paclitaxel-shared gene
signatures (Figure 3E). The paclitaxel-unique genes were enriched for TFs in the Immediate-Early Gene family,
including JUN (JUN, JUNB, JUND) and FOS (FOS, FOSL1, FOSB)[31]. TFs enriched from the shared gene list

were associated with activity of Interferon Regulatory Factors (IRF1/IRF7/IRF9) and Basic Leucine Zipper family
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(BATF2/BATF3), both related to antiviral response and regulation of antigen-presenting cells[32-34]. The high
activity of IRF7 is consistent with activation of the cytosolic nucleotide sensor RIGI, suggesting that the nuclear

damage induced by paclitaxel drives an increase in cytosolic RNA or DNA [35].

Inhibition of paclitaxel-induced transcription factors alters proliferation and nuclear morphology

We used siRNA knockdown in three basal-like TNBC cell lines (HCC1143, HCC1806, MDA-MB-468) to
functionally assess prioritized TFs implicated in modulating response to paclitaxel. We nominated a panel of 13
TFs for functional testing, based on ChEAS3 analysis and change in gene expression after 24 or 72 hours of
paclitaxel treatment (Figure 3F, Log2FC > 0.25, Benjamini-Hochberg FDR < 0.01). Most of the TFs included in
this panel were either subunits of (ATF3, FOSL1, JUN, JUNB, MAFF)[36] or known interactors with (ELF3, IRF7,
DDIT3, NFE2L2)[37-40] the AP-1 transcription factor family. Dysregulation of the AP-1 pathway is associated
with multiple tumorigenic phenotypes including enhanced cellular growth, proliferation, and survival[41]. To
functionally assess the role of these TFs in paclitaxel response, cells were transfected with siRNA for 24 hours,
then treated for 72 hours with paclitaxel or DMSO, and subsequently fixed and stained with DAPI (nuclear
marker) and CellMask (cytoplasmic marker). The resultant images were subjected to quantitative image analysis
to identify nuclear and cellular masks, followed by quantification of total cell number and fraction of multinucleated

cells for each condition.

First, we analyzed the influence of TF knock-down on cell count after 72 hours to evaluate their effects on cell
viability. We found that knockdown of 3 of 13 TFs (NFE2L2, IRF7, MAFF) in the absence of paclitaxel significantly
reduced cell numbers for at least one cell line (Student’s t-test, p<0.05, Figure 4A green bars, Supplemental
Figure 4A). We then examined the influence of TF knock-down in the presence of paclitaxel to test our
hypothesis that upregulation of these TFs mediates adaptive resistance. Knockdown of 5 of 13 TFs (NFE2L2,
ELF3, IRF7, FOSL1, PLSCR1) in combination with paclitaxel significantly lowered cell count in at least one cell

line compared to paclitaxel alone (Student’s t-test, p < 0.05, Figure 4A purple bars, Supplemental Figure 4A).

We hypothesized that these 13 TFs may also be involved in cytokinesis, based on our observation that escalating
paclitaxel dose was associated with an increased fraction of multinucleated cells (Figure 1C). We found that
siRNA knockdown alone caused a significant increase in the fraction of multinucleated cells for 6 of 13 TFs for

at least one cell line (NFE2L2, ELF3, SP100, FOSL1, MAFF, and ATF3. Proportions test, p < 0.05. Figure 4B,
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Supplemental Figure 4B). Additionally, knockdown for 11 of 13 TFs in the presence of paclitaxel resulted in
significantly increased fraction of multinucleated cells as compared to paclitaxel alone, for at least once cell line.
These findings suggest an important role for these transcription factors in maintaining nuclear structure and

achieving symmetric cytokinesis in proliferating breast cancer cells.

We comprehensively analyzed the influence of siRNA knockdown across cell lines and drug conditions. Here,
we considered each siRNA an independent sample and each combination of cell line (HCC1143, HCC1806,
MDA-MB-468), treatment (DMSO, paclitaxel) and phenotype (relative cell count, fraction multinucleated) as 12
independent features (Supplemental Figure 4C). Principal component analysis applied to the transformed data
revealed that our positive and negative growth controls separated along Component 1 (Figure 4C). To identify
the TFs that had the greatest overall impact on phenotype, we computed the Euclidean feature-distance
(distance for z-scored features) to identify TFs that induced the greatest feature-distance from siNonTarget
positive growth control. We found that ELF3, FOSL1, and NFE2L2 knockdown had the largest Euclidean feature-
distance (Figure 4D) and additionally separated from the rest of the panel via hierarchical clustering
(Supplemental Figure 4C), indicating that knockdown had a strong effect on both proliferation and regulation
of nuclear morphology across the three TNBC cell lines. Protein quantification for ELF3, FOSL1 and NFE2L2
confirmed that the siNonTarget+Paclitaxel induced an accumulation of protein compared to vehicle control, and
the targeted siRNA+Paclitaxel reduced protein levels to below the siNonTarget+Vehicle level (Supplemental

Figures 5A-B).

ELF3 and FOSL1 mediate cell cycle progression under paclitaxel treatment

Motivated by the observation that many anti-cancer drugs act by targeting the cell cycle, we next explored the
influence of prioritized TFs on cell cycle progression by leveraging a genetically engineered HCC1143 cell cycle
reporter cell line. The cell cycle state of HDHB-mClover/NLS-mCherry HCC1143 cells can be determined by
guantification of relative HDHB-mClover (nuclear translocating cell cycle reporter) intensity within the cytoplasm
compared to the nuclear signal marked by NLS-mCherry (stable nuclear localization)[42, 43]. Cells in G1 cell
cycle phase have near-equal nuclear and cytoplasmic HDHB-mClover expression, cells in S/G2 cell cycle
phases exclude the HDHB-mClover from the nucleus, and cells in M phase concentrate the HDHB-mClover
expression to the nucleus. Here we focused on NFE2L2, ELF3 and FOSL1, which induced the largest phenotypic

effects; we additionally tested IRF9 which has been previously linked to anti-microtubule chemotherapy
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resistance [44]. Reporter cells were subjected to siRNA transfection for 24 hours and then treated with either
1nM paclitaxel or DMSO. Treated cells were imaged every 15 minutes for 72 hours. Nuclear and cytoplasmic
masks were segmented with custom trained Cellpose[45] models and the resultant data used to classify cells
into four ‘phase’ assignments based on HDHB-mClover expression and their number of nuclei (Figure 5A).

Mononucleated cells were assigned as ‘G1’, ‘'S/G2’ or ‘M’ phase and multinucleated cells assigned to either ‘M’

or ‘multinucleated’ phase based on localization of the HDHB-mClover signal (Supplemental Figure 6A).

As chemotherapeutic drugs often have peak efficacy during a specific cell cycle phase, we next asked whether
the combination of paclitaxel treatment and siRNA knockdown altered the dynamics of cell cycle progression.
To that end, we trained a Markov Model on the live-cell data, which enabled us to infer transition rates and the
average time spent in each of the four phases for a given treatment condition[42, 46]. This approach uses the
change in fraction of cells in each cell cycle phase over time (Figure 5B) to learn cell cycle-specific transition
rates, which represent the fraction of cells that transition from one phase to another phase within a 1-hour
timestep (Supplemental Figure 6B). We constrained our model such that proliferating cells can either
successfully complete the cell cycle or undergo mitotic failure into a permanent multinucleated phase (Figure

5C).

We compared the model output to the observed phase counts and found similar trends over time and for all
treatment conditions (Supplemental Figures 6C, 6D). We used a local polynomial regression (second order
LOESS) as a reference and found that our Markov model output compared favorably, with a Root Squared Mean
Error (RMSRE) of only 0.0809 in excess of the LOESS fit (Supplementary Figures 7A, 7B). Additionally, we
used the Chi-squared test to evaluate whether there was a significant compositional difference between the
experimental data and Markov output. This approach found that greater than 95% of timepoints had no significant
difference for all conditions except for DMSO+siFOSL1 (Supplemental Figure 7C). For the DMSO+siFOSL1
condition, the model and experimental data agreed for the first 60 hours but diverged during the last 12 hours,

with the model predicting fewer M phase cells than observed in the experimental data.

We next leveraged the model’s learned transition rates to calculate the rate of mitotic failure for each condition
and to better understand how the combination of siRNA knockdown and paclitaxel treatment compared to siRNA
knockdown alone. The Markov model framework enabled calculation of the mitotic failure rate as the ratio of M-

>multinucleated transition rate over the sum of M->G1 and M->multinucleated transition rates (Figure 5D).
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siRNA knockdown of ELF3 alone had the largest effect without paclitaxel and increased the mitotic failure rate
by 18.1% (DMSO+siNonTarget = 6.4%, DMSO+siELF3 = 24.5%), while inhibition of FOSL1, NFE2L2 or IRF9
had limited effects (DMSO+siFOSL1 = 7.5%, DMSO+silRF9 = 7.7%, DMSO+siNFE2L2 = 10.8%). Combination
siRNA knockdown and paclitaxel treatment resulted in higher mitotic failure rates for ELF3, FOSL1, and NFE2L2
(PTX+siNonTarget = 45.9%, PTX+siELF3 53.6%, PTX+siFOSL1 = 55.8%, PTX+sINFE2L2 = 61.2%) These

findings implicate ELF3, FOSL1 and NFE2L2 in nuclear morphology maintenance and cytokinesis completion

necessary for successful mitosis.

Through this model we aimed to assess how the combination of siRNA knockdown and paclitaxel synergized to
disrupt the cell cycle and transitions between phases. For each individual or combination perturbation, we
computed the inferred phase duration for G1, S/G2 and M phases using the model’s homotypic transition rates,
which represent the fraction of cells that remain in the same phase through the timestep (Figure 5E). The
inhibition of ELF3 alone strongly increased cell cycle duration (DMSO+siNonTarget = 49 hours, DMSO+siELF3
= 115 hours), with substantial increases to the time spentin G1 (DMSO+siNonTarget = 7.9 hours, DMSO+siELF3
= 33.5 hours) and S/G2 (DMSO+siNonTarget = 37.7 hours, DMSO+siELF3 = 72.1 hours) phases. The
combination of paclitaxel treatment and siRNA knockdown resulted in the longest cell cycle durations for both
the PTX+siELF3 (160 hours) and PTX+silRF9 (159 hours) conditions compared to PTX+siNonTarget (84.4
hours). To further assess the therapeutic impact of siRNA knockdown and paclitaxel combination treatments, we
used a Highest Single Agent (HSA) model to compare the inferred phase duration under combination paclitaxel
+ siRNA to the highest inferred phase duration for a single agent (either paclitaxel alone or siRNA alone, Figure
5F)[47]. In this approach a duration ratio less than 1 indicates antagonism (siRNA + paclitaxel results in shorter
inferred phase duration than highest single agent), a duration ratio of 1 means there is no benefit of combination
compared to highest single agent, and a duration ratio greater than 1 indicates a positive synergistic effect
(siRNA + paclitaxel results in longer inferred phase duration than highest single agent). We found that although
knockdown of NFE2L2 alone resulted in longer cell cycle phases, these changes were not particularly synergistic
with paclitaxel treatment. In contrast, IRF9 knockdown resulted in increased duration ratios of all three phases
compared to HSA (G1: 1.93, S/G2: 1.87, M: 1.8), while FOSL1 knockdown resulted in increased duration ratios

for G1 and M phases (1.96, 2.19 ratios respectively). ELF3 knockdown showed the greatest synergy for the G1
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phase, with a G1 duration ratio of 2.55, indicating that the combination of ELF3 knockdown with paclitaxel

treatment strongly inhibits cell cycle progression out of G1.

Motivated by these ELF3 findings, we hypothesized that ELF3 expression may be predictive of overall survival
in breast cancer. To that end we assessed the METABRIC[48] breast cancer cohort and used ELF3 expression
to stratify patients into three categories: ‘high’ (Upper quartile of ELF3 expression), ‘mid’ (Inter quartile range of
ELF3 expression), and ‘low’ (Lower quartile of ELF3 expression). We found that ELF3 expression was prognostic
in both directions, with ELF3-high tumors having significantly shorter recurrence free survival (HR = 1.21, p value
=0.025, Cox Proportional Hazard) and ELF3-low tumors having a significantly longer overall survival (HR =0.77,
p value = 0.004, Cox Proportional Hazard) compared to the ELF3-mid tumors (Figure 5G). We then compared
the gene expression between the ELF3-high and ELF3-low groups and found that the ELF3-high tumors were
significantly enriched for MSigDB hallmarks related to cell cycle progression (HALLMARK_G2M_CHECKPOINT:
NES = 1.99, Benjamini-Hochberg FDR = 5.0e-8, HALLMARK_E2F TARGETS: NES = 1.94, Benjamini-
Hochberg FDR = 2.9e-7, Figure 5H, Supplemental Figure 8A). We also found that the ELF3-low tumors were
enriched for MSigDB hallmarks related to Allograft Rejection and Epithelial to Mesenchymal Transition (NES = -
2.14, Benjamini-Hochberg FDR = 4.1e-11, and NES = -1.95, Benjamini-Hochberg FDR = 6.1e-8 respectively).
These results support our experimental in vitro findings that ELF3 activity contributes to continued malignant cell
proliferation, and that high ELF3 expression in human breast cancer is associated with cell cycle progression

and is also a negative predictor of progression free survival.

DISCUSSION

Paclitaxel is a cornerstone therapy for TNBC and is an important component of first line neoadjuvant treatment
for newly detected disease. Despite this, less than 20% of breast cancer patients treated with combination
neoadjuvant therapy (paclitaxel followed by combination fluorouracil + doxorubicin + cyclophosphamide) achieve
pathological complete response (pCR), and 47% of TNBC patients without pCR have recurrent disease within
10 years[49]. Although long-term chemotherapy resistance is often facilitated by clonal selection for growth-
permissive mutations[50-52], newer molecular profiling techniques have revealed that short-term adaptive
responses are possible through rapid epigenetic changes without acquisition of new mutations [53, 54]. In this
study, we sought to identify adaptive responses that emerge after paclitaxel treatment and that may be targeted

to deepen therapeutic response. To that end, we characterized the phenotypic and transcriptional responses of
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TNBC cells to paclitaxel, with a focus on changes in cell humber, multinucleation, and transcription factor
programs Using siRNA knockdown, live-cell imaging, and computational modeling, we identified several TFs that
phenocopied key aspects of paclitaxel response, including reduced proliferation rates and an increased
proportion of multinucleated cells. ELF3 knockdown in vitro was synergistic with paclitaxel treatment and
suppressed G1 to S/G2 cell cycle progression. Analysis of the METABRIC breast cancer cohort revealed that
high expression of ELF3 was associated with worse outcome and higher cell-cycle related pathway activity.

Together, these findings support the idea that upregulation and activation of ELF3 is an early and transcriptionally

based mechanism of paclitaxel resistance in TNBC.

Many drug and gene manipulation studies focus primarily on viability or other cell count proxies at a terminal
timepoint[55-58]. While such cell viability studies have proven valuable, more recent studies have demonstrated
that chemotherapies modulate multiple cancer-associated hallmarks, including cell cycle phase behavior,
senescence and nuclear morphology[42, 59, 60]. Further, there is evidence that the complex behavior of cellular
systems are inherently dynamic, and their complex behaviors are better understood with measures that capture
temporal behavior[43, 61-63]. While our live-cell studies captured important changes in cell cycle dynamics and
the population distribution of various cell cycle states, no single metric captures the complete biological response.
Future studies could deploy a richer panel of reporter molecules to gain deeper insights into other aspects of the
response, including the timing and order of transcription factor activation, activation of specific cell cycle

checkpoints, and activation of senescence or apoptotic pathways[64-66].

In this study we identified dual roles of the transcription factor ELF3 that contribute to paclitaxel tolerance by: 1)
permitting cells to transition from G1 to S/G2, and 2) enabling successful division into two mononuclear daughter
cells. These findings were enabled by a Markov Model of cell cycle progression built on population level cell
count data which learned the transition rates between cell cycle phases and inferred cell cycle phase
durations[42, 46]. While the inferred cell cycle durations represent an accurate prediction of the population’s
average behavior, they cannot inform whether this arises from a homogenous or heterogenous distribution of
cell cycle durations. This is of particular interest in the case of cancer treatment, as a small population of cells
with a fitness advantage may eventually overtake the other populations, thus achieving therapeutic
resistance[67]. An alternative approach could track individual cells and their progeny to build complete lineages

with accompanying cell cycle timing information. Lineage based approaches tend to be relatively low throughput
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due to the computational and experimental requirements, but offer the opportunity to discern between
heterogenous states of differing cycling speeds[46]. Another limitation of our Markov Model’'s implementation is
the assumption that transition rates are static throughout the duration of observations. While the output of the
model mapped well within the 72-hour measurement window, there was some divergence at the end of the
experiment that may suggest a weakening of either siRNA or paclitaxel effect. Incorporation of temporal

information could be used to the current model implementation and could be useful for predicting combination

drug effects and optimizing the drug schedule for maximum disruption of cell cycle progression.

Paclitaxel inhibits cell growth by simultaneously promoting microtubule assembly and inhibiting microtubule
depolymerization, which results in mitotic checkpoint failure and subsequent apoptosis or senescent arrest[68,
69]. The in vitro experimentation performed in this study represents an extensive investigation into the phenotypic
and molecular responses of TNBC cells to paclitaxel, however we acknowledge that tumors are comprised of
diverse cell types and intercellular signaling molecules can influence therapeutic response in breast cancer and
other malignancies[70-72]. Indeed, the tumor microenvironment is known to have a significant impact on drug
response through cell-cell interaction and alterations to extracellular matrix[73, 74]. While we did not include
stromal cells in our study, our findings of paclitaxel induced upregulation chemokines (CXCL1, CXCL8) support
the idea that malignant cells that persist through paclitaxel treatment will have differential interactions with the
immune system as compared to treatment-naive cells. Tumor-derived CXCL1 is known to recruit
immunosuppressive myeloid cells that inhibit CD8* T cell infiltration[75]. The chemokine CXCL8 plays multiple
pro-tumorigenic roles including recruitment of immunosuppressive neutrophils[76], promotion of
angiogenesis[77] and maintenance of breast cancer stem cells[78]. Future studies that more deeply consider
the influence of stromal and immune cells signals in modulating therapeutic response will be needed to better

understand the complete system of factors involved in paclitaxel resistance.

As key regulators of multiple molecular programs, many transcription factors are known to contribute to cancer-
associated phenotypes[79] and therapeutic response[80, 81]. Our study found that the ETS family transcription
factor ELF3 was upregulated during early response to paclitaxel treatment, and siRNA knockdown of ELF3 was
synergistic with paclitaxel treatment at slowing cell line growth. Other studies have found that high ELF3 activity
is associated with inhibition of epithelial to mesenchymal transition [82]. Furthermore, inhibition of ELF3 was

found to reduce proliferation across a number of cancer models including lung adenocarcinoma[83],


https://doi.org/10.1101/2024.06.04.596911
http://creativecommons.org/licenses/by-nc-nd/4.0/

355

356

357

358

359

360

361

362

363

364

365

366

367

368
369
370
371
372
373
374

375

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.04.596911; this version posted June 6, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.
neuroendocrine carcinoma[84] and prostate cancer[85]. Circulating tumor cells have elevated ELF3 expression
in both murine models and human breast cancer[86]. Conserved dysregulation of ELF3 across cancer types
may be related to its genomic location (loci 1g32) which is commonly amplified across cancers[87, 88] and also

encodes for a number the cancer related genes including MDM4 (p53 suppressor)[89, 90].

Taken together, this work has identified ELF3 upregulation as an acquired mechanism of paclitaxel resistance.
These findings support the development of pharmacological agents that inhibit ELF3 activity and could be used
in combination with paclitaxel to further improve patient outcomes. While it has been historically difficult to
develop targeted transcription factor inhibitors due to their lack of enzymatic activity, recent advances, such as
targeted siRNA nanoparticles and indirect inhibition through targeting multiple interacting proteins, have made
pharmacomodulation of transcription factors more tenable[91-93]. Until such therapies are developed, ELF3 may
serve as a useful biomarker which predicts the development of paclitaxel resistance and continued malignant

proliferation.

METHODS

Cell culture: HCC1143 (ATCC), HCC1806 and MDA-MB-468 cells were authenticated by STR profiling and
tested negative for mycoplasma. HCC1143 and HCC1806 cells were cultured in RPMI 1640 with L-glutamine
(cat. 11875119, Life Technologies Inc.) supplemented with 10% fetal bovine serum (#16000-044, Gibco). MDA-
MB-468 cells were cultured in DMEM (#11965-092, Life Technologies Inc.) supplemented with 10% fetal bovine
serum (#16000-044, Gibco). All lines were incubated at 37C with 5% CO.. For perturbation experiments, cells
were seeded into appropriate assay vessel for 24 hours prior to treatment with either vehicle control (DMSO;
PBS) or perturbation (table below).

Perturbation Shorthand Concentration used | Source Identifier Vehicle
for scRNA-seq

Paclitaxel PTX 1nM LC Labs P-9600 0.1% DMSO

Notch Inhibitor NOTCHi 1uM Millipore Sigma BMO0018-5MG 0.1% PBS

Interferon Beta IFNB 20ng/mL PBL Assay | 11410-2 0.1% PBS
Science

Interferon Gamma IFNG 20ng/mL R&D Systems 385-IR-100 0.1% PBS

Transforming TGFB 10ng/mL Biotechne 7754BH005 0.1% PBS

Growth Factor Beta

Lymphotoxin LT 10ng/mL Biotechne 8884-LY-025 0.1% PBS

Oncostatin M OsSM 10ng/mL Cell Signaling | 5367SC 0.1% PBS
Technology



https://doi.org/10.1101/2024.06.04.596911
http://creativecommons.org/licenses/by-nc-nd/4.0/

376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391

392
393
394

395
396
397
398

399
400
401
402
403

404
405
406
407
408
409

410
411

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.04.596911; this version posted June 6, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Fixed cell assays: Cells were plated at 3000 cells in 100ul of complete media per well in a 96 well plate (#08-
772-225, FisherScientific). After 24 hours, an additional 100ul of either vehicle (0.1% DMSO) or paclitaxel
containing complete media was added. After 72 hours cells were fixed with 4% Formaldehyde (#28908,

ThermoFisher Scientific) for 15 minutes at room temperature, then permeabilized with 0.3% Triton X-100 (#X100-
100ML, Sigma Aldrich) for 10 minutes at room temperature, then washed twice with PBS. Fixed cells were
blocked with 1% BSA (A7906-100G, Millipore Sigma) in PBS for 1 hour at room temperature and then stained
overnight with 1:100 anti-CDKN2A/p16INK4A+CDKN2B/p15INK4B-AF644 (#ab199756, Abcam), and 1:100
anti-cPARP-AF647 (#6987S, Cell Signaling Technology) or 1:500 anti-TUBB3-AF647 (#abl190575, Abcam)
overnight at 4C. Each well was washed twice with room temp PBS then stained with 0.5ug/mL DAPI (4083S,
Cell Signaling Technology) in PBS for 15 minutes at room temperature. Following DAPI staining, wells were
washed once with PBS, then stained with 1:20,000 HCS CellMask in PBS (Orange: #H32713, Green: #H32714,
Invitrogen) for 15 minutes at room temperature. Wells were washed twice with room temperature PBS and then
4 fields of view per well imaged on an InCell 6000 (GE Healthcare). Images were segmented with two custom
Cellpose[45] models to segment the nucleus (from DAPI channel) and cytoplasm (from HCS Cellmask channel).
Image quantification was performed in R (v4.3.1) using EBImage (v4.42.0), and cells were annotated based on

the number of distinct nuclei segmented within each cytoplasmic mask.

scRNA-seq library preparation and sequencing: Experiment 1 (DMSO 24 hour, DMSO 72 hour, Paclitaxel 24

hour, Paclitaxel 72 hour): Each condition had a single-cell RNA library prepared using 10X Genomics Single Cell

3’ v2 kits and sequenced on an Illlumina NextSeq 500 for 500e6 reads per library.

Experiment 2: All conditions were multiplexed using Hashtag Oligonucleotide barcoding technology (TotalSeq-
B, Biolegend) following manufacturer standard protocol. A paired feature-barcode library and mRNA library were
generated using the Single Cell 3’ v3 kit (10X Genomics) following manufacturer instructions and then sequenced

on an lllumina NovaSeq for 800e6 reads.

scRNA-seq data processing: For both experiments; raw base call files were converted to FASTQ format with

bcl2fastqg (Illumina). Cellranger count (v6.0.2) was used to align reads to the GRCh38 transcriptome (GRCh38-
2020-A, accessed from 10X Genomics) and count UMI reads. The R package Seurat[94, 95] (4.0.5) was used
to perform variable feature identification, linear and nonlinear dimensionality reduction, unsupervised clustering

and differential gene expression.

Variance Stabilizing Transformation was used to identify the top 2000 variable genes and Principal Component
Analysis (PCA) was used to reduce these 2000 genes to 10 components for UMAP embedding and unsupervised
clustering. Differential expression analysis was performed using the FindMarkers function of Seurat with default
parameters. Geneset enrichment analysis was performed with the R package clusterProfiler[96] (v4.8.2) using
significantly upregulated genes compared to time-matched vehicle control (abs(avg_log2FC) > 0.5, Benjamini
Hochberg FDR < 0.05).

Transcription Factor Enrichment Analysis: Significantly upregulated genes (avg_log2FC > 0.5, Benjamini

Hochberg FDR < 0.05) were computed for paclitaxel, IFNB and IFNG treated samples compared to time-matched
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vehicle treated cells. ChEA3 enrichment analysis was performed with default settings using R code from the
CHEA3 API documentation (https://maayanlab.cloud/chea3/) to perform an online query using either the genes
uniquely upregulated in paclitaxel treated cells, or those shared between paclitaxel and either of the interferon
responses. The top 15 ranked transcription factors from both the paclitaxel unique and paclitaxel-interferon
shared TF enrichment lists were considered when nominating siRNA knockdown targets. Any TF that also had
at least 0.25 log2 fold change for paclitaxel at either 24 or 72 hours compared to vehicle control was included in

the siRNA knockdown panel.

siRNA Knockdown: Cells were plated in 90ul of serum free media per well of a 96 well plate. 24 hours later,

siRNA knockdown mixture was prepared using a cell-line optimized concentration of Lipofectamine RNAIMAX
(cat 13778075-075, Invitrogen) and siRNA (Horizon Discovery ON-TARGETplus) following RNAIMAX
recommended protocol. The final concentration of SiRNA per well was 1pmol and the final volume of RNAIMAX
per well was 75nL for HCC1143, and 37.5nL for HCC1806 or MDA-MB-468 in 100uL of cell containing volume.
24 hours after siRNA transfection cells were treated with an addition of 100uL complete media containing either

DMSO vehicle control or paclitaxel.

Protein isolation: Protein isolation: siRNA knockdown of HCC1143 cells was performed using the siNonTarget,

SiELF3, siFOSL1, and siNFE2L2 pools as described above. After 24 hours of knockdown, perturbation containing
media was added such that media volume doubled and had a final concentration of either 0.1% DMSO (vehicle
control) or 1nM Paclitaxel. After 72 hours of perturbation, cells were washed with 4C PBS then lysed by 5 minute
incubation at 4C with RIPA buffer (R0278, Sigma) supplemented with 1X Halt Protease and Phosphatase
Inhibitor Cocktail (1861281, Thermo Scientific). Remaining cells were scraped from the plate and lysate was
snap frozen in liquid nitrogen then stored at -80C overnight. The following day lysate was clarified by
centrifugation at 21,130 x g for 10 minutes at 4C. The supernatant was collected and the protein concentration

was immediately quantified. Remaining protein was stored at -80C.

Western Blot: Protein quantification was performed using the Western Simple protocol on the Jess capillary
western machine using the 12-230 kDa cartridge and following manufacturer instructions (Biotechne). Primary
antibodies targeting the protein products of ELF3 (anti-ESE1, ab133521, Abcam), FOSL1 (anti-FRA1, sc28310,
Santa Cruz), and NFE2L2 (anti-NRF2, HPA043438-1, Sigma) were used at 1:50 dilution. Lysates were loaded
at a concentration of 2mg/mL and volume of 5uL per capillary well, and the Anti-rabbit detection kit (DM-001,
Biotechne). was used to quantify primary antibody levels. Peak quantification was performed using the included

Compasssoftware with default settings (v6.3.0, Biotechne).

HDHB reporter live-cell assays: siRNA knockdown and drug treatment was performed as described above, and
then the plate was loaded on an Incucyte S3 (Sartorious) and cells imaged every 15 minutes for 72 hours post
drug treatment. At each timepoint 4 fields of view were captured at 20x magnificantion in each well using the
phase, red and green channels. A cytoplasmic mask was computed from the mean of normalized red/green

channel, and a nuclear mask was computed from the red channel using custom trained Cellpose[45] models.
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Image quantification was performed in R (v4.3.1) using EBImage (v4.42.0). An additional perinuclear ring mask
was computed as the 11 pixel dilation from the nuclear mask, but still bound by the cytoplasmic mask. To
determine mClover localization thresholds for cell cycle assignment, 250 cell images were randomly selected
and manually assigned to the G1, S/G2 or M cell cycle state based on mClover localization. The mClover
intensity ratios were then used to determine thresholds for automated cell cycle phase calling which was applied
to the rest of the data set (Supplemental Figure 5A). Mononuclear cells with a Perinuclear:Nuclear mean
intensity ratio greater than 0.8 and Nuclear:Cytoplasmic total intensity less than 0.5 were assigned to the S/G2
phase. Mononuclear and Multinuclear cells with a Nuclear:Cytoplasmic total intensity ratio greater than 0.8 and
Perinuclear:Nuclear mean intensity ratio less than 0.8 were assigned to the ‘M’ phase. The remainder of

mononuclear cells were assigned ‘G1’, and the remainder of multinucleated cells were assigned ‘Multinucleated’.

Markov modeling: The 5-frame moving average of cell count per cell cycle phase was downsampled to one value
per hour and used to train a markov model for each unique siRNA (NonTarget, ELF3, FOSL1, NFE2L2, IRF9,
PLK1) +/- paclitaxel condition. The transition matrix of the model was constrained such that cells could remain

in their current phase, progress through the cell cycle (G1 -> S/G2, S/IG2 -> M, M -> G1 with replication) or
transition from M phase to an absorbing (permanent) multinucleated phase. Models were trained for 15 epochs,
and the first epoch was seeded with an identity transition matrix. 3000 random transition matrices were generated
each epoch, and the 5 with lowest error were used as seeds for the following epoch. The prior best performing
matrices were updated with randomly generated matrices at a learning rate of 0.1 for the first epoch, halving

every 2 epochs.

The prediction for counts for each future state (Sy+1) is calculated as the product of the counts at the prior state

(Sn) by the transition matrix (P) and the replication matrix (RM).

Gl S/G2 M Multi.

Gt (1 1 0 0

RM= S/G2| 0 1 1 0
M |2 o0 1 1

Multi| 0 0 0 1
Gl S/G2 M Multi.

Gt [ 2 0 0
P=35/G2|0 ? 7?2 0
M |? o ? 7

Multi{ 0 0 0 2

Sns1 =S, *P*xRM

The error of the markov predicted cell counts (Cexp) cCOMpared to observed counts (cops) Was computed as the
arithmetic mean of the Root Mean Squared Relative Error (RMSRE) of each cell cycle phase across all predicted
timepoints. The noise floor of RMSRE was estimated with a second-order loess fit with span of 0.75 (loess

function from R package ‘stats’, v4.3.1).
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— 2
RMSRE = \/1* (Cexp ~ Cobs)”
n

2
Cobs

The mitotic success rate (MSR) of each condition was computed as the ratio of M-to-G1 transition (Pwu,c1) to the

sum of the transition rates for M-to-G1 (Pwm,c1) and M-to-multinucleated (Pwm,muii):

P,
MSR = e

Py 1 + Pumuiei

The expected duration of G1, S/G2 and M cell cycle phases was calculated from the homotypic transition rates
as[97]:

1

1-P,

For i == j: ExpectedDuration; ; =

Metabric _survival and microarray analysis: The Metabric[48] microarray and patient metadata was accessed
through cbioportal[98-100] and analyzed using R (v4.3.2) and the ‘survival’ package (v3.5.7). The z-scored
microarray expression data was used to categorize patients into ‘high’ (highest expressing quartile), ‘mid’ (first
to third expressing quartile) or ‘low’ (lowest expressing quartile) based on expression of ELF3. For survival
analysis, patients were filtered to those with microarray data and then Kaplan-meier survival curves were
generated with the ‘ggsurvfit’ package (v1.0.0). Cox proportional hazard statistics were calculated with the
‘coxph’ function of the ‘survival’ package (v3.5.7). Differential expression was calculated from the log normalized
microarray data using the ‘wilcoxauc’ function from the ‘presto’ package (v1.0.0). Significantly differentially
expressed genes (abs(logFC) > 0.5 and adjusted p < 0.05) where used to compute MSigDB hallmark GSEA
using the ‘clusterprofiler’ (v4.10.1) and ‘msigdbr’ (v7.5.1) packages.

Full reagent list:
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HCC1806 - cellline | ATCC CRL-2335
MDA-MB-468 - cellline | ATCC HTB-132
RPMI 1640 RPMI reagent | Life Technologies 11875119
DMEM DMEM reagent | Life Technologies 11965-092
Fetal Bovine Serum FBS reagent | Gibco 16000-044
D8418-
Dimethyl Sulfoxide DMSO reagent | Millipore Sigma 250ML
Phosphate Buffered Saline PBS reagent | Gibco 14190235
Paclitaxel PTX reagent | LC Labs P-9600
Interferon-Beta IFNB reagent | PBL Assay Science 11410-2
Interferon-Gamma IFNG reagent | R&D Systems 385-1R-100
Cell Signaling
Human Oncostatin M OSM reagent | Technology 5367SC
Recombinant Human Lymphotoxin
alphal/beta2 protein LT reagent | Biotechne 8884-LY-025
Recombinant Human TGFB-Beta 1 TGFB reagent | Biotechne 7754BH005
BMS-906024 NOTCHi reagent | Millipore Sigma BM0018-5MG
ThermoFisher
16% Formaldehyde (w/v) - reagent | Scientific 28908
Triton X-100 - reagent | Millipore Sigma X100-100ML
Normal Goat Serum Blocking Solution - reagent | MP Biomedicals #0219135680
Lipofectamine RNAIMAX transfection ThermoFisher
Reagent - reagent | Scientific 13778075
Bovine Serum Albumin BSA reagent | Millipore Sigma A7906-100G
RIPA buffer - reagent | Sigma P0278
100X Halt Protease and Phosphatase ThermoFisher
Inhibitor Cocktail - reagent | Scientific 1861281
anti-
CDKN2A/p16INK4A+CDKN2B/p15INK4B-
AF644 pl6 antibody | Abcam ab199756
Cell Signaling
anti-cPARP-AF647 cPARP antibody | Technology 6987S
anti-TUBB3-AF647 TUBB3 antibody | Abcam ab190575
HCS CellMask Green CellMask Green stain Invitrogen H32713
HCS CellMask Orange CellMask Orange | stain Invitrogen H32714
Cell Signaling
DAPI DAPI stain Technology 4083S
anti-ESE1 - antibody | Abcam ab133621
Fral Antibody (C-12) - antibody | Santa Cruz sC-28310
Anti-NFE2L2 antibody produced in rabbit | - antibody | Millipore Sigma HPA043438
SIATF3 Smartpool SIATF3 siRNA Hoizon Discovery L-008663-00
siDDIT3 Smartpool siDDIT3 siRNA Hoizon Discovery L-004819-00
SiELF3 Smartpool SIELF3 siRNA Hoizon Discovery L-016080-00
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siFOSL1 Smartpool siFOSL1 siRNA Hoizon Discovery L-004341-00
silRF7 Smartpool silRF7 siRNA Hoizon Discovery L-011810-00
silRF9 Smartpool silRF9 siRNA Hoizon Discovery L-020858-00
siJUNB Smartpool siJUNB siRNA Hoizon Discovery L-003269-00
siJUN Smartpool siJUN siRNA Hoizon Discovery L-003268-00
siKIF11 Smartpool siKIF11 SiRNA | Hoizon Discovery L-003317-00
siKLF6 Smartpool SiKLF6 siRNA Hoizon Discovery L-021441-00
siMAFF Smartpool SIMAFF SiRNA Hoizon Discovery L-003903-00
siNFE2L2 Smartpool SINFE2L2 siRNA Hoizon Discovery L-003755-00
siPLK1 Smartpool SiPLK1 siRNA Hoizon Discovery L-003290-00
siPLSCR1 Smartpool siPLSCR1 siRNA Hoizon Discovery L-003729-00
siSP100 Smartpool siSP100 siRNA Hoizon Discovery L-015307-00
ON-TARGETplus Non-targeting Control siNonTarget siRNA Hoizon Discovery D-001810-10
ON-TARGETplus GAPD Control SiGAPD siRNA Hoizon Discovery D-001830-10

Data Availability

Single Cell RNA-seq data is available on the Gene Expression Omnibus with study ID: GSE266934
(https:/lwww.ncbi.nim.nih.gov/geo/query/acc.cgi?acc=GSE266934). The raw images and processed data from
immunofluorescent stained HCC1143 are available on Zenodo: (doi: 10.5281/zenodo.11237850). The raw
images and processed data from the siRNA panel, and the processed data from live-cell imaging study are
available on Zenodo (doi: 10.5281/zenodo0.11238552). The raw images from the live-cell experiments are

available upon request.
Code Availability

All code related to data available on Github

(https://github.com/HeiserLab/PTX_manuscript).

processing and figure generation are
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Supplementary information

Supplemental data 1: contains differential gene expression results for all sScRNA-seq perturbation studies
compared to time-matched vehicle control.

Supplemental data 2: contains ontology enrichment results for all SCRNA-seq experiments.

Supplemental data 3: contains differential gene expression results for between ELF3-high and ELF3-low
samples from the Metabric cohort.

Supplemental data 4: contains MsigDB GSEA results for ELF3-high and ELF3-low samples from the Metabric
cohort.
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Figure 1: Paclitaxel modulates multiple cancer associated phenotypes. 1A) Representative fluorescent
images showing HCC1143 cells treated with DMSO or Paclitaxel at the listed doses for 72 hours and stained
with DAPI, p16-INK4A, and TUBB3. 1B) Ridgeplot showing impact of paclitaxel treatment on DAPI total
nuclear intensity as a proxy for nuclear content. Dashed lines indicate local maxima in the DMSO control
condition corresponding with 2N and 4N nuclear state. 1C) Normalized cell count and fraction of multinucleated
cells for HCC1143 treated with serial titration of Paclitaxel for 72 hours. Error bar indicates SEM across 6
replicates. 1D) Barplots showing mean TUBB3 and p16/p15 cytoplasmic staining intensity for triplicate wells of
HCC1143 treated with a range of Paclitaxel and normalized to paired DMSO control (horizontal line).
Significance assessed with Dunnett’s test. 1E) Barplot comparing the fraction of cPARP positive cells for
mononucleated (magenta) versus multinucleated (cyan) cells within the same treatment condition. cPARP
positive threshold was set to the 99th quantile of DMSO treated cells total cPARP nuclear intensity
(Supplemental Figure 1C). Significance assessed with proportions test. For all statistics: * = p<0.05, ** =
p<0.01, *** = p<0.001.

Figure 2: Cells surviving paclitaxel treatment halt cycling and upregulate interferon response genes.
2A) UMAP color coded by treatment condition. DMSO_24 = 0.1% DMSO for 24 hours, DMSO_72 = 0.1%
DMSO for 72 hours, PTX_24 = 1nM Paclitaxel for 24 hours, PTX_72 = 1nM Paclitaxel for 72 hours. 2B) Barplot
showing proportion of each condition assigned to G1, S, or G2M cell cycle state based on transcriptional
profile. 2C,2D) Volcano plot of differentially expressed genes for Paclitaxel treatment versus DMSO at 24 (2C)
and 72 (2D) hours. Differentially expressed genes (black) determined with cutoffs of Benjamini Hochberg
corrected p<0.05 and absolute Log2FoldChange > 0.5. 2D) Reactome pathway enrichment results for genes
significantly upregulated after paclitaxel treatment at 24 hours. Size indicates the number of genes upregulated
within the pathway, color indicates significance. 2E) Volcano plot of differentially expressed genes for
Paclitaxel treatment versus DMSO at 72 hours. Differentially expressed genes (black) determined with cutoffs
of Benjamini Hochberg corrected p<0.05 and absolute Log2FoldChange > 0.5. 2F) Reactome pathway
enrichment results for genes significantly upregulated after paclitaxel treatment at 72 hours. Size indicates the
number of genes upregulated within the pathway, color indicates significance.

Figure 3: Paclitaxel response activates canonical interferon response genes. 3A) UMAP showing the
scRNA-seq landscape for ligand perturbations. IFNB = Interferon-Beta, OSM = Oncostatin-M, NOTCHi_IFNB =
Notch inhibitor + Interferon-Beta, NOTCHi = Notch inhibitor, TGFB = Transforming Growth Factor Beta, IFNG =
Interferon-Gamma, LTA = Lymphotoxin-Alpha, PBS = Phosphate Buffered Saline (control). 3B) Heatmap
showing the Pearson correlation for all gene log2 fold-change between perturbation versus time-matched
control. Inset number and color indicate correlation. 3C,D) Gene enrichment map for Paclitaxel uniquely
upregulated (3C) and Paclitaxel+Interferon shared upregulated (3D) genes. Color indicates significance, size
indicates number of upregulated genes, and lines connect ontologies with shared elements. 3E) ChEA3
transcription factor enrichment ranks computed from 140 Paclitaxel uniquely upregulated genes (x axis) versus
120 Paclitaxel-Interferon shared upregulated genes (y axis). Lower rank indicates higher imputed activity. TFs
to the lower right of the diagonal have higher imputed activity within the PTX+IFN shared upregulated gene
set, and TFs to the upper left of the diagonal have higher imputed activity within the PTX uniquely upregulated
gene set. 3F) Bar plot showing Average Log2FC from paclitaxel treated scRNA-seq data for the 24 top ranked
transcription factors (intersect of top 15 ranked for PTX unique or PTX shared individually). Transcription factor
names in red had differential upregulation (average log2 fold-change > 0.25, FDR < 0.01) at either 24 or 72
hours of paclitaxel treatment compared to vehicle control.

Figure 4: Inhibition of paclitaxel-induced transcription factors alters proliferation and nuclear
morphology. 4A-B) Barplots showing relative cell count (A) and proportion of multinucleated cells (B). Cell
count is normalized to the same cell-line DMSO + siNonTarget control. Bars show the mean of three cell lines,
and error bar indicates SEM. Relative cell count statistics computed with Fisher’s multi test applied to Two-
tailed Student’s T-test per cell line, and fraction multinucleated statistics computed with Fisher’'s multi test
applied to proportions test per cell line. Heatmap of all values in Supplement 4A, 4B. Not shown: secondary
positive growth (siGAPD) and negative growth (siKIF11) controls 4C) Principal Component results for each
SsiRNA knockdown where each combination of cell line (HCC1143, HCC1806, MDA-MB-468), feature (relative
cell count, fraction multinucleated) and condition (DMSO, PTX) is considered a feature (Supplemental Figure
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4C). 4D) The Euclidean feature-distance from NonTarget control for each siRNA. Heatmap of scaled feature

values in Supplemental Figure 4C. For all statistics: * = p<0.05, ** = p<0.01, *** = p<0.001.

Figure 5: ELF3 and FOSL1 mediate cell cycle progression under paclitaxel treatment. 5A)
Representative images showing the HCC1143 cell cycle reporter line and a mitotic even occurring over 105
minutes. Orange text indicates automatically assigned cell cycle for the processed images. 5B) Relative
(normalized to total cell number at earliest time point) cell count for each phase over time for each siRNA
condition +/- paclitaxel (PTX). 5C) Schematic showing the underlying structure of permitted transitions used in
the Markov Model. 5D) Mitotic failure rate computed from Markov model transition rates. Mitotic failure rate is
calculated as the ratio of M->multinucleated transitions divided by the sum of M->G1 and M->multinucleated
transition rates. 5F) PTX + siRNA synergy computed as the ratio of inferred phase duration for combination
(siRNA + PTX) versus Highest Single Agent (HSA, highest duration for either siRNA or PTX treatment alone).
Value of 1 indicates no change in combination, values greater than 1 indicate synergy and values less than 1
indicate antagonism. 5G) Overall survival for the Metabric breast cancer cohort striated by ELF3 mRNA
expression. High = top quartile of ELF3 expression, IQR = inner quartile range of ELF3 expression, and low =
lowest quartile of ELF3 expression. 5H) MSigDB Gene Set Enrichment (GSEA) results for ELF3 high versus
ELF3 group. Horizontal line represents a FDR threshold of 0.05.

Supplementary Figure 1. S1A) Density plot showing the distribution of cells for all conditions (DMSO + PTX).
X axis shows mean intensity for p15/p16, y axis shows Mean Intensity for TUBB3 in arbitrary units (A.U.). R*2
squared shown for Pearson correlation (p-value < 2.2e-16). S1B) Breakout plots showing the same information
as S1A. Control (DMSO) shown for every inset plot, and paclitaxel (PTX) for the nM dose listed above. S1C)
Breakout plots showing the Normalized DAPI total intensity versus Normalized cPARP nuclear total intensity.
Horizontal line indicates threshold for calling a cell ‘cPARP positive’, color indicates whether the cell is
mononucleated (red) or multinucleated (blue).

Supplementary Figure 2: S2A) Violin plots of scRNA-seq QC metrics for the four conditions. Horizontal lines
indicate the first, second and third quartiles. S2B) Breakout plots showing the same UMAP as Figure 2A split
by condition and color coded by cell cycle phase. S2C) Number of clusters computed from Louvain clustering
applied across a sweep of resolutions. S2D) The Normalized Mutual Information (NMI) between cluster label
and biological label (treatment x cell cycle phase) computed across a sweep of Louvain clustering resolutions.
The NMI values indicate that there is a high degree in overlap of information between unsupervised cluster
labels and known biological labels. S2E,F) Euler plot showing the overlap in significantly upregulated genes
(SF2E) and enriched Reactome pathways (SF2F) between paclitaxel at 24 hours (PTX24) and 72 hours
(PTX72) compared to time matched control. F2G) Barplots showing mean expression of chemokines CXCL1
and CXCL8 which were significantly upregulated in both paclitaxel conditions compared to time matched
control.

Supplementary Figure 3: S3A) Heatmap showing expression for interferon ligands (gray) and receptors
(black) for each of the paclitaxel sScRNA-seq conditions. S3B) Violin plots of sScRNA-seq QC metrics for the
ligand perturbation conditions. Horizontal lines indicate the first, second and third quartiles. S3C) The same
ligand perturbation scRNA-seq UMAP as Figure 3A, but color coded by cell cycle phase assignment. S3D) Bar
plot indicating the proportion of cells assigned to each cell cycle phase for each condition.

Supplementary Figure 4: S4A) Heatmap of relative cell count (Normalized to NonTarget) for each siRNA +/-
1nM Paclitaxel (PTX) condition for the three Triple Negative Breast Cancer cell lines tested. GAPD and
NonTarget siRNA are positive growth controls, KIF11 and PLK1 are negative growth controls. Significance
assessed via t-test versus the same-drug (DMSO or PTX) NonTarget condition with Bonferroni Correction (p-
values: *: < 0.05, **: < 0.01, ***: < 0.001). S4B) Heatmap representing the proportion of multinucleated cells for
each siRNA +/- 1nM Paclitaxel (PTX) condition for the three Triple Negative Breast Cancer cell lines tested.
GAPD and NonTarget siRNA are positive growth controls, KIF11 and PLK1 are negative growth controls.
Significance assessed via proportions test versus the same-drug (DMSO or PTX) NonTarget condition with
Bonferroni Correction (p-values: *: < 0.05, **: < 0.01, ***: < 0.001).
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Supplementary Figure 5: S5A) siRNA knockdown validation blots showing spectra images from
ProteinSimple/WesternSimple protocol for ESE1 (ELF3), FRAL (FOSL1) and NRF2 (NFE2L2) knockdown after
72 hours of treatment with either 0.1% DMSO or 1nM Paclitaxel. S5B) Quantification of the images above.
Total signal indicates the sum of peak area for the +/- 10% range around the highest intensity peak.

Supplementary Figure 6: S6A) HDHB-mClover reporter intensities plot colored by manual assignment. 250
images of cells were randomly selected and manually assigned a cell cycle state (G1, M, S/G2) based on cell
morphology and mClover intensity. The manual assignment was used to select Total Intensity Ratio (Nuclear
vs cytoplasmic) and Mean intensity ratio (Perinuclear versus Nuclear) as defining features for automatic cell
cycle assignment. Black lines represent thresholds used for automated cell cycle assignment. S6B) Heatmap
showing the heterotypic (between different states) transition rates learned by the Markov model for each
unique siRNA +/- Paclitaxel (PTX) condition. Inset number is the transition rate and color is the z-score of row.
S6C, SF6D) Cell count over time plots for each of the DMSO (S6C) and PTX (S6D) treated conditions showing
the experimental data (black dots) and Markov values (red line) predicted using the learned transition rates and
initial time point.

Supplementary Figure 7: S7A) Representative plot showing the smoothed experimental counts (5-timepoint
rolling mean) versus a Loess fit for the siNonTarget + Paclitaxel condition. S7B) Dot plots showing the Root
Mean Squared Relative Error (RMSRE) for the Markov Model (black dots) over each training epoch versus the
Loess fit (green line). Loess fit represents an estimate of the ‘noise floor’ of the measurement. S7C) Model
rejection rate for each condition computed from the Chi-squared test applied between the experimental and
model predicted composition for each single time point. A nominal Chi-squared p value < 0.05 was considered
a significantly different timepoint. A rejection rate of 0% means that there was no significant difference in
phenotype composition at any timepoint.

Supplementary Figure 8: S8A) Volcano plot showing differentially expressed genes for the Metabric ELF3
high group versus ELF3 low group. Genes to the right (positive Log2FC) are significantly upregulated in the
ELF3 high group and genes to the left (hegative Log2FC) are significantly upregulated in the ELF3 low group.
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879 S2A: scRNA-seq QC metrics S2B: Cell cycle phase by treatment
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S3A: Interferon gene expression
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S4A: Relative Cell Count at 72 hours
(vs DMSO + NonTarget siRNA)
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885 S5A: Protein quantification
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S5B: ProteinSimple siRNA validation
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S6A: Reporter quantification versus manual assignment
® G1

Manual Assignment

e M

® S/G2

S6B: Heterotypic transition rates
(color z-scored by column)

drug

dmso
2

IRF9_dmso
NonTarget_dmso

FOSL1_dmso

NFE2L2_dmso

NFE2L2_ptx

NonTarget_ptx

PLK1_dmso

ELF3_dmso

IRF9_ptx 2
PLK1_ptx
|

ELF3_ptx

FOSL1_ptx

2.0+
£
D154
[%]
=}
<
3
© 1.0+
3
£
)
S
0.5+
0.00
Total Intensity ratio
(Nuclear/Cytoplasmic)
g & 8 =2
S S A
8 =
S6C: Observed cell counts vs Markov prediction
(DMSO treated for 72 hours)
ELF3 FOSL1 IRF9 NFE2L2 NonTarget PLK1
100 - .
50 4 - . @
30 4 i O A p . * e
f b3
30 A s
T AP | o PO | ot | | eS|
39 ¢ — il | i B B :
1 . -
50 " [
104 . ’ : 1 ( 42 X =
300 /
100 | Voo At | | g™ / P %
304 1 .
T T T T T T T T T T T T T T T T T T T T T T
0 20 40 60 0 20 40 60 O 20 40 60 0 20 40 60 0O 20 40 60 0 20 40 60
Time (Hours)
S6D: Observed cell counts vs Markov prediction
(1nM PTX treated for 72 hours)
ELF3 FOSL1 IRF9 NFE2L2 NonTarget PLK1
100 —
SO_W W B e i”""’_ LTS
10 ) N
30 o : rku
12-{“‘""‘"“' | || i | PR | :
14 ’ i - .
100
30 1 g™ - ""'- —r——— /“" ~ f ] ,
104" o~ :!"_ . g
31 :
100-~\..~ n‘.ﬁ M
30 A e N e 8
10 - -

T

T T
0 20 40 60

T

o
N
o
N
o
[+2]
o

T T T T
0 20 40 60

Time (Hours)

nnw <- W

+  Experimental Data

=== Markov Predicted

* Experimental Data

=== Markov Predicted


https://doi.org/10.1101/2024.06.04.596911
http://creativecommons.org/licenses/by-nc-nd/4.0/

889

890

891

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.04.596911; this version posted June 6, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

ST7A: Representative Loess fit (siNonTarget + PTX)
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S8A: Differential Expression: ELF3 high vs. ELF3 Low
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