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23 Abstract: Intensive breeding of dogs has had dramatic effects on genetic variants underlying
24  phenotypes. To investigate whether this also affected mutation rates, we deep-sequenced
25  pedigreesfrom 43 different dog breeds representing 404 trios. We find that the mutation rateis
26 remarkably stable across breeds and is predominantly influenced by variation in parental ages.
27  Theeffect of paternal age per year on mutation rates is approximately 1.5 times greater in dogs
28 than humans, suggesting that the elevated yearly mutation rate in dogs is only partially attributed
29 toearlier reproduction. While there is no significant effect of breeds on the overall mutation rate,
30 larger breeds accumulate proportionally more mutations earlier in devel opment than small
31  breeds. Interestingly, we find a 2.6 times greater mutation ratein CG Islands (CGls) compared to
32 theremaining genome in dogs, unlike humans, where there is no difference. Our estimated rate
33  of mutation by recombination in dogsis more than 10 times larger than estimates in humans. We
34  ascribethese to the fact that canids have lost PRDM 9-directed recombination and draw away
35 recombination from CGls. In conclusion, our study sheds light on stability of mutation processes
36 and disparities in mutation accumulation rates reflecting the influence of differencesin growth

37  patterns among breeds, and the impact of PRDM9 gene loss on the de novo mutations of canids.
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Main Text: Decreased costs of genome sequencing and improved bioinformatics pipelines’ have
made it possible, at scale, to identify the set of new mutations that an individual is born with, by
sequencing thetrio of father, mother and offspring. This has led to mutation rate estimates from
many vertebrates™>*°, improving phylogenetic dating and providing insights into evolutionary

56,7,8,9, 10 and m| Cell

changes to the mutational process across vertebrates. However, only human
have had a sufficient number of trios sequenced and analysed for intraspecific analysis
determinants of mutation rate. Little is known, therefore, about how mutations accumulate over

time in the germline of other mammalian species, including dogs.

Dogs constitute a particularly interesting model for studying mutational processes. First, canids
are unique among mammalsin lacking a functional PRDM9 ortholog®. In other mammals,
PRDMB9 recognizes specific sequence motifs and directs the recombination machinery toward
these positions, though in some species only weakly’. However, without PRDM9, canids position
recombination events in open chromatin regions, most notably in CG Islands (CGIs)® *. Given
that recombination is mutagenic®, the lack of PRDM9-directed recombination in dogs should
trandlate into differences in the genomic distribution of germline de novo mutations (DNMs)
compared to other mammalian species with afunctional PRDM9 gene, such as humans.

Furthermore, intensive breeding of dogs over the past two hundred years has fostered an

impressive array of phenotypic diversity in, for example, body size ° and shape™, fur type*® 4,

1516 5nd breed-specific behavioural and disease enrichment’*31%2% Association

coat colour
studies have identified allelic variants of large phenotypic impact across breeds. very strong
artificial selection by humans may also have affected DNA repair processes and, thus, mutational

processes may differ between breeds.
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Here we identify de novo mutationsin 390 trios from 43 breeds of dogs raised in smilar
environments in Finland. Our dataset includes unusually large pedigrees (on average 7.48 trios),
allowing us to study potential differencesin mutational processes among breeds with different
phenotypical makeups and life histories. Moreover, by comparing the accumulation of germline
DNMsin CGls with the rest of the genome, we estimate the mutagenic effects of recombination
in dogs, and provide an estimate of the time when PRDM9-directed recombination was lost in

the canid lineage.
Dog mutation rates shaped by parental ages

We sequenced dog families collected at the dog biobank at the University of Helsinki, Finland,
over the past ~15 years. Genomes were sequenced to an average coverage of 43.3X from 643
dogs (341 females, 302 males) representing 54 multigenerational families and 404 trios, from a
total of 43 distinct dog breeds (Supplementary information 1, Supplementary Data 1). We
excluded 14 trios with at least one individual displaying an average coverage lower than 24X,
thus retaining 390 trios. The pedigrees vary in relationship structure and size, including 37
extended pedigrees average litter size = 2.4), and 81 trios with multiple siblings (mean = 3.6)
(Fig. 1, Supplementary Fig. 1). We applied a stringent pipelineto call DNMsfor all 404 trios
(Methods and Extended Data Fig. 1). We identified 8,312 high-quality autosome DNMs from
these 390 trios, with an average of 21.31 DNMs per trio (95% c.i.: 20.14-22.49, Binomial) and a
mean callable genome fraction of 96.52% (95% c.i. 96.44-96.56, Bootstrap). Our dataset
includes a hypermutated individual with 230 DNMs (ID: FAMO007647), which we excluded from
all subsequent analyses. We found that 1.51% of DNMs arein coding regions, similar to what
has been previously reported in humans (Extended Data Fig. 2). Searching for genes with several

mutations, we found enrichment for neurodevelopmental genesin both dogs and humans, but
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83 thesewere generaly in non-coding regions, and the biological significance of this observationis

84  unclear (Supplementary information 2).

85  Taking theindividual callable genome into account (M ethods), we observe an average germline
86 DNM rate of 4.89 x 10-° (95% c.i. 4.77 x 10"°- 5.02 x 10™°, Bootstrap) per base pair, per

87  generation across the pedigrees in autosomes. This estimate is slightly higher than previous

88  pedigree-based estimatesin wolves™(4.5 x 10°%), suggesting a divergence time between dogs and
89  wolves of ~23,000-30,000 years (Extended Data Table 1). Figure 2a shows per-generation

90 mutation rate estimates from the individual breeds, together with their phylogenetic

91 relationships. The estimated mutation rate per trio differs significantly among breeds (P = 5.4 x
92 10 ANOVA). The breed's effect on the rate per trio isless after accounting for differencesin
93 paternal age at conception, but remains statistically significant (P = 0.00014, ANOVA).

94  However, the differences in germline mutation rate across breeds are no longer significant after
95  accounting for parental age differences when we consider rates per litter, instead of treating

96 littermates asindependent trios (P = 0.602, ANOVA) (Supplementary information 3).

97  Using read-backed phasing, we determined that the parental origins of 2,586 out of 8,312 DNMs
98  (31.11%). Of the phased DNMs, 75.05% (95% c.i. 73.59 - 76.48, Bootstrap) were of paternal
99  origin, corresponding to a male-to-female mutation ratio of 3.01 (95% c.i. 2.79 - 3.25,
100  Bootstrap). Thisis less biased than in humans® (0.79% of paternal origin, 3.70), but as for
101 humans, we find a significant association between paternal age and the number of paternal
102 DNMs (Extended DataFig. 3). We investigated male and female mutation rates as a function of
103  parental ages and compared the dog results to human data®. We find that paternal age and
104 maternal age are both significant predictors of mutation rate in dogs (Extended Data Fig. 4)
105  (adjusted R2 = 0.3425, P<2 x 10 and P=0.000118, respectively), asin humans. We also

106 modelled phased mutation rates as a function of parental ages using Bayesian Poisson regression
5
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(Figure 2b). We observe significant posterior estimates for paternal age effects on paternal
mutation rates (3.25 x 10™°, 95% HDI 2.88 x 10° - 3.63 x 10™*%) and maternal age effects on
maternal mutation rates (9.64 x 10™, 95% HDI 5.61 x 10™ - 1.37 x 10™°)(Supplementary
information 4). The posterior estimates for paternal intercepts are higher in dogs than humans,
suggesting a bigger contribution of mutations accumulated early in development (Figure 2c).
Additionally, dogs show a steeper accumulation of paternal mutations per year, with paternal age
effect estimates 1.5 times greater than in humans (Figure 2¢). This higher yearly accumulation in
the male germline, and their shorter generation time. trandates into a higher yearly rate of de
novo mutation in dogs compared to humans (1.41 x 10° HDI: 1.37 x 10 - 1.45 x 10 vs 3.8 x

10" HDI: 3.78 x 10'°- 3.82 x 1019).

Paternal age at conception explains less of the variance in paternal germline mutation ratesin
dogs (M cFadden’ s R? of 30.47%) than humans (M cFadden’s R? of 56.18%), using Poisson
regression. McFadden’s R? valueis still higher in humans after downsampling the number of
DNMs to match that found in dogs (56.06%, Supplementary information 4), suggesting that
additional factors may contribute to the variance accumulation of paternal DNMsin dogs. We
tested for differencesin 21 quantitative phenotypes among breeds including size and lifespan but
found that none have a significant effect on the overall mutation rate per litter, based on an

ANOVA analysis using parental ages as covariates. (Supplementary information 3).

We next compared the accumulation of germline DNMs with parental age among breeds of dogs
of different sizes, assigning each to a category of small, intermediate or large size, based on
weight (Figure 3a). We found that large breeds accumulate more paternal DNMs early in
development, yielding higher estimates for the intercept (Figure 3b) (3.14 x 10°, HDI: 2.58 x 10
9. 3.7 x 10®) than small breeds (2.03 x 10°°, HDI: 1.78 x 10 - 2.29 x 10°®). Conversely, we

found that smaller breeds accumulate more paternal mutations per year, as evidenced by a higher
6
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paternal age effect on paternal mutation ratesin small dogs (3.93 x 10™°, HDI: 3.30 x 107 -
4.55 x 10™°) compared to that observed in large dogs (1.66 x 10™°, HDI: 7.81 x 10 - 2.63 x 10
1% (Figure 3c). Thus, even though the overal| per-generation mutation rateis similar for small
and large dogs, we find that the accumulation of germline DNMs through life varies among
breeds of differing body sizes. This variation may reflect differencesin growth patterns among
breeds, with larger breeds having more early cell divisions (faster initial growth) and later

23, 24

puberty® ?*, and shorter lifespan®.

Mutational spectrum in dogs compared to humans

Next, we compared the mutational spectrum of germline DNM s between dogs, mice and humans
by stratifying DNMs into eight classes representing the six possible single base pair changes,
plus separate categories for C>T mutationsin a CpG context, and mutations occurring in CGls
(Methods) (Figure 4a). We find that the spectrum of mutationsin dogsis more similar to mice
than humans. Notably, dogs show agreater rate of C>T mutations and a smaller rate of T>C
mutations than do humans. Intriguingly, thisis also the pattern observed when comparing young
to old fathers among human pedigrees’, suggesting that the mutation spectrum in dogs is more
similar to that transmitted by very young parents in humans. In addition, the rate of mutations

occurring in CGlsis significantly higher in dogs than in mice and humans.

These differences in mutational spectrum might be explained by a higher proportion of mutations
in dogs occurring earlier in development, i.e., before puberty, as suggested by a significantly
larger intercept in the accumulation of DNMs with parental age. To investigate this, we
compared the mutational composition of DNM s shared between siblings or half-siblings but
found no significant differences between the mutational spectrum in shared mutations and non-

shared mutations. We note that this analysisis based on only 79 unique mutations shared by 34
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sibling groups, similar to what is observed in a comparable human trio data set”® (Extended Data

Fig.5).
Mutation rate on the X-chromosome

Since the X chromosome spends % of the time in females but only % of the timein males, and
given that 71.11% of the DNMs are paternal in origin, the mutation rate on the X chromosomeis
expected to be lower than that of the autosomes. Following our estimated male-to-female
mutation rate ratio of 3 (), we would expect an X-to-autosome mutation rate ratio of 0.83 (95%
c.i. 0.82- 0.84, Bootstrap) ([2(2+)]/[ 3(1+a)]). We found alower rate ratio than expecte,
however, d (0.66), with an estimated mutation rate on the X of 3.22 x 10" (95% c.i. 2.84 x 10 °
- 3.58 x 10”°, Bootstrap) and a mutation rate on the autosomes of 4.89 x 10™° (95% c.i. 4.77 x
10-°- 5.02 x 10"°, Bootstrap) (Figure 4b). Thus, the mutation process on the non-
pseudoautosomal regions (PAR) of the X chromosome is slower than on the autosomes. A
deviation from thisis the PAR of 6.8 Mb*" % on the rest of the X whichis8.79 x 10-° (95% c.i.
6.44 x 10-° - 1.10 x 10"®, Bootstrap), which is 1.8 times higher than the autosomal rate. Since
there has to be one recombination event in the PAR in each male meiosis, the PAR should have a
recombination rate of approximately 100/6.8=14.7 cM/Mb in males and 1 cM/Mb in females,
yielding a sex-averaged recombination rate of 7.85 cM/Mb, which is around eight times higher
than the genome average. Given that recombination is mutagenic® %, this higher rate in the PAR

could explain the higher mutation rate observed in thisregion.
Recombination shapes the genomic distribution of de novo mutationsin dogs

Dogs lack PRDM9-directed recombination and are therefore expected to have more
recombination eventsin open chromatin, such as CGls proximal to genes” %, Strikingly, dogs

display a much higher mutation rate in CGls than both humans and mice (Figure 4a). This
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corresponds to amutation rate of 1.27 x 108 (95% c.i. 1.16 x 10"%- 1.38 x 10™%, Bootstrap),
which corresponds to a 2.6-fold increase in CGls compared to the rest of the autosomes (95% c.i.
2.37 - 2.82, Bootstrap, Figure 4b). We find that the mutational spectrum of DNMsin CGlsis
shifted towards a significantly higher rate after correction for multiple-testing (Bonferroni), of
C>A (P =146 x 10 Binomial test), C>G (P = 9.23 x 10°®; Binomial test) and CpG>TpG (3.11
x 10" Binomial test) in dogs, but not in humans (Figure 4c). As in the case of the PAR data
presented above, assuming that recombination in humansis mutagenic® %, a higher rate of
recombination in CGls could potentially explain the larger number of mutations observed within
these regions in dogs. If thisisthe case, recombination causes 2.00 times more mutations in
CGls compared to the PAR, and the recombination rate should then be expected to be twice as
high in the CGls, i.e., 15.70 cM/Mb. Given that the dog CGls cover atotal of 32 Mb, thiswould
correspond to a recombination length of CGls of roughly 32 x 15.7=502 cM, implying that about
25.4% of the recombination events occur in CGls, assuming atotal dog map length of 1978
cM®. These observations allow a very rough estimation of the mutagenic effect of
recombination. In 389 trios we would expect ~1953 recombination eventsin CGls (389 x 5.02).
We found atotal of 334 mutations in the CGls, where we expect 334/2.6=128.46 mutations from
the autosomes. If this excess of mutations of 334-128.46=205.53 mutations were al dueto
recombination, thisyields an estimate of 0.092 (205.53/2240.64, 95% c.i. 0.08 - 0.10, Bootstrap)
mutations per recombination event in CGls. Our estimated rate of mutation by recombination in
dogsis more than 10 times larger than estimates from humans® **. We speculate that this could
be part of the reason for using PRDM9 recombination to draw away recombination from CG

Island.

Unlike most mutations accumulated in the germline of males and females from conception to

reproduction, the mutational effect of recombination is expected to be independent of parental

9
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age (since thereis always one round of meiosis). Therefore, we expect mutations in the PAR and
in CGlsto be less dependent on parental age than for the rest of the autosomes. Moreover, we
also expect alower paternal age effect on mutations in the X chromosome, given that this
chromosome is more influenced by the maternal mutation rate. The correlations shown in Figure

4d are consi stent with these assumptions.
Estimated age of loss of PRDM9

Over evolutionary time, following the mutagenic effect of recombination, we would expect a
faster rate of evolution in the CGls of species that lack a functional PRDM9 gene. We sought to
investigate this effect by estimating the ratio of CGlsto autosomal substitution rate along the
branches of the phylogeny close to dogs. As expected, thisrate is around 2 for canid species that
lack a functional PRDM9 gene, whileit is 1.15 and 1.26 in the branches leading to the outgroups
Ursus and Felix, which have PRDM9-mediated recombination (Figure 4€). Interestingly, we also
estimated arate of around two in the ancestral branch of canids back to the split with Ursus,
suggesting that the loss of PRDM9 must have occurred soon after this split. These estimates
would situate the loss of PRDM9 in canids around 45 million years ago, making it an old

evolutionary loss.
Conclusions

Studying mutations rates in 43 distinct dog breeds demonstrates that the mutation rate is very
stable, despite the very strong artificial selection associated with dog breeding. The only life-
history trait we found associated with mutation accumulation is breed size, where larger breeds
accumulate more mutations early in life, implicating to the negative relationship between weight
and lifespan of dog breeds®™. Whether thisis a cause of the shorter life expectancy observed in

large breeds is an interesting question for future research.

10
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Male dogs accumulate about 1.5 times more mutations in sperm in their testis per year after
puberty compared to humans. The higher yearly mutation rate in dogs compared to humansis,
therefore, not only an effect of much shorter generation intervals, but also of ahigher intrinsic
mutation rate in dog spermatogenesis which is conserved across many different breeds.
Interestingly, dogs have also been reported to have a higher somatic mutation rate, which could
partly explain the 5-7 times shorter in lifespan observed dogs compared to humans, despite

having similar rates of cell divisions per year®.

The most conspicuous difference between dogs and humans in the distribution of mutationsis
with regards to the dogs much higher ratein CGls. We ascribe this to the loss of PRDM9-
directed recombination in canids. which then place a large fraction (we very crudely estimate
29%) of the recombinations in the open chromatin associated with CGls. Thisimplies that these
evolve faster in canids, and we could use their rate of evolution together with phylogenetic data
to estimate that the loss of PRDM9 occurred prior to canid diversification more than 45 million

years ago.
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344  whole genomesin five species (dogs, African wild Dog, arctic fox, polar bear and domestic cat).
345  The branch length represents the divergent time. The value on each branch isthe ratio of

346  evolutionary rate cpg and whole genome evolutionary rate.
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M ethod

Sample collection and infor mation

We collected samples from 643 dogs from 43 breeds, including 54 families, and 404 trios
(Supplementary information 1). The dogs were selected from the Finnish dog biobank, and All
dogs in the study originate from Finland. In subsequent analyses, we found that when the
sequencing depth of parentsin atrioislow, it affectsthe results of DNMs calling. Therefore, we
removed 14 trios that included low-depth parental samples (average coverage lower than 24X).
As aresult, the final number of trios included in our DNMs analysisis 390 (Supplementary

information 1).

Whole Genome Sequencing and Variant Calling of a Large Cohort of Dogs

We used the Covaris system to shear 1-3 ng of DNA into fragments ranging from 200-800 bp.
The fragments were then sequenced using the Illumina HiSeq 2000 platform with an average
depth of 43.3X. We subsequently used the bwa mem —M algorithm® to map the raw sequence
reads to the dog reference genome (Canfam3.1)**. We employed PICARD (version 1.96)
(https://broadingtitute.github.io/picard/) to remove duplicated reads, and merged BAM files for
multiple lanes. The sequences were locally realigned and base-recalibrated using the Genome
Analysis Tool Kit (GATK, version 3.7-0-gcfedb67)®. To produce the final BAM files, we
recalibrated base quality using GATK BQSR. We then used the HaplotypeCaller algorithm in
GATK to perform variant calling and generated a gV CF file for each sample. We joint
genotyped the gV CF files for each trio to generate araw VCF file. During the base and variant
recalibration, we used alist of known SNPs downloaded from the Ensembl database

(ftp://ftp.ensembl.org/pub/release-73/variation/vcf/canis familiarig) asthetraining set. Finaly,
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371 wefiltered the raw V CF files based on the following parameters: "QD < 2.0 || FS> 60.0 || MQ <
372 40.0 || QUAL <50.0 || SOR > 3.0 || MQRankSum < -12.5" for further analysis.

373

374  Denovo mutations calling

375  Weidentified de novo mutations (DNMs) in 404 trios from 54 families using the approach

376 outlined in Supplementary Fig 1 adhered to the guidelines on practices from Bergeron et a*. The

377  criteriafor DNMscalling using the variant call format (VCF) file of each trio are as follows:

378 a. The offspring genotype is heterozygous (0/1) and the genotype from the same position
379 from both parents is homozygous (0/0).

380 b. The mutation must be supported by a maximum of one read in the parents.

381 c. The genotype quality (GQ) of the DNM is no less than 40 (GQ >= 40).

382 d. Theread depth of any individual in thetrio isno less than 12 (min-meanDP = 12), more
383 than half of the average depth of the individual, and not more than twice the average
384 depth (0.5*indDP < DP < 2*indDP)). These depth thresholds are halved for X variants
385 in the chromosomes of male offspring, except for variants in the PAR region.

386 e. Theallelic balance, the fraction of reads supporting the alternative alele, ) in the child
387 must be greater than 0.25 and less than 0.75. The allelic balance of variantsin the X

388 chromosome of male offspring must be greater than 0.75, except for variants in the PAR
389 region.

390 f.  Only single nucleotide mutations are retai ned.

391

392 Denovo mutationsfiltering
303  To further remove false positive sites from candidate DNMs, we conducted a filter ssimilar to a

394  manual check with IGV*®. We used the samtools tool®” (samtools tview) to check the reads of all

21
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DNMs. This check is based on the bam file which is without realignment. We allowed at most
oneincorrect read. Incorrect reads refer to reads that differ from the reference genomein the
parents and reads that differ from both the reference genome and the DNM in the offspring.
Additionally, the offspring's DNM reads were required to meet the filtering criteriafor allele
balance, with reads supporting the mutation accounting for 0.25-0.75 of the total number of

reads. After excluding unqualified sites, we obtained afinal set of 8,565 high-quality DNMs.

Germline generationally mutation rates

The mutation rate per base pair per generation was estimated as the number of DNMs divided by
twice the number of callable sites. The number of callable sites is the number of sites where we
would be able to call a de novo mutation in the whole genome. We calculated the number of
callable sites for each trio as positions in the genome where parents are homozygous for the
reference allele that passed the depth filter applied to DNM calling, i.e no less than 12 and not
more than twice the average depth. Asin the case of DNM calling, these depth thresholds are
halved for X variantsin the chromosomes in male offspring, except for variantsin the PAR
region. Here we need to clarify the terms we used for genome callable site and callable size. We
use the “callable site” to refer to the genome position of a haploid genome that passes our quality
filters for de novo mutation calling, and we use the “callable size” to refer to the number used as
the denominator in mutation rate estimation after considering chromosomal region and
individual sex difference. For the X chromosome unique region, male individuals possess only
one copy and female individuals will carry two. Thus, the factor for scaling acallable site into
calablesizeis 1 and 2 for male and female respectively. For all other regions, the callable size

for each individual will be 2 times of the number of callable sites extracted.
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Mutational classes analysis
We discretize the 12 different single nucleotide mutations into 6 mutational classes (C>A, C>G,
C>T, T>A, T>C, and T>G, respectively), differentiating C>T mutationsin a CpG context
(CpG>TpG) from the rest (C>T). We consider DNMs in CpG idands(CGls) as a separate class.
We obtained the annotation of CGls from UCSC (https://genome.ucsc.edu/), using the genome
assemblies of canFam3 and hg38 for dogs and humans, respectively. For comparison, we also
used previously published DNMs from mice (760 DNMs from 40 trios)® and humans (181,258
DNMs from 2,976 trios)®.
We assessed the difference in the fraction of DNMs for each mutational class between species
using Fisher's exact test(R Package stats version 4.1.1). For each mutational class, we
constructed a 2x2 contingency table by dividing the the DNMs for each species into two
categories: belonging to the given mutational class (foreground) and not belonging to the
mutational class (background) The resulting P-values were adjusted for multiple testing using
Bonferroni’s correction.
We also compared the rates of DNMs for each mutational class. For this analysis, we control for
differences in the callable fraction of each trio. We also account for differences in the mutational
opportunities in the genome and CGils by scaling the callable fraction of a given mutational class
by the proportion of reference bases, i.e C, T and CpG, in a given genomic context. To test the
statistical significance in differences between mutation rates for a specific mutation classin the
entire genome and inside CGls, we used a binomial test from scipy (version 1.7.3) and adjusted
the P-values for multiple testing with Bonferroni correction using multipletests from statsmodels

(version 0.13.2).

DNM shared by siblings
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443 Inthis study, we analyzed 8,565 de novo mutations identified through whole-genome analysis.
444  We catalogued each mutation by its unique chromosomal position and filtered for mutations
445  observed more than once. Subsequently, we examined whether mutations shared between
446 individuals were from siblings or half-siblings, based on parental information. Siblings were
447  defined asindividuals with the same parents, while half-siblings were those sharing only one
448  parent
449  All shared mutations in the dataset occurred between either siblings or half-siblings. We
450 identified 79 unique mutations that are shared: 70 of these are common between two individuals,
451  while 9 are shared among three individuals. Notably, only two mutations were found between
452  half-siblings who shared the same father. There are 34 different parental combinations involved
453  inthese sibling-shared mutations.

454  We further compare the mutational spectrums between the 79 shared mutations and the

455  remaining 8,398 unique mutations. Thisinvolved calculating the frequency of eight mutation
456  types (C>A, C>G, C>T, T>A, T>C, T>G, C>T in CG context, and mutations in CGls). For the
457  mutational spectrum, the frequency of all categories, except mutationsin CGIs, cumulatively
458  eguals 1. We determined the frequency of each mutation type and its 95% confidence interval as

459  follows:

_. - c‘l-‘

460 DY

SE: = P(l1-F)
461 _ _ Zic-i
462 Pop =1 —1.96x SE;
463 -Plou.- = -p; — 1.96 * SE:
464
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The impact of mutation and recombination patternsin domestic dogs
We use the branch lengths of the phylogenetic trees to represent the evolutionary rate. We use
the whole genome sequences and CGilss region sequences to construct NJ phylogenetic trees and
obtain the branch lengths of each branch. We use five species, dog, African wild dog, Arctic fox,
polar bear and domestic cat, for the evolutionary rate analysis. The whole genome alignment
sequences of the five species come from the HAL alignment of 241 species zoonomia® cactus
alignment. The CGls alignment sequences are extracted from the HAL alignment using the

|39

maffilter tool™ with the dog as the reference genome. Subsequently, we obtain the species tree

with divergence time of the five species from Timetree™.

Data and materials availability

Raw sequence datais available from the GSA (https.//ngdc.cncb.ac.cn/gsal) under accessions

CRA004356 CRA002653 CRA002915 and CRA001113; and NCBI

(https://www.nchi.nim.nih.gov/) under the Bioproject PRINA1079355.
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533 Phased DNMs as a function of the parent’s age at conception.
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543 Extended Data Table 1. Recalibration of estimated divergence timesin canid.

Published Dates Novembre's Recalibration by this
Divergence Event (ka) Recalibration (ka) study (ka)
AF: 37 (35-40) 33(23-62) 30(19-58)
BvH: 28 (24-30) 25 (16-46) 23(15-44)
Dogs vs. wolves
ZF: 29 (24-30) 26 (16-46) 24(15-45)
LF: 34 (17-48) 30 (11-74) 28(17-52)
Western Eurasian dogs vs. East
Asian dogs LF: 6 (6-11) 5 (4-17) 5(3-9)
AF: 32 (29-34) 28 (19-52) 26(16-49)
Basenji vs. other dogs
ZF: 21 (19-23) 19 (12-35) 17(11-33)

BvH: 165 (158-

Coyotes vs. wolves 171) 146 (102-264) 134(85-255)
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