

1 **Efficient generation of human dendritic cells from iPSC by introducing a feeder-free
2 expansion step for hematopoietic progenitors.**

3

4 Zahra Elahi¹, Vanta Jameson², Magdaline Sakkas², Suzanne K Butcher¹, Justine D Mintern³,
5 Kristen J Radford⁴, Christine A Wells¹#.

6 1 Stem Cell Systems, Department of Anatomy and Physiology, School of Biomedical Sciences, Faculty of Medicine,
7 Dentistry and Health Sciences, The University of Melbourne, Parkville, Melbourne Victoria, Australia 3010

8 2 Melbourne Cytometry Platform, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences,
9 The University of Melbourne, Parkville, Melbourne Victoria, Australia 3010

10 3. Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and
11 Health Sciences, The University of Melbourne, Parkville, Melbourne Victoria, Australia 3010

12 4. Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, QLD
13 Australia 4102

14 # corresponding author wells.c@unimelb.edu.au

15

16 Conflict of interest: none.

17

18 Author contributions:

19 ZE conceptualisation, methodology, and writing the original draft. CAW Supervision,
20 conceptualisation, writing – review and editing. VJ Formal analysis, writing – review and editing.

21 MS Formal analysis, writing – review and editing. SKB Data curation, writing – review and editing.

22 KR Supervision, methodology. JDM Supervision, writing – review and editing.

23 **Acknowledgements and funding:**

24 This work was supported by the Australian National Health and Medical Research Council
25 APP1186371 to CAW. The authors thank the Melbourne Cytometry Platform at the University of
26 Melbourne for infrastructure support, and the Hudson Genomics Facility, Hudson Institute of
27 Medical Research, for assistance with RNA library preparation and sequencing.

28

29

30

31

32

33

34

35

36

37 **Abstract**

38

39 Dendritic cells (DCs) are rare innate immune cells that are essential regulators of anti-tumour, anti-
40 viral and vaccine responses by the adaptive immune system. Conventional dendritic cells,
41 particularly the cDC1 subset, are most desired for DC-based immunotherapies, however, it can be
42 difficult to isolate sufficient numbers of primary cells from patients. The most common alternate
43 sources of DC are *ex vivo*, such as monocyte-derived or DC expanded from cord blood
44 hematopoietic progenitors. Induced pluripotent stem cells (iPSC) offer a promising solution,
45 providing an opportunity for *in vitro* generating DCs that are suitable for patient-derived or off-the-
46 shelf batch-manufactured cells. Here, we developed an *in vitro* protocol designed to maximise the
47 yield of iPSC-derived DC progenitors, with the specific goal of generating DC1-like cells. The
48 iPSC-DCs subsets generated by our method could be partitioned by cell surface phenotypes of
49 cDC1, cDC2 and DC3, but they were most transcriptionally similar to monocyte-derived DC
50 (MoDC). Stimulated iPSC-DCs generated pro-inflammatory cytokines, expressed migratory
51 chemokine receptors including CCR7 which indicates capacity to traffic through lymphatic
52 endothelium, and upregulated co-stimulatory molecules, indicating their potential for productive
53 interactions with T-cells. This method offers a promising step towards an expandable source of
54 allogeneic human dendritic cells for future applications.

55

56 **Key words**

57 Dendritic Cell, cDC, MoDC, hematopoietic progenitor, induced pluripotent stem cell, iPSC.

58

59

60

61

62

63

64

65

66

67

68

69

70

71 **Introduction**

72

73 Dendritic cells (DC) are specialised antigen-presenting cells that traffic to lymph nodes where they
74 efficiently activate naïve CD4+ and CD8+ T lymphocytes. They can perform both conventional
75 presentation and cross-presentation (presenting exogenous antigens through MHC-I molecules) of
76 antigens to T cells and therefore are the target cell types for most vaccines (1). DC-based vaccines
77 have shown sporadic but highly effective potential in anti-cancer immunotherapies for late-stage
78 melanoma (2), glioma (3) and other aggressive tumours (reviewed by Wculek et al. (4)).

79 Among the heterogenous population of DCs, the cDC1 subset has an exceptional ability to cross-
80 present tumour antigens to CD8+ T cells and induce an efficient antigen-specific response (5, 6).
81 Murine cDC1 displayed a higher capacity to activate and induce the proliferation of CD8+ T cells
82 than cDC2 and MoDC subsets (7) and were shown to be the only antigen-presenting cells able to
83 transport intact tumour antigens to the tumour-draining lymph nodes and prime CD8+ T cells (8).
84 However, the clinical application of human DCs generally, and cDC1 subsets in particular, is
85 fundamentally limited by their scarcity in circulation, short half-life and poor proliferative abilities.
86 Together, these prevent efficient manufacturing of primary cDC1 at scale.

87 Currently, the most common approach for producing clinical-grade DCs is the *ex vivo*
88 differentiation of monocytes to dendritic cells. To obtain Monocyte-derived DC (MoDC), the
89 CD14+ fraction of peripheral blood mononuclear cells (PBMC) are isolated and treated with IL4
90 and GM-CSF for several days (9). MoDCs show a typical dendritic morphology and express MHC
91 class I and class II molecules, CD172a, CD1a, CD1c and CD11c (reviewed by (10)) with variable
92 CD14 expression (11, 12). MoDCs matured with LPS and TNF α have enhanced expression of
93 MHC II and co-stimulatory molecules and generate high levels of proinflammatory cytokines with
94 the capacity to induce naïve CD4+ T cell differentiation (13). MoDCs have been the cell of choice
95 for many clinical studies using autologous DC-based vaccines (14). However, monocytes and
96 MoDC are short-lived cells (15, 16), and the number of MoDC available is fundamentally
97 constrained by the number of monocytes that can be isolated from a donor, impacting their
98 manufacturing or delivery for clinical use.

99 An alternate source is the differentiation of CD34+ hematopoietic stem cells isolated from cord
100 blood (CB-HSC). These cultures are able to support the differentiation of multiple DC subsets, such
101 as CLEC9A+ cDC1 (17, 18), CD123+ pDC, CD1c+ cDC2 and MoDC (19, 20). Nevertheless, one

102 of the challenges associated with the generation of DC, particularly cDC1 subset, from CB-HSC is
103 the low yield of differentiation (17, 21, 22). Transcriptionally, we have shown that CB-DC captures
104 an immunoregulatory profile (mregDC) (22), which leads to less efficiency in anti-cancer responses
105 due to the induction of many regulatory genes (23). While the phenotype of these cells partially
106 matches the primary cDC1 or cDC2, manufacturing of CB-cDC remains a major limitation when
107 seeking to generate sufficient DCs for clinical application.

108 Pluripotent stem cells offer another alternative for DC derivation, and two broad approaches have
109 been reported. The first approach which is more common uses embryoid bodies (EB) to produce
110 HSC followed by differentiation toward terminal DCs in a feeder-free culture setup. The absence of
111 feeder cells in this method makes it a well-defined process; however, it generated monocyte- and
112 cDC2-like cells from iPSC (24–26). The second approach generated conventional DCs in a co-
113 culture of iPSC with mouse stromal cells engineered to express Notch ligand DLL1 (27). Although
114 this approach derives a high percentage of cDC1, using mouse feeder cells introduces xenogeneic
115 and pathogenic components to the system, which makes their clinical applications challenging.
116 Therefore, we designed a feeder-free EB-based method to generate and expand iPSC-derived HSC
117 that potentially differentiate into multiple iPSC-DC subsets with proinflammatory functions.

118

119 **Methods**

120

121 **Cell lines and ethics**

122 All works conducted on primary human cells, and iPSC lines was overseen by the University of
123 Melbourne HREC under approvals 1646608 and 2023-28021-46872-3.

124 Primary cord blood cells were obtained through the BDMI cord blood bank at the Royal Children
125 Hospital, Melbourne.

126 This study also used two human iPSC cell lines previously described (28) including PB001.1 (hPSC
127 reg: MCRIi001-A; RRID:CVCL_UK82) (29), obtained from the Stem Cell Core Facility at the
128 Murdoch Children's Research Institute and HDF51(30) (RRID:CVCL_UF42), which was a gift
129 from Professor Andrew Laslett, CSIRO.

130 **iPSC maintenance and expansion**

131 iPSCs were cultured in supplemented E8 media (Thermo Scientific, #A1517001) on Matrigel®
132 Matrix (Thermo Scientific, #354277) coated dishes. To coat the dishes, 1 ml of frozen Matrigel
133 aliquot was thawed at 4°C overnight. Thawed Matrigel was diluted 1/50 in cold E8 media and was
134 then added to the cell culture dishes (Merck, #Z755923). Coated dishes were incubated at room
135 temperature for 1 hour and used immediately or kept in the fridge for later application.

136 Seeded iPSC cells were maintained in a humidified incubator at 37°C with 5% CO2 and spent
137 media was replaced with fresh supplemented E8 every day. To passage cells when confluent at 70-

138 80%, cells were first washed with PBS (Thermo Scientific, #10010023), then incubated with 1/1000
139 EDTA (Thermo Scientific, #15575020) in PBS buffer of for 3-4 minutes at 37°C with 5% CO₂ to
140 allow detachment. After incubation, the buffer was gently removed, and cells were detached by
141 pipetting using fresh E8 media. Detached cells were collected in a 15ml centrifuge tube (Corning,
142 #430791), spun with centrifuge (Techcomp, #CT15RT) at 300g for 5min and reseeded at 1/4
143 dilution.

144 **EB formation and differentiation**

145 EB culture medium was based on STAPEL media (31, 32) (Table 1). To generate EBs, iPSC cells
146 were detached enzymatically using cell release buffer (1/1000 EDTA/PBS), and clumps of cells
147 were collected by pipetting using EB media (Table 1) supplemented with differentiation factors for
148 day 0-1 (Table 2). Collected cell clumps were filtered through 70 µm-sized strainers into a 50ml
149 sterile tube. Cell clumps were removed by 10ml serological pipettes and added gently to ultra-low
150 attachment culture dish (Sigma Aldrich, cat#CLS3261) to be maintained at 37°C with 5% CO₂
151 placed on an orbital shaker (SCIENTIFIX, cat#NBT-101SRC) rotating at 32rpm. For each 100mm
152 dishes, 2 to 3×10⁶ cells were used for EB formation. Media change strategy, including the details of
153 each differentiation factor, is described in Table 2. To improve cell viability at the EB formation
154 step, 0.2 nM ROCK Inhibitor Y-27632 (Stemcell Technologies, #72307) was added to the media
155 day 0-1 and discontinued since then. From Day 7, iPSC-derived hematopoietic cells started to
156 emerge from embryoid bodies as suspension cells.

157 Table 1. Components of EB culture media

Components	Supplier/ catalogue number	Stock conc.	Final conc.	Volume for 50ml media
Iscove's Modified Dulbecco's Medium; no phenol red (IMDM)	Thermo Fisher/ 21056023	-	-	33.25
F-12 nutrient mixture with Glutamax (F12)	Thermo Fisher/ 31765035	-	-	12.5
Protein-free hybridoma mix (PFHMII)	Thermo Fisher/ 12040077	-	-	2
BovoStar Bovine Serum Albumin (Australian origin) (BSA)	Bovogen biologicals/ BSASAU	10%	0.25%	1.25
Poly vinyl alcohol (PVA)	Sigma-Aldrich/ P8136	10%	0.15%	750
Methylcellulose	Sigma-Aldrich/ M6385	10%	0.10%	500
Insulin-Transferrin-Selenium-Ethanolamine (ITS-X)		100%	1x	500
L-Ascorbic acid 2-phosphate (AA2P)	Sigma-Aldrich/ A8960	5 mg/ml	50 µg/ml	500
GlutaMAX	Thermo Fisher/ 35050061	200 mM	2 mM	500
Linoleic and Linolenic acids (L+L)	Sigma-Aldrich/ Linoleic acid (L1012), Linolenic acid (L2376)	5000x	1x	10
Synthetic cholesterol	Sigma-Aldrich/ M6385-250G	20 mg/ml	2.2 µg/ml	5.5
2-Mercaptoethanol (B-ME)	Sigma-Aldrich/ M3148	14.3M	0.11 nM	0.38

158

159 Table 2. Media change strategy of EB differentiation. rh stands for Recombinant Human proteins.

Components	Supplier/ catalogue number	Concentration of factor in EB media in each media change				
		Day 0-1	Day 1-2	Day 2-4	Day 4-7	Day 7-onward
rh Activin A	R&D Systems/ 338AC010	5 ng/ml	-	-	-	-
rh CHIR	R&D Systems/ 442310	0.2 μ M	0.2 μ M	-	-	-
rh BMP-4	R&D Systems/ 314BP050	20 ng/ml	20 ng/ml	20 ng/ml	20 ng/ml	-
rh FGF	PeproTech/ AF-100-18B	5 ng/ml	10 ng/ml	10 ng/ml	10 ng/ml	10 ng/ml
rh VEGF	PeproTech/ AF-100-20	40 ng/ml	40 ng/ml	40 ng/ml	40 ng/ml	20 ng/ml
rh SCF	PeproTech/ AF-300-07	40 ng/ml	40 ng/ml	40 ng/ml	40 ng/ml	20 ng/ml
rh FLT3-L	PeproTech/ AF-300-19	-	-	-	50 ng/ml	50 ng/ml
rh IL-3	PeproTech/ AF-200-03	-	-	-	25 ng/ml	25 ng/ml

160

161 iPSC-derived progenitor expansion

162 Progenitor cells that emerged from EBs were collected and spun at 300g for 5min. Collected cells
163 were resuspended in 1ml of pre-warmed Amplification media described in Table 3. Cells were
164 cultured in 100,000 cell/ml density on T25 cell culture flasks and incubated at 37°C with 5% CO2.
165 Cells were expanded 4-7 days based on the experimental design. During expansion media was not
166 changed.

167 Table 3. Components of Amplification media

Components	Supplier/ catalogue number	Concentration
RPMI 1640 Medium	Thermo Fisher/ 11875093	88%
Fetal Bovine Serum (FBS)	Thermo Fisher/ 10099141	10%
Sodium Pyruvate	Thermo Fisher / 10099141	1%
GlutaMAX	Thermo Fisher/ 35050061	1%
2-Mercaptoethanol (B-ME)	Sigma-Aldrich/ M3148	50 μ M
rh SCF	PeproTech/ AF-300-07	100 ng/ml
rh FLT3-L	PeproTech/ AF-300-19	100 ng/ml
rh IL-3	PeproTech/ AF-200-03	20 ng/ml
rh Thrombopoietin (TPO)	PeproTech/ 300-18	50 ng/ml

168 **rh StemRegenin1 (SR1)** Cayman Chemical/ 10625 1 μ M

169 **iPSC-derived Dendritic Cell differentiation**

170 Expanded progenitors were collected and spun at 300g for 5min. 200,000 cell/ml were seeded on
171 T25 tissue culture flasks in DC differentiation media described in Table 4. At day 6, half of media
172 was replaced with fresh differentiation media with 2X concentration of cytokines.

173 **Table 4. Components of DC differentiation media.**

174

Components	Supplier/ catalogue number	Concentration
RPMI 1640 Medium	Thermo Fisher/ 11875093	90%
Fetal Bovine Serum (FBS)	Thermo Fisher/ 10099141	10%
Sodium Pyruvate	Thermo Fisher / 10099141	20 ng/ml
GlutaMAX	Thermo Fisher/ 35050061	5 ng/ml
2-Mercaptoethanol (B-ME)	Sigma-Aldrich/ M3148	40 ng/ml
rh SCF	PeproTech/ AF-300-07	100 ng/ml
rh FLT3-L	PeproTech/ AF-300-19	100 ng/ml
rh IL-4	PeproTech/ AF-200-03	5 ng/ml
rh Thrombopoietin (TPO)	PeproTech/ 300-18	20 ng/ml
rh GM-CSF	PeproTech/ 300-03	5 ng/ml

175

176 **Cord blood CD34+ HSC-derived DC differentiation**

177 The CD34+ HSC cells were isolated using Human Cord Blood CD34 Positive Selection Kit II
178 (Stemcell Technologies, #17896) as per the supplier instruction. Briefly, first step of enrichment
179 used RosetteSep cocktail to deplete platelets. Then CB were diluted 1:1 (v/v) into a dilution buffer
180 (1mM EDTA in PBS supplemented by 2% FBS (Thermo Fisher, #10099141)) and undelayed with
181 density gradient medium LymphoPrep (Stemcell Technologies, #07801). The mix were centrifuged
182 at 1200 \times g for 20 mins with no brake. Blood mononuclear cells (BMC) were harvested from the
183 interface layer between plasma and red cell and spun at 300 \times g for 10 mins with no brake. The cell
184 pellet diluted 1:1 (v/v) in DB and transferred to a 5ml round bottom polystyrene tube (Stemcell
185 Technologies, #38030). CD34+ cells were enriched by magnetic selection using Selection antibody
186 cocktail in the kit. Isolated cells were plated in amplification media Table 5 for 4-7 days. Expanded
187 cells were harvested and used for characterisation, freezing or proceeding to the differentiation
188 phase. For the latter purpose, cells were cultured in DC differentiation media (Table 6) for 11 days;
189 at day 6, half of the media was replaced with fresh media containing 2X concentration of cytokines.

190 **Flow cytometry analysis**

191 Immunophenotyping and FACS were performed on primary cells and differentiated cultures. First
192 cells were incubated in human FcR Blocking Reagent (Miltenyi Biotec, #130-059-901), 5min at
193 RT, then resuspended in 200µl staining buffer and incubated with antibodies (see Table 5) for 20
194 mins in the dark at 4°C. Cells were washed with cold staining buffer 3 times and filtered through
195 70µm filters. Cells were sorted into collection buffer consisting of 50% FBS (Thermofisher,
196 #10099141) in HBSS (Thermofisher #14175103) using a BD FACS ARIA III/ FACS DiVa version
197 9 software (Becton Dickinson, Franklin Lakes, NJ) fitted with a 100µm nozzle at 20psi. For
198 immunophenotyping, CytoFLEX LX/ CytExpert software (Beckman Coulter, Brea, CA) was used
199 to acquire samples. Post-acquisition analysis was performed using FCS Express v7 software (De
200 Novo/ Dotmatics, Boston, MA).

201 **Table 5. List of flow cytometry antibodies and Isotype controls**

Antibodies or Isotypes	Supplier	Catalogue number	Dilution
PE anti-human CD370 (CLEC9A/DNGR1)	BioLegend	353804	1/50
PE/Dazzle™ 594 anti-human CD1c	BioLegend	331532	1/200
Alexa Fluor® 647 anti-human CD141 (Thrombomodulin)	BioLegend	344124	1/50
PE/Cyanine7 anti-human CD11c Antibody	BioLegend	337216	1/200
Alexa Fluor® 700 anti-human CD172a/b (SIRPa/β)	BioLegend	323815	1/100
Brilliant Violet 421™ anti-human CD14	BioLegend	325628	1/100
PE/Dazzle594 anti-human CD135 (Flt-3/Flk-2)	BioLegend	313320	1/50
Alexa Fluor® 488 anti-human HLA-DR	BioLegend	307619	1/100
PE/Cyanine7 anti-human CD115 (CSF-1R)	BioLegend	347308	1/100
APC anti-human CD116	BioLegend	305914	1/200
PE anti-human CD131	BioLegend	306104	1/200
PE anti-human CD34	BioLegend	343506	1/200
APC anti-human CD45	BioLegend	304012	1/200
APC/Cyanine7 anti-human CD40	BioLegend	334323	1/100
PE anti-human CD80	BioLegend	374205	1/100
Brilliant Violet 421™ anti-human CD86	BioLegend	305425	1/100
PE Mouse IgG1, κ Isotype	BioLegend	400112	1/50

APC Mouse IgG1, κ Isotype	BioLegend	400120	1/100
PE/Dazzle™ 594 Mouse IgG1, κ Isotype	BioLegend	400177	1/200
Alexa Fluor® 647 Mouse IgG1, κ Isotype	BioLegend	400130	1/50
PE/Cyanine7 Mouse IgG1, κ Isotype	BioLegend	400125	1/200
Alexa Fluor® 700 Mouse IgG1, κ Isotype	BioLegend	400143	1/100
Alexa Fluor® 488 Mouse IgG2a, κ Isotype	BioLegend	400233	1/100
Human Phospho-STAT3 (Y705) Antibody	R&D systems	AF4607	1/200
Systems Human Phospho-STAT5a/b	R&D systems	MAB41901	1/200
7-AAD Viability Staining Solution	BioLegend	420404	1/100

202

203 **Stimulation assay**

204 Differentiated CD11c+ CD1c+ cells from iPSC cell lines and CB donors were FACS sorted (**Table**
205 **5**) and stimulated with a combination of 1 µg/ml LPS (InvivoGen, #tlrl-smlps), 5 µg/ml HMW
206 poly(I:C) (InvivoGen, #581942011) and 5 µg/ml R848 (InvivoGen, #tlrl-r848) in the 24 well tissue
207 culture plate. After 16 hr, cells were collected and analysed by flow cytometry for the expression of
208 co-stimulatory molecules (HLA-DR, CD40, CD80, CD86) (**Table 5**). The supernatant was
209 collected for the cytokine bead assay (CBA) and was processed at the Hudson Institute, Monash
210 University. The fluorescent intensity data for each cytokine was received, and an associated
211 standard curve was generated. A multi-parameter regression model was fit to the standard curve and
212 was used to calculate the concentration (pg/ml) of each cytokine.

213

214 **Real time qPCR assay**

215 mRNA extraction of samples was carried out using Qiagen RNeasy® Plus micro Kit (Qiagen,
216 cat#74034) and was transcribed into cDNA using Fast SYBR Green Master Mix (Thermo Fisher
217 Scientific, #4385612), according to the manufacturer instructions. RT-qPCR was performed using
218 the ViiA7 QRT-PCR machine (Applied Biosystems). Relative gene expression was calculated using
219 ΔCT method normalised to human B2M housekeeping gene (See Table 5).

220 **Table 6. Primer sequences**

Gene	Forward	Reverse
CCR7	CAATGAAAAGCGTGCTGGTG	AGGCTTTAAAGTTCCGCACG
TNFSF15	AGACGGAGATAAGCCAAGGG	TGGGATCAGCAGGAATTGT
B2M	TAGCTGTGCTCGCGCTACT	TTCAATGTCGGATGGATGAA

221

222 **RNA-seq experiment**

223 Human iPSC-derived cDC1 and cDC2 subsets from two iPSC cell lines and CB-derived subsets
224 from 3 healthy donors were FACS sorted as Live HLA-DR+ CD14- CD141+ CLEC9A+ cDC1,
225 Live HLA-DR+ CD14- CD11c+ CD1c+ DCA and Live HLA-DR+ CD14+ CD11c+ CD1c+ DCB
226 subsets. Minimum 200×10^3 cells were collected for each sample and lysed in lysis buffer provided
227 by Qiagen RNeasy® Plus micro Kit (Qiagen, cat#74034) proceeded by extracting RNA using the
228 manufacturer instructions. RNA quality (determined by RNA Integrity Number (RIN^e) and quantity
229 were determined by High Sensitivity RNA ScreenTape (Agilent) using Agilent 2200 Technologies
230 Tapestation System. RNA samples were processed as described previously (33) by MHTP Medical
231 Genomics Facility at the Monash Health Translation Precinct. Illumina NSQ2000 was used for
232 sequencing.

233 **RNAseq data analysis**

234 FASTQ files were obtained from the sequencing facility and were processed using the standard
235 Stemformatics data processing pipeline (34). Raw counts were analysed using Limma package (35).
236 Low count genes were filtered using the default settings of filterByExpr function from EdgeR (36)
237 while counting for the variance between biological groups. Filtered counts were normalized to
238 logCPM and used for further analysis. A voom-plot was used to assess the quality of filtering.
239 Clustering of samples was done using plotMDS. Ggplot2 (37) was used to generate violin and box
240 plots. Bulk mRNA-sequencing data is available through accession GSE26173.

241 **Differentially expressed (DE) gene analysis**

242 Statistical DE analysis was performed using R. The differential gene expression analysis between
243 two groups of samples coming from different batches was performed using linear mixed-effect
244 models by the lmer function from the lme4 package (38). In this modelling, the variable of interest
245 and the batch parameter were considered as random effects. Benjamini-Hochberg (BH) adjustment
246 was used for the p-value correction method. The genes with p-adjust<0.05 and logFC>1 were
247 selected as DE genes. Code is available from the Wells laboratory github
248 <https://github.com/wellslab>

249 **Projection method**

250 The projection of RNA-seq data to the reference Stemformatics DC atlas has been described
251 previously (34). The projection vignette is provided on the Stemformatics.org atlas website.

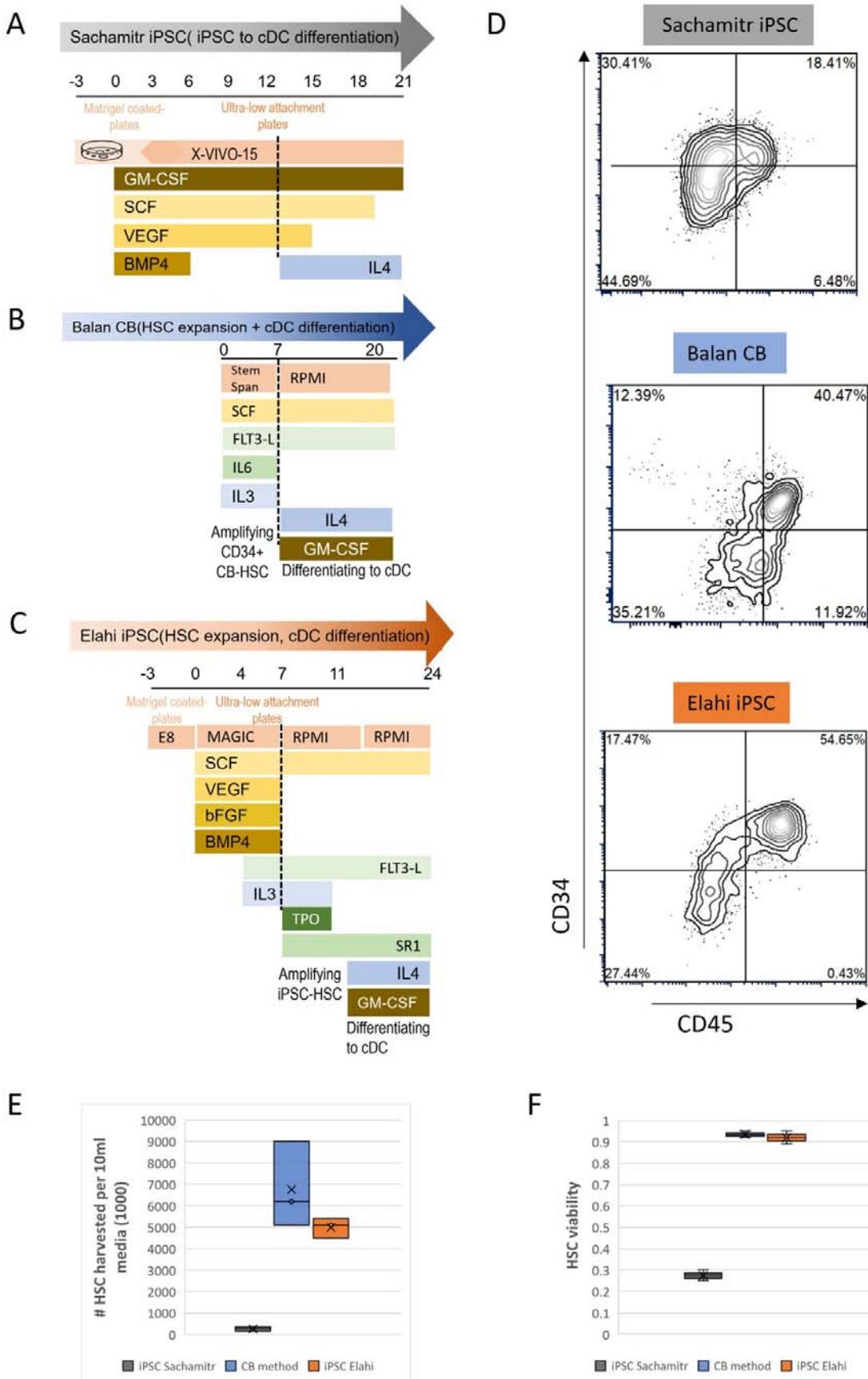
252

253 **Results**

254

255 **Establishing an EB-based iPSC differentiation method to generate human DC subsets**

256

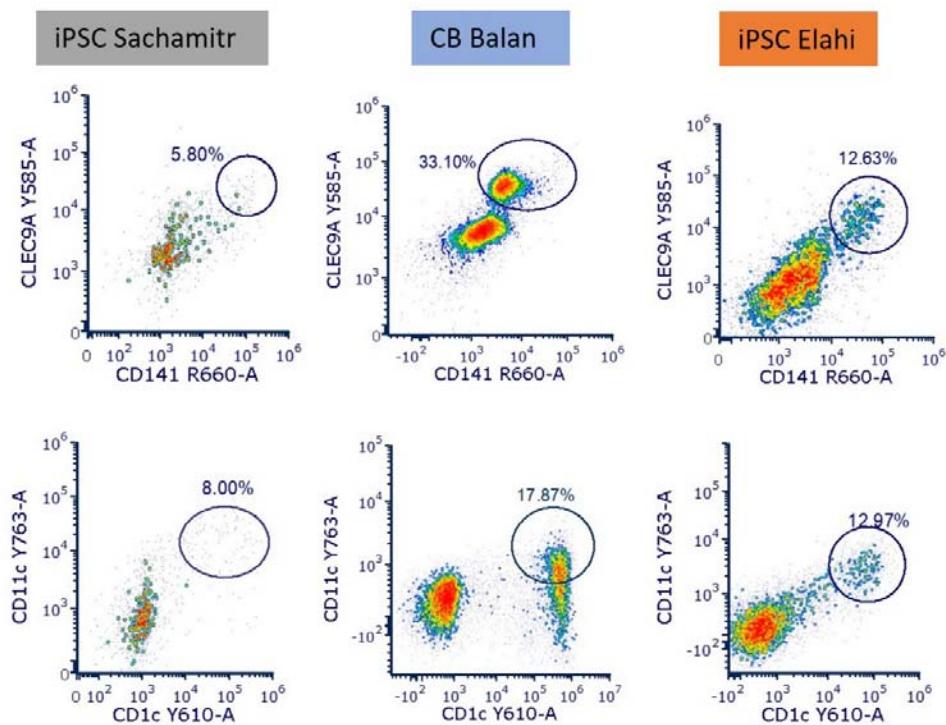

257 We first set out to assess two approaches for *in vitro* DC generation, including one previously
258 reported from human iPSC by Sachamitr *et al.* (39) and one from human cord blood (CB) CD34+
259 progenitors by Balan *et al.* (17), here referred to as Sachamitr iPSC and Balan CB methods,
260 respectively. The Sachamitr iPSC differentiation method required a 2-week-long culture to generate
261 hematopoietic progenitors (iPSC-HCS) from embryoid bodies (EB) in a growth factor cocktail that

262 included GM-CSF from the beginning and then a further 10 days to differentiate these progenitors
263 to iPSC-DC using GM-CSF and IL4 (Figure 1A). The Balan CB method included a 7-day
264 amplification step of HSCs, then differentiation in a panel of FLT3-L, GM-CSF and IL-4 to derive
265 DCs (Figure1 B).

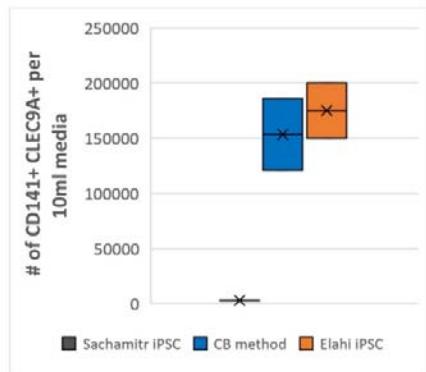
266 We designed a new protocol, referred to as the iPSC Elahi method, which combines a modified
267 version of a contemporary EB method (28) with an amplification step of the HSC progenitors
268 inspired by Balan *et al.* (17) (Figure1 C). Our modified four-step protocol used a brief pulse of
269 CHIR to induce mesodermal differentiation in iPSC, then patterned embryoid bodies with BMP4,
270 SCF, and VEGF before introducing FLT3L and IL3 to promote the production of CD34+ CD45+
271 HSC progenitors. We collected iPSC-derived HSC cells on day 7 of EB formation, and expanded
272 these in FLT3L, TPO, IL3 and SR1 for 4 days (Figure 1 C) to increase the number of iPSC-HSC
273 and dendritic cell progenitors. Dendritic cells were then differentiated in media containing FLT3L,
274 SR1, GM-CSF and IL4 for up to two weeks.

275 The Sachamitr iPSC protocol did generate ~18% CD34+ CD45+ cells at day 13, indicating
276 specification to a hematopoietic cell type, but with low numbers of HSCs harvested ($<300 \times 10^3$ cells
277 per 10ml batch) with 30% viability (Figure 1 D-F). In contrast, the Balan CB method showed a 40%
278 CD34+ CD45+ HSC yield, generating $>5 \times 10^6$ progenitors with 95% viability (Figure 1 D-F).

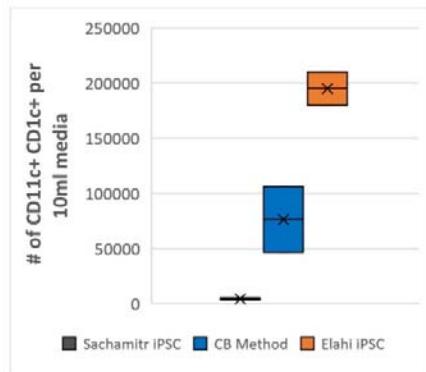
279 Despite implementing multiple levels of improvement to the iPSC Sachamitr protocol, the quantity
280 of generated HSCs by this method still fell significantly short of those produced by the CB method
281 (described in Supp. Method, Supp. Table 1 and Supp. Figure 1). We were motivated to develop a
282 new iPSC protocol that generates a similar or even higher proportion of HSC progenitors than the
283 CB method. Our method (Elahi iPSC) significantly enhanced the yield of the CD34+ CD45+ HSC
284 generation by up to 54% and increased their number to more than 10-fold compared to the previous
285 Sachamitr iPSC method (Figure 1 D-F). However, the number and the viability of generated HSC
286 were similar between our method and the CB differentiation approach.



288 **Figure 1. Generating hematopoietic progenitors of dendritic cells in vitro. A)** Schematic
289 overview of a replicated iPSC-DC differentiation method developed by Sachamitr et al. (39). **B)**
290 differentiation protocol of cord blood (CB)-progenitors toward DC developed by Balan (17) with
291 minor modifications. **C)** our new developed differentiation protocol of iPSC toward DC (iPSC
292 Elahi method). **D)** Flow cytometric assessment of harvested hematopoietic stem cells (HSCs) from
293 each method for the expression of CD34 and CD45 markers. The **E)** Number and **F)** viability of
294 harvested hematopoietic stem cells (HSCs) from each method per batch of 10ml media. Data are
295 representative of three replicates of two iPSC cell lines (PB001.1 and HDF51) and three individual
296 cord blood donors (summarised at Supp. Table 2).


297

298 Assessing the terminally differentiated DC from our expanded iPSC-HSC, we observed that 2×10^6
299 of iPSC-HSC yielded 10-12% cDC1-like cells expressing CLEC9A+ CD141+, of which we
300 routinely generated 1.8×10^3 DC1 per batch of 10ml media, and an equivalent number of cDC2-like
301 cells expressing CD11c+ CD1c+ (Figure 2). This was more than the number of cDC2 and
302 equivalent to cDC1 obtained from the Balan CB method in our hands. The proportion of cDC-like
303 subsets obtained from the Sachamitr protocol was significantly lower than that of our protocol. The
304 high number of DCs obtained by the Elahi iPSC method was greatly enhanced by increasing the
305 number of progenitors available for differentiation. From this point forward, we will stop
306 characterising the Sachamitr method, and any dendritic cells derived from Elahi iPSC method will
307 now be referred to as iPSC-DC.

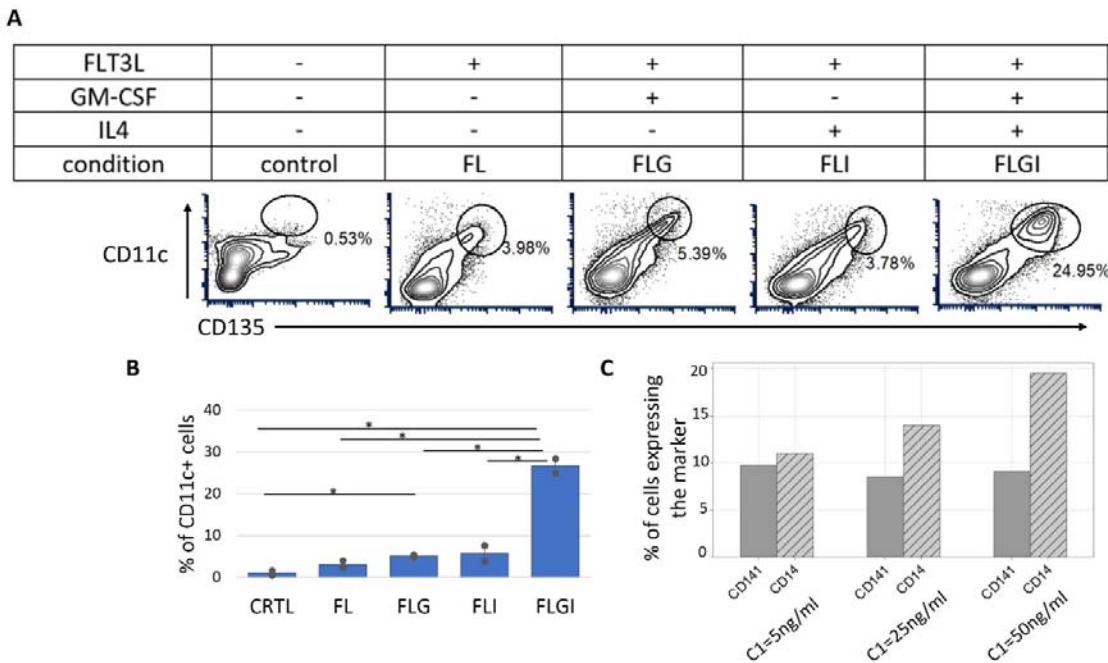

A

B

C

308

309 **Figure 2. New developed protocol is more efficient in producing iPSC-derived conventional**
310 **dendritic cells. A)** The flow cytometry analysis of terminal differentiated cDCs comparing the
311 percentage of the differentiated Live CD141+ CLEC9A+ cDC1 (top) and Live CD11c+ CD1c+
312 cDC2 (bottom) between the replicated Sachamitr protocol, cord blood (CB) method and our new
313 developed protocol (Elahi iPSC). **B)** Box plot showing the number of differentiated CD141+
314 CLEC9A+ cDC1 and **C)** CD11c+ CD1c+ cDC2 per 10ml media compared across multiple
315 protocols including Sachamitr protocol, cord blood (CB) method and our new developed protocol
316 (Elahi iPSC). Data is from two replicates of PB001.1 iPSC cell line and two replicates of one CB
317 donor.

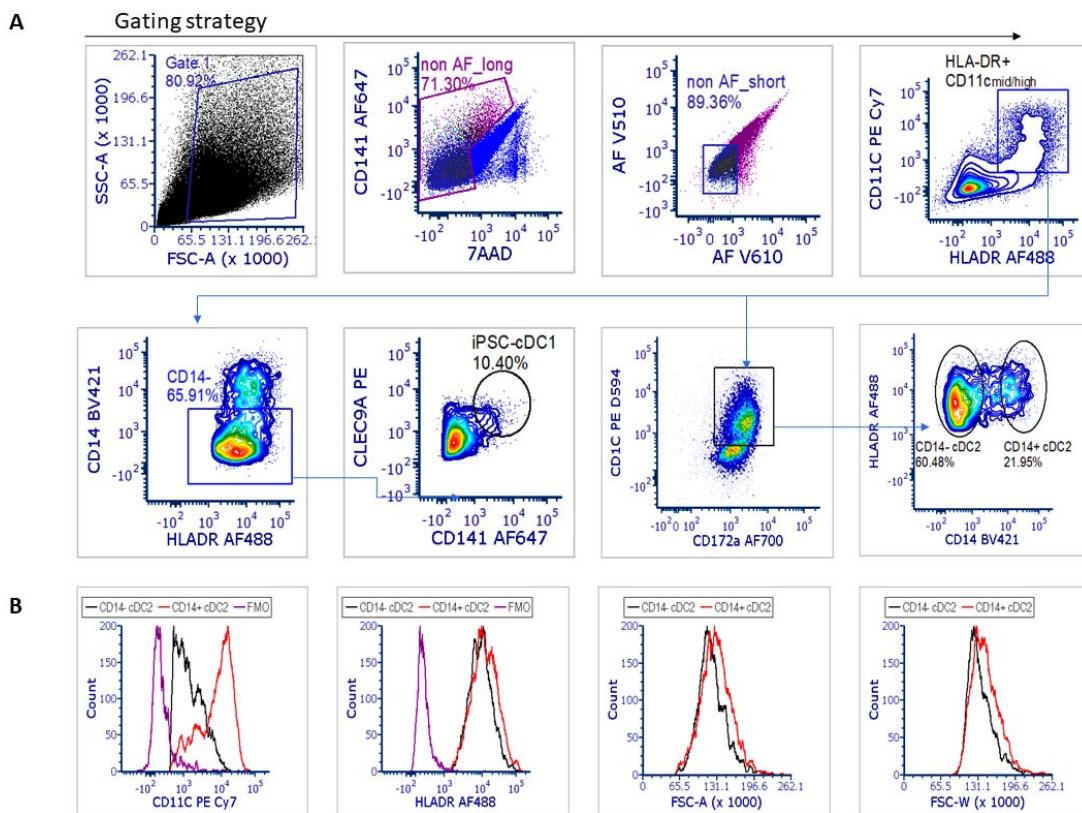

318

319

320 **CD11c⁺ cells differentiated from iPSC *in vitro* cannot be efficiently generated by FLT3L
321 alone.**

322

323 We next sought to optimise the number of FLT3L+ CD11c+ DC. Four conditions were tested using
324 two different iPSC lines (HDF51 and PB001.1). FL: 100ng/ml FLT3L alone; FLG: FL+ 20ng/ml
325 GM-CSF; FLI: FL+20ng/ml IL4 or FLGI which combined all three cytokines. FLT3L alone did not
326 efficiently generate CD11c+ cells (Figure 3), however, in combination with GM-CSF, gave rise to
327 5% CD11c+ cells. The most efficient combination was FLGI culture, which gave rise to 24.9%
328 CD135+ CD11c+ cells, showing that the combination of GM-CSF and IL-4 is essential for the
329 development of the iPSC-DC. We then sought to find the optimum concentration of these
330 cytokines. Increasing the amount of GM-CSF/IL4 relative to FLT3L from 5ng/ml to 50 ng/ml
331 promoted the generation of CD14+ cells, whilst the proportion of CD141+ cells remained the same.
332 We, therefore, set the optimum concentration of GM-CSF and IL4 for iPSC-DC differentiation at 5
333 ng/ml.


334 **Figure 3. The *in vitro* differentiation of CD135+ CD11c+ cells require a combination of GM-
335 CSF and IL4 cytokines on top of the FLT3 ligand. A) Representative flowcytometric plots
336 assessing the yield of CD11c+ generation under four conditions including FL (100ng/ml FLT3L),
337 FLG (100ng/ml FLT3L+ 20ng/ml GMS-CF), FLI (100ng/ml FLT3L+ 20ng/ml IL-4), FLGI
338 (100ng/ml FLTL3+ 20ng/ml GM-CSF+ 20ng/ml IL-4) and control (no FLT3/GM-CSG/IL4). B)
339 The bar graph compares the percentage of CD11+ cells under the four conditions mentioned earlier.
340 Data were obtained from two iPSC cell lines, PB001.1 and HDF51. (*P<0.05, student T-test). C)
341 The grouped bar graph showing the percentage of CD141+ and CD14+ cells differentiated under
342 three different concentrations of GM-CSF/IL4, including C1:5ng/ml, C2:25ng/ml and C3:50ng/ml.
343 In all conditions, FLT3L is present at 100ng/ml.**

345 **iPSC-cDC subsets derived *in vitro* are phenotypically heterogeneous**

346 To investigate the identity of the dendritic cells derived from iPSC *in vitro*, we ran a flow
347 cytometric analysis on cells at day 23 of differentiation. We used a panel of antibodies, including
348 HLA-DR, CD11c, CD141, CLEC9A, CD1c and CD14, in addition to the viability stain. To combat
349 highly auto-fluorescent (AF) cells, we introduced gating steps in short and long wavelengths to
350 remove them (Figure 4 A). The iPSC-derived cDC1-like subset was characterised as Live HLA-
351 DR⁺ CD14- CD11c^{mid/+} CD141+ CLEC9A+.

352 The iPSC-derived cDC2-like subset was characterised as Live HLA-DR⁺ CD11c+ CD172a+
353 CD1c+ cells. This population was heterogeneous in terms of the expression of CD14, including
354 CD1c+ CD14- and CD1c+ CD14+ groups (Figure 4 A). CD1c+ CD14+ cDC2 showed a greater
355 level of CD11c expression than CD1c+ CD14- cDC2, while the level of HLA-DR expression was
356 similar (Figure 4 B). The CD14+ population was slightly larger by having a higher area of the
357 forward scatter signal (FSC-A). They also had marginally more granularity than CD14- cDC2,
358 measured by the width of the forward scatter signal (FSC-W).

359

361 **Figure 4. Flow cytometric characterisation of differentiated iPSC-cDC subsets.** A) Auto
362 fluorescent cells (AF) were removed from further analysis during two steps. iPSC-cDC1 and iPSC-

363 cDC2 were characterized as Live HLA-DR⁺ CD14- CD11c^{mid/+} CD141+ CLEC9A+ and Live HLA-
364 DR⁺ CD11c+ CD172a+ CD1C+ cells, respectively. B) Assessment of iPSC-derived CD14+ cDC2
365 and CD14- cDC2 subpopulation regarding their differences in CD11c and HLA-DR expression
366 levels. The area and width of the forward scatter signal (FSC-A and FSC-W) represent their size
367 and granularity, respectively. CD14+ population is in black, CD14- in red and the FMO (full minus
368 one) control in black.

369 **iPSC-derived dendritic cells (iPSC-DCs) are not transcriptionally equivalent to primary
370 cDCs.**

371 To understand the biology of iPSC-derived DC (iPSC-DC) subsets and to investigate their
372 similarity with cord blood-derived DC (CB-DC) equivalents, we FACS sorted each subset and
373 analysed them through RNA sequencing (Figure 5 A). Both CB-derived DC and iPSC-DC were
374 expanded at the progenitor stage for 4 days before differentiation. The DC1 subset was sorted as
375 Live HLA-DR⁺ CD14- CD11c^{mid/+} CD141+ CLEC9A+. Two populations of DC2 were sorted as
376 Live HLA-DR⁺ CD11c+ CD172a+ CD1C+ with negative or positive expression of CD14 referred
377 to as DC2A and DC2B, respectively. At least 200×10³ cells were sorted for each sample with
378 replicates from two different iPSC cell lines and from three CB donors, noting that the cDC1
379 population from one CB donor failed RNA QC because of low cell numbers.

380 We first examined the sample clustering using a multidimensional scaling (MDS) plot. The first
381 dimension (dim 1) accounted for 27% of expression variability and defined subsets of iPSC-DC2A
382 and iPSC-DC2B, respectively. The second dimension (dim2) accounted for 19% of expression
383 variability and described the difference between iPSC-DC1 and iPSC-DC2s (Figure 5). In contrast,
384 the CB-cDC1 and cDC2 subsets were captured on dim 1, 29% of expression variability, while dim
385 2 (20% variability) separated CD14+ and CD14- cells (Figure 5 C).

386 Next, we identified the differentially expressed genes that separated subsets within the iPSC-DC
387 groups (Supp. Table 3). The 10 most discriminating genes ranked by LogFC were chosen for
388 illustrative purposes (Figure 5 D). The genes highly expressed by iPSC-DC1 were closely related to
389 the maturation and migration of dendritic cells (e.g. MYCL, CXCL1, ZDHHC1, SEMA3C,
390 NR4A3) and the antigen presentation process (e.g. TEAD4, ERAP2, AP1S1). iPSC-DC2A
391 upregulated genes involved in communication with T cells (e.g. THBS1, FCER1A, CD1D, CD19)
392 and iPSC-DC2B showed upregulation of cytokine signaling genes (e.g. CD28, IL10, TNFSF12,
393 IL15RA). We asked whether genes that exhibit distinct expression patterns in iPSC-DC subsets also
394 demonstrate subset-specificity across DC subsets derived *in vivo*. Our analysis, leveraging the
395 Human DC Atlas database (40), revealed that most of these genes do not display subset-
396 discriminating patterns among *in vivo* DCs (Supp. Figure 2A).

397 Investigating the differential expression profile of the CB-derived DCs showed high expression of
398 CLEC9A, IRF8, CADM1 and XCR1 by CB-DC1 subset (Figure 5 E, Supp. Table 4). This profile
399 suggests that CB-DC1 successfully captured the identity of the DC1 subset. The DC1 identity was
400 partially obtained by iPSC-DC1 as they exhibit higher levels of CLEC9A and CADM1 compared to
401 iPSC-DC2A/B but lack the expression of IRF8 and TLR3 (Supp. Figure 2B). However, the level of
402 CLEC9A expression by CB-DC1 remain notably higher compared to iPSC-DC1 (Figure 5 F). CB-
403 and iPSC-derived DC1 cells appear to have a hybrid transcriptional profile by expressing high
404 levels of the CD1C gene, which is a common marker of the cDC2 subset (Figure 5 G). Altogether,
405 iPSC-derived DCs captured a transcriptional identity that is different from their primary DC
406 equivalents.

407

408

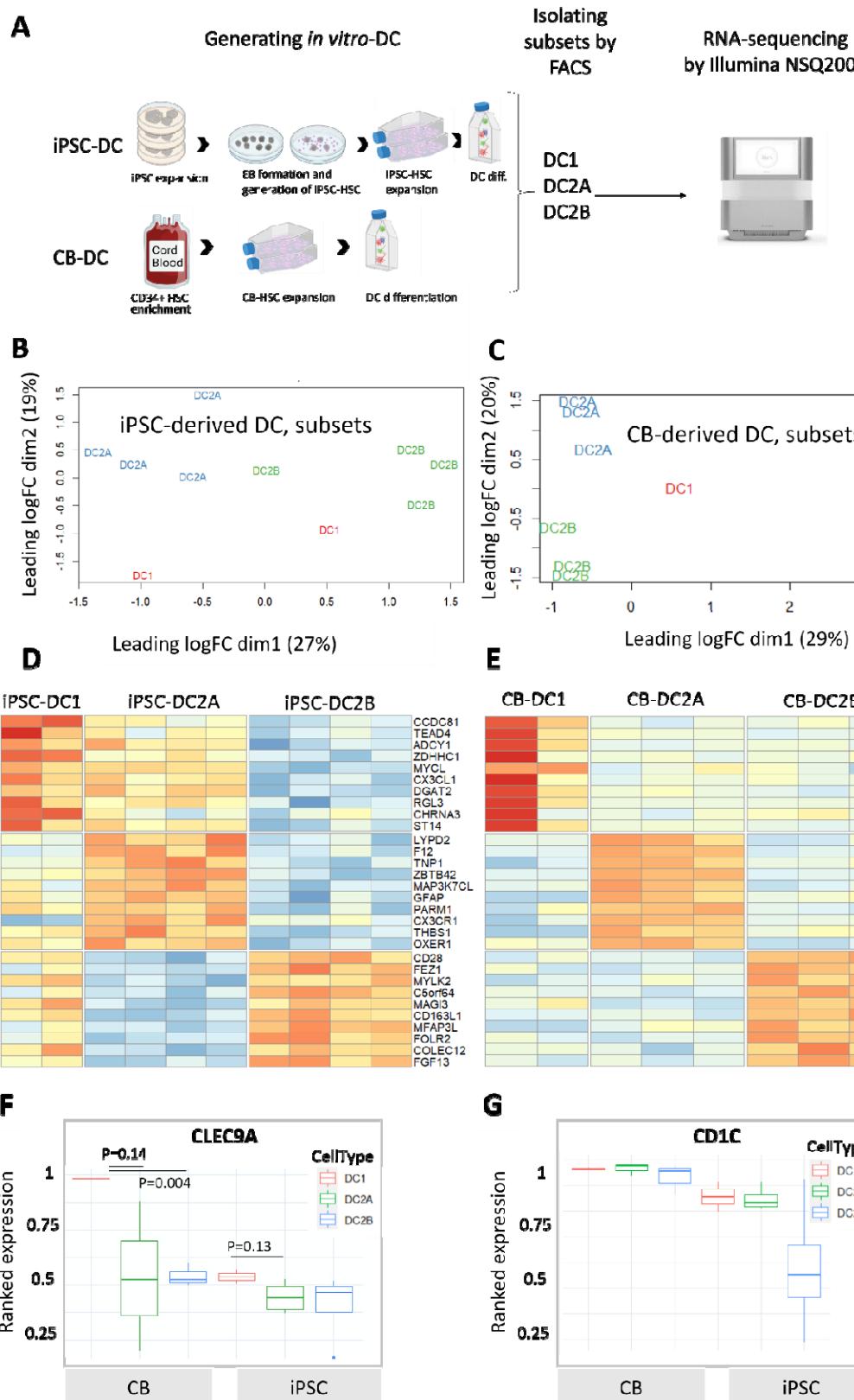
409

410

411

412

413

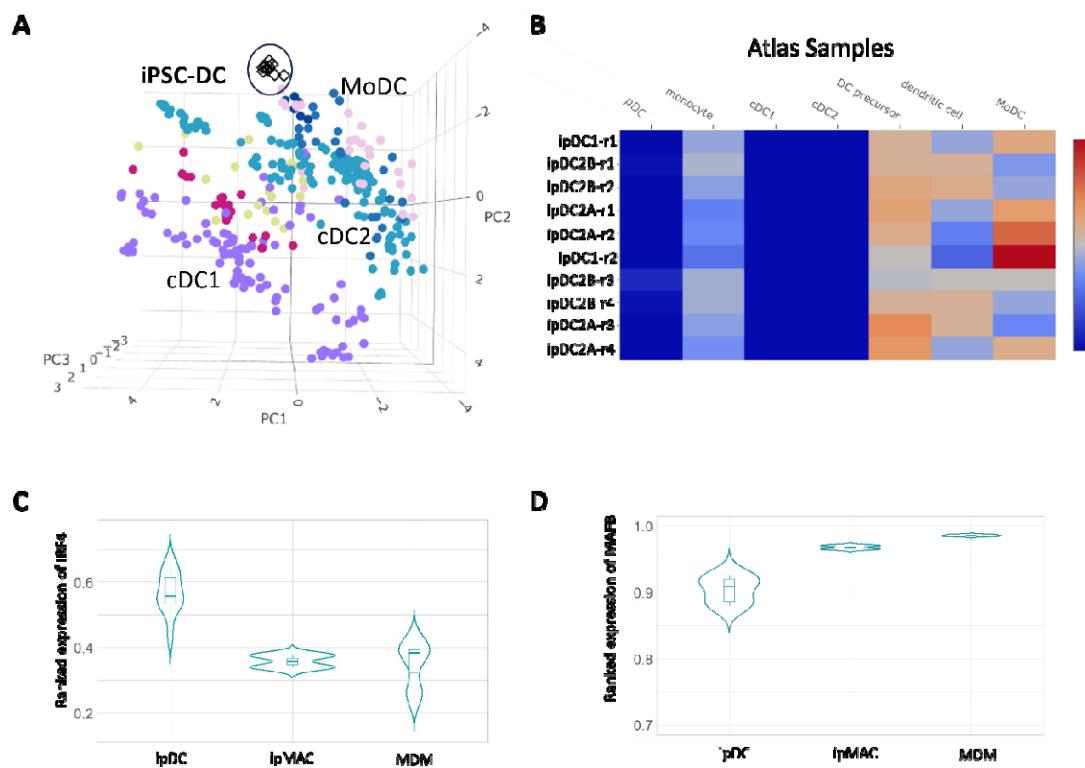

414

415

416

417 **Figure 5. (following page) Characterisation of iPSC- and CB-derived dendritic cells by bulk**
418 **RNA-sequencing.** A) Experimental setup of generation DCs from iPSC and cord blood (CB). The
419 process includes iPSC expansion, harvesting of haematopoietic stem cells (iPSC-HSC), expansion
420 of iPSC-HSC, and differentiating to dendritic cells. Similarly, CB-HSC were expanded and
421 differentiated to DCs. Samples were FACS sorted and analysed by bulk RNAseq. B)
422 Multidimensional scaling (MDS) plot of log2 fold changes showing sample clustering of iPSC-
423 derived dendritic cells (iPSC-DC). C) Multidimensional scaling (MDS) plot of log2 fold changes
424 showing sample clustering of cord blood CD34+-derived DC (CB-DC). D) Heatmap of
425 differentially expressed (DE) genes by iPSC-DC subsets. The top 10 DE genes with p_adjust
426 (BH)<0.01 ranked with logFC were selected for heatmap display (See extended list in Supp. Table
427 3). E) Heatmap of differentially expressed (DE) genes by CB-DC subsets. The top 10 DE genes
428 with p_adjust (BH)<0.01 ranked with logFC were selected for heatmap display (See extended list in
429 Supp. Table 4). F) CLEC9A ranked gene expression among iPSC-DC and CB-DC subsets. G)
430 CD1C ranked gene expression among iPSC-DC and CB-DC subsets. P-value calculated by student
431 T-test.

432



433

434

435 We then examined the projection of the sequenced samples to the reference Human DC Atlas. The
436 iPSC-DC subsets strongly clustered and showed transcriptional similarity with the *in vitro* (Mo-DC)
437 samples (Figure 6 A-B). To determine whether iPSC-DC, with a monocytic profile, are distinct
438 from the iPSC-derived macrophages (ipMAC), we combined our dataset with another RNAseq
439 dataset from our laboratory (28) that has profiled ipMAC and macrophages differentiated from
440 blood monocytes (MDM). To be consistent with our cells, the samples selected from this dataset
441 were non-activated control MDM and ipMAC samples. Previously, IRF4 and MAFB transcription
442 factors were discovered to distinguish human MoDC from MoMAC and vice versa (41). Consistent
443 with this finding, our ipDCs showed higher expression of IRF4 but lower MAFB compared to
444 ipMAC and MDM (Figure 6 C-D).

445

446

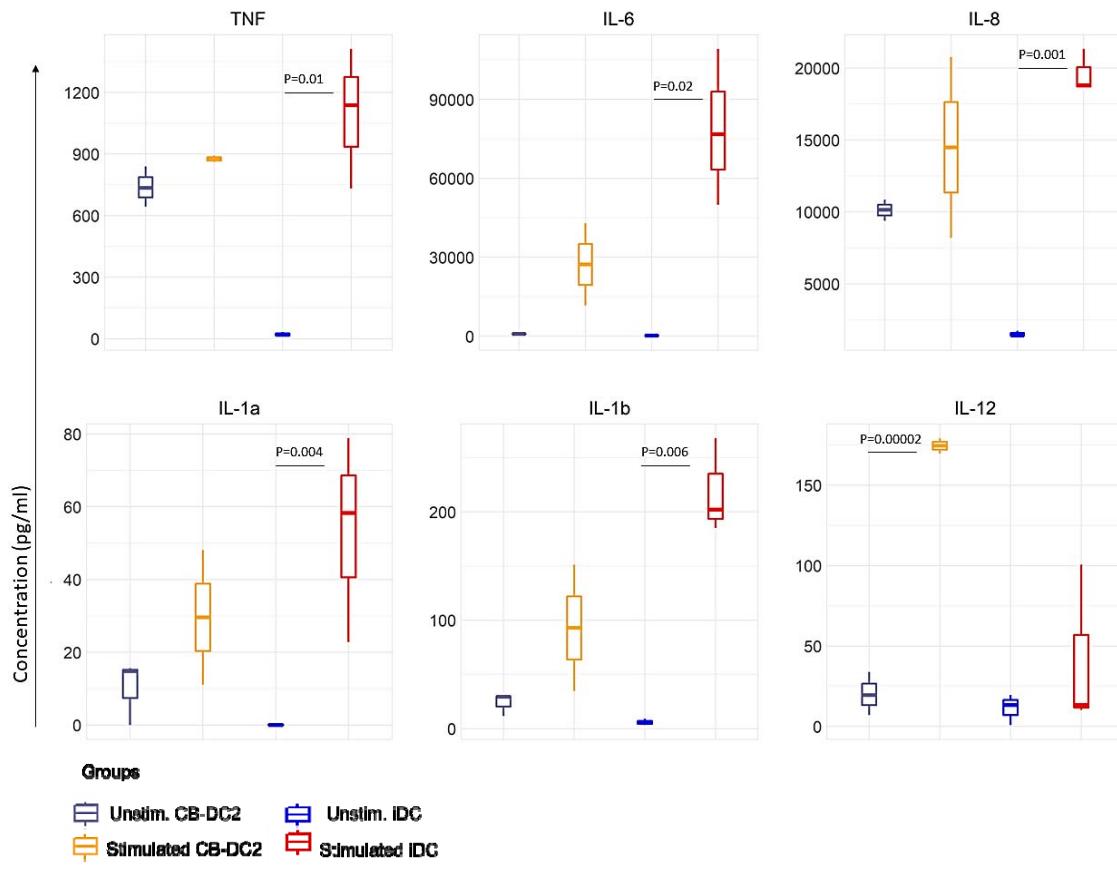
447 **Figure 6. Benchmarking iPSC-derived DCs against other myeloid cells.** A) Projection of iPSC-
448 DC on Human DC Atlas showing the proximity of iPSC-DC transcription with atlas MoDC subset.
449 B) Capybara similarity scores between iPSC-DC and atlas cell types showing that iPSC-DC capture
450 the MoDC transcriptional profile. C) Violin plot of ranked gene expression of IRF4, and D)MAFB
451 transcription factors compared between our iPSC-derived DCs (ipDC) with external transcriptional
452 data (28) on iPSC-derived macrophages (ipMAC) and macrophages differentiated from blood
453 monocytes (MDM), previously obtained in our laboratory.

454

455 **iPSC-derived DCs respond to TLR stimulation as efficiently as CB-DC2s**

456 To examine the immunoactivation capacity of iPSC-DC and CB-DC, we selected a combination of
457 LPS, Poly I:C and R848 (referred to as LPR stimuli) which are commonly used to test the DCs
458 maturation. FACS-sorted CD11c+ CD1c+ iPSC-DC and Cd11c+ CD1c+ CD14- CB-DC2A were
459 stimulated overnight (16 hr) and assessed for secreted immune modulators by cytokine bead assay
460 (CBA). Upon stimulation, both iPSC-DC and CB-DC2 secreted pro-inflammatory cytokines,
461 including TNF α , IL-6 and IL-8 in high levels and IL-1 (IL-1a and IL-1b) in lower levels (Figure 7).
462 This highlighted their similarity with the known functional characteristics of cDC2s. Interestingly,
463 non-stimulated (control) CB-DC2 samples were able to secrete a moderate level of TNF α , IL-8 and
464 IL-1a in contrast to control iPSC-DC with no response.

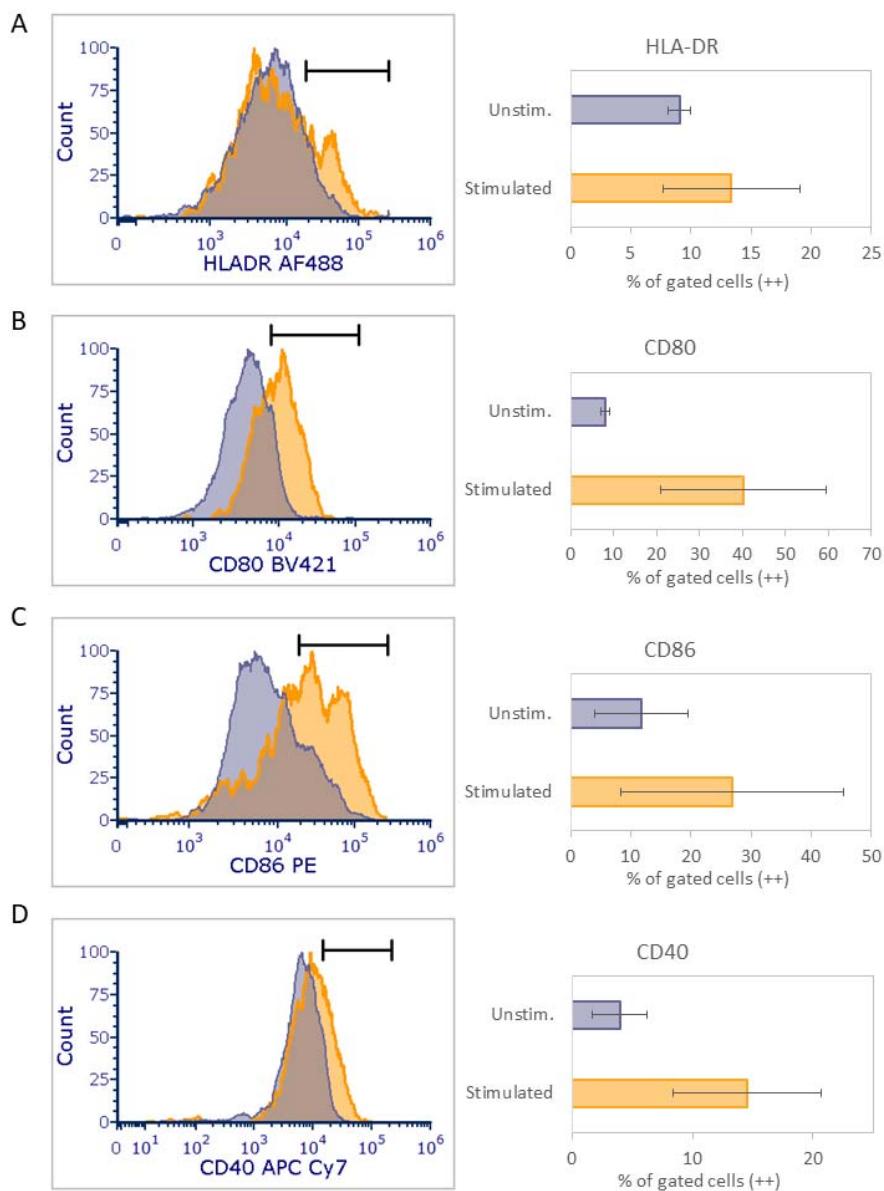
465 Furthermore, the ability of iPSC-DC to enhance the expression of co-stimulatory molecules and
466 upregulation of CCR7 in response to LPR stimuli was assessed. iPSC-DC exhibited a robust
467 upregulation of CD80 and CD40 following activation, with a median fluorescent intensity (MFI)
468 approximately double that of unstimulated samples (Figure 8). However, a slight upregulation of
469 CD86 and HLA-DR was observed; the differences between stimulated and unstimulated samples
470 were not statistically significant. We also observed a significant upregulation of the migration-
471 associated gene, CCR7, and the inflammatory TNFSF15 gene by iPSC-DC after stimulation
472 compared to the control unstimulated samples (Supp. Figure 3). To conclude, the functional
473 analysis confirmed that the in vitro-derived DCs generated from iPSC by our method are able to
474 respond to the TLR stimuli.


475

476

477

478


479

480

481 **Figure 7. iPSC-DC are activated by TLR adjuvants as efficiently as CB-DC2A.** FACS-sorted
482 CD1c+ iPSC-DC and CD1c+ CD14- CB-DC2A were stimulated overnight (16 hr) and assessed for
483 secreted immune modulators by cytokine bead assay (CBA). Three samples of iPSC-DCs are
484 differentiated from HDF51 and PB001.1 lines. Three samples of CB-DC differentiated from CD34+
485 cord blood cells of two donors. P-value calculated by student T-test.

486

494 **Discussion**

495

496 We designed and developed an optimised protocol for generating human dendritic cells from iPSC
497 in a feeder-free differentiation approach. Our method incorporates an amplification phase of iPSC-
498 derived myeloid progenitors, resulting in an improved differentiation yield and a greater number of
499 iPSC-derived DCs compared to a previous iPSC method and similar to the yields obtained from
500 cord blood *ex vivo* expansion methods. Given the limitation in CB methods is the amount of
501 available starting materials, the iPSC method described here offers a promising approach for scale
502 up of human DC production.

503 The terminally differentiated iPSC-derived DC by our method expressed the markers of cDC
504 subsets at the protein level; however, the mRNA expression profile of these cells showed a hybrid
505 phenotype that was most similar to moDC. This inconsistency between gene and protein expression
506 in our iPSC-DC subsets may be due to post-transcriptional regulation. Protein level depends not
507 solely on mRNA levels, but also on translation rate and protein half-lives (reviewed by Buccitelli
508 and Selbach (42)). Therefore, the imperfect protein-mRNA correlation can arise from translation
509 efficiency and protein half-live differences. Non-proliferative cells, a behaviour that we observed in
510 our iPSC-DCs, have protein half-lives greater than 500 hours (43), which may result in a stable
511 protein level linked with lower mRNA levels.

512 Our transcriptional analyses of iPSC-derived DC subsets further highlights that these cell types
513 have a hybrid phenotype, which is distinct from primary DCs developed *in vivo*. For example,
514 iPSC-DC1 show the expression of DC1-specific genes (e.g., CLEC9A and CADM1) but they also
515 expressed DC2-markers (e.g., CD1C), lacking the full identity of either subset. This hybrid identity
516 has been previously seen in the culture of CB progenitors under FLT3L-driven differentiation.
517 Culture of primary progenitors can induce expression of the CD1C marker in cDC1s (18, 44) and
518 others have shown that iPSC-derived DC1 co-express XCR1 and CD14 markers (39, 45). This
519 mixed phenotype can be attributed to the culture conditions under which the signals from the
520 environment may not target a specific transcriptional network necessary for deriving a particular
521 DC subset. To our knowledge, the generation of DC1 from iPSC under a feeder-free culture system
522 has not yet been achieved. This is also consistent with previous studies that reported a MoDC/DC2-
523 like profile (26, 46, 47) or the expression of CD14 monocytic marker by their iPSC-derived DCs
524 (39, 45).

525 Given iPSC-DCs have a hybrid phenotype that at least mimic primary moDC, they have the
526 potential for translational studies. Ultimately for clinical applications, it is important that the *in*
527 *vitro*-generated DC are functional in that they are migratory to lymph nodes, can recognise

528 pathogens, and are capable of processing and presentation of antigens to T-cells, while producing
529 inflammatory cytokines that provide an instructive environment. Our stimulated *in vitro* iPSC-
530 derived DCs appear to be able to produce pro-inflammatory cytokines as well as upregulate
531 appropriate co-stimulatory and migration molecules, although *in vivo* migration, and engagement
532 with T cells has not yet been tested.

533

534 **References**

535

- 536 1. Kvedaraite, E., and F. Ginhoux. 2023. Human dendritic cells in cancer. *Sci. Immunol.* 7: eabm9409.
- 537 2. Schreibelt, G., K. F. Bol, H. Westdorp, F. Wimmers, E. H. J. G. Aarntzen, T. Duiveman-de Boer, M. W. M. M. Van De Rakt, N. M. Scharenborg, A. J. De Boer, and J. M. Pots. 2016. Effective clinical responses in metastatic melanoma patients after vaccination with primary myeloid dendritic cells. *Clin. cancer Res.* 22: 2155–2166.
- 542 3. Dey, M., A. L. Chang, J. Miska, D. A. Wainwright, A. U. Ahmed, I. V Balyasnikova, P. Pytel, Y. Han, A. Tobias, and L. Zhang. 2015. Dendritic cell–based vaccines that utilize myeloid rather than plasmacytoid cells offer a superior survival advantage in malignant glioma. *J. Immunol.* 195: 367–376.
- 546 4. Wculek, S. K., F. J. Cueto, A. M. Mujal, I. Melero, M. F. Krummel, and D. Sancho. 2020. Dendritic cells in cancer immunology and immunotherapy. *Nat. Rev. Immunol.* 20: 7–24.
- 548 5. Bachem, A., S. Güttsler, E. Hartung, F. Ebstein, M. Schaefer, A. Tannert, A. Salama, K. Movassaghi, C. Opitz, H. W. Mages, V. Henn, P. M. Kloetzel, S. Gurka, and R. A. Krocze. 2010. Superior antigen cross-presentation and XCR1 expression define human CD11c+CD141+ cells as homologues of mouse CD8+ dendritic cells. *J. Exp. Med.* 207: 1273–1281.
- 552 6. Jongbloed, S. L., A. J. Kassianos, K. J. McDonald, G. J. Clark, X. Ju, C. E. Angel, C. J. J. Chen, P. R. Dunbar, R. B. Wadley, V. Jeet, A. J. E. Vulink, D. N. J. Hart, and K. J. Radford. 2010. Human CD141+ (BDCA-3)+ dendritic cells (DCs) represent a unique myeloid DC subset that cross-presents necrotic cell antigens. *J. Exp. Med.* 207: 1247–1260.
- 556 7. Laoui, D., J. Keirsse, Y. Morias, E. Van Overmeire, X. Geeraerts, Y. Elkrim, M. Kiss, E. Bolli, Q. Lahmar, and D. Sichien. 2016. The tumour microenvironment harbours ontogenically distinct dendritic cell populations with opposing effects on tumour immunity. *Nat. Commun.* 7: 13720.
- 559 8. Salmon, H., J. Idoyaga, A. Rahman, M. Leboeuf, R. Remark, S. Jordan, M. Casanova-Acebes, M. Khudoynazarova, J. Agudo, and N. Tung. 2016. Expansion and activation of CD103+ dendritic cell progenitors at the tumor site enhances tumor responses to therapeutic PD-L1 and BRAF inhibition. *Immunity* 44: 924–938.
- 563 9. Bedke, N., E. J. Swindle, C. Molnar, P. G. Holt, D. H. Strickland, G. C. Roberts, R. Morris, S. T. Holgate, D. E. Davies, and C. Blume. 2020. A method for the generation of large numbers of dendritic cells from CD34+ hematopoietic stem cells from cord blood. *J. Immunol. Methods* 477: 112703.
- 567 10. Collin, M., and V. Bigley. 2018. Human dendritic cell subsets: an update. *Immunology* 154: 3–20.

569 11. Sallusto, F., and A. Lanzavecchia. 1994. Efficient presentation of soluble antigen by cultured
570 human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus
571 interleukin 4 and downregulated by tumor necrosis factor alpha. *J. Exp. Med.* 179: 1109–1118.

572 12. Le Naour, F., L. Hohenkirk, A. Grolleau, D. E. Misek, P. Lescure, J. D. Geiger, S. Hanash, and
573 L. Beretta. 2001. Profiling changes in gene expression during differentiation and maturation of
574 monocyte-derived dendritic cells using both oligonucleotide microarrays and proteomics. *J. Biol.*
575 *Chem.* 276: 17920–17931.

576 13. Tanaka, H., C. E. Demeure, M. Rubio, G. Delespesse, and M. Sarfati. 2000. Human monocyte–
577 derived dendritic cells induce naive T cell differentiation into T helper cell type 2 (Th2) or Th1/Th2
578 effectors: role of stimulator/responder ratio. *J. Exp. Med.* 192: 405–412.

579 14. Heras-Murillo, I., I. Adán-Barrientos, M. Galán, S. K. Wculek, and D. Sancho. 2024. Dendritic
580 cells as orchestrators of anticancer immunity and immunotherapy. *Nat. Rev. Clin. Oncol.* 1–21.

581 15. Sugimoto, C., A. Hasegawa, Y. Saito, Y. Fukuyo, K. B. Chiu, Y. Cai, M. W. Breed, K. Mori, C.
582 J. Roy, and A. A. Lackner. 2015. Differentiation kinetics of blood monocytes and dendritic cells in
583 macaques: insights to understanding human myeloid cell development. *J. Immunol.* 195: 1774–
584 1781.

585 16. Patel, A. A., Y. Zhang, J. N. Fullerton, L. Boelen, A. Rongvaux, A. A. Maini, V. Bigley, R. A.
586 Flavell, D. W. Gilroy, and B. Asquith. 2017. The fate and lifespan of human monocyte subsets in
587 steady state and systemic inflammation. *J. Exp. Med.* 214: 1913–1923.

588 17. Balan, S., V. Ollion, N. Colletti, R. Chelbi, F. Montanana-Sanchis, H. Liu, T.-P. Vu Manh, C.
589 Sanchez, J. Savoret, I. Perrot, A.-C. Doffin, E. Fossum, D. Bechlian, C. Chabannon, B. Bogen, C.
590 Asselin-Paturel, M. Shaw, T. Soos, C. Caux, J. Valladeau-Guilemond, and M. Dalod. 2014. Human
591 XCR1 + Dendritic Cells Derived In Vitro from CD34 + Progenitors Closely Resemble Blood
592 Dendritic Cells, Including Their Adjuvant Responsiveness, Contrary to Monocyte-Derived
593 Dendritic Cells. *J. Immunol.* 193: 1622–1635.

594 18. Poulin, L. F., M. Salio, E. Griessinger, F. Anjos-Afonso, L. Craciun, J. L. Chen, A. M. Keller,
595 O. Joffre, S. Zelenay, E. Nye, A. Le Moine, F. Faure, V. Donckier, D. Sancho, V. Cerundolo, D.
596 Bonnet, and C. Reis E Sousa. 2010. Characterization of human DNLR-1+ BDCA3+ leukocytes as
597 putative equivalents of mouse CD8a+ dendritic cells. *J. Exp. Med.* 207: 1261–1271.

598 19. Thordardottir, S., N. Schaap, E. Louer, M. G. D. Kester, J. H. F. Falkenburg, J. Jansen, T. R. D.
599 Radstake, W. Hobo, and H. Dolstra. 2017. Hematopoietic stem cell-derived myeloid and
600 plasmacytoid DC-based vaccines are highly potent inducers of tumor-reactive T cell and NK cell
601 responses ex vivo. *Oncoimmunology* 6: e1285991.

602 20. Thordardottir, S., B. N. Hangalapura, T. Hutten, M. Cossu, J. Spanholtz, N. Schaap, T. R. D. J.
603 Radstake, R. van der Voort, and H. Dolstra. 2014. The aryl hydrocarbon receptor antagonist
604 StemRegenin 1 promotes human plasmacytoid and myeloid dendritic cell development from
605 CD34+ hematopoietic progenitor cells. *Stem Cells Dev.* 23: 955–967.

606 21. Anselmi, G., K. Vaivode, C. A. Dutertre, P. Bourdely, Y. Missolo-Koussou, E. Newell, O.
607 Hickman, K. Wood, A. Saxena, J. Helft, F. Ginhoux, and P. Guermonprez. 2020. Engineered niches
608 support the development of human dendritic cells in humanized mice. *Nat. Commun.* 11: 2054.

609 22. van Eck van der Sluijs, J., D. van Ens, S. Thordardottir, D. Vodgel, I. Hermens, A. B. van der
610 Waart, J. H. Falkenburg, M. G. D. Kester, I. de Rink, and M. H. M. Heemskerk. 2021. Clinically
611 applicable CD34+-derived blood dendritic cell subsets exhibit key subset-specific features and
612 potently boost anti-tumor T and NK cell responses. *Cancer Immunol. Immunother.* 70: 3167–3181.

613 23. Maier, B., A. M. Leader, S. T. Chen, N. Tung, C. Chang, J. LeBerichel, A. Chudnovskiy, S.

614 Maskey, L. Walker, J. P. Finnigan, M. E. Kirkling, B. Reizis, S. Ghosh, N. R. D'Amore, N.
615 Bhardwaj, C. V. Rothlin, A. Wolf, R. Flores, T. Marron, A. H. Rahman, E. Kenigsberg, B. D.
616 Brown, and M. Merad. 2020. A conserved dendritic-cell regulatory program limits antitumour
617 immunity. *Nature* 580: 257–262.

618 24. Satoh, T., M. A. S. Toledo, J. Bohnke, K. Olschok, N. Flossdorf, K. Götz, C. Küstermann, S.
619 Sontag, K. Seré, and S. Koschmieder. 2021. Human DC3 antigen presenting dendritic cells from
620 induced pluripotent stem cells. *Front. Cell Dev. Biol.* 9: 667304.

621 25. Monkley, S., J. K. Krishnaswamy, M. Göransson, M. Clausen, J. Meuller, K. Thörn, R. Hicks,
622 S. Delaney, and L. Stjernborg. 2020. Optimised generation of iPSC-derived macrophages and
623 dendritic cells that are functionally and transcriptionally similar to their primary counterparts. *PLoS
624 One* 15: e0243807.

625 26. Alsinet, C., M. N. Primo, V. Lorenzi, E. Bello, I. Kelava, C. P. Jones, R. Vilarrasa-Blasi, C.
626 Sancho-Serra, A. J. Knights, and J.-E. Park. 2022. Robust temporal map of human in vitro
627 myelopoiesis using single-cell genomics. *Nat. Commun.* 13: 1–17.

628 27. Makino, K., M. D. Long, R. Kajihara, S. Matsueda, T. Oba, K. Kanehira, S. Liu, and F. Ito.
629 2022. Generation of cDC-like cells from human induced pluripotent stem cells via Notch signaling.
630 *J. Immunother. cancer* 10.

631 28. Rajab, N., P. W. Angel, Y. Deng, J. Gu, V. Jameson, M. Kurowska-Stolarska, S. Milling, C. M.
632 Pacheco, M. Rutar, A. L. Laslett, K. A. Lê Cao, J. Choi, and C. A. Wells. 2021. An integrated
633 analysis of human myeloid cells identifies gaps in in vitro models of in vivo biology. *Stem Cell
634 Reports* 16: 1629–1643.

635 29. Vlahos, K., K. Sourris, R. Mayberry, P. McDonald, F. F. Bruveris, J. V Schiesser, K. Bozaoglu,
636 P. J. Lockhart, E. G. Stanley, and A. G. Elefanty. 2019. Generation of iPSC lines from peripheral
637 blood mononuclear cells from 5 healthy adults. *Stem Cell Res.* 34: 101380.

638 30. Jones, J. C., K. Sabatini, X. Liao, H. T. Tran, C. L. Lynch, R. E. Morey, V. Glenn-Pratola, F. S.
639 Boscolo, Q. Yang, and M. M. Parast. 2013. Melanocytes derived from transgene-free human
640 induced pluripotent stem cells. *J. Invest. Dermatol.* 133: 2104.

641 31. Ng, E. S., R. Davis, E. G. Stanley, and A. G. Elefanty. 2008. A protocol describing the use of a
642 recombinant protein-based, animal product-free medium (APEL) for human embryonic stem cell
643 differentiation as spin embryoid bodies. *Nat. Protoc.* 3: 768–776.

644 32. Nafria, M., C. Bonifer, E. G. Stanley, E. S. Ng, and A. G. Elefanty. 2020. Protocol for the
645 Generation of Definitive Hematopoietic Progenitors from Human Pluripotent Stem Cells. *STAR
646 Protoc.* 1: 100130.

647 33. Marks, Z. R. C., N. K. Campbell, N. E. Mangan, C. J. Vandenberg, L. J. Gearing, A. Y.
648 Matthews, J. A. Gould, M. D. Tate, G. Wray-McCann, and L. Ying. 2023. Interferon- ϵ is a tumour
649 suppressor and restricts ovarian cancer. *Nature* 620: 1063–1070.

650 34. Choi, J., C. M. Pacheco, R. Mosbergen, O. Korn, T. Chen, I. Nagpal, S. Englart, P. W. Angel,
651 and C. A. Wells. 2019. Stemformatics: Visualize and download curated stem cell data. *Nucleic
652 Acids Res.* 47: D841–D846.

653 35. Ritchie, M. E., B. Phipson, D. I. Wu, Y. Hu, C. W. Law, W. Shi, and G. K. Smyth. 2015. limma
654 powers differential expression analyses for RNA-sequencing and microarray studies. *Nucleic Acids
655 Res.* 43: e47–e47.

656 36. McCarthy, D. J., Y. Chen, and G. K. Smyth. 2012. Differential expression analysis of
657 multifactor RNA-Seq experiments with respect to biological variation. *Nucleic Acids Res.* 40:

658 4288–4297.

659 37. Wickham, H., W. Chang, and M. H. Wickham. 2016. Package ‘ggplot2.’ *Creat. elegant data*
660 *Vis. using Gramm. Graph. Version 2*: 1–189.

661 38. Bates, D. 2005. Fitting linear mixed models in R. *R news* 5: 27–30.

662 39. Sachamitr, P., A. J. Leishman, T. J. Davies, and P. J. Fairchild. 2018. Directed differentiation of
663 human induced pluripotent stem cells into dendritic cells displaying tolerogenic properties and
664 resembling the CD141+ subset. *Front. Immunol.* 8: 1935.

665 40. Elahi, Z., P. W. Angel, S. K. Butcher, N. Rajab, J. Choi, Y. Deng, J. D. Mintern, K. Radford,
666 and C. A. Wells. 2022. The Human Dendritic Cell Atlas: An Integrated Transcriptional Tool to
667 Study Human Dendritic Cell Biology. *J. Immunol.* 209: 2352–2361.

668 41. Goudot, C., A. Coillard, A.-C. Villani, P. Gueguen, A. Cros, S. Sarkizova, T.-L. Tang-Huau, M.
669 Bohec, S. Baulande, and N. Hacohen. 2017. Aryl hydrocarbon receptor controls monocyte
670 differentiation into dendritic cells versus macrophages. *Immunity* 47: 582–596.

671 42. Buccitelli, C., and M. Selbach. 2020. mRNAs, proteins and the emerging principles of gene
672 expression control. *Nat. Rev. Genet.* 21: 630–644.

673 43. Mathieson, T., H. Franken, J. Kosinski, N. Kurzawa, N. Zinn, G. Sweetman, D. Poeckel, V. S.
674 Ratnu, M. Schramm, and I. Becher. 2018. Systematic analysis of protein turnover in primary cells.
675 *Nat. Commun.* 9: 689.

676 44. Kirkling, M. E., U. Cytlak, C. M. Lau, K. L. Lewis, A. Resteu, A. Khodadadi-Jamayran, C. W.
677 Siebel, H. Salmon, M. Merad, A. Tsirigos, M. Collin, V. Bigley, and B. Reizis. 2018. Notch
678 Signaling Facilitates In Vitro Generation of Cross-Presenting Classical Dendritic Cells. *Cell Rep.*
679 23: 3658–3672.e6.

680 45. Silk, K. M., J. D. Silk, N. Ichiryu, T. J. Davies, K. F. Nolan, A. J. Leishman, L. Carpenter, S. M.
681 Watt, V. Cerundolo, and P. J. Fairchild. 2012. Cross-presentation of tumour antigens by human
682 induced pluripotent stem cell-derived CD141 XCR1 dendritic cells. *Gene Ther.* 19: 1035–1040.

683 46. Choi, K.-D., M. Vodyanik, and I. I. Slukvin. 2011. Hematopoietic differentiation and
684 production of mature myeloid cells from human pluripotent stem cells. *Nat. Protoc.* 6: 296–313.

685 47. Senju, S., M. Haruta, K. Matsumura, Y. Matsunaga, S. Fukushima, T. Ikeda, K. Takamatsu, A.
686 Irie, and Y. Nishimura. 2011. Generation of dendritic cells and macrophages from human induced
687 pluripotent stem cells aiming at cell therapy. *Gene Ther.* 18: 874–883.

688

689 **Figure Legends**

690 **Figure 1. Generating hematopoietic progenitors of dendritic cells in vitro.** **A)** Schematic
691 overview of a replicated iPSC-DC differentiation method developed by Sachamitr et al. (39). **B)**
692 differentiation protocol of cord blood (CB)-progenitors toward DC developed by Balan (17) with
693 minor modifications. **C)** our new developed differentiation protocol of iPSC toward DC (iPSC
694 Elahi method). **D)** Flow cytometric assessment of harvested hematopoietic stem cells (HSCs) from
695 each method for the expression of CD34 and CD45 markers. The **E)** Number and **F)** viability of
696 harvested hematopoietic stem cells (HSCs) from each method per batch of 10ml media. Data are
697 representative of three replicates of two iPSC cell lines (PB001.1 and HDF51) and three individual
698 cord blood donors (summarised at Supp. Table 2).

699 **Figure 2. New developed protocol is more efficient in producing iPSC-derived conventional**
700 **dendritic cells. A)** The flow cytometry analysis of terminal differentiated cDCs comparing the
701 percentage of the differentiated Live CD141+ CLEC9A+ cDC1 (top) and Live CD11c+ CD1c+
702 cDC2 (bottom) between the replicated Sachamitr protocol, cord blood (CB) method and our new
703 developed protocol (Elahi iPSC). **B)** Box plot showing the number of differentiated CD141+
704 CLEC9A+ cDC1 and **C**) CD11c+ CD1c+ cDC2 per 10ml media compared across multiple
705 protocols including Sachamitr protocol, cord blood (CB) method and our new developed protocol
706 (Elahi iPSC). Data is from two replicates of PB001.1 iPSC cell line and two replicates of one CB
707 donor.

708 **Figure 3. The in vitro differentiation of CD135+ CD11c+ cells require a combination of GM-**
709 **CSF and IL4 cytokines on top of the FLT3 ligand. A)** Representative flowcytometric plots
710 assessing the yield of CD11c+ generation under four conditions including FL (100ng/ml FLT3L),
711 FLG (100ng/ml FLT3L+ 20ng/ml GMS-CF), FLI (100ng/ml FLT3L+ 20ng/ml IL-4), FLGI
712 (100ng/ml FLTL3+ 20ng/ml GM-CSF+ 20ng/ml IL-4) and control (no FLT3/GM-CSG/IL4). **B)**
713 The bar graph compares the percentage of CD11+ cells under the four conditions mentioned earlier.
714 Data were obtained from two iPSC cell lines, PB001.1 and HDF51. (*P<0.05, student T-test). **C)**
715 The grouped bar graph showing the percentage of CD141+ and CD14+ cells differentiated under
716 three different concentrations of GM-CSF/IL4, including C1:5ng/ml, C2:25ng/ml and C3:50ng/ml.
717 In all conditions, FLT3L is present at 100ng/ml.

718 **Figure 4. Flow cytometric characterisation of differentiated iPSC-cDC subsets. A)** Auto
719 fluorescent cells (AF) were removed from further analysis during two steps. iPSC-cDC1 and iPSC-
720 cDC2 were characterized as Live HLA-DR⁺ CD14- CD11c^{mid/+} CD141+ CLEC9A+ and Live HLA-
721 DR⁺ CD11c+ CD172a+ CD1C+ cells, respectively. **B)** Assessment of iPSC-derived CD14+ cDC2
722 and CD14- cDC2 subpopulation regarding their differences in CD11c and HLA-DR expression
723 levels. The area and width of the forward scatter signal (FSC-A and FSC-W) represent their size
724 and granularity, respectively. CD14+ population is in black, CD14- in red and the FMO (full minus
725 one) control in black.

726 **Figure 5. Characterisation of iPSC- and CB-derived dendritic cells by bulk RNA-sequencing.**
727 **A)** Experimental setup of generation DCs from iPSC and cord blood (CB). The process includes
728 iPSC expansion, harvesting of haematopoietic stem cells (iPSC-HSC), expansion of iPSC-HSC, and
729 differentiating to dendritic cells. Similarly, CB-HSC were expanded and differentiated to DCs.
730 Samples were FACS sorted and analysed by bulk RNAseq. **B)** Multidimensional scaling (MDS)
731 plot of log2 fold changes showing sample clustering of iPSC-derived dendritic cells (iPSC-DC). **C)**
732 Multidimensional scaling (MDS) plot of log2 fold changes showing sample clustering of cord blood
733 CD34+-derived DC (CB-DC). **D)** Heatmap of differentially expressed (DE) genes by iPSC-DC
734 subsets. The top 10 DE genes with p_adjust (BH)<0.01 ranked with logFC were selected for
735 heatmap display (See extended list in Supp. Table 3). **E)** Heatmap of differentially expressed (DE)
736 genes by CB-DC subsets. The top 10 DE genes with p_adjust (BH)<0.01 ranked with logFC were
737 selected for heatmap display (See extended list in Supp. Table 4). **F)** CLEC9A ranked gene
738 expression among iPSC-DC and CB-DC subsets. **G)** CD1C ranked gene expression among iPSC-
739 DC and CB-DC subsets. P-value calculated by student T-test.

740 **Figure 6. Benchmarking iPSC-derived DCs against other myeloid cells. A)** Projection of iPSC-
741 DC on Human DC Atlas showing the proximity of iPSC-DC transcription with atlas MoDC subset.
742 **B)** Capybara similarity scores between iPSC-DC and atlas cell types showing that iPSC-DC capture
743 the MoDC transcriptional profile. **C)** Violin plot of ranked gene expression of IRF4, and **D)**MAFB
744 transcription factors compared between our iPSC-derived DCs (ipDC) with external transcriptional
745 data (28) on iPSC-derived macrophages (ipMAC) and macrophages differentiated from blood
746 monocytes (MDM), previously obtained in our laboratory.

747 **Figure 7. iPSC-DC are activated by TLR adjuvants as efficiently as CB-DC2A.** FACS-sorted
748 CD1c+ iPSC-DC and CD1c+ CD14- CB-DC2A were stimulated overnight (16 hr) and assessed for
749 secreted immune modulators by cytokine bead assay (CBA). Three samples of iPSC-DCs are
750 differentiated from HDF51 and PB001.1 lines. Three samples of CB-DC differentiated from CD34+
751 cord blood cells of two donors. P-value calculated by student T-test.

752 **Figure 8. Enhancement of co-stimulatory molecules' expression after activation of iPSC-DC.**
753 Analysis of median fluorescent intensity (MFI) of A) HLA-DR and co-stimulatory molecules B)
754 CD80, C) CD86 and D) CD40 between stimulated and unstimulated FACS sorted CD1c+ iPSC-DC
755 in blue and grey, respectively. For each condition, four samples including two replicates of HDF51
756 and PB001.1 cell lines, were tested. P-value calculated by student T-test.

757

758

759

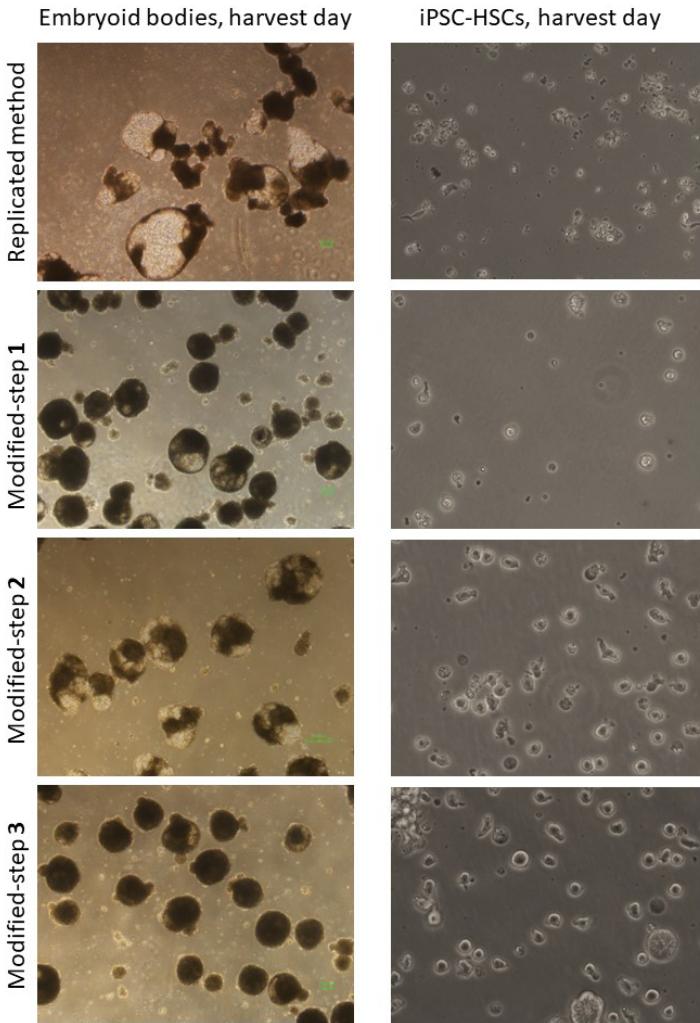
760 **Supplementary Materials**

761 To enhance the Sachamitr protocol, we firstly updated our approach to handling the iPSC, removing
762 mechanical dissociation of iPSC in favour of an enzyme-based approach, as well as adding ROCK
763 inhibitor at the seeding stage to improve the quality of embryoid bodies that were important for
764 generating fresh HSCs comparable to the primary CB cells (Supp. Table 1). This modification step
765 also enhanced the viability of harvested HSCs around EBs but did not improve the yield obtained
766 from the Sachamitr method (Supp. Figure 1).

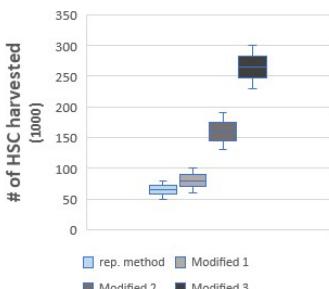
767 We next swapped XVIVO differentiation media for MAGIC media, which has been designed for
768 haematopoietic cell differentiation. We took pains to remove the debris resulting from broken EBs,
769 which improved the quality of culture (Supp. Figure 1), and doubled the number of HSC harvested.
770 Our third approach to improving the quality of DC progenitors from EBs was to introduce a shaking
771 culture system to improve the circulation of media and oxygen around the dish, plus providing a
772 driving force for HSCs to bleed from EBs. This step also enhanced the number of harvested HSCs
773 and their viability (Supp. Figure 1), but still failed to produce numbers that would be equivalent to
774 those derived from cord blood.

775 **Supplementary Table 1. Identified factors associated with the low quality of culture in the**
776 **replicated iPSC-DC protocol and the drawbacks related to each one.** For each item, a
777 modifications approach was applied to enhance the quality and quantity of harvested iPSC-HSC.

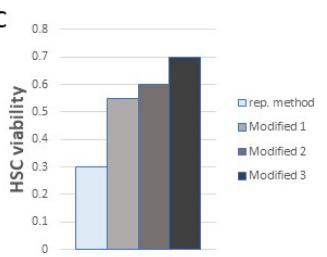
identified factors		Approach by replicated protocol	Drawbacks	Modification applied
1) Cell viability at seeding step	dissociation method	mechanical, scraping	inducing cell death	enzymatic, EDTA-based (Modification 1)
	cell survival at the seeding step	no supporting factor	low survival rate	add ROCK inhibitor (Modification 1)
	2) Culture media	XVIVO	not supporting EB growth, undisclosed components	MAGIC (based on BPEL(31) media) (Modification 2)
3) suspension culture design	media change strategy	replacing one half of the spent media with a fresh one	leaving EB and cell debris in the culture environment	replacing whole media with new media (Modification 2)
	static/shaking	non-shaking	less access to nutrients by EBs, low chance of bleeding from EBs for HSCs	introducing EBs to a shaking system from day 0 (Modification 3)


778

779

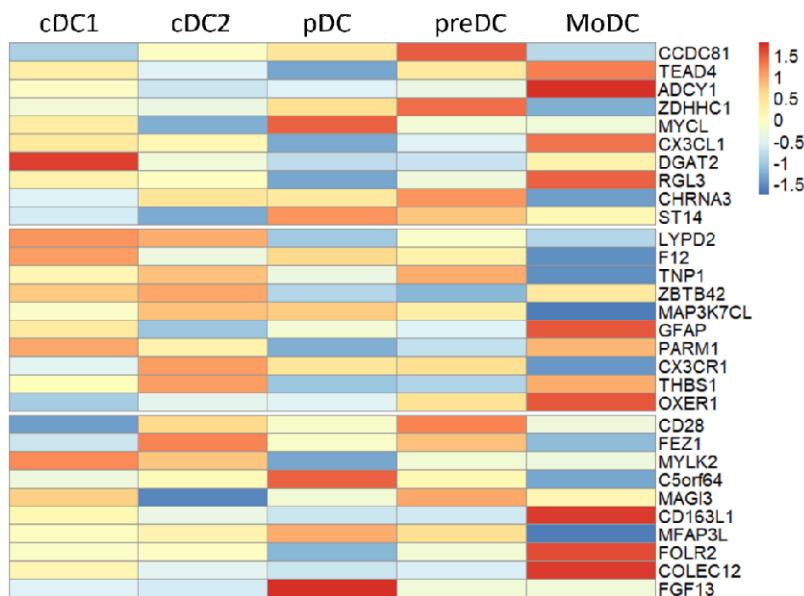

780 **Supplementary Table 2. The number of hematopoietic progenitors (HSC) generated by**
781 **different methods.** Methods include Sachamitr iPSC, Elahi iPSC and Balan CB with the details of
782 cell line or donor used for each experiment.

Methods	Replicates		
	rep1	rep2	rep3
Sachamitr iPSC	cell line: PB001.1 # HSC: 280000 viability: 0.3	cell line: PB001.1 # HSC: 360000 viability: 0.25	cell line: HDF51 # HSC: 160000 viability: 0.3
Elahi iPSC	cell line: PB001.1 # HSC: 5100000 viability: 0.95	cell line: PB001.1 # HSC: 4500000 viability: 0.89	cell line: HDF51 # HSC: 5400000 viability: 0.94
Balan CB	donor: D1 # HSC: 9000000 viability: 0.95	donor: D2 # HSC: 5100000 viability: 0.92	donor: D3 # HSC: 6200000 viability: 0.95

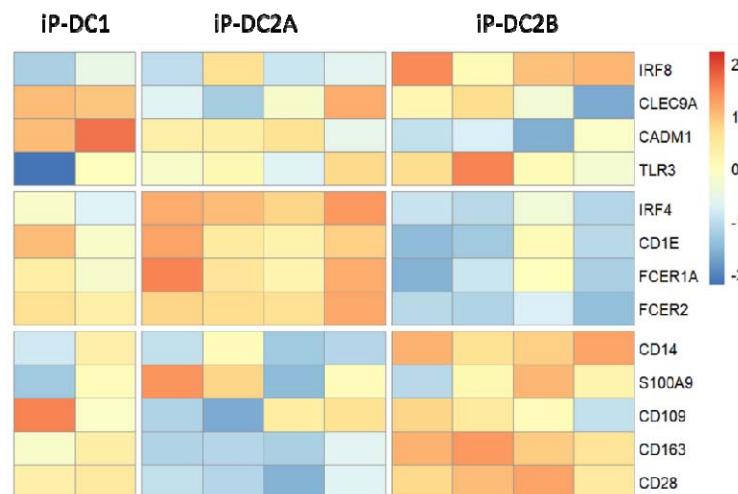

A

B

C


784 **Supplementary Figure 1. Step by step improving the quality and the number of generated**
785 **HSCs from replicated Sachamitr iPSC method** (Modification details are described in
786 Supplementary Table 1). **A)** Light microscopy images of embryoid bodies (EB) at day 13
787 differentiation (left) and the generated HSCs around EBs (right) across each modification step of
788 the Sachamitr protocol. **B)** Box plot showing the number of harvested HSCs and **C)** their viability at
789 day 13 of differentiation from each modification step. Bar plot comparing the iPSC-HSC viability
790 across multiple modification practices of the replicated protocol.

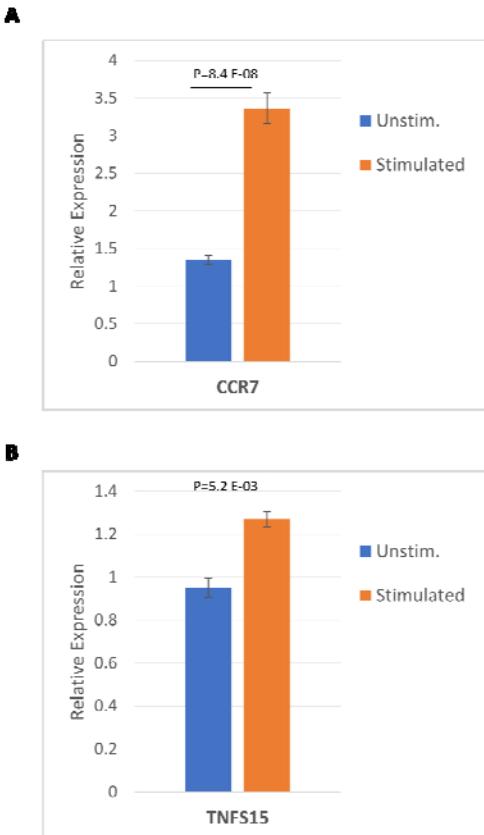
791


792

A

Human DC Atlas- DC subsets

B


793

794 **Supplementary Figure 2. Dendritic cell subset-discriminating genes. A)** Heatmap of the top 10
795 DE genes expressed by iPSC-DC subsets compared between the reference Human DC Atlas (40)
796 cell types. The genes identified with $p_{\text{adjust}}(\text{BH}) < 0.01$ and ranked with $\log FC$ among iPSC-DC

797 subsets. The scale next to the heatmap shows the colour scale from -1.5 (lowest scaled expression in
798 blue) to 1.5 (highest scaled expression in red). **B**) Heatmap of some known DC subset-defining
799 genes across iPSC-derived DC subpopulations. The subset-significant genes extracted from
800 literature. The scale next to the heatmap shows the colour scale from -2 (lowest scaled expression in
801 blue) to 2 (highest scaled expression in red).

802

803

804

805

806 **Supplementary Figure 3. Assessing the expression of CCR7 and TNFSF15 genes after**
807 **activation by iPSC-DC . A)** Boxplot showing the relative expression of the CCR7 gene associated
808 with DC migration compared between stimulated and unstimulated conditions analysed by RT-
809 qPCR analysis. **B)** Boxplot showing the relative expression of TNFSF15 inflammatory gene
810 compared between stimulated and unstimulated conditions. P-value: student T-test.