

1 **Title: Variation in relaxation of non-photochemical quenching between the founder
2 genotypes of the soybean (*Glycine max*) nested association mapping population**

3 Dhananjay Gotarkar^{1,2} (0000-0002-6577-9954)
4 Anthony Digrado^{1,3} (0000-0002-8624-9290), adigrado@illinois.edu
5 Yu Wang¹ (0000-0002-6951-2835), yuwangcn@illinois.edu
6 Lynn Doran¹ (0000-0001-6358-8524), ldoran@illinois.edu
7 Bethany Blakey³ (0000-0001-9923-0794), blakely6@illinois.edu
8 Brian W. Diers⁴ (0000-0003-3584-5495), bdiers@illinois.edu
9 Daniel J. Eck⁵ (0000-0002-2571-5331), dje13@illinois.edu
10 Steven J. Burgess^{1,2*} (0000-0003-2353-7794), sjb287@illinois.edu

11
12 ¹ Carl R Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana,
13 IL, USA

14 ² Department of Plant Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA.

15 ³ Global Change and Photosynthesis Research Unit USDA ARS, Urbana, IL, USA.

16 ⁴ Department of Crop Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA.

17 ⁵ Department of Statistics, University of Illinois Urbana-Champaign, Urbana, IL, USA.

18
19 *Corresponding author
20 Full address: 283 Morrill Hall, 505 S. Goodwin Avenue, University of Illinois Urbana-Champaign,
21 Urbana IL 61801, USA
22 E-mail address: sjb287@illinois.edu
23 Phone number: +1 217-244-8179

24
25 **Keywords**

26 Non-photochemical quenching, photosynthesis, *Glycine max*

27 **Summary**

28 Improving the efficiency of crop photosynthesis has the potential to increase yields. Genetic
29 manipulation showed photosynthesis can be improved by speeding up relaxation of
30 photoprotective mechanisms during sun to shade transitions. However, it is unclear if natural
31 variation in relaxation of non-photochemical quenching (NPQ) can be exploited in crop breeding
32 programs. To address this issue, we measured six NPQ parameters in the 40 founder lines and
33 common parent of a Soybean Nested Association Mapping (SoyNAM) panel over two field
34 seasons in Illinois. NPQ parameters did not show consistently variable trends throughout
35 development, and variation between sampling days suggests environmental impacts on NPQ
36 which last more than 24 hours. 17 genotypes were found to show small but consistent
37 differences in NPQ relaxation kinetics relative to a reference line providing a basis for future
38 mapping studies. Finally, a soybean canopy model predicted available phenotypic variation
39 could result in a 1.6% difference in carbon assimilation when comparing fastest and slowest
40 relaxing NPQ values.

41

42 **Significance Statement**

43 Evidence suggests increasing the rate of relaxation of photoprotection can lead to improved
44 biomass and yield. We compare photoprotection relaxation rates in 41 diverse soybean
45 genotypes grown in the field, identifying lines with faster rates of relaxation, and predict a
46 potential 1.6% difference in daily carbon assimilation which could contribute to improving
47 soybean performance.

48 **Introduction**

49 Leaves within a canopy are exposed to sunflecks and shadeflecks, caused by intermittent cloud
50 cover, wind induced leaf movements, and the changing angle of the sun (Kaiser *et al.*, 2018).
51 Balancing variable energy supply with demand for reducing equivalents is essential for efficient
52 photosynthesis (Kramer and Evans, 2011) and a delay in adjustment of biochemical or gas
53 diffusional processes can lead to reduced carbon assimilation (Sakoda *et al.*, 2022).

54

55 In response to excess light, plants activate photoprotective mechanisms (Demmig-Adams *et al.*,
56 2012; Jahns and Holzwarth, 2012) which deal with production of reactive oxygen species and
57 limit photoinhibition (Pinnola and Bassi, 2018). Excess absorbed light energy can be dissipated
58 by non-photochemical quenching (NPQ) of chlorophyll excited states, reducing the likelihood
59 that damaging reactive oxygen species are formed (Patricia Müller *et al.*, 2001; Ruban and
60 Wilson, 2021). Transgenic approaches have shown increasing NPQ in rice can lead to
61 increased biomass production in glasshouse conditions by alleviating photoinhibition (Hubbart *et*
62 *al.*, 2018). However, excess NPQ, or delays in relaxing NPQ during shadeflecks, are predicted
63 to cause unnecessary dissipation of energy, reducing the efficiency of photosynthesis (Zhu *et*
64 *al.*, 2004; Burgess *et al.*, 2019). As a result, speeding up NPQ activation and relaxation can
65 improve photosynthetic efficiency (Kromdijk *et al.*, 2016; Garcia-Molina and Leister, 2020; De
66 Souza *et al.*, 2022; Lehretz *et al.*, 2022). Support for a link between fast relaxation of NPQ and
67 increased biomass accumulation comes from African rice genotypes grown under controlled
68 conditions (Cowling *et al.*, 2022). Further, analysis of transgenic plants in small-scale field
69 experiments suggested an increase biomass in Tobacco (Kromdijk *et al.*, 2016) and seed
70 production in soybean (De Souza *et al.*, 2022) could be achieved if NPQ relaxation is
71 accelerated. However, there have been contrasting results in Arabidopsis (Garcia-Molina and
72 Leister, 2020) and potato (Lehretz *et al.*, 2022), while the manipulating NPQ on soybean seed
73 production differed between years (De Souza *et al.*, 2022). Taken together, these data point to
74 the need to further understand species the relation of photoprotection to whole plant physiology
75 if the potential benefits of altering NPQ are to be translated to commercial crop varieties (Kaiser
76 *et al.*, 2019; Leister, 2023).

77

78 Most experiments investigating NPQ have been performed under controlled conditions or at a
79 single time point during development. However, NPQ is highly dynamic and sensitive to any
80 perturbation which impacts carbon assimilation or cellular redox state. This means in a field
81 environment, NPQ is likely to vary in response to weather conditions (Zhu *et al.*, 2009; Porcar-

82 Castell, 2011; Sun *et al.*, 2020), but the relationship between genotype x environment
83 interactions on NPQ kinetics is poorly understood. Two studies with field grown soybean have
84 assessed photosynthetic parameters with analysis of chlorophyll fluorescence, using canopy
85 reflectance to calculate photochemical reflectance index (PRI) as a proxy for NPQ (Herritt *et al.*,
86 2016), and OJIP transients to look at variation in fluorescence kinetics (Herritt *et al.*, 2018).
87 However, the individual components of NPQ relaxation were not assessed. Therefore, the
88 extent to which individual components of NPQ co-vary in natural populations and whether they
89 can be selected in breeding programs remains unclear.

90

91 A nested association mapping panel has been developed for soybean with the aim of identifying
92 beneficial alleles possessed by elite and exotic germplasm (SoyNAM)(Song *et al.*, 2017; Diers
93 *et al.*, 2018). This population has proved useful for studying agronomic traits and how they
94 impact yield (Song *et al.*, 2017; Diers *et al.*, 2018; Lopez *et al.*, 2019; Montes *et al.*, 2022). We
95 sought to use this resource for analysis of NPQ relaxation, and kinetics were measured for the
96 41 SoyNAM founder lines over the course of a field season in 2021 and 2022. The goals of this
97 study were to (1) assess if NPQ kinetics vary in response to developmental and field
98 environmental conditions, (2) identify soybean genotypes with fast relaxation kinetics that could
99 serve as the basis for genetic mapping, and (3) test the impact of altering NPQ relaxation on
100 carbon assimilation using a soybean canopy model given existing diversity.

101

102 Six parameters were calculated by fitting a double exponential function to the decay in NPQ on
103 transition to low light (Dall'Osto *et al.*, 2014), including fast (qE) (Krause *et al.*, 1982) and
104 intermediate (qM) relaxing NPQ and their respective rate constants (τ_{qE} and τ_{qM}), in addition to
105 long term NPQ (qI) and maximum NPQ reached during high light treatment (Table 1). Repeat
106 measurements were taken throughout the growing season and a mixed effects linear modeling
107 approach was used to identify lines with significantly different values for NPQ relaxation. Finally,
108 a canopy photosynthesis model (Wang *et al.*, 2020) was used to estimate the potential impact of
109 genetic improvement in NPQ relaxation on soybean photosynthesis.

110

111 **Results**

112 Measurements of NPQ relaxation in field grown plants were taken between V1 to R6 maturity
113 stages in 2021 and 2022 (Figure 1, Table S1-2). Although NPQ parameters remained largely
114 consistent over the course of the growing season, some days exhibited variations in mean
115 values and variance. For instance, declines in τ_{qE} and A_{qM} were observed on the fourth and fifth
116 sampling days in 2022 (Figure 1a and b).

117

118 *Variation in NPQ relaxation parameters.* For all parameters measured there were significant
119 differences between genotypes (G) and days (E) (Table 2). This indicated significant differences
120 between genotypes and a strong impact of the environment on NPQ relaxation. However, there
121 was no significant G x E interaction, suggesting genotypes responded similarly to the
122 environment (Table 2). A stepwise AIC-based model revealed that the environment explained
123 10-47% of the observed variance in NPQ relaxation depending on the parameter and year
124 (Figure 2). The parameter A_{qI} was the best explained by the environment, with a $R^2 > 0.3$ in both
125 years. The parameter τ_{qM} remained the parameter for which the environment had the least
126 predictive power, with a $R^2 < 0.16$ for both years. The R^2 for the other parameters varied between
127 years with, for instance, τ_{qE} showing a R^2 of 0.08 in 2021 and 0.32 in 2022. This could be
128 explained by the range of variation observed in these parameters during those years. For both
129 2021 and 2022, the high values for the Precip and F_{sd} coefficients indicate their strong impact
130 on the parameters, followed by VPD. The years 2021 and 2022 distinguished themselves as
131 VPD_7day had a stronger impact in 2021 compared to 2022 where VPD was preferred by the
132 model. The variable Ta_7day had a significant impact on the NPQ parameters in 2022. Between
133 years, the parameters were affected differently by their environment, with A_{qI} being affected
134 positively by Ta_7day, Precip, and F_{sd} in 2021, but showing the opposite behavior in 2022. This
135 might be due different environmental patterns between the two years, with 2022 showing higher
136 VPD and lower precipitation at the beginning of the growing season compared to 2021.
137 However, A_{qE} , τ_{qE} , and maxNPQ were affected in the same manner by the environment. When
138 the two years were combined in a single model, Precip_7day, Precip_cum, F_{sd} _7day, and
139 cumFn were included in the final models (Figure S1). Their absence in the 2021 and 2022
140 models suggest these variables mostly contributed to explain the year to year variation in NPQ
141 relaxation parameters.

142

143 Canonical correlation analysis (CCA) was used to further explore the relationship between NPQ
144 relaxation parameters and the environment within the NAM founders. The canonical correlations

145 between pairs were ≥ 0.4 (p-value<0.001, Table 3), allowing association of changes in the
146 environment with changes in NPQ relaxation. For both years, CCA revealed seasonal patterns
147 in the NPQ relaxation parameters (Figure 3). In 2021, the CCA showed a change in
148 environmental conditions throughout the season, with an increase in VPD, Ta, F_{sd} , cumFn, and
149 a decrease in precipitation between June 24th and July 20th (Figure 3b, d). This was associated
150 with an increase in A_{ql} and a decline in A_{qe} (Figure 3a, c). The NPQ parameter τ_{qe} remained
151 constant. This is in accordance with the stepwise regression analysis which showed a low
152 predictive power of environmental variable on τ_{qe} in 2021 (Figure 2). Past July 20th, the
153 environmental conditions showed less variation. This was associated with less fluctuation in the
154 different NPQ parameters. July 7th distinguished itself from the other days by an increase in A_{qm} ,
155 maxNPQ, and τ_{qm} . In 2022, the CCA showed a somewhat similar pattern with an increase in A_{ql}
156 at the beginning of the growing season (from July 6th to July 26th) but accompanied by a
157 decline in A_{qm} (Figure 3e, g). This was associated with lower Ta, VPD, and F_{sd} over the same
158 period (Figure 3f, h). The transition from August to July was marked by increasing precipitation
159 and a decline in Ta_7day. This was associated with increasing maxNPQ and a decline in τ_{qm} .
160 Between August 4th and August 20th, the opposite behavior was observed with an increase in
161 A_{qm} and a decline in A_{ql} . Overall, both years showed an increase in A_{ql} at the beginning of the
162 season and highlighted a seasonal behavior with a period of important changes in NPQ
163 relaxation associated with changes in environmental conditions. CCA also revealed different
164 behavior in some NPQ relaxation parameters between years, with τ_{qe} showing no variations in
165 response to its environment in 2021 but being positively associated with Ta_7day, VPD, and
166 cumFn in 2022. The CCA revealed no striking differences between the different NAM groups as
167 they showed the same seasonal behavior in both years, which suggest a stronger impact of the
168 environment on NPQ relaxation than a genotypic variation over the season.
169

170 *Variation in NPQ parameters between NAM founders.* To identify any variation between the
171 NAM founders within a day, a Principal Components Analysis (PCA) was run for each day
172 (Figure S2-14). The Diverse, Elite, PI, and RC groups are highlighted. The results showed no
173 distinction between those groups, which tended to overlap (Figure S2-14). To determine if the
174 groups were significantly distinct from each other, a linear model followed by an ANOVA was
175 used on the principal component coordinate with the 'NAM groups' set as a fixed factor. This
176 analysis showed some significant differences between groups on some dates (Table 4). Groups
177 clusters also separated between group on 6/24/21 and 8/4/22 on the PC2. Groups also
178 separated on the PC3 on 7/13/21 (Figure S5) and 7/6/22 (Figure S9). This suggest that some

179 groups distinguished themselves from the others on the parameters that were the most strongly
180 correlated with these axes. For instance, on 8/4/22 (Figure S13), groups separated on the
181 second component, with PIs showing higher values in A_{qE} and maximum NPQ on average
182 (Figure S13). Founders of NAM10, NAM31, and NAM33 detached themselves from the
183 population cluster on two or more occasions. For instance, on those occasions, NAM33 founder
184 tended to locate in region of the PCA associated with higher maximum NPQ on 6/24/21 (Figure
185 S2) and 7/28/21 (Figure S7).

186

187 When considering all days combined the largest range in values between genotypes was seen
188 in mean τ_{qM} values, which varied ~1.5 fold between the founder genotypes of NAM5 (19.94) and
189 NAM17 (29.3) (Figure 4; Table 5; Table S3). A small range of values was observed for all other
190 parameters (Table 2; Figure 4) and no observable difference was seen between elite, diverse or
191 PI genotypes (Figure 4) consistent with the PCA (Figure S2-15). A mixed effects linear model
192 was employed to test whether genotypes showed consistent variation relative to the reference
193 genotype RC, while considering development stages and environmental conditions on NPQ
194 relaxation parameters. Nested model comparisons via AIC indicated 17 genotypes varied
195 consistently in at least one parameter over six different models compared to RC (Figure 5).
196 Three genotypes consistently varied in two parameters, with founders of NAM33 and 37 having
197 lower A_{qI} and MaxNPQ compared to RC, while the NAM54 founder had slower relaxation of A_{qM}
198 represented by a larger τ_{qM} , and a higher maximum NPQ (Figure 5).

199

200 *Modeling impact of NPQ variation on canopy photosynthesis.* To assess the potential for
201 improving the efficiency of soybean photosynthesis a canopy model, parameterized for
202 reference line RC was used to calculate the impact of varying NPQ parameters based on the
203 phenotypic diversity present in the SoyNAM founders. The minimum and maximum recorded
204 genotypic values for NPQ relaxation (τ_{qE} and τ_{qM}) were used to estimate the potential decrease
205 in CO_2 assimilation caused by slow relaxation of NPQ on a cloudy (226) and sunny (227) day in
206 Illinois in 2021 (Figure 6a and b). Simulations estimate the difference in CO_2 assimilation
207 between canopies with the fastest and slowest relaxing NPQ kinetics observed would equate to
208 1.6% on intermittently cloudy days, and 1.1% on a sunny day (Figure 6c).

209

210

211 **Discussion**

212 The aims of this study included assessing the extent of variation in NPQ relaxation parameters
213 between SoyNAM founder genotypes and predicting the impact on canopy photosynthesis.
214 Given that we identified strong environmental effects on measured NPQ parameters, (Figure 2-
215 3, Figure S1), our data are consistent with differences caused by physiological adaptation that
216 lasts longer than 24h. This was brought to light by Figure S1, highlighting the importance of 7
217 day-averaged variables to explain the variation between years that daily averages couldn't
218 explain. The mechanisms behind this phenomenon are unclear, but it is possible that the
219 phenotype is influenced by the status of xanthophyll cycle pigments in the leaf. Zeaxanthin (Zx),
220 plays an important role in modulating NPQ and is created from the de-epoxidation of
221 violaxanthin (Vx) via the intermediate antheraxanthin (Ax) (Jahns and Holzwarth, 2012). Zx
222 decelerates the relaxation of qE (Niyogi *et al.*, 1998) and the rate of conversion to Vx appears to
223 be indirectly associated with slower relaxing phases of NPQ referred to as qZ (Nilkens *et al.*,
224 2010; Kress and Jahns, 2017). The amount of Zx is dependent on the combined xanthophyll
225 pool size (VAZ), which is regulated by carotene hydroxylase (Davison *et al.*, 2002), and the
226 steady state de-epoxidation state of xanthophyll pigments which is influenced by the activity of
227 zeaxanthin epoxidase (ZEP). The VAZ pool size is adjusted in response to environmental
228 conditions, with studies showing that leaves grown in full sun as opposed to shade conditions
229 have larger pools (Demmig-Adams, 1998), with a greater de-epoxidation state, and more Zx
230 would be expected to lead to an increase in τ_{qE} . However, there is currently a limited
231 understanding of regulation of xanthophyll cycle enzymes in response to environmental stress,
232 which appears to vary between tissues, species and cultivars (Schwarz *et al.*, 2015; Bethmann
233 *et al.*, 2019; Grieco *et al.*, 2020). For example, ZEP degraded in leaves but accumulated in roots
234 of *Arabidopsis* exposed to drought stress (Schwarz *et al.*, 2015). Whereas ZEP was shown to
235 increase in abundance of leaves from an Iranian cultivar of wheat exposed to a water stress, but
236 not one from the UK, while violaxanthin de-epoxidase (VDE) remained stable (Grieco *et al.*,
237 2020). Interestingly, the wheat plants with increased ZEP were characterized by a higher qZ
238 amplitude (Zx-dependent quenching on 10-30 min time scale) and a higher τ_{qZ} relative to control
239 as the drought treatment established, which would have been expected if VDE had increased or
240 ZEP decreased. This has led the authors to hypothesize that the slowdown in NPQ was caused
241 by a change in enzyme activity rather than in stoichiometry (Grieco *et al.*, 2020). While it is
242 difficult to determine whether the soybeans have been experiencing water stress during our
243 study, the decline in τ_{qM} (which would be the parameter the most related to τ_{qZ}) in 2022
244 coincided with precipitation events that had followed a sustained period with low precipitations

245 (Figure 2) which would be consistent with increased ZEP activity. However, further investigation
246 is required to determine if xanthophyll pigment content and enzyme abundance can account for
247 the observed impact of other environmental variables on NPQ relaxation.

248
249 Fast conformational change in the thylakoid membrane is also known to play an important role
250 in NPQ and its components (Schaller *et al.*, 2010; Ruban *et al.*, 2012; Sacharz *et al.*, 2017).
251 PsbS has been proposed to facilitate thylakoid membrane re-organization by regulating the
252 interaction between LHCII and PSII which then results in NPQ (Kiss *et al.*, 2008). A study
253 conducted on a PsbS knock-out rice mutant revealed that τ_{qE} depended on the level of
254 phosphorylation of Lhcb1 and Lhcb2 (Pashayeva *et al.*, 2021). High temperature has been
255 shown to lead to an increase in the thylakoid membrane stiffness, causing a decline in the
256 amplitude of the long-lifetime components of fluorescence decay without affecting its lifetime
257 (Pollastri *et al.*, 2019). While it difficult in our study to isolate the effect of air temperature on
258 NPQ relaxation from the effect of other environmental variables, our results showed an
259 important impact of temperature on NPQ relaxation and its varied components (Figure 2, Figure
260 S1), though its effect varied depending on the year and the components. How multiple
261 environmental stressors may interact and affect NPQ relaxation remains understudied.

262
263 Our study also revealed a seasonal pattern in NPQ relaxation (Figure 3) and the importance of
264 aggregated environmental variables (Figure S1) when comparing NPQ relaxation between
265 years, suggesting a lasting effect of the environment on NPQ relaxation. Photoinhibitory
266 quenching has been shown to operate at a seasonal timescale (Demmig-Adams and Adams III,
267 2006) and could have a lasting impact on NPQ relaxation. Long-term adaptation of NPQ has
268 been observed in *Taxus baccata* with needles exposed to high light in winter showing a slowed
269 NPQ relaxation weeks after (Robakowski and Wyka, 2009). Studies have also shown that
270 repeated excess-light exposure can lead to a faster onset kinetics of pH-dependent NPQ
271 (Demmig-Adams *et al.*, 2022). This was true for both sun-grown and shade leaves. Still, more
272 studies are needed to understand how NPQ relaxation is affected by its environment on a
273 longer timescale in crops.

274
275 The SoyNAM population is known to possess genotypic diversity with respect to photosynthetic
276 variables: there is large variation in rates of rubisco activation, which was reported to cause a
277 >5 fold difference in carbon fixation during the first five minutes following transition between
278 dark and light conditions (Soleh *et al.*, 2017), and loci have been identified influencing carbon

279 assimilation and electron transport (Montes *et al.*, 2022). Intriguingly the founder genotype of
280 NAM12, which has previously been shown to possess highest levels of steady state electron
281 transport (J_{max}) (Montes *et al.*, 2022), and slowest rate of rubisco activation (Soleh *et al.*, 2017),
282 was the only genotype that showed significantly slower rates of relaxation of qE relative to the
283 reference (Figure 4). But further analysis of RIL population will be required to determine if these
284 traits are linked or segregate independently. A known variant is found at the *e2* locus, which
285 encodes homolog of the *Arabidopsis* circadian clock gene *GIGANTEA* (Watanabe *et al.*, 2011).
286 This gene have been shown to have pleiotropic effects which influence soybean photosynthesis
287 (Montes *et al.*, 2022), canopy coverage (Xavier *et al.*, 2017) and yield traits (Diers *et al.*, 2018).
288 The late maturity *E2* allele is segregating in seven of the NAM founders, three of which (NAM33,
289 37 and 50) were identified as having significantly less A_{qI} compared to the reference line, and it
290 may therefore also influence the traits measured here.

291
292 Although a small number of lines were found to vary in NPQ kinetics compared to RC (Figure
293 4), the overall diversity in NPQ relaxation parameters between SoyNAM founders was limited,
294 for example, only a 1.5-fold change between the smallest and highest τ_{qM} (Table 5). This small
295 amount of variation is not a general phenomenon related to NPQ, with several studies finding
296 substantial variation in species ranging from *Arabidopsis* to *Maize* (Jung and Niyogi, 2009;
297 Rungrat *et al.*, 2019; Cowling *et al.*, 2022; Sahay *et al.*, 2023). For example, analysis of rice
298 genotypes found large variation maximum NPQ (Kasajima *et al.*, 2011), which was attributed to
299 an insertion in the promoter region of photosystem II subunit S (PsbS) resulting in higher
300 expression and higher NPQ in *japonica* rice (Wang *et al.*, 2017). In the case of soybean, this
301 lack of variation may reflect an unusual number of genetic bottlenecks in domestication and
302 then introduction into the USA (Hyten *et al.*, 2006), with only 28 ancestors contributing to 95% of
303 the genes in cultivars released between 1947-1988 (Gizlice *et al.*, 1994). The lines used in this
304 study were chosen for their diversity, but it remains unclear if there is more variation in NPQ to
305 be found in the wider soybean germplasm and whether more may be found in collections of the
306 wild ancestor *Glycine soja* which is considered a largely untapped source of genetic variation in
307 cultivated soybean (Kofsky *et al.*, 2018).

308
309 Previous transgenic manipulations suggested that speeding up relaxation of NPQ can increase
310 photosynthetic efficiency leading to improved growth (Kromdijk *et al.*, 2016) or seed production
311 (De Souza *et al.*, 2022), although it is not always the case (Garcia-Molina and Leister, 2020;
312 Lehretz *et al.*, 2022). The reason for this is not clear, but the interplay between total

313 photoprotection, ability to use assimilate, and the rates of activation and relaxation are likely to
314 be important. Wang *et al.* (2020) previously used a ray tracing algorithm and canopy model to
315 estimate the predicted benefit of manipulating NPQ or photosynthetic induction rates in soybean
316 given available natural variation. The data used was based on preliminary measurements made
317 on the same SoyNAM panel as in this publication (Song *et al.*, 2017; Diers *et al.*, 2018).
318 However, predictions of the impact on altering NPQ relaxation were based on light-to-dark
319 measurements, which are shown to be unlikely to be realistic for a field environment (Fig. 1B)
320 and did not focus on identifying which soybean genotypes could be beneficial for genomic
321 selection from the perspective of NPQ relaxation. Here, the differences in NPQ parameters
322 between lines was smaller, ~28% difference in τ_{qE} between fastest and slowest relaxing lines as
323 compared to 40% (Wang *et al.*, 2020), which equates to 1.6% daily assimilation, likely due to
324 the much deeper sampling and measurement conditions. Analysis of the response of soybean
325 to artificial increase of photosynthesis in the field by elevation of [CO₂], show that while older
326 cultivars appear sink limited, modern cultivars appear to be source limited and can fully use any
327 increase in photosynthesis (Ainsworth and Long, 2021). Given the limited diversity of NPQ
328 relaxation rates in soybean germplasm, achieving increases in photosynthetic efficiency through
329 manipulating NPQ is likely to be best achieved through transgenic approaches.
330

331 **Experimental procedures**

332 *Plants and growth conditions*

333 The 41 parents of the Soybean Nested Association Mapping (NAM) population (Song et al.,
334 2017, Diers et al., 2018) were grown in the field at the Crop Sciences Research and Education
335 Center at the University of Illinois at Urbana-Champaign in 2021 (latitude 40.084604, longitude -
336 88.227952) and 2022 (latitude 40.064866, longitude -88.193084). Seeds were planted in 1.2 m
337 single-row plots with a 0.75 m row spacing, with 40 seed m⁻¹ in a North-South orientation on 5
338 June 2021 and 13 June 2022 (Table S4). The experiment was arranged in a randomized
339 complete block design, with five replicate plots per genotype. Standard agronomic practices
340 were employed.

341

342 For greenhouse experiments, seeds of the NAM Recurrent Parent IA3023 were planted 2 mm
343 deep in a Soil: Perlite:Torpedo Sand mixture (1:1:1), in classic 600 2-gallon pots on May 5th,
344 2021. Plants were watered and fertilized as needed, and grown under 1500 µmol m⁻² s⁻¹ light,
345 14 h daylength, with temperatures set a 27-30°C during the day, 23-26°C at night.

346

347 *Meteorological data collection*

348 Meteorological variables were measured every 30 min by a weather station at the University of
349 Illinois Energy Farm, approximately 1 km from the Crop Sciences Research and Education
350 Center (latitude 40.062832, longitude -88.198417). Air temperature (T_a, °C) and relative
351 humidity (RH, %) were recorded by a HMP45C probe (Campbell Scientific, Logan, UT, USA),
352 and incoming shortwave radiation (F_{sd}, W m⁻²) was from a CNR1 radiometer (Kipp & Zonen,
353 The Netherlands), both instruments were installed 4 m above the ground. T_a and RH were used
354 to calculate saturation vapor pressure (e_s) and actual vapor pressure (e_a) for each 30 min
355 period, which were then used to calculate vapor pressure deficit (VPD, kPa) as per Equations 1-
356 3:

$$e_s = 0.6106 * \exp\left(\frac{(17.27 * T_a)}{(237.3 + T_a)}\right) \quad \text{Equation 1}$$

$$e_a = \frac{RH * e_s}{100} \quad \text{Equation 2}$$

$$VPD = e_s - e_a \quad \text{Equation 3}$$

357

358 Occasional gaps in meteorological data are inevitable when measuring at these time scales, so
359 data gaps were filled where needed, whereby an artificial neural network was used to generate
360 a complete time-series with external data sourced from the University of Illinois Willard Airport

361 weather station (station ID: 725315-94870) and ERA-interim data from the European Centre for
362 Medium Range Forecasts. In total, less than 5 % of data required gap filling. Daily summary
363 values were then calculated for each variable, with T_a and VPD presented as daily mean, F_{sd}
364 as daytime-only (i.e. 06:00-18:00) mean, and rainfall as a daily sum. The variables T_{a_7day} ,
365 VPD_7day, and F_{sd_7day} represent the average for the past 7 days for these values. The
366 variable Precip_7day represent the sum in precipitation for the past 7 days. The cumulated net
367 radiation (cumFn) was calculated as the sum of net radiation between 6:00 and 12:00

368

369 *Chlorophyll fluorescence analysis*

370 For field experiments, plants were sampled between 8:00-10:00 at seven time points across
371 development in 2021 and six time points in 2022 (Table S5) according to (Gotarkar *et al.*, 2022).
372 Briefly, five 4.8 mm leaf disks were collected per plot, sampling from the upper-most mature leaf
373 using a cork borer (H9663; Humboldt Mfg. Co.). Leaf disks were then transferred face down into
374 wells of a flat-bottomed 96 well plate (FB012929; Fisher Scientific), humidity was maintained by
375 placing a half-wet nasal aspirator filter into each well (iHank-Nose B07P6XCTGV; Amazon), and
376 plates were sealed and wrapped in aluminum foil followed by overnight dark adaptation.
377 Measurements were taken with modulated chlorophyll fluorescence imaging system (CF
378 imager; Technologica, UK). To induce low-high-low light fluctuations, samples were illuminated
379 for 10 min at $50 \mu\text{mol m}^{-2} \text{s}^{-1}$, followed by 15 min at $2000 \mu\text{mol m}^{-2} \text{s}^{-1}$ and 50 min of $50 \mu\text{mol m}^{-2} \text{s}^{-1}$. $F_{m'}$, was determined by applying saturating pulses ($4000 \mu\text{mol m}^{-2} \text{s}^{-1}$) at 2.5, 5, 7.5, 10 min after the actinic light was turned on ($50 \mu\text{mol m}^{-2} \text{s}^{-1}$), 2.5, 5, 7.5, 10, 12.5 and 15 min after high light exposure ($2000 \mu\text{mol m}^{-2} \text{s}^{-1}$), and 2.5, 5, 10, 15, 20, 25, 30, 35, 40, 45 and 50 min following return to low light ($50 \mu\text{mol m}^{-2} \text{s}^{-1}$). The background was excluded manually
384 and NPQ values at each pulse were calculated.

385

386 NPQ values were calculated for each time point using custom MatLab scripts according to
387 (Gotarkar *et al.*, 2022). NPQ relaxation parameters A_{qE} , A_{qM} , A_{ql} , τ_{qE} and τ_{qM} were then
388 calculated by fitting the sum of a double exponential function to measured NPQ values following
389 shut off of the actinic light, according to Equation 4 (Dall'Osto *et al.*, 2014):

390

$$NPQ = A_{ql} + A_{qE}^{(-\frac{t}{\tau_{qE}})} + A_{qM}^{(-\frac{t}{\tau_{qM}})} \quad \text{Equation 4}$$

391

392 using the fit function in MatLab R2018b, where t is the measured fluorescence at a given time
393 point. Maximum NPQ values are defined as the maximum value reached during the 15 min
394 illumination at high light.

395

396 *Measurement of light intensity at layers in the soybean canopy*

397 Light intensity was measured simultaneously within and above a soybean canopy using
398 quantum sensors (LI-190R, LICOR, Lincoln, NE, USA) mounted on an aluminum frame reading
399 at 8 different levels (9, 24, 44, 64, 84, 104, 124, and 144 cm height). Measurements were
400 manually logged on a datalogger (CR100x; Campbell Scientific, Logan, UT, USA) after carefully
401 placing the frame within the canopy with the sensors close to the stems and waiting for stable
402 readings. Those measurements were taken on six different cultivars from a germplasm
403 collection at (or close to) the reproductive stage R5. Measurements were conducted on August
404 17th, 2022 between 12:00 and 12:15.

405

406 *3D soybean model and light distribution*

407 The dynamics of lighting within a soybean canopy were predicted with a 3D architectural
408 representation, using our previously presented soybean canopy model (Song et al., 2019; Wang
409 et al., 2020). The model was parameterized on the measured architecture of soybean hub
410 parent

411 IA3023 (RC) at the University of Illinois Energy Farms in August 2022 (measured canopy
412 parameters are listed in Tables S6-8). Leaf area was measured when the soybean plants on
413 18th August 2021. The youngest mature leaf (~3rd trifoliolate from the top) was selected for
414 analysis, the area of all three leaves in the trifoliolate from three plots was measured with a leaf
415 area meter (LI3100C; LI-COR Environmental, Lincoln, NE, USA) (Table S6). Detailed
416 parameters were measured for 5 genotypes on August 19th 2021 and 8 genotypes on August
417 30th 2022. Plant height was measured from the base to tip after the plants were cut from the
418 base and stretched. Leaf width was measured at the widest point from each leaflet in a trifoliolate
419 and averaged. Leaf length was measured from base to tip for each trifoliolate and averaged.
420 Internode length was measured for the 6th internode from the top, with one value recorded per
421 plant, and branch angle was measured for the 6th branch from the top using a digital protractor,
422 one measurement per plant. The total number of trifoliolate, number of primary and secondary
423 branches and number of pods per plant were counted manually for one plant per plot (Table
424 S7). Leaf Area Index (LAI) was measured using the SunScan canopy analysis system
425 (SS1; Delta-T Devices Ltd, UK) with a 1 m probe according to the manufacturer's instructions.

426 LAI was measured at R5 developmental stage between 11:56 and 13:50 on 20th August 2021
427 on both sides of each plot and averaged, with the probe positioned parallel to the rows (Table
428 S8). To calculate the actual light environment of the soybean canopy, measured PAR data on
429 DOY 226 and 227 of 2021 in Bondville, IL. (Earth System Research Laboratory, Global
430 Monitoring Division <https://www.esrl.noaa.gov/gmd/grad/surfrad/dataplot.html>) was incorporated
431 (Table S9). A forward ray-tracing algorithm (FastTracer; Song et al. 2013) was used to predict
432 the light absorption of each leaf pixel (ca. 5 mm²) every 1min from 05:00 – 19:00 in Champaign
433 IL, US (40.11N, 88.21 W).

434

435 *Simulation of dynamic photosynthesis*

436 Dynamic photosynthetic rates were calculated for every 10 s (Δt) of the day using the absorbed
437 light for each leaf pixel, considering rates of Rubisco activation and NPQ relaxation (Wang et
438 al., 2020). Then the canopy net CO₂ uptake (A_c) was calculated as:

439

$$A_c(t) = \frac{\sum (A_i(t) \cdot S_i)}{S_{\text{ground}} \cdot 440}$$

441

442 Where $A_i(t)$ is the CO₂ uptake rate of a leaf pixel; S_i is the surface area of each pixel, S_{ground}
443 represents the occupied ground area of the simulated canopy. All simulations were conducted in
444 MATLAB 2021a (The Mathworks, Inc[®]).

445

446 Time constants of NPQ relaxation and Rubisco activation across the NAM population were
447 measured and used as input of the dynamic photosynthetic model (model inputs were listed in
448 Table S10). The time constant of Rubisco de-activation was assumed to be double the time
449 required for activation for each genotype (Taylor & Long, 2017).

450

451 *Statistical Analysis*

452 Technical replicates from the chlorophyll fluorescence analysis were averaged prior to statistical
453 analyses. The impact of genotypes, the environment, and their interaction on NPQ relaxation
454 was assessed by fitting an ANOVA model in R v4.1.2 (R Core Team, 2016) and RStudio
455 v2024.04.0 (RStudio Team, 2015) using the stats R package v4.1.2. The ANOVA model was
456 written as NPQ parameter ~ genotype (G) + day (or the environment, E) + genotype * day with
457 G and E set as fixed factors. The impact of the environment was assessed for each NPQ
458 relaxation parameter by using a stepwise regression model to determine which environmental
459 variables had the strongest impact on the parameters. The initial linear model included all the

460 environmental variables. A both-direction stepwise algorithm then tested the model by removing
461 and re-including environmental variables one by one. The Akaike's information criterion (AIC)
462 was used to select the best minimum adequate model (lowest AIC) using the stats R package
463 v4.1.2. This test was performed with data collected in 2021, 2022, and for the two years
464 together. Centered and scaled environmental variables were used as input in the model. The
465 relationships between genotypes, the environment, and NPQ relaxation were explored using
466 canonical correlation analysis (CCA). This multivariate statistical approach identifies linear
467 combinations of variables for the two datasets (here, NPQ and environmental data) to construct
468 a pair of canonical variates that are maximally correlated with each other on the first canonical
469 axis (CC1). Then, a second pair of canonical variates is made with a maximized correlation on
470 the second canonical axis (CC2) but uncorrelated with the CC1. The process is repeated for
471 each canonical variates' pairs. A significant correlation between pairs enables associations
472 among the different variables. The CCA analysis was performed in R using the CCA R package
473 v1.2.1 (González and Déjean, 2021). The statistical significance of canonical correlation
474 coefficients was carried out by using Wilks' Lambda with the CCP R package v1.2 (Menzel,
475 2022). All NPQ relaxation parameters were used as input for the first dataset. Environmental
476 variables were used as input for the second dataset with the exception of VPD_7day,
477 Precip_7day, Fsd_7day, and cumulated precipitation based on the stepwise regression model
478 to reduce co-linearity.

479
480 For chlorophyll fluorescence analysis, leaf disks with F_v/F_m value <0.75 were excluded to ensure
481 measured values were from healthy disks representative of whole plant kinetics. Additional
482 outliers were defined and removed if calculated parameter values were <0. The effect of
483 genotypic differences from the RC for each NPQ relaxation parameter were estimated using
484 linear mixed-effects models (Bates *et al.*, 2015). Linear fixed effects included days, air
485 temperature (Ta), vapor pressure deficit (VPD), precipitation (Precip), incoming shortwave
486 radiation (Fsd), a 7-day rolling mean air temperature (Ta 7day), and a 7-day rolling mean vapor
487 pressure deficit (VPD 7day), with random effects for plot and leaf disks (Data S1). Akaike's
488 Information Criterion (AIC) was used to compare linear mixed-effects models (Akaike, 1974;
489 Faraway, 2016). Briefly, nested model comparisons via AIC determined which genotypes exhibit
490 different measures from the baseline genotype RC, following a procedure to fit a smaller model
491 with one genotype removed. This smaller model assumes that there is no difference between
492 that genotype and the RC baseline. The computed AIC value for this smaller model was
493 compared with the AIC value of the full model with all genotypes considered. If the smaller

494 model has a lower AIC value, then the removed genotype does not exhibit an effect on NPQ
495 relaxation parameters that is different from the RC baseline. This procedure was repeated for all
496 genotypes and all linear mixed-effects models involving NPQ relaxation parameters as a
497 response. In addition to this approach, a principal component analysis (PCA) was performed for
498 each days separately to identify any patterns among NAM groups (i.e, diverse, elite, PI, and
499 RC) and/or notable genotypes. The analysis was performed using the ade4 (v1.7-22) R
500 package (Dray and Dufour, 2007). Centered and scaled NPQ parameters were used as input
501 variables. Differences between NAM groups in their principal component coordinates were
502 assessed by using a one-way ANOVA with groups as a fixed factor with the R stats package
503 (v4.1.2).

504

505 **Data Statement and Accession Numbers**

506 All raw NPQ data values prior to filtering and processing are provided in csv format in Table S1.
507 All raw chlorophyll fluorescence imager files and custom scripts can be accessed via FigShare
508 10.6084/m9.figshare.21574509 and 10.6084/m9.figshare.25939504.

509

510 **Acknowledgements**

511 We thank Troy Cary for setting up the soybean NAM population plots; Wanne Kromdijk for help
512 setting up scripts for analysis of NPQ relaxation parameters; Caitlin Moore for assistance with
513 data from 2018 and 2019 used in previous versions of this manuscript; Meghan Burns, Meghan
514 Blaszynski, Jacob Milo, and Abigail Hinkle for their assistance collecting samples and Stephen
515 P. Long for commenting and feedback on the manuscript. This work was supported by the
516 project Realizing Increased Photosynthetic Efficiency (RIPE), funded from 2017-2023 by the Bill
517 and Melinda Gates Foundation (BMGF), Foundation for Food and Agriculture Research (FFAR)
518 and the UK Department for International Development (UKAid) under grant number
519 OPP117215. SJB was supported by Carl R. Woese Institute for Genomic Biology Fellowship.

520

521 **Short legends for Supporting Information**

522 Table S1: Raw NPQ timeseries values for all technical replicates prior to filtering and
523 processing.

524 Table S2. Calculated NPQ relaxation parameters for all plots and genotypes.

525 Table S3. Genotype means for calculated NPQ relaxation parameters combining all data from
526 2021 and 2022.

527 Table S4: Field design with plot numbers and orientation in 2021 and 2022.

528 Table S5. Sampling time points in 2021 and 2022 including days after sowing and development

529 stage.

530 Table S6. Leaf area measurements for 41 SoyNAM founders recorded in 2022, data is provided

531 for three biological replicates.

532 Table S7. Canopy measurements for seven SoyNAM founders and reference genotype RC

533 recorded on August 30th 2022.

534 Table S8. Leaf area index measurements for 41 SoyNAM founders recorded in 2022, data is

535 provided for two technical and 5 biological replicates.

536 Table S9. Measured PAR values on day of the year (DOY) 226 and 227 of 2021 in Bondville, IL.

537 Earth System Research Laboratory, Global Monitoring Division.

538 Table S10. Input values for 3D canopy model.

539 Data S1. Description of statistical analysis comparing NPQ relaxation kinetics between

540 genotypes.

541

542

543 **Conflict of Interest**

544 The authors report no conflicts of interest.

545 **References**

546 **Ainsworth, E.A. and Long, S.P.** (2021) 30 years of free-air carbon dioxide enrichment (FACE):
547 What have we learned about future crop productivity and its potential for adaptation?
548 *Glob. Change Biol.*, **27**, 27–49. Available at: <https://doi.org/10.1111/gcb.15375>
549 [Accessed January 26, 2024].

550 **Akaike, H.** (1974) A new look at the statistical model identification. *IEEE Trans. Autom. Control*,
551 **19**, 716–723.

552 **Bates, D., Mächler, M., Bolker, B. and Walker, S.** (2015) Fitting Linear Mixed-Effects Models
553 Using lme4. *J. Stat. Softw.*, **67**, 1–48. Available at:
554 <https://www.jstatsoft.org/index.php/jss/article/view/v067i01> [Accessed March 8, 2024].

555 **Bethmann, S., Melzer, M., Schwarz, N. and Jahns, P.** (2019) The zeaxanthin epoxidase is
556 degraded along with the D1 protein during photoinhibition of photosystem II. *Plant Direct*,
557 **3**, e00185. Available at: <https://doi.org/10.1002/pld3.185> [Accessed May 30, 2024].

558 **Burgess, A.J., Gibbs, J.A. and Murchie, E.H.** (2019) A canopy conundrum: can wind-induced
559 movement help to increase crop productivity by relieving photosynthetic limitations? *J. Exp.*
560 *Bot.*, **70**, 2371–2380. Available at: <https://doi.org/10.1093/jxb/ery424> [Accessed
561 February 16, 2023].

562 **Cowling, S.B., Treeintong, P., Ferguson, J., Soltani, H., Swarup, R., Mayes, S. and**
563 **Murchie, E.H.** (2022) Out of Africa: characterizing the natural variation in dynamic
564 photosynthetic traits in a diverse population of African rice (*Oryza glaberrima*). *J. Exp.*
565 *Bot.*, **73**, 3283–3298. Available at: <https://doi.org/10.1093/jxb/erab459> [Accessed
566 October 27, 2023].

567 **Dall'Osto, L., Cazzaniga, S., Wada, M. and Bassi, R.** (2014) On the origin of a slowly
568 reversible fluorescence decay component in the *Arabidopsis* npq4 mutant. *Philos. Trans. R. Soc. B Biol. Sci.*, **369**, 20130221. Available at: <https://doi.org/10.1098/rstb.2013.0221>
569 [Accessed March 17, 2023].

571 **Davison, P.A., Hunter, C.N. and Horton, P.** (2002) Overexpression of β -carotene hydroxylase
572 enhances stress tolerance in *Arabidopsis*. *Nature*, **418**, 203–206. Available at:
573 <https://doi.org/10.1038/nature00861>.

574 **De Souza, A.P., Burgess, S.J., Doran, L., et al.** (2022) Soybean photosynthesis and crop yield
575 are improved by accelerating recovery from photoprotection. *Science*, **377**, 851–854.
576 Available at: <https://doi.org/10.1126/science.adc9831> [Accessed December 20, 2022].

577 **Demmig-Adams, B.** (1998) Survey of Thermal Energy Dissipation and Pigment Composition in
578 Sun and Shade Leaves. *Plant Cell Physiol.*, **39**, 474–482. Available at:
579 <https://doi.org/10.1093/oxfordjournals.pcp.a029394> [Accessed March 6, 2024].

580 **Demmig-Adams, B. and Adams III, W.W.** (2006) Photoprotection in an ecological context: the
581 remarkable complexity of thermal energy dissipation. *New Phytol.*, **172**, 11–21. Available
582 at: <https://doi.org/10.1111/j.1469-8137.2006.01835.x> [Accessed May 29, 2024].

583 **Demmig-Adams, B., Cohu, C.M., Muller, O. and Adams, W.W.** (2012) Modulation of
584 photosynthetic energy conversion efficiency in nature: from seconds to seasons.
585 *Photosynth. Res.*, **113**, 75–88. Available at: <https://doi.org/10.1007/s11120-012-9761-6>.

586 **Demmig-Adams, B., Polutchko, S.K., Stewart, J.J. and Adams, W.W.** (2022) History of
587 excess-light exposure modulates extent and kinetics of fast-acting non-photochemical
588 energy dissipation. *Plant Physiol. Rep.*, **27**, 560–572. Available at:
589 <https://doi.org/10.1007/s40502-022-00689-2>.

590 **Diers, B.W., Specht, J., Rainey, K.M., et al.** (2018) Genetic Architecture of Soybean Yield and
591 Agronomic Traits. *G3 GenesGenomesGenetics*, **8**, 3367.

592 **Dray, S. and Dufour, A.-B.** (2007) The ade4 Package: Implementing the Duality Diagram for
593 Ecologists. *J. Stat. Softw.*, **22**, 1–20. Available at:
594 <https://www.jstatsoft.org/index.php/jss/article/view/v022i04> [Accessed May 29, 2024].

595 **Faraway, J.J.** (2016) *Extending the Linear Model with R: Generalized Linear, Mixed Effects and
596 Nonparametric Regression Models* Second Edition., New York, NY: Chapman and
597 Hall/CRC. Available at: <https://doi.org/10.1201/9781315382722>.

598 **Garcia-Molina, A. and Leister, D.** (2020) Accelerated relaxation of photoprotection impairs
599 biomass accumulation in Arabidopsis. *Nat. Plants*, **6**, 9–12. Available at:
600 <https://doi.org/10.1038/s41477-019-0572-z>.

601 **Gizlice, Z., Carter Jr., T.E. and Burton, J.W.** (1994) Genetic Base for North American Public
602 Soybean Cultivars Released between 1947 and 1988. *Crop Sci.*, **34**,
603 [cropsci1994.0011183X003400050001x](https://doi.org/10.2135/cropsci1994.0011183X003400050001x). Available at:
604 <https://doi.org/10.2135/cropsci1994.0011183X003400050001x> [Accessed March 27,
605 2024].

606 **González, I. and Déjean, S.** (2021) CCA: Canonical Correlation Analysis. Available at:
607 <https://CRAN.R-project.org/package=CCA>.

608 **Gotarkar, D., Doran, L., Burns, M., Hinkle, A., Kromdijk, J. and Burgess, S.J.** (2022) High-
609 Throughput Analysis of Non-Photochemical Quenching in Crops Using Pulse Amplitude
610 Modulated Chlorophyll Fluorometry. *J. Vis. Exp. JoVE*. Available at:
611 <http://europepmc.org/abstract/MED/35876527>.

612 **Grieco, M., Roustan, V., Dermendjiev, G., et al.** (2020) Adjustment of photosynthetic activity
613 to drought and fluctuating light in wheat. *Plant Cell Environ.*, **43**, 1484–1500. Available
614 at: <https://doi.org/10.1111/pce.13756> [Accessed May 29, 2024].

615 **Herriott, M., Dhanapal, A.P. and Fritschi, F.B.** (2016) Identification of Genomic Loci Associated
616 with the Photochemical Reflectance Index by Genome-Wide Association Study in
617 Soybean. *Plant Genome*, **9**. Available at:
618 <http://dx.doi.org/10.3835/plantgenome2015.08.0072>.

619 **Herriott, M., Dhanapal, A.P., Purcell, L.C. and Fritschi, F.B.** (2018) Identification of genomic
620 loci associated with 21chlorophyll fluorescence phenotypes by genome-wide association
621 analysis in soybean. *BMC Plant Biol.*, **18**, 312.

622 **Hubbart, S., Smillie, I.R.A., Heatley, M., Swarup, R., Foo, C.C., Zhao, L. and Murchie, E.H.**
623 (2018) Enhanced thylakoid photoprotection can increase yield and canopy radiation use
624 efficiency in rice. *Commun. Biol.*, **1**, 22. Available at: <https://doi.org/10.1038/s42003-018-0026-6>.

626 **Hyten, D.L., Song, Q., Zhu, Y., Choi, I.-Y., Nelson, R.L., Costa, J.M., Specht, J.E.,**
627 **Shoemaker, R.C. and Cregan, P.B.** (2006) Impacts of genetic bottlenecks on soybean
628 genome diversity. *Proc. Natl. Acad. Sci.*, **103**, 16666–16671. Available at:
629 <https://doi.org/10.1073/pnas.0604379103> [Accessed March 10, 2024].

630 **Jahns, P. and Holzwarth, A.R.** (2012) The role of the xanthophyll cycle and of lutein in
631 photoprotection of photosystem II. *Photosyst. II*, **1817**, 182–193. Available at:
632 <https://www.sciencedirect.com/science/article/pii/S0005272811000971>.

633 **Jung, H.-S. and Niyogi, K.K.** (2009) Quantitative Genetic Analysis of Thermal Dissipation in
634 Arabidopsis. *Plant Physiol.*, **150**, 977.

635 **Kaiser, E., Correa Galvis, V. and Armbruster, U.** (2019) Efficient photosynthesis in dynamic
636 light environments: a chloroplast's perspective. *Biochem. J.*, **476**, 2725–2741. Available
637 at: <https://doi.org/10.1042/BCJ20190134> [Accessed October 27, 2023].

638 **Kaiser, E., Morales, A. and Harbinson, J.** (2018) Fluctuating Light Takes Crop Photosynthesis
639 on a Rollercoaster Ride. *Plant Physiol.*, **176**, 977–989. Available at:
640 <https://doi.org/10.1104/pp.17.01250> [Accessed October 28, 2023].

641 **Kasajima, I., Ebana, K., Yamamoto, T., Takahara, K., Yano, M., Kawai-Yamada, M. and**
642 **Uchimiya, H.** (2011) Molecular distinction in genetic regulation of nonphotochemical
643 quenching in rice. *Proc. Natl. Acad. Sci.*, **108**, 13835.

644 **Kiss, A.Z., Ruban, A.V. and Horton, P.** (2008) The PsbS Protein Controls the Organization of
645 the Photosystem II Antenna in Higher Plant Thylakoid Membranes*. *J. Biol. Chem.*, **283**,
646 3972–3978. Available at:
647 <https://www.sciencedirect.com/science/article/pii/S002192582069706X>.

648 **Kofsky, J., Zhang, H. and Song, B.-H.** (2018) The Untapped Genetic Reservoir: The Past,
649 Current, and Future Applications of the Wild Soybean (*Glycine soja*). *Front. Plant Sci.*, **9**.
650 Available at: <https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2018.00949>.

652 **Kramer, D.M. and Evans, J.R.** (2011) The Importance of Energy Balance in Improving
653 Photosynthetic Productivity. *Plant Physiol.*, **155**, 70–78. Available at:
654 <https://doi.org/10.1104/pp.110.166652> [Accessed October 28, 2023].

655 **Krause, G.H., Vernotte, C. and Briantais, J.-M.** (1982) Photoinduced quenching of chlorophyll
656 fluorescence in intact chloroplasts and algae. Resolution into two components. *Biochim. Biophys. Acta BBA - Bioenerg.*, **679**, 116–124. Available at:
658 <https://www.sciencedirect.com/science/article/pii/0005272882902626>.

659 **Kress, E. and Jahns, P.** (2017) The Dynamics of Energy Dissipation and Xanthophyll
660 Conversion in Arabidopsis Indicate an Indirect Photoprotective Role of Zeaxanthin in
661 Slowly Inducible and Relaxing Components of Non-photochemical Quenching of

662 Excitation Energy. *Front. Plant Sci.*, **8**. Available at:
663 <https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2017.02094>.

664 **Kromdijk, J., Głowacka, K., Leonelli, L., Gabbily, S.T., Iwai, M., Niyogi, K.K. and Long, S.P.**
665 (2016) Improving photosynthesis and crop productivity by accelerating recovery from
666 photoprotection. *Science*, **354**, 857–861. Available at:
667 <https://doi.org/10.1126/science.aai8878> [Accessed December 20, 2022].

668 **Lehretz, G.G., Schneider, A., Leister, D. and Sonnewald, U.** (2022) High non-photochemical
669 quenching of VPZ transgenic potato plants limits CO₂ assimilation under high light
670 conditions and reduces tuber yield under fluctuating light. *J. Integr. Plant Biol.*, **64**, 1821–
671 1832. Available at: <https://doi.org/10.1111/jipb.13320> [Accessed November 8, 2023].

672 **Leister, D.** (2023) Enhancing the light reactions of photosynthesis: Strategies, controversies,
673 and perspectives. “*Celebrating 15 Years Publ. Spec. Issue*, **16**, 4–22. Available at:
674 <https://www.sciencedirect.com/science/article/pii/S1674205222002684>.

675 **Lopez, M.A., Xavier, A. and Rainey, K.M.** (2019) Phenotypic Variation and Genetic
676 Architecture for Photosynthesis and Water Use Efficiency in Soybean (*Glycine max* L.
677 Merr.). *Front. Plant Sci.*, **10**. Available at: <https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2019.00680>.

678

679 **Menzel, U.** (2022) CCP: Significance Tests for Canonical Correlation Analysis (CCA). Available
680 at: <https://cran.r-project.org/web/packages/CCP/index.html>.

681 **Montes, C.M., Fox, C., Sanz-Sáez, Á., et al.** (2022) High-throughput characterization,
682 correlation, and mapping of leaf photosynthetic and functional traits in the soybean
683 (*Glycine max*) nested association mapping population. *Genetics*, **221**, iyac065. Available
684 at: <https://doi.org/10.1093/genetics/iyac065> [Accessed March 4, 2024].

685 **Nilkens, M., Kress, E., Lambrev, P., Miloslavina, Y., Müller, M., Holzwarth, A.R. and Jahns, P.**
686 (2010) Identification of a slowly inducible zeaxanthin-dependent component of non-
687 photochemical quenching of chlorophyll fluorescence generated under steady-state
688 conditions in *Arabidopsis*. *Biochim. Biophys. Acta BBA - Bioenerg.*, **1797**, 466–475.
689 Available at: <https://www.sciencedirect.com/science/article/pii/S0005272810000022>.

690 **Niyogi, K.K., Grossman, A.R. and Björkman, O.** (1998) *Arabidopsis* Mutants Define a Central
691 Role for the Xanthophyll Cycle in the Regulation of Photosynthetic Energy Conversion.
692 *Plant Cell*, **10**, 1121–1134. Available at: <https://doi.org/10.1105/tpc.10.7.1121> [Accessed
693 April 16, 2024].

694 **Pashayeva, A., Wu, G., Huseynova, I., Lee, C.-H. and Zulfugarov, I.S.** (2021) Role of
695 Thylakoid Protein Phosphorylation in Energy-Dependent Quenching of Chlorophyll
696 Fluorescence in Rice Plants. *Int. J. Mol. Sci.*, **22**.

697 **Patricia Müller, Li, X.-P. and Niyogi, K.K.** (2001) Non-Photochemical Quenching. A Response
698 to Excess Light Energy. *Plant Physiol.*, **125**, 1558–1566. Available at:
699 <http://www.jstor.org/stable/4279788> [Accessed November 8, 2023].

700 **Pinnola, A. and Bassi, R.** (2018) Molecular mechanisms involved in plant photoprotection.
701 *Biochem. Soc. Trans.*, **46**, 467–482. Available at: <https://doi.org/10.1042/BST20170307>
702 [Accessed October 28, 2023].

703 **Pollastri, S., Jorba, I., Hawkins, T.J., et al.** (2019) Leaves of isoprene-emitting tobacco plants
704 maintain PSII stability at high temperatures. *New Phytol.*, **223**, 1307–1318. Available at:
705 <https://doi.org/10.1111/nph.15847> [Accessed May 29, 2024].

706 **Porcar-Castell, A.** (2011) A high-resolution portrait of the annual dynamics of photochemical
707 and non-photochemical quenching in needles of *Pinus sylvestris*. *Physiol. Plant.*, **143**,
708 139–153. Available at: <https://doi.org/10.1111/j.1399-3054.2011.01488.x> [Accessed
709 March 18, 2024].

710 **R Core Team** (2016) R: A language and environment for statistical computing. Available at:
711 <https://www.R-project.org/>.

712 **Robakowski, P. and Wyka, T.** (2009) Winter photoinhibition in needles of *Taxus baccata*
713 seedlings acclimated to different light levels. *Photosynthetica*, **47**, 527–535. Available at:
714 <https://ps.ueb.cas.cz/artkey/phs-200904-0006.php>.

715 **RStudio Team** (2015) RStudio: Integrated development for R. Available at: RStudio Team.

716 **Ruban, A.V., Johnson, M.P. and Duffy, C.D.P.** (2012) The photoprotective molecular switch in
717 the photosystem II antenna. *Photosyst. II*, **1817**, 167–181. Available at:
718 <https://www.sciencedirect.com/science/article/pii/S0005272811000910>.

719 **Ruban, A.V. and Wilson, S.** (2021) The Mechanism of Non-Photochemical Quenching in
720 Plants: Localization and Driving Forces. *Plant Cell Physiol.*, **62**, 1063–1072. Available at:
721 <https://doi.org/10.1093/pcp/pcaa155> [Accessed November 8, 2023].

722 **Rungrat, T., Almonte, A.A., Cheng, R., Gollan, P.J., Stuart, T., Aro, E.-M., Borevitz, J.O.,
723 Pogson, B. and Wilson, P.B.** (2019) A Genome-Wide Association Study of Non-
724 Photochemical Quenching in response to local seasonal climates in *Arabidopsis*
725 *thaliana*. *Plant Direct*, **3**, e00138–e00138.

726 **Sacharz, J., Giovagnetti, V., Ungerer, P., Mastroianni, G. and Ruban, A.V.** (2017) The
727 xanthophyll cycle affects reversible interactions between PsbS and light-harvesting
728 complex II to control non-photochemical quenching. *Nat. Plants*, **3**, 16225. Available at:
729 <https://doi.org/10.1038/nplants.2016.225>.

730 **Sahay, S., Grzybowski, M., Schnable, J.C. and Głowacka, K.** (2023) Genetic control of
731 photoprotection and photosystem II operating efficiency in plants. *New Phytol.*, **239**,
732 1068–1082. Available at: <https://doi.org/10.1111/nph.18980> [Accessed October 27,
733 2023].

734 **Sakoda, K., Adachi, S., Yamori, W. and Tanaka, Y.** (2022) Towards improved dynamic
735 photosynthesis in C3 crops by utilizing natural genetic variation. *J. Exp. Bot.*, **73**, 3109–
736 3121. Available at: <https://doi.org/10.1093/jxb/erac100> [Accessed October 27, 2023].

737 **Schaller, S., Latowski, D., Jemioła-Rzemińska, M., Wilhelm, C., Strzałka, K. and Goss, R.**
738 (2010) The main thylakoid membrane lipid monogalactosyldiacylglycerol (MGDG)

739 promotes the de-epoxidation of violaxanthin associated with the light-harvesting complex
740 of photosystem II (LHCII). *Biochim. Biophys. Acta BBA - Bioenerg.*, **1797**, 414–424.
741 Available at: <https://www.sciencedirect.com/science/article/pii/S0005272809003065>.

742 **Schwarz, N., Armbruster, U., Iven, T., Brückle, L., Melzer, M., Feussner, I. and Jahns, P.**
743 (2015) Tissue-Specific Accumulation and Regulation of Zeaxanthin Epoxidase in
744 Arabidopsis Reflect the Multiple Functions of the Enzyme in Plastids. *Plant Cell Physiol.*,
745 **56**, 346–357. Available at: <https://doi.org/10.1093/pcp/pcu167> [Accessed April 17, 2024].

746 **Soleh, M.A., Tanaka, Y., Kim, S.Y., Huber, S.C., Sakoda, K. and Shiraiwa, T.** (2017)
747 Identification of large variation in the photosynthetic induction response among 37
748 soybean [Glycine max (L.) Merr.] genotypes that is not correlated with steady-state
749 photosynthetic capacity. *Photosynth. Res.*, **131**, 305–315. Available at:
750 <https://doi.org/10.1007/s11120-016-0323-1>.

751 **Song, Q., Yan, L., Quigley, C., et al.** (2017) Genetic Characterization of the Soybean Nested
752 Association Mapping Population. *Plant Genome*, **10**. Available at:
753 <http://dx.doi.org/10.3835/plantgenome2016.10.0109>.

754 **Sun, Z., Shen, Y. and Niinemets, Ü.** (2020) Responses of isoprene emission and
755 photochemical efficiency to severe drought combined with prolonged hot weather in
756 hybrid Populus. *J. Exp. Bot.*, **71**, 7364–7381. Available at:
757 <https://doi.org/10.1093/jxb/eraa415> [Accessed March 18, 2024].

758 **Wang, Q., Zhao, H., Jiang, J., Xu, J., Xie, W., Fu, X., Liu, C., He, Y. and Wang, G.** (2017)
759 Genetic Architecture of Natural Variation in Rice Nonphotochemical Quenching Capacity
760 Revealed by Genome-Wide Association Study. *Front. Plant Sci.*, **8**. Available at:
761 <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5645755/> [Accessed April 23, 2018].

762 **Wang, Y., Burgess, S.J., Becker, E.M. de and Long, S.P.** (2020) Photosynthesis in the
763 fleeting shadows: an overlooked opportunity for increasing crop productivity? *Plant J.*,
764 **101**, 874–884. Available at: <https://doi.org/10.1111/tpj.14663> [Accessed November 8,
765 2023].

766 **Watanabe, S., Xia, Z., Hidemitsu, R., et al.** (2011) A Map-Based Cloning Strategy Employing
767 a Residual Heterozygous Line Reveals that the GIGANTEA Gene Is Involved in
768 Soybean Maturity and Flowering. *Genetics*, **188**, 395–407. Available at:
769 <https://doi.org/10.1534/genetics.110.125062> [Accessed April 5, 2024].

770 **Xavier, A., Hall, B., Hearst, A.A., Cherkauer, K.A. and Rainey, K.M.** (2017) Genetic
771 Architecture of Phenomic-Enabled Canopy Coverage in Glycine max. *Genetics*, **206**,
772 1081–1089. Available at: <https://doi.org/10.1534/genetics.116.198713> [Accessed April 5,
773 2024].

774 **Zhu, J.-J., Zhang, J.-L., Liu, H.-C. and Cao, K.-F.** (2009) Photosynthesis, non-photochemical
775 pathways and activities of antioxidant enzymes in a resilient evergreen oak under
776 different climatic conditions from a valley-savanna in Southwest China. *Physiol. Plant.*,
777 **135**, 62–72. Available at: <https://doi.org/10.1111/j.1399-3054.2008.01171.x> [Accessed
778 March 18, 2024].

779 **Zhu, X.-G., Ort, D.R., Whitmarsh, J. and Long, S.P.** (2004) The slow reversibility of
780 photosystem II thermal energy dissipation on transfer from high to low light may cause
781 large losses in carbon gain by crop canopies: a theoretical analysis. *J. Exp. Bot.*, **55**,
782 1167–1175. Available at: <http://www.jstor.org/stable/24030500> [Accessed October 27,
783 2023].

784

785 **Tables**

786 Table 1. *List of Abbreviations*

Symbol	Description
F_v/F_m	Maximum potential quantum efficiency of Photosystem II
qE	Fast phase of NPQ relaxation, energy-dependent quenching (< 2 min)
qM	Intermediate phase of NPQ relaxation (2-30 min)
ql	Slow phase of NPQ relaxation (> 30 min)
A_{qE}	Amplitude of qE
A_{qM}	Amplitude of qM
A_{ql}	Amplitude of ql
τ_{qE}	Time constant of qE relaxation
τ_{qM}	Time constant of qM relaxation
Max. NPQ	Maximum recorded value of NPQ during experiment
F_{sd}	Incoming shortwave radiation
T_a	Air temperature
VPD	Vapor pressure deficit
AIC	Akaike's Information Criterion

787

788 Table 2. Table of F-test P-values obtained by fitting an ANOVA model for each NPQ relaxation
789 parameters with the genotypes (G) and days (or environment, E) set as fixed factors (i.e.,
790 variable ~ Day + Genotype + Day * Genotype).

Variable	G	E	GxE
A_{qI}	<0.001	<0.001	0.8325
A_{qE}	<0.001	<0.001	0.9754
τ_{qE}	<0.001	<0.001	0.1193
A_{qM}	<0.001	<0.001	0.9613
τ_{qM}	<0.001	<0.001	0.9463
Max. NPQ	<0.001	<0.001	0.8849

791

792 Table 3. Canonical correlations between pairs and associated Wilks lambda tests for the years
793 2021 and 2022.
794

	Canonical pairs for 2021			Canonical pairs for 2022		
	CC1	CC2	CC3	CC1	CC2	CC3
Can. Corr.	0.667	0.513	0.397	0.76	0.491	0.393
Wilks	0.331	0.597	0.81	0.258	0.61	0.804
F	44.83	28.458	17.562	44.724	21.473	14.364
df	36	25	16	36	25	16
p-value	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001

795

796 Table 4. Table of F-test P-values obtained from a one-way ANOVA on the principal component
797 (PC) coordinates with the NAM population groups set as a fixed factor (i.e., PC ~ Groups).
798

Day	PC1	PC2	PC3
6/24/2021	0.1857	0.0378	0.8604
6/30/2021	0.577	0.9843	0.2048
7/7/2021	0.8924	0.9776	0.7902
7/13/2021	0.1689	0.3434	0.0026
7/20/2021	0.1532	0.3742	0.6809
7/28/2021	0.6763	0.1174	0.5885
8/11/2021	0.1156	0.3003	0.3555
7/6/2022	0.1556	0.2845	0.0379
7/12/2022	0.132	0.9386	0.5951
7/19/2022	0.4572	0.1662	0.5331
7/26/2022	0.4417	0.3223	0.3501
8/4/2022	0.9584	0.0289	0.5888
8/20/2022	0.049	0.7222	0.2524

799

800 Table 5. Summary of 41 NAM founder genotype NPQ relaxation parameters.

801 Data represent comparison of mean values per genotype across all samples.

Parameter	Range	Median
A_{qE}	01.83-02.09	01.96
τ_{qE}	00.93-01.29	01.05
A_{qM}	01.50-01.71	01.58
τ_{qM}	19.95-29.23	23.51
A_{qI}	00.38-00.60	00.47
Max. NPQ	03.81-04.22	04.02

802

803

804 **Figure Legends**

805 Figure 1: Comparison of NPQ relaxation kinetics and weather conditions over the course of two
806 field seasons, showing field level summaries of (a) 2021 and (b) 2022. Violin plots are combined
807 plot-level averages for all SoyNAM genotypes on a given sampling day. Sampling dates are
808 indicated by grey dotted lines. Precipitation is represented as cumulative values from the
809 beginning of the year, whereas VPD and Fsd are mean daily values.

810

811 Figure 2. Coefficients for the best minimum adequate model (lowest AIC) for each NPQ
812 relaxation parameters in 2021 and 2022. The R^2 and p-value are shown for each model.

813

814 Figure 3. Canonical correlation analysis (CCA) displaying the relationships between the NPQ
815 relaxation parameters and the environmental variables in (a-d) 2021 and (e-h) 2022. (a-b, e-f)
816 CCA showing the spatial distribution of the different observations on the canonical axis (CC).
817 The average (+-standard deviation) for the different NAM groups (with diverse, elite, PI, and RC
818 groups in grey, orange, blue and black, respectively) at different days is represented by different
819 shapes. For each group, a solid line connects those points to represent their evolution
820 throughout the season. (c-d, g-h) The correlation circle showing the relationships between
821 variables. Variables related to the NPQ relaxation parameters, and the environments are
822 represented in red and blue, respectively. The canonical correlation and associated statistics
823 are shown in table 4.

824

825 Figure 4. Comparison of NPQ relaxation kinetics in 41 founder genotypes of the SoyNAM
826 population and common parent. Boxplots of six calculated NPQ relaxation parameters (A_{qE} , A_{qM} ,
827 A_{qI} , τ_{qE} , τ_{qM} , maximum NPQ), plots are colored based on genotype group: Elite (yellow), Diverse
828 (grey), PI (blue). Dotted black lines represent the median, upper and lower bounds of the
829 interquartile range of reference line RC.

830

831 Figure 5. Summary representation of AIC trials for significant difference between genotypes and
832 the common parent (RC). Genotypes which showed a consistently larger (orange) or smaller
833 (blue) values in all six model comparisons are shown. Larger values for τ_{qE} and τ_{qM} represent
834 slower relaxation.

835

836 Figure 6. Canopy simulations comparing impact of SoyNAM phenotypic variability in NPQ
837 relaxation kinetics on carbon assimilation on an intermittently cloudy day and sunny day.

838 Measured light intensity on an intermittently cloudy day 266 (A) and sunny day 227 (B) in Illinois
839 in 2021. (C) Representation of canopy model. (D) Illustrated are losses in Ac resulting from the
840 measured rates of τ_{qE} and τ_{qM} comparing the slowest, fastest, mean and RC values from the
841 SoyNAM population on a cloudy (orange bars) and sunny (blue bars) day.

842

843 **Supplemental Figure Legends**

844 Figure S1. Coefficients for the best minimum adequate model (lowest AIC) for each NPQ
845 relaxation parameters in 2021 and 2022 combined. The R^2 and p-value are shown for each
846 model.

847

848 Figure S2. PCA of NPQ relaxation in the NAM population on 6/24/21. Diverse, elite, and PI lines
849 are shown in grey, orange, and blue, respectively. Coordinates for replicate measurements on
850 the same line were averaged. RC line is shown in black. Error bars represent the standard
851 deviation. Lines with a z-score>2.5 for one of their components were labeled.

852

853 Figure S3. PCA of NPQ relaxation in the NAM population on 6/30/21. Diverse, elite, and PI lines
854 are shown in grey, orange, and blue, respectively. Coordinates for replicate measurements on
855 the same line were averaged. RC line is shown in black. Error bars represent the standard
856 deviation. Lines with a z-score>2.5 for one of their components were labeled.

857

858 Figure S4. PCA of NPQ relaxation in the NAM population on 7/7/21. Diverse, elite, and PI lines
859 are shown in grey, orange, and blue, respectively. Coordinates for replicate measurements on
860 the same line were averaged. RC line is shown in black. Error bars represent the standard
861 deviation. Lines with a z-score>2.5 for one of their components were labeled.

862

863 Figure S5. PCA of NPQ relaxation in the NAM population on 7/13/21. Diverse, elite, and PI lines
864 are shown in grey, orange, and blue, respectively. Coordinates for replicate measurements on
865 the same line were averaged. RC line is shown in black. Error bars represent the standard
866 deviation. Lines with a z-score>2.5 for one of their components were labeled.

867

868 Figure S6. PCA of NPQ relaxation in the NAM population on 7/20/21. Diverse, elite, and PI lines
869 are shown in grey, orange, and blue, respectively. Coordinates for replicate measurements on
870 the same line were averaged. RC line is shown in black. Error bars represent the standard
871 deviation.

872

873 Figure S7. PCA of NPQ relaxation in the NAM population on 7/28/21. Diverse, elite, and PI lines
874 are shown in grey, orange, and blue, respectively. Coordinates for replicate measurements on
875 the same line were averaged. RC line is shown in black. Error bars represent the standard
876 deviation.

877

878 Figure S8. PCA of NPQ relaxation in the NAM population on 8/11/21. Diverse, elite, and PI lines
879 are shown in grey, orange, and blue, respectively. Coordinates for replicate measurements on
880 the same line were averaged. RC line is shown in black. Error bars represent the standard
881 deviation.

882

883 Figure S9. PCA of NPQ relaxation in the NAM population on 7/6/22. Diverse, elite, and PI lines
884 are shown in grey, orange, and blue, respectively. Coordinates for replicate measurements on
885 the same line were averaged. RC line is shown in black. Error bars represent the standard
886 deviation.

887

888 Figure S10. PCA of NPQ relaxation in the NAM population on 7/12/22. Diverse, elite, and PI
889 lines are shown in grey, orange, and blue, respectively. Coordinates for replicate measurements
890 on the same line were averaged. RC line is shown in black. Error bars represent the standard
891 deviation.

892

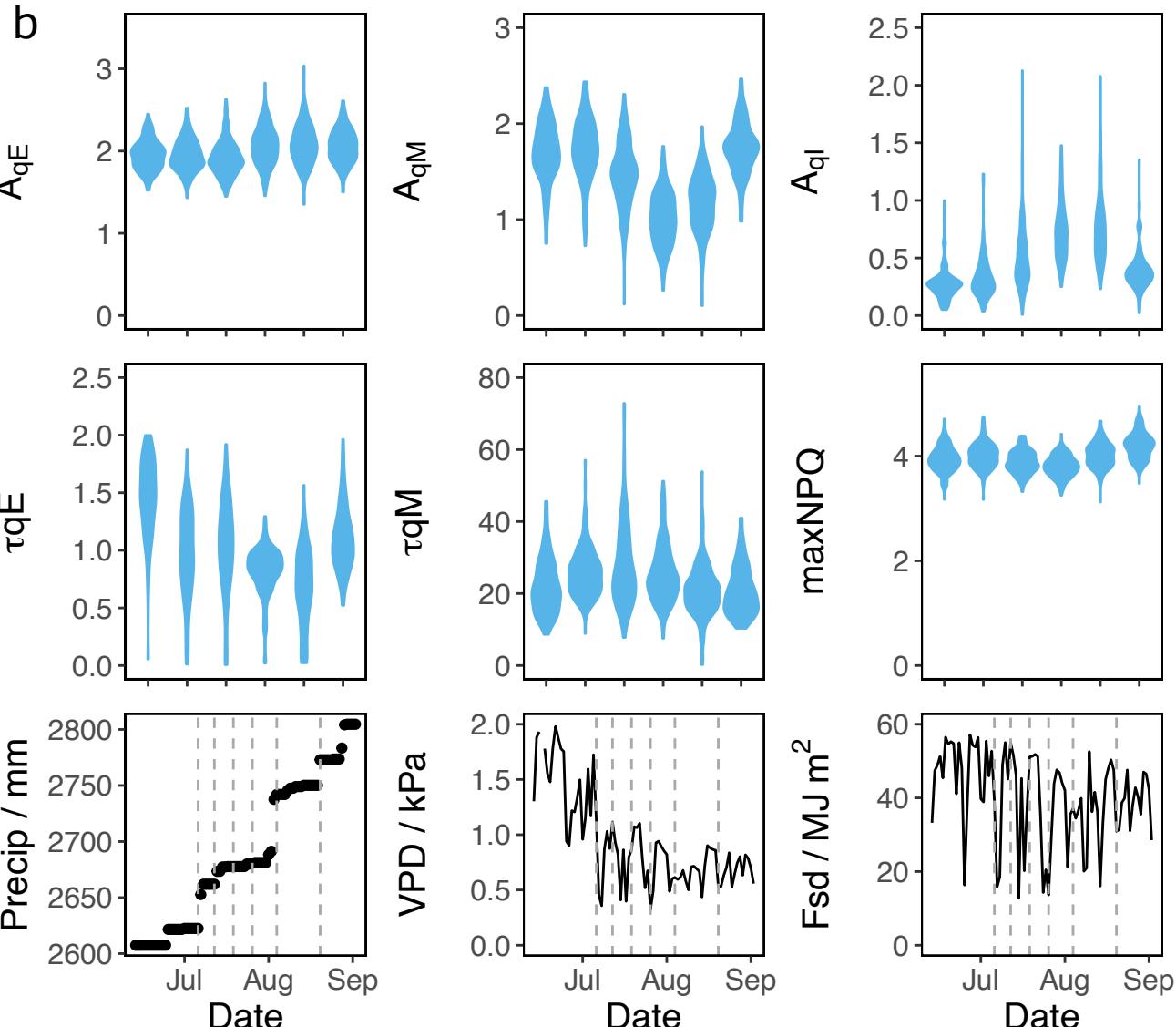
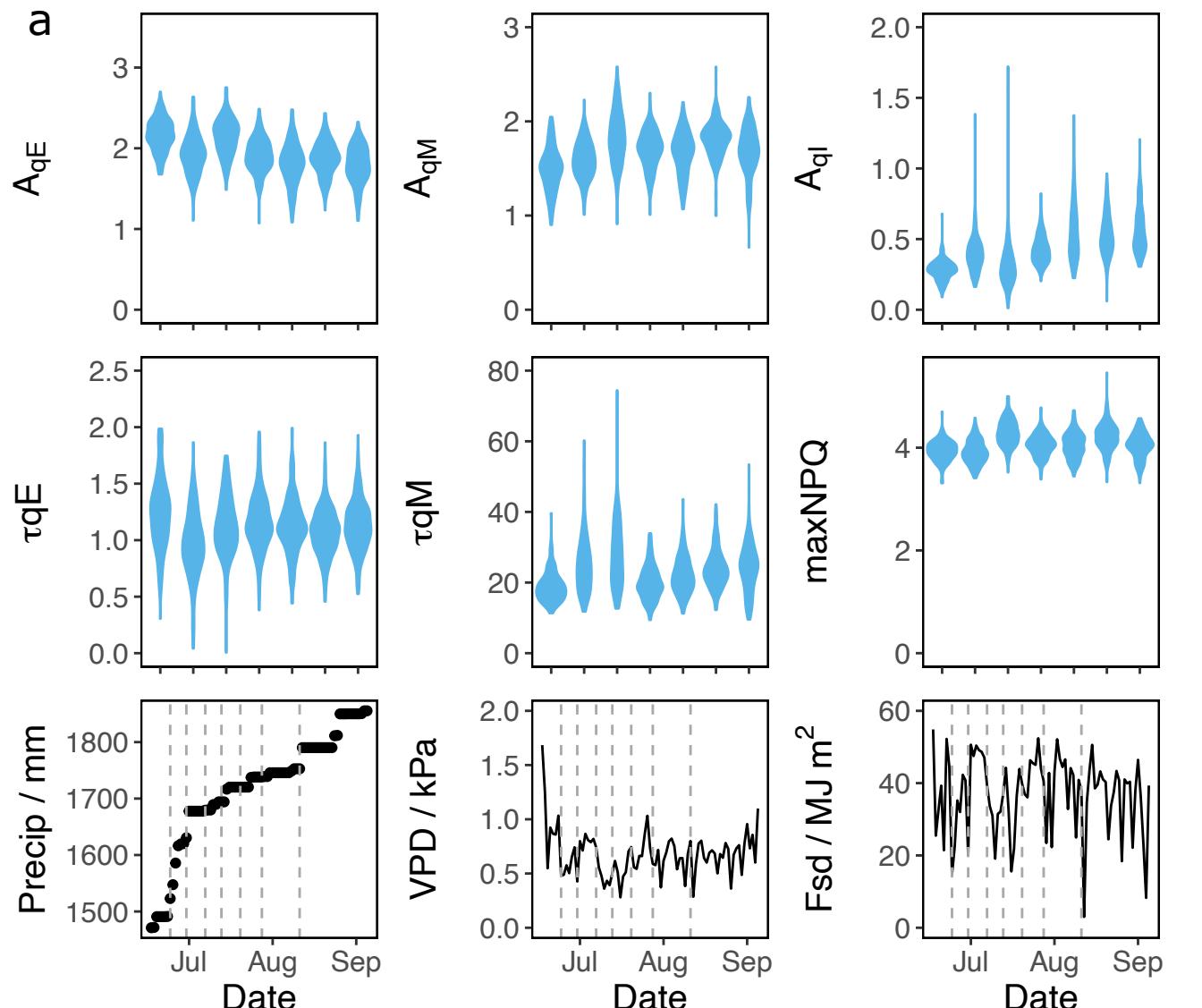
893 Figure S11. PCA of NPQ relaxation in the NAM population on 7/19/22. Diverse, elite, and PI
894 lines are shown in grey, orange, and blue, respectively. Coordinates for replicate measurements
895 on the same line were averaged. RC line is shown in black. Error bars represent the standard
896 deviation.

897

898 Figure S12. PCA of NPQ relaxation in the NAM population on 7/26/22. Diverse, elite, and PI
899 lines are shown in grey, orange, and blue, respectively. Coordinates for replicate measurements
900 on the same line were averaged. RC line is shown in black. Error bars represent the standard
901 deviation.

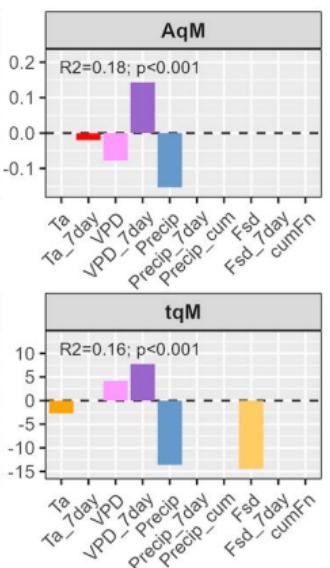
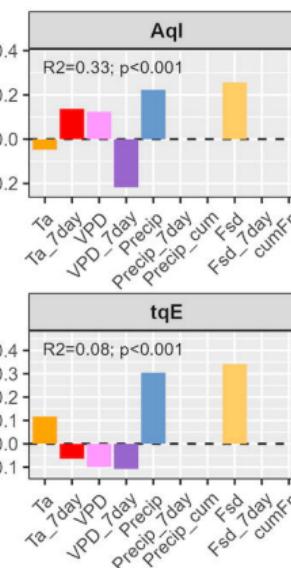
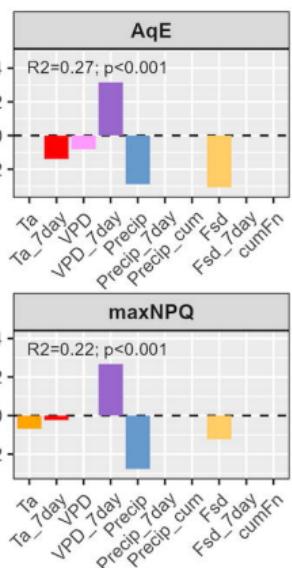
902

903 Figure S13. PCA of NPQ relaxation in the NAM population on 8/4/22. Diverse, elite, and PI lines
904 are shown in grey, orange, and blue, respectively. Coordinates for replicate measurements on

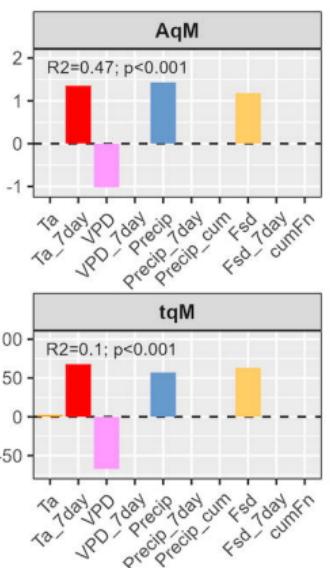
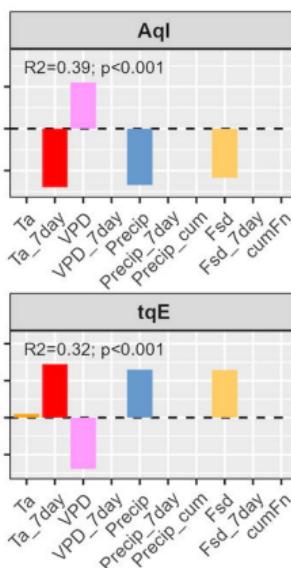
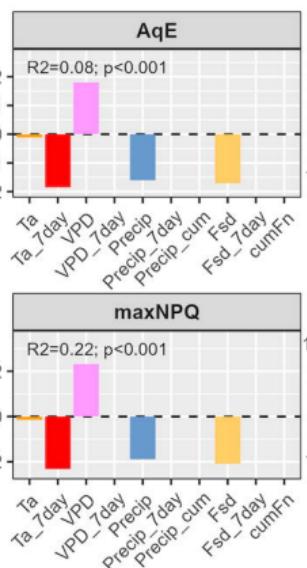


905 the same line were averaged. RC line is shown in black. Error bars represent the standard
906 deviation.

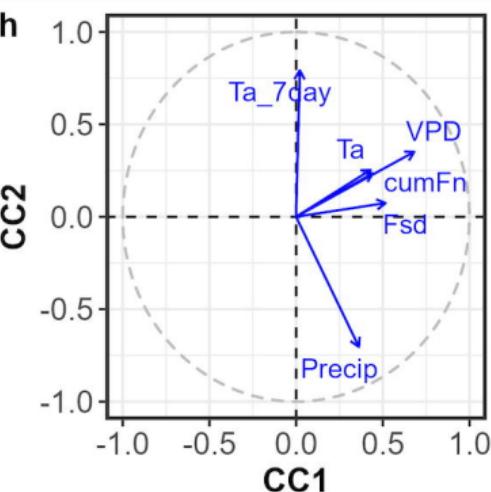
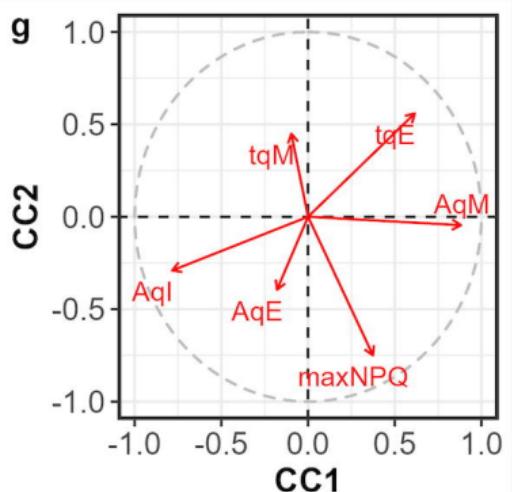
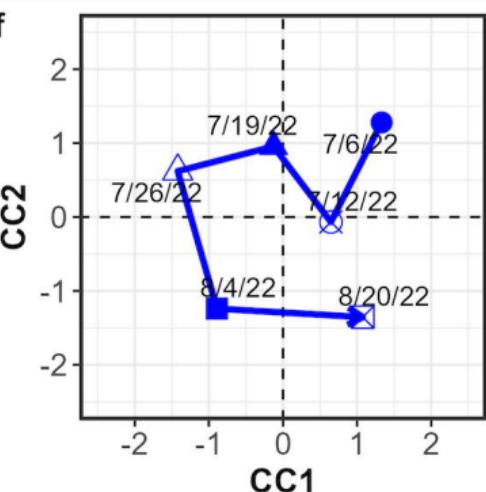
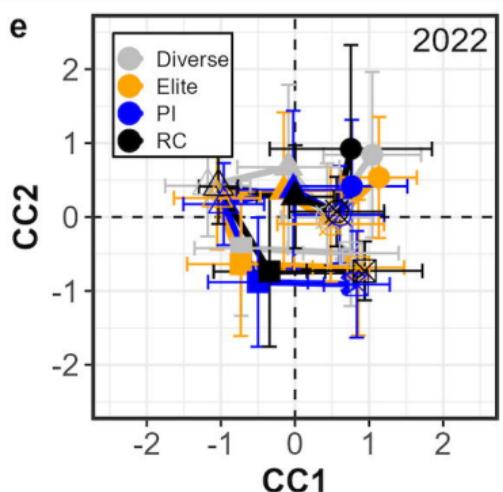
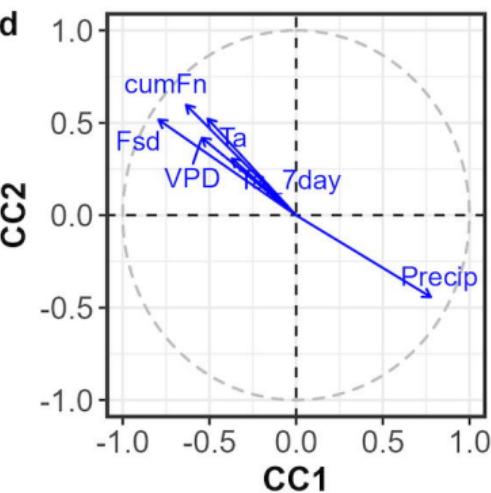
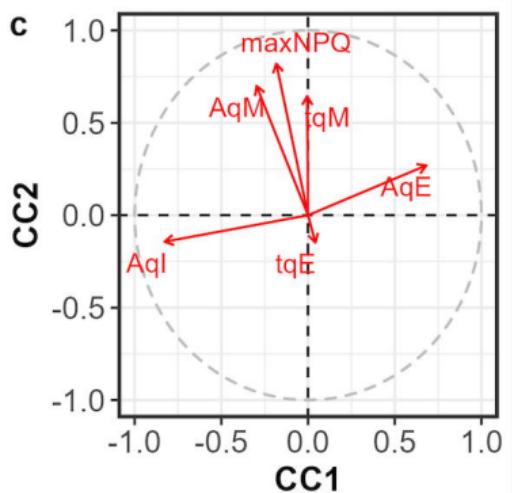
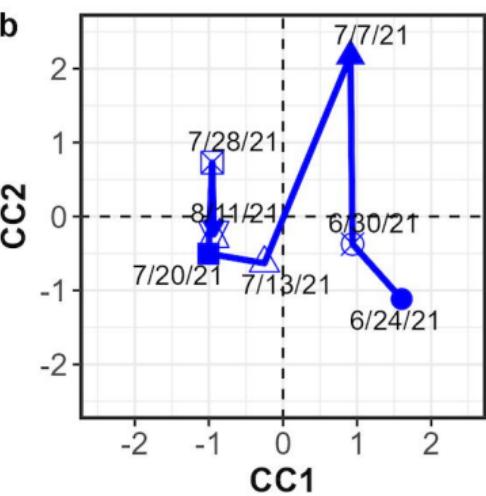
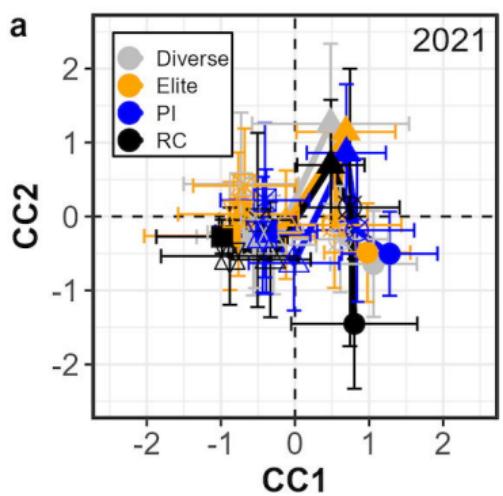
907

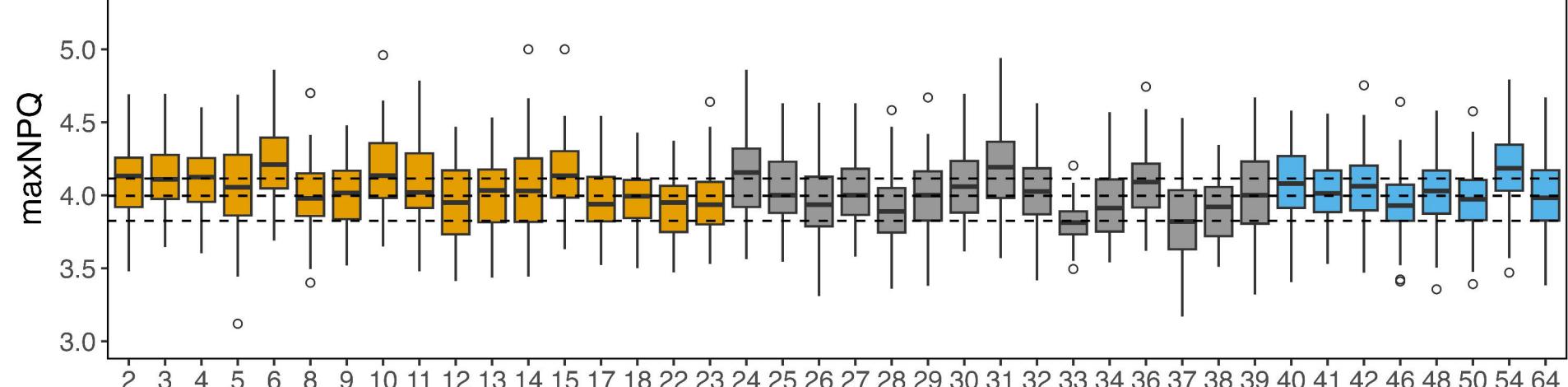
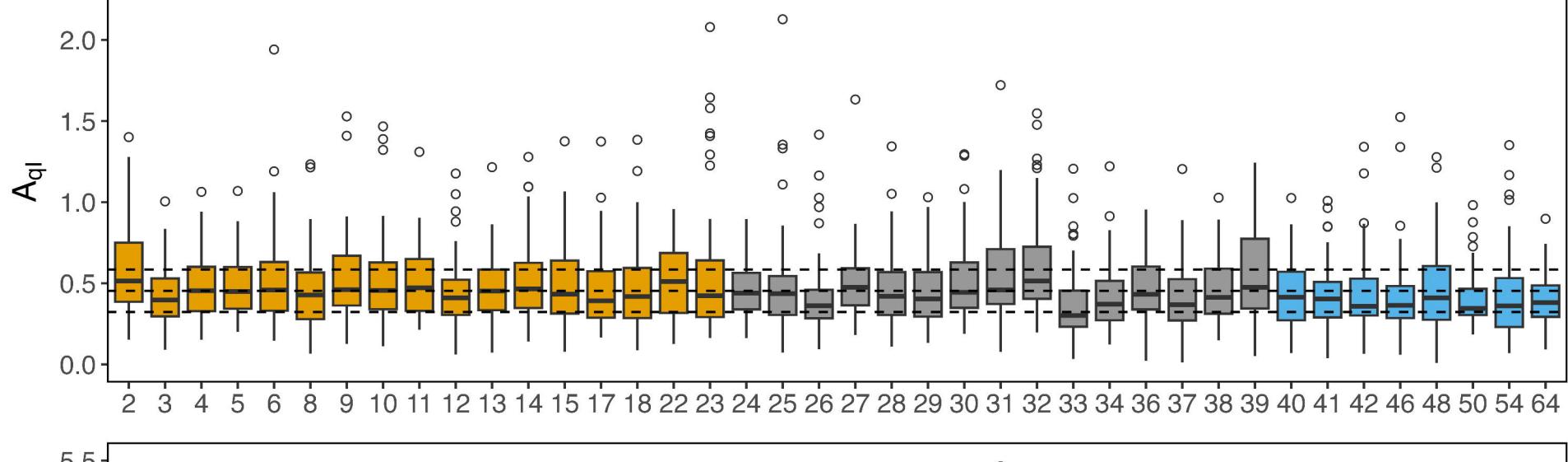
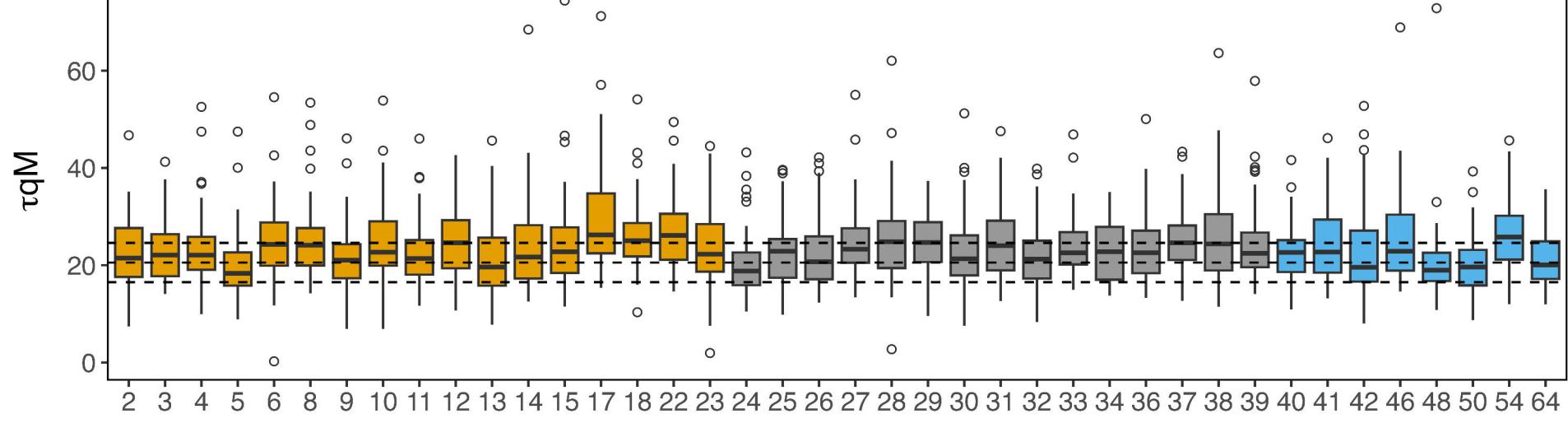
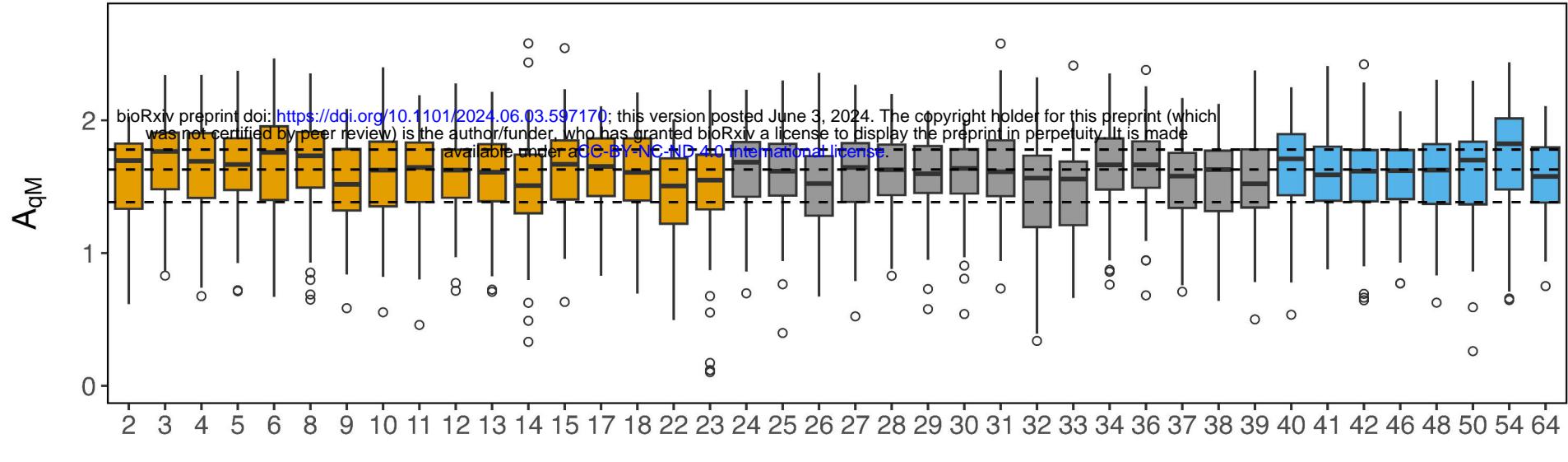
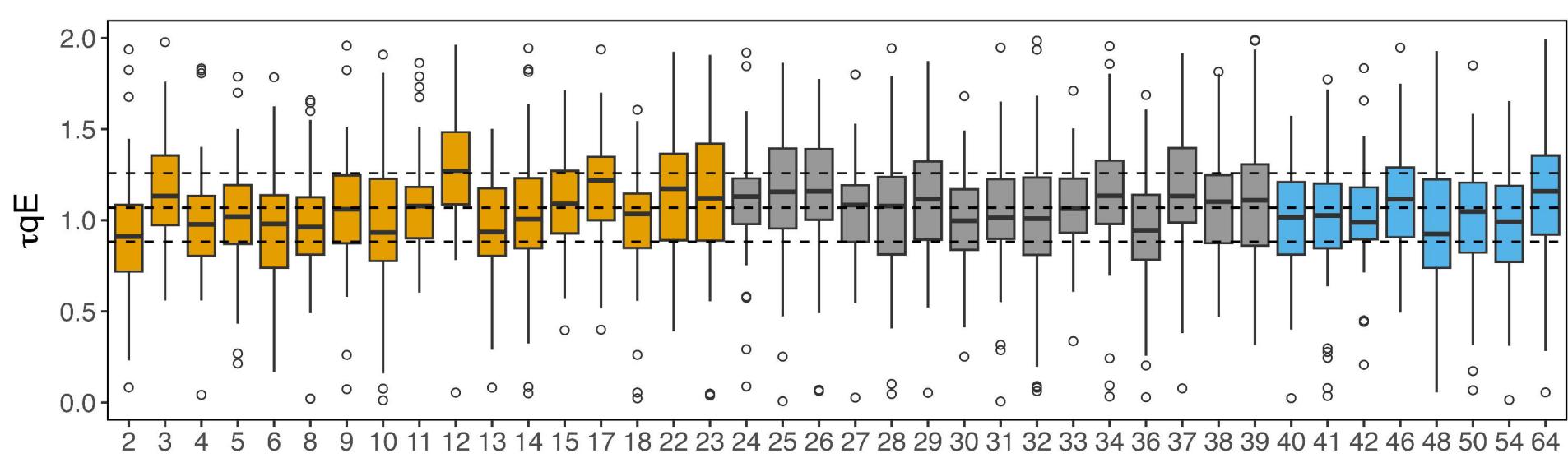
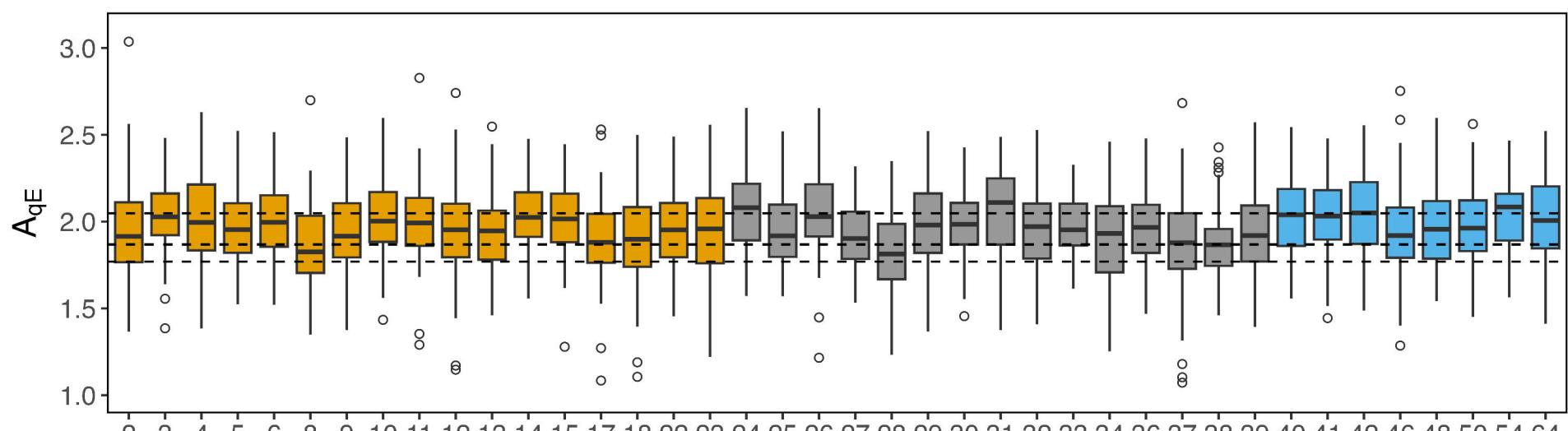
908 Figure S14. PCA of NPQ relaxation in the NAM population on 8/20/22. Diverse, elite, and PI
909 lines are shown in grey, orange, and blue, respectively. Coordinates for replicate measurements
910 on the same line were averaged. RC line is shown in black. Error bars represent the standard
911 deviation.

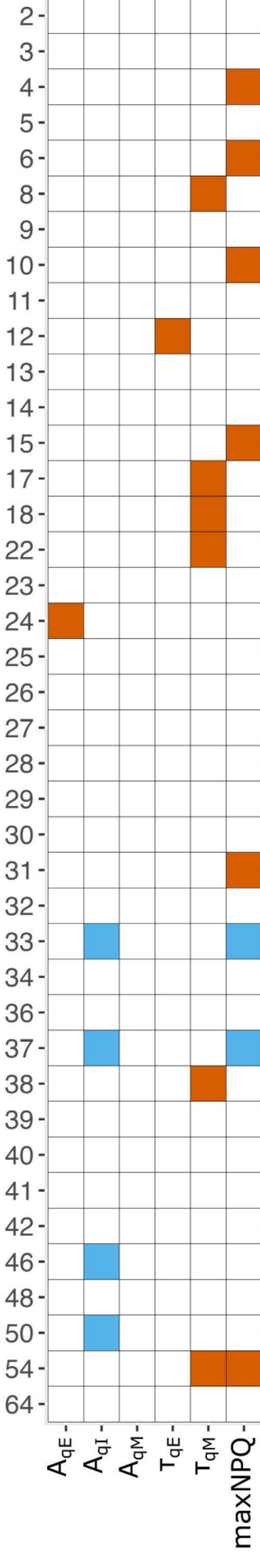



912

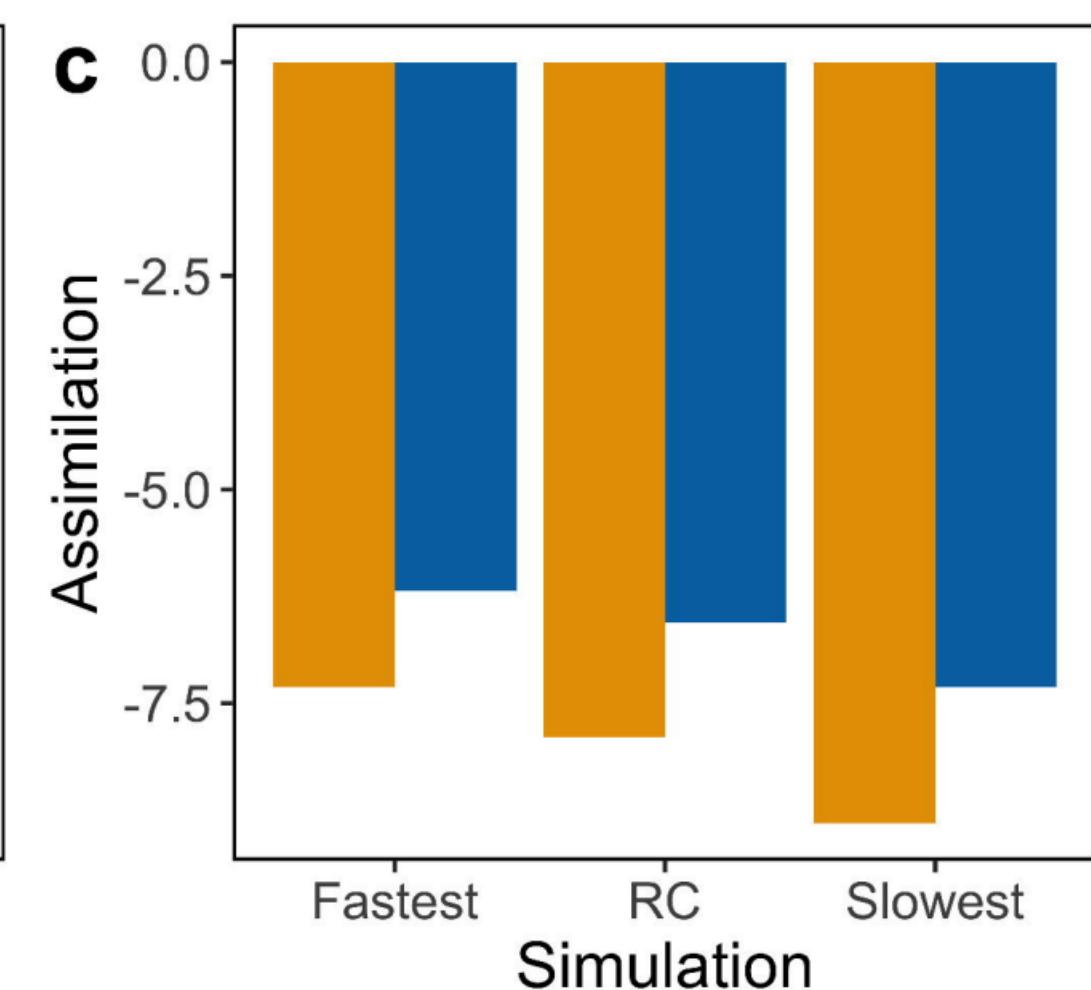
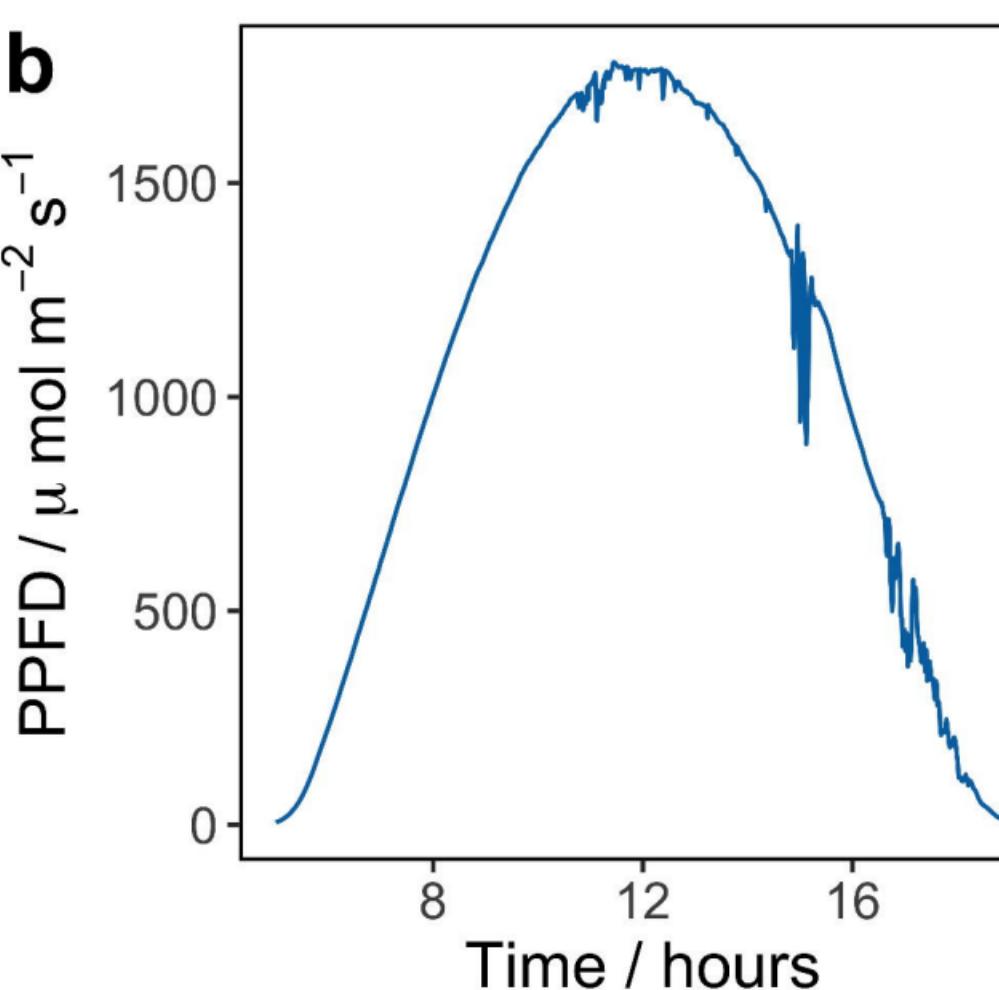
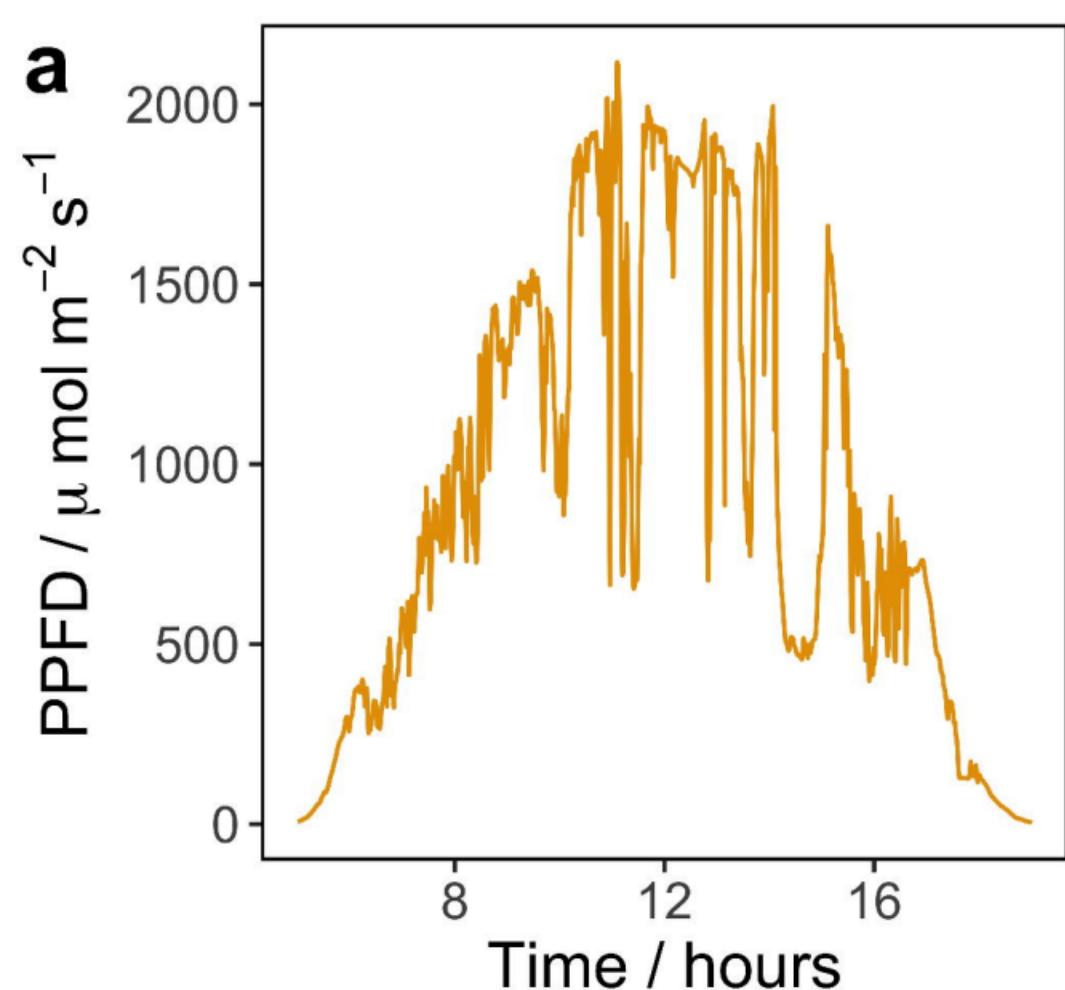
913 Figure S15. PCA displaying the relationships between the NPQ relaxation parameters and the
914 environment in (a-d) 2021 (1296 observations) and (e-h) 2022 (1025 observations). (a, c, e, and
915 g) PCA showing the spatial distribution of the different observations on the principal components
916 (PC). The circular shapes represent observations, with different colors representing different
917 days. The triangular shapes show the average of different NAM groups at different day, with
918 diverse, elite, PI, and RC groups shown in grey, orange, blue and black, respectively. For each
919 group, a solid line connect those points to represent their evolution throughout the season. (b, d,
920 f, and h) The correlation circle showing the relationships between variables. Variables related to
921 the NPQ relaxation parameters, and the environments are represented in red and black,
922 respectively. The percentage of total variance explained by the PC1, PC2, and PC3 is shown on
923 the axis title.









a







2021


b




2022

maxNPQ $R^2=0.22; p<0.001$ **tqE** $R^2=0.32; p<0.001$ **tqM** $R^2=0.1; p<0.001$

