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ABSTRACT

BACKGROUND: While the amygdala receives early tau deposition in Alzheimer’s disease (AD)
and is involved in social and emotional processing, the relationship between amygdalar tau and
early neuropsychiatric symptoms in AD is unknown. We sought to determine whether focal tau
binding in the amygdala and abnormal amygdalar connectivity were detectable in a preclinical
AD cohort and identify relationships between these and self-reported mood symptoms.
METHODS: We examined n=598 individuals (n=347 amyloid-positive (58% female), n=251
amyloid-negative (62% female); subset into tau PET and fMRI cohorts) from the A4 Study. In
our tau PET cohort, we used amygdalar segmentations to examine representative nuclei from
three functional divisions of the amygdala. We analyzed between-group differences in division-
specific tau binding in the amygdala in preclinical AD. We conducted seed-based functional
connectivity analyses from each division in the fMRI cohort. Finally, we conducted exploratory
post-hoc correlation analyses between neuroimaging biomarkers of interest and anxiety and
depression scores.

RESULTS: Amyloid-positive individuals demonstrated increased tau binding in medial and
lateral amygdala (F(4,442)=14.61, p=0.00045; F(4,442)=5.83, p=0.024, respectively). Across
amygdalar divisions, amyloid-positive individuals had relatively increased regional connectivity
from amygdala to other temporal regions, insula, and orbitofrontal cortex. There was an
interaction by amyloid group between tau binding in the medial and lateral amygdala and
anxiety. Medial amygdala to retrosplenial connectivity negatively correlated with anxiety
symptoms (rs=-0.103, p=0.015).

CONCLUSIONS: Our findings suggest that preclinical tau deposition in the amygdala may
result in meaningful changes in functional connectivity which may predispose patients to mood

symptoms.


https://doi.org/10.1101/2024.06.03.597160
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.03.597160; this version posted June 3, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

INTRODUCTION

Neuropsychiatric symptoms such as anxiety, irritability, and apathy are both common
and debilitating in Alzheimer’s disease (AD). They are the single biggest reason patients must
be institutionalized and represent a major source of caregiver distress (1,2). Mood symptoms
are early symptoms of AD and can present as early as mid-life. They may, in fact, precede
cognitive symptoms (3-5). However, how preclinical Alzheimer’s pathology might give rise to
mood symptoms is unclear.

Interestingly, some of the brain regions implicated in emotionality and affect are also
among the earliest regions to show AD pathology. For example, the amygdala plays a critical
role in emotion modulation and processing (6—9), and pathologic tau deposition occurs in the
medial group of the amygdala as early as Braak stage 3 (10), a stage that precedes objective
memory impairment for many adults (11). Although early tau deposition in the medial amygdala
has been well-established (12,13), research on amygdalar structure and function in vivo in AD
has been limited. Structural imaging studies have demonstrated low global amygdalar volumes
even in the early clinical stages of illness (14,15), and low global amygdalar volume correlates
with global illness (16). More recent work has shown that atrophy of the medial and lateral
regions of the amygdala predicts conversion from MCI to dementia stage of iliness (17). AD
patients with neuropsychiatric symptoms including depression, apathy, irritability, and agitation
also show differences in functional connectivity of the amygdala when compared with AD
patients without affective disturbances (18-21).

Any work that considers the amygdala as a whole is limited by the complex nature of this
structure, which is composed of many subnuclei, some of which are heavily impacted by tau
pathology (see Figure 1, red nuclei), while others are not (Figure 1, green nuclei) (12). The
most heavily impacted nuclei generally fall within the medial group, including the accessory
basal, basomedial, and cortical nuclei and the cortical transition area (10,12,22,23). They are

functionally linked, with connectivity to the posterior cingulate cortex, mesial temporal lobe, and
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ventromedial prefrontal cortex (24). Notably, these structures participate in the default mode
network (DMN), which is specifically affected by neurodegeneration in AD and shows decreased
connectivity even in very early stage illness (25—-29). Conversely, regions spared by AD
pathology include the dorsal division nuclei, which participate in an intrinsic connectivity network
that is thought to integrate salient socioemotional and homeostatic stimuli, the so-called
salience network (SN; see (30) for a concise review), and the lateral division nuclei, which have
connectivity predominantly to regions associated with social perception, including fusiform gyrus
(31) and superior temporal sulcus (32). The SN is notably spared by AD pathology and shows
abnormally increased connectivity in early-stage AD (3,33-35), as does the STS (3,26,36)

Despite the amygdala’s clear relevance to affective and cognitive circuitry that is
markedly impacted in AD, the effects of focal amydalar tau on these networks have not been
explored. Preclinical AD populations, in whom early AD pathology (defined by an abnormal
burden of amyloid plaques, often accompanied by early-stage neurofibrillary tau tangles) is
present in the absence of cognitive symptoms (38), but where early affective symptoms may
already be emerging (3-5), offer a particularly meaningful opportunity to assess focal tau signal
in the amygdala and related changes in functional circuitry .

Therefore, the purpose of our study was to examine tau PET signal in the amygdala in a
large preclinical AD cohort, the Anti-Amyloid Treatment in Asymptomatic AD (A4) Study (39)
(n=4486), which includes older individuals with preclinical AD (as defined by positive amyloid
PET scan, n=1323), and healthy controls (n=3163). We hypothesized that we could
demonstrate focal tau binding in the medial division of the amygdala and that this region would
be associated with decreased functional connectivity to DMN regions (specifically posterior
cingulate, mesial temporal lobe, and ventromedial prefrontal cortex), while connectivity from
other parts of the amygdala might show compensatory increases. On an exploratory basis, we
also sought to determine the relationship between tau uptake and abnormal amgydalar

connectivity and self-reported mood symptoms.
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METHODS & MATERIALS
Participants

All analyses used data from the A4 Study (40), a secondary prevention study of amyloid
antibody therapy in individuals with preclinical Alzheimer’s disease which has released its
baseline (pre-treatment) data to the research community (39). The study recruited thousands of
healthy older adults (ages 65-85) who were considered to be at elevated risk for developing
Alzheimer’s related memory loss based on age. Participants included in this study (fMRI cohort:
n=563; tau PET cohort: n=447 Table 1) were cognitively healthy with a Clinical Dementia Rating
global score of 0 (41), Mini-Mental State Examination score of 25 or higher (42), and Logical
Memory delayed recall score of 6 or higher (43). Of these, n=347 were amyloid-positive (h=251
amyloid-negative), as determined by a standardized uptake value ratio (SUVR) >1.15 on an
amyloid PET ([*°F] florbetapir) scan. Institutional review board approval was obtained at each

study site and all participants provided written informed consent prior to participation.

Neuropsychological Measures

All participants underwent a standard neuropsychological battery as well as tests of
psychiatric symptomatology, including the Geriatric Depression Scale (GDS) (44) and a six-item
short-form of the State-Trait Anxiety Inventory (STAI), focusing on state-anxiety (e.g., “l was
worried” on a scale of 1-4) (45). Individuals with significant anxiety or depression were excluded
from the study (39). A complete list of tasks is available at ida.loni.usc.edu (“A4 Study
Materials”). Participants also underwent functional and structural MRI, amyloid PET

([*®F]florbetapir), and tau PET (*®F-AV1451) imaging as detailed below.

Structural and Functional MRI
Baseline images were downloaded from the A4 LONI Image and Data Archive

(v4.1.2021) and are up to date as of October 2023 (39). Participants were scanned on either a
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3.0 Tesla Siemens, GE Medical, or Philips Health/Medical Systems scanner. Specific scanning
parameters varied by site. T1-weighted structural images were acquired using an MPRAGE
sequence (1.05 x 1.05 x 1.2 mm voxel size; matrix size of 240 x 256 x 176 slices; slice

thickness=1.2 mm; TR/T1=2300-7636/400-900 ms; TE=2.95-3.11 ms; flip angle=9-11°).

Resting-state fMRI sequences were acquired with a 2D gradient-recalled (GR), 2D echo-planar

imaging (EPI), or 2D GR EPI sequence (t = 6.5 min; slice thickness=3.3-4mm; TR/TE=3000-
3520/30 ms; flip angle=80-90°). Specific acquisition parameters by site can be found at

ida.loni.usc.edu (“A4 Study Materials”).

Structural and functional MR Preprocessing

All structural and functional images were preprocessed using approaches described
previously (46,47). Briefly, T1L MPRAGE anatomical scans were skull-stripped through optiBET
(48) and registered to an MNI template in Biolmage Suite (BIS) (49). In preparation for tau PET
analysis, raw T1 MPRAGE anatomical scans also underwent cortical reconstruction and
volumetric segmentation of structural MRI images in Freesurfer

(www.surfer.nmr.mgh.harvard.edu, version 7.2.0), including skull stripping, subcortical white

matter and deep gray matter volumetric segmentation, intensity normalization, surface
deformation, and parcellation of gyral and sulcal structures, as a part of its “recon-all” function.
Specific details regarding these functions have been described in prior publications (50-56). We
then performed high-resolution segmentation of the amygdala and hippocampus using the
hippocampal subfields and nuclei of amygdala segmentation package included in Freesurfer 7.2
(37). The Freesurfer amygdala segmentation parcellates the amygdala into the anterior
amygdala area, cortico-amygdaloid transition area (CTA), and lateral, basal, paralaminar,

accessory basal, medial, central, and cortical nuclei. Of these segmentations, the CTA, central,
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and lateral nuclei were selected to represent the medial, dorsal, and lateral divisions,
respectively.

Functional scans from the A4 dataset were slice-timed and motion-corrected using
SPMB8. Exclusion criteria for motion were a maximum mean frame-to-frame displacement above
0.3 mm for any scan. Such an approach to handle motion has been shown to limit motion
artifact (46,47,57,58). Each participant’s functional scan was registered to their anatomical scan
using BIS and smoothed with a 6mm Gaussian kernel in AFNI. Anatomical and functional scans
were then resliced and warped in SPM and loaded into CONN toolbox (59) for further
preprocessing and seed analysis.

In CONN, anatomical data were segmented into grey matter, white matter, and CSF
tissue classes using SPM unified segmentation and normalization algorithm (60,61) with the
default IXI-549 tissue probability map template. Denoising of functional data used a standard
denoising pipeline in CONN (59), followed by the standard first-level and group-level analyses of
seed-based connectivity (see ‘Seed connectivity analyses’ for more). Specific information about
the CONN methods for denoising and first- and group-level analyses can be found at

https://web.conn-toolbox.org/fmri-methods.

Amyloid PET

[*®F]florbetapir PET data was processed by the A4 Study using a previously published
pipeline (39). Composite amyloid SUVR was obtained by averaging across six cortical regions
from the Automated Anatomical Labeling (AAL) atlas (anterior cingulate, posterior cingulate,
lateral parietal, precuneus, lateral temporal, and medial orbital frontal) and normalized to a
whole-cerebellum reference region. Amyloid positivity was defined as an SUVR threshold of
>1.15 or SUVR between 1.10 and 1.15 with a positive visual read, as per A4 Study guidelines

(39). The most recent release of amyloid PET SUVR for the A4 dataset resulted in the
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reclassification of some individuals from positive to negative; we have used the most recent

classification here, resulting in an amyloid-negative tau PET cohort of n=100.

Tau PET

18F_AV1451 tau PET scans were downloaded from the A4 LONI Image and Data Archive
(v.4.1.2021). Tau PET images were preprocessed and analyzed using PETsurfer (62,63). In
brief, five-minute tau PET frames corresponding to 90 to 110 minutes post-injection were
motion-corrected and summed. Each participant’'s MRI and Freesurfer-generated
segmentations were coregistered to the summed PET data. Partial volume correction was
applied using the geometric transfer matrix (GTM PVC) method in Freesurfer. Regional SUVR
for cortical and amygdalar regions (segmented as described in ‘Structural and functional MR
Preprocessing’) in each participant’s T1 MPRAGE coregistered to tau PET were calculated

using the whole cerebellum as reference.

Group differences in tau binding in dorsal and medial amygdala

We used independent t-tests to analyze group differences between whole amygdalar tau
binding in amyloid-positive vs amyloid-negative participants. We used ANCOVA to determine
whether medial, lateral, and dorsal amygdalar tau SUVR varied by group, using age, intracranial
volume (ICV), and entorhinal tau as covariates. We covaried by entorhinal tau because this
region has very early tau deposition (Braak stage 1) (10) and is adjacent to parts of the medial
and lateral amygdala, where tau signal from the entorhinal cortex could potentially be
inaccurately interpreted as regional amygdalar tau due to spatial smoothing. All p-values were

corrected for multiple comparisons using Benjamini-Hochberg adjustment (64).

Seed connectivity analyses
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To assess between-group differences in regional amygdalar connectivity, we-derived
coordinates for the center of mass of the central nucleus (representing the dorsal group), lateral
nucleus (representing the lateral group), and CTA (representing the medial group). Due to the
concave shape of the CTA, the center of mass was calculated by finding the point within the
nucleus with the minimal sum of distances within the area to all the nuclei's edges. We then
derived 2mm radius spherical seeds for the dorsal, lateral, and medial amygdala groups
centered at these three coordinates. The averaged fMRI time series was then extracted for each
seed ROI and correlated across all voxels across the whole brain. Each subject’s correlation
coefficient map was Fisher’s z-to-r transformed, then fit to a second-level regression model for
random effects analysis comparing the amyloid-negative and amyloid-positive groups, while
controlling for age, sex, handedness, and years of education. All maps were thresholded at a
voxelwise threshold of p<0.05 and clusterwise threshold of p<0.05 (FDR corrected). We
conducted a conjunction analysis of the three thresholded activation maps from our seed-based
analyses by creating an overlay of the three maps using the MarsBaR toolbox in SPM (65). The

resulting clusters were then used as clusters of interest in the following correlation analysis.

Exploratory Correlation Analyses

We conducted exploratory post-hoc analyses to understand the relationship between
neuroimaging markers of interest and AD-related neuropsychiatric measures (Geriatric
Depression Scale (44) and a short-form of the State-Trait Anxiety Inventory (45)). First, we
analyzed associations between tau binding in the three nuclei of interest and mood symptoms
using Spearman correlations in each amyloid group. We also assessed if amyloid status was an
important interaction term by running a linear regression using the whole sample and including
amyloid status as an interaction term in the model. We then analyzed associations between
functional connectivity and mood symptoms using partial Spearman correlations to compare

mean connectivity values for each cluster (selected from the conjunction analysis of the
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thresholded activation maps and a cluster of interest from the medial network seed map) and

scales of depression and anxiety symptoms, controlling for age, sex, and years of education.

RESULTS
Participants were well-matched in years of education, sex, and mood symptoms. As
anticipated, amyloid-positive individuals were on average older and were more enriched with

apolipoprotein E4 (APOE4) genotype (Table 1).

Amyloid-positive individuals showed higher global and medial and lateral amygdalar tau

Consistent with previously published results (66—68), we found significantly greater tau
binding in the whole amygdala for amyloid-positive, compared with amyloid-negative, individuals
(Figure 2A, t=8.33 for left amygdala, p<0.0001; t=9.09 for right amygdala, p<0.0001). In the left
hemisphere, amyloid-positive individuals had significantly greater binding in medial group
(F(4,442)=14.61, p=0.00045) and lateral group nuclei (F(4,442)=5.83, p=0.024), but no
significant difference between cohorts in the dorsal group (F(4,442)=0.17, p=0.68), when
controlling for age, ICV, and entorhinal tau binding (Figure 2B). Similar results were observed in
the right hemisphere. Given the importance of tau binding in the entorhinal cortices during the
progression of AD, we also conducted ANCOVAs without entorhinal cortex tau as a covariate. In
the new models, tau binding in the right central nucleus now significantly differed by amyloid
group (F(3,443)=5.80, p=0.019). Other nuclei were unchanged with regard to significance

(Table S1).

Amyloid-positive individuals exhibited relatively higher local connectivity to medial and
inferotemporal cortex and thalamus, but lower connectivity to insula, accumbens, and

retrosplenial cortex.
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From the dorsal group seed in the central nucleus, amyloid-positive subjects showed
elevated connectivity with the bilateral medial temporal lobe, temporal pole and insula relative to
amyloid-negative controls (Figure 3A). There was decreased connectivity to the basal ganglia,
including nucleus accumbens, and left lateral parietal lobe and dorsolateral PFC.

From the medial group seed in the CTA, amyloid-positive subjects showed higher
connectivity to bilateral medial temporal lobe, temporal pole, orbitofrontal cortex, and brainstem,
compared to the amyloid-negative group (Figure 3B). There was lower connectivity to the
retrosplenial cortex (RSC), lateral frontal, and anterior cingulate cortices.

From the lateral group seed in the lateral nucleus, the amyloid-positive group showed
increased connectivity to the bilateral medial temporal lobe, temporal pole, orbitofrontal cortex,
brainstem, mesial thalamus, and ventral insula (Figure 3C). The amyloid-positive group showed
decreased connectivity to the superior temporal gyrus, temporoparietal junction, and superior
parietal lobe.

Because of its role as a major hub within the DMN (69), we more deeply examined the
RSC cluster that demonstrated lower connectivity in amyloid-positive individuals from the medial
group seed. In amyloid-negative individuals, average correlated activity from the amygdala to
the RSC cluster was highest from the medial group seed and lower from the dorsal and lateral
group seeds, in line with our expectation based on the medial group’s connectivity with other
DMN structures (24,70). However, in amyloid-positive individuals, activity in the medial seed
and RSC was anticorrelated, similar to the other amygdalar seeds, and a significant departure

from connectivity in the amyloid-negative state (Figure 4).

Tau and connectivity associations with anxiety scores
To assess for a relationship between subclinical mood symptoms and amygdalar tau
and connectivity, we conducted exploratory analyses assessing the correlation between (a)

focal amygdalar tau signal and (b) amygdalocortical connectivity and neuropsychiatric
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symptoms (represented by scores on clinical questionnaires for symptoms of depression and
anxiety) in preclinical AD. We first examined the relationship between medial-, dorsal-, and
lateral-group nuclei tau binding and scores on scales of depression and anxiety (GDS (44) and
a short-form state scale of the STAI (45), respectively). There was a significant relationship
between lateral division tau uptake and anxiety score in the amyloid-positive group, such that
individuals with elevated amyloid had a positive association between tau burden and anxiety
score (Figure 5F; r=0.12 p=0.022). There was a significant interaction by amyloid group in
terms of the relationship between depression and tau burden across all three amygdalar nuclei
examined, and a significant interaction by amyloid group between anxiety and tau burden in the
medial and lateral groups.

We then assessed for associations between amygdala-to-ROI connectivity and
measures of depression and anxiety. Using the intersection (or overlay) of the three seed
connectivity maps, we identified three clusters of interest (right hippocampus, left temporal pole,
and right insula) which showed consistent differences in connectivity between amyloid-positive
and amyloid-negative groups across all three seeds (Figure 6A). We also examined the RSC
cluster identified only in the medial group (Figure 4), given its relevance to DMN function (69).
For each of these four clusters and three amygdalar subdivision seeds, we used correlation
analyses to assess the relationship between amygdala-to-ROI connectivity and previously
described neuropsychiatric tests. Connectivity from the medial group seed to the RSC cluster
correlated inversely with anxiety score, such that lower connectivity was associated with higher

anxiety (rs=-0.103, p=0.015, Figure 6B).

DISCUSSION
The present study demonstrates that focal increases in tau signal can be detected in
pathologically implicated regions in amyloid-positive, cognitively unimpaired individuals,

compared to amyloid-negative individuals. Furthermore, we show that these focal increases are
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associated with changes in functional connectivity and with symptoms of anxiety prior to the
emergence of clinically significant cognitive changes. Our results are consistent with post-
mortem histological work that shows focal involvement of the amygdala in clinical AD
(10,12,13,22,23) and confirm that pathological and functional changes are present in individuals
still in the preclinical stages of disease. Our study leverages multimodal techniques and analysis
of amygdalar subregions to delineate complex brain-symptom relationships between healthy
individuals and those with preclinical AD.

We found significantly greater tau binding in the CTA and lateral nuclei of the amyloid-
positive group. This finding generally concurs with previous histology literature which reported
greatest tau pathology in the medial regions of the amygdala (10,12,22,23). In addition, our data
align with work examining atrophy in the amygdala in MCI converting populations, which found
significant atrophy in the right lateral nucleus and CTA, among other medial network nuclei (71).
The presence of greater tau binding in the CTA in our preclinical AD cohort agrees with previous
literature suggesting tau pathology underlies atrophy in these regions (72). Given the proximity
of the ventricles to the central nucleus, our finding of high tau uptake in the central nucleus that
did not vary by amyloid status is likely attributable to off-target binding of **F-AV1451 PET
ligand to the choroid plexus (73).

Compared with the amyloid-negative cohort, amyloid-positive individuals had elevated
connectivity to neighboring limbic regions, including the mesial temporal lobes, temporal poles,
insula, and orbitofrontal cortex, a pattern which mirrors increased functional coupling between
amygdala and both insula and orbitofrontal cortex in trait anxiety and social anxiety disorder
(74-76). Similar findings were seen across all three amygdalar seeds. These findings also align
with theories that amyloid positivity promotes local hyperexcitability and increased functional
connectivity within the temporal lobe, potentially setting the stage for pathological spread of tau

and symptomatic disease (77-80).
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All three amygdalar seeds also revealed a pattern in amyloid-positive individuals of
relatively depressed connectivity to the basal ganglia, anterior and posterior cingulate, and
temporoparietal junction. Interestingly, the medial (CTA nucleus) seed alone revealed a
significant difference in functional connectivity between amyloid-negative and amyloid-positive
individuals to the RSC, a default mode network hub. While amyloid-negative individuals showed
a positive relationship between activity in these two regions, the relationship was inverse in
amyloid-positives, suggesting a shift in connectivity between the DMN and the amygdala in
preclinical AD.

This shift might relate to early neuropsychiatric symptoms: lower connectivity from
medial amygdala to the retrosplenial cluster correlated with higher reported symptoms of anxiety
in the A4 cohort. Of all the nodes of the posterior DMN, retrosplenial cortex is perhaps the
region with the closest relationship to anxiety: amygdala and RSC play complementary roles in
fear extinction (81); the RSC plays a role in fear memory retrieval, and with the amygdala,
memory for acute trauma (82,83); and decreased connectivity between the mesial temporal lobe
(including the amygdala specifically) and RSC has been implicated in context-dependent fear
conditioning in animal studies (84—-86). We also observed a positive association between lateral
group tau binding and anxiety in the amyloid-positive group, as well as an interaction between
amyloid status and mood symptoms in all three amygdalar divisions.

Our study, then, suggests that both the presence of AD pathology in the amygdala, and
the shift from a positive to an inverse relationship between medial amygdala and a default mode
network hub in amyloid-positive individuals, are linked to higher anxiety scores even in
individuals without clinical mood disorder. To our knowledge, our study is the first to
demonstrate a significant relationship between mood symptoms and tau in the amygdala in a
preclinical AD cohort. This work builds on previous studies that suggest that neuropsychiatric

symptoms may begin well before clinically significant cognitive deficits in AD (3-5). Prior studies
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seeking an association between global amygdalar tau and anxiety or depression did not find
one (87,88).

This work has a number of limitations that warrant discussion. The A4 Study had a
relatively small sample of amyloid-negative individuals who obtained a tau (**F-AV1451) PET
scan, limiting our power to examine group differences in tau correlations with mood symptoms.
Given off-target binding of the *F-AV1451 ligand to choroid plexus, future work using second-
generation tau ligands with different off-target binding profiles will be critical to clarify
relationships specifically with the central nucleus, which lies adjacent to the ventricle. In addition,
while generally speaking *®F-AV1451 binding is specific to tau and not amyloid (89,90), it is
possible that the tracer may bind to tau-positive dystrophic neurites within dense-core neuritic
plagues; i.e., in this preclinical cohort, some observed signal may be due to amyloid binding and
therefore should be interpreted with some caution.

In terms of the relationship between amygdalar tau and mood symptomatology, the A4
Study also excluded individuals with clinically significant anxiety or depression symptoms,
potentially eliminating meaningful variation in GDS and short-form STAI scores that would have
informed our conclusions. Moreover, this study uses a state-anxiety specific version of the STAI,
limiting our ability to generalize our results. Future studies could examine associations in
individuals with a broader range of neuropsychiatric scores, including those with clinically
significant mood symptoms, who may represent a meaningful and disease-relevant source of
variation. Future studies that include more detailed assessment of psychiatric symptomatology
(or other metrics assessing emotionality and social function which have been shown to be
sensitive to early socioemotional changes in AD (3,91,92)) could better inform our
understanding of the earliest affective and behavioral changes associated with AD pathology.
The use of a semi-automated amgydalar segmentation in this study should also be considered.
Future studies could more thoroughly test the efficacy of semi-automated vs. manual

segmentation efforts, which remains the gold standard. Finally, it will be important to examine
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longitudinal focal amygdalar tau and functional connectivity over the progression from preclinical
to clinical AD to better understand the meaning of these early relationships and how they evolve

over the course of illness.

CONCLUSION

Our results highlight that focal changes in amygdalar tau binding are both present
during preclinical AD and associated with anxiety symptoms. Furthermore, amyloid-positivity is
associated with a shift in functional connectivity of the amygdala towards higher local temporal
connectivity, potentially due to amyloid-mediated hyperconnectivity in temporal circuitry, but
lower connectivity to other limbic hubs including insula and accumbens. Notably, inversely
correlated activity between the medial amygdala and the retrosplenial cortex, seen only in
amyloid-positive individuals, was also associated with symptoms of anxiety. This finding
suggests the relationship between medial amygdala and this default mode network hub as a
potential focus for future investigations into the emergence of the earliest neuropsychiatric

symptoms of AD.
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Amyloid- Amyloid- p- Amyloid- Amyloid- p-
negative positive value | negative positive value
N 251 312 100 347
Age 70.3 (4.5) 72.5(4.9) <0.001 | 69.8 (4.2) 72.4 (4.5) <0.001
Education 16.5 (2.6) 16.2 (2.7) 0.26 16.5 (2.8) 16.1 (2.8) 0.37
Sex (%F) 62% 58% 0.18 57% 58% 0.95
APOE (%E4 19% 59% <0.001 | 26% 60% <0.001
carrier)
GDS total 1.0(1.4) 1(1.3) 0.32 1.1 (1.6) 1.0 (1.4) 0.65
STA total 10.0(3.3)° 10.2 (3.0) 0.28 10.2 (2.9) 10.2 (3.1) 0.99

Table 1. Demographics for A4 Study Data.

Bolded text represents the tau PET cohort. Between-group Wilcoxon or chi square tests were

performed as appropriate, excluding unknown or not reported values. * N = 250 for STAI. GDS =

Geriatric Depression Scale; STAI = short-form State-Trait Anxiety Inventory.
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Figure 1. Functional networks overlaid on amygdala tau deposition.

Three major functional subdivisions of the amygdala defined by neuroimaging (24) overlaid on a
pathologic cross-section through the amygdala showing the major nuclei (based on Saygin et al.
2017 (37)). Red shading indicates nuclei with the heaviest burden of tau pathology (12), while

green shading indicates nuclei with relatively less tau burden.
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Figure 2. Between-group differences in global and amygdalar region-specific tau binding.
(A) Global amygdalar tau binding was greater in the amyloid-positive group. (B) Amygdalar tau
uptake was greater in amyloid-positive individuals in the medial (CTA) and lateral (lateral nuclei)
amygdala, but not in the dorsal (central nucleus) amygdala. T- or F-statistics reported when
appropriate. Results are controlled for age, ICV, and entorhinal tau binding. * p < 0.05, ** p<
0.001, *** p<0.0001. CTA = Cortico-amygdaloid Transition Area; SUVR = Standardized Uptake

Value Ratio.
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Figure 3. Functional connectivity from amygdalar seeds to the whole brain (amyloid-
positive > amyloid-negative control).

Across the three seeds, amyloid-positive subjects had greater connectivity from the (A) dorsal
network, (B) medial network, and (C) lateral network seeds, to bilateral medial temporal lobes
and temporal poles relative to amyloid-negative controls, with variable connectivity to
retrosplenial cortex and decreased connectivity to insula, basal ganglia (including accumbens),
and superior parietal and dorsolateral prefrontal cortex. Color bars represent T-values. CTA =

Cortico-amygdaloid Transition Area.
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Figure 4. Connectivity to the retrosplenial cortex cluster across the three amygdalar
nuclei seeds between amyloid-positive and amyloid-negative groups.

(A) Representation of the retrosplenial cluster identified from the CTA seed. (B) Relatively
decreased connectivity to the retrosplenial cortex between amyloid groups was only observed
from the medial (CTA) seed. Error bars represent standard error of the mean. CTA = Cortico-

amygdaloid Transition Area; RSC = Retrosplenial Cortex.
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Figure 5. Relationship between medial-, dorsal-, and lateral-group amygdalar tau uptake
and depression or anxiety score.

Data plotted for amyloid-positive (coral) and amyloid-negative (light blue) individuals.
Depression did not significantly associate with (A) dorsal-group (central nucleus), (B) medial-
group (CTA), or (C) lateral-group (lateral nucleus) tau binding in the left hemisphere. Anxiety
was significantly correlated with (F) left lateral-group tau but was not correlated with (D) dorsal-
group or (E) medial-group tau uptake. Shaded area represents 95% confidence. CTA = Cortico-
amygdaloid Transition Area; SUVR = Standardized Uptake Value Ratio; GDS = Geriatric
Depression Scale score; rs= Spearman Correlation Coefficient; STAI = short-form State-Trait

Anxiety Inventory score.
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B NP test Brain Area Brain Area AB+ and AB-
rs p-value
GDS Bilateral Central Insula -0.032 0.45
RSC 0.056 0.19
Bilateral CTA Insula -0.006 0.90
RSC -0.030 0.48
Bilateral Lateral Insula 0.014 0.74
RSC 0.005 0.92
CSTAL Bilateral Central ~ Insula 0059 0162

RSC -0.058 017
Bilateral CTA Insula -0.042 0.32

RSC -0.10 0.015

Bilateral Lateral Insula 0.01 0.822
RSC -0.015 0.72

Figure 6. Correlations between clusters of interest and neurocognitive scores.

(A) Clusters identified from conjunction analysis of functional connectivity maps from the three
amygdalar seeds. Red = right insula cluster; green = left temporal cluster; blue = right temporal
cluster. (B) Partial correlation results to neuropsychiatric measures from the dorsal-, medial-,
and lateral-groups respectively, to a given cluster. AR+ = Amyloid-positive; AB- = Amyloid-
negative; CTA = Corticoamygdaloid Transition Area; GDS = Geriatric Depression Scale score;
NP = Neuropsychiatric Test; RSC = Retrosplenial Cortex; STAI = short-form State-Trait Anxiety

Inventory score.
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