

1 **Hybrid xyloglucan utilisation loci are prevalent among plant-associated Bacteroidota**

2 Hannah Martin¹⁺, Lucy A. Rogers¹⁺, Laila Moushtaq¹, Amanda A. Brindley², Polly Forbes¹, Amy
3 R. Quinton¹, Andrew R.J. Murphy³, Tim J. Daniell², Didier Ndeh⁴, Sam Amsbury², Andrew
4 Hitchcock^{1,2} and Ian D.E.A. Lidbury^{1*}

5 ¹ Molecular Microbiology - Biochemistry and Disease, School of Biosciences, The University of
6 Sheffield, Sheffield, UK

7 ² Plants, Photosynthesis and Soil, School of Biosciences, The University of Sheffield, Sheffield,
8 UK

9 ³ School of Life Sciences, University of Warwick, Coventry, UK

10 ⁴ School of Life Sciences, University of Dundee, Dundee, UK

11 ^{*}Both authors contributed equally to this study.

12 ***Corresponding author:** I.lidbury@sheffield.ac.uk

13 **Abstract**

14 The plant hemicellulose xyloglucan (XyG) is secreted from the roots of numerous plant
15 species, including cereals, and contributes towards soil aggregate formation in terrestrial
16 systems. Whether XyG represents a key nutrient for plant-associated bacteria is unclear. The
17 phylum Bacteroidota are abundant in the plant microbiome and provide several beneficial
18 functions for their host. However, the metabolic and genomic traits underpinning their
19 success remain poorly understood. Here, using proteomics, bacterial genetics, and genomics,
20 we revealed that plant-associated *Flavobacterium*, a genus within the Bacteroidota, can
21 efficiently utilise XyG through the occurrence of a distinct and conserved gene cluster,
22 referred to as the Xyloglucan Utilisation Loci (XyGUL). *Flavobacterium* XyGUL is a hybrid of the
23 molecular machinery found in gut *Bacteroides* spp., *Cellvibrio japonicus*, and the plant
24 pathogen *Xanthomonas*. Combining protein biochemistry, computational modelling and
25 phylogenetics, we identified a mutation in the enzyme required for initiating hydrolysis of the
26 XyG polysaccharide, an outer membrane endoxylglucanase glycoside hydrolase family 5
27 subfamily 4 (GH5_4), which enhances activity towards XyG. A subclade of GH5_4 homologs
28 carrying this mutation were the dominant form found in soil and plant metagenomes due to
29 their occurrence in Bacteroidota and Proteobacteria. However, only in members of the
30 Bacteroidota spp., particularly *Flavobacterium* spp. was such a remarkable degree of XyGUL
31 conservation detected. We propose this mechanism enables plant-associated *Flavobacterium*
32 to specialise in competitive acquisition of XyG exudates and that this hemicellulose may
33 represent an important nutrient source, enabling them to thrive in the plant microbiome,
34 which is typified by intense competition for low molecular weight carbon exudates.

35 **Introduction**

36 Plants provide soils with the ‘fresh’ carbon (C) required to support microbial growth,
37 generating ‘hotspots’ of activity in regions of C deposition, such as the rhizosphere (1, 2).
38 Microbial processing of plant-derived C therefore represents the entry point for new matter
39 and energy into the microbial C pump. This biological pump determines the balance of CO₂
40 liberated during aerobic respiration versus that channelled into microbial anabolism and
41 ultimately the accumulation of recalcitrant C (3). Overtime, this C becomes part of the stable
42 C pool, which is approximately 3x larger than that stored in animals and plants. Each year, soil
43 respiration releases 10-15x more C than that emitted from anthropogenic activities (4).

44 Therefore, any change in the balance of production versus respiration in response to global
45 change will have significant ramifications for the global C cycle (3). Plant-derived C is
46 partitioned into two major fractions: 1) Low molecular weight (LMW) C, which can be
47 transformed by microbial enzyme activity within hours; and 2) Complex high molecular weight
48 (HMW) C, e.g. glycans, which can take years to be fully degraded into their monomeric
49 subunits (5). HMW C is believed to escape microbial attack, initiating the formation of soil
50 aggregates (5, 6) and thus directly contributing to soil C accumulation. In addition to
51 biogeochemical cycling, nutrient inputs have a significant influence on plant microbiome
52 assemblage and community structure (7), evidenced through the impact of crop
53 domestication (8).

54 Plant glycans (polysaccharides) are major components of plant biomass, of which
55 hemicelluloses, such as xyloglucan (XyG), typically constitute 5-50% (9). Recent data has
56 revealed XyG is a major component of root mucilage exudate. XyG is secreted at the root tip
57 and along the entire root axes and functions to help produce the rhizosphere, a region made
58 up largely of glycans that serves to protect roots from abrasion and desiccation (6, 10, 11).
59 Through this process XyG also influences the degree of microaggregate formation, a
60 prerequisite for soil C accumulation (6). Hence, these secreted HMW C polymers play an
61 integral role in soil C storage and are likely influenced by the degree of microbial degradation.
62 XyG binds border cells at the tip of growing roots and is an abundant component of mucilage
63 (12). XyG also plays a role in regulating the severity of oomycete pathogen attack in soybean
64 (10).

65 Historically, mycorrhizal and saprophytic fungi were considered the major plant glycan
66 degraders, however, soil bacteria are emerging as integral players in their breakdown (13). In
67 forest soils, leaf litter microbial communities are enriched with members of the phyla
68 Pseudomonadota, Actinomycetota, and Bacteroidota (14). Likewise, in agricultural soil
69 Bacteroidota and Pseudomonadota were reported as the primary consumers of cellulose,
70 crude plant root or leaf material (15). Plant pathogens, such as *Xanthomonas* spp. also utilise
71 XyG and this metabolism is considered a virulence factor, enabling the bacterium to enter
72 plant cells (16). However, an understudied plant-microbe interaction is the effect of HMW C
73 exudation on plant microbiome assemblage. This knowledge gap is driven largely by the
74 dearth of experimentally validated genes and pathways required for hemicellulose

75 degradation in soil bacteria, except for *Cellvibrio japonicus* (17, 18) and *Chitinophaga pinensis*
76 (19-21).

77 Glycan degradation requires the possession of specialised gene sets encoding
78 carbohydrate-active enzymes (CAZymes) to initiate degradation (5, 13, 22). CAZymes are
79 categorised into broad functional groups, i.e., glycosyl hydrolases (GH) and carbohydrate
80 esterase (CE) and are incredibly diverse (~200 GH families), reflecting the enormous variety
81 of naturally occurring carbohydrate structures, particularly glycans. In Bacteroidota, these
82 gene sets are typically colocalised into discreet operons referred to as Polysaccharide
83 Utilisation Loci (PUL) and their bioinformatic prediction has rapidly outpaced experimental
84 validation of their precise function (22, 23). PUL are a hallmark of the Bacteroidota, a deep
85 branching group of Gram-negative bacteria that specialise in HMW polymer degradation in
86 marine and gut microbiomes (22, 24). Through the efficient capture of glycans, PUL provide a
87 competitive advantage for Bacteroidota in glycan-rich environments, such as the human gut
88 or leaf litter (22). Unlike their gut and marine relatives, the contribution of soil Bacteroidota
89 towards plant or microbial glycan degradation, particularly hemicelluloses, is limited (5, 13,
90 20). Whilst *C. pinensis* can utilise a variety of glycans including several hemicelluloses, this
91 bacterium surprisingly lacks the ability to efficiently utilise XyG (19-21).

92 *Flavobacterium*, a genus within the phylum Bacteroidota, are enriched in numerous
93 wild and domesticated plant microbiomes relative to the surrounding bulk soil (25-29). Recent
94 evidence suggests that they are one of the most metabolically active taxa in the plant
95 microbiome, accounting for 27% of RNA reads when comprising only 6% of DNA reads (30).
96 Bacteroidota are considered indicators of good soil health (25) and have ecological roles in
97 suppressing various fungal and bacterial plant pathogens (30-34). However, their general
98 ecological role and function remains poorly characterised in plant microbiomes, relative to
99 other environments (35). Recently, we discovered *Flavobacterium* spp. have adapted to life
100 in the plant microbiome by specialising in organophosphorus utilisation and likely play a key
101 role in increasing phosphate availability for plants (36, 37). Analysing our same proteomics
102 dataset, we further identified several CAZymes that are candidates for plant glycan utilisation,
103 suggesting that HMW C utilisation represents a key lifestyle strategy for these bacteria (38).

104 In this study, we demonstrate *Flavobacterium* spp. are efficient utilisers of the plant
105 hemicellulose XyG through possession of hybrid XyG utilisation loci (XyGUL). These gene
106 clusters contained elements of the archetypal PUL identified in *Bacteroides ovatus* as well as

107 gene clusters found in *C. japonicus* and *Xanthomonas* spp. Furthermore, we identified a XyG-
108 specific endoglucanase associated with the XyGUL related to the glycosyl hydrolase family 5
109 subfamily 4 (GH5_4), subclade 2D (39). XyG-specific GH5_4 homologs within this clade carry
110 a key mutation increasing their specificity and activity towards XyG. We further investigated
111 the presence of GH5_4 homologs in soil and plant metagenomes, revealing this XyG-
112 specialised form is prevalent in the terrestrial environment, especially in plant-associated
113 Bacteroidota.

114 **Results**

115 **Plant-associated *Flavobacterium* spp. possess a hybrid XyGUL**

116 *F. johnsoniae* was previously reported to grow on hemicelluloses, including XyG (40).
117 Therefore, we screened *Flavobacterium* sp. F52, two *Flavobacterium* spp. (OSR005 and
118 OSR003) isolated from the rhizosphere of oilseed rape (37), and *F. johnsoniae* for their ability
119 to grow on XyG, xylo-oligosaccharides (XyGO), and carob galactomannan (GalM). All four
120 strains grew on a glucose control and on GalM and XyGOs (Figure 1a). Unlike the other three
121 strains, *Flavobacterium* sp. F52 failed to grow on XyG, despite growing on XyGO.

122 To determine the genes and proteins responsible for XyG utilisation, *F. johnsoniae* and
123 *Flavobacterium* sp. OSR005 (37) were grown on either XyG or glucose and whole-cell
124 proteomics was performed. Growth on XyG led to the significant (FDR corrected $P < 0.05$, \log_2
125 FC > 2) enrichment of 68 and 74 proteins in the *F. johnsoniae* and OSR005 proteomes,
126 respectively (Tables S4 and S5, Figure 1b). Among the most differentially synthesised proteins
127 was a distinct PUL, hereafter named XyGUL. In *F. johnsoniae* and OSR005, XyGUL are encoded
128 by Fjoh_0772-0782 and OSR005_04225-04238, respectively, and both contain a predicted
129 endoxyloglucanase related to the GH5_4 family (Fjoh_0774; OSR005_4227). Surprisingly,
130 Fjoh_0774 and OSR005_4227 showed greater sequence homology to the *C. japonicus* GH5_4
131 (18) (*CjGH5D*, encoded by *cel5D*) than to the *Bacteroides ovatus* GH5_4 (41) (*BoGH5A*,
132 encoded by BACOVA_02653) (Table 1, Figure S1). *CjGH5D* and *BoGH5A* function as outer
133 membrane-anchored XyG-specific 1-4- β -endoglucanases and are required to initiate
134 degradation of the polysaccharide. The open reading frame (ORF) encoding this XyG-specific
135 1-4- β -endoglucanase was missing from *Flavobacterium* sp. F52, which harboured a truncated
136 XyGUL (Figure 1c).

137 Interestingly, the candidate *Flavobacterium* XyGUL combined elements of previously
138 characterised XyGUL and associated XyG-utilising genes in *B. ovatus* (41), *Xanthomonas* spp.
139 (16) and *C. japonicus* (41). Whilst the *F. johnsoniae* GH5_4 endoxyloglucanase (*FjGH5*) is closely
140 related to *C. japonicus* *CjGH5D*, the gene encoding *CjGH5D* is located away from the truncated
141 and fragmented gene cluster required to import and degrade XyGOs (18, 41) (Figure 1c).
142 Other XyGUL-encoded proteins predicted to sequentially hydrolyse the XyG oligosaccharides
143 were annotated as L- α fucosidase (GH95), β -glucosidase (GH3), 1,4- β -xylosidase (GH39), α -
144 glucosidase (GH97), α -D-xyloside xylohydrolase (GH31), β -galactosidase (GH2), a SusCD-like
145 outer membrane transport system (hereafter termed XusCD), and the distinct O-
146 acetylesterase (CE20) that was recently characterised in *Xanthomonas* (16) (Figure 1c & d).
147 XusC and D were the most differentially abundant proteins during growth on XyG (Figure 1b).
148 The *Flavobacterium* XyGUL showed high degree of conservation and synteny across all plant-
149 associated strains analysed (Figure 1c), in contrast to the XyGUL found in *Bacteroides* spp.
150 (41), with no rearrangements and only few instances of gene insertions. GH39, predicted to
151 hydrolyse the Xyl(α 1-2)Araf linkage found in *solanaceous* plants, such as tomato, was only
152 present in *Flavobacterium*. Together, these data suggest *Flavobacterium* harbour a
153 specialised XyGUL capable of capturing and breaking down XyG from various plant species.

154 **XyGUL encoded proteins are essential for efficient growth on XyG in *F. johnsoniae***
155 To determine the *in vivo* contribution of XyGUL encoded proteins to growth on XyG, two
156 knockout strains of *F. johnsoniae* were generated. The first had a deletion of *fjoh_0774*,
157 encoding the GH5 enzyme predicted to initiate depolymerisation of the XyG polysaccharide,
158 and the second was an *fjoh_0781-2* mutant lacking the XusCD system predicted to be required
159 for oligosaccharide uptake (Figure 1d). The isogenic wild-type parent and both mutant strains
160 grew comparably on either glucose or GalM, but, unlike the wild type, Δ 0774 was unable to
161 grow on XyG, whilst the growth of the Δ 0781-2 mutant was significantly curtailed (Figure 2).
162 These data are consistent with the proteomics analysis (Figure 1b), demonstrating that the
163 predicted XyGUL is essential for growth on XyG (Figure 2). Complementation of each mutant
164 with an *in trans* copy of the respective gene(s) restored their ability to grow on XyG (Figure
165 2). As expected, the Δ 0774 mutant, lacking the outer membrane initiator enzyme *FjGH5*, was
166 capable of growth on commercially synthesised on XyGOs (Figure 2). However, Δ 0781-2 also
167 grew on XyGOs, albeit at a slower rate, in contrast to its phenotype on XyG (Figure 2). This

168 suggests that either *FjGH5* and *XusCD* interact for efficient hydrolysis of the polysaccharide
169 backbone prior to import, or that XyGOs produced by *FjGH5* are not the same as those present
170 in the hepta-, octa-, nona-saccharides commercial mix (MEGAZYME), and that other SusCD-
171 like complexes can import the latter.

172 **Microdiversity of GH5_4 homologs in *Flavobacterium* spp. suggests functional
173 diversification**

174 In several plant-associated *Flavobacterium* spp., BLASTP identified multiple ORFs
175 encoding GH5_4 homologs. Phylogenetic reconstruction of these homologs alongside *BoGH5*,
176 *CjGH5d*, and other previously characterised GH5_4 homologs eliciting mannanase, xylanase,
177 and glucanases activity revealed the presence of two distinct *Flavobacterium* GH5_4 groups
178 (Figure 3a). These two subgroups (Type I and Type II) shared greater similarity to each other
179 than to the archetypal *BoGH5A*. Whilst 7/8 residues, previously shown to be involved in XyG
180 hydrolysis in *BoGH5A* (41) were conserved across Type I and Type II homologs, residue Trp252
181 in *BoGH5A* was not (Figure 3a & S1). Trp252 is conserved in all Type I homologs, including
182 *FjGH5*, the GH5_4 enzyme encoded by OSR005_04227 in *Flavobacterium* sp. OSR005 (Figure
183 1), hereafter termed 005GH5-1 (Table 1), and *CjGH5D* (17). In the majority of Type II
184 homologs, Trp252 is replaced with either Ala or Gly. The genes encoding type I homologs are
185 all found in XyGUL, however the genes encoding Type II GH5_4 homologs were all found in
186 distinct PUL (XyGUL2 in Figure 3b). This was confirmed by increasing the number of plant-
187 associated *Flavobacterium* genomes screened, including the addition of MAG retrieved from
188 plant rhizosphere metagenomes (Table S3). Even the genes encoding the few Type II forms
189 carrying the Trp residue (Figure S1) were found in XyGUL2-like PUL. XyGUL2 is present in
190 fewer *Flavobacterium* genomes and has far less gene synteny and conservation than XyGUL1
191 (Figure 3c). These alternative PUL contain ORFs for various exo-acting GHs, distinct SusCD-like
192 systems, and in some cases a GH74 homologue similar to the endoxyloglucanase recently
193 shown to be functional in *Xanthomonas* spp. (16). In addition, *Flavobacterium* sp. OSR005,
194 harbours a Type II GH5_4 (hereafter referred to as 005GH5-2), encoded by OSR005_03871,
195 which contains an Ala in place of the aforementioned Trp252 residue. Neither 005GH5-2 nor
196 other XyGUL2 proteins were detected during growth on XyG (Figure 1b, Table S5), suggesting
197 they do not play a role in XyG utilisation in *Flavobacterium* sp. OSR005.

198 To determine if Type II GH5_4 homologs were functional, we complemented the *F.*
199 *johsoniae* Δ 0774 mutant with the genes encoding 005GH5-1 and 005GH5-2 expressed from
200 the constitutive *ompAFj* promoter. Both 005GH5-1 and 005GH5-2 restored the ability of
201 Δ 0774 to grow on XyG as the sole C source, with the 005GH5-1 strain showing a greater initial
202 growth rate and 005GH5-2 the slowest (Figure 3c). To test if the lower growth rate observed
203 for 005GH5-2, which carries the W252A substitution, was due to a lower enzyme activity, we
204 purified recombinant OSR005-1, 005GH5-2 and the archetypal *BoGH5A* following
205 heterologous over-production in *E. coli*. Recombinant 005GH5-1 had a significantly greater
206 turnover rate ($K_{cat} = 566.2 \text{ min}^{-1}$) than recombinant 005GH5-2 ($K_{cat} = 223.5 \text{ min}^{-1}$) and a lower
207 K_m (OSR005-1 = 1.3 mg ml⁻¹, OSR005-2 = 5.7 mg ml⁻¹) (Figure 3d). Recombinant *BoGH5A*
208 modified with either W252A or W252G substitutions replicated this dramatic reduction in
209 endoxyloglucanase activity (Figure 3e), with W252G having the greatest reduction, requiring
210 10x more enzyme to detect observable activity (Figure S2). Neither OSR005-1, OSR005-2,
211 *BoGH5A*, *BoW252A* nor *BoW252G* conveyed substrate promiscuity towards other glycans
212 typically found in the plant microbiome (Figure 3f). Based on structural homology modelling
213 and previous structural data for *BoGH5A* and *CjGH5d* (18, 41), Trp252/209 interacts with the
214 xylose residue occupying the -2 glucose position in XX(X)G-type saccharides, such as tamarind
215 XyG (Figure 3g; Figure S3). This would explain why mutation of Trp252 results in the observed
216 decrease in activity. Modelling the surface hydrophobicity revealed that possession of Trp252
217 likely generates a stacking interaction which may stabilise the docking of XXXG-type XyG. In
218 005GH5-2 and other promiscuous GH5_4 enzymes where Trp252 is absent, a clear cavity is
219 present that would significantly reduce this stacking interaction between the aromatic
220 residue and the xylose occupying the -2 subsite (Figure 3g; Figure S3). Taken together, these
221 data reveal Type II GH5_4 homologs may have subsequently evolved to specialise on another
222 glycan or variation of XyG, perhaps the XXGG-type typical of solanaceous plants.

223 **GH5_4 homologs are enriched in plant-associated Bacteroidota genomes**

224 Next, we investigated if XyG utilisation in *Flavobacterium* is an adaptation to life in the plant
225 microbiome by analysing our previous database containing ~100 genomes representing
226 *Flavobacterium* spp. isolated from distinct ecological niches (37). In addition to searching for
227 GH5_4 homologs, we also searched for homologs related to other XyGUL components and
228 candidate GH10 endoxylanases (pfam00331) required to hydrolysis xylan backbones (42).
229 Xylan is another hemicellulose secreted from plant roots (43). ORFs encoding XyGUL

230 components were more prevalent among plant-associated and closely related strains (Figure
231 4a). Likewise, GH10 homologs followed a similar pattern. Several plant-associated
232 *Flavobacterium* strains sometimes possessed up to six closely related GH5_4 homologs, each
233 associated with either Type I or II. The most prevalent were the canonical GH5-1 forms found
234 in the XyGUL, followed by homologs related to 005GH5-2 (group GH5-3 in Figure 4a). Some
235 *Flavobacterium* spp. possess a second Type I GH5_4 homolog (GH5-2 in Figure 4a), typically
236 located adjacent to the GH5-1 in the XyGUL (e.g. CF136 and OSR001 in Figure 1d).

237 *C. pinenesis* DSM2558 cannot efficiently grow on XyG (19-21) and BLASTP confirmed
238 that this strain lacks either a GH5_4 homolog or a XyGUL. To determine whether XyGUL is
239 restricted to plant-associated *Flavobacterium* or found within the Bacteroidota phylum more
240 widely, we screened genomes deposited in the IMG/JGI database (Table S2) for the presence
241 of GH5_4 homologs. Genomes were restricted to those retrieved from terrestrial
242 environments, i.e., soil and plant, and encompassed *Chitinophagaceae*, *Sphingobacteraceae*,
243 *Flavobacteriaceae*, and *Cytophagaceae*. We detected both inter- and intra-genus variation in
244 the occurrence of GH5_4 homologs in the genomes of Bacteroidota spp. (Figure 4b). The
245 highest percentage of genomes possessing GH5_4 homologs belonged to *Flavobacterium*
246 (54%), with almost all plant-associated strains possessing the gene cluster. Despite belonging
247 to the family *Flavobacteriaceae*, we found no GH5_4 homologs in plant-associated
248 *Chryseobacterium*. Likewise, no GH5_4 homologs were found in the *Pontibacter* and
249 *Hymenobacterium* genomes we screened. Genomes related to both *Muciluginibacter* (51%)
250 and *Chitinophaga* (46%) also had a relatively high number with at least one GH5_5 homolog
251 present.

252 Given that several genomes possessed multiple GH5_4 homologs, we performed
253 phylogenomics to determine whether they belonged to Type I or Type II forms (Figure S4).
254 Most GH5_4 homologs identified in non-*Flavobacterium* Bacteroidota fell into the Type II
255 subgroup. However almost all harboured the Trp residue, except for a few containing Tyr, and
256 some being closely related to the Ala- and Gly-harbouring Type II forms. Genomes from the
257 class Sphingobacteriia often possessed two or more homologs. Two major clusters of
258 *Chitinophaga* were present, all harbouring the Trp residue, and these were typically mutually
259 exclusive within genomes and found in distinct PUL. Interestingly, no Bacteroidota genomes
260 possessed only a Type II GH5_4 carrying the Ala or Gly mutation, strengthening the hypothesis
261 that this form has an auxiliary role in XyG hydrolysis. Taken together, whilst there is a large

262 diversity of GH5_4 and XyGUL-like clusters, whether these are all functional as part of
263 dedicated XyG utilisation pathways remains uncertain.

264 In other Bacteroidota spp. the organisation of PUL harbouring Type II GH5_4 homologs
265 carrying the Trp residue differed substantially from the *Flavobacterium* XyGUL (Figure 4c).
266 These PUL resembled the organisation and features, such as carbohydrate binding domains
267 (CBMs), associated with the XyGUL2 cluster found in *Flavobacterium* spp., which was not
268 induced during growth on XyG in OSR005 (Figure 1b, Table S5). Therefore, whether the
269 XyGUL-like clusters identified in other Bacteroidota genera also specialise in XyG utilisation
270 remains an open question.

271 **GH5_4 subclade 2D has radiated in soil and plant microbiomes**

272 The GH5_4 family has recently been structured into three main clades (named I, II, III)
273 and subclades (44), with *BoGH5A* and *CjGH5d* belonging to subclade 2D (44). Given the high
274 prevalence of GH5_4 homologs in plant-associated Bacteroidota, we performed BLASTP on
275 over 700 plant/soil metagenomes deposited in the IMG/JGI database (Table S3). Two GH5
276 sequences were used as queries: *FjGH5* (*Fjoh_0774*) and a GH5_4 from *Paenibacillus* sp.
277 Root144 (IMG gene id, 2644426200), the latter closely related to a commercial *Paenibacillus*
278 endoxyloglucanase (Megazyme) and represents GH5_4 homolog from subclade 1. All
279 environmental ORFs retrieved (n=7636) were locally aligned (BLASTP) to all GH5 enzymes in
280 the CAZYdb (n = 1123) (45). In total, 7136 ORFs aligned to 254 ORFs from CAZYdb and were
281 all related to the GH5_4 subfamily. Homologs related to Bacteroidota (N= 39150) and
282 Proteobacteria (n= 39031) constituted much of the diversity found in soil (Figure S5). At the
283 genus-level, homologs related to *Capsulimonas* (Actinomycetota, n=11783) and
284 *Flavobacterium* (n=11232) were the most abundant, followed by *Cellvibrio* (8700),
285 *Muciluginibacter* (n=8697), and members of the family *Chitinophagaceae* (*Pseudobacter*; n
286 =7967, *Chitinophaga*; n=5516).

287 Phylogenetic reconstruction revealed most environmental homologs were related to
288 GH5_4 clade 2, with most sequences belonging to subclade 2D. This subgroup contains *FjGH5*,
289 005GH5-1, *CjGH5d*, and all homologs related to Bacteroidota, including *Flavobacterium*
290 (Figure 5b). Meanwhile, GH5_4 homologs related to Gram-positive bacteria, primarily,
291 Actinomycetota and Bacillota, were found in subclades 1 and 2. As observed for
292 *Flavobacterium* Type I and Type II GH5_4 homologs, the eight residues involved in XyG binding

293 and hydrolysis by *BoGH5A* (41) were highly conserved between clades I, II, and III, again with
294 the exception of Trp252. This residue was predominantly substituted with either His or Gly in
295 clades 1, 3, and subclades 2A, 2B, and 2C (Figure 5b). Despite the occurrence of W252A- and
296 W252G-GH5_4 Type II forms in isolates related to several Bacteroidota genera, in soil/plant
297 metagenomes only *Flavobacterium* Type II forms were detected. Most GH5_4 homologs
298 related to other Bacteroidota and Proteobacteria spp. were Type I. Together, these data
299 demonstrate subclade 2D has radiated in soil and become the dominant form. Furthermore,
300 these analyses highlight a possible role for horizontal gene transfer of the GH5_4 enzyme
301 between Bacteroidota and Proteobacteria, such as *Cellvibrio*, in response to occupying a
302 similar niche.

303 **Discussion**

304 Here, we demonstrate *Flavobacterium* spp. can efficiently utilise the plant hemicellulose XyG
305 and, through the identification of molecular markers, show that this metabolic trait is
306 prevalent in plant-associated Bacteroidota spp. The explosion of next-generation sequencing
307 studies investigating the composition of plant microbiota has revealed Bacteroidota,
308 particularly *Flavobacterium*, are highly enriched in this niche (27, 28, 46, 47). However, these
309 bacteria are typically not enriched when LMW substrates, such as sugars, organic acids,
310 aromatics and phenolics, are supplemented to soil samples under laboratory conditions (48-
311 50). The possession of XyGUL and similar hemicellulose utilisation systems may therefore
312 provide Bacteroidota with a competitive advantage when invading and persisting in the plant
313 microbiome, facilitated through resource diversification (24). The high prevalence of XyGUL
314 in plant-associated genomes and low prevalence in those retrieved from other environmental
315 niches, such as seawater, further suggests a strong selection for XyG utilisation as a strategy
316 to succeed in the plant microbiome, similar to their organophosphorus utilisation capabilities
317 (37). These data are also consistent with previous comparative genomics analyses that
318 indicated terrestrial *Flavobacterium* have a greater ratio of GH enzymes relative to
319 peptidases, including those predicted to target plant pectins (51). Whilst
320 Gammaproteobacteria, such as *Cellvibrio* and *Xanthomonas*, possess endo-acting
321 xyloglucanases, these bacteria only contain a TonB-dependent transporter, akin to XusC (16,
322 17), lacking the surface-exposed glycan binding domain (XusD) identified in this study.
323 Therefore, possession of XusCD may increase the competitive ability of *Flavobacterium* to

324 capture these complex exudates (52), consistent with the ecological function of these
325 transporters in marine and gut microbiomes (53, 54).

326 Terrestrial Bacteroidota can utilise other HMW substrates, including pectin (55),
327 alternative hemicelluloses (13, 20, 21), fungal polysaccharides (19, 56) and alternative plant
328 cell wall components (13, 21). Together with our data, these observations support a model
329 whereby HMW C is the preferential nutrient and energy source for Bacteroidota in soil and
330 plant microbiomes. The domestication of agricultural crops is driving a significant loss of
331 various key microbiota, including Bacteroidota, hypothesised to be a consequence of changes
332 in crop root exudation profiles with a relative increase in the ratio of LMW:HMW (8). This
333 reduction in beneficial microbes, such as *Flavobacteraceae* and *Chitinophagaceae*, may have
334 negative impacts on agricultural soil health (57) and the plants ability to suppress pathogens
335 (31, 32, 58-60). Interestingly, the relative abundance of genes encoding XyGUL components,
336 such as GH5, GH31, GH3, and GH95 were also significantly higher in healthy versus diseased
337 pepper plants, when challenged with *Fusarium* (61). Collectively, these studies and ours
338 highlight a possible link between Bacteroidota, HMW C utilisation, and plant disease
339 suppression. We propose, future research should focus on explicitly linking the connection
340 between HMW exudation and the assemblage of Bacteroidota in the plant microbiome in the
341 context of crop domestication and host disease. These studies are essential to better
342 understand the drivers of Bacteroidota assemblage and host-microbe interactions in the plant
343 microbiome (35).

344 Given the proposed importance of plant polysaccharides in soil aggregation and the
345 long-term storage of C (3, 6), degradation of these molecules may represent a significant and
346 relatively overlooked cog in the global C cycle. The comparatively efficient utilisation of
347 glycans by Bacteroidota relative to non-Bacteroidota, as observed in marine systems (52, 62,
348 63), may therefore have consequences for the microbial C pump (3), which can be altered by
349 changes in bacterial C use efficiency (64, 65). Microbial polysaccharides also represent a major
350 fraction of recalcitrant or 'stabilised' C in soil, a fraction which is vulnerable to microbial attack
351 in response to a climate-induced influx of labile C or changes in land-use intensity (3, 4, 64,
352 65, 66). Whether shifts in Bacteroidota abundance and diversity, which are known to be good
353 indicators of soil health, could influence this key step in the terrestrial global C cycle warrants
354 further investigation (8, 57).

355 The lack of XyGUL in certain genera related to Bacteroidota, e.g., *Chryseobacterium*,
356 coupled with a 10-60% occurrence of GH5_4 homologs in other Bacteroidota genera, suggests
357 some level of functional partitioning within this phylum. Indeed, *Chryseobacterium* spp.
358 possess an enhanced capability to degrade microbial polysaccharides associated with Gram-
359 positive peptidoglycan compared to *F. johnsoniae* or *Sphingobacterium* sp. (67). *C. pinensis*
360 also lacks the ability to utilise XyG despite its capability to grow on other hemicelluloses and
361 fungal glycans (19-21, 68) and our comparative genomics confirmed this bacterium lacks a
362 GH5_4 homolog. Hence, whilst Bacteroidota likely specialise in HMW C utilisation *in situ*,
363 resource partitioning or metabolic heterogeneity within this phylum exists to target different
364 HMW C substrates.

365 Our data also reveals subclade 2D of the GH5_4 has radiated in soil microbiomes and
366 is the dominant form, in contrast with the abundant forms found in engineered systems or
367 animal guts (44). Clade 2D carried a distinct mutation at Trp252 (position in *BoGH5A*), which
368 is typically Gly, Ala or His in clades 1 and 3. Clade 3 GH5_4 enzymes possess high activity
369 towards multiple polysaccharides in addition to xyloglucan, in contrast to clade 2D homologs
370 produced by *C. japonicus* (*CjGH5d*, *CjGH5e*, *CjGH5f*) (18, 39, 44). Hence, the presence of clade
371 1 and 3 GH5_4 enzymes in Actinomycetota and Bacillota may reflect a trade off whereby
372 these bacteria carry fewer CAZymes with greater individual substrate ranges relative to
373 Bacteroidota in order to scavenge complex C molecules in bulk soil away from plant roots (5,
374 24, 69, 70). However, enzyme specificity versus promiscuity is likely driven by many more
375 mutations that influence active site architecture through alterations in secondary structure
376 (39). This may explain why mutation of Trp252 *BoGH5A* did not broaden its substrate range.

377 In gut Bacteroidota, distinct PUL are required to degrade simple and complex
378 arabinoxylans, which are differentially regulated in response to these different forms of the
379 polysaccharide (23, 71). The existence of Type II GH5_4 homologs carrying a single mutation
380 and typically found in PUL that significantly differ from the conserved *Flavobacterium* XyGUL
381 in their organisation and overall complexity may present something similar. Indeed, XyG is
382 often part of a larger polysaccharide exudate complex, which includes pectin and xylan
383 complexes (11). These complex Type II-harbouring PUL may therefore represent
384 specialisation in utilising either non-exudate plant polysaccharides, particularly those
385 associated with plant cell walls or root tip border cell-mucilage matrices (9, 21) or more
386 complex forms released by plant roots (11).

387 In summary, using *Flavobacterium* as the model, we identified highly conserved XyGUL
388 among plant-associated members of this genus. Whilst the initiator enzyme for XyG
389 polysaccharide hydrolysis, GH5_4, is found in the genomes other Bacteroidota and
390 Proteobacteria spp., we hypothesise the specialised *Flavobacterium* XyGUL, harbouring the
391 active Type I form, enables these bacteria to competitively acquire this complex
392 carbohydrate. Given the emergent knowledge that most plants, including globally important
393 crop species, exude significant quantities of XyG, we propose this hemicellulose may present
394 an important nutrient source for plant-associated *Flavobacterium* and underpins their ability
395 to successfully invade and persist in a highly competitive plant microbiome.

396 **Materials and methods**

397 **Bacterial strains and growth medium**

398 *F. johnsoniae* UW101 (DSM2064) was purchased from the Deutsche Sammlung von
399 Mikroorganismen und Zellkulturen (DSMZ) collection. *Flavobacterium* sp. OSR005 and
400 *Flavobacterium* sp. OSR003 were isolated previously (37). *Flavobacterium* sp. F52 was kindly
401 donated from the Cytryn lab (71). *Flavobacterium* strains were routinely maintained on
402 casitone yeast extract medium (CYE) (52) containing casitone (4 g L⁻¹), yeast extract (1.25 g L⁻¹),
403 MgCl₂ (350 mg L⁻¹), and agar (20 g L⁻¹). For conjugation experiments, MgCl₂ was substituted
404 with CaCl₂ (1.36 g L⁻¹). For growth experiments investigating hemicellulose degradation,
405 *Flavobacterium* strains were grown in a modified minimal A medium (72, 73), containing NaCl
406 (200 mg L⁻¹), NH₄Cl (450 mg L⁻¹), CaCl₂ (200 mg L⁻¹), KCl (300 mg L⁻¹) and MgSO₄ (350 mg L⁻¹).
407 After autoclaving, filter-sterilised yeast extract (10 mg L⁻¹), FeCl₂ (2 mg L⁻¹), MnCl₂ (2 mg L⁻¹),
408 NaH₂PO₄ (100mg L⁻¹) and 20mM HEPES buffer pH7.4 were added. This medium was
409 supplemented with either 0.25-0.4% (w/v) glucose, tamarind XyG (Megazyme, CAS Number:
410 37294-28-3), Xyloglucan oligosaccharides (hepta+octa+nona saccharides, Megazyme, CAS
411 Number: 121591-98-8) or Carob galactomannan (Megazyme, CAS Number: 11078-30-1) as
412 the sole C source. Growth assays were performed in 200 µL microcosms and incubated in a
413 TECAN SPARK microtiter plate reader at 28°C using optical density measured at 600 nm
414 (OD₆₀₀).

415 **Comparative proteomics of *Flavobacterium* spp.**

416 Methods adapted from (37, 74) were combined. Briefly, 25 mL cell cultures (n=3) grown to an
417 OD₆₀₀ ~0.6-1 were harvested by centrifugation at 3200 x g for 45 min at 4°C. Cells were

418 resuspended in 20 mM Tris-HCl pH 7.8 and re-pelleted at 13000 x g for 5 min at 4°C. Cell lysis
419 was achieved by boiling in 100 µl lithium dodecyl sulphate (LDS) buffer (Expedeon) prior to
420 loading 20 µl onto a 4-20% Bis-Tris sodium dodecyl sulphate (SDS) precast gel (Expedeon).
421 SDS-PAGE was performed with RunBlue SDS Running Buffer (TEO-Tricine) 1X (Expedeon) at
422 140 V for 5-10 min. Gels were stained with Instant Blue (Expedeon). A single gel band
423 containing all the protein was excised. Gel sections were de-stained with 50 mM ammonium
424 bicarbonate in 50% (v/v) ethanol, dehydrated with 100% ethanol, reduced and alkylated with
425 Tris-2-carboxyethylphosphine (TCEP) and iodoacetamide (IAA), washed with 50 mM
426 ammonium bicarbonate in 50% (v/v) ethanol and dehydrated with 100% ethanol prior to
427 overnight digestion with trypsin. Samples were analysed by nanoLC-ESI-MS/MS using an
428 Ultimate 3000 LC system (Dionex-LC Packings) coupled to an Orbitrap Fusion mass
429 spectrometer (Thermo Scientific, USA) using a 60 min LC separation on a 25 cm column and
430 settings as previously described (75). Resulting tandem mass spectrometry (MS/MS) files
431 were searched against the relevant protein sequence database (*F. johnsoniae* UW101,
432 UP000214645, *Flavobacterium* sp. OSR005 (Table SX) using MaxQuant with default settings
433 and quantification was achieved using Label Free Quantification (LFQ). Statistical analysis and
434 data visualisation of exoproteomes was carried out in Perseus (76).

435 **Bacterial genetics**

436 To construct various XyGUL mutants, the method from (77) was adapted, as per our previous
437 study (36). Briefly, fragments ~1.5 kb in length upstream and downstream of the targeted
438 genes were cloned into the plasmid pYT313 using the HiFi assembly kit (New England
439 Biosciences). A full list of primers can be found in Table S1. Plasmid inserts were verified by
440 Sanger sequencing. The resulting plasmids were transformed into the donor strain *E. coli* S17-
441 1 λpir (S17-1 λpir) and mobilised into *F. johnsoniae* via conjugation: overnight (5 mL) *F.*
442 *johnsoniae* wild type and pYT313-transformed S17-1 λpir cultures were inoculated (20% v/v)
443 into fresh CYE (5 mL) and incubated for a further 8 h. Cells were pelleted at 1800 x g for 10
444 min @ 22°C and washed in 1 mL CYE, and a 200 µL donor: recipient (CYE) suspension (1:1)
445 was spotted onto CYE containing CaCl₂ (10 mM) and incubated overnight at 28 °C. Biofilms
446 were scraped from the agar surface and resuspended in 1 mL minimal A medium (no C
447 source). Transconjugants were selected by spreading 5 to 100 µL aliquots on CYE containing
448 erythromycin (100 µg mL⁻¹). Colonies were restreaked onto CYE erythromycin and single
449 homologous recombination events were confirmed by PCR prior to overnight growth in CYE

450 followed by plating onto CYE containing 10% (w/v) sucrose to select for a second
451 recombination event resulting in plasmid excision. To identify double homologous
452 recombinants, colonies were replica plated onto CYE containing 10% (w/v) sucrose and CYE
453 containing erythromycin. Erythromycin-sensitive colonies were screened by PCR.
454 For complementation of the *F. johnsoniae* Δ usCD mutant, both genes and the 300-bp
455 upstream region were cloned into pCP11 using the HiFi assembly kit. The insert was verified
456 by Sanger sequencing and the plasmid was mobilised into DSM2064 via conjugation using
457 S17-1 λ pir as the donor strain. The method was identical to that described above for transfer
458 of the suicide plasmid, pYT313, except that 1 mL overnight cultures of donor and recipient
459 were directly washed and resuspended in 200 μ L CYE prior to spotting onto CYE containing
460 CaCl₂ (10 mM). Cells were scraped from the solid medium and transformants selected by
461 creating a serial dilution (10⁻¹ to 10⁻⁵) from the cell suspension and spotting 20 μ L of each
462 dilution onto CYE containing erythromycin (100 μ g mL⁻¹).

463 **Production and purification of recombinant GH5_4 homologs**

464 Genes encoding the GH5_4 homologs (Fjoh_0774, BACOVA_02653, OSR005_04227 and
465 OSR005_03871) lacking the N-terminal signal peptide and stop codon were amplified by PCR
466 and ligated into the NdeI and Xhol sites of pET21a. Site-directed mutagenesis of the Trp252
467 residue in *BoGH5A* was performed using the QuikChange II Site Directed Mutagenesis (SDM)
468 Kit (Agilent Technologies) according to the manufacturer's protocol.
469 For production of recombinant proteins, a single colony of *E. coli* BL21 (DE3) transformed with
470 the desired plasmid was inoculated in 5 mL LB broth with 100 μ g/mL ampicillin and shaken
471 (220 rpm) at 37 °C overnight (16 h) before transfer to 1 L LB culture (in a 2 L conical flask)
472 supplemented with 100 μ g/mL ampicillin. Cultures were shaken at 37 °C at 220 rpm until an
473 optical density at 600 nm (OD₆₀₀) of ~ 0.6 was reached. Following induction of gene expression
474 with 0.4 mM (final concentration) IPTG, cells were incubated at 18°C overnight for a further
475 16 h before recovery by centrifugation at 8,000 \times g for 15 min at 4°C. Pellets were
476 resuspended in 30 mL binding buffer (25 mM HEPES pH 7.4, 1 M NaCl, 5 mM imidazole) and
477 stored at -20 °C until purification. Cells were thawed and lysed by sonication. The lysate was
478 centrifuged at 13,000 \times g for 15 min at 4 °C and the supernatant was loaded onto a 5 mL
479 chelating Sepharose column charged with nickel (II) sulphate pre-equilibrated with 50 mL of
480 binding buffer. Following washes in binding buffer with increasing concentrations of

481 imidazole, proteins were eluted with 25 mM HEPES pH 7.4, 400 mM Imidazole, 100 mM NaCl.
482 Fractions containing the target protein (as identified by SDS-PAGE) were pooled and
483 concentrated to a volume of 1-2 mL using a Vivaspin centrifuge concentrator (Sartorius) with
484 a 30,000 kDa molecular weight cut off. The concentrated sample was loaded onto a size
485 exclusion chromatography (SEC) (S200 16/60 Cytiva) column equilibrated in 50 mM Tris-HCl,
486 200 mM NaCl, 10 % (w/v) glycerol and protein was separated at a flow rate of 0.5 mL min⁻¹.
487 Purity of peak fractions was analysed by SDS-PAGE and protein was stored at -20 °C until
488 required.

489 **Enzymatic assays of recombinant glycoside hydrolases**

490 Purified recombinant GH5_4 homologs were screened for enzyme activity using the 3,5-
491 Dinitrosalicylic Acid Assay (DNSA) method (78). Briefly, for enzyme kinetics between 10-250
492 nM purified recombinant protein (n=3) was incubated with decreasing concentrations
493 (starting from 8 mg mL⁻¹) of XyG. At each time point a subsample was taken and mixed with
494 a stop solution (DNSA working reagent containing 10 mg ml⁻¹ glucose), prior to boiling at 95°C
495 for 15 min to develop the colour. To calculate the initial maximum velocity of the reaction
496 (V_0), at least five measurements were taken within the linear kinetics range. Absorbance at
497 575 nm was quantified. A standard curve (n=3) against known concentrations of glucose was
498 used to convert A575 to the amount of freely available reducing ends produced during
499 cleavage of the beta-glucan backbone of XyG. All assays were typically repeated with two
500 separate batches of protein. For screening the promiscuous activity of OSR005-1, OSR005-2,
501 *BoGH5A*, *BoW252A* or *BoW252G*, 1 µM of protein was incubated with 4 mg mL⁻¹
502 polysaccharide for 30 min.

503 **Comparative genomics and metagenomics**

504 The online platform IMG/JGI (79) was used to conduct most comparative genomics analyses
505 described in this study. Genomes and metagenomes were stored in genome sets (detailed in
506 Tables S2 and S3), and BLASTP searches (E-value e⁻⁴⁰) were performed using the “jobs
507 function” using either *Fjoh_0774* or a homologue (IMG gene id; 2644426200) of the
508 commercial recombinant endoxyloglucanase (GH5_4) from *Paenibacillus* sp. (Megazyme, CAS
509 - 76901-10-5). The latter was used as it represents a sequence from outside GH5_4 subclade
510 2. For the metagenome searches, retrieved open reading frames (ORFs, n=7136) were locally
511 aligned (BLASTP) against all GH5 ORFs (n=1246) deposited in the CAZy database (CaZydb) (80).

512 The estimated gene copy index (calculated by using the average read coverage depth across
513 a given contig) provided by IMG/JGI was used to calculate the relative abundance for each
514 retrieved ORF. To aid with the identification and organisation of PUL, the PULDB online
515 platform was also utilised (81).

516 **Author contributions**

517 IL conceived and designed the project with consultation from AH. HM, LR, LMK, PF, AAB, AQ,
518 AH and IL carried out the experimental work. AM performed the comparative proteomics
519 analysis. IL performed the comparative genomics and metagenomics. HM, LR, AH and IL wrote
520 the paper with TD, DN and SA providing feedback.

521 **Acknowledgements**

522 We thank the Warwick Proteomics Research Facility, namely Dr Cleidiane Zampronio and Dr
523 Andrew Bottrill, for their assistance in generating and processing the mass-spectrometry
524 data. This study was funded by a Biotechnology and Biological Sciences Research Council
525 (BBSRC) Discovery Fellowship (award BB/T009152/1) and a Royal Society University Research
526 Fellowship (award URF\R1\221708) to IL. AH also acknowledges the support of a Royal Society
527 University Research Fellowship (award URF\R1\191548). HM and PF were supported by The
528 University of Sheffield through a Faculty of Science funded PhD studentship and Summer
529 Undergraduate Research Experience (SURE) scheme, respectively. AQ was supported by a
530 summer studentship funded by a Rank Prize Fund New Lecturer Award to IL.

531 **References**

- 532 1. Y. Kuzyakov, E. Blagodatskaya, Microbial hotspots and hot moments in soil: Concept
533 & review. *Soil Biology and Biochemistry* **83**, 184-199 (2015),
534 (doi.org/10.1016/j.soilbio.2015.01.025).
- 535 2. D. E. A. Lidbury Ian, S. Raguideau, C. Borsetto, R. J. Murphy Andrew, A. Bottrill, S. Liu,
536 R. Stark, T. Fraser, A. Goodall, A. Jones, D. Bending Gary, M. Tibbet, P. Hammond
537 John, C. Quince, J. Scanlan David, J. Pandhal, M. H. Wellington Elizabeth, Stimulation
538 of distinct rhizosphere bacteria drives phosphorus and nitrogen mineralization in
539 oilseed rape under field conditions. *mSystems* **7**, e00025-00022 (2022),
540 (doi.org/10.1128/msystems.00025-22).
- 541 3. D. Naylor, N. Sadler, A. Bhattacharjee, E. B. Graham, C. R. Anderton, R. McClure, M.
542 Lipton, K. S. Hofmockel, J. K. Jansson, Soil microbiomes under climate change and
543 implications for carbon cycling. *Annual Review of Environment and Resources* **45**, 29-
544 59 (2020), (doi.org/10.1146/annurev-environ-012320-082720).

545 4. C. Gougoulias, J. M. Clark, L. J. Shaw, The role of soil microbes in the global carbon
546 cycle: tracking the below-ground microbial processing of plant-derived carbon for
547 manipulating carbon dynamics in agricultural systems. *Journal of the science of food and agriculture* **94**, 2362-2371 (2014), (doi.org/10.1002/jsfa.6577).

549 5. J. Larsbrink, L. S. McKee, in *Advances in Applied Microbiology*, G. M. Gadd, S. Sariaslani, Eds. (Academic Press, 2020), vol. 110, pp. 63-98.

551 6. A. F. Galloway, M. J. Pedersen, B. Merry, S. E. Marcus, J. Blacker, L. G. Benning, K. J. Field, J. P. Knox, Xyloglucan is released by plants and promotes soil particle aggregation. *New Phytologist* **217**, 1128-1136 (2018), (doi.org/10.1111/nph.14897).

554 7. D. Bulgarelli, K. Schlaeppi, S. Spaepen, E. V. L. van Themaat, P. Schulze-Lefert, Structure and Functions of the Bacterial Microbiota of Plants. *Annual Review of Plant Biology* **64**, 807-838 (2013), (doi.org/10.1146/annurev-arplant-050312-120106).

556 8. J. E. Pérez-Jaramillo, V. J. Carrión, M. de Hollander, J. M. Raaijmakers, The wild side of plant microbiomes. *Microbiome* **6**, 143-143 (2018), (doi.org/10.1186/s40168-018-0519-z).

558 9. H. V. Scheller, P. Ulvskov, Hemicelluloses. *Annual Review of Plant Biology* **61**, 263-289 (2010), (doi.org/10.1146/annurev-arplant-042809-112315).

560 10. M. Ropitaux, S. Bernard, D. Schapman, M.-L. Follet-Gueye, M. Vicré, I. Boulogne, A. Driouich, Root Border Cells and Mucilage Secretions of Soybean, *Glycine Max* (Merr) L.: Characterization and Role in Interactions with the Oomycete *Phytophthora Parasitica*. *Cells* **9**, 2215 (2020), (doi.org/10.3390/cells9102215).

562 11. M. Ropitaux, S. Bernard, M.-L. Follet-Gueye, M. Vicré, I. Boulogne, A. Driouich, Xyloglucan and cellulose form molecular cross-bridges connecting root border cells in pea (*Pisum sativum*). *Plant Physiology and Biochemistry* **139**, 191-196 (2019), (doi.org/10.1016/j.plaphy.2019.03.023).

564 12. A. F. Galloway, J. Akhtar, E. Burak, S. E. Marcus, K. J. Field, I. C. Dodd, P. Knox, Altered properties and structures of root exudate polysaccharides in a root hairless mutant of barley. *Plant Physiology* **190**, 1214-1227 (2022), (doi.org/10.1093/plphys/kiac341).

566 13. R. López-Mondéjar, D. Zühlke, D. Becher, K. Riedel, P. Baldrian, Cellulose and hemicellulose decomposition by forest soil bacteria proceeds by the action of structurally variable enzymatic systems. *Scientific Reports* **6**, 25279 (2016), (doi.org/10.1038/srep25279).

568 14. S. Lladó, R. López-Mondéjar, P. Baldrian, Forest soil bacteria: diversity, involvement in ecosystem processes, and response to global change. *Microbiology and molecular biology reviews : MMBR* **81**, e00063-00016 (2017), (doi.org/10.1128/MMBR.00063-16).

570 15. S. Kramer, D. Dibbern, J. Moll, M. Huenninghaus, R. Koller, D. Krueger, S. Marhan, T. Urich, T. Wubet, M. Bonkowski, F. Buscot, T. Lueders, E. Kandeler, Resource partitioning between bacteria, fungi, and protists in the detritusphere of an agricultural soil. *Frontiers in Microbiology* **7**, (2016), (doi.org/10.3389/fmicb.2016.01524).

572 16. P. S. Vieira, I. M. Bonfim, E. A. Araujo, R. R. Melo, A. R. Lima, M. R. Fessel, D. A. A. Paixão, G. F. Persinoti, S. A. Rocco, T. B. Lima, R. A. S. Pirolla, M. A. B. Morais, J. B. L. Correa, L. M. Zanphorlin, J. A. Diogo, E. A. Lima, A. Grandis, M. S. Buckeridge, F. C. Gozzo, C. E. Benedetti, I. Polikarpov, P. O. Giuseppe, M. T. Murakami, Xyloglucan processing machinery in *Xanthomonas* pathogens and its role in the transcriptional

591 activation of virulence factors. *Nature Communications* **12**, 4049 (2021)
592 (doi.org/10.1038/s41467-021-24277-4).

593 17. J. Larsbrink, A. J. Thompson, M. Lundqvist, J. G. Gardner, G. J. Davies, H. Brumer, A
594 complex gene locus enables xyloglucan utilization in the model saprophyte *Cellvibrio*
595 *japonicus*. *Molecular Microbiology* **94**, 418-433 (2014),
596 (doi.org/10.1111/mmi.12776).

597 18. M. A. Attia, C. E. Nelson, W. A. Offen, N. Jain, G. J. Davies, J. G. Gardner, H. Brumer, A
598 *In vitro* and *in vivo* characterization of three *Cellvibrio japonicus* glycoside hydrolase
599 family 5 members reveals potent xyloglucan backbone-cleaving functions.
600 *Biotechnology for Biofuels* **11**, 45 (2018), (doi.org/10.1186/s13068-018-1039-6).

601 19. S. McKee Lauren, A. Martínez-Abad, C. Ruthes Andrea, F. Vilaplana, H. Brumer, C.
602 Vieille, Focused metabolism of β -glucans by the soil bacteroidetes species
603 *Chitinophaga pinensis*. *Applied and Environmental Microbiology* **85**, e02231-02218
604 (2019), (doi.org/10.1128/AEM.02231-18).

605 20. J. Larsbrink, T. R. Tuveng, P. B. Pope, V. Bulone, V. G. H. Eijsink, H. Brumer, L. S.
606 McKee, Proteomic insights into mannan degradation and protein secretion by the
607 forest floor bacterium *Chitinophaga pinensis*. *Journal of Proteomics* **156**, 63-74
608 (2017), (doi.org/10.1016/j.jprot.2017.01.003).

609 21. L. S. McKee, H. Brumer, Growth of *Chitinophaga pinensis* on plant cell wall glycans
610 and characterisation of a glycoside hydrolase family 27 β -l-arabinopyranosidase
611 implicated in arabinogalactan utilisation. *PLOS ONE* **10**, e0139932 (2015),
612 (doi.org/10.1371/journal.pone.0139932).

613 22. L. S. McKee, S. L. La Rosa, B. Westereng, V. G. Eijsink, P. B. Pope, J. Larsbrink,
614 Polysaccharide degradation by the Bacteroidetes: mechanisms and nomenclature.
615 *Environmental Microbiology Reports* **13 (5)**, 559-581 (2021), (doi.org/10.1111/1758-
616 2229.12980).

617 23. G. V. Pereira, A. M. Abdel-Hamid, S. Dutta, C. N. D'Alessandro-Gabazza, D. Wefers, J.
618 A. Farris, S. Bajaj, Z. Wawrzak, H. Atom, R. I. Mackie, E. C. Gabazza, D. Shukla, N. M.
619 Koropatkin, I. Cann, Degradation of complex arabinoxylans by human colonic
620 Bacteroidetes. *Nature Communications* **12**, 459 (2021), (doi.org/10.1038/s41467-
621 020-20737-5).

622 24. F. Thomas, J.-H. Hehemann, E. Rebuffet, M. Czjzek, G. Michel, Environmental and gut
623 Bacteroidetes: The food connection. *Frontiers in Microbiology* **2**, 93 (2011),
624 (doi.org/10.3389/fmicb.2011.00093).

625 25. J. Cuartero, J. A. Pascual, J.-M. Vivo, O. Özbolat, V. Sánchez-Navarro, M. Egea-
626 Cortines, R. Zornoza, M. M. Mena, E. Garcia, M. Ros, A first-year melon/cowpea
627 intercropping system improves soil nutrients and changes the soil microbial
628 community. *Agriculture, Ecosystems & Environment* **328**, 107856 (2022),
629 (doi.org/10.1016/j.agee.2022.107856).

630 26. D. Bulgarelli, M. Rott, K. Schlaepi, E. Ver Loren van Themaat, N. Ahmadinejad, F.
631 Assenza, P. Rauf, B. Huettel, R. Reinhardt, E. Schmelzer, J. Peplies, F. O. Gloeckner, R.
632 Amann, T. Eickhorst, P. Schulze-Lefert, Revealing structure and assembly cues for
633 *Arabidopsis* root-inhabiting bacterial microbiota. *Nature* **488**, 91-95 (2012),
634 (doi.org/10.1038/nature11336).

635 27. M. Kolton, A. Erlacher, G. Berg, E. Cytryn, in *Microbial Models: From Environmental*
636 *to Industrial Sustainability*, S. Castro-Sowinski, Ed. (Springer Singapore, Singapore,
637 2016), pp. 189-207.

638 28. D. Bulgarelli, R. Garrido-Oter, Philipp C. Münch, A. Weiman, J. Dröge, Y. Pan, Alice C.
639 McHardy, P. Schulze-Lefert, Structure and function of the bacterial root microbiota in
640 wild and domesticated barley. *Cell Host & Microbe* **17**, 392-403 (2015),
641 (doi.org/10.1016/j.chom.2015.01.011).

642 29. S. Hilton, E. Picot, S. Schreiter, D. Bass, K. Norman, A. E. Oliver, J. D. Moore, T. H.
643 Mauchline, P. R. Mills, G. R. Teakle, I. M. Clark, P. R. Hirsch, C. J. van der Gast, G. D.
644 Bending, Identification of microbial signatures linked to oilseed rape yield decline at
645 the landscape scale. *Microbiome* **9**, 19 (2021), (doi.org/10.1186/s40168-020-00972-
646 0).

647 30. L. W. Mendes, J. M. Raaijmakers, M. de Hollander, E. Sepo, R. Gómez Expósito, A. F.
648 Chiorato, R. Mendes, S. M. Tsai, V. J. Carrión, Impact of the fungal pathogen
649 *Fusarium oxysporum* on the taxonomic and functional diversity of the common bean
650 root microbiome. *Environmental Microbiome* **18**, 68 (2023),
651 (doi.org/10.1186/s40793-023-00524-7).

652 31. T. Nishioka, M. Marian, I. Kobayashi, Y. Kobayashi, K. Yamamoto, H. Tamaki, H. Suga,
653 M. Shimizu, Microbial basis of *Fusarium* wilt suppression by *Allium* cultivation.
654 *Scientific Reports* **9**, 1715 (2019), (doi.org/10.1038/s41598-018-37559-7).

655 32. V. J. Carrión, J. Perez-Jaramillo, V. Cordovez, V. Tracanna, M. de Hollander, D. Ruiz-
656 Buck, L. W. Mendes, W. F. J. van Ijcken, R. Gomez-Exposito, S. S. Elsayed, P.
657 Mohanraju, A. Arifah, J. van der Oost, J. N. Paulson, R. Mendes, G. P. van Wezel, M.
658 H. Medema, J. M. Raaijmakers, Pathogen-induced activation of disease-suppressive
659 functions in the endophytic root microbiome. *Science* **366**, 606 (2019),
660 (doi.org/10.1126/science.aaw9285).

661 33. M.-J. Kwak, H. G. Kong, K. Choi, S.-K. Kwon, J. Y. Song, J. Lee, P. A. Lee, S. Y. Choi, M.
662 Seo, H. J. Lee, E. J. Jung, H. Park, N. Roy, H. Kim, M. M. Lee, E. M. Rubin, S.-W. Lee, J.
663 F. Kim, Rhizosphere microbiome structure alters to enable wilt resistance in tomato.
664 *Nature Biotechnology* **36**, 1100 (2018), (doi.org/10.1038/nbt.4232)

665 34. L. S. A. S. Costa, M. R. de Faria, J. B. Chiaramonte, L. W. Mendes, E. Sepo, M. de
666 Hollander, J. M. C. Fernandes, V. J. Carrión, W. Bettoli, T. H. Mauchline, J. M.
667 Raaijmakers, R. Mendes, Repeated exposure of wheat to the fungal root pathogen
668 *Bipolaris sorokiniana* modulates rhizosphere microbiome assembly and disease
669 suppressiveness. *Environmental Microbiome* **18**, 85 (2023),
670 (doi.org/10.1186/s40793-023-00529-2).

671 35. X. Pan, J. M. Raaijmakers, V. J. Carrión, Importance of Bacteroidetes in host–microbe
672 interactions and ecosystem functioning. *Trends in Microbiology* **31**, 959-971 (2023),
673 (doi.org/10.1016/j.tim.2023.03.018).

674 36. I. D. E. A. Lidbury, D. J. Scanlan, A. R. J. Murphy, J. A. Christie-Oleza, M. M. Aguilo-
675 Ferretjans, A. J. Hitchcock, T. J. Daniell, A widely distributed phosphate-insensitive
676 phosphatase presents a route for rapid organophosphorus remineralization in the
677 biosphere. *Proceedings of the National Academy of Sciences* **119**, e2118122119
678 (2022), (doi.org/10.1073/pnas.2118122119).

679 37. I. D. E. A. Lidbury, C. Borsetto, A. R. J. Murphy, A. Bottrill, A. M. E. Jones, G. D.
680 Bending, J. P. Hammond, Y. Chen, E. M. H. Wellington, D. J. Scanlan, Niche-
681 adaptation in plant-associated Bacteroidetes favours specialisation in organic
682 phosphorus mineralisation. *The ISME Journal* **15**, 1040-1055 (2021),
683 (doi.org/10.1038/s41396-020-00829-2).

684 38. I. D. E. A. Lidbury, L. Rogers, S. Groenhof, A. Hitchcock, L. McKee, in *Understanding*
685 *and utilising soil microbiomes for a more sustainable agriculture*, K. Dunfield, Ed.
686 (Burleigh Dodds Science, Cambridge, UK, 2023), vol. 151, chap. Chapter 11.

687 39. E. M. Glasgow, E. I. Kemna, C. A. Bingman, N. Ing, K. Deng, C. M. Bianchetti, T. E.
688 Takasuka, T. R. Northen, B. G. Fox, A structural and kinetic survey of GH5_4
689 endoglucanases reveals determinants of broad substrate specificity and
690 opportunities for biomass hydrolysis. *Journal of Biological Chemistry* **295**, 17752-
691 17769 (2020), (doi.org/10.1074/jbc.RA120.015328).

692 40. M. J. McBride, G. Xie, E. C. Martens, A. Lapidus, B. Henrissat, R. G. Rhodes, E.
693 Gotsman, W. Wang, J. Xu, D. W. Hunnicutt, A. M. Staroscik, T. R. Hoover, Y.-Q.
694 Cheng, J. L. Stein, Novel Features of the Polysaccharide-digesting gliding bacterium
695 *Flavobacterium johnsoniae* as revealed by genome sequence analysis. *Applied and*
696 *Environmental Microbiology* **75**, 6864-6875 (2009), (doi.org/10.1128/AEM.01495-
697 09).

698 41. J. Larsbrink, T. E. Rogers, G. R. Hemsworth, L. S. McKee, A. S. Tauzin, O. Spadiut, S.
699 Klinter, N. A. Pudlo, K. Urs, N. M. Koropatkin, A. L. Creagh, C. A. Haynes, A. G. Kelly, S.
700 N. Cederholm, G. J. Davies, E. C. Martens, H. Brumer, A discrete genetic locus confers
701 xyloglucan metabolism in select human gut Bacteroidetes. *Nature* **506**, 498-502
702 (2014), (doi.org/10.1038/nature12907).

703 42. M. Zhang, J. R. Chekan, D. Dodd, P.-Y. Hong, L. Radlinski, V. Revindran, S. K. Nair, R. I.
704 Mackie, I. Cann, Xylan utilization in human gut commensal bacteria is orchestrated
705 by unique modular organization of polysaccharide-degrading enzymes. *Proceedings*
706 *of the National Academy of Sciences* **111**, E3708-E3717 (2014),
707 (doi.org/10.1073/pnas.1406156111).

708 43. A. F. Galloway, J. Akhtar, S. E. Marcus, N. Fletcher, K. Field, P. Knox, Cereal root
709 exudates contain highly structurally complex polysaccharides with soil-binding
710 properties. *The Plant Journal* **103**, 1666-1678 (2020), (doi.org/10.1111/tpj.14852).

711 44. E. M. Glasgow, K. A. Vander Meulen, T. E. Takasuka, C. M. Bianchetti, L. F. Bergeman,
712 S. Deutsch, B. G. Fox, extent and origins of functional diversity in a subfamily of
713 glycoside hydrolases. *Journal of Molecular Biology* **431**, 1217-1233 (2019),
714 (doi.org/10.1016/j.jmb.2019.01.024).

715 45. E. Drula, M.-L. Garron, S. Dogan, V. Lombard, B. Henrissat, N. Terrapon, The
716 carbohydrate-active enzyme database: functions and literature. *Nucleic Acids*
717 *Research* **50**, D571-D577 (2021), (doi.org/10.1093/nar/gkab1045).

718 46. Y. Tian, L. Gao, Bacterial diversity in the rhizosphere of cucumbers grown in soils
719 covering a wide range of cucumber cropping histories and environmental conditions.
720 *Microbial Ecology* **68**, 794-806 (2014), (doi.org/10.1007/s00248-014-0461-y).

721 47. B. Niu, J. N. Paulson, X. Zheng, R. Kolter, Simplified and representative bacterial
722 community of maize roots. *Proceedings of the National Academy of Sciences* **114**,
723 E2450-E2459 (2017), (doi.org/10.1073/pnas.1616148114).

724 48. K. Zhalnina, K. B. Louie, Z. Hao, N. Mansoori, U. N. da Rocha, S. Shi, H. Cho, U. Karaoz,
725 D. Loqué, B. P. Bowen, M. K. Firestone, T. R. Northen, E. L. Brodie, Dynamic root
726 exudate chemistry and microbial substrate preferences drive patterns in rhizosphere
727 microbial community assembly. *Nature Microbiology* **3**, 470-480 (2018),
728 (doi.org/10.1038/s41564-018-0129-3).

729 49. L. Hu, C. A. M. Robert, S. Cadot, X. Zhang, M. Ye, B. Li, D. Manzo, N. Chervet, T.
730 Steinger, M. G. A. van der Heijden, K. Schlaeppi, M. Erb, Root exudate metabolites

731 drive plant-soil feedbacks on growth and defense by shaping the rhizosphere
732 microbiota. *Nature Communications* **9**, 2738 (2018), (doi.org/10.1038/s41467-018-
733 05122-7).

734 50. T. E. A. Cotton, P. Pétriacoq, D. D. Cameron, M. A. Meselmani, R. Schwarzenbacher, S.
735 A. Rolfe, J. Ton, Metabolic regulation of the maize rhizobiome by benzoxazinoids.
736 *The ISME Journal* **13**, 1647-1658 (2019), (doi.org/10.1038/s41396-019-0375-2).

737 51. M. Kolton, N. Sela, Y. Elad, E. Cytryn, Comparative genomic analysis indicates that
738 niche adaptation of terrestrial flavobacteria is strongly linked to plant glycan
739 metabolism. *PLOS ONE* **8**, e76704 (2013), (doi.org/10.1371/journal.pone.0076704).

740 52. D. N. Bolam, B. van den Berg, TonB-dependent transport by the gut microbiota:
741 novel aspects of an old problem. *Current Opinion in Structural Biology* **51**, 35-43
742 (2018), (doi.org/10.1016/j.sbi.2018.03.001).

743 53. G. Reintjes, C. Arnosti, B. Fuchs, R. Amann, Selfish, sharing and scavenging bacteria in
744 the Atlantic Ocean: a biogeographical study of bacterial substrate utilisation. *The
745 ISME journal* **13**, 1119-1132 (2019), (doi.org/10.1038/s41396-018-0326-3).

746 54. F. Cuskin, E. C. Lowe, M. J. Temple, Y. Zhu, E. A. Cameron, N. A. Pudlo, N. T. Porter, K.
747 Urs, A. J. Thompson, A. Cartmell, A. Rogowski, B. S. Hamilton, R. Chen, T. J. Tolbert, K.
748 Piens, D. Bracke, W. Vervecken, Z. Hakki, G. Speciale, J. L. Muñoz-Muñoz, A. Day, M.
749 J. Peña, R. McLean, M. D. Suits, A. B. Boraston, T. Atherly, C. J. Ziemer, S. J. Williams,
750 G. J. Davies, D. W. Abbott, E. C. Martens, H. J. Gilbert, Human gut Bacteroidetes can
751 utilize yeast mannan through a selfish mechanism. *Nature* **517**, 165 (2015),
752 (doi.org/10.1038/nature13995).

753 55. J. Kraut-Cohen, O. H. Shapiro, B. Dror, E. Cytryn, Pectin Induced Colony Expansion of
754 Soil-Derived Flavobacterium Strains. *Frontiers in Microbiology* **12**, (2021),
755 (doi.org/10.3389/fmicb.2021.651891).

756 56. J. Larsbrink, Y. Zhu, S. S. Kharade, K. J. Kwiatkowski, V. G. H. Eijsink, N. M. Koropatkin,
757 M. J. McBride, P. B. Pope, A polysaccharide utilization locus from Flavobacterium
758 johnsoniae enables conversion of recalcitrant chitin. *Biotechnology for Biofuels* **9**,
759 260 (2016); published online Epub2016/11/28 (10.1186/s13068-016-0674-z).

760 57. A. Kruczyńska, A. Kuźniar, J. Podlewski, A. Słomczewski, J. Grządziel, A. Marzec-
761 Grządziel, A. Gałżka, A. Wolińska, Bacteroidota structure in the face of varying
762 agricultural practices as an important indicator of soil quality – a culture
763 independent approach. *Agriculture, Ecosystems & Environment* **342**, 108252 (2023),
764 (doi.org/10.1016/j.agee.2022.108252).

765 58. X. Liu, L. Liu, J. Gong, L. Zhang, Q. Jiang, K. Huang, W. Ding, Soil conditions on
766 bacterial wilt disease affect bacterial and fungal assemblage in the rhizosphere. *AMB
767 Express* **12**, 110 (2022), (doi.org/10.1186/s13568-022-01455-1).

768 59. S. Khiangam, A. Akaracharanya, J.-S. Lee, K. C. Lee, K.-W. Kim, S. Tanasupawat,
769 *Flavobacterium arsenitoxidans* sp. nov., an arsenite-oxidizing bacterium from Thai
770 soil. *Antonie van Leeuwenhoek* **106**, 1239-1246 (2014), (doi.org/10.1007/s10482-
771 014-0294-1).

772 60. M. K. Sang, K. D. Kim, The volatile-producing *Flavobacterium johnsoniae* strain GSE09
773 shows biocontrol activity against *Phytophthora capsici* in pepper. *Journal of Applied
774 Microbiology* **113**, 383-398 (2012), (doi.org/10.1111/j.1365-2672.2012.05330.x).

775 61. M. Gao, C. Xiong, C. Gao, C. K. M. Tsui, M. M. Wang, X. Zhou, X., A. M. Zhang, L. Cai
776 (2021). Disease-induced changes in plant microbiome assembly and functional
777 adaptation. *Microbiome*, 9(1), 187. <https://doi.org/10.1186/s40168-021-01138-2>

778 62. S. Becker, J. Tebben, S. Coffinet, K. Wiltshire, M. H. Iversen, T. Harder, K.-U. Hinrichs,
779 J.-H. Hehemann, Laminarin is a major molecule in the marine carbon cycle.
780 *Proceedings of the National Academy of Sciences* **117**, 6599-6607 (2020),
781 (doi.org/10.1073/pnas.1917001117).

782 63. L. Kappelmann, K. Krüger, J.-H. Hehemann, J. Harder, S. Markert, F. Unfried, D.
783 Becher, N. Shapiro, T. Schweder, R. I. Amann, H. Teeling, Polysaccharide utilization
784 loci of North Sea Flavobacteriia as basis for using SusC/D-protein expression for
785 predicting major phytoplankton glycans. *The ISME Journal* **13**, 76-91 (2019),
786 (doi.org/10.1038/s41396-018-0242-6).

787 64. A. A. Malik, J. Puissant, K. M. Buckeridge, T. Goodall, N. Jehmlich, S. Chowdhury, H. S.
788 Gweon, J. M. Peyton, K. E. Mason, M. van Agtmaal, A. Blaud, I. M. Clark, J. Whitaker,
789 R. F. Pywell, N. Ostle, G. Gleixner, R. I. Griffiths, Land use driven change in soil pH
790 affects microbial carbon cycling processes. *Nature Communications* **9**, 3591 (2018),
791 (doi.org/10.1038/s41467-018-05980-1).

792 65. F. Tao, Y. Huang, B. A. Hungate, S. Manzoni, *et al.* Microbial carbon use efficiency
793 promotes global soil carbon storage. *Nature* **618**, 981–985 (2023).
794 <https://doi.org/10.1038/s41586-023-06042-3>

795 66. K. M. Buckeridge, K. E. Mason, N. P. McNamara, N. Ostle, J. Puissant, T. Goodall, R. I.
796 Griffiths, A. W. Stott, J. Whitaker, Environmental and microbial controls on microbial
797 necromass recycling, an important precursor for soil carbon stabilization.
798 *Communications Earth & Environment* **1**, 36 (2020), (doi.org/10.1038/s43247-020-
799 00031-4).

800 67. B. Peterson Snow, K. Dunn Anne, K. Klimowicz Amy, J. Handelsman, Peptidoglycan
801 from *Bacillus cereus* Mediates Commensalism with Rhizosphere Bacteria from the
802 Cytophaga-Flavobacterium Group. *Applied and Environmental Microbiology* **72**,
803 5421-5427 (2006), (doi.org/10.1128/AEM.02928-05).

804 68. V. Brabcová, M. Nováková, A. Davidová, P. Baldrian, Dead fungal mycelium in forest
805 soil represents a decomposition hotspot and a habitat for a specific microbial
806 community. *New Phytologist* **210**, 1369-1381 (2016), (doi.org/10.1111/nph.13849).

807

808 69. N. Fierer, Embracing the unknown: disentangling the complexities of the soil
809 microbiome. *Nature Reviews Microbiology* **15**, 579 (2017),
810 (doi.org/10.1038/nrmicro.2017.87).

811 70. N. Fierer, M. A. Bradford, R. B. Jackson, Toward an ecological classification of soil
812 bacteria. *Ecology* **88**, 1354-1364 (2007), (doi.org/10.1890/05-1839).

813 71. C. Kmezik, C. Bonzom, L. Olsson, S. Mazurkewich, J. Larsbrink, Multimodular fused
814 acetyl-feruloyl esterases from soil and gut Bacteroidetes improve xylanase
815 depolymerization of recalcitrant biomass. *Biotechnology for Biofuels* **13**, 60 (2020),
816 (doi.org/10.1186/s13068-020-01698-9).

817 72. M. Kolton, S. J. Green, Y. M. Harel, N. Sela, Y. Elad, E. Cytryn, Draft Genome
818 Sequence of *Flavobacterium* sp. strain F52, Isolated from the rhizosphere of bell
819 pepper (*Capsicum annuum* L. cv. Maccabi). *Journal of Bacteriology* **194**, 5462 (2012),
820 (doi.org/10.1128/JB.01249-12).

821 72. I. D. E. A. Lidbury, A. R. J. Murphy, T. D. Fraser, G. D. Bending, A. M. E. Jones, J. D.
822 Moore, A. Goodall, M. Tibbett, J. P. Hammond, D. J. Scanlan, E. M. H. Wellington,
823 Identification of extracellular glycerophosphodiesterases in *Pseudomonas* and their

824 role in soil organic phosphorus remineralisation. *Scientific reports* **7**, 2179-2179
825 (2017)10.1038/s41598-017-02327-6).

826 73. I. D. E. A. Lidbury, A. R. J. Murphy, D. J. Scanlan, G. D. Bending, A. M. E. Jones, J. D.
827 Moore, A. Goodall, J. P. Hammond, E. M. H. Wellington, Comparative genomic,
828 proteomic and exoproteomic analyses of three *Pseudomonas* strains reveals novel
829 insights into the phosphorus scavenging capabilities of soil bacteria. *Environmental*
830 *Microbiology*, **18**, 3535-3549 (2016), (doi.org/10.1111/1462-2920.13390).

831 74. A. R. J. Murphy, D. J. Scanlan, Y. Chen, N. B. P. Adams, W. A. Cadman, A. Bottrill, G.
832 Bending, J. P. Hammond, A. Hitchcock, E. M. H. Wellington, I. D. E. A. Lidbury,
833 Transporter characterisation reveals aminoethylphosphonate mineralisation as a key
834 step in the marine phosphorus redox cycle. *Nature Communications* **12**, 4554 (2021),
835 (10.1038/s41467-021-24646-z).

836 75. J. A. Christie-Oleza, J. Armengaud, P. Guerin, D. J. Scanlan, Functional distinctness in
837 the exoproteomes of marine *Synechococcus*. *Environmental Microbiology* **17**, 3781-
838 3794 (2015), (doi.org/10.1111/1462-2920.12822).

839 76. S. Tyanova, T. Temu, P. Sinitcyn, A. Carlson, M. Y. Hein, T. Geiger, M. Mann, J. Cox,
840 The Perseus computational platform for comprehensive analysis of (prote)omics
841 data. *Nature Methods* **13**, 731 (2016), (doi.org/10.1038/nmeth.3901)

842 77. Y. Zhu, F. Thomas, R. Larocque, N. Li, D. Duffieux, L. Cladière, F. Souchaud, G. Michel,
843 M. J. McBride, Genetic analyses unravel the crucial role of a horizontally acquired
844 alginic lyase for brown algal biomass degradation by *Zobellia galactanivorans*.
845 *Environmental Microbiology* **19**, 2164-2181 (2017), (doi.org/10.1111/1462-
846 2920.13699).

847 78. L. S. McKee, Measuring Enzyme Kinetics of Glycoside Hydrolases Using the 3,5-
848 Dinitrosalicylic Acid Assay. *Methods Mol Biol* **1588**, 27-36 (2017),
849 (doi.org/10.1007/978-1-4939-6899-2_3).

850 79. I. M. A. Chen, K. Chu, K. Palaniappan, A. Ratner, J. Huang, M. Huntemann, P. Hajek,
851 Stephan J. Ritter, C. Webb, D. Wu, Neha J. Varghese, T. B. K. Reddy, S. Mukherjee, G.
852 Ovchinnikova, M. Nolan, R. Seshadri, S. Roux, A. Visel, T. Woyke, Emiley A. Eloe-
853 Fadrosh, Nikos C. Kyriides, Natalia N. Ivanova, The IMG/M data management and
854 analysis system v.7: content updates and new features. *Nucleic Acids Research* **51**,
855 D723-D732 (2023), (doi.org/10.1093/nar/gkac976).

856 79. E. Drula, M.-L. Garron, S. Dogan, V. Lombard, B. Henrissat, N. Terrapon, The
857 carbohydrate-active enzyme database: functions and literature. *Nucleic Acids*
858 *Research* **50**, D571-D577 (2022), (doi.org/10.1093/nar/gkab1045).

859 80. N. Terrapon, V. Lombard, É. Drula, P. Lapébie, S. Al-Masaudi, H. J. Gilbert, B.
860 Henrissat, PULDB: the expanded database of Polysaccharide Utilization Loci. *Nucleic*
861 *acids research* **46**, D677-D683 (2018), (doi.org/10.1093/nar/gkx1022).

862 **Figure Legends**

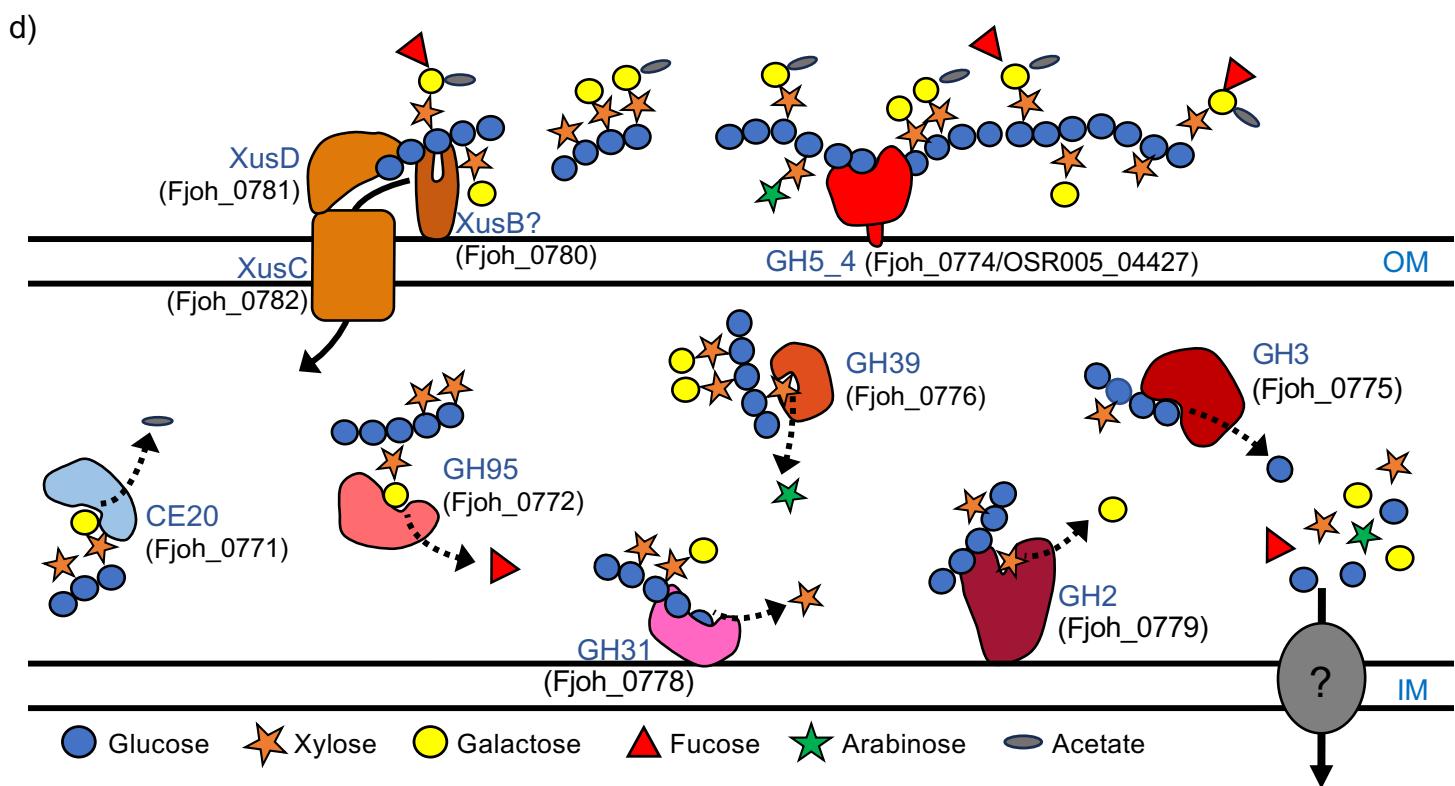
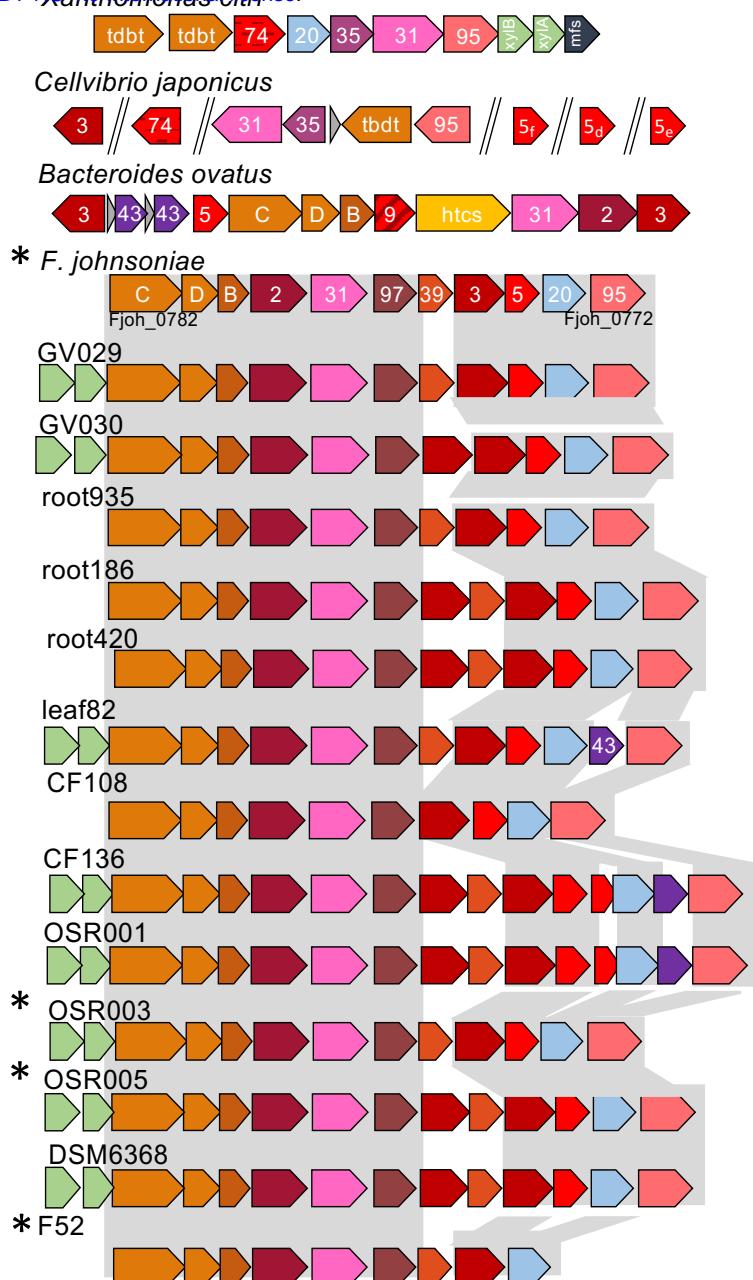
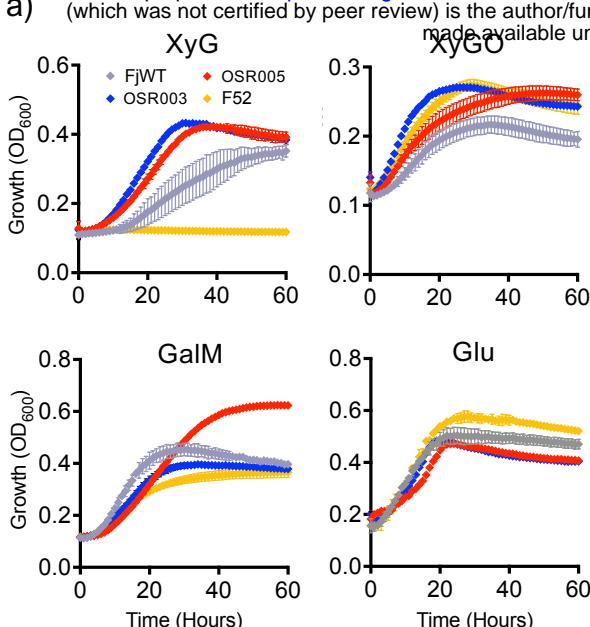
863 **Figure 1. Xyloglucan utilisation by soil Bacteroidota.** (a) *F. johnsoniae* grown on plant-
864 associated *Flavobacterium* isolated from various crop rhizospheres were grown on either
865 glucose (Glu), galactomannan (GalM), xyloglucan (XyG) hemicelluloses, or xylooligos (XyGOs)
866 as the sole C and energy source. Data represents the mean of triplicate cultures and error
867 bars denote standard deviation. (b) Proteins enriched in the whole-cell proteomes (n=3) of
868 either *F. johnsoniae* or *Flavobacterium* sp. OSR005 when grown on XyG compared to growth
869 on glucose. Red data points denote statistically significant (FDR-corrected $p < 0.05$) proteins
870 with greater than 2-fold enrichment. Proteins in the predicted XyGUL are highlighted. (c)
871 XyGUL shares modules from *X. citri* and *B. ovatus* and are highly conserved among plant-
872 associated *Flavobacterium* spp. (strain identifier labelled). (d) The predicted function and
873 localisation of proteins encoded in the induced XyGUL with locus tags for *F. johnsoniae*
874 provided. Colours in c and d represent the corresponding open reading frames and proteins.
875 Locus tags correspond to *F. johnsoniae*. Numbers in d correspond to the predicted glycoside
876 hydrolase family in the CAZY database. Asterisks represent the strain used in 1a.
877 Abbreviations: OM, outer membrane; IM, inner membrane.

878 **Figure 2. Genetic basis of xyloglucan utilisation in *Flavobacterium johnsoniae*.** The wild type
879 (blue circles), the outer membrane GH5_4 endxyloglucanase ($\Delta 0774$) mutant (red circles), the
880 outer membrane TonB-dependent transporter and cognate lipoprotein ($\Delta 0781-2$) mutant
881 (yellow circles) were grown on either glucose, XyG, XyGO, or GalM as the sole C and energy
882 source. Both mutants were complemented (triangles) with their respective native genes.
883 Growth assays were performed in triplicate and error bars denote the standard deviation
884 from the mean.

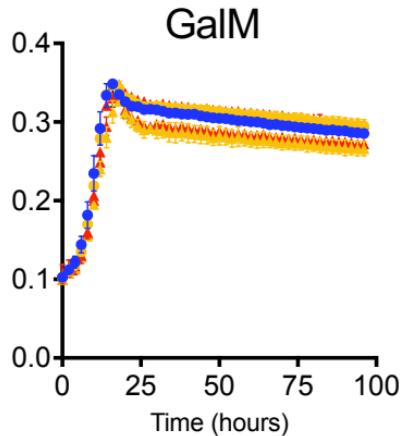
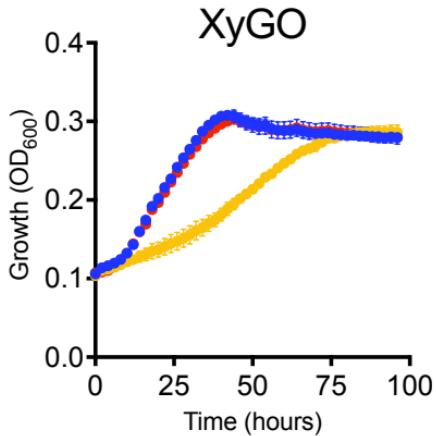
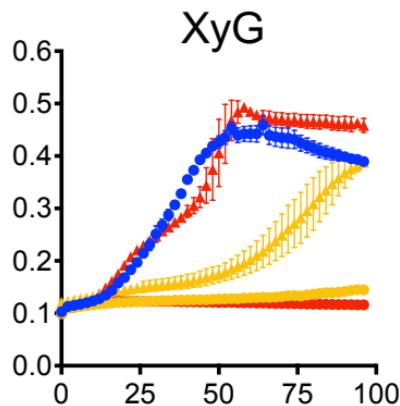
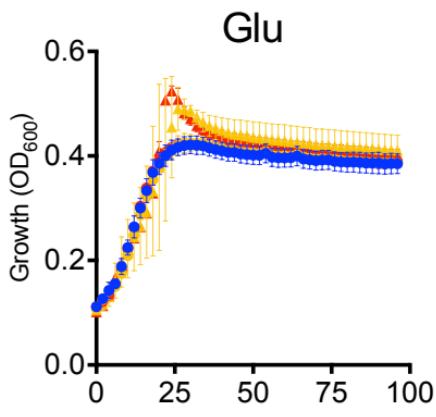
885 **Figure 3. Characterisation of GH5_4 homologs in *Flavobacterium* spp.** (a) Phylogenetic
886 reconstruction of GH5_4 homologs identified in *Flavobacterium* spp. alongside those
887 previously characterised, showing the variable Trp252 residue (BoGH5A) and each adjacent
888 amino acid residue. The genomic localisation of the GH5_4 homologs is given in columns to
889 the right of the residues. Note, the Trp-containing forms in *Flavobacterium* (green branches)
890 are almost exclusively associated with XyGUL. I and II represent the identified Type I and Type
891 II *Flavobacterium* GH5_4 homologs. Abbreviations: Est, esterase; Pept, peptidase; CBM,

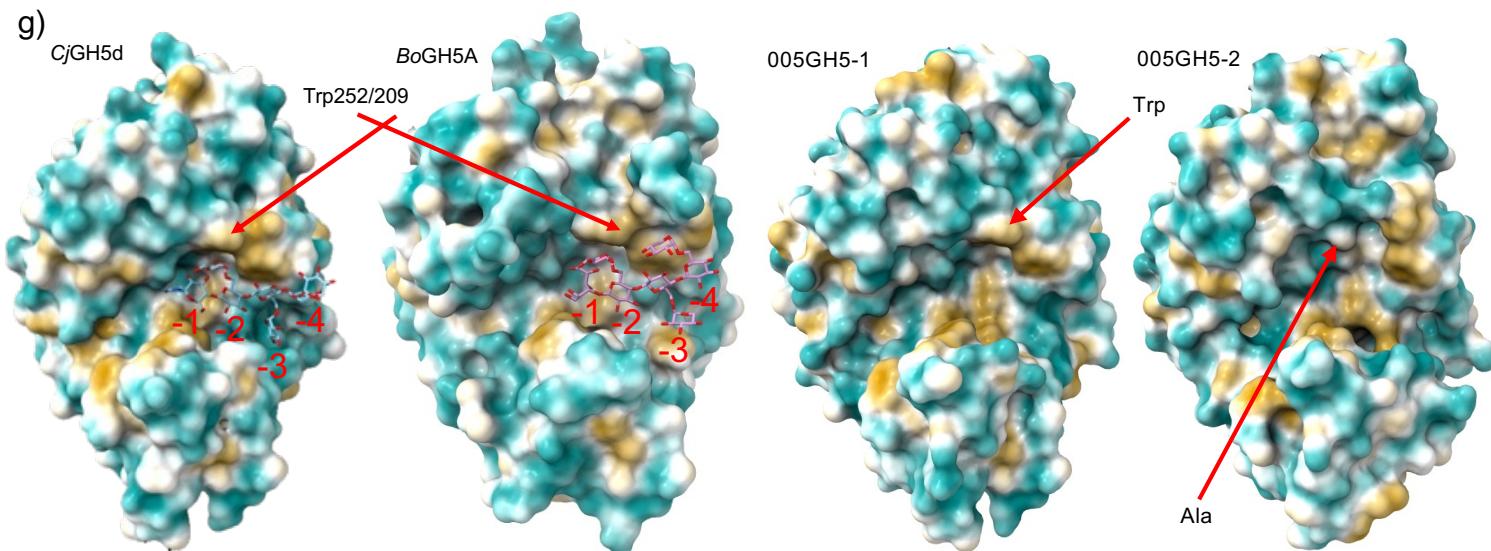
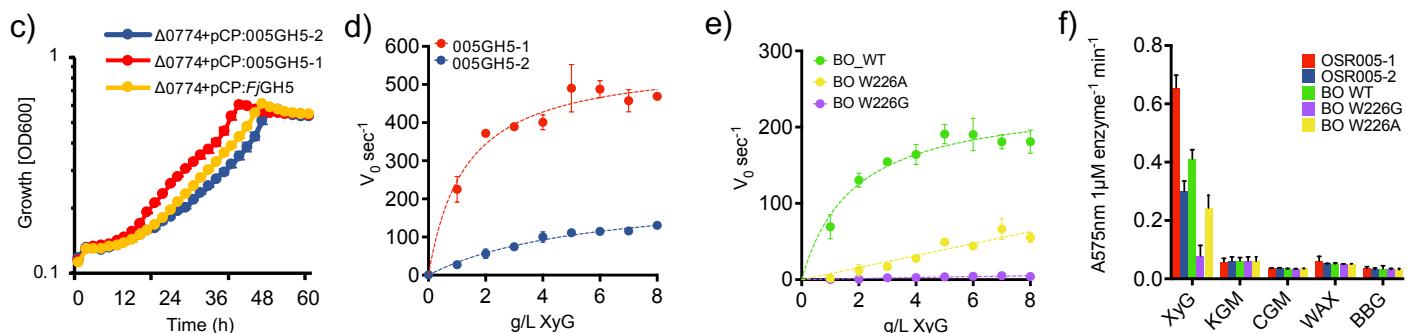
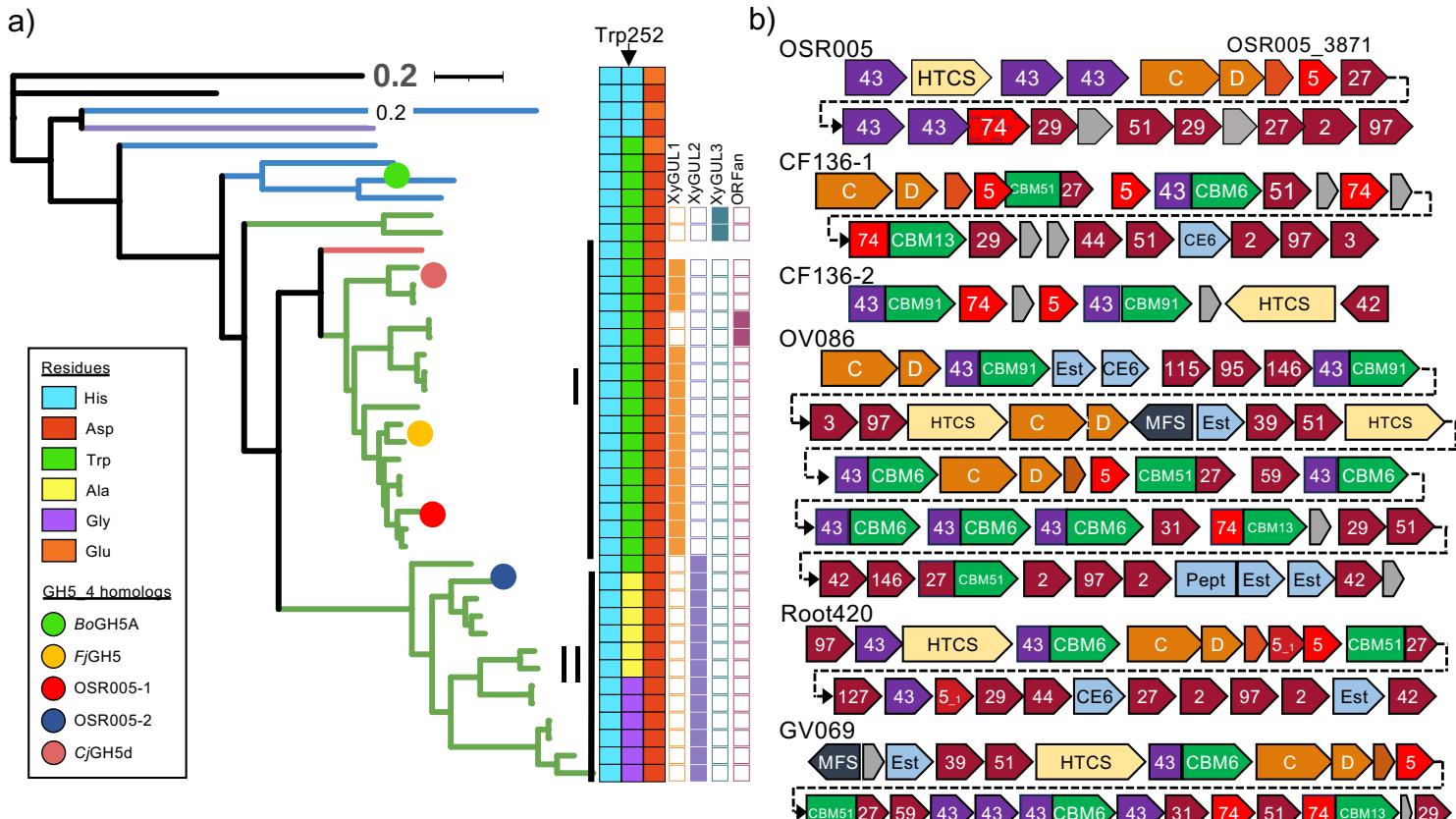
carbohydrate binding module; MFS, major facilitator superfamily transporter; HTCS, hybrid two component sensor **(b)** Predicted PUL (XyGUL2) containing either Ala or Gly containing GH5_4 homologs in *Flavobacterium* spp. demonstrating distinct CAZyme organisation relative to XyGUL1. Numbers denote glycoside hydrolase family predictions. **(c)** Growth (n=3) of the *F. johnsoniae* Δ0774 mutant complemented with either its native gene homolog or the two *Flavobacterium* sp. OSR005 GH5_4 homologs (005GH5-1, 005GH5-2). **(d-e)** Enzyme kinetics for DNSA assays were performed to determine endoxyloglucanase activity (tamarind XyG) of purified recombinant GH5_4 homologs from *Flavobacterium* sp. OSR005 **(d)** and BoGH5A wild type (WT), W252A and W252G variants **(e)**. These five recombinant GH5_4 enzymes were also tested for activity against Konjac-glucomannan (KGM), Carob-galactomannan (CGM), wheat arabinoxylan (WAX), and barley beta-glucan (BBG) **(f)**. Reactions (n=3) were stopped after 10 min and reducing sugar ends were quantified (Abs575 nm) and normalised to 1 μM enzyme per min. **(g)** CjGH5d (pdb: 5oyd) and BoGH5A (pdb: 3zmr) structures depicting surface hydrophobicity determined by X-Ray crystallography modelled with XyG bound visualising the stacking interaction between the third xylose side branch found in a typical XXXG motif, including those occurring with Trp252/209 at the -2 subsite. Alphafold2 generated models of 005GH5-1 and 005GH5-2. Arrows indicate the Trp residue that is substituted with Ala in 005GH5-2. Enzyme and growth assays were performed in triplicate and error bars denote the standard deviation from the mean.

Figure 4. The occurrence and diversity of GH5_4 homologs in terrestrial Bacteroidota spp.
(a) Phylogenomic analysis of our previously generated multi-loci maximum-likelihood consensus tree, inferred from the comparison of 10 housekeeping and core genes present in 102 *Flavobacterium* isolates (37). The presence (filled symbol) or absence (hollow symbol) of CAZyme ORFs associated with PUL are displayed, as well as the genome size of each isolate (outer ring). The inner ring denotes the environmental niche the genome was isolated. **(b)** The prevalence of GH5_4 homologs in the genomes from different genera within the phylum Bacteroidota, determined through BLASTP (cut off, e⁻⁴⁰). The number of genomes screened per genus is given in the parentheses. Colours denote the associated class rank. **(c)** Selected PUL containing GH5_4 homologs identified in other Bacteroidota spp. Numbers denote glycoside hydrolase family predictions. Abbreviations: CBM, carbohydrate binding module, HTCS, hybrid two component sensor. Colour schemes as per previous figures.

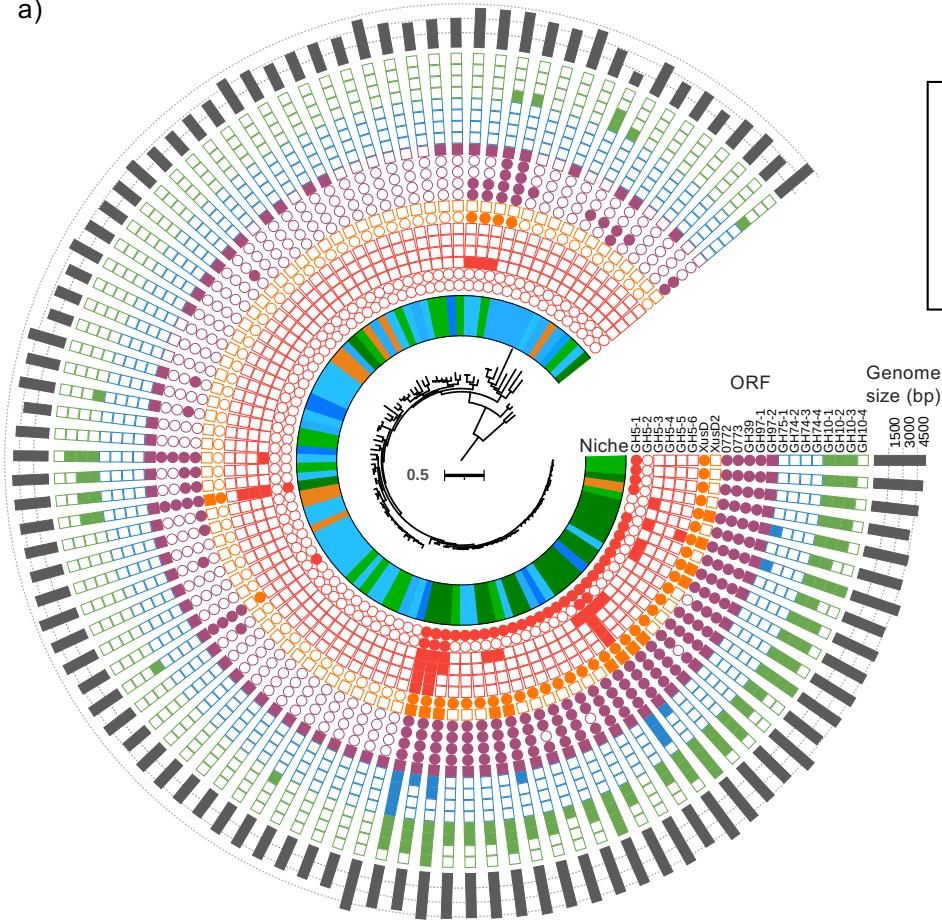



923 **Figure 5. Distribution of GH5_4 homologs in soil- and plant-associated metagenomes.**

924 Reconstructed phylogeny (maximum likelihood method, bootstrap 1000) of GH5_4 homologs
925 in the CAZyme database that best represent the ORFs retrieved from the metagenomes. The
926 amino acid present at each of the key residue sites experimentally determined in previous
927 studies are presented as coloured rings. The outer bar plots represent the overall gene
928 abundance across all metagenomes. Branches are coloured based on their taxonomic
929 classification at the class level. The outer ring represent the GH5_4 clades (I,II, or III)
930 previously identified by (44).

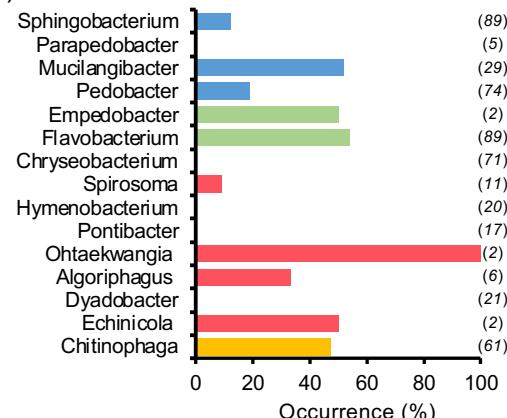




931 **Table 1. Glycoside hydrolase (GH5_4) homologs used in this study, including those**
932 **subjected to site directed mutagenesis.**




Enzyme name	Host strain	Locus tag	Residue (position 252)	Clade	Subclade
<i>FjGH5</i>	<i>F. johnsoniae</i>	Fjoh_0774	W (Trp)	2D	I
005GH5-1	<i>Flavobacterium</i> sp. OSR005	OSR005_04227	W	2D	I
005GH5-2	<i>Flavobacterium</i> sp. OSR005	OSR005_03871	G (Gly)	2D	II
<i>BoGH5A</i>	<i>Bacteroides ovatus</i>	BACOVA_02653	W	2D	III
<i>BoW252A</i>	<i>Bacteroides ovatus</i>	BACOVA_02653	A (Ala)	2D	III
<i>BoW252G</i>	<i>Bacteroides ovatus</i>	BACOVA_02653	G	2D	III
<i>CjGH5</i>	<i>Cellvibrio japonicus</i>	CJA_3010	W	2D	I
<i>PaeGH5</i>	<i>Paenibacillus</i> sp. Root144	2644426200*	H (His)	1	NA

933 *denotes the IMG gene accession deposited in the IMG/JGI database.



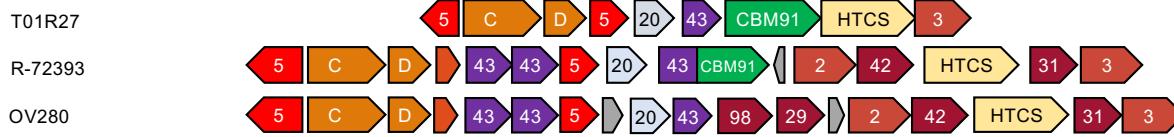
• Fj WT ● Δ 0781-2 ● Δ 0774 ▲ Δ 0781-2+pCP:0781-2 ▲ Δ 0774 + pCP:0774



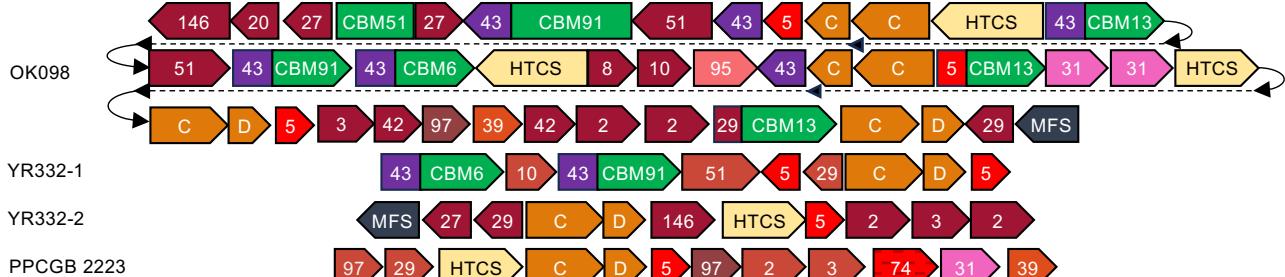
a)

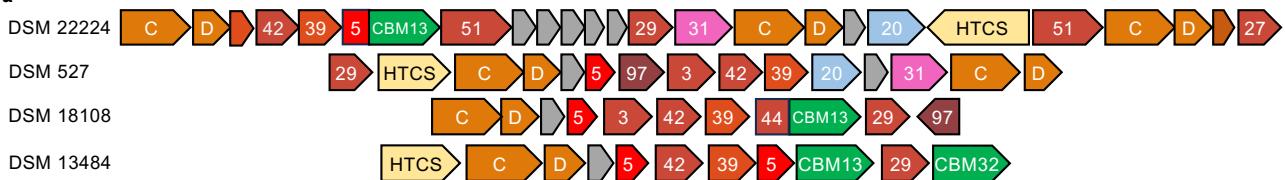
Environmental Niche	PUL components
Plant	GH5
Soil	XusD
Engineered	XyGUL
Fish	GH74
Seawater	Freshwater
Freshwater	GH10

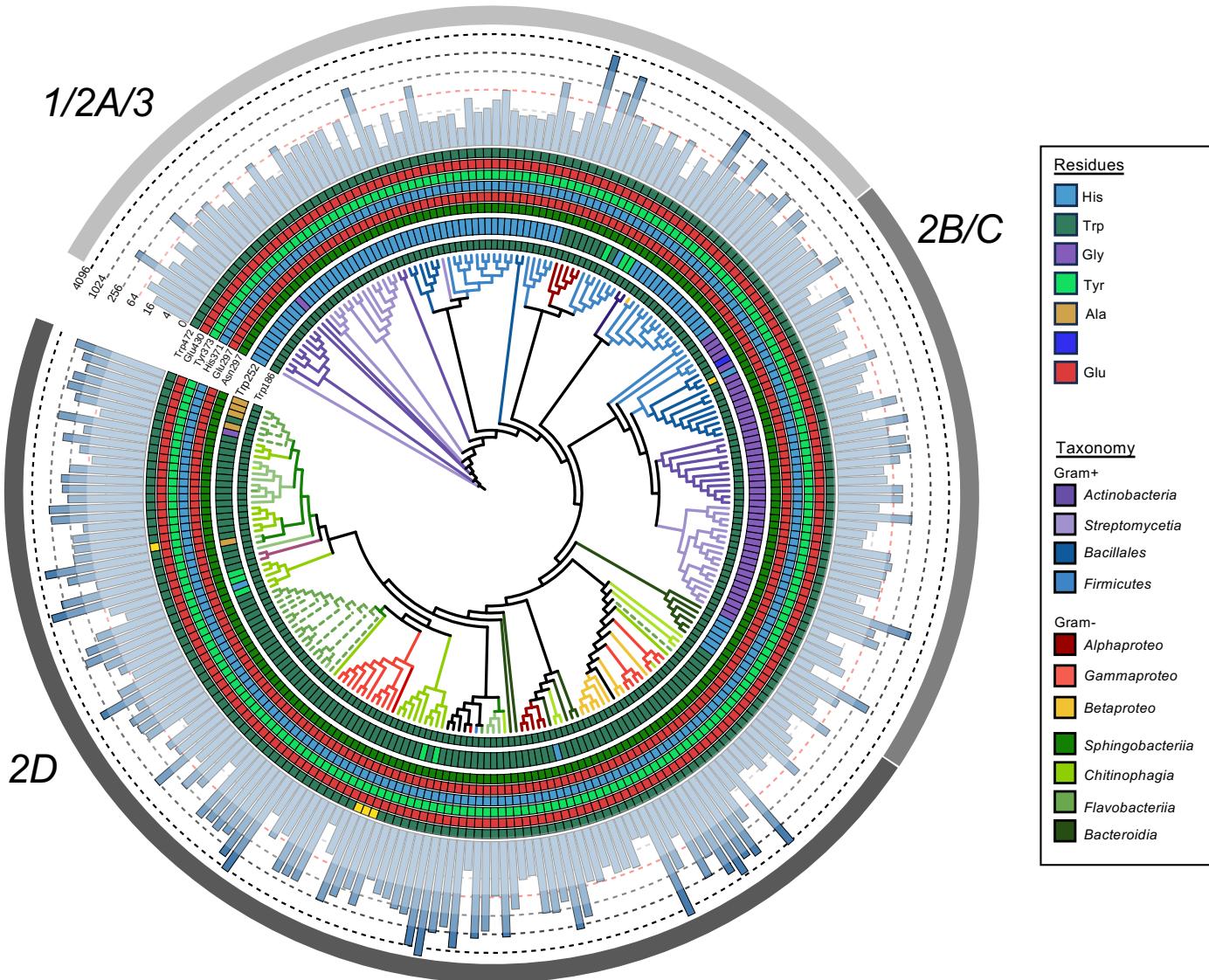
b)



c)


Ohtaekwania


Pedobacter



Mucilangibacter

Chitinophaga

