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Sören von Bülow,∗ Giulio Tesei, and Kresten Lindorff-Larsen∗

Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science,

Department of Biology, University of Copenhagen, Copenhagen, Denmark

E-mail: soren.bulow@bio.ku.dk; lindorff@bio.ku.dk

1

1

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 3, 2024. ; https://doi.org/10.1101/2024.06.03.597109doi: bioRxiv preprint 

soren.bulow@bio.ku.dk
lindorff@bio.ku.dk
https://doi.org/10.1101/2024.06.03.597109
http://creativecommons.org/licenses/by-nc-nd/4.0/


Abstract2

Phase separation is thought to be one possible mechanism governing the selective3

cellular enrichment of biomolecular constituents for processes such as transcriptional4

activation, mRNA regulation, and immune signaling. Phase separation is mediated by5

multivalent interactions of biological macromolecules including intrinsically disordered6

proteins and regions (IDRs). Despite considerable advances in experiments, theory7

and simulations, the prediction of the thermodynamics of IDR phase behaviour re-8

mains challenging. We combined coarse-grained molecular dynamics simulations and9

active learning to develop a fast and accurate machine learning model to predict the10

free energy and saturation concentration for phase separation directly from sequence.11

We validate the model using both experimental and computational data. We apply12

our model to all 27,663 IDRs of chain length up to 800 residues in the human proteome13

and find that 1,420 of these (5%) are predicted to undergo homotypic phase separa-14

tion with transfer free energies < −2kBT . We use our model to understand the rela-15

tionship between single-chain compaction and phase separation, and find that changes16

from charge- to hydrophobicity-mediated interactions can break the symmetry between17

intra- and inter-molecular interactions. We also analyse the structural preferences at18

condensate interfaces and find substantial heterogeneity that is determined by the same19

sequence properties as phase separation. Our work refines the established rules gov-20

erning the relationships between sequence features and phase separation propensities,21

and our prediction models will be useful for interpreting and designing cellular exper-22

iments on the role of phase separation, and for the design of IDRs with specific phase23

separation propensities.24

Introduction25

Biomolecular condensates are large, dynamic assemblies of macromolecules in the cell. In26

contrast to membrane-bound organelles, biomolecular condensates are not enclosed by a27

lipid bilayer and their composition is predominantly governed by the differences in inter-28
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molecular interactions between macromolecules inside and outside the condensate, and with29

the solvent.1–3 Various types of these condensates have been identified in the cell, including30

the nucleolus, Cajal bodies, and promyelocytic leukaemia (PML) bodies in the nucleus; and31

P bodies, stress granules, and Balbiani bodies in the cytosol.1,3,4 Physiological functions of32

biomolecular condensates include buffering of local and cellular concentrations, response to33

stimuli and stress, transcriptional regulation, or gating through the nuclear pore complex,34

among others.2,535

The biophysical origins of condensate formation in the cell are an active area of research.36

Phase separation (PS) coupled to percolation, involving the reversible de-mixing of solutes37

into biomolecule-dense and dilute phases, is thought to be one of the mechanisms underly-38

ing condensate formation.6 Multivalent interactions, often involving intrinsically disordered39

regions (IDRs) of proteins, contribute to driving PS.7,8 Polymer theory has proven to be40

a powerful foundation to interpret in vitro experiments on PS, and has been particularly41

useful for understanding the phase behaviour of a single species of IDRs.5,7,9,10 In practice,42

PS of IDRs depends on the IDR sequence and external conditions such as temperature and43

the type and concentration of ions in solution.1,1144

Experiments, theory and simulations have been used together to shed light on the rules45

governing PS in vitro and in vivo. The sticker-and-spacer model has proven successful in46

rationalizing and predicting sequence-dependent PS.7,12 When this framework is applied to47

IDRs, amino acid residues are categorized into stickers, which contribute the major driv-48

ing force for PS through for example hydrophobic, π-π, and electrostatic interactions; and49

spacers, which intersperse the stickers and contribute weaker interactions. The patterning50

of sticker residues along the linear sequence determines the condensate-spanning network of51

sticker-sticker interactions and, thereby, the extent of de-mixing. On the other hand, spacers52

influence the solubility of the macromolecules and modulate PS propensities and, thereby,53

the extent of de-mixing.654

A number of previous studies have helped uncover how sequence properties of IDRs affect55
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PS. Through the design of constructs of different repeat sequences, Quiroz & Chilkoti tuned56

the upper and lower critical solution temperatures (UCST and LCST, respectively) of syn-57

thetic IDRs and proposed a set of sequence rules governing PS, including molecular weight,58

zwitterionic character, aromaticity, and arginine content.13 A number of subsequent studies59

have further highlighted the important roles of aromatic residues as stickers9,12 and ranked60

them in the order Phe<Tyr<Trp based on their relative strength in driving PS.9,12,14–1661

Studies on different IDRs have also identified Arg as a sticker, primarily thought to be due62

to its interactions with aromatic residues, although Arg–Arg interactions may also play a63

role,17 while Lys has been characterized as a spacer.12,14,18 Moreover, PS is also affected64

by substitutions between spacer residues, such as Gly-to-Ser, Gly-to-Ala, Ser-to-Thr, and65

Asn-to-Gln.18,19 The effects are governed by changes in the solvation volume of the IDR66

and are sensitive to sequence context and solution conditions.18,19 Both aromatic and charge67

patterning have been shown to measurably influence PS of IDRs;9,20–22 thus even at fixed68

amino acid composition, the sequence patterning may affect PS substantially as shown for69

example by shuffled variants of the low complexity domain (LCD) of hnRNPA122, the LAF-170

RGG domain14 and NICD.2171

Coarse-grained simulations of physics-based models of IDRs with residue-level resolution72

have been instrumental in elucidating the sequence dependence of PS.9,15,23–29 In many of73

these models, short-ranged interactions are described using a modified Lennard-Jones (LJ)74

potential, where the stickiness of each residue is captured by amino acid-specific parameters.75

Additionally, salt-screened electrostatic interactions between charged residues are described76

using the Debye-Hückel potential.23,24 Investigations of PS using these models commonly77

employ direct coexistence simulations, wherein a single condensate is formed in an elongated78

simulation box, making it pseudo-infinite along the shorter box sides and thereby reducing79

finite-size effects.23 Dignon et al. combined single-chain and direct coexistence simulations of80

the LCD of FUS, hnRNPA2, LAF1, TDP-43, and their variants to investigate the relation-81

ship between IDR single-chain expansion and multi-chain PS.10 The authors found a strong82
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correlation between UCST and the Θ temperature at which the isolated IDR has ideal-chain83

compaction, i.e., a Flory scaling exponent ν of 0.5. Further, applying analytical theory to84

sequences composed of equal numbers of Lys and Glu, Lin & Chan showed that UCST vs.85

radius of gyration (Rg) follows a power law whereas UCST depends linearly on sequence pa-86

rameters quantifying charge patterning,30 i.e., sequence charge decoration (SCD)31 and κ.3287

This coupling between single-chain compaction and propensity to undergo PS has been ex-88

ploited to develop transferable residue-level models through data-driven approaches in which89

models are trained on data from experiments probing single-chain conformational proper-90

ties.9,15,24–27,29,33 We have developed one such model, CALVADOS, by deriving the stickiness91

parameters from experimental small angle X-ray scattering and paramagnetic relaxation en-92

hancement NMR data.15,27 These physics-based models accurately estimate the propensity93

of IDRs of diverse sequences to undergo PS18,24,27,28 and capture the decoupling between94

single-chain compaction and PS propensities for sequences with large absolute values of the95

net charge per residue (NCPR).18,2796

Polymer theory and coarse-grained simulations of IDRs have also highlighted a strong97

correlation between the second virial coefficient and PS propensity,10,34 which led to the98

development of an analytical model for predicting PS of IDR mixtures based on two-body99

IDR–IDR interactions.35 The relationship between chain compaction, virial coefficients and100

PS have also led to approaches to use single-chain simulations to predict phase diagrams101

for IDRs.36,37 Strategies to quantify interactions in phase-separating IDR mixtures have also102

been developed.7,38 Recent work identified connections between the second virial coefficient,103

mobility, and PS propensity of IDRs.39 The authors used an active learning protocol to learn104

and characterize the trade-off between PS propensity and protein mobility in condensates105

from coarse-grained simulations,39 and to define molecular features to generate solutions of106

multiple components in distinct phases of different composition.40107

Sequence-based predictors of PS behaviour in vitro and in vivo have been developed,108

either employing heuristic rules or based on supervised machine-learning (ML) approaches.109
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The ML predictors are often trained on experimental data (e.g., in vivo PS databases) to110

learn sequence rules governing in vitro PS propensities or in vivo localization to biomolecular111

condensates. These predictors generally aim to classify IDRs into two groups—phase sepa-112

rating and not phase separating—and estimate the probability to undergo PS of a given IDR113

without quantifying transfer free energy or saturation concentration. For example, DeeP-114

hase is trained using sequence feature embeddings to distinguish PS-prone IDR sequences115

from structured proteins and non-PS-prone IDRs.41 FuzDrop predicts the droplet-promoting116

propensity of proteins based on the entropy differences in the bound and unbound state.42117

The catGRANULE algorithm predicts a granule-localization propensity from sequence using118

features including RNA binding and structural disorder propensities.43 PScore predicts PS119

propensity from π-π interaction frequencies alone.44 PSAP and ParSe (v2) are classifiers120

trained on curated in vitro and in vivo PS databases to predict if a protein undergoes PS121

based on sequence features.45,46 FINCHES uses parameters from coarse-grained force fields122

and a mean-field approach to estimate homo- and heterotypic interactions including semi-123

quantitative estimates of phase diagrams.47 Simulations have also been used to derive rules124

enabling predictions of variations in PS of specific families of IDRs.9,48125

Despite the many advances highlighted above, it is still challenging to accurately predict126

the concentrations of the dense and, importantly, the dilute phase, even for in vitro systems127

of a single species of IDR in solution. In turn, predicting the free energy of transfer from128

dilute into the dense phase is likewise challenging, in particular due to the sensitivity of the129

dilute phase (saturation) concentration to sequence changes.18,19130

Here, we exploit the accuracy of coarse-grained simulations to estimate the PS propen-131

sity of IDRs15,28,33,38,49 to develop a machine learning model that efficiently predicts phase132

behaviour of single-component protein solutions from sequence across a broad region of se-133

quence space. As the reference physics-based model we use CALVADOS, which recently134

enabled the characterization of structural ensembles of all IDRs in the human proteome, i.e.,135

the human IDRome.50 While simulations of single chains are extremely fast, simulating a136
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system of ≈ 100 chains using CALVADOS requires on the order of several days on a modern137

GPU. Therefore, a simulation screen of PS propensities for the whole human IDRome would138

be computationally extremely expensive.139

To overcome this limitation, we here develop and employ an active learning protocol to140

select ≈400 sequences for direct-coexistence simulations with CALVADOS. We then use the141

results to train a neural network regression model that accurately predicts saturation concen-142

trations and transfer free energies of single-component protein solutions in vitro directly from143

sequence. Through extensive validation against both simulation and experimental data, we144

show that our machine learning model has an accuracy on par with CALVADOS simulations145

at a fraction of the computational cost, and use the results to shed light on the interplay146

between sequence features that determine homotypic PS. Finally, we exploit the wealth of147

simulation data to study structural properties of the condensates and their interfaces.148

Results and Discussion149

An active learning protocol to predict transfer free energies from150

sequence151

We have previously shown that CALVADOS simulations give rise to dilute phase concentra-152

tions that are in good agreement with experiments for a range of proteins and variants.27,27153

We therefore aimed to develop a PS predictor based on results from phase coexistence simu-154

lations using CALVADOS 215,27 (Fig. 1A). We used an active learning protocol to generate155

a diverse set of training data covering a large feature space in the human IDRome, so as to156

allow the model to correlate a broad range of sequence features to PS propensities (Fig. 1A).157

For the purpose of the active learning protocol, we initially built a support vector regression158

(SVR) model to predict the propensity of IDR systems to undergo homotypic PS, expressed159
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Figure 1: An active learning framework for predicting phase separation. (A) Active-learning
protocol to train a PS predictor from simulation data. SVR: Support vector regression.
The iterative sampling and training was driven by SVR models; once sampling had been
completed we trained dense neural networks to predict the ∆G values and the saturation
concentrations. (B) Convergence of the active learning protocol for an IDRome90 validation
set (n=27).

as transfer free energies ∆G,160

∆G = kBT ln
cdilute
cdense

(1)

from sequence features (see Methods). We fixed simulation conditions to T = 293K and ionic161

strength of I = 150mM to be compatible with many in vitro experiments. The dynamic162

range of the simulations is roughly ∆G = −10 kBT to ∆G ≈ 0 kBT ; sequences that give163

rise to ∆G < −10 kBT have so few proteins in the dilute phase during the simulation time164

that they cannot be distinguished. Similarly, sequences that are not predicted to undergo165

spontaneous PS (∆G > 0 kBT ) will be assigned to ∆G = 0 kBT because we cannot detect166

any stable condensate (see Methods).167

At each learning iteration, we re-trained the SVR model on the current set of ∆G values168
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collected from the coexistence simulation results to predict ∆G from sequence input features.169

The input features encode the physics of the CALVADOS 2 force field (Table S1. The model170

selected new sequences to simulate out of a pool of 90% of the human IDRome (IDRome90).171

The remaining 10% (IDRome10) were held out as a validation set that we only examined172

after having finalized model development and training. Briefly described, our active learning173

protocol selected new sequences for simulation based on three conditions: (1) Large range of174

∆G values (roughly ∆G ≈ −10 kBT to ∆G ≈ 0 kBT ), (2) highest inter-model uncertainty175

in cross-validation, so as to select new sequences that the model was unsure about, and (3)176

large coverage of input sequence feature space.177

We monitored the convergence of the active learning protocol by calculating Pearson’s178

correlation coefficients (r) and root-mean-squared deviations (RMSD) between the SVR179

predictions and simulations of ∆G via cross-correlation (80% training, 20% test) as a function180

of the number of simulation sequence data points used for training (Fig. S1A). The values of181

RMSD and r reached a plateau beyond ≈ 250 simulations (with a total of 362 simulations),182

and scatter plots of predicted vs. simulated ∆G show that the model can distinguish different183

PS propensities (Fig. S1B). We therefore tested the convergence of the model for a set of 27184

independent sequences from IDRome90 (Fig. 1B). We observed a strong improvement of the185

prediction accuracy up to ≈ 250 included simulated sequences, with only small improvements186

beyond. We therefore concluded that the training has converged.187

Dense neural network improves prediction accuracy and is trans-188

ferable189

Having established convergence of the SVR prediction model, we pooled all simulation data190

from training and convergence test within the IDRome90 set, resulting in 362 + 27 = 389191

sequences. We used these data to train two slightly different dense neural networks (NN):192

The first model predicts the transfer free energy ∆G (Eq. 1), whereas the second model193

predicts the natural logarithm of the saturation mass concentration of the IDR, i.e. of194
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the dilute phase concentration in the coexistence simulations. We optimized the network195

architecture via a grid search in parameter space (Fig. S2). Different architectures with two196

hidden layers gave very similar prediction performance (as measured by RMSD). We selected197

the model with hyperparameters α = 5 and 2× 10 hidden layers for its combination of high198

performance and speed.199

The resulting ∆G and ln csat models showed excellent prediction accuracy, as measured200

by cross-validation (Fig 2A,D). To test if the NN models can be generalized to previously201

unseen data (i.e. data outside the sequence pool that could be selected during active learning202

of the SVR model), we predicted ∆G values for 26 held-out IDRome10 sequences. We find203

that the models predict ∆G and ln csat for these independent sequences as accurately as204

for the IDRome90 sequences, thus concluding that the models predict ∆G and ln csat with205

r > 0.9 and RMSD< 1 (Fig. 2B,E).206

Benchmarking the prediction model with experimental data207

The good prediction of CALVADOS 2 ∆G values by the NN model is encouraging, as the208

CALVADOS 2 model in turn has been fine-tuned to match experimental saturation concen-209

trations.15 We therefore aimed to directly compare the NN predictions with experimental210

data. We collected simulation and experimental PS data of the LCD of hnRNPA1 and LAF1,211

as well as variants thereof, from the original CALVADOS 2 parameterization work, none of212

which were used during training of the NN models.15 Remarkably, sequence variant effects213

for both the simulation ∆G values (Fig. 2C) and the experimental saturation concentrations214

(Fig. 2F) were predicted very accurately by the NN model, with RMSD= 0.62 and Pearson’s215

r = 0.92, on par with the simulation results (RMSD= 0.60, r = 0.91).216

PS predictions are interpretable with sequence features217

We used the NN model to predict ∆G for all sequences in the human IDRome, again noting218

the dynamic range of our simulations and analyses corresponds to −10 ≲ ∆G/kBT ≲ 0.219
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Figure 2: Accurate machine learning models enable quantitative predictions of phase sep-
aration. Results from (A, D) IDRome90 cross-validation, (B, E) IDRome10 validation, and
(C, F) further simulation/experimental validation for NN predictors of ∆G (A-C) and the
natural logarithm of the saturation concentration (D–F). Circles in (F) represent predictions
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The distribution of ∆G is strongly skewed towards sequences with weak or non-PS values220

(Fig. S3). Only 571 (2%), 892 (3%), or 1,420 (5%) out of the 27,663 sequences in the IDRome221

(≤ 800 residues) are predicted to undergo PS when using PS thresholds of ∆G < −4 kBT ,222

-3 kBT , or -2 kBT , respectively. Therefore, only a small fraction of IDRs in the IDRome are223

predicted to undergo PS without partners at the given conditions (T = 293K, I = 150mM).224

We correlated the predicted ∆G values with each of the individual sequence features that225

we use as input to the NN model (Fig. 3). As expected, the mean sequence hydrophobicity,226

hydrophobic patterning, charge patterning, and predicted single-chain scaling exponent all227

correlate positively with increased predicted PS propensity (low ∆G). Lower absolute NCPR228

likewise correlates with lower ∆G. Thus, the NN learned overall effects of physical properties229

that have previously been shown to affect PS and which are captured in the CALVADOS230

model. The high standard deviations across individual bins indicate that none of the indi-231

vidual features we analysed can quantitatively predict the PS propensities. In addition to232

highlighting the complex interplay between features, we also note that some of the features233

have been derived to capture properties of the sequence at fixed composition and length, and234

were therefore not designed to be used alone across the diverse set of IDRome sequences.51235

We also investigated the dependence of ∆G on two combined features, e.g., λ̄ and all236

other features, or SCD and all other features (Figs. S4 and S5). The corresponding 2D237

histograms show which combinations of features allow a clear distinction between low and238

high ∆G values. The combinations (λ̄, νSVR), (λ̄, SHD), (λ̄, SCD) show clear ∆G separation239

potential, as do the combinations (SCD, FCR), (SCD, SHD), and (SCD, νSVR). Like our240

previously described model for single chain compaction,50 our model therefore likely uses241

several related features to disentangle effects of sequence composition, patterning and length.242

We also trained ∆G NN models on a reduced set of input features, using only one243

feature or combinations of two features as input (Fig. S6). Combinations of descriptors244

of sequences hydrophobicity and single-chain scaling expansion (which itself uses several245

features as input) performed best. All models using one or two input features were much246
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Figure 3: Correlation of IDRome ∆G with input sequence features. Error bars indicate the
standard deviation per bin. Grey lower histograms indicate the number of sequences per
bin. Colours indicate number of sequences per bin corresponding to the histograms below,
with darker colour indicating more proteins.

less predictive compared to the full model with all features, necessitating the full model for247

quantitative predictions of ∆G.248

We investigated, how confidently the model predicts ∆G for different regions in feature249

space. Using the data from 389 simulation results in the IDRome90 set, we trained a model250

to predict the unsigned prediction error of ∆G (Fig. S7) based on sequence features and pre-251

dicted ∆G values. The prediction error model underestimated the compounded simulation252

and prediction error (RMSD = 0.7 kBT vs. 1.0 kBT ) and is only weakly correlated with the253

true absolute difference of ∆G and predicted ∆G (r = 0.54; Fig. S7A). The error for the254

∆G model and the predicted error for the ∆G model only depend weakly on the simulated255

∆G (Fig. S7B,C). In light of these results, we instead report the RMSD of the IDRome10256

validation set (RMSD(∆G)=0.90 kBT and RMSD(ln csat)=0.82) as global estimates of the257

prediction errors.258

13

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 3, 2024. ; https://doi.org/10.1101/2024.06.03.597109doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.03.597109
http://creativecommons.org/licenses/by-nc-nd/4.0/


Correlation between single-chain features and PS propensity.259

Previously, the relationship between sequence, single chain features and PS propensities have260

been studied. In particular, it has been shown that measures of single-chain compaction261

such as the Flory scaling exponent, ν, are correlated with the PS propensity for related262

variants of given sequences.9,10,30 We leveraged our fast model to screen thousands of sequence263

variants in order to learn which features might affect ν and ∆G differently. To this aim,264

we performed Monte Carlo (MC) sampling in sequence space to explore how our ∆G model265

reacts to sequence perturbations, starting from a range of weakly to intermediately PS-prone266

sequences (−4 < ∆G/kBT < −1).267

We first determined the effect of free sequence exploration on ∆G via swap moves, i.e.,268

reshuffling the residues of a given IDR composition (Fig. S8). We observed clear positive269

correlations between changes in νSVR and ∆G as well as SCD and ∆G, in agreement with270

earlier findings.10,30 In contrast, we do not see a strong effect of hydrophobic patchiness271

(SHD) for a given composition.272

We then asked, which changes in sequence features might possibly break the correla-273

tion between single-chain scaling exponent νSVR and PS propensity, i.e., which changes in274

the sequence reduce or increase ∆G while maintaining fixed single-chain expansion ν. We275

therefore performed a MC walk in sequence space towards low predicted ∆G.276

We first restricted the MC algorithm to only swap moves while restraining νSVR close to277

their original values. Given these restraints, ∆G values could barely move away from their278

starting values (Fig. S9). The patchiness of charges and hydrophobic residues increased with279

PS propensity and νSVR until νSVR reached the pre-set restraint tolerance, beyond which the280

MC algorithm was stuck, with overall absolute changes in ∆G < 0.4 kBT .281

We modified the algorithm in a second step, now allowing substitutions to any of the282

19 other residue types (i.e. changing sequence composition) to assess, how νSVR and PS283

propensity are globally decoupled. We fixed NCPR alongside νSVR in this step, as we ex-284

pected the effect of net charge to dominate more subtle effects.11,18,21,27 During the MC walks285
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Figure 4: Effect of Monte-Carlo sequence optimization towards strong PS (target ∆G = −10
kBT ) starting from random sequences in window −4 < ∆G/kBT < −1 using swap moves
and single substitutions while restraining νSVR and NCPR. Different colours correspond to
independent runs of the algorithm.

towards low ∆G with swap and substitution moves, sequences increased in hydrophobicity286

(λ̄), whereas the fraction of charged residues decreased to maintain the same single-chain287

compaction (ν) (Fig. 4). Thus we find that, for fixed single-chain compaction, hydrophobic288

sequences tend to phase separate more strongly than sequences whose compaction is driven289

by charge interactions.290

The key findings from our sequence exploration runs are: (1) For a given sequence compo-291

sition, changes in SCD and νSVR are strongly correlated with changes in PS propensities. (2)292

For a given composition, ∆G and νSVR are so tightly coupled, that we could not substantially293

move one without the other. (3) Globally, hydrophobic sequences with low charge content294

(and low patterning) as well as less hydrophobic sequences with higher charge content can295

have the same νSVR but substantially different PS propensities, with the former showing296

stronger PS.297
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Variations in structural properties at the condensate interface298

In line with expectations for homopolymers, we and others have previously found that IDRs299

are more expanded in homotypic condensates than in dilute solution of a poor solvent (wa-300

ter).18,27,36 To examine these effects more broadly, we calculated ν in the dilute and dense301

phases of 110 of the 389 training data sequences that we simulated during the active learning302

protocol and which had −10 < ∆G/kBT < −4. While the chain compaction in the dilute303

phase varies substantially across sequences, in agreement with the compaction estimated304

from single-chain simulations, the IDRs all have ν ≈ 0.5 (Fig. S10) in the dense phase, in305

line with the condensates acting as a Θ solvent for the IDRs.306

The substantial variation and differences in structural properties in dilute and dense307

phases suggest that there might also be variation in structural properties at the condensate308

interfaces. Farag et al.33 used lattice simulations to examine the structural preferences,309

chain expansion and orientation of the LCD of hnRNPA1 in the dense phase, condensate310

interface, and dilute phase, and found both increased chain expansion and a propensity311

to take on an orientation perpendicular to the interface for chains located at the droplet312

interface. In other studies—using different simulation frameworks, analysis methods and313

IDR sequences—chains at the interface have been found to be more compact than in the314

dense phase.52–54315

We used our large-scale direct coexistence simulations of substantially different IDR se-316

quences to quantify structural preferences at the interface and compare them to those in317

the dilute and dense phase. We calculated bin-weighted33 profiles of the radius of gyration318

(Rg) along the direction normal to the condensate interface (that is along the z axis) from319

the 110 direct coexistence simulations (Fig. 5A and additional examples in Fig. S11). To320

compare the compaction across sequences, we normalized the Rg(z) values by the average321

value in the dense phase. In line with the calculations of ν (Fig. S10), we find that the322

expansion at the interface is generally between that in the dilute and dense phase (Fig. 5B).323

In line with previous findings,33 we find, however, substantial complexity in the structural324
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properties along the interface for many sequences (see Fig. S11 for examples), and for some325

sequences we find that parts of the interface have a bin-weighted Rg greater than the dense326

phase (Fig. 5B).327

Inspired by previous analyses of IDR orientation,33,52,55 we calculated a chain order pa-328

rameter, Sz, to quantify the extent to which chains are aligned along the z-axis. Sz = 1329

corresponds to full alignment along the z-axis (normal to the interface), an isotropic dis-330

tribution of orientations gives Sz = 0, and Sz = −1/2 indicates alignment orthogonal to331

z, i.e. parallel to the condensate surface. We calculated Sz for each chain and time step332

and averaged Sz values for each bin along the z-axis to obtain an orientation profile along333

z. As expected, we find close-to-random orientations in both the dilute and dense phases334

(Figs. 5A, 5B and S11). In contrast, we find much greater variation in the behaviour at335

and near the interfaces, with many sequences showing both positive and negative peaks of336

Sz in the interface regions (Figs. 5B and S11). In many cases we find Sz < 0 closest to337

the dense phase and Sz > 0 further out in the interface region. In line with findings for338

the hnRNPA1 LCD,33 we find that the IDRs in the interface region have a preference to be339

oriented perpendicularly to the interface.340

Having found considerable variation in the level of compaction and orientational pref-341

erences in the interface region, we asked whether these differences were correlated with se-342

quence and structural features of the IDRs. We find a strong correlation between S̄z,interface343

and R̄g,interface/R̄g,dense so that those sequences that are most expanded at the interface are344

also those that have the strongest preference to be oriented perpendicularly to the inter-345

face (Fig. S12). We also find that these values are both correlated with ∆G, so that the346

sequences with the strongest driving force for PS also show largest values of S̄z,interface and347

R̄g,interface/R̄g,dense (Fig. S12). Since ∆G is correlated with several sequence features (Figs. 3,348

S4 and S5), these features also correlate with the structural preferences in the interface349

region.350
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Figure 5: Structural properties in the dilute phase, interface region and dense phase. (A)
Example of profiles of Rg(z), orientation (Sz(z) = ⟨P2[cos(θ)]⟩), and protein concentration
(c(z)) for bins along the long box edge z. Coloured shading indicates the dilute phase (yel-
low), interface (green), and dense phase (blue) regions. (B) Histograms of Rg(z)/R̄g,dense

distributions from the bin values for all proteins separately for bins in the dense phase,
interface, and dilute phase. All bins contribute equally to these distributions, regardless
of chain or monomer concentration per bin (Methods). (C) Histograms of Sz distributions
from pooled bin values for all proteins, as for (B). Black arrows illustrate preferential orien-
tations, whereby Sz = 0 corresponds to an isotropic (random) orientation, Sz > 0 indicates
preferential orientation along z (normal to the interface), and Sz < 0 indicates preferential
orientation orthogonal to z (along the interface). We assign small deviations from Sz = 0 in
the dilute phase to be statistical noise from the low amount protein in the dilute phase of
the most strongly phase separating proteins.
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Limitations351

CALVADOS was trained to reproduce biophysical measurements of single-chain conforma-352

tional properties, and has been shown to reproduce both single-chain and PS properties it353

was not trained on. We therefore rationalized that we could build an accurate prediction354

method for PS by targeting CALVADOS simulations. Nevertheless, these in silico pre-355

dictions of homotypic PS may not capture all relevant properties of the densely crowded,356

heterogeneous environment in the cell.56–59 For example, while CALVADOS has been shown357

to capture effects of varying the ionic strength on PS,15 it will not capture specific effects358

due to ion-specific asymmetrical partitioning in condensates.60 Similarly, sequences that do359

not undergo homotypic PS (for example highly charged sequences) may undergo PS with360

oppositely charged molecules in the cell. Likewise, other discrepancies between the in vitro361

and in vivo conditions will limit the model. While we have validated our prediction methods362

for natural sequences from the human IDRome, it is possible that they will be less accurate363

for non-natural sequences. We note, however, that sequence design based on CALVADOS364

has shown transferability outside the realm of natural sequences.22365

Furthermore, our predictors inherit the strengths and limitations of the CALVADOS 2366

model. In particular, the ∆G and csat estimations from CALVADOS 2 direct coexistence sim-367

ulations have an absolute relative error, ⟨|csat, sim−csat, exp|/csat, exp⟩, of 90%,61 corresponding368

to a RMSD of ln(csat[g/L]) of 0.73. We deliberately trained our model to reproduce PS at a369

fixed set of temperature and ionic strength. Even though it could be retrained at different370

conditions, the CALVADOS model does not fully capture variation of PS with temperature,371

as only the electrostatic term of the force field is temperature dependent via Eq. 5, whereas372

the effect of temperature on residue stickiness is not captured in the model. Furthermore,373

the description of electrostatic interactions based on a Debye-Hückel screening term with374

fixed cutoff of 4 nm is limited both for very high and low ionic strengths as well as ion-type375

and pH-specific effects.11,60,62376
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Conclusion377

We have developed machine learning models to quantitatively predict homotypic PS of IDRs378

at physiologically relevant conditions. We devised and implemented an active learning ap-379

proach to select the most relevant simulation data to train a model that estimates PS globally380

across diverse sequences. While previous models have been developed to classify sequences381

into those that PS and those that do not, we are not aware of other models to predict382

the saturation concentration and transfer free energies for a wide set of disordered proteins383

sequences.384

Since PS may be a generic property of a wide range of proteins63,64 and cellular protein385

concentrations can vary substantially, we envisage that the quantitative aspect our model will386

be particularly important; because many proteins may undergo PS at some concentration it387

is not always clear which conditions a binary PS prediction method refers to. Our results are388

thus complementary to exciting new work by Ginell et al. 47 , published as a preprint alongside389

this manuscript. Leveraging the pairwise interaction parameters of CALVADOS 215,27 and390

a modified form of Mpipi28,65 in a mean-field approach, the authors developed a model to391

rapidly compute interaction maps and semi-quantitative phase diagrams between any pair of392

disordered proteins, validating their method with a range of biologically interesting systems.393

Condensate interfaces have unique chemical properties and are thought to play potential394

roles in both function and pathology.7 We have analysed structural features of IDRs in the395

dilute and dense phases, as well as the important and unique interface region, and correlated396

these with the sequences of the IDRs. We find substantial variation in the conformational397

properties at interfaces that can be explained by the same features that drive formation of398

condensates. We also find substantial fine structure and heterogeneity at the interfaces, and399

future work is aimed towards understanding the molecular origins of these effects.400

We envisage that our prediction methods may become valuable tools for experimental-401

ists and theoreticians to obtain rapid and accurate estimates of in vitro PS propensities402

of IDRs before performing costly experiments or simulations, and to design and interpret403
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experimental and computational studies. Our machine learning models may also be used404

to explore more widely the relationship between sequence and PS properties and to link405

biological properties, disease and PS. The code for our model is freely available, and we also406

provide easy access via an online implementation as a Google Colab notebook. Finally, by407

providing access to a unique and large set of direct-coexistence simulations for a wide range408

of sequences, we enable detailed analysis and insights into the relationship between sequence409

and PS properties including analyses of the structure and thermodynamics of PS.410

Methods411

CALVADOS 2 force field412

We performed molecular dynamics simulations using the coarse-grained CALVADOS 2 model.15413

As with similar HPS models,23,66 each protein residue is represented by one bead with size414

σ and interaction strength λ.415

The full model is a linear combination of contributions to the potential energy,416

UHPS = ubond + uDH + uAH (2)

with ubond the bonded potential, uDH a Debye-Hückel electrostatic potential, and uAH is the417

Ashbaugh-Hatch modification of a Lennard-Jones potential.66418

Beads of neighbouring residues in the sequence are connected by bonds described by a419

harmonic potential,420

ubond(r) =
1

2
k(r − r0)

2 (3)

using k = 8033 kJmol−1nm−2 as force constant and r0 = 0.38 nm as equilibrium distance.421

A Debye-Hückel potential describes the solvent-screened electrostatic interactions,422

uDH(r) =
qiqj

4πϵ0ϵr

exp(−r/D)

r
(4)
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with qi the charge of bead i, ϵ0 the vacuum permittivity, D =
√

1/(8πBcs) the Debye length423

of an electrolyte solution of ionic strength cs, and B(ϵr) the Bjerrum length of temperature-424

dependent dielectric constant ϵr,
67

425

ϵr(T ) =
5321

T
+ 233.76− 0.9297×T + 1.417×10−3×T 2 − 8.292×10−7×T 3 (5)

Electrostatic interactions were truncated and shifted at the cutoff distance rc = 4nm.426

Nonelectrostatic nonbonded interactions were represented by a truncated and shifted427

Ashbaugh-Hatch (AH) potential66. It is a scaled Lennard-Jones (LJ) potential of the follow-428

ing functional form,429

uAH(r) =


uLJ(r)− λuLJ(rc) + ϵ(1− λ), r ≤ 21/6σ

λ[uLJ(r)− uLJ(rc)], 21/6σ < r < rc

0, r > rc

(6)

with σ = (σi + σj)/2, λ = (λi + λj)/2 for residues i and j, and the LJ potential430

uLJ(r) = 4ϵ

[(σ
r

)12

−
(σ
r

)6
]

(7)

where ϵ = 0.8368 kJmol−1 and rc = 2 nm.431

Molecular dynamics simulations and estimation of PS propensities432

We used the openMM v8.0 simulation package68 to perform molecular dynamics simulations.433

Proteins were inserted into an elongated simulation box with dimensions 25 nm × 25 nm ×434

300 nm for sequences with more than 350 residues and 20 nm × 20 nm × 200 nm otherwise.435

Initial configurations were fully elongated proteins (along the z direction) packed in parallel436

in the box centre in the z direction.437

We performed simulations in the NVT ensemble with a Langevin integrator (γ = 0.01 ps−1)438
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with timestep of 0.01 ps. Protein configurations were saved at either 1 ns or 10 ns intervals.439

The first 600 ns of each simulation were discarded to account for equilibration.15 All simula-440

tions were run at temperature T = 293K and ionic strength I = 150mM.441

Time-averaged concentrations in the dense and dilute phases (particle density maps)442

were calculated with custom scripts.69 The scripts center the slab in the z direction based443

on a heuristic estimate of the centre of density. This analysis assumes that there is at most444

one condensed phase in the simulation. Visual inspection of all density time series revealed445

that 12 simulations from the IDRome90 training set and 2 simulations from the IDRome10446

validation set showed the presence of two or more condensed phases; these likely represent447

simulations that did not converge to a single stable phase during the pre-defined simulation448

time. Since the analysis framework would erroneously interpret a smaller condensate as449

belonging to the dilute phase, and thus overestimate csat, these were removed from model450

training and validation. We note that the two simulations that were removed from the451

IDRome10 set were identified before assessing model accuracy. We show the time series for452

the 14 simulations in Fig. S13.453

In order to compare chain expansion from slab and single chain simulations, we performed454

single chain simulations for a subset (n = 110) of sequences simulated in the course of the455

active training protocol that show PS with −10 < ∆G/kBT < −4. We performed each456

single chain simulation in a simulation box of 25 nm× 25 nm× 25 nm at the same ensemble457

and conditions as the direct coexistence simulations. Simulations were carried out for 200 ns458

simulation time. The first 20 ns of each simulation run were discarded as equilibration.459

The boundaries between dense and dilute phase were determined by fitting a hyperbolic460

tangent to the concentration profile, as described previously:15461

ρ(z) = (ρa + ρb)/2 + (ρb − ρa)/2× tanh[(|z| − zDS)/t] (8)

with ρa and ρb the densities of the dense and dilute phases, respectively.462

The dense and dilute phases are estimated to be in regions |z| < zDS − βdenset and463
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|z| > zDS + βdilutet, with βdense = 1.5 and βdilute = 2.5 (for sequences A8K8P3 740 1157,464

O94906 1 81, Q96SB4 1 59, Q8N9I0 83 138, Q4V348 1 281, O15504 1 116, Q86W67 1 206,465

Q9BWV2 1 254) or βdilute = 5 otherwise. Here, zDS and t are the position of the dividing466

surface and thickness of the interface, respectively. We defined the interface as the zone467

between the dense and dilute phase, i.e., the region zDS − βdenset < |z| < zDS + βdilutet.468

IDR sequence selection by active learning469

We selected IDR sequences for phase coexistence simulations in a multi-step process that we470

devised to maximize model performance at minimal computational cost. Before initiating471

the model we selected 10% of the IDRome (IDRome10) to be used for final assessment of the472

model and did not analyse these sequences until the final analysis.70 The remaining 90% of473

the IDRome are denoted as IDRome90.474

We first collected initial seed simulations performed at the same temperature and ionic475

strength in previous work. The seed consisted of 38 YTH domain protein IDRs69,71 and 28476

additional simulations from unpublished projects.477

We then devised an active learning protocol to explore new IDR sequences for simulation.478

During each step in the active learning procedure, we trained a new support-vector regression479

(SVR) model with parameters C = 10 and ϵ = 0.01 to predict transfer free energies ∆G (Eq. 1480

to partition into the dense phase. We used the sklearn python package72 for all ML models481

in this work. Out of a pool of sequence features, the algorithm selects the combination of482

three features that gives the best prediction (measured by the Pearson correlation coefficient,483

r). The pool of features consisted of N , λ̄, faro, SHD, NCPR, FCR, SCD, κ, Rg, ν, and484

Mw. The features are defined in Table S1. In these analyses we used ν obtained from485

analyses of single chain simulations.50 We determined the prediction accuracy as the average486

Pearson correlation coefficient, r, on the validation set from 50 cross-validations for each487

feature combination, each with 80% and 20% of simulations randomly chosen as training488

and validation set, respectively. The set of 50 models with average highest-performing input489
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feature combination was then used to predict ∆G for all sequences in the IDRome90 set,490

resulting in 50 predicted ∆G per IDRome90 sequence. Under the assumption that a large491

cross-model uncertainty indicates lack of accuracy for specific types of sequences in the492

IDRome90,
70 we restricted the pool of new sequences to simulate to the top 100 sequences493

with highest ∆G variance. Out of these 100 sequences, we picked 5–10 sequences maximizing494

the distance in feature space, as calculated by the Mahalanobis distance (dM). We first495

selected the highest variance sequence for simulations; then we selected a second sequence496

(out of the 100 sequences) with the highest dM to the first sequence, then a third sequence497

by maximizing the sum of dM to the first two sequences etc., resulting in 5–10 new sequences498

to simulate based on available computational resources at each iteration. Based on this499

protocol, we iteratively selected and simulated a total of 137 sequences.500

Following this first phase of sequence exploration, we modified the active learning algo-501

rithm to focus the learning on a more uniform range of predicted ∆G values. We therefore502

added another criterion to the procedure in the above described protocol: In the modified503

protocol, we selected the top 5–10 sequences with highest cross-model variances (top 50%)504

and dM separately for bins of ∆G (in units of kBT ): [−∞,−6], [−6,−5], [−5,−4], [−4,−3],505

[−3,−2], [−2,−1], and [−1, 1]. In this way, we selected sequences with different values of506

predicted ∆G for further simulations. We iteratively selected and simulated 179 additional507

sequences based on this modified protocol.508

Once the model appeared to have converged, we selected additional sequences for a final509

convergence test from within the IDRome90 set, drawing 4 new sequences randomly from510

each predicted ∆G bin, with same brackets as above.511

Dense neural models to predict transfer free energies and saturation512

concentrations from the final set of simulations513

We built and trained two small dense neural networks (NN) to predict ∆G and ln csat from514

sequence features. These models were trained on the final set of 389 phase coexistence515
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simulations gathered from the three-step procedure described above.516

We chose the input features listed in Table S1 except N , Mw, κ, as those showed limited517

prediction accuracy alone or using pairs of features (Fig. S6). We also removed Rg to518

restrict the input to features that can rapidly be generated from sequence without requiring519

simulation work. In the SVR models described above we used values for the Flory scaling520

exponent (ν) based on single chain simulations;50 for the NN we instead used an accurate521

sequence-based SVR model νSVR.
50 The prediction of νSVR in turn uses SCD, SHD, κ, FCR,522

and λ̄ as input features.50 The final input features for the NN were thus λ̄, faro, SHD,523

NCPR, FCR, SCD, AHpairs, and νSVR. We note that several of these features were designed524

to be used individually for fixed sequence composition and length, and that combining them525

as input to the NN helps overcome this limitation. The AHpairs is a new feature that we526

designed for this work to quantify the interaction between chains. For each residue pair in527

the protein, AHpairs calculates a score based on the uAH term for hydrophobic interactions528

in Eq. 2 scaled by the interaction volume (Table S1).529

We performed a hyperparameter grid optimization for α and architecture of hidden layers,530

converging on a final set of parameters, α = 5 and two hidden layers of 10 nodes each531

(Fig. S2). As for the SVR model, the accuracy of the model was determined by 50 cross-532

validations (80% training, 20% validation), using Pearson’s r and RMSD as metrics.533

We selected 26 sequences from the IDRome10 for final assessment of model accuracy. As534

for the IDRome90 convergence test above, the sequences were selected randomly from bins535

of predicted ∆G values, now using the NN predictor instead of the SVR predictor to sort536

sequences into ∆G bins. We used the same ∆G bin definitions as above.537

Monte-Carlo simulations in sequence space538

We performed Monte-Carlo (MC) sampling in sequence space to explore how sequence vari-539

ations by swaps or substitutions relate to changes in PS propensities. The sequence length540

N was fixed to the initial sequence length.541

26

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 3, 2024. ; https://doi.org/10.1101/2024.06.03.597109doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.03.597109
http://creativecommons.org/licenses/by-nc-nd/4.0/


At each iteration, the algorithm chose randomly between swap moves or substitutions542

with equal probability (unless only swap moves were allowed). If swap moves were chosen543

by the algorithm, the residue types of 10 pairs of positions in the sequence were swapped544

(attempted swaps of identical residue types or positions led to repeated tries). If substitution545

moves were chosen by the algorithm, 10 random residues along the sequence were substituted546

with any of the other 19 residue types with equal probability.547

The algorithm computed the features and predicted ∆G of the resulting trial sequences.548

The set of 10 moves (swap or substitutions) were collectively accepted or rejected by the549

algorithm. To be accepted, the features needed to be within tolerance of the constraints,550

where applicable (ν tolerance: 0.001, NCPR tolerance: 0.002). In addition, the predicted551

∆G of the trial sequence needed to satisfy a Metropolis criterion,552

pacc(uold, unew) =


1 , unew ≤ uold

ea(uold−unew) , unew > uold

(9)

with a = 100 and u = k(x− xt)
2, where x and xt are current and target value, respectively,553

and k = 0.3.554

Analysis of structural properties in condensates555

We calculated the Flory scaling exponent ν separately for the dense phase, interface, and556

dilute phase. We root-mean-square (RMS) averaged all intra-protein residue distances dij =557 √
⟨d2ij⟩ (for pairs of residues i, j separated with sequence distance |j− i|) from proteins with558

centre-of-mass in the designated region (e.g. dilute phase). ν was then obtained from a fit559

of dij = R0|j − i|ν to the data, with R0 as flexible fit parameter and |j − i| > 5.560

In order to compute binned profiles of Rg vs. z-position, we computed Rg =
√
⟨R2

g⟩ for561

all chains and trajectory frames. We constructed histograms of Rg(z) by distributing the562

calculated chain Rg values to the z-positions of the residue beads of the protein, following563

the method in Farag et al. 33 . For each bin, we then calculated an RMS-averaged Rg.564
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We calculated an order parameter (Sz) to quantify the extent to which chains are aligned565

along the z-axis:566

Sz = P2 [cos(θi)] (10)

Here, P2(x) =
1
2
(3x2 − 1) is the second Legendre polynomial, and θi the angle between567

the smallest principal axis of the chain i (corresponding to longest chain elongation) and the568

z-axis ([0,0,1]) of the simulation box. As for Rg above, we calculated Sz for every protein569

chain at each time frame, and performed bin-wise averaging along z using the z-positions570

for each amino acid residue (bead) in the protein, resulting in a single mean ⟨Sz⟩ value.571

In this way, the z-dependent profiles represent the average Rg and Sz of all frames and572

chains while accounting for the inhomogeneous distribution of protein bead positions for573

each IDR.33574

Data and code availability575

Data and code used for this work is available via https://github.com/KULL-Centre/576

_2024_buelow_PSpred. An web implementation of the neural network models can also be577

run using https://colab.research.google.com/github/KULL-Centre/_2024_buelow_PSpred/578

blob/main/PSLab.ipynb. Our simulation data is available via https://sid.erda.dk/579

sharelink/hlZfnFz4AM.580
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Supporting Information814

Table S1: Sequence features used in this work.

N Sequence length.

λ̄ Mean sequence hydrophobicity λ̄ = 1
N

∑N
i=1 λi for sequence of length N . We use

the λ values from the CALVADOS 2 model.15

faro Fraction of aromatic residues, faro = 1
N

∑N
i=1 ai with ai = 1 for residues Phe,

Tyr, Trp, and ai = 0 otherwise.
SHD Sequence hydropathy decoration73 using λ values from CALVADOS 2.

NCPR Net charge per residue, NCPR = 1
N

∑N
i=1 qi with qi the charge per residue. The

N-terminus and C-terminus are positively and negatively charged, respectively.

FCR Fraction of charged residues FCR = 1
N

∑N
i=1 Qi. Qi = 1 for nonzero charges,

Qi = 0 otherwise.
SCD Sequence charge decoration.31

AHpairs AHpairs = 1
N(N+1)/2

∑N
i=1

∑N
j=1

∫ rc
21/6σ

4πr2ui,j
AH. Sum of scaled attractive part of

integrated pair potential for all pairs of sequence residues. uAH corresponds to
the Ashbaugh-Hatch potential Eq. 6.

νSVR SVR model for Flory scaling exponent.50

κ Charge patterning parameter.32

Rg Radius of gyration in nm.
Mw Molecular weight in Dalton.
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Figure S1: (A) SVR model cross-validation Pearson r and RMSD of prediction of ∆G for
increasing numbers of simulated sequences. Scatter plot of simulated vs. SVR predicted ∆G
values (n=362).
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Figure S2: Hyperparameter search for the regularization term, α, and the hidden layer
architecture (‘hl’) for (A) the ∆G and (B) the saturation concentration model. Both models
have optimal parameters α = 5 and hl = (10, 10).
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Figure S3: Histograms of the ∆G distribution for the IDRome. We note that the dynamical
range of the simulations means that sequences with ∆G < −10 kBT will have calculated
values of ∆G ≈ −10 kBT and sequences that are not predicted to undergo spontaneous PS
(∆G > 0 kBT ) will have ∆G ≈ 0 kBT .
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Figure S4: Mean values of ∆G for pairs of features including λ̄. Shading from blue to red
indicates increased propensity to undergo PS.

39

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 3, 2024. ; https://doi.org/10.1101/2024.06.03.597109doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.03.597109
http://creativecommons.org/licenses/by-nc-nd/4.0/


-5.000 0.500 6.000
SCD

0.300

0.450

0.600

-5.000 0.500 6.000
SCD

0.000

0.075

0.150

f a
ro

-5.000 0.500 6.000
SCD

1.500

3.750

6.000

SH
D

-5.000 0.500 6.000
SCD

-0.250

0.000

0.250

NC
PR

-5.000 0.500 6.000
SCD

0.000

0.300

0.600

FC
R

-5.000 0.500 6.000
SCD

-0.900

-0.600

-0.300
AH

pa
irs

-5.000 0.500 6.000
SCD

0.450

0.535

0.620

SV
R

6

4

2

0

G
 [k

T]
6

4

2

0

G
 [k

T]

6

4

2

0

G
 [k

T]

6

4

2

0

G
 [k

T]

6

4

2

0

G
 [k

T]

6

4

2

0

G
 [k

T]

6

4

2

0

G
 [k

T]

Figure S5: Mean values of ∆G for pairs of features including SCD. Shading from blue to red
indicates increased propensity to undergo PS.
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Figure S6: NN model for prediction of ∆G using combinations of up to two features as input.
The model using all features listed in the main text is shown as reference. Model parameters
are α = 5 and 2× 10 hidden layers.
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Figure S7: (A) Scatter plot of predicted prediction error vs. true prediction error for an
error model that we trained on 389 IDRome90 simulations. (B) True prediction error vs.
simulated ∆G values. (C) Predicted prediction error vs. simulated ∆G values.
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correspond to independent runs and starting points of the algorithm. The results show that
changes to predicted PS propensities (∆∆G) are reflected in single chain compaction (νSVR),
and mostly driven by changes in charge patterning (∆SCD).
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Figure S9: Changes to predicted PS propensity (∆∆G) for Monte-Carlo optimization to-
wards low ∆G, using swap moves with νSVR restrained to the values of the starting sequence.
Different colours correspond to independent runs of the algorithm. The results show that it
is difficult to change the predicted PS propensities (∆∆G) without changing the composition
and single chain compaction (νSVR). Small changes in ∆∆G are mostly driven by changes
in νSVR within the restraint limit.
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Figure S10: Scaling exponent ν from coexistence simulations of IDRome90 sequences sim-
ulated during the active learning protocol with −10 < ∆G/kBT < −4. The dilute phase,
dense phase, and interface are defined based on a hyperbolic tangent fit to the concentration
profile (Methods). For each frame in the trajectory, the proteins are placed in one of the
three regions based on the z-position of the centre-of-mass of the IDR. Dashed black lines
show scaling exponents from 200 ns single chain simulations with one protein in a simulation
box of 25 nm x 25 nm x 25 nm. With this definition of compaction, regions and method for
averaging, we find for these sequences that generally νdense > νinterface > νdilute.
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Figure S11: Profiles of Rg, Sz, and concentration binned along the long box edge z for nine
examples of direct-coexistence simulations. Blue, green, and yellow shading indicate the
dense phase, interface, and dilute phase, respectively.
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Figure S12: Correlation between condensate properties at the interface and transfer
free energies. (A) Correlation plot of orientation order parameter Sz and bin-averaged
R̄g,interface/R̄g,dense. (B) Correlation plot of R̄g,interface/R̄g,dense and ∆G. (C) Correlation
plot of Sz and ∆G. The data include simulations acquired during active learning, with
−10 < ∆G/kBT < −4.
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Figure S13: Density time traces along the z direction of simulation box for simulations
excluded from the IDRome90 (blue) and IDRome10 (red) set.
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