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2 Abstract

3 Phase separation is thought to be one possible mechanism governing the selective
4 cellular enrichment of biomolecular constituents for processes such as transcriptional
5 activation, mRNA regulation, and immune signaling. Phase separation is mediated by
6 multivalent interactions of biological macromolecules including intrinsically disordered
7 proteins and regions (IDRs). Despite considerable advances in experiments, theory
8 and simulations, the prediction of the thermodynamics of IDR phase behaviour re-
9 mains challenging. We combined coarse-grained molecular dynamics simulations and
10 active learning to develop a fast and accurate machine learning model to predict the
1 free energy and saturation concentration for phase separation directly from sequence.
12 We validate the model using both experimental and computational data. We apply
13 our model to all 27,663 IDRs of chain length up to 800 residues in the human proteome
14 and find that 1,420 of these (5%) are predicted to undergo homotypic phase separa-
15 tion with transfer free energies < —2kpT. We use our model to understand the rela-
16 tionship between single-chain compaction and phase separation, and find that changes
17 from charge- to hydrophobicity-mediated interactions can break the symmetry between
18 intra- and inter-molecular interactions. We also analyse the structural preferences at
19 condensate interfaces and find substantial heterogeneity that is determined by the same
20 sequence properties as phase separation. Our work refines the established rules gov-
21 erning the relationships between sequence features and phase separation propensities,
2 and our prediction models will be useful for interpreting and designing cellular exper-
23 iments on the role of phase separation, and for the design of IDRs with specific phase
2% separation propensities.

» Introduction

» Biomolecular condensates are large, dynamic assemblies of macromolecules in the cell. In
27 contrast to membrane-bound organelles, biomolecular condensates are not enclosed by a

2 lipid bilayer and their composition is predominantly governed by the differences in inter-
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20 molecular interactions between macromolecules inside and outside the condensate, and with
% the solvent.'™ Various types of these condensates have been identified in the cell, including
a the nucleolus, Cajal bodies, and promyelocytic leukaemia (PML) bodies in the nucleus; and
» P bodies, stress granules, and Balbiani bodies in the cytosol.%** Physiological functions of
13 biomolecular condensates include buffering of local and cellular concentrations, response to
s stimuli and stress, transcriptional regulation, or gating through the nuclear pore complex,
55 among others.??

36 The biophysical origins of condensate formation in the cell are an active area of research.
w Phase separation (PS) coupled to percolation, involving the reversible de-mixing of solutes
;s into biomolecule-dense and dilute phases, is thought to be one of the mechanisms underly-
% ing condensate formation.® Multivalent interactions, often involving intrinsically disordered
o regions (IDRs) of proteins, contribute to driving PS.™ Polymer theory has proven to be
s a powerful foundation to interpret in witro experiments on PS, and has been particularly
2 useful for understanding the phase behaviour of a single species of IDRs.*™*! In practice,
i3 PS of IDRs depends on the IDR sequence and external conditions such as temperature and
i the type and concentration of ions in solution.

15 Experiments, theory and simulations have been used together to shed light on the rules
s governing PS in wvitro and in vivo. The sticker-and-spacer model has proven successful in
« rationalizing and predicting sequence-dependent PS.™2 When this framework is applied to
s IDRs, amino acid residues are categorized into stickers, which contribute the major driv-
s ing force for PS through for example hydrophobic, -7, and electrostatic interactions; and
so spacers, which intersperse the stickers and contribute weaker interactions. The patterning
s1 of sticker residues along the linear sequence determines the condensate-spanning network of
s2  sticker-sticker interactions and, thereby, the extent of de-mixing. On the other hand, spacers
53 influence the solubility of the macromolecules and modulate PS propensities and, thereby,

s« the extent of de-mixing.©

55 A number of previous studies have helped uncover how sequence properties of IDRs affect
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ss  PS. Through the design of constructs of different repeat sequences, Quiroz & Chilkoti tuned
sv the upper and lower critical solution temperatures (UCST and LCST, respectively) of syn-
ss thetic IDRs and proposed a set of sequence rules governing PS, including molecular weight,
so zwitterionic character, aromaticity, and arginine content.™® A number of subsequent studies
o have further highlighted the important roles of aromatic residues as stickers?!4 and ranked
e them in the order Phe<Tyr<Trp based on their relative strength in driving PS.2H2140
&2 Studies on different IDRs have also identified Arg as a sticker, primarily thought to be due
&3 to its interactions with aromatic residues, although Arg—Arg interactions may also play a
s role,*” while Lys has been characterized as a spacer.*#1418 Moreover, PS is also affected
s by substitutions between spacer residues, such as Gly-to-Ser, Gly-to-Ala, Ser-to-Thr, and
6 Asn-to-Gln."® The effects are governed by changes in the solvation volume of the IDR
& and are sensitive to sequence context and solution conditions.*®1¥ Both aromatic and charge
s patterning have been shown to measurably influence PS of IDRs;*#%%22 thus even at fixed
e amino acid composition, the sequence patterning may affect PS substantially as shown for
0 example by shuffled variants of the low complexity domain (LCD) of hnRNPA1%%, the LAF-1
71 RGG domain"® and NICD.*!

72 Coarse-grained simulations of physics-based models of IDRs with residue-level resolution
73 have been instrumental in elucidating the sequence dependence of PS. 21223729 I many of
7+ these models, short-ranged interactions are described using a modified Lennard-Jones (LJ)
7 potential, where the stickiness of each residue is captured by amino acid-specific parameters.
7 Additionally, salt-screened electrostatic interactions between charged residues are described
7 using the Debye-Hiickel potential.**** Investigations of PS using these models commonly
7 employ direct coexistence simulations, wherein a single condensate is formed in an elongated
7o simulation box, making it pseudo-infinite along the shorter box sides and thereby reducing
s finite-size effects.”” Dignon et al. combined single-chain and direct coexistence simulations of

s the LCD of FUS, hnRNPA2, LAF1, TDP-43, and their variants to investigate the relation-

g2 ship between IDR single-chain expansion and multi-chain PS.*? The authors found a strong
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s correlation between UCST and the © temperature at which the isolated IDR has ideal-chain
s compaction, i.e., a Flory scaling exponent v of 0.5. Further, applying analytical theory to
&5 sequences composed of equal numbers of Lys and Glu, Lin & Chan showed that UCST vs.
s radius of gyration (R,) follows a power law whereas UCST depends linearly on sequence pa-
&z rameters quantifying charge patterning,“ i.e., sequence charge decoration (SCD)*! and x."2
ss Lhis coupling between single-chain compaction and propensity to undergo PS has been ex-
g0 ploited to develop transferable residue-level models through data-driven approaches in which
o models are trained on data from experiments probing single-chain conformational proper-
o ties, PLORATETEISS We have developed one such model, CALVADOS, by deriving the stickiness
e parameters from experimental small angle X-ray scattering and paramagnetic relaxation en-
s hancement NMR data.1®2” These physics-based models accurately estimate the propensity
o of IDRs of diverse sequences to undergo PSH42028 and capture the decoupling between
os single-chain compaction and PS propensities for sequences with large absolute values of the
e net charge per residue (NCPR).2#40

o7 Polymer theory and coarse-grained simulations of IDRs have also highlighted a strong
s correlation between the second virial coefficient and PS propensity,?#* which led to the
o development of an analytical model for predicting PS of IDR mixtures based on two-body
o IDR-IDR interactions.®® The relationship between chain compaction, virial coefficients and
1w PS have also led to approaches to use single-chain simulations to predict phase diagrams
102 for IDRs. #9537 Strategies to quantify interactions in phase-separating IDR mixtures have also
103 been developed.”™® Recent work identified connections between the second virial coefficient,
10« mobility, and PS propensity of IDRs.®” The authors used an active learning protocol to learn
s and characterize the trade-off between PS propensity and protein mobility in condensates
106 from coarse-grained simulations,”” and to define molecular features to generate solutions of
17 multiple components in distinct phases of different composition.*"

108 Sequence-based predictors of PS behaviour in vitro and in vivo have been developed,

1o either employing heuristic rules or based on supervised machine-learning (ML) approaches.
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o The ML predictors are often trained on experimental data (e.g., in vivo PS databases) to
w1 learn sequence rules governing in vitro PS propensities or in vivo localization to biomolecular
n2  condensates. These predictors generally aim to classify IDRs into two groups—phase sepa-
us rating and not phase separating—and estimate the probability to undergo PS of a given IDR
us  without quantifying transfer free energy or saturation concentration. For example, DeeP-
us hase is trained using sequence feature embeddings to distinguish PS-prone IDR sequences
s from structured proteins and non-PS-prone IDRs.*¥ FuzDrop predicts the droplet-promoting
117 propensity of proteins based on the entropy differences in the bound and unbound state.*?
us  The catGRANULE algorithm predicts a granule-localization propensity from sequence using
1o features including RNA binding and structural disorder propensities.*® PScore predicts PS
120 propensity from m-7 interaction frequencies alone.** PSAP and ParSe (v2) are classifiers
21 trained on curated in vitro and in vivo PS databases to predict if a protein undergoes PS
122 based on sequence features.**#% FINCHES uses parameters from coarse-grained force fields
123 and a mean-field approach to estimate homo- and heterotypic interactions including semi-
120 quantitative estimates of phase diagrams.*” Simulations have also been used to derive rules
s enabling predictions of variations in PS of specific families of IDRs.?48

126 Despite the many advances highlighted above, it is still challenging to accurately predict
127 the concentrations of the dense and, importantly, the dilute phase, even for in vitro systems
s of a single species of IDR in solution. In turn, predicting the free energy of transfer from
120 dilute into the dense phase is likewise challenging, in particular due to the sensitivity of the
150 dilute phase (saturation) concentration to sequence changes. 4%

131 Here, we exploit the accuracy of coarse-grained simulations to estimate the PS propen-
132 sity of IDRs1#28:838849 £ develop a machine learning model that efficiently predicts phase
1313 behaviour of single-component protein solutions from sequence across a broad region of se-
134+ quence space. As the reference physics-based model we use CALVADOS, which recently

135 enabled the characterization of structural ensembles of all IDRs in the human proteome, i.e.,

13 the human IDRome.”” While simulations of single chains are extremely fast, simulating a
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137 system of ~ 100 chains using CALVADOS requires on the order of several days on a modern
s GPU. Therefore, a simulation screen of PS propensities for the whole human IDRome would
130 be computationally extremely expensive.

140 To overcome this limitation, we here develop and employ an active learning protocol to
w select =400 sequences for direct-coexistence simulations with CALVADOS. We then use the
12 results to train a neural network regression model that accurately predicts saturation concen-
3 trations and transfer free energies of single-component protein solutions in vitro directly from
s sequence. Through extensive validation against both simulation and experimental data, we
s show that our machine learning model has an accuracy on par with CALVADOS simulations
us at a fraction of the computational cost, and use the results to shed light on the interplay
w7 between sequence features that determine homotypic PS. Finally, we exploit the wealth of

us simulation data to study structural properties of the condensates and their interfaces.

«» Results and Discussion

s An active learning protocol to predict transfer free energies from

151 Sequence

12 We have previously shown that CALVADOS simulations give rise to dilute phase concentra-
153 tions that are in good agreement with experiments for a range of proteins and variants. %
15« We therefore aimed to develop a PS predictor based on results from phase coexistence simu-
155 lations using CALVADOS 21927 (Fig. [[JA). We used an active learning protocol to generate
1ss & diverse set of training data covering a large feature space in the human IDRome, so as to
157 allow the model to correlate a broad range of sequence features to PS propensities (Fig. )

158 For the purpose of the active learning protocol, we initially built a support vector regression

150 (SVR) model to predict the propensity of IDR systems to undergo homotypic PS, expressed
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Figure 1: An active learning framework for predicting phase separation. (A) Active-learning
protocol to train a PS predictor from simulation data. SVR: Support vector regression.
The iterative sampling and training was driven by SVR models; once sampling had been
completed we trained dense neural networks to predict the AG values and the saturation
concentrations. (B) Convergence of the active learning protocol for an IDRomeg, validation
set (n=27).

1o as transfer free energies AG,

AG = T In “dhuee (1)

Cdense

161 from sequence features (see Methods). We fixed simulation conditions to 7" = 293 K and ionic
12 strength of I = 150mM to be compatible with many in wvitro experiments. The dynamic
13 range of the simulations is roughly AG = —10 kgT to AG ~ 0 kgT’; sequences that give
e Tise to AG < —10 kg7 have so few proteins in the dilute phase during the simulation time
s that they cannot be distinguished. Similarly, sequences that are not predicted to undergo
166 spontaneous PS (AG > 0 kgT') will be assigned to AG = 0 kgT because we cannot detect
167 any stable condensate (see Methods).

168 At each learning iteration, we re-trained the SVR model on the current set of AG values
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160 collected from the coexistence simulation results to predict AG from sequence input features.
1o The input features encode the physics of the CALVADOS 2 force field (Table[S1} The model
i selected new sequences to simulate out of a pool of 90% of the human IDRome (IDRomegy).
12 The remaining 10% (IDRome;q) were held out as a validation set that we only examined
173 after having finalized model development and training. Briefly described, our active learning
e protocol selected new sequences for simulation based on three conditions: (1) Large range of
s AG values (roughly AG ~ —10 kgT to AG ~ 0 kgT ), (2) highest inter-model uncertainty
s in cross-validation, so as to select new sequences that the model was unsure about, and (3)
w7 large coverage of input sequence feature space.

178 We monitored the convergence of the active learning protocol by calculating Pearson’s
e correlation coefficients (r) and root-mean-squared deviations (RMSD) between the SVR
150 predictions and simulations of AG via cross-correlation (80% training, 20% test) as a function
g1 of the number of simulation sequence data points used for training (Fig. ) The values of
12 RMSD and r reached a plateau beyond ~ 250 simulations (with a total of 362 simulations),
183 and scatter plots of predicted vs. simulated AG show that the model can distinguish different
1 PS propensities (Fig. [S1B). We therefore tested the convergence of the model for a set of 27
185 independent sequences from IDRomeyg, (Fig. ) We observed a strong improvement of the
16 prediction accuracy up to &~ 250 included simulated sequences, with only small improvements

17 beyond. We therefore concluded that the training has converged.

1w Dense neural network improves prediction accuracy and is trans-

s ferable

1o Having established convergence of the SVR prediction model, we pooled all simulation data
1 from training and convergence test within the IDRomeg, set, resulting in 362 + 27 = 389
102 sequences. We used these data to train two slightly different dense neural networks (NN):
103 The first model predicts the transfer free energy AG (Eq. , whereas the second model

14 predicts the natural logarithm of the saturation mass concentration of the IDR, i.e. of
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105 the dilute phase concentration in the coexistence simulations. We optimized the network
106 architecture via a grid search in parameter space (Fig.[S2)). Different architectures with two
107 hidden layers gave very similar prediction performance (as measured by RMSD). We selected
108 the model with hyperparameters a = 5 and 2 x 10 hidden layers for its combination of high
19 performance and speed.

200 The resulting AG and In ¢,y models showed excellent prediction accuracy, as measured
21 by cross-validation (Fig ,D). To test if the NN models can be generalized to previously
200 unseen data (i.e. data outside the sequence pool that could be selected during active learning
203 of the SVR model), we predicted AG values for 26 held-out IDRome; sequences. We find
204 that the models predict AG and Incg, for these independent sequences as accurately as
2s for the IDRomegyy sequences, thus concluding that the models predict AG and In ¢y, with
25 7> 0.9 and RMSD< 1 (Fig. 2B,E).

»» Benchmarking the prediction model with experimental data

28 The good prediction of CALVADOS 2 AG values by the NN model is encouraging, as the
200 CALVADOS 2 model in turn has been fine-tuned to match experimental saturation concen-
20 trations.™® We therefore aimed to directly compare the NN predictions with experimental
o data. We collected simulation and experimental PS data of the LCD of hnRNPA1 and LAF1,
212 as well as variants thereof, from the original CALVADOS 2 parameterization work, none of
23 which were used during training of the NN models."® Remarkably, sequence variant effects
zs for both the simulation AG values (Fig. [2C) and the experimental saturation concentrations
zns  (Fig. [2F) were predicted very accurately by the NN model, with RMSD= (.62 and Pearson’s

26 = 0.92, on par with the simulation results (RMSD= 0.60, r = 0.91).

-z PS predictions are interpretable with sequence features

28 We used the NN model to predict AG for all sequences in the human IDRome, again noting

20 the dynamic range of our simulations and analyses corresponds to —10 < AG/kgT < 0.

10
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Figure 2: Accurate machine learning models enable quantitative predictions of phase sep-
aration. Results from (A, D) IDRomeyy cross-validation, (B, E) IDRome;o validation, and
(C, F) further simulation/experimental validation for NN predictors of AG (A-C) and the
natural logarithm of the saturation concentration (D-F). Circles in (F') represent predictions
by the NN and crosses represent CALVADOS 2 simulation results.
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20 The distribution of AG is strongly skewed towards sequences with weak or non-PS values
21 (Fig.[S3)). Only 571 (2%), 892 (3%), or 1,420 (5%) out of the 27,663 sequences in the IDRome
22 (< 800 residues) are predicted to undergo PS when using PS thresholds of AG < —4 kgT,
23 -3 kT, or -2 kgT', respectively. Therefore, only a small fraction of IDRs in the IDRome are
24 predicted to undergo PS without partners at the given conditions (7' = 293 K, I = 150 mM).
225 We correlated the predicted AG values with each of the individual sequence features that
26 we use as input to the NN model (Fig. 3). As expected, the mean sequence hydrophobicity,
227 hydrophobic patterning, charge patterning, and predicted single-chain scaling exponent all
»s correlate positively with increased predicted PS propensity (low AG). Lower absolute NCPR
29 likewise correlates with lower AG. Thus, the NN learned overall effects of physical properties
20 that have previously been shown to affect PS and which are captured in the CALVADOS
2n model. The high standard deviations across individual bins indicate that none of the indi-
22 vidual features we analysed can quantitatively predict the PS propensities. In addition to
233 highlighting the complex interplay between features, we also note that some of the features
24 have been derived to capture properties of the sequence at fixed composition and length, and
25 were therefore not designed to be used alone across the diverse set of IDRome sequences.!
236 We also investigated the dependence of AG on two combined features, e.g., A and all
a7 other features, or SCD and all other features (Figs. and . The corresponding 2D
233 histograms show which combinations of features allow a clear distinction between low and
20 high AG values. The combinations (A, vgyr), (A, SHD), (A, SCD) show clear AG separation
20 potential, as do the combinations (SCD, FCR), (SCD, SHD), and (SCD, vsyr). Like our
.1 previously described model for single chain compaction,® our model therefore likely uses
a2 several related features to disentangle effects of sequence composition, patterning and length.
203 We also trained AG NN models on a reduced set of input features, using only one
24 feature or combinations of two features as input (Fig. . Combinations of descriptors
25 of sequences hydrophobicity and single-chain scaling expansion (which itself uses several

25 features as input) performed best. All models using one or two input features were much

12
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Figure 3: Correlation of IDRome AG with input sequence features. Error bars indicate the
standard deviation per bin. Grey lower histograms indicate the number of sequences per
bin. Colours indicate number of sequences per bin corresponding to the histograms below,
with darker colour indicating more proteins.

a7 less predictive compared to the full model with all features, necessitating the full model for
us  quantitative predictions of AG.

249 We investigated, how confidently the model predicts AG for different regions in feature
0 space. Using the data from 389 simulation results in the IDRomegy, set, we trained a model
1 to predict the unsigned prediction error of AG (Fig. based on sequence features and pre-
2 dicted AG values. The prediction error model underestimated the compounded simulation
253 and prediction error (RMSD = 0.7 kgT vs. 1.0 kgT') and is only weakly correlated with the
e true absolute difference of AG and predicted AG (r = 0.54; Fig. [STA). The error for the
s AG model and the predicted error for the AG model only depend weakly on the simulated
» AG (Fig. [S7B,C). In light of these results, we instead report the RMSD of the IDRomes,
27 validation set (RMSD(AG)=0.90 kgT and RMSD(In ¢y, )=0.82) as global estimates of the

s prediction errors.
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» (Correlation between single-chain features and PS propensity.

xw0 Previously, the relationship between sequence, single chain features and PS propensities have
1 been studied. In particular, it has been shown that measures of single-chain compaction
%2 such as the Flory scaling exponent, v, are correlated with the PS propensity for related
23 variants of given sequences. 030 We leveraged our fast model to screen thousands of sequence
4 variants in order to learn which features might affect v and AG differently. To this aim,
s we performed Monte Carlo (MC) sampling in sequence space to explore how our AG model
x6  reacts to sequence perturbations, starting from a range of weakly to intermediately PS-prone
27 sequences (—4 < AG/kgT < —1).

268 We first determined the effect of free sequence exploration on AG via swap moves, i.e.,
20 reshuffling the residues of a given IDR composition (Fig. . We observed clear positive
o0 correlations between changes in vgyr and AG as well as SCD and AG, in agreement with
on earlier findings. "% In contrast, we do not see a strong effect of hydrophobic patchiness
a2 (SHD) for a given composition.

273 We then asked, which changes in sequence features might possibly break the correla-
o tion between single-chain scaling exponent vgyg and PS propensity, i.e., which changes in
s the sequence reduce or increase AG while maintaining fixed single-chain expansion v. We
s therefore performed a MC walk in sequence space towards low predicted AG.

217 We first restricted the MC algorithm to only swap moves while restraining vgygr close to
s their original values. Given these restraints, AG values could barely move away from their
20 starting values (Fig. . The patchiness of charges and hydrophobic residues increased with
20 PS propensity and vgyr until vgyr reached the pre-set restraint tolerance, beyond which the
21 MC algorithm was stuck, with overall absolute changes in AG < 0.4 kgT.

282 We modified the algorithm in a second step, now allowing substitutions to any of the
23 19 other residue types (i.e. changing sequence composition) to assess, how vgyr and PS
284 propensity are globally decoupled. We fixed NCPR alongside vgygr in this step, as we ex-

x5 pected the effect of net charge to dominate more subtle effects. 182527 Dyuring the MC walks
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Figure 4: Effect of Monte-Carlo sequence optimization towards strong PS (target AG = —10
kgT) starting from random sequences in window —4 < AG/kgT < —1 using swap moves
and single substitutions while restraining rsyr and NCPR. Different colours correspond to
independent runs of the algorithm.

towards low AG with swap and substitution moves, sequences increased in hydrophobicity
(M), whereas the fraction of charged residues decreased to maintain the same single-chain
compaction (v) (Fig. ). Thus we find that, for fixed single-chain compaction, hydrophobic
sequences tend to phase separate more strongly than sequences whose compaction is driven
by charge interactions.

The key findings from our sequence exploration runs are: (1) For a given sequence compo-
sition, changes in SCD and vgyg are strongly correlated with changes in PS propensities. (2)
For a given composition, AG and vgyg are so tightly coupled, that we could not substantially
move one without the other. (3) Globally, hydrophobic sequences with low charge content
(and low patterning) as well as less hydrophobic sequences with higher charge content can
have the same vgyr but substantially different PS propensities, with the former showing

stronger PS.
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»s Variations in structural properties at the condensate interface

200 In line with expectations for homopolymers, we and others have previously found that IDRs
30 are more expanded in homotypic condensates than in dilute solution of a poor solvent (wa-
1 ter) 1480 To examine these effects more broadly, we calculated v in the dilute and dense
52 phases of 110 of the 389 training data sequences that we simulated during the active learning
303 protocol and which had —10 < AG/kgT < —4. While the chain compaction in the dilute
;4 phase varies substantially across sequences, in agreement with the compaction estimated
25 from single-chain simulations, the IDRs all have v ~ 0.5 (Fig. in the dense phase, in
w6 line with the condensates acting as a © solvent for the IDRs.

307 The substantial variation and differences in structural properties in dilute and dense
;s phases suggest that there might also be variation in structural properties at the condensate

199 used lattice simulations to examine the structural preferences,

w0 interfaces. Farag et a
si0 chain expansion and orientation of the LCD of hnRNPA1 in the dense phase, condensate
su interface, and dilute phase, and found both increased chain expansion and a propensity
;12 to take on an orientation perpendicular to the interface for chains located at the droplet
sz interface. In other studies—using different simulation frameworks, analysis methods and
su IDR sequences—chains at the interface have been found to be more compact than in the
a5 dense phase.?2 54

316 We used our large-scale direct coexistence simulations of substantially different IDR se-
a7 quences to quantify structural preferences at the interface and compare them to those in
s the dilute and dense phase. We calculated bin-weighted®® profiles of the radius of gyration
a0 (Ry) along the direction normal to the condensate interface (that is along the z axis) from
2o the 110 direct coexistence simulations (Fig. and additional examples in Fig. [S11]). To
21 compare the compaction across sequences, we normalized the Ry(z) values by the average
2 value in the dense phase. In line with the calculations of v (Fig. , we find that the
23 expansion at the interface is generally between that in the dilute and dense phase (Fig. )

2+ In line with previous findings,”*¥ we find, however, substantial complexity in the structural
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»s properties along the interface for many sequences (see Fig. for examples), and for some
26 sequences we find that parts of the interface have a bin-weighted R, greater than the dense
2 phase (Fig. [fB).

328 Inspired by previous analyses of IDR orientation,#425

we calculated a chain order pa-
»9 rameter, S,, to quantify the extent to which chains are aligned along the z-axis. S, =1
30 corresponds to full alignment along the z-axis (normal to the interface), an isotropic dis-
s tribution of orientations gives S, = 0, and S, = —1/2 indicates alignment orthogonal to
sz, i.e. parallel to the condensate surface. We calculated S, for each chain and time step
;3 and averaged S, values for each bin along the z-axis to obtain an orientation profile along
s 2. As expected, we find close-to-random orientations in both the dilute and dense phases
s (Figs. , and . In contrast, we find much greater variation in the behaviour at
136 and near the interfaces, with many sequences showing both positive and negative peaks of
s S, in the interface regions (Figs. and . In many cases we find S, < 0 closest to
s3s the dense phase and S, > 0 further out in the interface region. In line with findings for
1 the hnRNPA1 LCD,®¥ we find that the IDRs in the interface region have a preference to be
so oriented perpendicularly to the interface.

341 Having found considerable variation in the level of compaction and orientational pref-
s2 erences in the interface region, we asked whether these differences were correlated with se-
a3z quence and structural features of the IDRs. We find a strong correlation between Sz,interface
4 and Rg’interface / Rg,dense so that those sequences that are most expanded at the interface are
us  also those that have the strongest preference to be oriented perpendicularly to the inter-
us face (Fig. [S12). We also find that these values are both correlated with AG, so that the
w7 sequences with the strongest driving force for PS also show largest values of S, interface and
s Ry interface/ g dense (Fig. . Since AG is correlated with several sequence features (Figs. ,
349 and , these features also correlate with the structural preferences in the interface

350 region.

17


https://doi.org/10.1101/2024.06.03.597109
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.03.597109; this version posted June 3, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

A B
— 3.5 EXdanded 20 Dense
£ 15 -
o 3.0 Interface
o 0 10 A
Compact .
2.5 P — 5 4 Dilute
A 0.11 0 :
ot 0.6 0.8 1.0
8 Rg /Rg, dense
2 0.0 24 I PV TVAVA o
‘\‘; 20 5
104 4 |
—_ i Interface | w
= 1 N 0 10 A
3 1 o
:‘ 103 _§ 5 . Q
E Dilute O / \\\
0 50 100 150 200 -0.1 0.0 0.1 0.2 0.3
z [nm] < P,[cos(6)] >

Figure 5: Structural properties in the dilute phase, interface region and dense phase. (A)
Example of profiles of R,(z), orientation (S.(z) = (P[cos()])), and protein concentration
(¢(z)) for bins along the long box edge z. Coloured shading indicates the dilute phase (yel-
low), interface (green), and dense phase (blue) regions. (B) Histograms of Ry(2)/Rg dense
distributions from the bin values for all proteins separately for bins in the dense phase,
interface, and dilute phase. All bins contribute equally to these distributions, regardless
of chain or monomer concentration per bin (Methods). (C) Histograms of S, distributions
from pooled bin values for all proteins, as for (B). Black arrows illustrate preferential orien-
tations, whereby S, = 0 corresponds to an isotropic (random) orientation, S, > 0 indicates
preferential orientation along z (normal to the interface), and S, < 0 indicates preferential
orientation orthogonal to z (along the interface). We assign small deviations from S, = 0 in
the dilute phase to be statistical noise from the low amount protein in the dilute phase of
the most strongly phase separating proteins.
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s Limitations

2 CALVADOS was trained to reproduce biophysical measurements of single-chain conforma-
53 tional properties, and has been shown to reproduce both single-chain and PS properties it
s« was not trained on. We therefore rationalized that we could build an accurate prediction
s method for PS by targeting CALVADOS simulations. Nevertheless, these in silico pre-
36 dictions of homotypic PS may not capture all relevant properties of the densely crowded,
357 heterogeneous environment in the cell.* For example, while CALVADOS has been shown
s to capture effects of varying the ionic strength on PS,'® it will not capture specific effects
50 due to ion-specific asymmetrical partitioning in condensates.®” Similarly, sequences that do
30 not undergo homotypic PS (for example highly charged sequences) may undergo PS with
ss1  oppositely charged molecules in the cell. Likewise, other discrepancies between the in vitro
2 and @n vivo conditions will limit the model. While we have validated our prediction methods
33 for natural sequences from the human IDRome, it is possible that they will be less accurate
s for non-natural sequences. We note, however, that sequence design based on CALVADOS
s has shown transferability outside the realm of natural sequences.“*

366 Furthermore, our predictors inherit the strengths and limitations of the CALVADOS 2
sz model. In particular, the AG and cg,; estimations from CALVADOS 2 direct coexistence sim-
% ulations have an absolute relative error, {|Csat, sim — Csat, exp|/Csat, exp)s 0f 90%, % corresponding
30 t0 a RMSD of In(cgt[g/L]) of 0.73. We deliberately trained our model to reproduce PS at a
s fixed set of temperature and ionic strength. Even though it could be retrained at different
sn - conditions, the CALVADOS model does not fully capture variation of PS with temperature,
w2 as only the electrostatic term of the force field is temperature dependent via Eq. 5, whereas
sz the effect of temperature on residue stickiness is not captured in the model. Furthermore,
s the description of electrostatic interactions based on a Debye-Hiickel screening term with
a5 fixed cutoff of 4nm is limited both for very high and low ionic strengths as well as ion-type

s6 and pH-specific effects. 16062
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+ Conclusion

sis - We have developed machine learning models to quantitatively predict homotypic PS of IDRs
sro - at physiologically relevant conditions. We devised and implemented an active learning ap-
;0 proach to select the most relevant simulation data to train a model that estimates PS globally
;1 across diverse sequences. While previous models have been developed to classify sequences
;2 into those that PS and those that do not, we are not aware of other models to predict
;3 the saturation concentration and transfer free energies for a wide set of disordered proteins
384 sequences.

03104 and cellular protein

385 Since PS may be a generic property of a wide range of proteins
;s concentrations can vary substantially, we envisage that the quantitative aspect our model will
;7 be particularly important; because many proteins may undergo PS at some concentration it
s 1s not always clear which conditions a binary PS prediction method refers to. Our results are
s thus complementary to exciting new work by Ginell et al.*”, published as a preprint alongside
300 this manuscript. Leveraging the pairwise interaction parameters of CALVADOS 24927 and

2809 in a mean-field approach, the authors developed a model to

s0  a modified form of Mpipi
32 rapidly compute interaction maps and semi-quantitative phase diagrams between any pair of
33 disordered proteins, validating their method with a range of biologically interesting systems.
304 Condensate interfaces have unique chemical properties and are thought to play potential
05 Toles in both function and pathology.” We have analysed structural features of IDRs in the
w6 dilute and dense phases, as well as the important and unique interface region, and correlated
so7  these with the sequences of the IDRs. We find substantial variation in the conformational
s properties at interfaces that can be explained by the same features that drive formation of
w0 condensates. We also find substantial fine structure and heterogeneity at the interfaces, and
w0 future work is aimed towards understanding the molecular origins of these effects.

a01 We envisage that our prediction methods may become valuable tools for experimental-

w2 ists and theoreticians to obtain rapid and accurate estimates of in wvitro PS propensities

w3 of IDRs before performing costly experiments or simulations, and to design and interpret
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ws experimental and computational studies. Our machine learning models may also be used
ws to explore more widely the relationship between sequence and PS properties and to link
w6 biological properties, disease and PS. The code for our model is freely available, and we also
w7 provide easy access via an online implementation as a Google Colab notebook. Finally, by
ws providing access to a unique and large set of direct-coexistence simulations for a wide range
w0 of sequences, we enable detailed analysis and insights into the relationship between sequence

a0 and PS properties including analyses of the structure and thermodynamics of PS.

« Methods

a2 CALVADOS 2 force field

a3 We performed molecular dynamics simulations using the coarse-grained CALVADOS 2 model.*?
ss  As with similar HPS models,?#°® each protein residue is represented by one bead with size
a5 o and interaction strength \.

416 The full model is a linear combination of contributions to the potential energy,

Unips = Ubond + UpH + UaAH (2)

a7 with uponq the bonded potential, upy a Debye-Hiickel electrostatic potential, and uay is the
ss  Ashbaugh-Hatch modification of a Lennard-Jones potential.®
410 Beads of neighbouring residues in the sequence are connected by bonds described by a

a0 harmonic potential,

tona(r) = Sh(r = 10)? 3

m using k = 8033 kJmol 'nm~2 as force constant and ry = 0.38 nm as equilibrium distance.

22 A Debye-Hiickel potential describes the solvent-screened electrostatic interactions,
0:q; exp(—r/D)
upg(r) = 4
pi(r) Admepe, r @
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w23 with g; the charge of bead i, ¢y the vacuum permittivity, D = y/1/(87Bc;) the Debye length
2 of an electrolyte solution of ionic strength ¢, and B(e,) the Bjerrum length of temperature-

w5 dependent dielectric constant e,.,%"

5321
e.(T) = —5 23376 — 0.9297xT + 1417 1073xT? — 8.292x10 " xT* (5)

a6 HElectrostatic interactions were truncated and shifted at the cutoff distance r, = 4 nm.
a7 Nonelectrostatic nonbonded interactions were represented by a truncated and shifted
»s  Ashbaugh-Hatch (AH) potential®. Tt is a scaled Lennard-Jones (LJ) potential of the follow-

a0 ing functional form,

ury(r) — Aups(re) +e(1 = X), r < 264
war(r) = 4 Mups(r) = ups(re)), 2Vog <1 <1, (6)
07 r>Te
\

w0 with o = (0, 4+ 0;)/2, A = (A + A;)/2 for residues i and j, and the LJ potential

ity =e[(2)" - 2] g

s where € = 0.8368 kJmol ™! and r. = 2 nm.

= Molecular dynamics simulations and estimation of PS propensities

i3 We used the openMM v8.0 simulation package®® to perform molecular dynamics simulations.
ssa Proteins were inserted into an elongated simulation box with dimensions 25 nm x 25nm X
a5 300nm for sequences with more than 350 residues and 20nm x 20 nm x 200 nm otherwise.
s6  Initial configurations were fully elongated proteins (along the z direction) packed in parallel
s37 in the box centre in the z direction.

438 We performed simulations in the NVT ensemble with a Langevin integrator (y = 0.01 ps™)
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a0 with timestep of 0.01 ps. Protein configurations were saved at either 1ns or 10ns intervals.
w0 The first 600 ns of each simulation were discarded to account for equilibration.t® All simula-
a1 tions were run at temperature 7' = 293 K and ionic strength 7 = 150 mM.

442 Time-averaged concentrations in the dense and dilute phases (particle density maps)
w3 were calculated with custom scripts.®” The scripts center the slab in the z direction based
aa on a heuristic estimate of the centre of density. This analysis assumes that there is at most
us one condensed phase in the simulation. Visual inspection of all density time series revealed
ws  that 12 simulations from the IDRomegyy training set and 2 simulations from the IDRome;q
w7 validation set showed the presence of two or more condensed phases; these likely represent
us  simulations that did not converge to a single stable phase during the pre-defined simulation
ao time. Since the analysis framework would erroneously interpret a smaller condensate as
w0 belonging to the dilute phase, and thus overestimate cg,, these were removed from model
1 training and validation. We note that the two simulations that were removed from the
2 IDRomey set were identified before assessing model accuracy. We show the time series for
ss3 the 14 simulations in Fig.

454 In order to compare chain expansion from slab and single chain simulations, we performed
w5 single chain simulations for a subset (n = 110) of sequences simulated in the course of the
s6  active training protocol that show PS with —10 < AG/kgT < —4. We performed each
ss7 - single chain simulation in a simulation box of 25 nm X 25nm x 25nm at the same ensemble
s and conditions as the direct coexistence simulations. Simulations were carried out for 200 ns
s simulation time. The first 20 ns of each simulation run were discarded as equilibration.

460 The boundaries between dense and dilute phase were determined by fitting a hyperbolic

w1 tangent to the concentration profile, as described previously:*®

p(z) = (pa+p)/2+ (po — pa) /2 x tanh[(|z] — zps)/t] (8)

w2 with p, and p, the densities of the dense and dilute phases, respectively.

463 The dense and dilute phases are estimated to be in regions |z| < zps — Pgenset and

23


https://doi.org/10.1101/2024.06.03.597109
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.03.597109; this version posted June 3, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

wi |z| > zps + Baiutets; With Bgense = 1.5 and Bgjue = 2.5 (for sequences ASKS8P3_740_1157,
s 094906-1_81, Q9I6SB4_1_59, Q8NII0_83_138, Q4V348_1_281, O15504_1_116, Q86W67_1_206,
e QIBWV2.1.254) or Bgjute = 5 otherwise. Here, zpg and t are the position of the dividing
w7 surface and thickness of the interface, respectively. We defined the interface as the zone

w8 between the dense and dilute phase, i.e., the region zps — Baenset < |2| < 2ps + Baiutet-

w IDR sequence selection by active learning

a0 We selected IDR sequences for phase coexistence simulations in a multi-step process that we
o devised to maximize model performance at minimal computational cost. Before initiating
a2 the model we selected 10% of the IDRome (IDRomej) to be used for final assessment of the
w3 model and did not analyse these sequences until the final analysis.™ The remaining 90% of
aa the IDRome are denoted as IDRomegy.

475 We first collected initial seed simulations performed at the same temperature and ionic
w6 strength in previous work. The seed consisted of 38 YTH domain protein IDRs®*™ and 28
a7 additional simulations from unpublished projects.

a78 We then devised an active learning protocol to explore new IDR sequences for simulation.
a0 During each step in the active learning procedure, we trained a new support-vector regression
0 (SVR) model with parameters C' = 10 and € = 0.01 to predict transfer free energies AG (Eq.
s to partition into the dense phase. We used the sklearn python package™ for all ML models
a2 in this work. Out of a pool of sequence features, the algorithm selects the combination of
w3 three features that gives the best prediction (measured by the Pearson correlation coefficient,
@ 7). The pool of features consisted of N, A, fao, SHD, NCPR, FCR, SCD, &, R,, v, and
w5 M. The features are defined in Table [SIl In these analyses we used v obtained from
w6 analyses of single chain simulations.”” We determined the prediction accuracy as the average
s Pearson correlation coefficient, r, on the validation set from 50 cross-validations for each
w8 feature combination, each with 80% and 20% of simulations randomly chosen as training

«0 and validation set, respectively. The set of 50 models with average highest-performing input
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wo feature combination was then used to predict AG for all sequences in the IDRomey, set,
w1 resulting in 50 predicted AG per IDRomegy, sequence. Under the assumption that a large
a2 cross-model uncertainty indicates lack of accuracy for specific types of sequences in the
w3 IDRomegy, ™ we restricted the pool of new sequences to simulate to the top 100 sequences
ss  with highest AG variance. Out of these 100 sequences, we picked 5-10 sequences maximizing
ws the distance in feature space, as calculated by the Mahalanobis distance (dy). We first
ws selected the highest variance sequence for simulations; then we selected a second sequence
w7 (out of the 100 sequences) with the highest dy to the first sequence, then a third sequence
w8 by maximizing the sum of dy; to the first two sequences etc., resulting in 5-10 new sequences
w90 to simulate based on available computational resources at each iteration. Based on this
so0 protocol, we iteratively selected and simulated a total of 137 sequences.

501 Following this first phase of sequence exploration, we modified the active learning algo-
sz rithm to focus the learning on a more uniform range of predicted AG values. We therefore
s03  added another criterion to the procedure in the above described protocol: In the modified
soe  protocol, we selected the top 5-10 sequences with highest cross-model variances (top 50%)
sos and dy separately for bins of AG (in units of kgT'): [—o0, —6], [—6, 5], [—5, —4], [-4, —3],
s [—3,—2], [-2,—1], and [—1,1]. In this way, we selected sequences with different values of
sor  predicted AG for further simulations. We iteratively selected and simulated 179 additional
soe  sequences based on this modified protocol.

500 Once the model appeared to have converged, we selected additional sequences for a final
s convergence test from within the IDRomegyy set, drawing 4 new sequences randomly from

su each predicted AG bin, with same brackets as above.

52 Dense neural models to predict transfer free energies and saturation

53 concentrations from the final set of simulations

su. We built and trained two small dense neural networks (NN) to predict AG and In ¢gyq from

si5 sequence features. These models were trained on the final set of 389 phase coexistence
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si6  simulations gathered from the three-step procedure described above.

517 We chose the input features listed in Table [S1|except N, M,,, , as those showed limited
sis prediction accuracy alone or using pairs of features (Fig. . We also removed R, to
s10 restrict the input to features that can rapidly be generated from sequence without requiring
s20 simulation work. In the SVR models described above we used values for the Flory scaling
51 exponent () based on single chain simulations;?” for the NN we instead used an accurate
s2  sequence-based SVR model vgyg.? The prediction of vgyg in turn uses SCD, SHD, x, FCR,
23 and A\ as input features.™ The final input features for the NN were thus X, fao, SHD,
s« NCPR, FCR, SCD, AH, s, and vgyr. We note that several of these features were designed
s to be used individually for fixed sequence composition and length, and that combining them
s as input to the NN helps overcome this limitation. The AHp,is is a new feature that we
so7  designed for this work to quantify the interaction between chains. For each residue pair in
s the protein, AHp,;s calculates a score based on the uap term for hydrophobic interactions
s0 in Eq. [2| scaled by the interaction volume (Table .

530 We performed a hyperparameter grid optimization for o and architecture of hidden layers,
s converging on a final set of parameters, @ = 5 and two hidden layers of 10 nodes each
s (Fig. . As for the SVR model, the accuracy of the model was determined by 50 cross-
s13  validations (80% training, 20% validation), using Pearson’s r and RMSD as metrics.

534 We selected 26 sequences from the IDRomeyq for final assessment of model accuracy. As
s35 for the IDRomegy, convergence test above, the sequences were selected randomly from bins
s3 of predicted AG values, now using the NN predictor instead of the SVR predictor to sort

537 sequences into AG bins. We used the same AG bin definitions as above.

s Monte-Carlo simulations in sequence space

539 We performed Monte-Carlo (MC) sampling in sequence space to explore how sequence vari-
ss0 ations by swaps or substitutions relate to changes in PS propensities. The sequence length

sa. [N was fixed to the initial sequence length.
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542 At each iteration, the algorithm chose randomly between swap moves or substitutions
se3 with equal probability (unless only swap moves were allowed). If swap moves were chosen
saa by the algorithm, the residue types of 10 pairs of positions in the sequence were swapped
ss  (attempted swaps of identical residue types or positions led to repeated tries). If substitution
ss6  oves were chosen by the algorithm, 10 random residues along the sequence were substituted
se7 with any of the other 19 residue types with equal probability.

548 The algorithm computed the features and predicted AG of the resulting trial sequences.
se0  The set of 10 moves (swap or substitutions) were collectively accepted or rejected by the
ss0 algorithm. To be accepted, the features needed to be within tolerance of the constraints,
ss1 where applicable (v tolerance: 0.001, NCPR tolerance: 0.002). In addition, the predicted

ss2 AG of the trial sequence needed to satisfy a Metropolis criterion,

1 y Unew < Uold
pacc(uold7 unew) - (9)
alu —Unew
€ (uota ) s Unew = Uold

s with @ = 100 and u = k(z — x;)?, where z and ; are current and target value, respectively,

s and k = 0.3.

s Amnalysis of structural properties in condensates

ss6  We calculated the Flory scaling exponent v separately for the dense phase, interface, and
ss7  dilute phase. We root-mean-square (RMS) averaged all intra-protein residue distances d;; =
s/ (dy;) (for pairs of residues i, j separated with sequence distance |j —i|) from proteins with
ss0 centre-of-mass in the designated region (e.g. dilute phase). v was then obtained from a fit
oo Of d;j = Ro|j — i|” to the data, with Ry as flexible fit parameter and |j — i| > 5.

561 In order to compute binned profiles of R, vs. z-position, we computed R, = |/(R2) for
s all chains and trajectory frames. We constructed histograms of Ry(z) by distributing the
ses calculated chain R, values to the z-positions of the residue beads of the protein, following

see  the method in Farag et al.®¥. For each bin, we then calculated an RMS-averaged R,.
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565 We calculated an order parameter (.S,) to quantify the extent to which chains are aligned
ses along the z-axis:

S, = Py[cos(6;)] (10)

567 Here, Py(z) = § (32 — 1) is the second Legendre polynomial, and 6; the angle between
ses the smallest principal axis of the chain i (corresponding to longest chain elongation) and the
seo  z-axis ([0,0,1]) of the simulation box. As for R, above, we calculated S, for every protein
s chain at each time frame, and performed bin-wise averaging along z using the z-positions
sn for each amino acid residue (bead) in the protein, resulting in a single mean (S,) value.

572 In this way, the z-dependent profiles represent the average R, and S, of all frames and
s.3 chains while accounting for the inhomogeneous distribution of protein bead positions for

s each IDR. 33

= Data and code availability

st Data and code used for this work is available via https://github.com/KULL-Centre/
sz _2024_buelow_PSpred. An web implementation of the neural network models can also be
s7s run using https://colab.research.google.com/github/KULL-Centre/_2024_buelow_PSpred/
s blob/main/PSLab.ipynb. Our simulation data is available via https://sid.erda.dk/

ss0 [sharelink/hlZfnFz4AM.
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a Supporting Information

Table S1: Sequence features used in this work.

Sequence length.
Mean sequence hydrophobicity A = % Zf\il A; for sequence of length N. We use
the \ values from the CALVADOS 2 model.*®
faro  Fraction of aromatic residues, fai., = % Zf\il a; with a; = 1 for residues Phe,
Tyr, Trp, and a; = 0 otherwise.
SHD Sequence hydropathy decoration™ using A values from CALVADOS 2.
NCPR Net charge per residue, NCPR = % Zfil q; with ¢; the charge per residue. The
N-terminus and C-terminus are positively and negatively charged, respectively.
FCR Fraction of charged residues FCR = % sz\il Qi. Q; = 1 for nonzero charges,
@; = 0 otherwise.
SCD Sequence charge decoration.!
AHppis  AHpais = m Zf\il Zjvzl ;f/%_ 47rr2uiA’]ﬁ. Sum of scaled attractive part of
integrated pair potential for all pairs of sequence residues. uay corresponds to
the Ashbaugh-Hatch potential Eq. 6]
vsyr  SVR model for Flory scaling exponen
k  Charge patterning parameter.
R, Radius of gyration in nm.
M,, Molecular weight in Dalton.

N

t.50

36


https://doi.org/10.1101/2024.06.03.597109
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.03.597109; this version posted June 3, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

A B Cross-validation
Pearson r: 0.92
0.9251 " 257 RMSD: 1.24 o
0.900 ’ -
o
= 0.875 1 PR
2 "3 E
5 0.850 A 2 =~
= : F125 Y
0.825 E S|
0.800 1
F1.1
0.775 -I T T T T T T ’ T T T T T T
50 100 150 200 250 300 350 -10 -8 -6 -4 -2 0
Number of simulations AG [kT] Simulation

Figure S1: (A) SVR model cross-validation Pearson r and RMSD of prediction of AG for
increasing numbers of simulated sequences. Scatter plot of simulated vs. SVR predicted AG

values (n=362).
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Figure S2: Hyperparameter search for the regularization term, «, and the hidden layer
architecture (‘hl’) for (A) the AG and (B) the saturation concentration model. Both models
have optimal parameters o = 5 and hl = (10, 10).
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Figure S3: Histograms of the AG distribution for the IDRome. We note that the dynamical
range of the simulations means that sequences with AG < —10 kgT will have calculated

values of AG ~ —10 kgT and sequences that are not predicted to undergo spontaneous PS
(AG > 0 kgT') will have AG ~ 0 kgT.
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Figure S4: Mean values of AG for pairs of features including A\. Shading from blue to red
indicates increased propensity to undergo PS.
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Figure S6: NN model for prediction of AG using combinations of up to two features as input.
The model using all features listed in the main text is shown as reference. Model parameters

are « = 5 and 2 x 10 hidden layers.
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Figure S7: (A) Scatter plot of predicted prediction error vs. true prediction error for an
error model that we trained on 389 IDRomeg, simulations. (B) True prediction error vs.
simulated AG values. (C) Predicted prediction error vs. simulated AG values.
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Figure S8: Changes to predicted PS propensity (AAG) for free exploration of sequences with
fixed sequence composition (i.e. only allowing for swaps of amino acids). Different colours
correspond to independent runs and starting points of the algorithm. The results show that
changes to predicted PS propensities (AAG) are reflected in single chain compaction (vgyr),
and mostly driven by changes in charge patterning (ASCD).
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Figure S9: Changes to predicted PS propensity (AAG) for Monte-Carlo optimization to-
wards low AG, using swap moves with vgyg restrained to the values of the starting sequence.
Different colours correspond to independent runs of the algorithm. The results show that it
is difficult to change the predicted PS propensities (AAG) without changing the composition
and single chain compaction (vgyr). Small changes in AAG are mostly driven by changes
in vgyr within the restraint limit.
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Figure S10: Scaling exponent v from coexistence simulations of IDRomegy sequences sim-
ulated during the active learning protocol with —10 < AG/kgT < —4. The dilute phase,
dense phase, and interface are defined based on a hyperbolic tangent fit to the concentration

profile (Methods).
three regions based on the z-position of the centre-of-mass of the IDR. Dashed black lines

show scaling exponents from 200 ns single chain simulations with one protein in a simulation
box of 25nm x 25nm x 25nm. With this definition of compaction, regions and method for

averaging, we find for these sequences that generally Vgense > Vinterface > Vdilute-
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Figure S11: Profiles of R,, S, and concentration binned along the long box edge 2 for nine
examples of direct-coexistence simulations. Blue, green, and yellow shading indicate the
dense phase, interface, and dilute phase, respectively.
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Figure S13: Density time traces along the z direction of simulation box for simulations
excluded from the IDRomeg, (blue) and IDRome;, (red) set.
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