

1 **Post-flowering photoperiod sensitivity of soybean in pod-setting**
2 **responses**

3
4 Zhihui Sun^{1,2,#}, LiMei Yuan^{2,#}, Yulin Wang^{2,#}, Ran Fang², Xiaoya Lin^{1,2}, Haiyang
5 Li^{1,2}, Liyu Chen^{1,2}, Yichun Wu², Xin Huang², Fanjiang Kong^{1,2}, Baohui Liu^{1,2,*}, Sijia
6 Lu^{1,2,*}, Lingping Kong^{1,2,*}

7
8 ¹Guangdong Key Laboratory of Plant Adaptation and Molecular Design, School of
9 Life Sciences, Guangzhou University, Guangzhou, China;

10 ²Innovative Center of Molecular Genetics and Evolution, School of Life Sciences,
11 Guangzhou University, Guangzhou, China;

12 #Authors equally contributed to this work.

13 *Corresponding authors

14 Lingping Kong, lpkong@gzhu.edu.cn

15 Sijia Lu, lusijia@gzhu.edu.cn

16 Baohui Liu, liubh@gzhu.edu.cn

17

18 **Word counts for the main sections**

19 Introduction: 1181 words

20 Materials and Methods: 1110 words

21 Results: 2019 words

22 Discussion: 1165 words

23

24

25

26

27

28

29

30

31 **Highlight**

32 Photoperiod sensitivity after flowering affects the pod-setting time in soybean.

33

34 **Abstract**

35 The development of soybean (*Glycine max*) is regulated by photoperiod, with genes
36 related to photoperiod sensitivity primarily focused on flowering time. However, their
37 roles in post-flowering reproductive development and the mechanisms by which
38 photoperiod affects them are not yet determined. In this study, we found that pod
39 formation is sensitive to photoperiod. Long-day (LD) conditions tend to extend the
40 time from flowering to pod formation (R1 to R3 stage), and the first wave of flowers
41 tends to fall off. Additionally, photoperiod affects pistil morphology; under short-day
42 (SD) conditions, the stigma has a curved hook-like structure that facilitates better
43 interaction with the filaments when pollen is released, ultimately influencing the
44 timing of pod formation. Photoperiod-insensitive mutants, lacking *E1* family and
45 *Evening Complex* genes, showed no difference in pod formation time under LD or SD
46 conditions. Hormone content analysis and transcriptome data analysis indicated that
47 various hormones, ROS signals, and the application of sucrose solution *in vitro* might
48 influence floral organ abscission.

49 **Keywords:** flower abscission, photoperiod-sensitive, post flowering, pod-setting,
50 style morphology, RBOH, soybean

51

52 **Introduction**

53 Photoperiod is a rhythmic change in the amount of light received by an organism.
54 Plants sense photoperiod, which enables them to adjust their flowering time according
55 to seasonal changes in light to adapt to growing conditions at different latitudes
56 (Garner and Allard, 1920; Hayama *et al.*, 2003; Silva *et al.*, 2020; Jung *et al.*, 2020;
57 Bu *et al.*, 2021). In addition to regulating flowering time, photoperiod also affects
58 physiological processes such as photosynthesis, growth rhythm, and nutrient
59 metabolism of plants. Plants adjust the intensity and time of photosynthesis by

60 sensing the photoperiod to maximize the use of light energy for nutrient synthesis and
61 growth development. Photoperiod is also closely related to processes such as the
62 distribution of photosynthetic products, carbon metabolism, and the synthesis of
63 phytohormones, directly affecting the growth rate and morphological structure of
64 plants.

65 Soybean is a typical short-day (SD) crop, which is very sensitive to changes in
66 photoperiod. Usually, one variety or germplasm resource is suitable for planting in a
67 particular narrow latitude range because modern cultivated soybean varieties require
68 such specific photoperiods (Watanabe *et al.*, 2012; Lu *et al.*, 2017). The wide genomic
69 adaptability of soybean is mainly achieved through changes in the multiple genes or
70 quantitative trait loci that control the flowering and reproductive period. A growing
71 number of photoperiod-responsive gene loci have been identified and analyzed at the
72 molecular level, including the *E* series (*E1–E4*, *E9*) and *Time of flowering* (*Tof5*),
73 *Tof11*, *Tof12*, *Tof16*, *LUX ARRHYTHMO* (*Lux*), and *J* (Liu *et al.*, 2008; Watanabe *et*
74 *al.*, 2009; Watanabe *et al.*, 2011; Xia *et al.*, 2012; Kong *et al.*, 2010; Kong *et al.*, 2014;
75 Zhao *et al.*, 2016; Lu *et al.*, 2017; Lu *et al.*, 2020; Bu *et al.*, 2021; Dong *et al.*, 2021;
76 Dong *et al.*, 2022). The flowering time loci *E1*, *E2*, *E3*, *E4*, *Tof11*, and *Tof12* play a
77 role in regulating long-day (LD) insensitivity (where mutants of these genes tend to
78 flower earlier even under non-inductive LD conditions such as high latitudes.) (Lu *et*
79 *al.*, 2020; Xu *et al.*, 2013; Lu *et al.*, 2020). Over 80% of low-latitude soybean
80 varieties harbor different mutant alleles in the *J* and *Tof16* genes, suggesting that
81 *Tof16* and *J* play a significant role in soybean adaptation to SD photoperiods (Mutants
82 of these genes tend to have long juvenile and flower late under induced SD (low
83 latitude) condition) (Dong *et al.*, 2021).

84 The photoperiodic response of soybeans not only operates during the pre-flowering
85 growth stages but also plays a crucial role in post-flowering vegetative and
86 reproductive growth processes. (Kantolic *et al.*, 2007; Jiang *et al.*, 2010; Xu *et al.*,
87 2013; Kim *et al.*, 2020). During the post-flowering stages, plants remain sensitive to
88 photoperiod, and this sensitivity is also regulated by maturity genes. (Summerfield *et*
89 *al.*, 1998; Ellis *et al.*, 2000). The interaction between genes and the environment that

90 control the reproductive period directly affects various phenotypic characteristics in
91 the post-flowering stages, such as pod-setting, pod development, terminal vegetative
92 growth, and reproductive growth (Curtis *et al.*, 2000; Kantolic and Slafer 2001, 2005,
93 2007; Cooper *et al.*, 2003; Xu *et al.*, 2013; Nico *et al.*, 2016). The extended duration
94 of R3-R6 under longer photoperiods tend to increase pod and seed number (Kantolic
95 and Slafer 2007). Post-flowering photoperiod extension delayed individual fruit
96 development in soybean from R1 stage to seed filling stage (Nico *et al.*, 2016).
97 However, while we have observed the influence of photoperiod on the flowering to
98 pod setting process, the molecular mechanisms involved remain unclear. Apart from
99 maturity genes, genes potentially involved in regulating the flowering to pod setting
100 process may include those related to light signal transduction, plant hormone
101 regulation, carbon metabolism, and nutrient transport. These genes interact through
102 complex signaling networks, regulating soybean growth, development, and yield
103 formation during the post-flowering stages. In-depth studies of these genes can help
104 us comprehensively understand the growth regulatory mechanisms of soybeans,
105 providing scientific basis for improving soybean yield and quality.

106 Long days lengthened the flowering period and thereby increased the number of
107 opened flowers on lateral racemes. During the post-flowering phase, seed filling
108 effectiveness was delayed on primary racemes (dominant positions), enhancing the
109 pod number on lateral racemes (usually dominated positions) at some main stem
110 nodes in long day conditions (Nico *et al.*, 2016). This phenomenon is often observed
111 under artificial light conditions in greenhouses or growth chambers: under long-day
112 conditions (e.g. 16 hours light/8 hours dark), the first flowers to bloom of most
113 soybean varieties gradually fall off instead of developing into pods. In contrast, under
114 artificial short-day conditions (e.g. 12 hours light/12 hours dark), flowers begin to
115 produce pods more quickly. Prolonged daylight hours also delay the time for soybean
116 flowers to develop into pods, extending the pod initiation period without altering the
117 rate of pod elongation (Nico *et al.*, 2016). This indicates the influence of photoperiod
118 on the pod development process while also suggesting the potential involvement of
119 other factors affecting pod development and maturation. There is a complex

120 relationship between pod abscission and photoperiodic responses. Environmental
121 stresses such as low light radiation conditions are important factors that may induce
122 flower buds abscission (Ren *et al.*, 2022). Studies in different species have shown that
123 flower/fruit abortion is determined by the availability of assimilates (Marcelis *et al.*,
124 2004; Ali *et al.*, 2022; Ren *et al.*, 2022). When seeds enter the linear phase of growth
125 and accumulate assimilates at their maximum rate, they become a relatively large
126 reproductive sink that may limit upcoming flowering, resulting in flower abortion to
127 allow the older organs to finish their development (Turc *et al.*, 2018). Sugar signaling
128 plays a potential central role in regulating lotus (*Nelumbo nucifera*) flower bud
129 abortion; for example, the overexpression of *Trehalose-6-P Synthase 1 (TPS1)* in lotus
130 significantly decreased the flower bud abortion rates in both normal-light and
131 low-light environments (Ren *et al.*, 2022). This illustrates the importance of sugar
132 signals in regulating post-anthesis development, possibly affecting soybean pod
133 development and maturation by regulating the distribution and utilization of
134 assimilates. It is proposed that flower abortion could be mediated by hormonal
135 induction, potentially by the candidate hormone indole-3-acetic acid (IAA) (Huff and
136 Dybing, 1980). Abscisic acid could also be involved because it has an inhibitory role
137 on flowering (Bernier *et al.*, 1993).

138 Flower and pod abscission are important factors affecting soybean crop yields.
139 Therefore, analyzing the physiological mechanisms of photoperiodic regulation on
140 flowering and subsequent pod development is of significant importance for promoting
141 crop breeding and genetic improvement. In this study, we observed that the time from
142 flowering to pod formation on the whole soybean plant was longer under LD
143 conditions than under SD conditions. Such differences under different photoperiods
144 were not observed in photoperiod-insensitive soybean genotypes, indicating that the
145 period between flowering and pod setting is sensitive to day length. Furthermore, we
146 found the pod-setting signal is mainly induced and transmitted by leaves. We
147 therefore showed that photoperiod affects the various stages of soybean growth and
148 development. Further research into the molecular mechanisms regulating the time

149 between flowering and pod setting will be helpful for improving soybean yields
150 through the reduction of flower and pod abortion.

151 **Materials and methods**

152 **Plant materials, growth conditions, and phenotyping**

153 The soybean cultivars Williams 82 (W82; *e1-as/E2/E3/E4*) (Kong *et al.*, 2018) and
154 Harosoy (*e1-as/e2/E3/E4*) (Xia *et al.*, 2012) were used in this study. W82 is more
155 sensitive to long photoperiods than Harosoy. Using W82 as the wild type,
156 homozygous transgenic *lux* double mutants (*lux-2m; lux1 lux2-2* as published (Bu *et*
157 *al.*, 2021)), and *e1* triple mutants (*e1-3m; e1/e1la/e1lb* mutant type as described (Lin
158 *et al.*, 2022)), and the wild-type plants were used for the experiments. Plants were
159 grown under artificial SD (12 h light/12 h dark), artificial LD (16 h light/8 h dark) and
160 ultra-long day (20 h light/4 h dark) conditions in a greenhouse or a growth chamber,
161 with a light intensity of 240 $\mu\text{mol m}^{-2} \text{s}^{-1}$ and a temperature of 25°C. According to the
162 description of the developmental stages of soybean (Fehr *et al.*, 1971), the
163 reproductive stages R1 and R2 are based on flowering, R3 and R4 on pod
164 development, R5 and R6 on seed development, and R7 and R8 on maturation.
165 Flowering time was recorded at the R1 stage as the number of days from seedling
166 emergence to the first open flower at any node on the main stem. The pod-setting time
167 was recorded when any node at the four upmost produced a pod with a length of 0.5
168 cm. At least five plants were detected for each line.

169

170 **Transfer between different photoperiod conditions**

171 W82 plants were grown under LD (16 h light/8 h dark) conditions until R1 in the
172 green house, after which half were transferred into SD (12 h light/12 h dark)
173 conditions (named LD_SD group) with the others remaining in the LD (16 h light/8 h
174 dark) treatment (named continuous LD group or LD_LD group). Pod setting time
175 were then measured after the transferred treatments. The duration of these treatment
176 was 60 days.

177

178 **Branch-specific photoperiod treatments**

179 W82 plants were grown under LD (16 h light/8 h dark) conditions until the fifth day
180 after emergence in the growth chamber. To ensure branching in each plant, the shoot
181 apical meristems (SAMs) were cut to remove the apical dominance and promote the
182 development of lateral branches. All plants were grown in LD conditions until
183 reaching the R1 stage after which the branches were subjected to treatments of
184 different photoperiodic combinations. In one set of experiments, the light phase of one
185 branch was shortened to 12 hours using black bags to exclude light. The bags were
186 removed each day and then replaced at Zeitgeber time 12 (ZT 12) each day. When the
187 light was on (at ZT 0) they were removed. To remove any phenotypic differences
188 caused by this bagging, another branch was covered with transparent plastic bags as
189 the LD control. In another set of experiments, both branches were covered with
190 transparent plastic bags and subjected to LD conditions. To further demonstrate the
191 role of leaves in perceiving the photoperiod and controlling the pod initiation time, all
192 leaves of branches under different photoperiod conditions were removed, with another
193 branch retaining its leaves as the control.

194

195 **Pollen germination analysis**

196 The pollen germination experiments were based on in vitro and in vivo pollen
197 germination. In brief, for in vitro pollen germination, mature pollen grains of W82
198 under LD and SD conditions were dispersed on pollen germination medium
199 containing 10% sucrose, 0.01% boric acid, 5 mM CaCl₂, 5 mM KCl, 1 mM MgSO₄,
200 pH 7.5 and 1.5% agar (Boavida and McCormick 2007). Germination mediums were
201 then incubated at 25°C temperature for 7 hours. Pollen germination was observed
202 under microscope (Zeiss Axio Imager A2). Pollen tube length was measured by
203 ImageJ software (Version 1.8.0). For *in vivo* germination experiments, pollen grains
204 were applied on stigmata of W82 *under LD and SD conditions*. After 20 hours, the
205 hand-pollinated pistils were fixed in a solution of 45%:6%:5% acetic
206 acid/ethanol/formaldehyde for 2 hours, washed with 70% ethanol, 50% ethanol, 30%
207 ethanol and ddH₂O for 10 minutes each, and then treated with 8 M NaOH overnight.
208 Samples were washed three times with ddH₂O and stained with aniline blue solution

209 (0.1% aniline blue, 108 mM K₃PO₄) for more than 2 hours (Mori *et al.*, 2006). Stained
210 samples were observed under a fluorescence microscope (Zeiss Axio Imager A2).

211

212 **Transcriptome analysis**

213 Flower buds samples before flowering were collected at Zeitgeber time 4 at R1 stage
214 under LD (16 h light/8 h dark) and SD (12 h light/12 h dark) conditions of W82, with
215 each sample collected from 5 individual plants. Analysis was conducted on three
216 biological replicate samples. Pistils were detached from the pod. Experimental
217 methods for total RNA extraction, Illumina sequencing, and RNA differential
218 expression analysis were performed following procedures described in previous
219 publications (Bu *et al.*, 2021). Genes/transcripts with false discovery rate (FDR)
220 values below 0.05 and absolute fold change ≥ 2 were considered as differentially
221 expressed genes/transcripts. Soybean reference genome used in this study including
222 https://www.ncbi.nlm.nih.gov/datasets/genome/GCF_000004515.6/ and
223 https://phytozome-next.jgi.doe.gov/info/Gmax_W82_a4_v1.

224

225 **Quantitative reverse-transcriptase (RT)-PCR**

226 Total RNA was extracted from pistils of flower buds before opening, at R1 stage and
227 1 day, 5days and 10 days post R1 stage in LD_LD and LD_SD groups using TRIzol
228 reagent (Invitrogen). Total RNA was reverse transcribed to cDNA with M-MLV
229 reverse transcriptase kit (Takara). LightCycler 480 SYBR Green I Master (Roche)
230 was used for Quantitative RT-PCR (qRT-PCR) on a Roche LightCycler 480 system
231 (Roche). *Tubulin* was used as an internal control gene. Three biological replications
232 were performed in each test. Primers are listed in Supplementary table 4.

233

234 **Phytohormones detection**

235 Phytohormones contents of flower buds of W82 under LD and SD photoperiod
236 conditions were detected by MetWare (<http://www.metware.cn/>) based on the AB
237 Sciex QTRAP6500 LC-MS/MS platform.

238

239 **Sucrose solution spray after R1 stage**

240 W82 plants grown under LD conditions were sprayed with 50mg/ml sucrose solution
241 on their leaves at the R1 stage for 20 days. The blank control group sprayed water
242 without added sucrose, and the pod initiation stage (R3) of the two treatment groups
243 was observed.

244

245 **Pathway Enrichment Analysis**

246 Pathway-based analysis helps to further understand genes biological functions.
247 Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kanehisa *et al.*, 2000) is the
248 major public pathway-related database (Robinson *et al.*, 2010). Pathway enrichment
249 analysis identified significantly enriched metabolic pathways or signal transduction
250 pathways in differently expressed genes (DEGs) comparing with the whole genome
251 background. The calculating formula of *P*-value is:

$$P = 1 - \sum_{i=0}^{m-1} \frac{\binom{M}{i} \binom{N-M}{n-i}}{\binom{N}{n}}$$

252

253 Here N is the number of all genes that with KEGG annotation, n is the number of
254 DEGs in N, M is the number of all genes annotated to specific pathways, and m is
255 number of DEGs in M. The calculated *P*-value was gone through FDR Correction,
256 taking FDR ≤ 0.05 as a threshold. Pathways meeting this condition were defined as
257 significantly enriched pathways in DEGs.

258

259 **Results**

260 **Photoperiod affects the initiation of pod-setting after flowering**

261 Under artificial SD (12 h light/12 h dark) and LD (16 h light/8 h dark) conditions, we
262 investigate the flowering time (R1) and the initiation time of podding (R3) of the two
263 cultivars W82 and Harosoy. The time interval between flowering and pod setting
264 initiation (R3-R1) varied among different varieties (Figures 1a-1b). Under LD
265 conditions, successful pod setting typically took approximately 15-30 days after R1
266 (approximately 15 days for Harosoy and approximately 30 days for W82) (Figures

267 1a-1b). Comparing the time to pod formation under LD and SD conditions, the trends
268 were similar among different varieties, indicating that pod formation takes
269 significantly longer under LD conditions compared to SD conditions (Fig.1 and
270 Fig.S1). By contrast, under the SD conditions, most of the first-opened flowers
271 successfully initiated pod setting just about three days after R1 (Fig. 1a-1c, Fig.S1c,
272 and Fig. S2a). These results indicate that photoperiod affects the pod-setting time after
273 flowering. Why does soybean require more time to initiate pod setting under LD
274 conditions? We found that under LD conditions, the first-round opened flowers of
275 W82 gradually fell off at most nodes, but later buds continued to be produced; these
276 second-round opened flowers gradually developed into pods. Approximately 16 days
277 after R1, most buds fall off from the nodes on the main stem (Fig. 1b, Fig. S2b). This
278 is one of the reasons for the longer time interval between flowering and pod setting
279 under LD conditions.

280

281 **Soybean remains photoperiod-sensitive after flowering**

282 Soybean is known to be sensitive to photoperiod before flowering (Liu *et al.*, 2008;
283 Xia *et al.*, 2012; Bu *et al.*, 2021; Lin *et al.*, 2022; Zhao *et al.*, 2024); however, the
284 post-flowering sensitivity and mechanisms remain unclear. We grew the soybean
285 cultivar W82 under LD (16 h light/8 h dark) and SD (12 h light/12 h dark) conditions,
286 investigated its phenotypes at R1, R3 and mature stage. W82 displayed different
287 flowering times and plant architectures under different photoperiods. Under SD
288 conditions, plants were smaller with fewer nodes, branches, and pods (Fig. 2a–c).
289 During the period from flowering (R1) to post-flowering (R3), the plants under LD
290 conditions gained about 10 nodes, while those under the SD conditions only gained
291 two nodes during this period (Fig. 2a). These observations indicate that post flowering
292 photoperiod sensitivity not only affects the timing of pod initiation, but also affects
293 plant architecture traits such as node number. Does the significant difference in pod
294 formation rate between LD and SD conditions solely result from differences in plant
295 architectures?

296 To further observe post-flowering photoperiod sensitivity, we employed a
297 photoperiod transfer experiment, and simulated LD (16 h light/8 h dark) and SD (12 h
298 light/12 h dark) on the two branches of the same decapitated soybean plant. In the
299 photoperiod transfer experiment, the soybean plants of W82 were grown in LD (16 h
300 light/8 h dark) conditions until the R1 stage, after which half were transferred into SD
301 (12 h light/12 h dark) conditions (LD_SD group), with the remaining half continuing
302 to grow under the LD conditions as a control (LD_LD group). Compared to the
303 LD_SD group, the LD_LD group took longer days to initiate podding (Fig. 3). About
304 14 days after being moved to the SD conditions, the soybean plants of W82 began to
305 successfully set pods but there was no pod setting under continuing LD conditions
306 (Fig. 3a-3b). At 45 days after the photoperiod transfer treatment, pod and seed
307 development under SD conditions were significantly further than under LD conditions,
308 indicating that SD conditions promoted faster development after flowering (Fig. 3c).
309 In the experiment of LD and SD simulation on the same plant, to obtain long branches
310 at similar stages of growth, the SAMs of the soybean plants were removed five days
311 after their emergence under LD conditions (Fig. S3a-b). This released apical
312 dominance, resulting in two symmetrical axillary buds that later developed into two
313 long branches, unlike untreated soybean plants with a single main stem and short
314 branches (Fig. S3c). Next, different photoperiod treatment combinations were applied
315 to the two long branches of each SAM-removed plant after flowering (R1 stage); in
316 the SD&LD combination, one branch was covered with a black plastic bag at ZT12
317 (LD condition) to simulate the SD condition, with the other branch was covered with
318 a transparent plastic bag to maintain the LD condition, with bags removed daily at
319 ZT0 (Fig. 4a). Under the SD&LD treatment, the branch under the simulated SD
320 conditions set pods earlier than those under the LD conditions, with podding
321 occurring approximately 9 days after shading treatment and reaching the filling stage
322 15 days after treatment. No pod formation occurred even after prolonged exposure to
323 LD conditions (Fig. 3e, 3i).

324 These results show that soybean remained sensitive to photoperiod even after
325 flowering, especially reflected in different pod-setting times, suggesting that plant
326 architecture may not be the sole factor contributing to this difference.

327

328 **The photoperiod-regulated pod-setting signal is mainly induced in and
329 transmitted within the leaves**

330 How photoperiod affects the conversion of open flowers to pods or shedding? We set
331 different photoperiodic conditions for branches on the same plant, in addition, to
332 prove that leaves are the main organs for perceiving photoperiod and transmitting
333 podding signals, we removed the leaves of the branches under the different
334 photoperiod conditions of the SD (12 h light/12 h dark) & LD (16 h light/8 h dark)
335 treatment (Fig. 4a-4d). For this study, 5-day-old soybean seedlings were decapitated
336 at cotyledon stage, and there were no leaves from other parts of soybean except the
337 two branches. Our treatment included SD&LD, SD&LD (with no leaves after R1
338 under LD condition), LD&LD and LD&SD (with no leaves after R1 under SD
339 condition) four experimental groups. The LD&LD combination was a control, in
340 which both branches were covered with transparent plastic bags (Fig. 4c). The
341 pod-setting time under the SD conditions was prolonged by removing the leaves in
342 LD&SD (with no leaves after R1) group (Fig. 4e, 4h). Under LD conditions, the
343 pod-setting time was longer than under SD conditions, regardless of leaf removal (Fig.
344 4e-4h). However, comparing the branches at stage R3 under LD conditions in the
345 four groups, we found that the onset of pod formation in the LD&SD treatment group
346 occurred approximately one week earlier (about 21 days) than in the other three
347 groups (about 30 days) (Fig. 4e-4h). The pod formation signal should be perceived by
348 the leaves, transmitted downward, and communicated between different branches.
349 Moreover, the signal inducing short-day pod formation is stronger than that promoting
350 long-day flower abscission. From these results, we infer that leaves are the main light
351 sensor and that the photoperiod signal is mainly induced in the leaves, which then
352 transmit the signal to form pods to the flowers.

353

354 ***E1* is downstream of the EC in controlling pod-setting time**

355 As reported that the homologs of *PHYA*, members of the evening complex (EC), *E2*
356 and *E1* are the major genetic players in the control soybean photoperiod sensitivity,
357 and their functions are mainly described in regulating flowering time (Lin *et al.*, 2022;
358 Bu *et al.*, 2021; Zhao *et al.*, 2024). To further explore the genetic pathway underlying
359 how the photoperiod affects the pod-setting time after flowering, we investigated the
360 pod-setting time of photoperiod-insensitive mutants under different photoperiod
361 conditions. The early-flowering triple mutant *e1-3m*, which is insensitive to
362 photoperiod, underwent early pod setting after flowering, with no differences under
363 different photoperiods (Fig. S4a-4c). The late-flowering double mutant *lux-2m*, which
364 was also insensitive to photoperiod, had later flowering times and pod-setting times
365 than the wild type under particularly long day (20 h light/4 h dark) conditions (Fig.
366 S4d, 4e). To examine whether the difference in flowering and podding times between
367 the wild type and late-flowering mutants disappears under extremely long
368 photoperiods, we selected exceptionally long photoperiods. *e1-3m* was crossed with
369 *lux-2m* to obtain *e1-3m lux-2m* quintuple mutant. Under LD (16 h light/8 h dark)
370 conditions, *e1-3m lux-2m* the multiple mutants showed early pod setting, which was
371 similar to the *e1-3m* phenotype (Fig. S4f). *Luxs* are parts of the EC in circadian clock
372 (Nusinow *et al.*, 2011; Jung *et al.*, 2020; Bu *et al.*, 2021). This indicates that *E1* is
373 downstream of the EC in controlling the initiation of pod setting, and that pre- and
374 post-flowering photoperiodic sensitivity may be controlled by the same genes.
375 However, after the input of photoperiodic signal, the response genes controlled
376 different development processions may be different.

377

378 **Photoperiod affects pistil development**

379 In previous experiments, we found that flowers opened in LD conditions tend to
380 falling before pod formation. We sought to investigate whether there are differences
381 in pollen viability and pistil morphology between LD and SD conditions, leading to
382 differences in pod formation time. We sought to investigate whether there are
383 differences in pollen viability and pistil morphology between LD and SD conditions,

384 leading to differences in pod formation time. We collected pollen from W82 under
385 LD and SD conditions and conducted pollen germination experiments *in vitro*. Results
386 revealed no significant differences in pollen tube length and pollen germination rate
387 (Fig. S5a-5d). Additionally, unopened flower buds under LD and SD conditions were
388 emasculated and artificially pollinated, and pollen tubes were able to germinate
389 normally *in vivo* (Fig. S5e-5f). The effect of photoperiod on pollen viability may be
390 minimal. We found that there were morphological differences in pistil morphology
391 under LD and SD conditions (Fig. 5a). This morphological difference leads to the
392 similar height of pistil and stamen when stamen begins to disperse powder under
393 short-day conditions (Fig. 5b-5c, Fig. S6a, 6c-6d), facilitating rapid and successful
394 pollination. While the height of stamen is lower than that of pistil under long-day
395 conditions (Fig. 5b-5c, Fig. S6a, 6c-6d), which is not conducive to rapid pollination.
396 Flower buds or open flowers exhibit similar external sizes and shapes under both LD
397 and SD conditions, but significant differences exist in stigma sizes. (Fig. S6a-6b, Fig.
398 S6e-6g). The morphology of pistil styles varied greatly in the late development stage
399 of buds. Under SD conditions, a hook-like structure is present at the apex of the
400 stigma, whereas under LD conditions, the curved hook is less pronounced. And when
401 moved from LD to SD for a period of time, the hook structure at the apex of newly
402 emerged flower buds becomes pronounced (Fig. 5a-5c, Fig. S7).

403 Which genes and plant hormones effect pistil development under different
404 photoperiod conditions? We collected flower buds under LD and SD conditions,
405 measured plant hormone levels, and isolated pistils for RNA extraction, constructing
406 RNA-Seq libraries and analyzing differentially expressed genes. Simultaneously, we
407 analyzed the relative expression levels of differentially expressed genes in the buds of
408 the top three nodes of soybean plants under the continuous long day (LD_LD) and
409 LD_SD groups at R1, 1 day, 5 days, and 10 days after the R1 stage. According to the
410 sequencing results (Supplementary table 1), the regulatory pathways of differentially
411 expressed genes involve the MAPK signaling pathway, starch and sucrose
412 metabolism, photosynthesis, plant hormone signal transduction (Fig. S8). We
413 identified at least 23 DEGs might affect soybean pod formation (Fig. 6a,

414 Supplementary table 2). We selected 9 genes from the 23 DEGs for PCR verification.
415 Consistent with our qRT-PCR analysis (Fig. S9), *REPRESSOR OF*
416 *PHOTOSYNTHETIC GENES 2 (RPGE2)*, *GIBBERELLIN OXIDASE 8 (GA2OX8)*,
417 and *GA2OX2* were upregulated upon transfer to SD conditions, while *WRKY19*,
418 *RESPIRATORY BURST OXIDASE HOMOLOGUE E (RBOHE)*, *RBOHB*, *SUCROSE*
419 *PHOSPHATE SYNTHASE 3F (SPS3F)*, and *Xyloglucan*
420 *Endotransglucosylase/hydrolases (XTHs)* were strongly inhibited (Fig. 6a, Fig. S9).
421 As expected, the content of some plant hormones varied in the buds under LD and SD
422 conditions (Fig. 6b, Supplementary table 3). The contents of gibberellin 1, 3, 7 (GA1,
423 GA3, and GA7), cytokinin and salicylic acid were higher under LD condition. The
424 contents of auxin and jasmonic acid were higher under SD condition. Under LD
425 conditions, after flowering (R1 stage), a 50 mg/ml sucrose solution was applied on the
426 leaves, and the control group was sprayed with the same amount of water. The results
427 showed that the external application of sucrose solution could promote pod formation
428 (Fig. 6c). All these results suggest that photoperiod may control soybean pod
429 formation and development by regulating multiple gene pathways and plant
430 hormones.

431

432 **Discussion**

433 Photoperiod regulates various growth and development processes of such as floral
434 induction and stem termination and pod development in post-flowering reproductive
435 growth stage (Han *et al.*, 2006; Xu *et al.*, 2013; Nico *et al.*, 2016). Previous studies
436 have found that exposing soybean plants to long-day conditions during post-flowering
437 reproductive growth stages extends the R3-R6 period, with seed development and
438 seed number positively correlated with the duration of the R3-R6 stage (Kantolic *et*
439 *al.*, 2001; Kantolic *et al.*, 2007). These results indicate that soybean plants remain
440 sensitive to photoperiod during the post-flowering R3-R6 stages. In this study, we
441 found that different soybean cultivars are sensitive to photoperiod in initiation of
442 podding after flowering in laboratory-controlled conditions. SD conditions promote

443 pod formation while LD prolonged duration of R1 to R3 stage. The
444 photoperiod-insensitive mutants used in this study might provide a basis for further
445 research on the mechanism of photoperiod-sensitive related genes in regulating the
446 pod-initiation time. The photoperiod-insensitive *lux-dm* and *e1-3m* mutants (Bu *et al.*,
447 2021; Lin *et al.*, 2022) display two extreme phenotypes. The *lux-dm* mutants had late
448 flowering time, produce more stem nodes, branches, and leaves than wild-type
449 soybean plants (Bu *et al.*, 2021; Lin *et al.*, 2022), while the *e1-3m* mutant had a
450 smaller morphology with few nodes and early flowering time (Lin *et al.*, 2022). In
451 this study, we found that *e1-3m* had short R1-R3 stage (about 5 days) in both LD and
452 SD conditions, pod initiation time was non-sensitive to photoperiod. The *lux-dm*
453 mutant exhibited a longer R1-R3 duration. While *e1 ella e1lb lux1 lux2* quintuple
454 mutant showed an R1-R3 duration similar to *e1-3m*, suggesting that E1 and E1-likes
455 function downstream of the EC in controlling pod-setting time, with EC being entirely
456 dependent on E1. The mechanisms of photoperiod signal sensing and transmission
457 may remain conserved before and after flowering. *E1*, *E1-likes*, and *EC* have been
458 reported to play major roles in floral induction (Lin *et al.*, 2022, Bu *et al.*, 2021, Xia
459 *et al.*, 2012), but their roles in post flowering reproductive development remain
460 undetermined. Increasing research attention is being given to the effects of growth
461 period genes on post-flowering development (Takeshima *et al.*, 2019, Wan *et al.*,
462 2022).

463 The coordination of flower development and fertility is regulated by endogenous
464 developmental signals such as the phytohormones jasmonates (JAs), auxin, and
465 gibberellin, as well as environmental cues. (Huang *et al.*, 2023). We found that under
466 LD photoperiod conditions, the firstly-opened flowers typically dropped, and the
467 second-round flowers slowly turn into pods. In our study, we found that pistil style of
468 W82 exhibit different morphology, when the anther of the stamen was dispersed, the
469 stigma is higher than that of the stamen. Under SD conditions there were apical hook
470 formations in flower style like hook in emerging seedlings. Longer style length in rice
471 influences the stigma exertion and increase outcross rate of male sterile line and the

472 yield of hybrid F1 seeds. The elongation of cell length in the style is associated with a
473 higher GA4 content in the pistil (Dang *et al.*, 2022). We found that under LD
474 conditions endogenous GA1, GA3, and GA7 content in flower buds were higher than
475 that in SD conditions, but lower IAA-Glc and JA-Ile content. Apical hook formation
476 involves a gravity-induced auxin maximum on the eventual concave side of the hook
477 (Du *et al.*, 2022). Jasmonoyl-L-isoleucine (JA-Ile) is a biologically active form of JA.
478 JA-deficient mutants exhibit low fertilization rates and abnormal flower formation
479 (Riemann *et al.* 2008, 2013, Cai *et al.* 2014, Xiao *et al.* 2014, Hibara *et al.* 2016,
480 Inagaki *et al.*, 2023). The *jasmonic acid insensitive 1-1 (jai1-1)* mutants in tomato
481 exhibits arrested flower bud development just before flower opening by abolishing the
482 peaks of JA biosynthesis and *SlMYB21* expression in flower buds within ~2 d before
483 flower opening (Dobritsch *et al.*, 2015; Niwa *et al.*, 2018). These results suggest that
484 JA plays a crucial role in flower development and fertility in rice and tomato. We
485 performed RNA-seq on pistils of W82 flower buds under LD and SD. Compared to
486 pistils under LD condition, plant cell wall remodeling enzymes *XTH22*, *XTH23*, and
487 *XTH23-like* genes were significantly decreased in SD conditions (Fig.6a, Fig.S9),
488 *XTH22* and *XTH23* are known to play a role in cell elongation during flower
489 development (Claisse *et al.*, 2007). *RbohB* and *RbohE* genes were up-regulated in LD
490 conditions. Upon transition from LD to SD, their relative expression levels were down
491 regulated (Fig.6a, Fig.S9). RBOHs are reported to be crucial for ROS generation and
492 are essential for precise flower and fruit abscission (Lee *et al.*, 2018, Ma *et al.*, 2023).
493 Previous studies have shown that under a photoperiod of approximately 14.5 hours of
494 light per day, about 21%-28% of flowers and pods are aborted, which increases to
495 42%-49% with shading treatments (Ali *et al.*, 2022). Top bud removal at each node,
496 leaving only one remaining top bud, can reduce flower abscission rates, while shading
497 treatments do not increase flower abscission rates. Bud removal at each node, leaving
498 only one remaining bud, can reduce flower abscission rates, while shading treatments
499 do not increase flower abscission rates (Ali *et al.*, 2022). This suggests that
500 light/shade conditions are not directly responsible for flower/pod abscission signals;
501 rather, a lack of nutrient supply leads to increased flower and pod abscission rates (Ali

502 *et al.*, 2022). In our study, we found that even under SD condition that promoted pod
503 setting, pod formation could not be achieved as rapidly after leaf removal as it was in
504 the experimental group that retained its leaves (Fig. 3d, 3h, 3I), likely because
505 photosynthesis and assimilate accumulations were decreased. Enhanced carbon
506 assimilation could reduce flower and pod abortion, as well as accelerating leaf
507 expansion, seed yield, and the production of tuberous storage organs or fibers in
508 various crops (Abelenda *et al.*, 2019; Ali *et al.*, 2022; Yue *et al.*, 2021; Xu *et al.*,
509 2012). In this study, KEGG enrichment analysis of the DEGs in the buds before
510 opening of soybean revealed that genes related to starch and sucrose metabolism,
511 carbohydrate or energy metabolism were repressed under LD conditions. Application
512 of exogenous sucrose solution promoted pod formation. It has been reported that
513 during the early stages of seed development, embryos grow rapidly and acquire a
514 large amount of sugar from liquid endosperm. An insufficient supply of nutrients
515 from the endosperm to the embryo results in severe seed abortion and yield reduction
516 (Wang *et al.*, 2019). Soybean seed development responds to photoperiod, where the
517 *Dt1* protein physically interacts with the sucrose transporter GmSWEET10a,
518 negatively regulating the transport of sucrose from seed coat to embryo, thus
519 modulating seed weight under LD conditions. *Dt1* exhibits pleiotropy in regulating
520 both seed size and stem growth habit in soybeans (Li *et al.*, 2024). The
521 photoperiod-insensitive mutants used in the present study might provide a basis for
522 further studies into the mechanism by which the photoperiod-sensitive flowering
523 pathway genes regulate the pod-initiation time and pod number through the
524 photoperiod-dependent regulation of the balance between source and sink tissues.

525

526 **Supplementary Data**

527 Fig. S1 The difference in pod initiation time after flowering of Williams 82 (W82)
528 under long-day (LD) and short-day (SD) conditions in greenhouse.

529 Fig. S2 Under different photoperiod conditions, the growth and development process
530 of soybean.

531 Fig. S3 Decapitation treatment of soybean plant.

532 Fig. S4 The pod initiation time of the triple mutant (*e1/e1la/e1lb, e1-3m*) is insensitive
533 to photoperiod.

534 Fig. S5 Effect of photoperiod on pollen germination.

535 Fig. S6 Photoperiod affect pistil and stamen growth.

536 Fig. S7 Photoperiod influence the morphology of flower style.

537 Fig. S8 Enrichment analysis of differentially expressed genes in pistil of W82 under
538 LD (16 h light/8 h dark) and SD (12 h light/12 h dark) conditions.

539 Fig. S9 Relative expressions of pistil growth and development related genes in W82
540 under LD_LD and LD_SD conditions at different time.

541 Fig. S10 A proposed working model for SD (12 h light/12 h dark) and LD (16 h
542 light/8 h dark) regulate soybean photoperiod podding.

543 Supplementary table 1 A total of 5239 DEGs in pistils of Williams 82 between
544 long-day and short-day conditions.

545 Supplementary table 2 The 23 genes of the 5239 DEGs of Williams 82 between
546 long-day and short-day conditions.

547 Supplementary table 3 Phytohormones contents in flower buds under long-day and
548 short-day conditions.

549 Supplementary table 4 Primers for quantitative RT-PCR.

550

551 **Acknowledgments and funding**

552 This work was supported by the National Natural Science Foundation of China (grant
553 31901569 and 32372193 to L.K.).

554

555 **Author contributions**

556 F.K., B.L., and S.L. supervised the experiments. L.K., Y.W., H.L. and X.H. performed
557 the research. L.K. analyzed the data with the help of R.F., L.Y., and Y.W.. L.K. and
558 Z.S. wrote the draft manuscript with the input from X.L. and S.L.. H.L. and L.C.
559 assisted in editing the manuscript. All authors read and approved the final manuscript.

560

561 **Conflict of interest**

562 The authors declare that they have no conflict of interest.

563

564 **Data availability**

565 Data supporting the findings of this study are available in the supplementary material
566 of this article.

567

568 **References**

569 **Ali M F, Brown P, Thomas J, et al. 2022.** Effect of assimilate competition during
570 early seed development on the pod and seed growth traits in soybean. *Plant Reprod.*
571 35(3):179-188.

572 **Abelenda J A, Bergonzi S, Oortwijn M, et al. 2019.** Source-Sink regulation is
573 mediated by interaction of an FT Homolog with a SWEET protein in potato. *Curr
574 Biol.* 29(7):1178-1186.

575 **Bernier G, Havelange A, Houssa C, et al. 1993.** Physiological signals that induce
576 flowering. *The Plant Cell.* 5(10):1147-1155.

577 **Boavida L C, McCormick S. 2007.** Temperature as a determinant factor for
578 increased and reproducible *in vitro* pollen germination in *Arabidopsis thaliana*.
579 *Plant J.* 52:570-82.

580 **Bu T, Lu S, Wang K, et al. 2021.** A critical role of the soybean evening complex in
581 the control of photoperiod sensitivity and adaptation. *Proc Natl Acad Sci U S A.*
582 118(8):e2010241118.

583 **Cai Q, Yuan Z, Chen M, et al. 2014.** Jasmonic acid regulates spikelet development
584 in rice. *Nat Commun.* 5:3476.

585 **Claisse G, Charrier B, and Kreis M. 2007.** The *Arabidopsis thaliana* GSK3/Shaggy
586 like kinase AtSK3-2 modulates floral cell expansion. *Plant Mol Biol.*
587 64(1-2):113-24.

588 **Curtis D F, Tanner J W, Luzzi B M, et al. 2000.** Agronomic and phenological
589 differences of soybean isolines differing in maturity and growth habit. *Crop Sci.*
590 40(6):1624-1629.

591 **Cooper R L. 2003.** A delayed flowering barrier to higher soybean yields. *Field Crops*
592 *Res.* 82(1):27-35.

593 **Dang X, Zhang Y, Li Y, et al. 2022.** *SYL3-k* increases style length and yield of
594 *F₁* seeds via enhancement of endogenous GA₄ content in *Oryza sativa* L. pistils.
595 *Theor Appl Genet.* 135(1):321-336.

596 **Dong L, Fang C, Cheng Q, et al. 2021.** Genetic basis and adaptation trajectory of
597 soybean from its temperate origin to tropics. *Nat Commun.* 12(1):5445.

598 **Dong L, Cheng Q, Fang C, et al. 2022.** Parallel selection of distinct *Tof5* alleles
599 drove the adaptation of cultivated and wild soybean to high latitudes. *Mol Plant.*
600 15(2):308-321.

601 **Dobritzsch S, Weyhe M, Schubert R, et al. 2015.** Dissection of jasmonate functions
602 in tomato stamen development by transcriptome and metabolome analyses. *BMC*
603 *Biology.* 13:28.

604 **Du M, Bou Daher F, Liu Y, et al. 2022.** Biphasic control of cell expansion by auxin
605 coordinates etiolated seedling development. *Sci Adv.* 8(2):eabj1570.

606 **Ellis R H, Asumadu H, Qi A, et al. 2000.** Effects of photoperiod and maturity genes
607 on plant growth, partitioning, radiation use efficiency, and yield in soyabean
608 [*Glycine max* (L.) Merrill] 'Clark'. *Ann.Bot.* 85(3):335-343.

609 **Fehr W R, Caviness C E, Burmood D T, et al. 1971.** Stage of development
610 descriptions for soybeans, *Glycine Max* (L.) Merrill1. *Crop Sci.* 11(6):929.

611 **Garner W W and Allard H A. 1920.** Effect of the relative length of day and night
612 and other factors of the environment on growth and reproduction in plants. *J Agr*
613 *Res.* 18:553-606.2.

614 **Hayama R, Yokoi S, Tamaki S, et al. 2003.** Adaptation of photoperiodic control
615 pathways produces short-day flowering in rice. *Nature.* 422(6933):719-722.

616 **Han T, Cunxiang Wu C, et al. 2006.** Postflowering photoperiod regulates vegetative
617 growth and reproductive development of soybean. *Environ exp bot.*
618 55(1-2):120-129.

619 **Hibara KI, Isono M, Mimura M, et al. 2016.** Jasmonate regulates juvenile-to-adult
620 phase transition in rice. *Development*. 143:3407–3416.

621 **Huff A, Dybing C D. 1980.** Factors affecting shedding of flowers in soybean
622 (*Glycine max* (L.) Merrill). *J Exp Bot*. 31(3):751-762.

623 **Huang H, Chen Y, Wang S, et al. 2023.** Jasmonate action and crosstalk in flower
624 development and fertility. *J Exp Bot*. 74(4):1186-1197.

625 **Inagaki H, Hayashi K, Takaoka Y, et al. 2023.** Genome editing reveals both the
626 crucial role of OsCOI2 in Jasmonate signaling and the functional diversity of COI1
627 homologs in rice. *Plant Cell Physiol*. 64(4):405-421.

628 **Jiang Y, Wu C, Zhang L, et al. 2010.** Long-day effects on the terminal inflorescence
629 development of a photoperiod-sensitive soybean [*Glycine max* (L.) Merr.] variety.
630 *Plant Sci*. 180(3):504-10.

631 **Jung J H, Barbosa A D, Hutin S, et al. 2020.** A prion-like domain in ELF3
632 functions as a thermosensor in *Arabidopsis*. *Nature*. 585(7824):256-260.

633 **Kim H, Park S J, Kim Y, et al. 2020.** Subcellular localization of GIGANTEA
634 regulates the timing of leaf senescence and flowering in *Arabidopsis*. *Front Plant*
635 *Sci*. 11:589707.

636 **Kong F, Liu B, Xia Z, et al. 2010.** Two coordinately regulated homologs of
637 *FLOWERING LOCUS T* are involved in the control of photoperiodic flowering in
638 soybean. *Plant Physiol*. 154(3):1220-1231.

639 **Kong F, Nan H, Cao D, et al. 2014.** A new dominant gene *E9* conditions early
640 flowering and maturity in soybean. *Crop Sci*. 54(6):2529-2535.

641 **Kong L, Lu S, Wang Y, et al. 2018.** Quantitative trait locus mapping of flowering
642 time and maturity in soybean using next-generation sequencing-based analysis.
643 *Front Plant Sci*. 9:995.

644 **Kanehisa M, Goto S. 2000.** KEGG: kyoto encyclopedia of genes and genomes.
645 *Nucleic acids res*. 28(1):27-30.

646 **Kantolic A G, Slafer G A. 2001.** Photoperiod sensitivity after flowering and seed
647 number determination in indeterminate soybean cultivars. *Field Crops Res.*
648 72(2):109-118.

649 **Kantolic A G, Slafer G A. 2005.** Reproductive development and yield components in
650 indeterminate soybean as affected by post-flowering photoperiod. *Field Crops Res.*
651 93(2-3):212-222.

652 **Kantolic A G, Slafer G A. 2007.** Development and seed number in indeterminate
653 soybean as affected by timing and duration of exposure to long photoperiods after
654 flowering. *Ann Bot.* 99(5):925-933.

655 **Lee Y, Yoon T H, Lee J, et al. 2018.** A lignin molecular brace controls precision
656 processing of cell walls critical for surface integrity in *Arabidopsis*. *Cell.*
657 173:1468–1480.

658 **Li X, Chen Z, Li H, et al. 2024.** Dt1 inhibits SWEET-mediated sucrose transport to
659 regulate photoperiod-dependent seed weight in soybean. *Mol Plant.* 17(3):496-508.

660 **Zhao X, Li H, Wang L, et al. 2024.** A critical suppression feedback loop determines
661 soybean photoperiod sensitivity. *Dev Cell.* S1534-5807(24)00229-6.

662 **Lin X, Dong L, Tang Y, et al. 2022.** Novel and multifaceted regulations of
663 photoperiodic flowering by phytochrome A in soybean. *Proc Natl Acad Sci U S A.*
664 119(41):e2208708119.

665 **Liu B, Kanazawa A, Matsumura H, et al. 2008.** Genetic redundancy in soybean
666 photoresponses associated with duplication of the phytochrome A gene. *Genetics.*
667 180(2):995-1007.

668 **Lu S, Dong L, Fang C, et al. 2020.** Stepwise selection on homeologous *PRR* genes
669 controlling flowering and maturity during soybean domestication. *Nat Genet.*
670 52(4):428-436.

671 **Lu S, Zhao X, Hu Y, et al. 2017.** Natural variation at the soybean *J* locus improves
672 adaptation to the tropics and enhances yield. *Nat Genet.* 2017. 49(5):773-779.

673 **Marcelis L F, Heuvelink E, Hofman-Eijer L R, et al. 2004.** Flower and fruit
674 abortion in sweet pepper in relation to source and sink strength. *J Exp Bot.*

675 55(406):2261-8.

676 **Ma X, Xie X, He Z, et al. 2023.** A LcDOF5.6-LcRbohD regulatory module controls
677 the reactive oxygen species-mediated fruitlet abscission in litchi. *Plant J.*
678 113(5):954-968.

679 **Mori T, Kuroiwa H, Higashiyama T, et al. 2006.** GENERATIVE CELL SPECIFIC 1
680 is essential for angiosperm fertilization. *Nat Cell Biol.* 8(1):64-71.

681 **Nico M, Mantese A I, Miralles D J, et al. 2016.** Soybean fruit development and set
682 at the node level under combined photoperiod and radiation conditions. *J Exp Bot.*
683 67(1):365-77.

684 **Niwa T, Suzuki T, Takebayashi Y, et al. 2018.** Jasmonic acid facilitates flower
685 opening and floral organ development through the upregulated expression of
686 SIMYB21 transcription factor in tomato. *Biosci Biotechnol Biochem.*
687 82(2):292-303.

688 **Nusinow D A, Helfer A, Hamilton E E, et al. 2011.** The ELF4-ELF3-LUX complex
689 links the circadian clock to diurnal control of hypocotyl growth. *Nature.*
690 475(7356):398-402.

691 **Ren H, Xu Y, Lixie H, et al. 2022.** Integrated transcriptome and targeted metabolite
692 analysis reveal miRNA-mRNA networks in Low-Light-Induced lotus flower bud
693 abortion. *Int J Mol Sci.* 23(17):9925.

694 **Robinson M D, McCarthy D J, Smyth G K. 2010.** edgeR: a Bioconductor package
695 for differential expression analysis of digital gene expression data. *Bioinformatics.*
696 26(1):139-140.

697 **Riemann M, Riemann M, and Takano M. 2008.** Rice *JASMONATE RESISTANT 1*
698 is involved in phytochrome and jasmonate signalling. *Plant Cell Environ.*
699 31:783-792.

700 **Riemann M, Haga K, Shimizu T, et al. 2013.** Identification of rice *Allene Oxide*
701 *Cyclase* mutants and the function of jasmonate for defence against *Magnaporthe*
702 *oryzae*. *Plant J.* 74:226–238.

703 **Summerfield R J, Asumadu H, Ellis R H, et al. 1998.** Characterization of the
704 photoperiodic response of post-flowering development in maturity isolines of
705 soyabean [*Glycine max* (L.) Merrill] 'Clark'. *Ann Bot.* 82(6):765-771.

706 **Silva C S, Nayak A, Lai X, et al. 2020.** Molecular mechanisms of Evening Complex
707 activity in *Arabidopsis*. *Proc Natl Acad Sci U S A.* 117(12):6901-6909.

708 **Takeshima R, Nan H, Harigai K, et al. 2019.** Functional divergence between
709 soybean *FLOWERING LOCUS T* orthologues *FT2a* and *FT5a* in post-flowering
710 stem growth. *J Exp Bot.* 70(15):3941-3953.

711 **Turc O, Tardieu F. 2018.** Drought affects abortion of reproductive organs by
712 exacerbating developmentally driven processes via expansive growth and
713 hydraulics. *J Exp Bot.* 69(13):3245-3254.

714 **Wan Z, Liu Y, Guo D, et al. 2022.** CRISPR/Cas9-mediated targeted mutation of
715 the *E1* decreases photoperiod sensitivity, alters stem growth habits, and decreases
716 branch number in soybean. *Front Plant Sci.* 13:1066820.

717 **Wang S, Yokosho K, Guo R, et al. 2019.** The soybean sugar transporter
718 GmSWEET15 mediates sucrose export from endosperm to early embryo. *Plant*
719 *Physiol.* 180(4):2133-2141.

720 **Watanabe S, Hidemitsu R, Xia Z, et al. 2009.** Map-based cloning of the gene
721 associated with the soybean maturity locus *E3*. *Genetics.* 182(4):1251-1262.

722 **Watanabe S, Xia Z, Hidemitsu R, et al. 2011.** A map-based cloning strategy
723 employing a residual heterozygous line reveals that the *GIGANTEA* gene is
724 involved in soybean maturity and flowering. *Genetics.* 188(2):395-407.

725 **Watanabe S, Harada K, Abe J. 2012.** Genetic and molecular bases of photoperiod
726 responses of flowering in soybean. *Breed Sci.* 61(5):531-43.

727 **Xia Z, Watanabe S, Yamada T, et al. 2012.** Positional cloning and characterization
728 reveal the molecular basis for soybean maturity locus *E1* that regulates
729 photoperiodic flowering. *Proc Natl Acad Sci U S A.* 109(32):E2155-E2164.

730 **Xiao Y, Chen Y, Charnikhova T, et al. 2014.** *OsJAR1* is required for JA-regulated
731 floret opening and anther dehiscence in rice. *Plant Mol. Biol.* 86:19-33.

732 **Xu M, Xu Z, Liu B, et al. 2013.** Genetic variation in four maturity genes affects
733 photoperiod insensitivity and PHYA-regulated post-flowering responses of soybean.
734 *BMC Plant Biol.* 13:91.

735 **Xu S M, Brill E, Llewellyn D J, et al. 2012** Over expression of a potato sucrose
736 synthase gene in cotton accelerates leaf expansion, reduces seed abortion, and
737 enhances fiber production. *Mol Plant.* 5:430-441.

738 **Yue Y, Sun S, Li J, et al. 2021.** *GmFULa* improves soybean yield by enhancing
739 carbon assimilation without altering flowering time or maturity. *Plant Cell Rep.*
740 40(10):1875-1888.

741 **Zhao C, Takeshima R, Zhu J, et al. 2016.** A recessive allele for delayed flowering at
742 the soybean maturity locus *E9* is a leaky allele of *FT2a*, a *FLOWERING LOCUS T*
743 ortholog. *BMC Plant Biol.* 16:20.

744

745 **Figure legends**

746 **Fig.1 Photoperiod affects R3 stage of different soybean cultivars.** (a) The initiation
747 time of pod setting after flowering (duration of R1 to R3 stage) of W82 and Harosoy
748 under short-day (SD; 12 h light/12 h dark) and long-day (LD; 16 h light/8 h dark)
749 photoperiod conditions. (b) Phenotypes of flowers and pods of W82 at 5, 16, 19 and
750 36 days after flowering under SD and LD condition, respectively. In LD condition, the
751 firstly-opened flowers of W82 gradually fall off instead of developing into pods
752 (DAR1=16). New buds are then produced at each node (DAR1=19), and the
753 second-wave opened flowers (blue arrows) gradually turn into pods. At about 30
754 DAR1, the pod-setting stage had just begun under long-day conditions, while the pods
755 had reached the seed-filling stage under the short-day conditions (blue dashed box).
756 Under SD, most of the flowers, including many of the first-opened flowers, can
757 successfully initiate pod setting, at about five days after flowering (DAR1=5). (c)
758 Phenotypes of flowers and pod of Harosoy at DAR1=3 and DAR1=8. All data are
759 given as means \pm s.e.m. (n = 5 plants). One-tailed, two-sample t-tests were used to
760 generate the P values. DAR1, days after R1. The bar in the picture represents 0.5 cm.

761

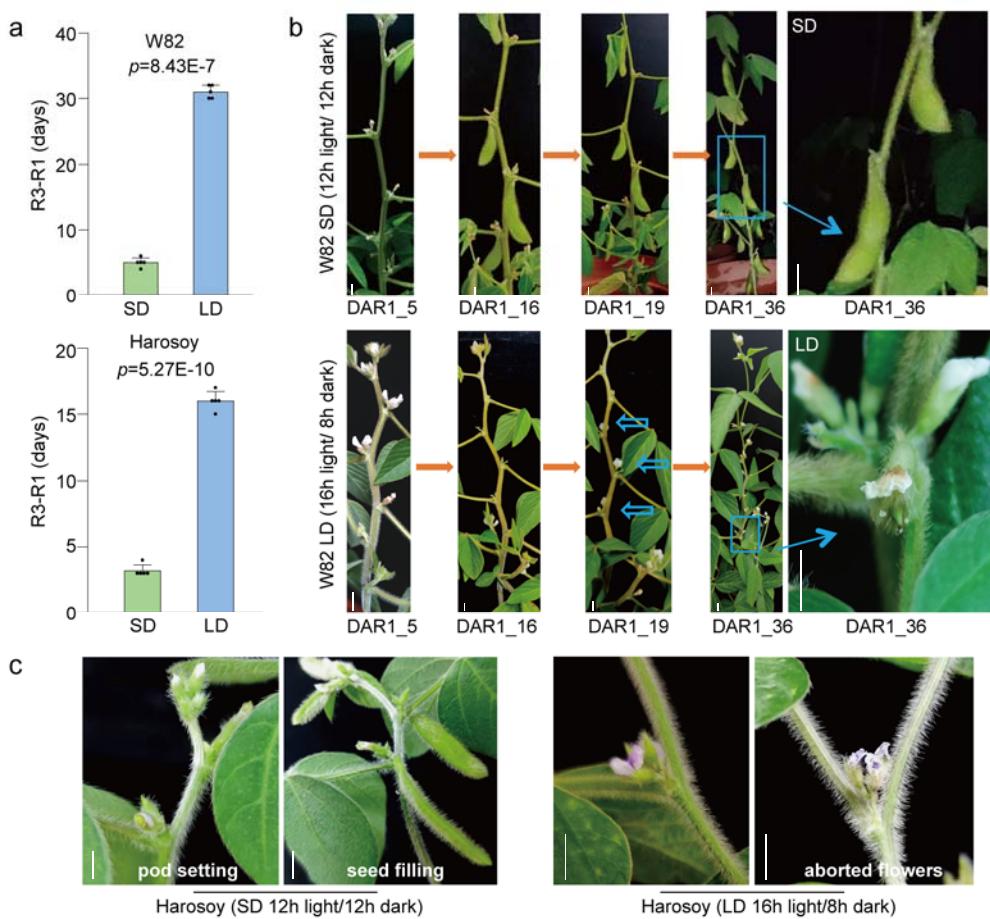
762 **Fig. 2 Differences in growth and architecture of soybean cultivar W82 under**
763 **differing photoperiod conditions.** (a) Numbers of nodes on the main stem at
764 flowering stage (R1) and pod setting stage (R3), and pod and branch numbers at R3 of
765 W82 in SD (12 h light/12 h dark) and LD (16 h light/8 h dark) conditions. (b)
766 Phenotype of W82 under SD and LD photoperiod conditions. Seed are sown at the
767 same time, while plants matured faster, were shorter, produced fewer node, and fewer
768 branches under SD than LD. (c) Pod growth status of SD and LD conditions at 55
769 days after R1 (DAR1). When SD plants reached its maturity stage, total pod number
770 of per plant and developmental stages under two photoperiod conditions were
771 observed at this time-point. Brown pods are ripe, green are unripe. Under SD
772 conditions plants had no branch. And pods on branches and main stem under LD
773 conditions were present here. All data are given as means \pm s.e.m.. One-tailed,
774 two-sample t-tests were used to generate the *P* values.

775

776 **Fig. 3 Soybean remains photoperiod sensitive after flowering.** In order to detect
777 effect of photoperiod transfer on post-flowering development, half of the 10 plants
778 grown in LD (16 h light/8 h dark) conditions were transferred to SD (12 h light/12 h
779 dark) conditions at the R1 stage (named LD_SD group), while the remaining 5 plants
780 continued to grow under continuous LD condition (named LD_LD; control group). (a)
781 Pod setting was initiated about 14 days after transplantation in the LD_SD plants, but
782 not in the LD_LD conditions. (b) The time required from R1 (time of the first opened
783 flower) to R3 (initiation time of podding) of LD_SD and LD_LD experiment groups.
784 (c) Three representative pod and seed statuses of 45 days after the photoperiod
785 transfer treatment. (d) Fresh seed weight of LD_SD and LD_LD groups at 45 days
786 after the photoperiod transfer treatment. All data are given as means \pm s.e.m..
787 One-tailed, two-sample t-tests were used to generate the *P* values.

788

789 **Fig. 4 Branch-specific photoperiod treatments reveal that the leaves are**
790 **responsible for the pod-setting signal.** (a) Four groups of branch-specific
791 photoperiod treatments. The shoot apical meristem (SAM) was removed from
792 soybean seedlings in LD (16 h light/8 h dark) conditions, resulting in the simultaneous
793 development of two lateral branches. Different photoperiod treatment combinations
794 were applied to two branches after flowering (R1). (a) SD&LD group: Under normal
795 long-day (LD; 16 h light/8 h dark) conditions, one branch was covered with a black
796 plastic bag at ZT12 to simulate the short-day (SD; 12 h light/12 h dark) condition,
797 while another branch was treated with a transparent plastic bag to maintain the LD
798 conditions. In order to demonstrate that the leaves are the main organs sensing
799 photoperiod and transmitting podding signals, the leaves were also removed from
800 either the SD or LD branches undergoing the SD&LD treatment (b and d). (c)
801 LD&LD group: As a control, both branches were covered with transparent plastic
802 bags to maintain LD conditions. (e–h) Days required from flowering to podding
803 (R3-R1) of four groups in (a-d). (i-l) The phenotypes of the different photoperiod
804 combinations described in (a-d) at 15 days after treatment. Branches in the SD
805 condition with leaves successfully set pods, and at 15 days the pods had reached the
806 seed-filling stage (i and j). Under LD the pod-setting time was later than that of the
807 SD, whether or not the leaves were removed. All data are given as means \pm s.e.m..
808 One-tailed, two-sample t-tests were used to generate the *P* values.
809


810 **Fig. 5 Photoperiod affects style morphology and the development of pistil and**
811 **stamen of soybean.** (a) Phenotype of the styles of opened flowers of W82 under SD
812 (12 h light/12 h dark) and LD (16 h light/8 h dark) conditions, respectively. (b)
813 Flowers or buds in different development stages in an inflorescence under SD and LD
814 conditions of W82. (c) Growth status of pistil and stamen of bud or flower in (b). The
815 numbers marked in red represent the buds with pollen grains dispersed from anthers.
816 The orange triangle represents the position of the stigma.

817

818 **Fig. 6 Comparison of transcripts activities and plant hormone contents in pistils**
819 **of SD (12 h light/12 h dark) and LD (16 h light/8 h dark) conditions.** (a) Some
820 differentially expressed genes in pistils of SD and LD conditions. (b) Some plant
821 hormones with significant differences in content of SD and LD conditions. (c) Pod or
822 flower morphology at the fourth upmost node of control groups and the external
823 application of 50 mg/mL sucrose solutions groups. (d) External application of sucrose
824 shortens the time required for initial pod setting under LD conditions. All data are
825 given as means \pm s.e.m.. One-tailed, two-sample t-tests were used to generate the *P*
826 values.

827

828

Fig.1 Photoperiod affects R3 stage of different soybean cultivars. (a) The initiation time of pod setting after flowering (duration of R1 to R3 stage) of W82 and Harosoy under short-day (SD; 12 h light/12 h dark) and long-day (LD; 16 h light/8 h dark) photoperiod conditions. (b) Phenotypes of flowers and pods of W82 at 5, 16, 19 and 36 days after flowering under SD and LD condition, respectively. In LD condition, the firstly-opened flowers of W82 gradually fall off instead of developing into pods (DAR1=16). New buds are then produced at each node (DAR1=19), and the second-wave opened flowers (blue arrows) gradually turn into pods. At about 30 DAR1, the pod-setting stage had just begun under long-day conditions, while the pods had reached the seed-filling stage under the short-day conditions (blue dashed box). Under SD, most of the flowers, including many of the first-opened flowers, can successfully initiate pod setting, at about five days after flowering (DAR1=5). (c) Phenotypes of flowers and pod of Harosoy at DAR1=3 and DAR1=8. All data are given as means \pm s.e.m. ($n = 5$ plants). One-tailed, two-sample t-tests were used to generate the P values. DAR1, days after R1. The bar in the picture represents 0.5 cm.

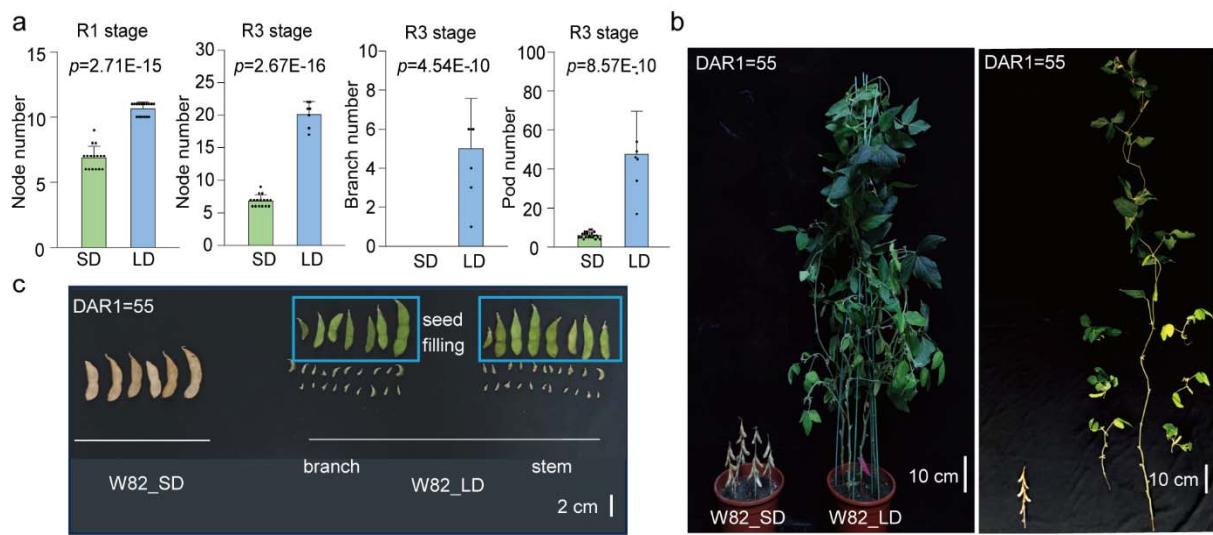


Fig. 2 Differences in growth and architecture of soybean cultivar W82 under differing photoperiod conditions. (a) Numbers of nodes on the main stem at flowering stage (R1) and pod setting stage (R3), and pod and branch numbers at R3 of W82 in SD (12 h light/12 h dark) and LD (16 h light/8 h dark) conditions. (b) Phenotype of W82 under SD and LD photoperiod conditions. Seed are sown at the same time, while plants matured faster, were shorter, produced fewer node, and fewer branches under SD than LD. (c) Pod growth status of SD and LD conditions at 55 days after R1 (DAR1). When SD plants reached its maturity stage, total pod number of per plant and developmental stages under two photoperiod conditions were observed at this time-point. Brown pods are ripe, green are unripe. Under SD conditions plants had no branch. And pods on branches and main stem under LD conditions were present here. All data are given as means \pm s.e.m.. One-tailed, two-sample t-tests were used to generate the *P* values.

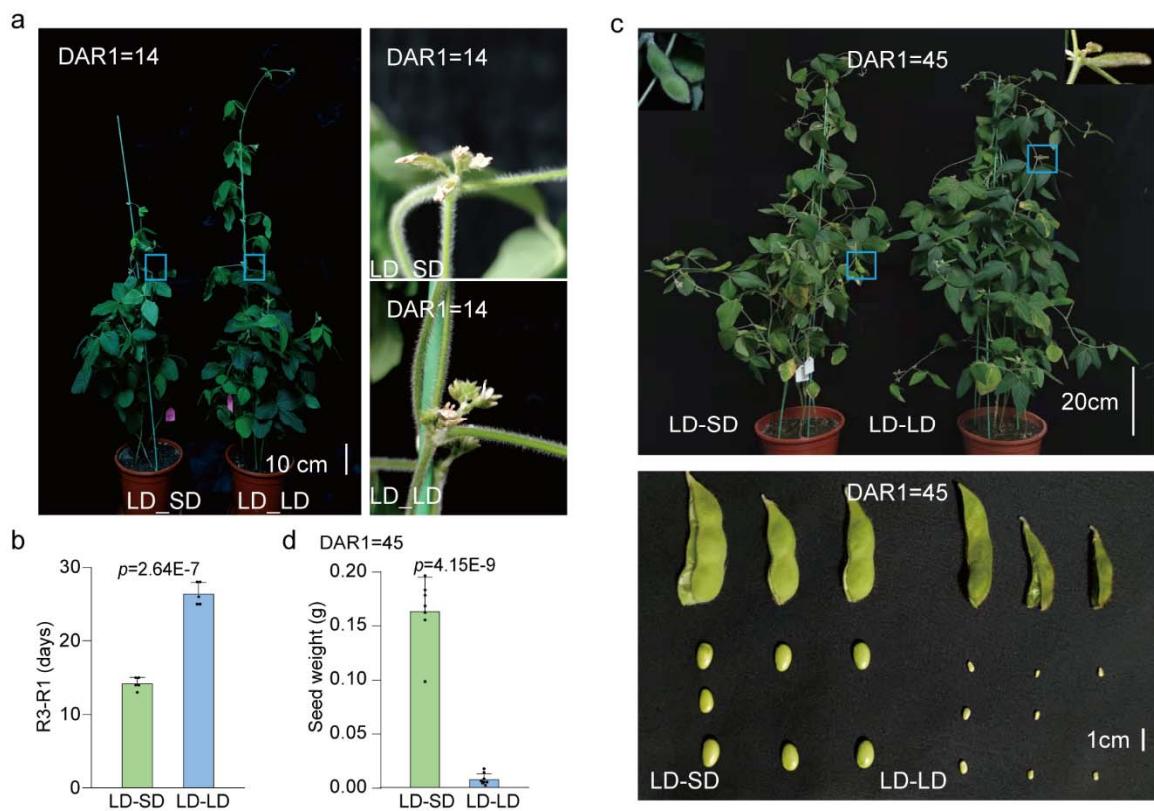


Fig. 3 Soybean remains photoperiod sensitive after flowering. In order to detect effect of photoperiod transfer on post-flowering development, half of the 10 plants grown in LD (16 h light/8 h dark) conditions were transferred to SD (12 h light/12 h dark) conditions at the R1 stage (named LD_SD group), while the remaining 5 plants continued to grow under continuous LD condition (named LD_LD; control group). (a) Pod setting was initiated about 14 days after transplantation in the LD_SD plants, but not in the LD_LD conditions. (b) The time required from R1 (time of the first opened flower) to R3 (initiation time of podding) of LD_SD and LD_LD experiment groups. (c) Three representative pod and seed statuses of 45 days after the photoperiod transfer treatment. (d) Fresh seed weight of LD_SD and LD_LD groups at 45 days after the photoperiod transfer treatment. All data are given as means \pm s.e.m.. One-tailed, two-sample t-tests were used to generate the P values.

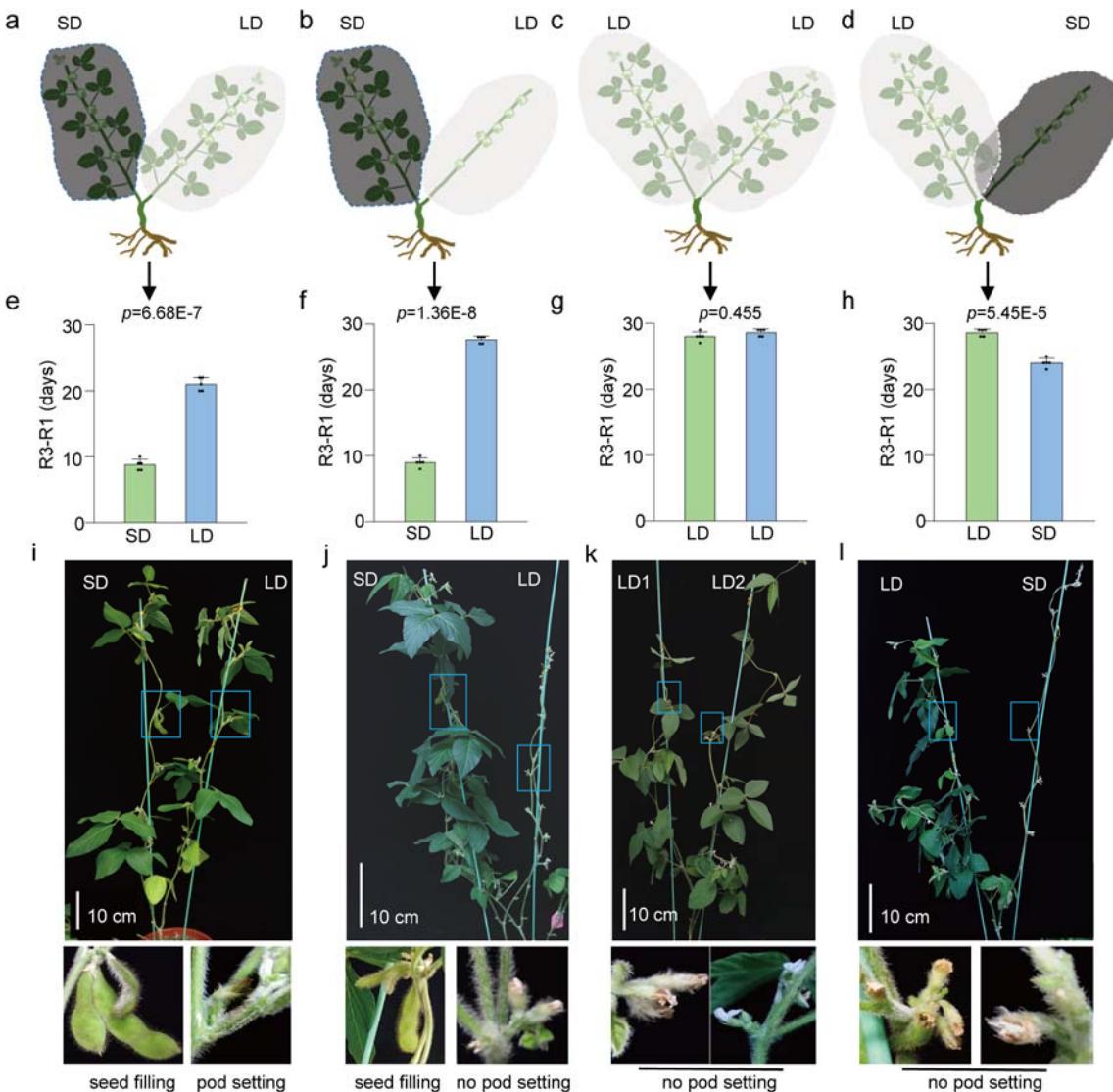


Fig. 4 Branch-specific photoperiod treatments reveal that the leaves are responsible for the pod-setting signal. (a) Four groups of branch-specific photoperiod treatments. The shoot apical meristem (SAM) was removed from soybean seedlings in LD (16 h light/8 h dark) conditions, resulting in the simultaneous development of two lateral branches. Different photoperiod treatment combinations were applied to two branches after flowering (R1). (a) SD&LD group: Under normal long-day (LD; 16 h light/8 h dark) conditions, one branch was covered with a black plastic bag at ZT12 to simulate the short-day (SD; 12 h light/12 h dark) condition, while another branch was treated with a transparent plastic bag to maintain the LD conditions. In order to demonstrate that the leaves are the main organs sensing photoperiod and transmitting podding signals, the leaves were also removed from either the SD or LD branches undergoing the SD&LD treatment (b and d). (c) LD&LD group: As a control, both branches were covered with transparent plastic bags to maintain LD conditions. (e-h) Days required from flowering to podding (R3-R1) of four groups in (a-d). (i-l) The phenotypes of the different photoperiod combinations described in (a-d) at 15 days after treatment. Branches in the SD condition with leaves successfully set pods, and at 15 days the pods had reached the seed-filling stage (i and j). Under LD the pod-setting time was later than that of the SD, whether or not the leaves were removed. All data are given as means \pm s.e.m.. One-tailed, two-sample t-tests were used to generate the P values.

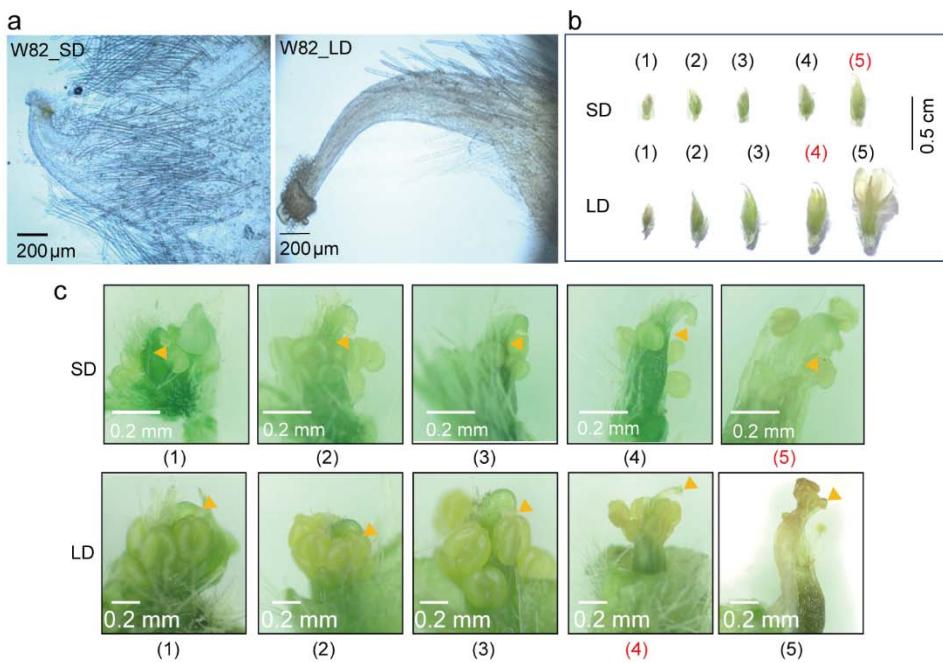


Fig. 5 Photoperiod affects style morphology and the development of pistil and stamen of soybean. (a) Phenotype of the styles of opened flowers of W82 under SD (12 h light/12 h dark) and LD (16 h light/8 h dark) conditions, respectively. (b) Flowers or buds in different development stages in an inflorescence under SD and LD conditions of W82. (c) Growth status of pistil and stamen of bud or flower in (b). The numbers marked in red represent the buds with pollen grains dispersed from anthers. The orange triangle represents the position of the stigma.

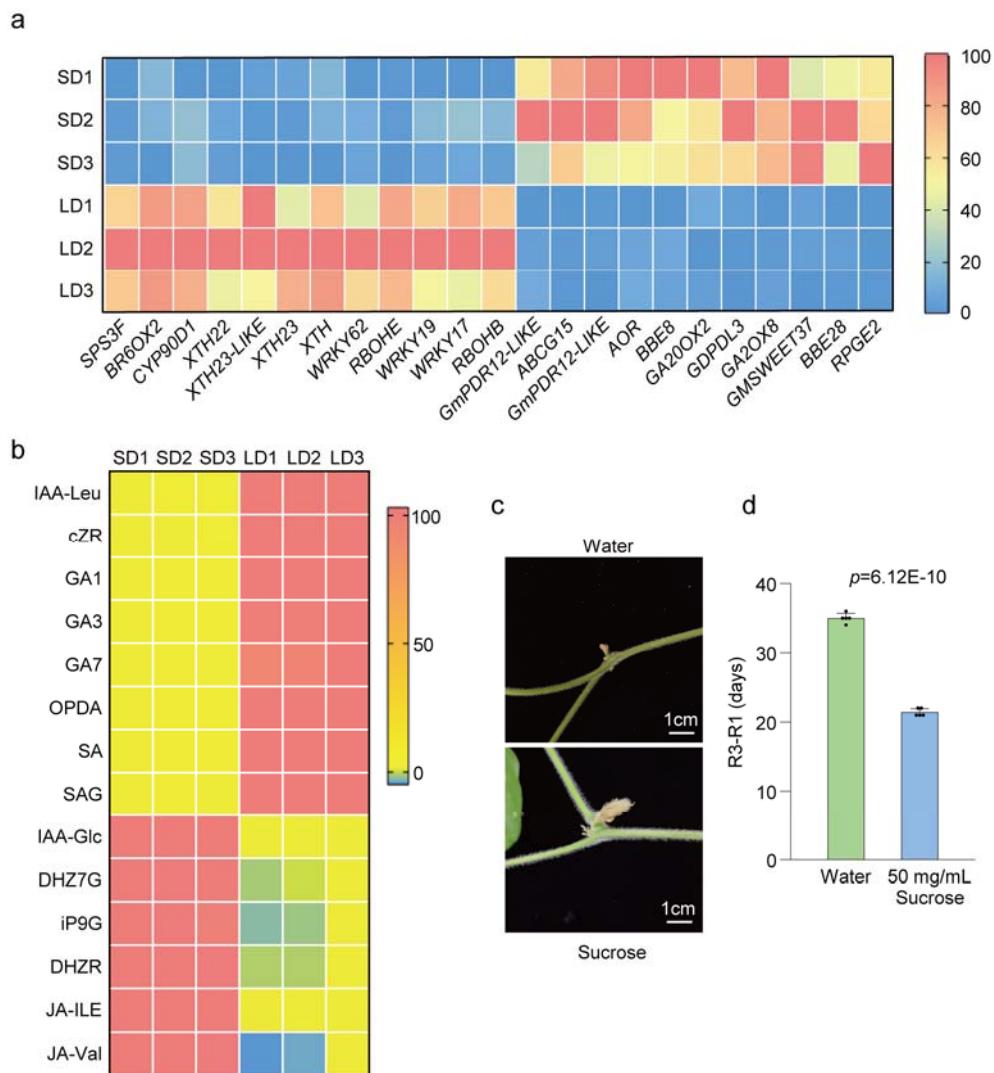


Fig. 6 Comparison of transcripts activities and plant hormone contents in pistils of SD (12 h light/12 h dark) and LD (16 h light/8 h dark) conditions. (a) Some differentially expressed genes in pistils of SD and LD conditions. (b) Some plant hormones with significant differences in content of SD and LD conditions. (c) Pod or flower morphology at the fourth upmost node of control groups and the external application of 50 mg/mL sucrose solutions groups. (d) External application of sucrose shortens the time required for initial pod setting under LD conditions. All data are given as means \pm s.e.m.. One-tailed, two-sample t-tests were used to generate the *P* values.