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 2 

Abstract 26 
 27 

Colorectal cancer (CRC) represents the third leading cause of cancer-related deaths. Knowledge 28 

covering diverse cellular and molecular data from individual patients has become valuable for 29 

diagnosis, prognosis, and treatment selection. Here, we present in-depth comparative RNA-seq 30 

analysis of 32 CRC patients pairing tumor and healthy tissues (total of 73 samples). Strict thresholds 31 

for differential expression genes (DEG) analysis revealed an interconnection between nutrients, 32 

metabolic program, and cell cycle pathways. Among the upregulated DEGs, we focused on the Xc- 33 

system, composed of the proteins from SLC7A11 (xCT) and SLC3A2 genes, along with several 34 

interacting genes. To assess the oncogenic potency of the Xc- system in a cellular setting, we applied 35 

a knowledge-based approach, analyzing gene perturbations from CRISPR screens. The study 36 

focused on a set of 27 co-dependent genes that were strongly correlated with the fitness of SLC7A11 37 

and SLC3A2 across many cell types. Alterations in these genes in 13 large-scale studies (e.g., by 38 

mutations and copy number variation) were found to enhance overall survival and progression-free 39 

survival in CRC patients. In agreement, the overexpression of these genes in cancer cells drives 40 

cancer progression by allowing effective management of the redox level, induction of stress response 41 

mechanisms, and most notably, enhanced activity of ion/amino acid transporters, and enzymes acting 42 

in de novo nucleotide synthesis. We also highlight the positive correlation between the Xc- system 43 

gene expression level, patient responsiveness to different chemotherapy treatments, and immune cell 44 

infiltration (e.g., myeloid-derived suppressor cells) in CRC tumors as a measure for their 45 

immunosuppressive activity. This study illustrates that knowledge-based interpretation by synthesizing 46 

multiple layers of data leads to functional and mechanistic insights into the role of SLC7A11 and its 47 

associated genes in CRC tumorigenesis and therapeutics. 48 

  49 
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 3 

Introduction 50 

Colorectal cancer (CRC) represents 10% of cancer cases globally. It is the third most prevalent cancer 51 

and the third leading cause of cancer‐related deaths in the USA. Having access to extensive data sets 52 

from cancer patients enables the evaluation of crucial predictive biomarkers needed for optimizing 53 

treatment choices. Moreover, earlier diagnosis is crucial for improved survival. At present, diagnosis 54 

and choice of optimal treatments are based on integration of clinical features (e.g., age, family history, 55 

tumor location, size and TNM staging) (Vega et al. 2015). For higher precision, genetic alterations are 56 

tested, in particular evidence for recurrent mutations (Testa et al. 2018). While noninvasive tests (e.g., 57 

blood and stool tests) show promise for improved detection, the lack of mechanistic or cellular 58 

interpretation limits their use (Zygulska and Pierzchalski 2022). The primary treatment for most CRC 59 

patients is surgery, with chemotherapy being administered in cases of advanced disease (Biller and 60 

Schrag 2021). The multi-omics approach that includes diverse cellular and molecular data from 61 

individual patients at a large-scale has become a valuable component in cancer research, influencing 62 

CRC diagnosis, prognosis, and treatment selection (Menyhárt and Győrffy 2021).  63 

Ample studies have shown the importance of pathological measures that distinguish between normal 64 

and tumor tissues based on histological and rich clinical criteria (Roseweir et al. 2017). In recent 65 

years, rich data from hundreds of patients were compiled in cancer portals (e.g., TCGA, GDC, 66 

cBioPortal), providing rich omics data such as gene expression and epigenetic profiling which had 67 

been successfully used in prognosis of various malignant tumors (Chen et al. 2022). In the case of 68 

CRC, there is an urgent need to identify precise prognostic factors to identify patients who would 69 

benefit most from proposed treatments. In terms of preferred treatments, agents that lead to DNA 70 

synthesis disruption and eventually cell death are commonly used (e.g., 5-fluorouridine or 71 

fluoropyrimidines) (Mármol et al. 2017). While other drugs are available (e.g., oxaliplatin, 72 

fluoropyrimidine, irinotecan), there is little evidence that can match the beneficial use of any of the 73 

available agent to specific patients based on their detailed molecular profiles (Koncina et al. 2020). 74 

The analysis of healthy and tumor samples from the same patient is expected to improve prognostic 75 

accuracy in CRC patients (Barrier et al. 2005).  76 

The prognosis of CRC patients with advanced tumors remains poorly understood. Tumor-infiltrating 77 

immune cells were proposed to impact cancer progression, treatment response, and ultimately 78 

patients' survival and therapy efficacy (Zheng et al. 2022). For example, the presence of tumor-79 

associated neutrophils (TANs), tumor-associated macrophages (TAMs), and myeloid-derived 80 

suppressor cells (MDSCs) has been linked to worsened prognosis in CRC and other cancer types 81 

(Condamine et al. 2015; Parcesepe et al. 2016). Comprehensive analytical algorithms use information 82 

from large-scale studies (e.g., TCGA) to assess sample purity and the correlation of immune cell 83 

infiltration with gene expression as a means to provide insights into the predictive value for treatment 84 

decisions for CRC patients. Moreover, studying tumor cells' metabolic demands, and their capacity to 85 

cope with stress, along with characterizing the cancer immune microenvironment, can benefit therapy 86 

precision (Li et al. 2020; Li et al. 2021). 87 
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In any living system, the accessibility of amino acids is crucial for energy production, translation 88 

efficiency, and redox homeostasis (Vučetić et al. 2017). The dysregulation of amino acid transporters 89 

in tumor cells complies with the increased metabolic and translational needs (Zhu and Thompson 90 

2019). Cancer cells require large amounts of cysteine and glutathione (GSH) to neutralize the 91 

increased intracellular reactive oxygen species (ROS). Cysteine plays a major role in maintaining 92 

antioxidant defense in cancer cells, highlighting its significance in cellular redox balance. The main 93 

challenge is that while the intracellular environment favors a reducing state, the extracellular 94 

environment is strongly oxidizing, leading to the rapid oxidation of cysteine to cystine (Daher et al. 95 

2020).  96 

Cancer cells, facing high oxidative stress, struggle to meet their demand for cysteine (Bonifácio et al. 97 

2021). Cystine starvation induces cell death that can be rescued by antioxidants. Most cancer cells 98 

rely on the Xc- heterodimeric amino acid transporters system, consists of SLC7A11 (xCT) and 99 

SLC3A2 (heavy chain 4F2hc), which imports cystine for glutathione synthesis (Koppula et al. 2021). 100 

The Xc- system consists of chloride-dependent anionic L-cystine/L-glutamate antiporter on the cell 101 

surface, which mediates the uptake of extracellular cystine in exchange for intracellular glutamate (Lin 102 

et al. 2020). Briefly, Xc- system imports cystines (the oxidized form of cysteine) that ultimately serve 103 

as precursors for reduced glutathione (GSH) synthesis. Tripeptide GSH synthesis involves two 104 

enzymatic steps, starting with the condensation of cysteine and glutamate into γ-glutamyl-L-cysteine 105 

by glutamate cysteine ligase (GCL) followed by adding glycine to form GSH by GSH synthase (GS) 106 

(Lin et al. 2020). GSH is involved in several vital cellular functions, including detoxification, maintaining 107 

intracellular redox balance, reducing hydrogen peroxide and other oxygen radicals, and serving as 108 

thiol donor to proteins. While there are other transporters that can partially compensate for a failure in 109 

SLC7A11, it remains the major route for transporting cystine in cancer cells (Parker et al. 2021). 110 

Similarly, in cancer stem cells (CSCs), CD44 variant isoform (CD44v) can interact and stabilize 111 

SLC7A11 on the cell surface (Jyotsana et al. 2022).  112 

While SLC7A11 was identified 40 years ago, details on its expression regulation in cancer cells in view 113 

of metabolic load, redox status, and tumor microenvironment (TME) remain incomplete. The nutrient 114 

dependency of cancer cells generally requires the increased function of SLC7A11. A high expression 115 

of SLC7A11 leads to a reduction of oxidative stress in some oncogenic KRAS-mutant cancers and 116 

thus maintains cancer progression (Koppula et al. 2021). In most cases, the elevated SLC7A11 117 

expression is related to a low survival rate. This was validated in the cases of pancreatic ductal 118 

adenocarcinoma (PDAC), colorectal adenocarcinoma (COAD) and lung adenocarcinoma (LUAD). In 119 

contrast, SLC7A11 knockdown leads to an oxidized redox status and an increase in intracellular ROS 120 

levels. Ultimately, such stress may inhibit tumor invasion. 121 

The discovery of ferroptosis, a form of regulated cell death induced by iron-dependent lipid peroxide 122 

accumulation, through blocking cystine uptake, further highlights the importance of the cystine 123 

transport system for cell survival. Pharmacologic blockade of SLC7A11 induces ferroptotic cell death 124 

(Dixon et al. 2012). Studies show that SLC7A11 mediated cystine uptake is essential in suppressing 125 

ferroptosis and promoting cell survival under oxidative stress. Thus, the regulation of the Xc- system is 126 

an attractive target for cancer therapy (Lei et al. 2022). Nevertheless, there are discrepancies between 127 
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the pro- and anti-tumorigenic activities of SLC7A11 when utilizing a simplified setting of cell culture 128 

versus in vivo models (Li et al. 2022). The amounts and activity of SLC7A11 in the cell membrane are 129 

strongly regulated at the transcription level, but also respond to translational and post-translational 130 

regulation (Lee and Roh 2022). SLC7A11 expression is induced by ATF4 under amino acid 131 

deprivation, which is essential for cells to survive under conditions of cystine starvation-induced 132 

ferroptosis (Zou et al. 2024). Understanding how these mechanisms modulate SLC7A11 can provide 133 

insight into therapeutic targets for cancer treatment. 134 

In this study, we focus on the transcriptional profiles (mRNAs) from 32 colon cancer patients, each 135 

analyzed by comparing its tumor to the healthy tissue. We identified strong upregulated gene sets that 136 

signify mitotic cell signature from colon, cell cycle G2M checkpoints and an additional network of 137 

dysregulated transporters leading to a metabolic burden. We focused on SLC7A11 and its functional 138 

network as an integrator of colon cancer progression. Using functional CRISPR cellular fitness 139 

analysis and survival data from large resources of colon cancer, we identified genes carrying clinically 140 

relevant properties. We present an exhaustive bioinformatic analysis to explore the impact of the Xc- 141 

system on therapy responsiveness and the tumor composition of immune cells. We illustrate the 142 

importance of a multilayer analysis, initiated from detailed transcriptional tissue profiling, in exposing 143 

overlooked cellular processes and targets for improving clinical and therapeutic management of CRC. 144 

Methods 145 

RNA-seq analyses of 32 CRC patients 146 

The mRNA expression levels of all genes (coding and non-coding) were determined by pairwise 147 

analysis of cancerous and healthy tissues obtained from the same patient. Total of 32 patients were 148 

analyzed with 73 deep sequencing results. Altogether, there were 36 samples marked as tumor (T) 149 

and 37 samples marked as healthy (H). Each participant provided at least one sample for T and H. For 150 

four participants the number of samples was higher.  151 

Ethical approval to conduct this study was granted by the ethics committee of the medical faculty of 152 

Magdeburg (33/01, amendment 43/14). Next-generation sequencing was conducted in contract-based 153 

cooperation at the genome analytics lab at Helmholtz-Center for Infection Research (HZI) Brunswick, 154 

Germany.  155 

Analyses of CRC patients from public resources 156 

The Limma R package (Ver 4.2.0) was used for differential expression analysis with adjusted p-value 157 

of 1e-20 (for pair-wise analysis) as significance threshold. We have applied GEPIA2 database that 158 

covers the data from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) 159 

(Consortium 2013). Box plot, violin plot, and scatter plot for selected DEG were drawn by the TCGA 160 

and GTEx visualization website GEPIA2 (Tang et al. 2019). 161 

Colon cell type 162 

Analysis of bulk RNA-seq datasets from 15 human organs including colon produced a cell type 163 

enrichment prediction atlas for all coding genes. The initial data is extracted from GTEx. The identity 164 
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profiles across tissue types revealed 12 types of cells in colon by the Human Proteome Atlas (HPA; 165 

(Thul and Lindskog 2018)). We have applied the resource for understanding the DEG from colon 166 

cancer. The 12 colon cells cover 1918 genes (559, 622 and 737 that are labelled as very high, high 167 

and moderate enriched genes, respectively). We performed the analysis for 7 main colon cell types 168 

Colon enterocytes (369 genes), Colon enteroendocrine cells (338 genes), Enteric glia cells (240 169 

genes), Mitotic cells in Colon )85 genes), Endothelial cells (219 genes), Smooth muscle cells (166 170 

genes), Fibroblasts (42 genes). Additionally, there are 5 types of immunological cells of the colon that 171 

are specified by their enriched genes: Macrophages (143), Neutrophils (65), Mast cells (29), T-cells 172 

(108) and Plasma cells (114).  173 

Bioinformatics tools and statistics 174 

Statistically significance: Paired statistics for 2-group analysis was based on 2-taileed t-test. 175 

Statistical significance was also computed using Mann-Whitney. Kruskal-Wallis tests used in single-176 

variable comparisons with more than 2 groups. Differences with p <0.05 were regarded as statistically 177 

significant (unless mentioned otherwise). False Discovery Rate (FDR) was computed using the 178 

Benjamini-Hochberg method. Hypergeometric test was used to assess the p-value of overlapping 179 

gene sets. 180 

Signature gene set: The database of gene sets from the Molecular Signatures Database (MsigDB) 181 

allows to test gene set enrichment and it includes about 10,000 sets covering diverse biological 182 

processes and diseases. A collection of hallmark gene sets is a set of 50 main processes in cells with 183 

expert curation with about 200 genes included in each hallmark set (Liberzon et al. 2015).  184 

Gene expression density plot: Conducted using RNA-seq data from TCGA, combined with the 185 

Therapeutically Applicable Research to Generate Effective Treatments (TARGET), and the GTEx 186 

repositories using TNMplot (Bartha and Gyorffy 2021).  187 

Enrichment tests for cancer hallmarks: Testing overrepresentation analysis by slice representation. 188 

The different colored slices indicating the hallmarks (total of 10) that are significant (using the adjusted 189 

p < 0.05 as a threshold). The analysis used 6763 genes that are associated with any of the hallmarks 190 

as a reference set.  191 

Expression of immune cells 192 

We used DICE resource that displays the gene expression trend for 13 immune cells in their naïve 193 

and activated states. DICE identified cis-eQTLs for 61% of all protein-coding genes expressed in 194 

these cell types (Schmiedel et al. 2018). For purity and infiltration of immune cells to the tumor 195 

sample, we used the TIME2.0 (Tumor immune estimation) resource that applied correlation tests or 196 

any gene against 22 immune cell types. The TIDE platform report on any gene (or gene sets) across 197 

over 33K samples in over 180 tumor cohorts (including TCGA) for the T cell dysfunction and exclusion 198 

signatures associated with it (Fu et al. 2020). 199 

CRISPR-Cas9 cell line screening 200 

We used the pre-calculated correlation of dependency from DepMap using CRISPR/Cas9 (Dempster 201 

et al. 2019). CRISPR-Cas9 and RNAi-based knockout are reported for 19,144 genes across 1206 cell 202 
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 7 

lines (primary and established) and providing knockout fitness scores (measured 14 days after 203 

transfection) and control metrices for the calculation of probabilities of dependency across cell lines 204 

that are divided by their origin and lineage. Dependencies enriched in COAD were precalculated for 205 

~1800 genes (identified by DepMap CRISPR-Cas9 project using the Public 23Q4+Score, Chronos 206 

resource). Expanded collection of cell lines and cancer types is available in iCSDB (Choi et al. 2021) 207 

that combined DepMap (Public 20Q2) and BioGRID ORCS (Ver. 1.0.4) large scale CRISPR data. We 208 

search for genes with correlated knockout fitness (called ‘co-dependent’). A loss of fitness and a 209 

negative log fold change in the average representation of the relevant targeted sequence relative to 210 

plasmid are indicative for the gene being essential. 211 

Predictive analysis by gene expression level 212 

KM Plot and ROC Plotter (Fekete and Győrffy 2019) were used to identify gene expression-based 213 

predictive biomarkers for CRC that compiled publicly available datasets. By integrating gene 214 

expression data (RNA-seq and Chip-Seq) with chemotherapy, almost 20,000 genes can be tested. A 215 

link of gene expression and therapy response using transcriptome-level CRC data generates a ROC 216 

plot with detailed statistics on relevance of any gene to therapy and clinical response (Fekete and 217 

Gyorffy 2023). In addition, we activated a platform for validating predictive biomarkers in cell lines 218 

(>1200 cell lines, based on 4 resources including DepMap). The expression of genes in cells with and 219 

without drug treatment are presented by the average response per each cell collection.  220 

Results 221 

Pairwise analysis of samples from colon cancer patients 222 

We have analyzed 32 colon cancer patients with 73 datasets. Each patient contributed at least two 223 

samples, one from the tumor and another one from the unaffected neighboring tissue. A few patients, 224 

had more samples (3-6 each). All samples were subjected to deep sequencing for mRNA profiling 225 

(see Methods). 226 

Fig. 1A shows the unsupervised partition of all 73 samples labelled tumor and healthy (T and H, 227 

respectively). The dendrogram shows a clear partition of all samples into two main branches. The 228 

tumor (T) branch is 100% consistent (purple, 31 samples), and the second major branch is mostly 229 

composed of healthy samples (88% of 42 samples, orange), only 5 T-labelled samples clustered with 230 

the H-samples. Fig. 1B shows that dimensional reduction by principal component analysis (PCA) 231 

supports a successful partition of T and H samples with 37% of the total variance explained by PC1 232 

and PC2. The PCA used the top 1000 ranked differentially expressed genes (DEG). Similar successful 233 

partition of T and H was achieved by PCA whose input consisted of the entire (i.e., not only DEG) 234 

RNA-seq profiles (total 13,682 identified transcripts).  235 

Next, we analyzed the DEG from all colon cancer patients. Each patient was analyzed with respect to 236 

their own healthy-labelled sample. Single samples from the tumor and healthy tissue were normalized 237 

and compared internally (according to the number of samples available). Altogether, we performed 238 

global analyses of 32 pre-analysis patients to confirm high statistical significance and a minimal fold 239 

change threshold per gene. Specifically, the analysis was restricted to genes with a minimal statistics 240 
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 8 

of FDR p-value <1e-20, with a minimal average expression of 10 counts per million (CPM) and limited 241 

to coding genes (i.e., 92% of all mapped transcripts). Such filtration reduced the 13,682 unique gene 242 

transcripts to 9,045 genes that were further analyzed (Fig. 1C).  243 

 244 

 245 
 246 
Figure 1. Analysis of the mRNA profiles from 32 colon cancer patients. (A) Unsupervised dendrogram 247 

of 73 samples from 32 participants. The main nodes are indicated by their purity for tumor (T) and 248 

healthy (H) colored purple and orange, respectively. The T samples of the dendrogram tree are 249 

highlighted with light purple background. (B) PCA for 73 samples, based on the top 1000 differentially 250 

expressed genes (DEG) colored by T and H with red and blue, respectively. The variance explained 251 
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 9 

are indicated for PC1 and PC2. (C) Volcano plot representation of DEG analysis from RNA-seq of T 252 

versus H for the samples described in A. Red and blue points mark the genes with significantly 253 

increased or decreased expression in T relative to H, respectively. Representative significant genes 254 

are indicated. (D) Top 50 expressing genes (RNA-seq, normalized by trimmed mean of the M-values 255 

(TMM) tested for enrichment for any of the 10 cancer hallmarks. (E) DEG (up and down; 323 genes). 256 

The significantly enriched hallmarks are colored. 257 

We tested the results of the RNA-seq analysis to identify a signature for any of the 10 known cancer 258 

hallmarks (Hanahan 2022). The highly expressed genes already identified significant hallmarks such 259 

as ‘reprogramming energy metabolism’ (p-value <1e-06) and ‘resisting cell death’ (adjusted p-value 260 

1.4e-02; Fig. 1D).  261 

For clinical relevance, it is essential to focus on consistent expression difference in T to H samples. To 262 

this end, we reanalyzed DEG at a relaxed threshold. For enrichment of cancer hallmarks DEG were 263 

selected with FDR <1e-20, a minimal fold change of 2.3 (i.e., log(FC) >|1.2|), and a minimal average 264 

expression of 10 CPM (Supplementary Table S1). The signature for ‘reprogramming energy 265 

metabolism’ remained significant (adjusted p-value =2.7e-02) (Fig. 1E). We concluded that among the 266 

identified DEG from the CRC patients, a signature of metabolic programming dominated.  267 

 268 

Colon 269 

cancer 270 

DEG 271 

reveals 272 

hallmar273 

ks of 274 

cell 275 

cycle and metabolic program 276 

We further tested the enrichment of DEGs (323 genes: upregulated: 130; downregulated: 193) with 277 

respect to the predetermined 50 cell hallmark sets (about 200 genes each, see Methods).  278 

 279 
Table 1. Enrichment analysis of 323 DEG for the 50 gene set of MSigDB hallmarks 280 

Manually selected 50 gene sets cover major cellular biological processes (see Methods). Table 1 lists 281 

the most enriched sets (Adjusted p-value <1e-06). Several observations can be made based on the 282 

results in Table 1. Firstly, the stronger enrichment is for a set of genes encoding cell-cycle related 283 

targets of E2F transcription factor which is exclusively composed of upregulated genes. Moreover, for 284 

most significantly enriched cell hallmarks, the gene set labelled consists of genes with the same trend, 285 

either up- or downregulated genes. The only exception is the hallmark called ‘estrogen response-late’ 286 

that shows a mixture of up- and down-regulated genes (notably, it was primarily based on breast 287 

cancer data). 288 

The results from Table 1 can be broadly classified into two larger themes: cell cycle-related (e.g., 289 

mitotic spindle, G2M checkpoint and genes encoding cell cycle E2F) and nutrients and metabolic 290 

programs (e.g., fatty acids synthesizing, mTOR signaling, and genes involved in processing of drugs 291 

Hallmarks (H) gene set (MsigDB)     N n (# Up, #Down)   Adjusted p-val 

H: E2F_TARGETS 194 26 (26,0) 2.03E-17 

H: G2M_CHECKPOINT 192 24 (24,0) 1.26E-15 

H: FATTY_ACID_METABOLISM 155 15 (2,13) 2.62E-08 

H: ESTROGEN_RESPONSE_LATE 196 16 (9,7) 5.77E-08 

H: MITOTIC_SPINDLE  197     16 (14,2) 5.77E-08 

H: XENOBIOTIC_METABOLISM  196     15 (3,12) 3.21E-07 

H: MTORC1_SIGNALING  193      14 (12,2) 1.52E-06 
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 10 

and other xenobiotics). Fig. 2A tests the overlap of the hallmark sets that belong to these main 292 

themes. With 20 genes overlapping the cell cycle, 8 genes signifying mTOR signaling and only 4 293 

genes overlap all gene sets (marked in Fig. 2B, by stars). The connectivity of the upregulated genes 294 

identifies a dominant network of cell cycle G2M checkpoint (Fig. 2B, red) and a smaller cluster of cell 295 

membrane transporters including SLC11A7 that match mostly genes that specify nutrient and 296 

metabolic management in cells (Fig. 2B, green).  297 

 298 

Figure 2. Overlap of upregulated DEG with the dominant hallmarks cellular processes. (A) Venn 299 
diagram of the upregulated DEG (130 genes) and the hallmark sets of ‘cell cycle G2M checkpoint’ and 300 
‘mTORC1 signaling’. The overlap genes are listed. (B) STRING network of the overlap DEG from (A) 301 
with the G2M and mTOR sets (total 20, 8 and 4 genes). STRING confidence score >0.4 shows the 302 
PPI connected gene network. The genes shared by all three sets (4 genes, see A) are indicated by 303 
stars. The cluster in green includes overlapping genes. Gene names are shown by a green font (in A). 304 
(C) Venn diagram of the colon cell types lists for the immune related unified set and the colon mitotic 305 
cell types. (D) DEG analysis of naïve CD4 T-cells and following their activation (see Methods). The 306 
overexpression of DDX21 is shown by the arrow. DEG with FDR at a threshold of <1e-20 are colored 307 
gray. X-axis shows the calculated mean gene expression (by TPM) and x-axis the log2(FC). Following 308 
activation, gene expression of DDX21 is ~16 fold higher than the naïve CD4 T cell basal level. 309 

The upregulated genes strongly identified subpopulation of mitotic cell types 310 

The colon is a complex tissue composed of numerous cell types. The composition of the cell types in 311 

colon was determined from single cell and bulk data analyses (see Methods). We tested the set of 312 

upregulated genes (total 130, Supplementary Table S1) with respect to the 12 characterized cell types 313 

that are signified by enriched gene sets. Among these 12 cell types, the 5 immunological cells (see 314 

Methods) were excluded no overlapping genes were identified. We tested the upregulated DEG for 315 

each of the other 7 main colon cell types. A significant overlap was found only to mitotic cells, with 23 316 
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DEG overlapping 85 mitotic cell enriched genes (enrichment p-value 3.5e-05). The PPI network of the 317 

23 genes is highly connected with an average node degree of 14.1 and a PPI enrichment p-value 318 

<1.0e-16. Among these genes are kinesin-like proteins that act in chromatid segregation (KIF2C, 319 

KIF14, KIF20A), numerous genes that participate in cell cycle via DNA repair mechanism (RAD51AP1, 320 

EXO1, BRCA2) and genes involved in the checkpoint controls for ensuring DNA replication (TPX2, 321 

BUB1, NUF2, CDC6). A full list of all genes by their cell types are listed in Supplementary Table S2. 322 

We then asked whether there is evidence for colon enriched immune cell signature among 323 

upregulated DEG. We compiled a colon-centric immune enriched set by unifying all 5 immune cell 324 

types (total 459 genes, see Methods). Interestingly, DDX21 (FDR 5.30e-46) is the only gene that 325 

matched the unified colon immune-related gene set (Fig. 2C). In the context of colon cancer, 326 

knockdown of DDX21 inhibited cell growth by activating CDK1, which was also identified among 327 

upregulated genes overlapping the mitotic signature. DDX21 was postulated to mediate this effect via 328 

chromatin modulation of the CDK1 promoter (Lu et al. 2022). The nucleolar activity of DDX21 is in 329 

rRNA processing and ribosome biogenesis. Interestingly, following activation of T cells, the gene is 330 

upregulated to an extreme level (Fig. 2D).  331 

Enrichment of extracellular and plasma membrane regions among the strongest DEG  332 

We then tested the possibility of identifying tumor versus healthy genes and focused on the subset of 333 

genes showing the most extreme differential expression signals. To this end, we analyzed a subset of 334 

84 DEGs with fold change (FC) of >|5|. While this is an arbitrary threshold, it captures the maximally 335 

responding DEG group.  336 

Fig. 3A shows that at this threshold, 80% of the genes were downregulated and only 20% were 337 

upregulated. Fig. 3B shows a connectivity map of these DEG (with at least 2 gene connections; 338 

STRING confidence score of 0.5). Most connected genes (70%) were assigned with either 339 

extracellular regions (GO annotation of cellular component, p-value =3e-06; colored red) or plasma 340 

membrane region (p-value =0.003; colored blue). These significant findings suggest that in colon 341 

cancer, the most differentially expressed genes probably act through an extracellular communication, 342 

and potentially act in transport and signaling at the plasma membrane. 343 

Fig. 3C shows the largest connected component (10 genes, STRING interaction as in Fig 3B). This 344 

10-node subnetwork is the only one that included upregulated genes (marked with arrows), the other 345 

subgraphs include downregulated genes. The genes include SLC7A11 transporter, genes that 346 

function in mitochondria and a set of secreted cytokines. Notably, among the 84 DEG, cell membrane 347 

transporters were overrepresented with 6 genes that belong to the solute carrier family (SLC genes), 348 

and 2 belong to the mitochondrial ABC transporters. Only SLC7A11 was strongly upregulated while 349 

the rest of the transporter encoding genes were strongly downregulated.  350 

To validate that the DEG from our study are in agreement with the large-scale available data from 351 

available cancer resources, we performed density plot analysis for the upregulated (Fig. 3D) and 352 

downregulated (Fig. 3E) genes. The results show that there is a complete agreement in the list of all 353 

84 DEGs (Supplementary Table S1) regarding the expression level trends in healthy and tumor 354 

samples of our cohort. 355 
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 356 

Figure 3. Biological insight from DEGs with extreme fold change (FC>|5|) of colon cancer samples. 357 
(A) Pie chart of 84 DEG with FC >|5|, partitioned to up and downregulated genes (20% and 80%, 358 
respectively). (B) STRING based network (confidence threshold 0.5). Only confident connected genes 359 
are shown. Colored are genes that are annotated by GO annotation of cellular component as 360 
extracellular and plasma membrane regions (red and blue, respectively). (C) The largest connected 361 
component from B. DEG that were upregulated are marked with white arrows. The other nodes are 362 
genes that were downregulated. (D) Density plot analysis of the 17 upregulated DEG (alphabetic 363 
order). Expression density plots of healthy and tumor samples are in pink and blue, respectively. The 364 
SLC7A11 gene is marked. (E) Density plot analysis of the 67 downregulated DEG (alphabetic order) 365 
for COAD. 366 
 367 

SLC7A11 and its interactors exhibit a coordinated upregulated expression in CRC  368 

Fig. 4A lists the validated set of SLC7A11 interactors across multiple tissues (total 16 genes; STRING 369 

confidence score 0.7). SLC7A11 interactors display its strong connection to SLC3A2 and CD44 370 

(consistent with the Xc- system) and to other 6 SLC family transporters. In addition, SLC7A11 acts as 371 

a hub to cellular metabolic genes. Examples include OTUB1, a specific deubiquitylating enzyme with a 372 

cysteine protease activity, BECN1 (Beclin 1) that regulates vesicle-trafficking processes, autophagy, 373 

and apoptosis. A number of the SLC7A11 knowledge-based network act under starvation, oxidation 374 

and ER stress (i.e., ATF4, NFE2L2, GTX4). The transcription factor ATF4 acts to induce various 375 

amino acid transporters and enzymes that determine the metabolic state of cells (including redox 376 

balance, autophagy, energy production, and nucleotide synthesis). Other core genes are directly 377 
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associated with cancer progression (TP53 and EGFR) that drive cell migration, differentiation and cell 378 

growth (Fig. 4A). 379 

Fig. 4B shows a density plot for all 16 core-SLC7A11 genes. Some genes are very low expressed in 380 

CRC (SLC1A2), a few genes do not exhibit expression difference between tumor and normal tissue. 381 

Similar to SLC7A11 genes, the expression levels of most core genes are higher in tumor relative to 382 

normal samples. Fig. 4C confirms that the overall signature of all 16 listed genes remain highly 383 

significant for the difference of tumor relative to healthy tissue for COAD (Mann-Whitney p-value 1.9e-384 

67).  385 

  386 

Figure 4. Signature of SLC7A11 network in colon cancer. (A) Interacting core genes centered by 387 
SLC7A11 according to STRING (confidence score >0.7), limited to the most significant 15 additional 388 
genes. (B) Density plots for 16 genes from (A). Healthy and tumor samples are marked in pink and 389 
blue, respectively. (C) Box plot for the signature of all 16 listed genes for healthy (normal, green) and 390 
tumor (red). Each dot represents a unified datapoint for a COAD sample. The statistics of the 391 
difference of the two group is calculated by Mann-Whitney test. (D) Box plot of the 32 CRC patients 392 
with the expression of genes that are expected with a direct protein-protein interaction (PPI). (E) 393 
Correlation plot for log expression measured by transcripts per million (TPM) for SLC7A11 and 394 
SLC3A2 based on COAD data (Log2(X)TPM; 461 cases). (F) Box plot from TCGA for COAD (461 395 
cases) and Rectum adenocarcinoma (READ, 172 cases). Tumor and healthy are colored red and 396 
gray, respectively.  397 

A small set of direct interacting proteins of SLC7A11 was compiled by UniProtKB and BioGrid. The 398 

confirmed direct interactors include SLC3A2 and CD44, but also KRTAP1-1, KRTAP1-3 and TTC30B. 399 

Fig. 4D analyzed the expression of major interacting genes from the CRC cohort (32 patients). 400 

Notably, the keratin-associated (KAP) family members and TTC30B levels of expression were too low, 401 

and these genes were not further analyzed. We report on the upregulated expression of direct 402 

interactors of SLC7A11 in tumor relative to healthy tissue (Fig. 4D). We further expanded the analysis 403 

to cover samples from TCGA (~460 samples). A strong and significant correlation (R =0.41, p-value 404 

=5e-14) between SLC7A11 and SL3A2 expression at the individual level was confirmed (Fig. 4E). 405 
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These results suggest that the Xc- system (SLC7A11, SL3A2) is likely to be involved in the 406 

tumorigenesis process. Moreover, the upregulation of SLC7A11 in tumor samples was validated with 407 

high expression in patients with either COAD (461 cases) or READ (172 cases; Fig. 4F).  408 

Knowledge-based inspection of SLC7A11 determines its oncogenic potency 409 

We sought to identify the network of SLCA11 correlated genes by considering gene perturbations in a 410 

cellular context. To this end, we tested the essentiality, specificity and efficacy of CRISPR dependency 411 

screens (see Methods). To further inspect the importance of SLC7A11 in colon cancer, we 412 

investigated the CRISPR-based dependency map for SLC7A11, SLC3A2 (and CD44) that comprises 413 

the Xc- system. Specifically, we compared genes that are most correlated following CRISPR-based 414 

gene depletion and focused on the overlapping genes displaying positively correlated signal (among 415 

the top 100 per each gene). Fig. 5A compared the genes that are most significantly recurrent in these 416 

CRISPR-Cas9 screening. The top co-dependent genes by CRISPR-Cas9 setting are expected to 417 

specify the degree of gene essentiality and replication fitness. There are 27 shared genes that are 418 

shared between the Xc- membrane transporters. We also observe a strong relatedness between the 419 

co-dependency genes of SLC7A5 and SLC3A2.  420 

 421 

Figure 5. Gene set of CRISPR-induced Xc- fitness is consistent with patients' CRC survival. (A) The 422 
analysis of top co-dependent genes by CRISPR-Cas9 setting (DepMap-based, see Methods). Only 423 
positively correlated genes from the 100 correlation-ranked genes list are included in the analysis. 424 
There are 27 shared genes (left, white frame) between the two membrane transporters and no genes 425 
overlapped with CD44. In contrast, the SLC7A5 displayed strong shared signal with SLC3A2 (Right, 426 
65 genes) among them 15 genes are shared by all three gene sets. (B) Total 13 bowel cancer studies 427 
are listed according to the type of alteration in their genes (e.g., mutations, copy number variations; 428 
see legend for colors). We selected 13 of 19 studies reported in cBioPortal (a total of 7152 samples). 429 
All selected studies have at least 100 samples each, with the appendiceal cancer cohort excluded. (C) 430 
Probability of overall survival (OS) for 180 months is shown for affected set for the 27 shared genes 431 
(as in D). (D) Progress free survival (PFS) curve for 180 months. The survival plot indicates the 432 
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unaltered and altered set (blue and red, respectively) for samples with alteration in any of the 27 433 
shared genes. The statistical significance, Hazard ratio (HR) with 95% confidence is indicated.  434 

For testing the impact of alteration in the overlapping genes (27) on the survival of CRC patients, we 435 

created a composed set from 13 independent studies (Fig. 5B) and analyzed the overall survival (OS, 436 

Fig. 5C) and progression-free survival (PFS, Fig. 5D). In both survival settings, the survival of the 437 

altered genes is enhanced. We observed that upon altering these key genes, a strong suppression in 438 

tumorigenesis is observed. The hazard ratio (HR) indicates an improved survival relative to the 439 

unaltered group (accounts for 90% of the samples). The HR for overall survival (OS) was 0.671 (Fig. 440 

5C) and the progression free survival (PFS) was 0.485 (Fig. 5D). The genes when overexpressed in 441 

cancer cells support the progression of cancer and most likely resist process of apoptosis and other 442 

types of cell death.  443 

Cellular interpretation of overexpressed Xc- system in COAD 444 

The observation that CRISPR co-dependent genes of the Xc- system resulted in strong clinical effect 445 

on survival, calls for identifying mechanistic explanation and biological pathways that connect Xc- 446 

system with cell growth and proliferation.  447 

Table 2. Overlapping CRISPR co-dependent genes of Xc- system genes in COAD samples 448 

Gene Description Main function 
FC 

T vs H
a
 

FC 

Met. vs 

T 

FC 

Met. vs 

H
b
 

KRT16 Keratin, type I cytoskeletal 16 Intermediate filament 13.13 0.13 1.73 

SLC7A11 Cystine/glutamate transporter 
Cystine transport as redox 

regulator 
9.22 0.34 3.15 

PRH2 
Proline rich protein HaeIII 

subfamily 2 
Secreted glycoprotein 3.27 0 0 

MTHFD1 
Methylenetetrahydrofolate 

dehydrogenase 

De novo Purine syntheses 

 
2.72 0.62 1.7 

ATIC 
Formyltransferase/IMP 

cyclohydrolase 

De novo purine biosynthetic 

pathway 
2.7 2.15 5.79 

RPIA 
Ribose 5-phosphate 

isomerase A 
Pentose-phosphate pathway 2.65 0.77 2.03 

UMPS 
Uridine monophosphate 

synthetase 

De novo pyrimidine 

biosynthetic pathway 
2.65 6.34 16.79 

CAD 
Transcarbamylase-

dihydroorotase  

de novo biosynthesis of 

pyrimidine nucleotides 
2.62 1 2.61 

TFRC Transferrin receptor cellular iron uptake 2.51 1.91 4.79 

RAB36 Ras related protein Rab-36 Vesicle-mediated transport 2.47 0.8 1.98 

SLC3A2 4F2 Cell surface antigen heavy 

chain 

Transport of L-type amino 

acids 

2.27 0.54 1.22 

a
FC is the fold change. In bold face FC>2.0 for Tumor (T) vs healthy (H). 

b
In bold face genes that 449 

amplified the metastatic (Met.) state.  450 

 451 

Among the 27 overlapping genes from the CRC cohort (32 patients, Supplementary Table S2), 6 452 

genes blelong to the cation/anion and amino acid transporters of the SLC family (SLC29A1, 453 

SLC39A10, SLC5A6, SLC6A6, SLC7A11, and SLC7A5). The encoded proteins mediate transport 454 

across the cell membrane of specific metal ions, inorganic cations and anions, and amino acid. 455 

Additional upregulated gene products with ion-transporting potential belong to the ATPase family (e.g., 456 

ATP11A).  457 
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Among the overlapping co-dependent set (27 genes), the expression levels of 17 showed upregulation 458 

in the tumor samples. Inspecting this set shows that in addition to their role in amino acid transport 459 

(e.g., the Xc- system), numerous representatives are enzymes that function in de novo biosynthesis of 460 

purine/pyrimidine nucleotides (FC >2; Table 2). We conclude that these genes specify the capacity of 461 

cancer cells to maintain high demand for protein synthesis (e.g., amino acids), while exhibiting a 462 

strong signature for de novo nucleotide biosynthesis. 463 

Table 2 shows that some of these genes do not only support tumorigenesis but actually contribute to 464 

the metastatic potential in COAD patients (marked by FC >1 for metastatic versus local tumor). The 465 

genes that showed such metastatic amplification are ATIC and UMPS, which act in nucleotide de novo 466 

synthesis, and TFRC, which allows iron uptake. 467 

Determinants of immune cell infiltration pattern in CRC 468 

The tumor microenvironment (TME) is a crucial component in determining the response to immune 469 

checkpoint inhibitor (ICI) therapy. Resources were developed that allow assessment of tissue purity 470 

with respect to the presence of immune cell subtypes (compiled by TIME2.0; see Methods). The 471 

associations between cell fractions and treatment responses relied on considering progression-free 472 

survival (PFS) and overall survival (OS). Identifying distinct immune subgroups in CRC with varying 473 

responses to ICI therapy is a step toward achieving lasting ICI efficacy. For an unbiased approach, we 474 

tested the correlation of all 22 immune cell types with respect to the expression of SCLA711 and other 475 

genes that were highlighted in this study. For many of the cell types, statistical significance could not 476 

be achieved due to the low number of samples. All significant observations for COAD and READ are 477 

presented in Supplementary Table S3. 478 

 479 
 480 
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Figure 6. Correlation analysis of immune cell types and the data from TCGA for each individual. (A) 481 
The scatter plot showing the positive correlation between the abundance of CD8⁺ T cells and the 482 
expression of SLC7A11 in TCGA cohorts with 458 patients with COAD. The left panel indicates tumor 483 
purity, and the right panel indicates the infiltration of the T cells. (B) The scatter plot showing the 484 
positive correlation between the abundance of CD8⁺ T cells and the expression of SLC7A11 in TCGA 485 
cohorts with 166 patients for READ. The left panel indicates tumor purity, and the right panel indicates 486 
the infiltration of the T cells. The Spearman correlation test was based on TIMER2.0 algorithm. Tumor 487 
purity adjustment (Purity) was applied to account for the negative correlation of the SLC7A11 (Li et al. 488 
2020). (C) Spearman correlation values (Rho) for a number of cell types are listed for hemopoietic 489 
stem cells and MDSCs. The p-values are adjustment by purity and positive and negative are marked 490 
by red and blue colors. Spearman p-values that are not significant are colored gray.  491 
 492 
Fig. 6 displays the scatter plot illustrating the relationship between infiltrates estimation and SLC7A11 493 

expression. It shows the results for the tendency of the cancer samples to support immune cell 494 

infiltration in the case of COAD (Fig. 6A; 461 samples) and READ (Fig. 6B; 166 samples). The 495 

cofounding effect of purity is accounted for, and positive correlations are evident regarding CD8+ cells 496 

for COAD and READ samples. Fig. 6C shows a heatmap for two cell types: the hematopoietic stem 497 

cells and the myeloid-derived suppressor cells (MDSCs) across many cancer types. Importantly, 498 

MDSCs carry potent immunosuppressive activity and are closely associated with poor clinical 499 

outcomes in cancer (Tang et al. 2020). We conclude that among CRC patients (COAD and READ), 500 

there is a substantial positive correlation to CD8+ T-cells (Figs. 6A-6B) and MDSCs cells (Fig. 6C) 501 

that render the high expression of Xc- system. These observations raised a question regarding the 502 

success of immunotherapy in CDC patients.  503 

Expression levels of Xc- system strongly correlate with COAD chemotherapy treatment 504 

Due to the extreme degree of SLC7A11 upregulation (Table 2, FC of T vs H is 9.22) we challenged 505 

the prognostic capacity of the expression with respect to clinical treatments. RNA-seq data of 805 506 

patients with COAD was therefore tested for their predictive capacity (marked by ROC p-value and 507 

AUC) for SLC7A11 and SLA3A2. Fig. 7A shows the predictive results for SLC7A11 with respect to all 508 

chemotherapy treatments that partitioned for responders (451 patients) and non-responders (354 509 

patients). Although prediction power is rather limited (AUC =0.581) a higher mean expression level for 510 

non-responders was observed (p-value =3.7e-05). Opposite trend where a higher level of expression 511 

was observed for responders relative to non-responders was associated with SLC3A2 (AUC =0.577) 512 

(Fig. 7B).  513 

The most common drug used in CRC patients is 5-flourouracil that includes 298 and 294 patients for 514 

the responders and non-responders, respectively. The partition in the box plots (Fig. 7C) shows that a 515 

slightly higher expression level for SLC7A11 was associated with the non-responders. Same trend (at 516 

a different confidence level) was observed for all other tested drugs in the relevant cohorts. The same 517 

analysis was applied to SLC3A2 which also showed a significant partition of responders and non-518 

responders, in some but not all used drugs (Fig. 7D). Same analysis that was performed for oxaliplatin 519 

failed to reach any statistical significance (265 and 163 responders and non-responders, respectively).  520 

Testing solid tumors identified a distinctive signature for SLC7A11 for the use of 5-fluorouracil with 521 

slightly higher expression for non-responder vs responder groups (294 and 298 patients, respectively) 522 
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showing high significance (p-value of ROC =5.70e-04) but only a weak predictive power (AUC 523 

=0.576). Similar testing for alternative treatment such as oxaliplatin led to a border-line significance 524 

prediction potential (not shown). Only limited clinical data regarding the use of checkpoint inhibition 525 

therapy is available for CRC patients. Testing pretreatment by any immune checkpoint inhibitor 526 

therapy regarding SLC7A11 showed no signal for the success of treatment (including 533 responder 527 

and 570 non responders). We concluded that the information available is too limited to substantiate 528 

CRC patients’ stratification by their potential to successfully respond to T-cell-based immunotherapy.  529 

 530 

Figure 7. Expression levels of the genes of Xc- system by drug treatments and patients’ 531 
responsiveness. Analysis was performed by the KM-Plotted portal (KM-ROC). RNA-seq performed on 532 
805 COAD patients partitioned by responders (451 patients) and non-responders (354 patients). (A) 533 
ROC-AUC and p-value are reported for SLC7A11 for all chemotherapies. (B) ROC-AUC and p-value 534 
are reported for SLA3A2 for all chemotherapies. (C) Box plot analysis of expression value with respect 535 
to responders and non-responders for specific reagents used in the CRC treatment for SLC7A11. (D) 536 
Box plot analysis of expression value with respect to responders and non-responders for specific 537 
reagents used in the CRC treatment for SLC3A2. The statistically significant marked by p-value at 538 
improving order of magnitude from <0.05 (*), <0.005 (**) to <0.0005 (***). Definition of a responder is 539 
by the RECIST criteria. We have not reported on results for treatment that applied to <100 patients. 540 

 541 

Discussion 542 

In this study, we inspected the detailed molecular profiles of CRC patients through a cellular view 543 

combined with a knowledge-based network approach. For several genes, mechanistic relevance to 544 

cancer progression is presented to encourage further investigation. For example, among the strongest 545 
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upregulated DEG, we observed several cytokines (i.e., CXCL1, CXCL2 and CXCL3; Fig. 3B). It may 546 

be a reflection of the abundance of MDSC cells which were positively correlated with the increased 547 

expression of SLC7A11 (Fig. 6C). It was shown that cancer-associated fibroblasts (CAF) via the 548 

secretion of chemokines (e.g., CXCL1, CXCL2) recruit myeloid cells to tumors and also drive the 549 

dysfunction of tumor-specific CD8
+
 T cells. A recent study proposed a prognostic model for CRC that 550 

is based on the immune cell composition in the tumor samples (Ye et al. 2019). With the effort to 551 

stratify CRC patients for improved clinical management and outcomes, immune cell expression 552 

signatures were classified into four subtypes that aim to capture the degree of T-cell dysfunction and 553 

exclusion (Tang et al. 2020; Zhang et al. 2020). While the immune classification of cancers is of 554 

utmost importance for prognostics, as predictive factors for chemotherapies and immune checkpoint 555 

inhibitor therapy, current knowledge remains inconsistent across different datasets (e.g., across 15 556 

CDC datasets compiled in TIDE resource (Fu et al. 2020)).  557 

Among the unregulated genes in COAD, Transferrin receptor (TFRC) was found to be even more 558 

enhanced in metastatic tumors (Table 2), suggesting an important role for iron uptake in these cells. In 559 

agreement with our observation, TFRC was shown to be an essential factor in nucleotide biosynthesis, 560 

DNA repair, and cell survival based on its crucial role in iron accumulation and ensuing iron-dependent 561 

activation to maintain the nucleotide pool and sustain proliferation in colorectal tumors (Schwartz et al. 562 

2021). Congruently, TFRC was recently suggested as an attractive target for inhibiting tumor growth, 563 

as reduction of iron influx can lead to DNA damage and apoptosis (Kim et al. 2023).  564 

We have focused on the role of the Xc- system in CRC cancer and showed that it acts as a hub 565 

connecting the elaborate strong signature of mitotic cells and cell cycle with the metabolic program 566 

(Fig. 2B). SLC7A11 may have opposite effects in different cancer cells. For example, in a glucose-567 

deprivation state (as in glioblastoma) the overexpression of the Xc- system induces oxidative stress 568 

and apoptosis. In contrast, it is a strong mediator for cell viability in CRC and other cancer types. In 569 

such cases, the suppression of SLC7A11 function (e.g., by p53 or BECN1) can activate ferroptosis 570 

which makes the tumor sensitive to radiotherapy. To further analyze the cellular role of Xc-, we 571 

inspected the downstream glutathione pathways (e.g., GPX4, GPX8). We observed that the 572 

expression of GPX genes were unchanged within the cohort of 32 patients (Supplementary Table S1), 573 

with no co-dependency in the CRISPR screening results. Essential and co-essential genes across 574 

many cell lines are a useful approach to identify shared pathways (Arnold et al. 2022). Using the 575 

DepMap platform, we analyzed GPX4 and GPX8 expression levels with respect to the effect size of 576 

CRISPR-based SLC7A11 knockdown across 39 cells originated from COAD. The GPX4 and GPX8 577 

genes had negative Spearmen correlation (R: -0.449 and -0.205, respectively), suggesting the 578 

involvement of alternative pathways in the Xc- tumorigenesis.  579 

Cellular models successfully used to identify overlooked pathways for SLC7A11 dependent 580 

ferroptosis. For example, using colon cancer cell lines (HCT116, LoVo, and HT29) confirmed a 581 

regulatory loop between PERK and SLC7A11 through transcription factor ATF4 (Saini et al. 2023). 582 

The suppression of PERK or ATF4 reduces SLC7A11 expression in these cells. A side benefit of our 583 

study was to highlight experimental cell lines that were most appropriate for future functional assays. 584 

Specifically, for the minimal set of shared genes of the SLC transporters (Fig. 5A) we highlighted 15 585 
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overlapping genes. A number of these genes (CAD, MTHFD1, UMPS, SDHB and SLC7A5 itself) were 586 

also listed among the most affected genes by CRISPR screen, and especially in COLO-205 metastatic 587 

COAD cell line. These essential genes exhibited a strong effect on loss of fitness (see Methods) and 588 

therefore are attractive targets for drug testings.  589 

We demonstrated that the expression level of SLC7A11 can (slightly) predict chemotherapy 590 

responsiveness (Fig. 7). It is thus beneficial to apply anticancer therapies that downregulated the 591 

levels of the Xc- system directly (e.g., by SLC7A11 blockers) or indirectly. Several small molecules 592 

and inhibitors targeting SLC7A11 have been developed and are being investigated for their 593 

therapeutic potential (Xu et al. 2020). An indirect pathway impacting Xc- system involves the use of 594 

PD-L1 blockade therapy that leads to an increase lipid ROS production, and through STAT1 595 

attenuates SLC7A11 expression. More mediators include JAK and ATM (following radiotherapy) and 596 

other studies focus on the strong link of SLC7A11 and ferroptosis in CRC. It was shown that the loss 597 

of PERK (Saini et al. 2023) or vitamin D (Guo et al. 2023) promoted downregulation of SLC7A11 and 598 

consequently induced ferroptosis.  599 

Our study further emphasizes the importance of developing targeted therapies that rely on 600 

understanding the link of SLC7A11 to ferroptosis while utilizing the nutrient dependency of cancer 601 

cells. Overall, targeting SLC7A11 by multiple routes can be an effective strategy to enhance 602 

therapeutic efficacy, induce regulated cell death and ultimately improve patients’ outcomes. While we 603 

focused mostly on the levels of gene expression and cellular response, other regulatory mechanisms 604 

that affect SLC7A11, including the cellular network of post-transcriptional controls by microRNA 605 

(miRNA), or the unexplored landscape of post translational modifications (PTMs) in tumor samples, 606 

remain interesting strategies that need to be further elucidated. 607 
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Abbreviations:  615 

AUC, area under the curve 616 

CAF, cancer-associated fibroblasts 617 

CD44v, CD44 variant 618 

CHIP-seq, chromatin Immunoprecipitation Sequencing 619 

COAD, colorectal adenocarcinoma  620 

CPM, counts per million 621 

CRC, colorectal cancer  622 

DEG, differential expression genes 623 
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FC, fold change 624 

GO, gene ontology 625 

GPX, glutathione peroxidases 626 

GSH, glutathione 627 

GTEx, genotype tissue expression 628 

ICI, immune checkpoint inhibitor 629 

OS, overall survival 630 

PCA, principal component analysis 631 

PFS, progression-free survival  632 

READ, rectum adenocarcinoma  633 

RNA-seq, RNA sequencing 634 

ROS, reactive oxygen species 635 

TCGA, the cancer genome atlas  636 

TME, tumor microenvironment 637 

TMM, trimmed mean of the M-values 638 

TPM, transcript per million 639 

xCT, solute carrier family 7, member 11 640 
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