

== REVIEW COMMONS MANUSCRIPT ==

IMPORTANT:

- Manuscripts submitted to Review Commons are peer reviewed in a journal-agnostic way.
- Upon transfer of the peer reviewed preprint to a journal, the referee reports will be available in full to the handling editor.
- The identity of the referees will NOT be communicated to the authors unless the reviewers choose to sign their report.
- The identity of the referee will be confidentially disclosed to any affiliate journals to which the manuscript is transferred.

GUIDELINES:

- For reviewers: <https://www.reviewcommons.org/reviewers>
- For authors: <https://www.reviewcommons.org/authors>

CONTACT:

The Review Commons office can be contacted directly at: office@reviewcommons.org

1 **Transcription network of SLC7A11 (xCT) in colon cancer provides clinical** 2 **targets for metabolic regulation and cell proliferation**

3
4 Keren Zohar¹, Thomas Wartmann², Marco Strecker², Maximilian Doelling², Mihailo Andric², Wenjie
5 Shi², Roland S Croner², Or Kakhlon^{3,4}, Yue Zhao⁵, Ulf D Kahlert^{2,*}, Michal Linial^{1,*,#}

6
7 ¹ Department of Biological Chemistry, Faculty of Science, The Hebrew University of Jerusalem, Israel

8 ² Molecular and Experimental Surgery, Clinic for Visceral-, General, Vascular and Transplantation
9 Surgery, University Medicine Magdeburg, Otto-von Guericke University Magdeburg, Germany

10 ³ Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah-Hebrew
11 University Medical Center, Ein Kerem, Jerusalem 9112102, Israel

12 ⁴ Faculty of Medicine, The Hebrew University of Jerusalem, Ein Kerem, Jerusalem 9112102, Israel

13 ⁵ Faculty of Medicine and University Hospital Cologne, Department of General, Visceral and Cancer
14 Surgery, University of Cologne, Cologne, Germany

15 *equal contribution

16
17 [#] Correspondence: Michal Linial

18
19 **Keywords:** therapy resistance, tumor immunology, tumor metabolism, amino acid transporters, RNA-
20 seq

21
22 **Running title:** xCT in colon cancer progression

23
24
25

26 **Abstract**

27
28 Colorectal cancer (CRC) represents the third leading cause of cancer-related deaths. Knowledge
29 covering diverse cellular and molecular data from individual patients has become valuable for
30 diagnosis, prognosis, and treatment selection. Here, we present in-depth comparative RNA-seq
31 analysis of 32 CRC patients pairing tumor and healthy tissues (total of 73 samples). Strict thresholds
32 for differential expression genes (DEG) analysis revealed an interconnection between nutrients,
33 metabolic program, and cell cycle pathways. Among the upregulated DEGs, we focused on the Xc-
34 system, composed of the proteins from SLC7A11 (xCT) and SLC3A2 genes, along with several
35 interacting genes. To assess the oncogenic potency of the Xc- system in a cellular setting, we applied
36 a knowledge-based approach, analyzing gene perturbations from CRISPR screens. The study
37 focused on a set of 27 co-dependent genes that were strongly correlated with the fitness of SLC7A11
38 and SLC3A2 across many cell types. Alterations in these genes in 13 large-scale studies (e.g., by
39 mutations and copy number variation) were found to enhance overall survival and progression-free
40 survival in CRC patients. In agreement, the overexpression of these genes in cancer cells drives
41 cancer progression by allowing effective management of the redox level, induction of stress response
42 mechanisms, and most notably, enhanced activity of ion/amino acid transporters, and enzymes acting
43 in de novo nucleotide synthesis. We also highlight the positive correlation between the Xc- system
44 gene expression level, patient responsiveness to different chemotherapy treatments, and immune cell
45 infiltration (e.g., myeloid-derived suppressor cells) in CRC tumors as a measure for their
46 immunosuppressive activity. This study illustrates that knowledge-based interpretation by synthesizing
47 multiple layers of data leads to functional and mechanistic insights into the role of SLC7A11 and its
48 associated genes in CRC tumorigenesis and therapeutics.

49

50 **Introduction**

51 Colorectal cancer (CRC) represents 10% of cancer cases globally. It is the third most prevalent cancer
52 and the third leading cause of cancer-related deaths in the USA. Having access to extensive data sets
53 from cancer patients enables the evaluation of crucial predictive biomarkers needed for optimizing
54 treatment choices. Moreover, earlier diagnosis is crucial for improved survival. At present, diagnosis
55 and choice of optimal treatments are based on integration of clinical features (e.g., age, family history,
56 tumor location, size and TNM staging) (Vega et al. 2015). For higher precision, genetic alterations are
57 tested, in particular evidence for recurrent mutations (Testa et al. 2018). While noninvasive tests (e.g.,
58 blood and stool tests) show promise for improved detection, the lack of mechanistic or cellular
59 interpretation limits their use (Zygulska and Pierzchalski 2022). The primary treatment for most CRC
60 patients is surgery, with chemotherapy being administered in cases of advanced disease (Biller and
61 Schrag 2021). The multi-omics approach that includes diverse cellular and molecular data from
62 individual patients at a large-scale has become a valuable component in cancer research, influencing
63 CRC diagnosis, prognosis, and treatment selection (Menyhárt and Győrffy 2021).

64 Ample studies have shown the importance of pathological measures that distinguish between normal
65 and tumor tissues based on histological and rich clinical criteria (Roseweir et al. 2017). In recent
66 years, rich data from hundreds of patients were compiled in cancer portals (e.g., TCGA, GDC,
67 cBioPortal), providing rich omics data such as gene expression and epigenetic profiling which had
68 been successfully used in prognosis of various malignant tumors (Chen et al. 2022). In the case of
69 CRC, there is an urgent need to identify precise prognostic factors to identify patients who would
70 benefit most from proposed treatments. In terms of preferred treatments, agents that lead to DNA
71 synthesis disruption and eventually cell death are commonly used (e.g., 5-fluorouridine or
72 fluoropyrimidines) (Mármol et al. 2017). While other drugs are available (e.g., oxaliplatin,
73 fluoropyrimidine, irinotecan), there is little evidence that can match the beneficial use of any of the
74 available agent to specific patients based on their detailed molecular profiles (Koncina et al. 2020).
75 The analysis of healthy and tumor samples from the same patient is expected to improve prognostic
76 accuracy in CRC patients (Barrier et al. 2005).

77 The prognosis of CRC patients with advanced tumors remains poorly understood. Tumor-infiltrating
78 immune cells were proposed to impact cancer progression, treatment response, and ultimately
79 patients' survival and therapy efficacy (Zheng et al. 2022). For example, the presence of tumor-
80 associated neutrophils (TANs), tumor-associated macrophages (TAMs), and myeloid-derived
81 suppressor cells (MDSCs) has been linked to worsened prognosis in CRC and other cancer types
82 (Condamine et al. 2015; Parcesepe et al. 2016). Comprehensive analytical algorithms use information
83 from large-scale studies (e.g., TCGA) to assess sample purity and the correlation of immune cell
84 infiltration with gene expression as a means to provide insights into the predictive value for treatment
85 decisions for CRC patients. Moreover, studying tumor cells' metabolic demands, and their capacity to
86 cope with stress, along with characterizing the cancer immune microenvironment, can benefit therapy
87 precision (Li et al. 2020; Li et al. 2021).

88 In any living system, the accessibility of amino acids is crucial for energy production, translation
89 efficiency, and redox homeostasis (Vučetić et al. 2017). The dysregulation of amino acid transporters
90 in tumor cells complies with the increased metabolic and translational needs (Zhu and Thompson
91 2019). Cancer cells require large amounts of cysteine and glutathione (GSH) to neutralize the
92 increased intracellular reactive oxygen species (ROS). Cysteine plays a major role in maintaining
93 antioxidant defense in cancer cells, highlighting its significance in cellular redox balance. The main
94 challenge is that while the intracellular environment favors a reducing state, the extracellular
95 environment is strongly oxidizing, leading to the rapid oxidation of cysteine to cystine (Daher et al.
96 2020).

97 Cancer cells, facing high oxidative stress, struggle to meet their demand for cysteine (Bonifácio et al.
98 2021). Cystine starvation induces cell death that can be rescued by antioxidants. Most cancer cells
99 rely on the Xc- heterodimeric amino acid transporters system, consists of SLC7A11 (xCT) and
100 SLC3A2 (heavy chain 4F2hc), which imports cystine for glutathione synthesis (Koppula et al. 2021).
101 The Xc- system consists of chloride-dependent anionic L-cystine/L-glutamate antiporter on the cell
102 surface, which mediates the uptake of extracellular cystine in exchange for intracellular glutamate (Lin
103 et al. 2020). Briefly, Xc- system imports cystines (the oxidized form of cysteine) that ultimately serve
104 as precursors for reduced glutathione (GSH) synthesis. Tripeptide GSH synthesis involves two
105 enzymatic steps, starting with the condensation of cysteine and glutamate into γ -glutamyl-L-cysteine
106 by glutamate cysteine ligase (GCL) followed by adding glycine to form GSH by GSH synthase (GS)
107 (Lin et al. 2020). GSH is involved in several vital cellular functions, including detoxification, maintaining
108 intracellular redox balance, reducing hydrogen peroxide and other oxygen radicals, and serving as
109 thiol donor to proteins. While there are other transporters that can partially compensate for a failure in
110 SLC7A11, it remains the major route for transporting cystine in cancer cells (Parker et al. 2021).
111 Similarly, in cancer stem cells (CSCs), CD44 variant isoform (CD44v) can interact and stabilize
112 SLC7A11 on the cell surface (Jyotsana et al. 2022).

113 While SLC7A11 was identified 40 years ago, details on its expression regulation in cancer cells in view
114 of metabolic load, redox status, and tumor microenvironment (TME) remain incomplete. The nutrient
115 dependency of cancer cells generally requires the increased function of SLC7A11. A high expression
116 of SLC7A11 leads to a reduction of oxidative stress in some oncogenic KRAS-mutant cancers and
117 thus maintains cancer progression (Koppula et al. 2021). In most cases, the elevated SLC7A11
118 expression is related to a low survival rate. This was validated in the cases of pancreatic ductal
119 adenocarcinoma (PDAC), colorectal adenocarcinoma (COAD) and lung adenocarcinoma (LUAD). In
120 contrast, SLC7A11 knockdown leads to an oxidized redox status and an increase in intracellular ROS
121 levels. Ultimately, such stress may inhibit tumor invasion.

122 The discovery of ferroptosis, a form of regulated cell death induced by iron-dependent lipid peroxide
123 accumulation, through blocking cystine uptake, further highlights the importance of the cystine
124 transport system for cell survival. Pharmacologic blockade of SLC7A11 induces ferroptotic cell death
125 (Dixon et al. 2012). Studies show that SLC7A11 mediated cystine uptake is essential in suppressing
126 ferroptosis and promoting cell survival under oxidative stress. Thus, the regulation of the Xc- system is
127 an attractive target for cancer therapy (Lei et al. 2022). Nevertheless, there are discrepancies between

128 the pro- and anti-tumorigenic activities of SLC7A11 when utilizing a simplified setting of cell culture
129 versus in vivo models (Li et al. 2022). The amounts and activity of SLC7A11 in the cell membrane are
130 strongly regulated at the transcription level, but also respond to translational and post-translational
131 regulation (Lee and Roh 2022). SLC7A11 expression is induced by ATF4 under amino acid
132 deprivation, which is essential for cells to survive under conditions of cystine starvation-induced
133 ferroptosis (Zou et al. 2024). Understanding how these mechanisms modulate SLC7A11 can provide
134 insight into therapeutic targets for cancer treatment.

135 In this study, we focus on the transcriptional profiles (mRNAs) from 32 colon cancer patients, each
136 analyzed by comparing its tumor to the healthy tissue. We identified strong upregulated gene sets that
137 signify mitotic cell signature from colon, cell cycle G2M checkpoints and an additional network of
138 dysregulated transporters leading to a metabolic burden. We focused on SLC7A11 and its functional
139 network as an integrator of colon cancer progression. Using functional CRISPR cellular fitness
140 analysis and survival data from large resources of colon cancer, we identified genes carrying clinically
141 relevant properties. We present an exhaustive bioinformatic analysis to explore the impact of the Xc-
142 system on therapy responsiveness and the tumor composition of immune cells. We illustrate the
143 importance of a multilayer analysis, initiated from detailed transcriptional tissue profiling, in exposing
144 overlooked cellular processes and targets for improving clinical and therapeutic management of CRC.

145 **Methods**

146 **RNA-seq analyses of 32 CRC patients**

147 The mRNA expression levels of all genes (coding and non-coding) were determined by pairwise
148 analysis of cancerous and healthy tissues obtained from the same patient. Total of 32 patients were
149 analyzed with 73 deep sequencing results. Altogether, there were 36 samples marked as tumor (T)
150 and 37 samples marked as healthy (H). Each participant provided at least one sample for T and H. For
151 four participants the number of samples was higher.

152 Ethical approval to conduct this study was granted by the ethics committee of the medical faculty of
153 Magdeburg (33/01, amendment 43/14). Next-generation sequencing was conducted in contract-based
154 cooperation at the genome analytics lab at Helmholtz-Center for Infection Research (HZI) Brunswick,
155 Germany.

156 **Analyses of CRC patients from public resources**

157 The Limma R package (Ver 4.2.0) was used for differential expression analysis with adjusted p-value
158 of 1e-20 (for pair-wise analysis) as significance threshold. We have applied GEPIA2 database that
159 covers the data from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx)
160 (Consortium 2013). Box plot, violin plot, and scatter plot for selected DEG were drawn by the TCGA
161 and GTEx visualization website GEPIA2 (Tang et al. 2019).

162 **Colon cell type**

163 Analysis of bulk RNA-seq datasets from 15 human organs including colon produced a cell type
164 enrichment prediction atlas for all coding genes. The initial data is extracted from GTEx. The identity

165 **12 types of cells in colon by the Human Proteome Atlas (HPA)**
166 (Thul and Lindskog 2018)). We have applied the resource for understanding the DEG from colon
167 cancer. The 12 colon cells cover 1918 genes (559, 622 and 737 that are labelled as very high, high
168 and moderate enriched genes, respectively). We performed the analysis for 7 main colon cell types
169 Colon enterocytes (369 genes), Colon enteroendocrine cells (338 genes), Enteric glia cells (240
170 genes), Mitotic cells in Colon (85 genes), Endothelial cells (219 genes), Smooth muscle cells (166
171 genes), Fibroblasts (42 genes). Additionally, there are 5 types of immunological cells of the colon that
172 are specified by their enriched genes: Macrophages (143), Neutrophils (65), Mast cells (29), T-cells
173 (108) and Plasma cells (114).

174 **Bioinformatics tools and statistics**

175 **Statistically significance:** Paired statistics for 2-group analysis was based on 2-tailed t-test.
176 Statistical significance was also computed using Mann-Whitney. Kruskal-Wallis tests used in single-
177 variable comparisons with more than 2 groups. Differences with $p < 0.05$ were regarded as statistically
178 significant (unless mentioned otherwise). False Discovery Rate (FDR) was computed using the
179 Benjamini-Hochberg method. Hypergeometric test was used to assess the p-value of overlapping
180 gene sets.

181 **Signature gene set:** The database of gene sets from the Molecular Signatures Database (MsigDB)
182 allows to test gene set enrichment and it includes about 10,000 sets covering diverse biological
183 processes and diseases. A collection of hallmark gene sets is a set of 50 main processes in cells with
184 expert curation with about 200 genes included in each hallmark set (Liberzon et al. 2015).

185 **Gene expression density plot:** Conducted using RNA-seq data from TCGA, combined with the
186 Therapeutically Applicable Research to Generate Effective Treatments (TARGET), and the GTEx
187 repositories using TNMplot (Bartha and Gyorffy 2021).

188 **Enrichment tests for cancer hallmarks:** Testing overrepresentation analysis by slice representation.
189 The different colored slices indicating the hallmarks (total of 10) that are significant (using the adjusted
190 $p < 0.05$ as a threshold). The analysis used 6763 genes that are associated with any of the hallmarks
191 as a reference set.

192 **Expression of immune cells**

193 We used DICE resource that displays the gene expression trend for 13 immune cells in their naïve
194 and activated states. DICE identified cis-eQTLs for 61% of all protein-coding genes expressed in
195 these cell types (Schmiedel et al. 2018). For purity and infiltration of immune cells to the tumor
196 sample, we used the TIME2.0 (Tumor immune estimation) resource that applied correlation tests or
197 any gene against 22 immune cell types. The TIDE platform report on any gene (or gene sets) across
198 over 33K samples in over 180 tumor cohorts (including TCGA) for the T cell dysfunction and exclusion
199 signatures associated with it (Fu et al. 2020).

200 **CRISPR-Cas9 cell line screening**

201 We used the pre-calculated correlation of dependency from DepMap using CRISPR/Cas9 (Dempster
202 et al. 2019). CRISPR-Cas9 and RNAi-based knockout are reported for 19,144 genes across 1206 cell

203 **lines (primary and established) and providing knockout fitness scores (measured 14 days after**
204 **transfection) and control metrices for the calculation of probabilities of dependency across cell lines**
205 **that are divided by their origin and lineage. Dependencies enriched in COAD were precalculated for**
206 **~1800 genes (identified by DepMap CRISPR-Cas9 project using the Public 23Q4+Score, Chronos**
207 **resource). Expanded collection of cell lines and cancer types is available in iCSDB (Choi et al. 2021)**
208 **that combined DepMap (Public 20Q2) and BioGRID ORCS (Ver. 1.0.4) large scale CRISPR data. We**
209 **search for genes with correlated knockout fitness (called ‘co-dependent’). A loss of fitness and a**
210 **negative log fold change in the average representation of the relevant targeted sequence relative to**
211 **plasmid are indicative for the gene being essential.**

212 **Predictive analysis by gene expression level**

213 KM Plot and ROC Plotter (Fekete and Győrffy 2019) were used to identify gene expression-based
214 predictive biomarkers for CRC that compiled publicly available datasets. By integrating gene
215 expression data (RNA-seq and Chip-Seq) with chemotherapy, almost 20,000 genes can be tested. A
216 link of gene expression and therapy response using transcriptome-level CRC data generates a ROC
217 plot with detailed statistics on relevance of any gene to therapy and clinical response (Fekete and
218 Gyorffy 2023). In addition, we activated a platform for validating predictive biomarkers in cell lines
219 (>1200 cell lines, based on 4 resources including DepMap). The expression of genes in cells with and
220 without drug treatment are presented by the average response per each cell collection.

221 **Results**

222 **Pairwise analysis of samples from colon cancer patients**

223 We have analyzed 32 colon cancer patients with 73 datasets. Each patient contributed at least two
224 samples, one from the tumor and another one from the unaffected neighboring tissue. A few patients,
225 had more samples (3-6 each). All samples were subjected to deep sequencing for mRNA profiling
226 (see Methods).

227 **Fig. 1A** shows the unsupervised partition of all 73 samples labelled tumor and healthy (T and H,
228 respectively). The dendrogram shows a clear partition of all samples into two main branches. The
229 tumor (T) branch is 100% consistent (purple, 31 samples), and the second major branch is mostly
230 composed of healthy samples (88% of 42 samples, orange), only 5 T-labelled samples clustered with
231 the H-samples. **Fig. 1B** shows that dimensional reduction by principal component analysis (PCA)
232 supports a successful partition of T and H samples with 37% of the total variance explained by PC1
233 and PC2. The PCA used the top 1000 ranked differentially expressed genes (DEG). Similar successful
234 partition of T and H was achieved by PCA whose input consisted of the entire (*i.e.*, not only DEG)
235 RNA-seq profiles (total 13,682 identified transcripts).

236 Next, we analyzed the DEG from all colon cancer patients. Each patient was analyzed with respect to
237 their own healthy-labelled sample. Single samples from the tumor and healthy tissue were normalized
238 and compared internally (according to the number of samples available). Altogether, we performed
239 global analyses of 32 pre-analysis patients to confirm high statistical significance and a minimal fold
240 change threshold per gene. Specifically, the analysis was restricted to genes with a minimal statistics

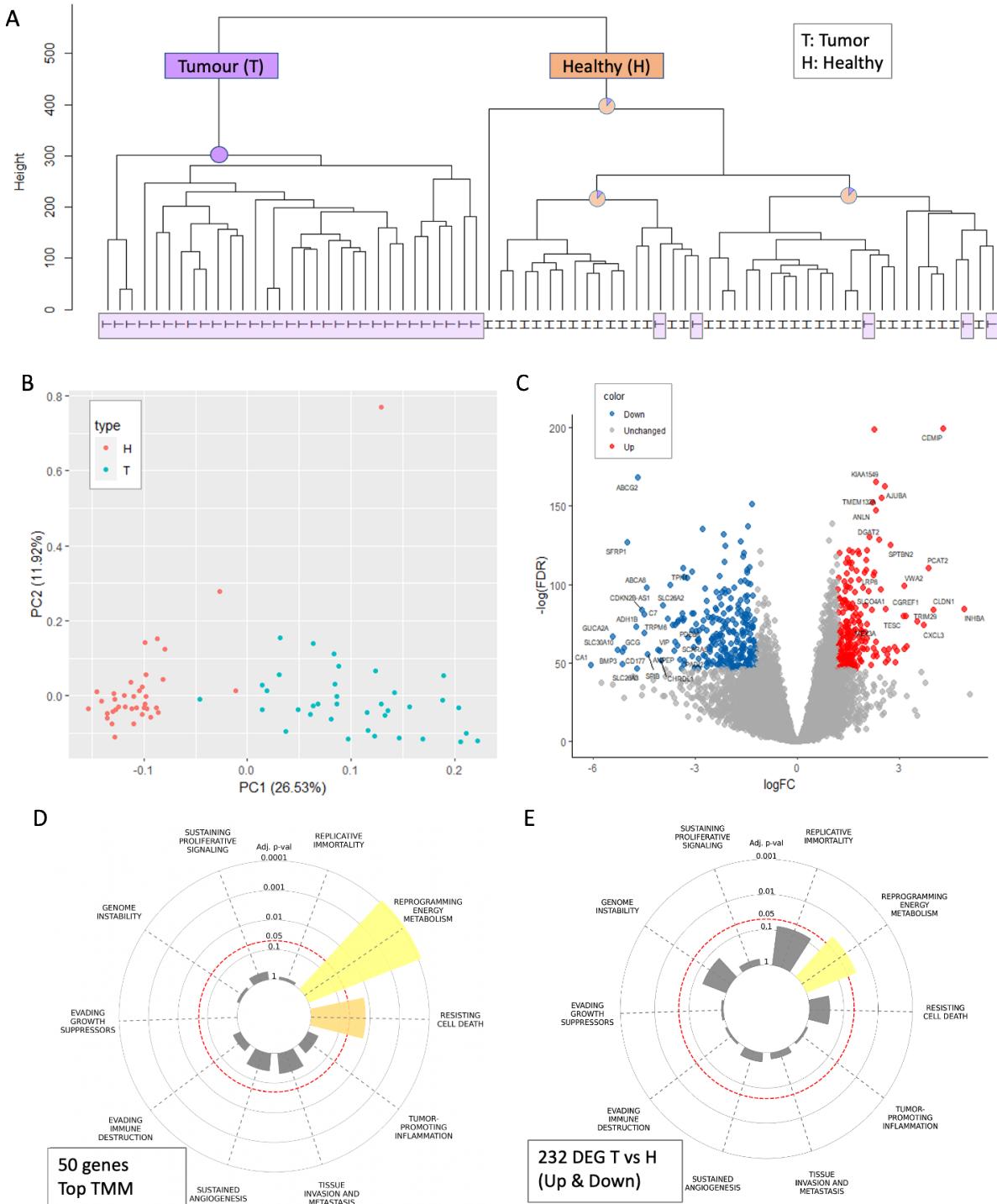
bioRxiv preprint doi: <https://doi.org/10.1101/2024.06.03.597098>; this version posted June 3, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

241 of FDR p-value < 1e-20, with a minimal average expression of 10 counts per million (CPM) and limited

242 to coding genes (i.e., 92% of all mapped transcripts). Such filtration reduced the 13,682 unique gene

243 transcripts to 9,045 genes that were further analyzed (Fig. 1C).

244



245
246
247 **Figure 1.** Analysis of the mRNA profiles from 32 colon cancer patients. **(A)** Unsupervised dendrogram
248 of 73 samples from 32 participants. The main nodes are indicated by their purity for tumor (T) and
249 healthy (H) colored purple and orange, respectively. The T samples of the dendrogram tree are
250 highlighted with light purple background. **(B)** PCA for 73 samples, based on the top 1000 differentially
251 expressed genes (DEG) colored by T and H with red and blue, respectively. The variance explained

252 **(C) Volcano plot representation of DEG analysis from RNA-seq of T**
253 *versus H for the samples described in A. Red and blue points mark the genes with significantly*
254 *increased or decreased expression in T relative to H, respectively. Representative significant genes*
255 *are indicated. (D) Top 50 expressing genes (RNA-seq, normalized by trimmed mean of the M-values*
256 *(TMM) tested for enrichment for any of the 10 cancer hallmarks. (E) DEG (up and down; 323 genes).*
257 *The significantly enriched hallmarks are colored.*

258 We tested the results of the RNA-seq analysis to identify a signature for any of the 10 known cancer
259 hallmarks (Hanahan 2022). The highly expressed genes already identified significant hallmarks such
260 as 'reprogramming energy metabolism' (p-value <1e-06) and 'resisting cell death' (adjusted p-value
261 1.4e-02; **Fig. 1D**).

262 For clinical relevance, it is essential to focus on consistent expression difference in T to H samples. To
263 this end, we reanalyzed DEG at a relaxed threshold. For enrichment of cancer hallmarks DEG were
264 selected with FDR <1e-20, a minimal fold change of 2.3 (*i.e.*, $\log(FC) > |1.2|$), and a minimal average
265 expression of 10 CPM (Supplementary **Table S1**). The signature for 'reprogramming energy
266 metabolism' remained significant (adjusted p-value =2.7e-02) (**Fig. 1E**). We concluded that among the
267 identified DEG from the CRC patients, a signature of metabolic programming dominated.

Hallmarks (H) gene set (MsigDB)	N	n (# Up, #Down)	Adjusted p-val ²⁶⁸	Colon ²⁶⁹	cancer ²⁷⁰	DEG ²⁷¹	reveals ²⁷²	hallmar ²⁷³	ks of ²⁷⁴	cell ²⁷⁵
H: E2F_TARGETS	194	26 (26,0)	2.03E-17	269						
H: G2M_CHECKPOINT	192	24 (24,0)	1.26E-15	270						
H: FATTY_ACID_METABOLISM	155	15 (2,13)	2.62E-08	271						
H: ESTROGEN_RESPONSE_LATE	196	16 (9,7)	5.77E-08	272						
H: MITOTIC_SPINDLE	197	16 (14,2)	5.77E-08	273						
H: XENOBIOTIC_METABOLISM	196	15 (3,12)	3.21E-07	274						
H: MTORC1_SIGNALING	193	14 (12,2)	1.52E-06	275						

276 **cycle and metabolic program**

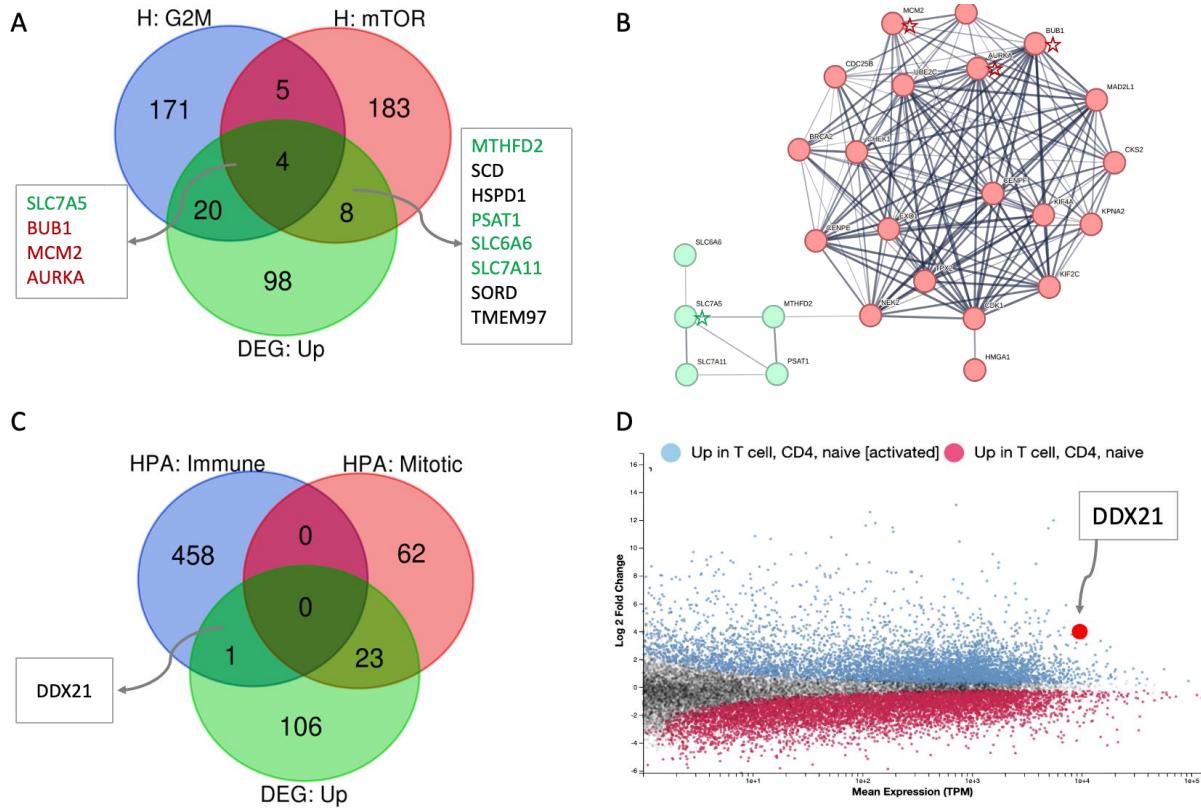
277 We further tested the enrichment of DEGs (323 genes: upregulated: 130; downregulated: 193) with
278 respect to the predetermined 50 cell hallmark sets (about 200 genes each, see Methods).

279
280 **Table 1.** Enrichment analysis of 323 DEG for the 50 gene set of MSigDB hallmarks
281 Manually selected 50 gene sets cover major cellular biological processes (see Methods). **Table 1** lists
282 the most enriched sets (Adjusted p-value <1e-06). Several observations can be made based on the
283 results in **Table 1**. Firstly, the stronger enrichment is for a set of genes encoding cell-cycle related
284 targets of E2F transcription factor which is exclusively composed of upregulated genes. Moreover, for
285 most significantly enriched cell hallmarks, the gene set labelled consists of genes with the same trend,
286 either up- or downregulated genes. The only exception is the hallmark called 'estrogen response-late'
287 that shows a mixture of up- and down-regulated genes (notably, it was primarily based on breast
288 cancer data).

289 The results from **Table 1** can be broadly classified into two larger themes: cell cycle-related (*e.g.*,
290 mitotic spindle, G2M checkpoint and genes encoding cell cycle E2F) and nutrients and metabolic
291 programs (*e.g.*, fatty acids synthesizing, mTOR signaling, and genes involved in processing of drugs

bioRxiv preprint doi: <https://doi.org/10.1101/2024.06.03.597098>; this version posted June 3, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

292 and other xenobiotics. **Fig. 2A** tests the overlap of the hallmark sets that belong to these main
 293 themes. With 20 genes overlapping the cell cycle, 8 genes signifying mTOR signaling and only 4
 294 genes overlap all gene sets (marked in **Fig. 2B**, by stars). The connectivity of the upregulated genes
 295 identifies a dominant network of cell cycle G2M checkpoint (**Fig. 2B**, red) and a smaller cluster of cell
 296 membrane transporters including SLC11A7 that match mostly genes that specify nutrient and
 297 metabolic management in cells (**Fig. 2B**, green).



298

299 **Figure 2.** Overlap of upregulated DEG with the dominant hallmark cellular processes. **(A)** Venn
 300 diagram of the upregulated DEG (130 genes) and the hallmark sets of 'cell cycle G2M checkpoint'
 301 and 'mTORC1 signaling'. The overlap genes are listed. **(B)** STRING network of the overlap DEG from (A)
 302 with the G2M and mTOR sets (total 20, 8 and 4 genes). STRING confidence score >0.4 shows the
 303 PPI connected gene network. The genes shared by all three sets (4 genes, see A) are indicated by
 304 stars. The cluster in green includes overlapping genes. Gene names are shown by a green font (in A).
 305 **(C)** Venn diagram of the colon cell types lists for the immune related unified set and the colon mitotic
 306 cell types. **(D)** DEG analysis of naïve CD4 T-cells and following their activation (see Methods). The
 307 overexpression of DDX21 is shown by the arrow. DEG with FDR at a threshold of <1e-20 are colored
 308 gray. X-axis shows the calculated mean gene expression (by TPM) and x-axis the log2(FC). Following
 309 activation, gene expression of DDX21 is ~16 fold higher than the naïve CD4 T cell basal level.

310 **The upregulated genes strongly identified subpopulation of mitotic cell types**

311 The colon is a complex tissue composed of numerous cell types. The composition of the cell types in
 312 colon was determined from single cell and bulk data analyses (see Methods). We tested the set of
 313 upregulated genes (total 130, Supplementary **Table S1**) with respect to the 12 characterized cell types
 314 that are signified by enriched gene sets. Among these 12 cell types, the 5 immunological cells (see
 315 Methods) were excluded no overlapping genes were identified. We tested the upregulated DEG for
 316 each of the other 7 main colon cell types. A significant overlap was found only to mitotic cells, with 23

317 **DEG overlapping 85 mitotic cell enriched genes (enrichment p-value 3.5e-05). The PPI network of the**
318 **23 genes is highly connected with an average node degree of 14.1 and a PPI enrichment p-value**
319 **<1.0e-16. Among these genes are kinesin-like proteins that act in chromatid segregation (KIF2C,**
320 **KIF14, KIF20A), numerous genes that participate in cell cycle via DNA repair mechanism (RAD51AP1,**
321 **EXO1, BRCA2) and genes involved in the checkpoint controls for ensuring DNA replication (TPX2,**
322 **BUB1, NUF2, CDC6). A full list of all genes by their cell types are listed in Supplementary **Table S2**.**

323 We then asked whether there is evidence for colon enriched immune cell signature among
324 upregulated DEG. We compiled a colon-centric immune enriched set by unifying all 5 immune cell
325 types (total 459 genes, see Methods). Interestingly, DDX21 (FDR 5.30e-46) is the only gene that
326 matched the unified colon immune-related gene set (**Fig. 2C**). In the context of colon cancer,
327 knockdown of DDX21 inhibited cell growth by activating CDK1, which was also identified among
328 upregulated genes overlapping the mitotic signature. DDX21 was postulated to mediate this effect via
329 chromatin modulation of the CDK1 promoter (Lu et al. 2022). The nucleolar activity of DDX21 is in
330 rRNA processing and ribosome biogenesis. Interestingly, following activation of T cells, the gene is
331 upregulated to an extreme level (**Fig. 2D**).

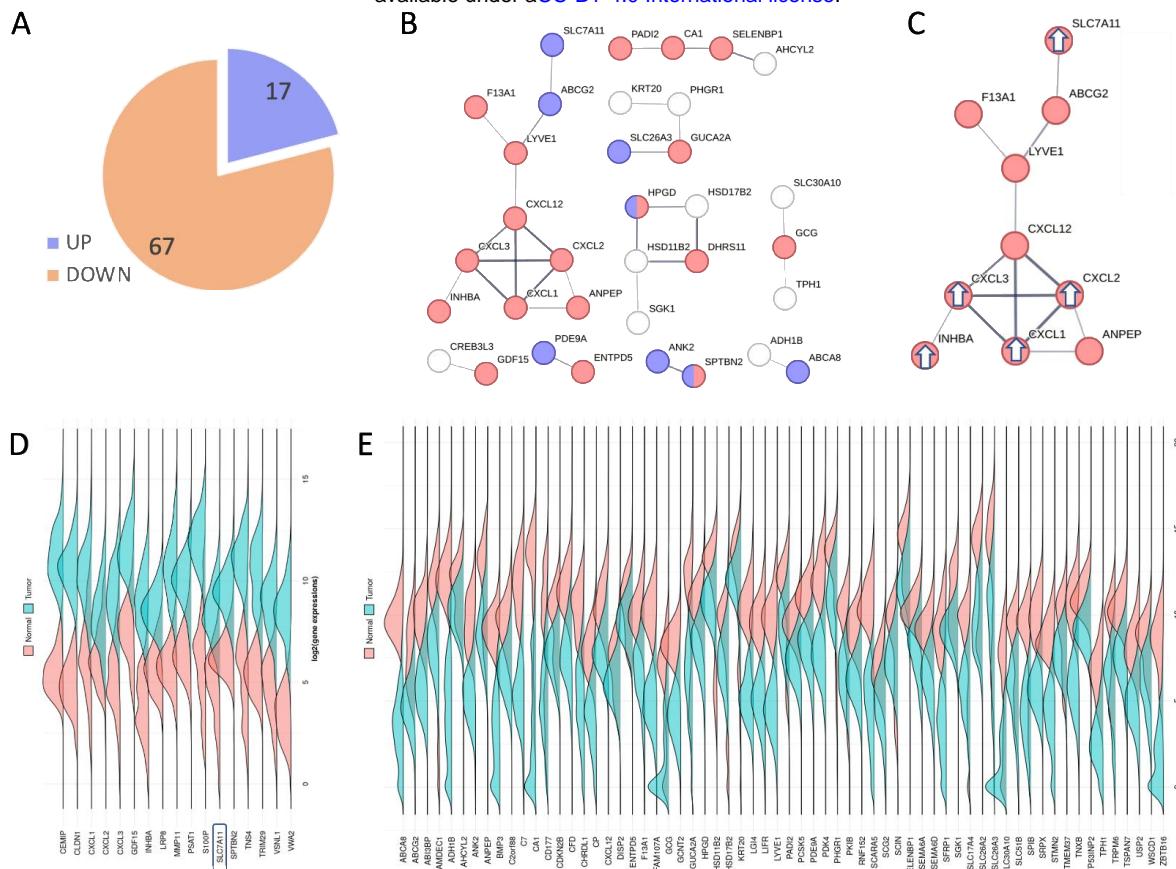
332 **Enrichment of extracellular and plasma membrane regions among the strongest DEG**

333 We then tested the possibility of identifying tumor versus healthy genes and focused on the subset of
334 genes showing the most extreme differential expression signals. To this end, we analyzed a subset of
335 84 DEGs with fold change (FC) of $>|5|$. While this is an arbitrary threshold, it captures the maximally
336 responding DEG group.

337 **Fig. 3A** shows that at this threshold, 80% of the genes were downregulated and only 20% were
338 upregulated. **Fig. 3B** shows a connectivity map of these DEG (with at least 2 gene connections;
339 STRING confidence score of 0.5). Most connected genes (70%) were assigned with either
340 extracellular regions (GO annotation of cellular component, p-value =3e-06; colored red) or plasma
341 membrane region (p-value =0.003; colored blue). These significant findings suggest that in colon
342 cancer, the most differentially expressed genes probably act through an extracellular communication,
343 and potentially act in transport and signaling at the plasma membrane.

344 **Fig. 3C** shows the largest connected component (10 genes, STRING interaction as in **Fig 3B**). This
345 10-node subnetwork is the only one that included upregulated genes (marked with arrows), the other
346 subgraphs include downregulated genes. The genes include SLC7A11 transporter, genes that
347 function in mitochondria and a set of secreted cytokines. Notably, among the 84 DEG, cell membrane
348 transporters were overrepresented with 6 genes that belong to the solute carrier family (SLC genes),
349 and 2 belong to the mitochondrial ABC transporters. Only SLC7A11 was strongly upregulated while
350 the rest of the transporter encoding genes were strongly downregulated.

351 To validate that the DEG from our study are in agreement with the large-scale available data from
352 available cancer resources, we performed density plot analysis for the upregulated (**Fig. 3D**) and
353 downregulated (**Fig. 3E**) genes. The results show that there is a complete agreement in the list of all
354 84 DEGs (Supplementary **Table S1**) regarding the expression level trends in healthy and tumor
355 samples of our cohort.



356

357 **Figure 3. Biological insight from DEGs with extreme fold change (FC>|5|) of colon cancer samples.**
358 **(A)** Pie chart of 84 DEG with $FC > |5|$, partitioned to up and downregulated genes (20% and 80%,
359 respectively). **(B)** STRING based network (confidence threshold 0.5). Only confident connected genes
360 are shown. Colored are genes that are annotated by GO annotation of cellular component as
361 extracellular and plasma membrane regions (red and blue, respectively). **(C)** The largest connected
362 component from B. DEG that were upregulated are marked with white arrows. The other nodes are
363 genes that were downregulated. **(D)** Density plot analysis of the 17 upregulated DEG (alphabetic
364 order). Expression density plots of healthy and tumor samples are in pink and blue, respectively. The
365 SLC7A11 gene is marked. **(E)** Density plot analysis of the 67 downregulated DEG (alphabetic order)
366 for COAD.

367

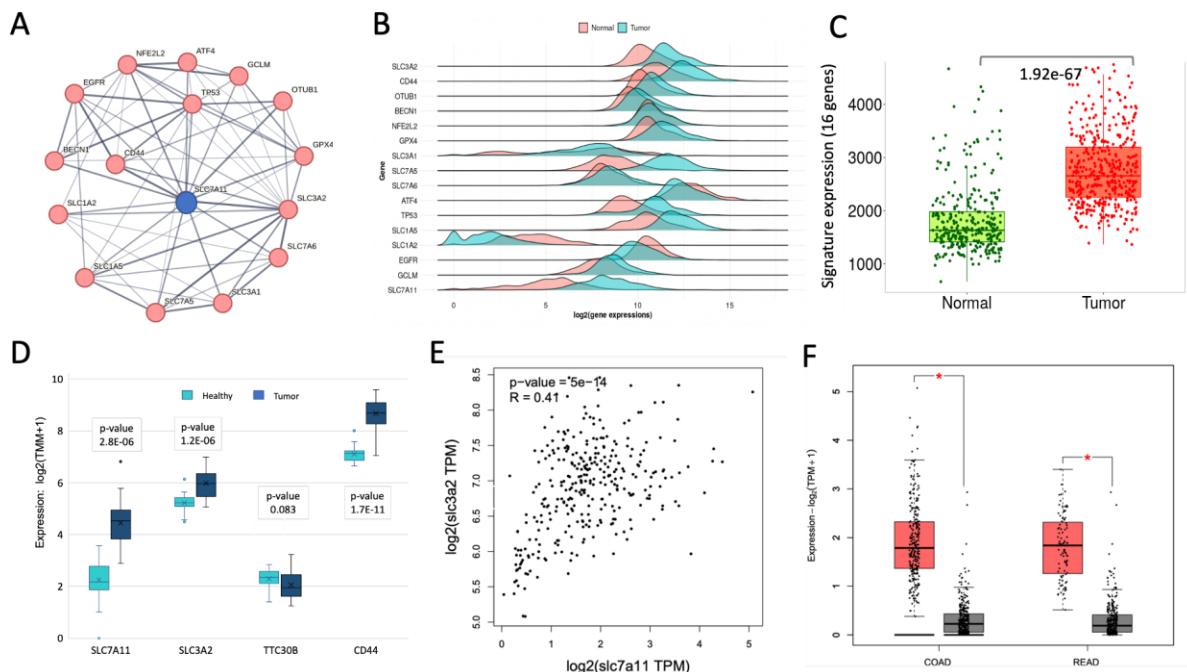
368 SLC7A11 and its interactors exhibit a coordinated upregulated expression in CRC

369 **Fig. 4A** lists the validated set of SLC7A11 interactors across multiple tissues (total 16 genes; STRING
370 confidence score 0.7). SLC7A11 interactors display its strong connection to SLC3A2 and CD44
371 (consistent with the Xc- system) and to other 6 SLC family transporters. In addition, SLC7A11 acts as
372 a hub to cellular metabolic genes. Examples include OTUB1, a specific deubiquitylating enzyme with a
373 cysteine protease activity, BECN1 (Beclin 1) that regulates vesicle-trafficking processes, autophagy,
374 and apoptosis. A number of the SLC7A11 knowledge-based network act under starvation, oxidation
375 and ER stress (i.e., ATF4, NFE2L2, GTX4). The transcription factor ATF4 acts to induce various
376 amino acid transporters and enzymes that determine the metabolic state of cells (including redox
377 balance, autophagy, energy production, and nucleotide synthesis). Other core genes are directly

bioRxiv preprint doi: <https://doi.org/10.1101/2024.06.03.597098>; this version posted June 3, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

378 **associated with cancer progression (TP153 and FGR) that drive cell migration, differentiation and cell**
 379 **growth (Fig. 4A).**

380 **Fig. 4B** shows a density plot for all 16 core-SLC7A11 genes. Some genes are very low expressed in
 381 CRC (SLC1A2), a few genes do not exhibit expression difference between tumor and normal tissue.
 382 Similar to SLC7A11 genes, the expression levels of most core genes are higher in tumor relative to
 383 normal samples. **Fig. 4C** confirms that the overall signature of all 16 listed genes remain highly
 384 significant for the difference of tumor relative to healthy tissue for COAD (Mann-Whitney p-value 1.9e-
 385 67).



386
 387 **Figure 4.** Signature of SLC7A11 network in colon cancer. **(A)** Interacting core genes centered by
 388 SLC7A11 according to STRING (confidence score >0.7), limited to the most significant 15 additional
 389 genes. **(B)** Density plots for 16 genes from (A). Healthy and tumor samples are marked in pink and
 390 blue, respectively. **(C)** Box plot for the signature of all 16 listed genes for healthy (normal, green) and
 391 tumor (red). Each dot represents a unified datapoint for a COAD sample. The statistics of the
 392 difference of the two group is calculated by Mann-Whitney test. **(D)** Box plot of the 32 CRC patients
 393 with the expression of genes that are expected with a direct protein-protein interaction (PPI). **(E)**
 394 Correlation plot for log expression measured by transcripts per million (TPM) for SLC7A11 and
 395 SLC3A2 based on COAD data ($\log_2(X)$ TPM; 461 cases). **(F)** Box plot from TCGA for COAD (461
 396 cases) and Rectum adenocarcinoma (READ, 172 cases). Tumor and healthy are colored red and
 397 gray, respectively.

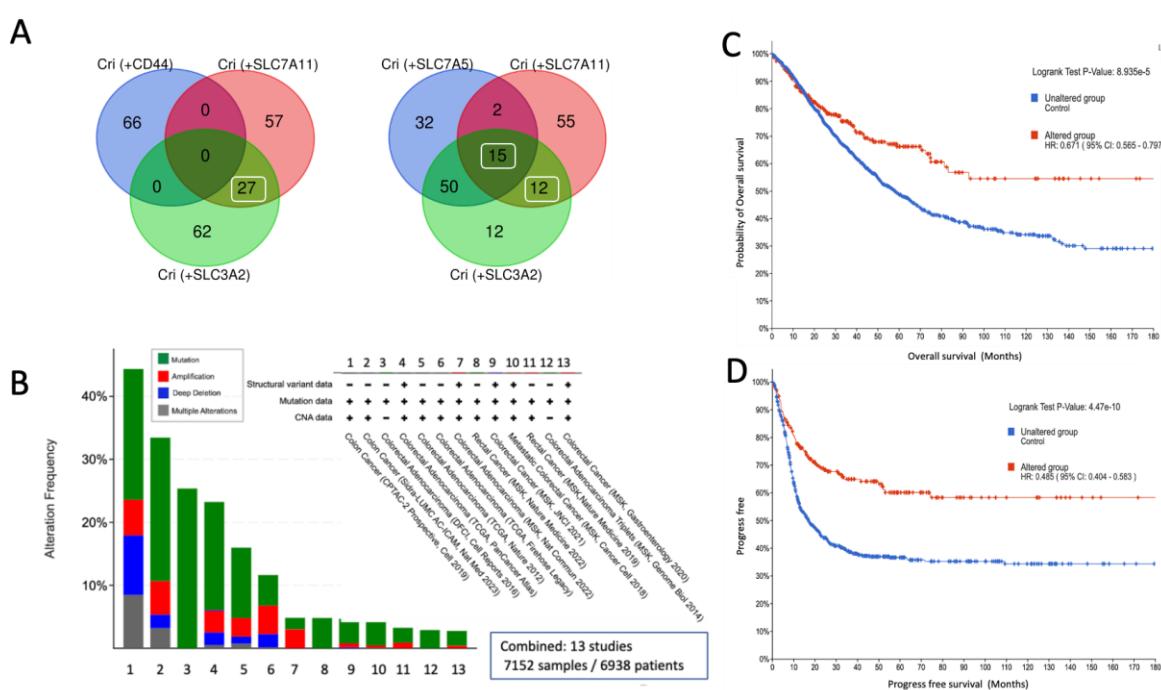
398 A small set of direct interacting proteins of SLC7A11 was compiled by UniProtKB and BioGrid. The
 399 confirmed direct interactors include SLC3A2 and CD44, but also KRTAP1-1, KRTAP1-3 and TTC30B.
 400 **Fig. 4D** analyzed the expression of major interacting genes from the CRC cohort (32 patients).
 401 Notably, the keratin-associated (KAP) family members and TTC30B levels of expression were too low,
 402 and these genes were not further analyzed. We report on the upregulated expression of direct
 403 interactors of SLC7A11 in tumor relative to healthy tissue (**Fig. 4D**). We further expanded the analysis
 404 to cover samples from TCGA (~460 samples). A strong and significant correlation ($R = 0.41$, p -value
 405 = 5e-14) between SLC7A11 and SLC3A2 expression at the individual level was confirmed (**Fig. 4E**).

bioRxiv preprint doi: <https://doi.org/10.1101/2024.06.03.597098>; this version posted June 3, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

406 These results suggest that the Xc- system (SLC7A11, SLC3A2) is likely to be involved in the
 407 tumorigenesis process. Moreover, the upregulation of SLC7A11 in tumor samples was validated with
 408 high expression in patients with either COAD (461 cases) or READ (172 cases; **Fig. 4F**).

409 **Knowledge-based inspection of SLC7A11 determines its oncogenic potency**

410 We sought to identify the network of SLC7A11 correlated genes by considering gene perturbations in a
 411 cellular context. To this end, we tested the essentiality, specificity and efficacy of CRISPR dependency
 412 screens (see Methods). To further inspect the importance of SLC7A11 in colon cancer, we
 413 investigated the CRISPR-based dependency map for SLC7A11, SLC3A2 (and CD44) that comprises
 414 the Xc- system. Specifically, we compared genes that are most correlated following CRISPR-based
 415 gene depletion and focused on the overlapping genes displaying positively correlated signal (among
 416 the top 100 per each gene). **Fig. 5A** compared the genes that are most significantly recurrent in these
 417 CRISPR-Cas9 screening. The top co-dependent genes by CRISPR-Cas9 setting are expected to
 418 specify the degree of gene essentiality and replication fitness. There are 27 shared genes that are
 419 shared between the Xc- membrane transporters. We also observe a strong relatedness between the
 420 co-dependency genes of SLC7A5 and SLC3A2.



421
 422 **Figure 5.** Gene set of CRISPR-induced Xc- fitness is consistent with patients' CRC survival. **(A)** The
 423 analysis of top co-dependent genes by CRISPR-Cas9 setting (DepMap-based, see Methods). Only
 424 positively correlated genes from the 100 correlation-ranked genes list are included in the analysis.
 425 There are 27 shared genes (left, white frame) between the two membrane transporters and no genes
 426 overlapped with CD44. In contrast, the SLC7A5 displayed strong shared signal with SLC3A2 (Right,
 427 65 genes) among them 15 genes are shared by all three gene sets. **(B)** Total 13 bowel cancer studies
 428 are listed according to the type of alteration in their genes (e.g., mutations, copy number variations;
 429 see legend for colors). We selected 13 of 19 studies reported in cBioPortal (a total of 7152 samples).
 430 All selected studies have at least 100 samples each, with the appendiceal cancer cohort excluded. **(C)**
 431 Probability of overall survival (OS) for 180 months is shown for affected set for the 27 shared genes
 432 (as in D). **(D)** Progress free survival (PFS) curve for 180 months. The survival plot indicates the

433 **unaltered and altered set (blue and red, respectively) for samples with alteration in any of the 27**
 434 **shared genes. The statistical significance, Hazard ratio (HR) with 95% confidence is indicated.**

435 For testing the impact of alteration in the overlapping genes (27) on the survival of CRC patients, we
 436 created a composed set from 13 independent studies (**Fig. 5B**) and analyzed the overall survival (OS,
 437 **Fig. 5C**) and progression-free survival (PFS, **Fig. 5D**). In both survival settings, the survival of the
 438 altered genes is enhanced. We observed that upon altering these key genes, a strong suppression in
 439 tumorigenesis is observed. The hazard ratio (HR) indicates an improved survival relative to the
 440 unaltered group (accounts for 90% of the samples). The HR for overall survival (OS) was 0.671 (**Fig.**
 441 **5C**) and the progression free survival (PFS) was 0.485 (**Fig. 5D**). The genes when overexpressed in
 442 cancer cells support the progression of cancer and most likely resist process of apoptosis and other
 443 types of cell death.

444 **Cellular interpretation of overexpressed Xc- system in COAD**

445 The observation that CRISPR co-dependent genes of the Xc- system resulted in strong clinical effect
 446 on survival, calls for identifying mechanistic explanation and biological pathways that connect Xc-
 447 system with cell growth and proliferation.

448 **Table 2.** Overlapping CRISPR co-dependent genes of Xc- system genes in COAD samples

Gene	Description	Main function	FC T vs H ^a	FC Met. vs T	FC Met. vs H ^b
KRT16	Keratin, type I cytoskeletal 16	Intermediate filament	13.13	0.13	1.73
SLC7A11	Cystine/glutamate transporter	Cystine transport as redox regulator	9.22	0.34	3.15
PRH2	Proline rich protein HaelII subfamily 2	Secreted glycoprotein	3.27	0	0
MTHFD1	Methylenetetrahydrofolate dehydrogenase	De novo Purine syntheses	2.72	0.62	1.7
ATIC	Formyltransferase/IMP cyclohydrolase	De novo purine biosynthetic pathway	2.7	2.15	5.79
RPIA	Ribose 5-phosphate isomerase A	Pentose-phosphate pathway	2.65	0.77	2.03
UMPS	Uridine monophosphate synthetase	De novo pyrimidine biosynthetic pathway	2.65	6.34	16.79
CAD	Transcarbamylase-dihydroorotase	de novo biosynthesis of pyrimidine nucleotides	2.62	1	2.61
TFRC	Transferrin receptor	cellular iron uptake	2.51	1.91	4.79
RAB36	Ras related protein Rab-36	Vesicle-mediated transport	2.47	0.8	1.98
SLC3A2	4F2 Cell surface antigen heavy chain	Transport of L-type amino acids	2.27	0.54	1.22

449 ^aFC is the fold change. In bold face FC>2.0 for Tumor (T) vs healthy (H). ^bIn bold face genes that
 450 amplified the metastatic (Met.) state.

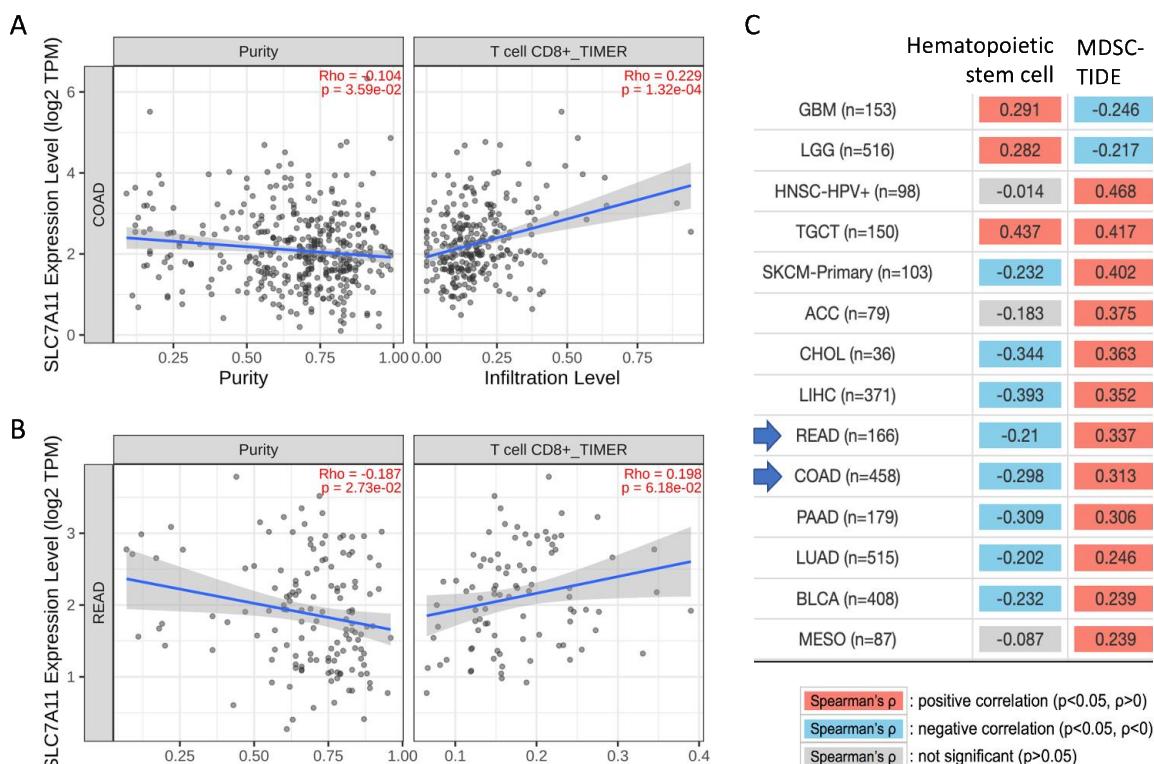
451
 452 Among the 27 overlapping genes from the CRC cohort (32 patients, Supplementary **Table S2**), 6
 453 genes belong to the cation/anion and amino acid transporters of the SLC family (SLC29A1,
 454 SLC39A10, SLC5A6, SLC6A6, SLC7A11, and SLC7A5). The encoded proteins mediate transport
 455 across the cell membrane of specific metal ions, inorganic cations and anions, and amino acid.
 456 Additional upregulated gene products with ion-transporting potential belong to the ATPase family (e.g.,
 457 ATP11A).

458 **Among the overlapping co-dependent set (27 genes), the expression levels of 17 showed upregulation**
 459 in the tumor samples. Inspecting this set shows that in addition to their role in amino acid transport
 460 (e.g., the Xc- system), numerous representatives are enzymes that function in de novo biosynthesis of
 461 purine/pyrimidine nucleotides (FC >2; **Table 2**). We conclude that these genes specify the capacity of
 462 cancer cells to maintain high demand for protein synthesis (e.g., amino acids), while exhibiting a
 463 strong signature for de novo nucleotide biosynthesis.

464 **Table 2** shows that some of these genes do not only support tumorigenesis but actually contribute to
 465 the metastatic potential in COAD patients (marked by FC >1 for metastatic versus local tumor). The
 466 genes that showed such metastatic amplification are ATIC and UMPS, which act in nucleotide de novo
 467 synthesis, and TFRC, which allows iron uptake.

468 **Determinants of immune cell infiltration pattern in CRC**

469 The tumor microenvironment (TME) is a crucial component in determining the response to immune
 470 checkpoint inhibitor (ICI) therapy. Resources were developed that allow assessment of tissue purity
 471 with respect to the presence of immune cell subtypes (compiled by TIME2.0; see Methods). The
 472 associations between cell fractions and treatment responses relied on considering progression-free
 473 survival (PFS) and overall survival (OS). Identifying distinct immune subgroups in CRC with varying
 474 responses to ICI therapy is a step toward achieving lasting ICI efficacy. For an unbiased approach, we
 475 tested the correlation of all 22 immune cell types with respect to the expression of SCL7A11 and other
 476 genes that were highlighted in this study. For many of the cell types, statistical significance could not
 477 be achieved due to the low number of samples. All significant observations for COAD and READ are
 478 presented in Supplementary **Table S3**.



481 **Figure 6: Correlation analysis of immune cell types and the data from TCGA for each individual. (A)**
482 The scatter plot showing the positive correlation between the abundance of CD8⁺ T cells and the
483 expression of SLC7A11 in TCGA cohorts with 458 patients with COAD. The left panel indicates tumor
484 purity, and the right panel indicates the infiltration of the T cells. **(B)** The scatter plot showing the
485 positive correlation between the abundance of CD8⁺ T cells and the expression of SLC7A11 in TCGA
486 cohorts with 166 patients for READ. The left panel indicates tumor purity, and the right panel indicates
487 the infiltration of the T cells. The Spearman correlation test was based on TIMER2.0 algorithm. Tumor
488 purity adjustment (Purity) was applied to account for the negative correlation of the SLC7A11 (Li et al.
489 2020). **(C)** Spearman correlation values (Rho) for a number of cell types are listed for hemopoietic
490 stem cells and MDSCs. The p-values are adjustment by purity and positive and negative are marked
491 by red and blue colors. Spearman p-values that are not significant are colored gray.
492

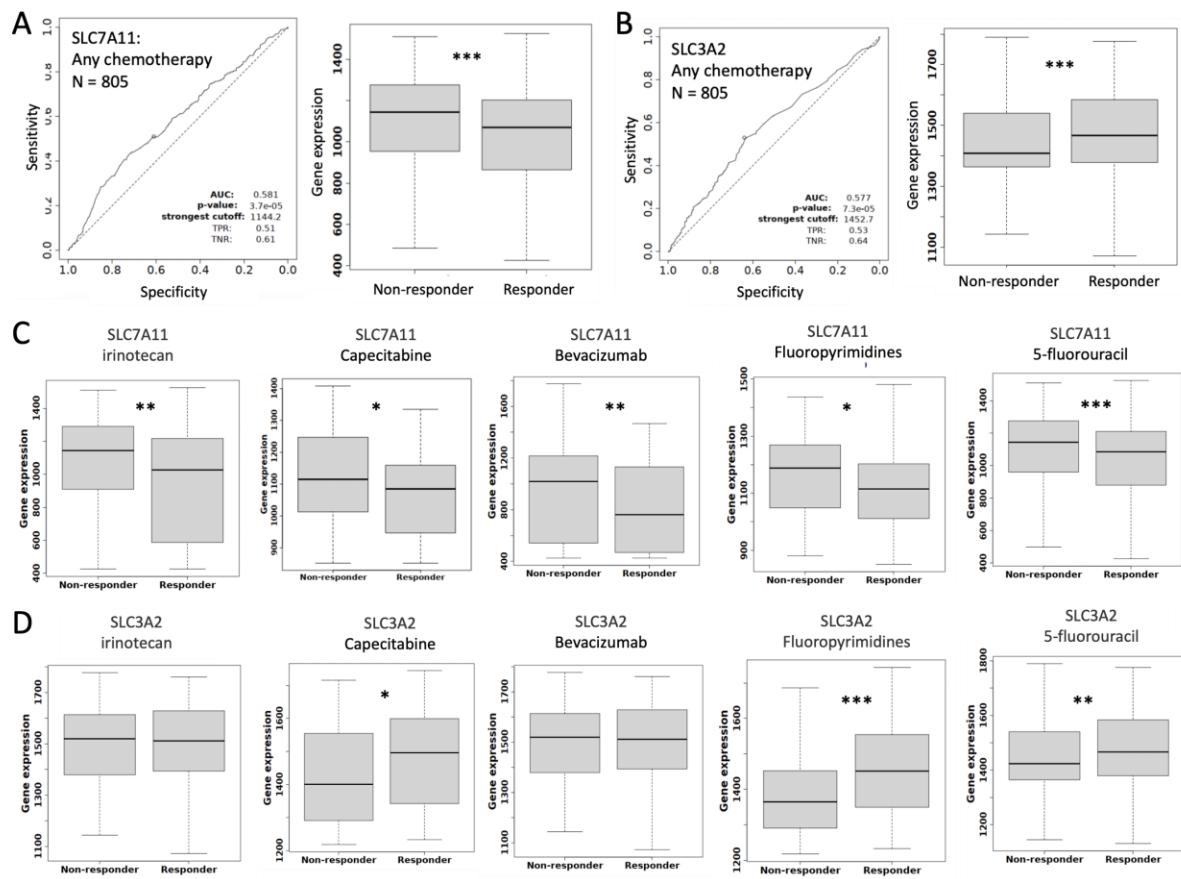
493 **Fig. 6** displays the scatter plot illustrating the relationship between infiltrates estimation and SLC7A11
494 expression. It shows the results for the tendency of the cancer samples to support immune cell
495 infiltration in the case of COAD (**Fig. 6A**; 461 samples) and READ (**Fig. 6B**; 166 samples). The
496 confounding effect of purity is accounted for, and positive correlations are evident regarding CD8+ cells
497 for COAD and READ samples. **Fig. 6C** shows a heatmap for two cell types: the hematopoietic stem
498 cells and the myeloid-derived suppressor cells (MDSCs) across many cancer types. Importantly,
499 MDSCs carry potent immunosuppressive activity and are closely associated with poor clinical
500 outcomes in cancer (Tang et al. 2020). We conclude that among CRC patients (COAD and READ),
501 there is a substantial positive correlation to CD8+ T-cells (**Figs. 6A-6B**) and MDSCs cells (**Fig. 6C**)
502 that render the high expression of Xc- system. These observations raised a question regarding the
503 success of immunotherapy in CDC patients.

504 **Expression levels of Xc- system strongly correlate with COAD chemotherapy treatment**

505 Due to the extreme degree of SLC7A11 upregulation (**Table 2**, FC of T vs H is 9.22) we challenged
506 the prognostic capacity of the expression with respect to clinical treatments. RNA-seq data of 805
507 patients with COAD was therefore tested for their predictive capacity (marked by ROC p-value and
508 AUC) for SLC7A11 and SLA3A2. **Fig. 7A** shows the predictive results for SLC7A11 with respect to all
509 chemotherapy treatments that partitioned for responders (451 patients) and non-responders (354
510 patients). Although prediction power is rather limited (AUC =0.581) a higher mean expression level for
511 non-responders was observed (p-value =3.7e-05). Opposite trend where a higher level of expression
512 was observed for responders relative to non-responders was associated with SLC3A2 (AUC =0.577)
513 (**Fig. 7B**).

514 The most common drug used in CRC patients is 5-flourouracil that includes 298 and 294 patients for
515 the responders and non-responders, respectively. The partition in the box plots (**Fig. 7C**) shows that a
516 slightly higher expression level for SLC7A11 was associated with the non-responders. Same trend (at
517 a different confidence level) was observed for all other tested drugs in the relevant cohorts. The same
518 analysis was applied to SLC3A2 which also showed a significant partition of responders and non-
519 responders, in some but not all used drugs (**Fig. 7D**). Same analysis that was performed for oxaliplatin
520 failed to reach any statistical significance (265 and 163 responders and non-responders, respectively).
521 Testing solid tumors identified a distinctive signature for SLC7A11 for the use of 5-fluorouracil with
522 slightly higher expression for non-responder vs responder groups (294 and 298 patients, respectively)

523 showing high significance (p-value of ROC = 0.02) but only a weak predictive power (AUC = 0.576). Similar testing for alternative treatment such as oxaliplatin led to a border-line significance
 524 prediction potential (not shown). Only limited clinical data regarding the use of checkpoint inhibition
 525 therapy is available for CRC patients. Testing pretreatment by any immune checkpoint inhibitor
 526 therapy regarding SLC7A11 showed no signal for the success of treatment (including 533 responder
 527 and 570 non responders). We concluded that the information available is too limited to substantiate
 528 CRC patients' stratification by their potential to successfully respond to T-cell-based immunotherapy.
 529



530
 531 **Figure 7.** Expression levels of the genes of Xc- system by drug treatments and patients' responsiveness. Analysis was performed by the KM-Plotted portal (KM-ROC). RNA-seq performed on 532 805 COAD patients partitioned by responders (451 patients) and non-responders (354 patients). (A) 533 ROC-AUC and p-value are reported for SLC7A11 for all chemotherapies. (B) ROC-AUC and p-value 534 are reported for SLC3A2 for all chemotherapies. (C) Box plot analysis of expression value with respect 535 to responders and non-responders for specific reagents used in the CRC treatment for SLC7A11. (D) 536 Box plot analysis of expression value with respect to responders and non-responders for specific 537 reagents used in the CRC treatment for SLC3A2. The statistically significant marked by p-value at 538 improving order of magnitude from <0.05 (*), <0.005 (** to <0.0005 (***)). Definition of a responder is 539 by the RECIST criteria. We have not reported on results for treatment that applied to <100 patients.
 540

541

542 Discussion

543 In this study, we inspected the detailed molecular profiles of CRC patients through a cellular view
 544 combined with a knowledge-based network approach. For several genes, mechanistic relevance to
 545 cancer progression is presented to encourage further investigation. For example, among the strongest

546 **upregulated DEG, we observed several cytokines (e.g., CXCL1, CXCL2 and CXCL3; Fig. 3B).** It may
547 be a reflection of the abundance of MDSC cells which were positively correlated with the increased
548 expression of SLC7A11 (Fig. 6C). It was shown that cancer-associated fibroblasts (CAF) via the
549 secretion of chemokines (e.g., CXCL1, CXCL2) recruit myeloid cells to tumors and also drive the
550 dysfunction of tumor-specific CD8⁺ T cells. A recent study proposed a prognostic model for CRC that
551 is based on the immune cell composition in the tumor samples (Ye et al. 2019). With the effort to
552 stratify CRC patients for improved clinical management and outcomes, immune cell expression
553 signatures were classified into four subtypes that aim to capture the degree of T-cell dysfunction and
554 exclusion (Tang et al. 2020; Zhang et al. 2020). While the immune classification of cancers is of
555 utmost importance for prognostics, as predictive factors for chemotherapies and immune checkpoint
556 inhibitor therapy, current knowledge remains inconsistent across different datasets (e.g., across 15
557 CDC datasets compiled in TIDE resource (Fu et al. 2020)).

558 Among the unregulated genes in COAD, Transferrin receptor (TFRC) was found to be even more
559 enhanced in metastatic tumors (Table 2), suggesting an important role for iron uptake in these cells. In
560 agreement with our observation, TFRC was shown to be an essential factor in nucleotide biosynthesis,
561 DNA repair, and cell survival based on its crucial role in iron accumulation and ensuing iron-dependent
562 activation to maintain the nucleotide pool and sustain proliferation in colorectal tumors (Schwartz et al.
563 2021). Congruently, TFRC was recently suggested as an attractive target for inhibiting tumor growth,
564 as reduction of iron influx can lead to DNA damage and apoptosis (Kim et al. 2023).

565 We have focused on the role of the Xc- system in CRC cancer and showed that it acts as a hub
566 connecting the elaborate strong signature of mitotic cells and cell cycle with the metabolic program
567 (Fig. 2B). SLC7A11 may have opposite effects in different cancer cells. For example, in a glucose-
568 deprivation state (as in glioblastoma) the overexpression of the Xc- system induces oxidative stress
569 and apoptosis. In contrast, it is a strong mediator for cell viability in CRC and other cancer types. In
570 such cases, the suppression of SLC7A11 function (e.g., by p53 or BECN1) can activate ferroptosis
571 which makes the tumor sensitive to radiotherapy. To further analyze the cellular role of Xc-, we
572 inspected the downstream glutathione pathways (e.g., GPX4, GPX8). We observed that the
573 expression of GPX genes were unchanged within the cohort of 32 patients (Supplementary Table S1),
574 with no co-dependency in the CRISPR screening results. Essential and co-essential genes across
575 many cell lines are a useful approach to identify shared pathways (Arnold et al. 2022). Using the
576 DepMap platform, we analyzed GPX4 and GPX8 expression levels with respect to the effect size of
577 CRISPR-based SLC7A11 knockdown across 39 cells originated from COAD. The GPX4 and GPX8
578 genes had negative Spearman correlation (R: -0.449 and -0.205, respectively), suggesting the
579 involvement of alternative pathways in the Xc- tumorigenesis.

580 Cellular models successfully used to identify overlooked pathways for SLC7A11 dependent
581 ferroptosis. For example, using colon cancer cell lines (HCT116, LoVo, and HT29) confirmed a
582 regulatory loop between PERK and SLC7A11 through transcription factor ATF4 (Saini et al. 2023).
583 The suppression of PERK or ATF4 reduces SLC7A11 expression in these cells. A side benefit of our
584 study was to highlight experimental cell lines that were most appropriate for future functional assays.
585 Specifically, for the minimal set of shared genes of the SLC transporters (Fig. 5A) we highlighted 15

586 overlapping genes. A number of these genes (Xc, MTHFD1, UMPK, SDHB and SLC7A11 itself) were
587 also listed among the most affected genes by CRISPR screen, and especially in COLO-205 metastatic
588 COAD cell line. These essential genes exhibited a strong effect on loss of fitness (see Methods) and
589 therefore are attractive targets for drug testings.

590 We demonstrated that the expression level of SLC7A11 can (slightly) predict chemotherapy
591 responsiveness (Fig. 7). It is thus beneficial to apply anticancer therapies that downregulated the
592 levels of the Xc- system directly (e.g., by SLC7A11 blockers) or indirectly. Several small molecules
593 and inhibitors targeting SLC7A11 have been developed and are being investigated for their
594 therapeutic potential (Xu et al. 2020). An indirect pathway impacting Xc- system involves the use of
595 PD-L1 blockade therapy that leads to an increase lipid ROS production, and through STAT1
596 attenuates SLC7A11 expression. More mediators include JAK and ATM (following radiotherapy) and
597 other studies focus on the strong link of SLC7A11 and ferroptosis in CRC. It was shown that the loss
598 of PERK (Saini et al. 2023) or vitamin D (Guo et al. 2023) promoted downregulation of SLC7A11 and
599 consequently induced ferroptosis.

600 Our study further emphasizes the importance of developing targeted therapies that rely on
601 understanding the link of SLC7A11 to ferroptosis while utilizing the nutrient dependency of cancer
602 cells. Overall, targeting SLC7A11 by multiple routes can be an effective strategy to enhance
603 therapeutic efficacy, induce regulated cell death and ultimately improve patients' outcomes. While we
604 focused mostly on the levels of gene expression and cellular response, other regulatory mechanisms
605 that affect SLC7A11, including the cellular network of post-transcriptional controls by microRNA
606 (miRNA), or the unexplored landscape of post translational modifications (PTMs) in tumor samples,
607 remain interesting strategies that need to be further elucidated.

608

609 **Conflicts of Interests**

610 The authors declare that they have no conflicts of interest to report regarding the present study.

611

612 **Ethics approval and consent to participate**

613 The Ethics Committee of University Magdeburg approved this study

614

615 **Abbreviations:**

616 AUC, area under the curve

617 CAF, cancer-associated fibroblasts

618 CD44v, CD44 variant

619 CHIP-seq, chromatin Immunoprecipitation Sequencing

620 COAD, colorectal adenocarcinoma

621 CPM, counts per million

622 CRC, colorectal cancer

623 DEG, differential expression genes

624 ~~TC, for change~~
625 GO, gene ontology
626 GPX, glutathione peroxidases
627 GSH, glutathione
628 GTEx, genotype tissue expression
629 ICI, immune checkpoint inhibitor
630 OS, overall survival
631 PCA, principal component analysis
632 PFS, progression-free survival
633 READ, rectum adenocarcinoma
634 RNA-seq, RNA sequencing
635 ROS, reactive oxygen species
636 TCGA, the cancer genome atlas
637 TME, tumor microenvironment
638 TMM, trimmed mean of the M-values
639 TPM, transcript per million
640 xCT, solute carrier family 7, member 11
641

642 **References**

643 Arnold PK, Jackson BT, Paras KI, Brunner JS, Hart ML, Newsom OJ, Alibeckoff SP, Endress J, Drill
644 E, Sullivan LB et al. 2022. A non-canonical tricarboxylic acid cycle underlies cellular identity.
645 *Nature* **603**: 477-481.

646 Barrier A, Lemoine A, Boelle PY, Tse C, Brault D, Chiappini F, Breittschneider J, Lacaine F, Houry S,
647 Huguier M et al. 2005. Colon cancer prognosis prediction by gene expression profiling.
648 *Oncogene* **24**: 6155-6164.

649 Bartha A, Gyorffy B. 2021. TNMplot.com: A Web Tool for the Comparison of Gene Expression in
650 Normal, Tumor and Metastatic Tissues. *Int J Mol Sci* **22**.

651 Biller LH, Schrag D. 2021. Diagnosis and treatment of metastatic colorectal cancer: a review. *Jama*
652 **325**: 669-685.

653 Bonifácio VD, Pereira SA, Serpa J, Vicente JB. 2021. Cysteine metabolic circuitries: Druggable targets
654 in cancer. *British journal of cancer* **124**: 862-879.

655 Chen RJ, Lu MY, Williamson DF, Chen TY, Lipkova J, Noor Z, Shaban M, Shady M, Williams M, Joo
656 B. 2022. Pan-cancer integrative histology-genomic analysis via multimodal deep learning.
657 *Cancer Cell* **40**: 865-878. e866.

658 Choi A, Jang I, Han H, Kim MS, Choi J, Lee J, Cho SY, Jun Y, Lee C, Kim J et al. 2021. iCSDB: an
659 integrated database of CRISPR screens. *Nucleic Acids Res* **49**: D956-D961.

660 Condamine T, Ramachandran I, Youn J-I, Gabrilovich DI. 2015. Regulation of tumor metastasis by
661 myeloid-derived suppressor cells. *Annual review of medicine* **66**: 97-110.

662 Consortium GT. 2013. The Genotype-Tissue Expression (GTEx) project. *Nat Genet* **45**: 580-585.

663 Daher B, Vučetić M, Pouysségur J. 2020. Cysteine depletion, a key action to challenge cancer cells to
664 ferroptotic cell death. *Frontiers in Oncology* **10**: 723.

665 Dempster JM, Rossen J, Kazachkova M, Pan J, Kugener G, Root DE, Tsherniak A. 2019. Extracting
666 biological insights from the project achilles genome-scale CRISPR screens in cancer cell
667 lines. *BioRxiv*: 720243.

668 Dixon SJ, Lemberg KM, Lamprecht MR, Skounta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ,
669 Cantley AM, Yang WS. 2012. Ferroptosis: an iron-dependent form of nonapoptotic cell death.
670 *cell* **149**: 1060-1072.

671 Fekete JT, Gyorffy B. 2023. New Transcriptomic Biomarkers of 5-Fluorouracil Resistance. *Int J Mol
672 Sci* **24**.

bioRxiv preprint doi: <https://doi.org/10.1101/2024.06.03.597098>; this version posted June 3, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

673 Ferreira JT, Györffy B. 2019. *bioRxiv*: Validating predictive biomarkers of chemotherapy/Hormonal
674 therapy/anti-HER2 therapy using transcriptomic data of 3,104 breast cancer patients.
675 *International journal of cancer* **145**: 3140-3151.

676 Fu J, Li K, Zhang W, Wan C, Zhang J, Jiang P, Liu XS. 2020. Large-scale public data reuse to model
677 immunotherapy response and resistance. *Genome medicine* **12**: 1-8.

678 Guo S, Zhao W, Zhang W, Li S, Teng G, Liu L. 2023. Vitamin D promotes ferroptosis in colorectal
679 cancer stem cells via SLC7A11 downregulation. *Oxidative Medicine and Cellular Longevity*
680 **2023**.

681 Hanahan D. 2022. Hallmarks of cancer: new dimensions. *Cancer discovery* **12**: 31-46.

682 Jyotsana N, Ta KT, DelGiorno KE. 2022. The Role of Cystine/Glutamate Antiporter SLC7A11/xCT in
683 the Pathophysiology of Cancer. *Front Oncol* **12**: 858462.

684 Kim H, Villareal LB, Liu Z, Haneef M, Falcon DM, Martin DR, Lee HJ, Dame MK, Attili D, Chen Y et al.
685 2023. Transferrin Receptor-Mediated Iron Uptake Promotes Colon Tumorigenesis. *Adv Sci (Weinh)* **10**: e2207693.

687 Koncina E, Haan S, Rauh S, Letellier E. 2020. Prognostic and predictive molecular biomarkers for
688 colorectal cancer: updates and challenges. *Cancers* **12**: 319.

689 Koppula P, Zhuang L, Gan B. 2021. Cystine transporter SLC7A11/xCT in cancer: ferroptosis, nutrient
690 dependency, and cancer therapy. *Protein & cell* **12**: 599-620.

691 Lee J, Roh JL. 2022. SLC7A11 as a Gateway of Metabolic Perturbation and Ferroptosis Vulnerability
692 in Cancer. *Antioxidants (Basel)* **11**.

693 Lei G, Zhuang L, Gan B. 2022. Targeting ferroptosis as a vulnerability in cancer. *Nature Reviews
694 Cancer* **22**: 381-396.

695 Li S, Lu Z, Sun R, Guo S, Gao F, Cao B, Aa J. 2022. The role of SLC7A11 in cancer: friend or foe?
696 *Cancers* **14**: 3059.

697 Li T, Fu J, Zeng Z, Cohen D, Li J, Chen Q, Li B, Liu XS. 2020. TIMER2. 0 for analysis of tumor-
698 infiltrating immune cells. *Nucleic acids research* **48**: W509-W514.

699 Li Y, Li Y, Xia Z, Zhang D, Chen X, Wang X, Liao J, Yi W, Chen J. 2021. Identification of a novel
700 immune signature for optimizing prognosis and treatment prediction in colorectal cancer.
701 *Aging (Albany NY)* **13**: 25518.

702 Liberzon A, Birger C, Thorvaldsdóttir H, Ghandi M, Mesirov JP, Tamayo P. 2015. The molecular
703 signatures database hallmark gene set collection. *Cell systems* **1**: 417-425.

704 Lin W, Wang C, Liu G, Bi C, Wang X, Zhou Q, Jin H. 2020. SLC7A11/xCT in cancer: biological
705 functions and therapeutic implications. *American journal of cancer research* **10**: 3106.

706 Lu P, Yu Z, Wang K, Zhai Y, Chen B, Liu M, Xu P, Li F, Zhao Q. 2022. DDX21 Interacts with WDR5 to
707 Promote Colorectal Cancer Cell Proliferation by Activating CDK1 Expression. *J Cancer* **13**:
708 1530-1539.

709 Márrom I, Sánchez-de-Diego C, Pradilla Dieste A, Cerrada E, Rodriguez Yoldi MJ. 2017. Colorectal
710 carcinoma: a general overview and future perspectives in colorectal cancer. *International
711 journal of molecular sciences* **18**: 197.

712 Menyhárt O, Györffy B. 2021. Multi-omics approaches in cancer research with applications in tumor
713 subtyping, prognosis, and diagnosis. *Computational and structural biotechnology journal* **19**:
714 949-960.

715 Parcesepe P, Giordano G, Laudanna C, Febraro A, Pancione M. 2016. Cancer-associated immune
716 resistance and evasion of immune surveillance in colorectal cancer. *Gastroenterology
717 research and practice* **2016**.

718 Parker JL, Deme JC, Kolokouris D, Kuteyi G, Biggin PC, Lea SM, Newstead S. 2021. Molecular basis
719 for redox control by the human cystine/glutamate antiporter system xc(). *Nat Commun* **12**:
720 7147.

721 Roseweir AK, McMillan DC, Horgan PG, Edwards J. 2017. Colorectal cancer subtypes: Translation to
722 routine clinical pathology. *Cancer treatment reviews* **57**: 1-7.

723 Saini KK, Chaturvedi P, Sinha A, Singh MP, Khan MA, Verma A, Nengroo MA, Satrusal SR, Meena S,
724 Singh A et al. 2023. Loss of PERK function promotes ferroptosis by downregulating SLC7A11
725 (System Xc(-)) in colorectal cancer. *Redox Biol* **65**: 102833.

726 Schmiedel BJ, Singh D, Madrigal A, Valdovino-Gonzalez AG, White BM, Zapardiel-Gonzalo J, Ha B,
727 Altay G, Greenbaum JA, McVicker G. 2018. Impact of genetic polymorphisms on human
728 immune cell gene expression. *Cell* **175**: 1701-1715. e1716.

bioRxiv preprint doi: <https://doi.org/10.1101/2024.06.03.597098>; this version posted June 3, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

729 Schwartz AJ, Goyer JW, Solanki S, Kerk SA, Chen B, Casimiro C, Hsu PP, Do BT, Singhal R, Dame
730 MK et al. 2021. Hepcidin sequesters iron to sustain nucleotide metabolism and mitochondrial
731 function in colorectal cancer epithelial cells. *Nat Metab* **3**: 969-982.

732 Tang YQ, Chen TF, Zhang Y, Zhao XC, Zhang YZ, Wang GQ, Huang ML, Cai SL, Zhao J, Wei B et al.
733 2020. The tumor immune microenvironment transcriptomic subtypes of colorectal cancer for
734 prognosis and development of precise immunotherapy. *Gastroenterol Rep (Oxf)* **8**: 381-389.

735 Tang Z, Kang B, Li C, Chen T, Zhang Z. 2019. GEPIA2: an enhanced web server for large-scale
736 expression profiling and interactive analysis. *Nucleic Acids Res* **47**: W556-W560.

737 Testa U, Pelosi E, Castelli G. 2018. Colorectal cancer: genetic abnormalities, tumor progression,
738 tumor heterogeneity, clonal evolution and tumor-initiating cells. *Medical Sciences* **6**: 31.

739 Thul PJ, Lindskog C. 2018. The human protein atlas: a spatial map of the human proteome. *Protein
740 Science* **27**: 233-244.

741 Vega P, Valentin F, Cubiella J. 2015. Colorectal cancer diagnosis: Pitfalls and opportunities. *World
742 journal of gastrointestinal oncology* **7**: 422.

743 Vučetić M, Cormerais Y, Parks SK, Pouysségur J. 2017. The central role of amino acids in cancer
744 redox homeostasis: vulnerability points of the cancer redox code. *Frontiers in oncology* **7**: 319.

745 Xu X, Zhang X, Wei C, Zheng D, Lu X, Yang Y, Luo A, Zhang K, Duan X, Wang Y. 2020. Targeting
746 SLC7A11 specifically suppresses the progression of colorectal cancer stem cells via inducing
747 ferroptosis. *Eur J Pharm Sci* **152**: 105450.

748 Ye L, Zhang T, Kang Z, Guo G, Sun Y, Lin K, Huang Q, Shi X, Ni Z, Ding N et al. 2019. Tumor-
749 Infiltrating Immune Cells Act as a Marker for Prognosis in Colorectal Cancer. *Front Immunol*
750 **10**: 2368.

751 Zhang Z, Liu S, Zhang B, Qiao L, Zhang Y, Zhang Y. 2020. T Cell Dysfunction and Exhaustion in
752 Cancer. *Front Cell Dev Biol* **8**: 17.

753 Zheng W, Wu J, Peng Y, Sun J, Cheng P, Huang Q. 2022. Tumor-associated neutrophils in colorectal
754 cancer development, progression and immunotherapy. *Cancers* **14**: 4755.

755 Zhu J, Thompson CB. 2019. Metabolic regulation of cell growth and proliferation. *Nat Rev Mol Cell
756 Biol* **20**: 436-450.

757 Zou Z, Cheng Q, Zhou J, Guo C, Hadjinicolaou AV, Salio M, Liang X, Yang C, Du Y, Yao W et al.
758 2024. ATF4-SLC7A11-GSH axis mediates the acquisition of immunosuppressive properties
759 by activated CD4(+) T cells in low arginine condition. *Cell Rep* **43**: 113995.

760 Zygułska AL, Pierzchalski P. 2022. Novel Diagnostic Biomarkers in Colorectal Cancer. *Int J Mol Sci
761* **23**.

762