

1 Comprehensive profiling of genomic invertons in
2 defined gut microbial community reveals associations
3 with intestinal colonization and surface adhesion

Xiaofan Jin¹, Alice G. Cheng², Rachael Chanin³, Feiqiao B. Yu⁴,
Alejandra Dimas⁵, Marissa Jasper⁵, Allison Weakley⁵, Jia Yan^{5,7},
Ami S. Bhatt^{3,6}, Katherine S. Pollard^{1,7,8*}

⁷ ¹Gladstone Institutes, San Francisco, USA.

⁸ ⁹ ²Department of Gastroenterology, Stanford School of Medicine, San
Stanford, USA.

¹⁰ ³Division of Hematology, Stanford School of Medicine, San Stanford, USA.

¹¹ ⁴Arc Institute, Palo Alto, USA.

¹² ⁵Sarafan ChEM-H Institute, Stanford University, Stanford, USA.

¹³ ⁶Department of Genetics, Stanford University, Stanford, USA.

¹⁴ ⁷Chan-Zuckerberg Biohub, San Francisco, USA.

¹⁵ ⁸University of California San Francisco, San Francisco, USA.

17

Abstract

18

Bacteria use invertible genetic elements known as invertons to generate heterogeneity amongst a population and adapt to new and changing environments. In human gut bacteria, invertons are often found near genes associated with cell surface modifications, suggesting key roles in modulating dynamic processes such as surface adhesion and intestinal colonization. However, comprehensive testing of this hypothesis across complex bacterial communities like the human gut microbiome remains challenging. Metagenomic sequencing holds promising for detecting inversions without isolation and culturing, but ambiguity in read alignment limits the accuracy of the resulting inverton predictions. Here, we developed a customized bioinformatic workflow – PhaseFinderDC – to identify and track invertons in metagenomic data. Applying this method to a defined yet complex gut community (hCom2) across different growth environments over time using both *in vitro* and *in vivo* metagenomic samples, we detected invertons in most hCom2 strains. These include invertons whose orientation probabilities change over time and are statistically associated with environmental conditions. We used motif enrichment to identify putative inverton promoters and predict genes regulated by inverton flipping during intestinal colonization and surface adhesion. Analysis of inverton-proximal genes also revealed candidate invertases that may regulate flipping of specific invertons. Collectively, these findings suggest that surface adhesion and intestinal colonization in complex gut communities directly modulate inverton dynamics, offering new insights into the genetic mechanisms underlying these processes.

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

Keywords: invertons, phase variation, gut microbiome, adhesion, colonization

40

Introduction

41

Bacteria in the human gut microbiome exist in complex communities with fluctuating dynamics [1–4] and spatial structure [5–7]. To successfully adapt to these environments, gut-associated strains harbor genomic inversions known as invertons that are capable of rapidly changing orientations and enable phase variation, i.e., phenotypic diversity across individual cells of the same strain [8–15]. At these invertons, invertase proteins bind specifically to inverted repeat (IR) regions in genomic DNA and mediate flipping of the intervening DNA sequence [16]. Previous work has analyzed closely related genomes and next generation sequencing datasets of microbial cultures to identify a large number of invertons in gut-associated microbes [14, 17], while computational approaches have yielded

42

43

44

45

46

47

48

49

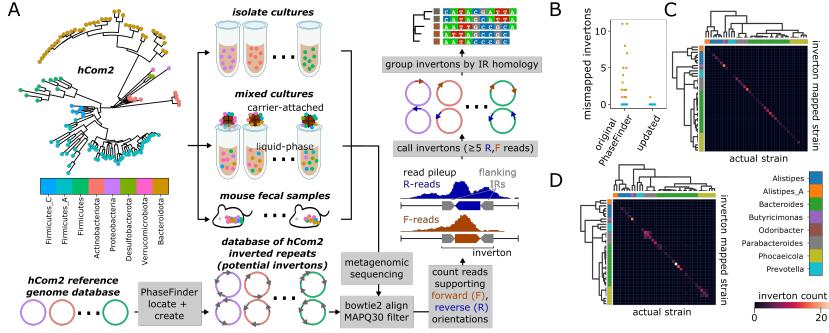
50 additional inverton predictions based on comparative genomics [18] and deep learning
51 [19]. These invertons affect microbial phenotypes in multiple ways, for instance intergenic
52 invertons could potentially regulate gene expression via inverton-embedded promoters,
53 while gene-intersecting invertons can lead to new protein isoforms [17]. Invertons often
54 regulate production of cell surface products such as exopolysaccharides, outer membrane
55 proteins, and fimbriae [8–11, 13, 14], which are known to be associated with processes
56 of gut colonization and surface adhesion [20–25]. However, the extent to which invertons
57 modulate colonization and adhesion across a complex gut community remains unclear, as
58 metagenomic approaches for comprehensive community-wide inverton profiling are lim-
59 ited by the general problem of sequence alignment ambiguity in communities with closely
60 related strains [26].

61 We addressed these challenges by developing a bioinformatic workflow –PhaseFinderDC
62 – to comprehensively profile invertons in defined communities of bacteria, based on the
63 original PhaseFinder algorithm[14]. We then implemented this workflow on metagenomic
64 samples of hCom2 – a defined yet complex community of bacterial strains modeled after
65 the human gut[27] – grown across multiple conditions. These included: (i) isolate cultures
66 of individual hCom2 strains [27, 28], (ii) fecal samples of gnotobiotic mice inoculated
67 with hCom2 recovered from mice colonized over a total of 5 generations, and (iii) mixed
68 cultures of hCom2 in various spatially structured in vitro environments [28] over a total of 6
69 passages. Our workflow successfully identified invertons in a majority of hCom2 strains and
70 all eight represented phyla. For each identified inverton in each sample, we compared the
71 proportion of sequencing reads supporting forward vs. reverse inverton orientations. Using
72 this approach, we identified a subset of “directionally biased” invertons whose forward vs.
73 reverse orientation probabilities are significantly different between growth conditions (e.g.,
74 isolate culture vs. *in vivo* mouse) and across timepoints (e.g., mouse generations or *in*
75 *vitro* passages).

76 Categorizing identified invertons into inverton groups based on homology of their respec-
77 tive IR sequences, we applied motif enrichment analysis to identify motifs of IR and
78 promoter sequences found in specific inverton groups. We identified gene families enriched
79 in consistent orientations near invertons, highlighting cases where inverton-embedded pro-
80 moters could potentially drive expression of “regulatable” downstream genes. We then
81 used orientation of directionally biased invertons with regulatable genes to predict how
82 surface adhesion and intestinal colonization dynamics are linked to expression of key bac-
83 terial genes, including surface-modifying genes such as those related to exopolysaccharide
84 (EPS) biosynthesis in *Bacteroides*. Finally, we also highlight cases where specific inver-
85 tase genes are enriched near specific inverton groups, potentially representing candidate
86 invertases responsible for controlling inverton flipping. Together, these bioinformatic anal-
87 yses provide a comprehensive community-wide characterization of inverton dynamics in a
88 complex gut community, and point to key biological functions that modulate – and are
89 modulated by – inverton-mediated phase variation.

90 **Results**

91 **PhaseFinderDC detects invertons in defined communities with** 92 **high sensitivity and specificity**


93 Using the original PhaseFinder algorithm [14] as a starting point, we developed PhaseFind-
94 erDC as a workflow to identify invertons in defined microbial communities for which
95 reference genomes are available, with the ability to specifically discern invertons when
96 closely related strains exist within the community. PhaseFinderDC was designed to take as
97 input a concatenated reference genome database consisting of all strain genomes, and gen-
98 erate an alignment index by scanning this database for inverted repeats and compiling both
99 forward and reverse orientation sequences for all inverted repeats (i.e., potential invertons),
100 as per the original PhaseFinder algorithm. However as a modification, PhaseFinderDC
101 also included sequences corresponding to genomic regions between inverted repeats so

102 that the final sequence index covered the entire concatenated genome database and not
103 merely the inverted repeat regions. The workflow then used bowtie2 to align short-read
104 sequencing data to this index and quantify for each potential inverton the number of reads
105 that align to the forward and reverse orientation references (Methods–Inverton detec-
106 tion using defined community sequencing data). Crucially, this comprehensive reference
107 database allowed filtering of alignments by mapping quality (MAPQ) score and elimina-
108 tion ambiguous reads, thus addressing cases where highly related strains were present in
109 the defined microbial community.

110 We implemented PhaseFinderDC on metagenomic samples derived from the hCom2
111 defined microbial community [27], which included several instances of closely related
112 strains (Methods–Inverton detection using defined community sequencing data). We used
113 a customized genome database generated by concatenating all hCom2 genomes (Supple-
114 mentary Table S1, Fig. 1A). To benchmark the specificity of our updated PhaseFinder
115 workflow, we used short-read sequencing data obtained from isolate cultures of each
116 hCom2 strain (Supplementary Table S2) and quantified the number of reads that align
117 to the forward and reverse orientation references for each potential inverton in hCom2.
118 We called invertons based on reads counts from these isolate cultures if support for for-
119 ward and reverse orientations had at least 5 reads each (Methods–Inverton detection using
120 defined community sequencing data). We quantified the proportion of invertons called
121 in the correct vs. incorrect strains, and found that our updated workflow produced 557
122 total calls, out of which 1 was mis-mapped (i.e., inverton called in a strain that was not
123 the strain the sequencing data came from). This represented an improved specificity and
124 sensitivity of inverton calls compared to the original PhaseFinder workflow which called
125 69 mismapped invertons out of 439 total calls with the same input read libraries and
126 reference metagenome database (Fig. 1B, Supplementary Table S3). This improvement
127 was especially dramatic amongst phylum Bacteroidota strains, wherein hCom2 has several
128 instances of closely related strains. Indeed, closer examination of this benchmarking that

129 examined invertons called in Bacteroidota confirmed that mismapped invertons tended
130 to occur between closely related strains (Fig. 1C,D), consistent with the known pitfall of
131 read-stealing between closely related strains in metagenomic read alignment [26]. Alto-
132 gether, these findings validated our updated workflow as a sensitive and specific approach
133 for detecting invertons in defined bacterial communities.

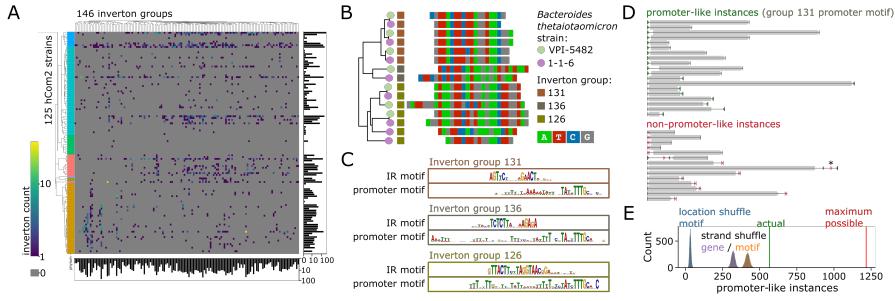
134 Combining mapped reads from (i) isolate cultures of individual hCom2 strains, (ii) fecal
135 samples of gnotobiotic mice inoculated with hCom2, and (iii) mixed in vitro cultures
136 of hCom2 (Supplementary Table S2 for sequencing metadata), we applied our updated
137 workflow – pooling forward and reverse orientation read counts across samples (Supple-
138 mentary Table S4) – and detected 1837 invertons (Methods–Inverton detection using
139 defined community sequencing data, Supplementary Table S5) across 99/125 strains in
140 all 8 phyla present in the hCom2 community (Fig. 2A, Supplementary Table S5). Inver-
141 ton counts per genome exhibited a wide range from *Mitsuokella multacida* DSM-20544
142 with 181 detected invertons, to 26 genomes without any detected invertons. For the 5
143 phyla in hCom2 with more than 2 representative strains, we found higher occurrences of
144 invertons in Bacteroidota with median 8.5 invertons per genome, Actinobacteriota with
145 median 14 invertons per genome, and Firmicutes_C (primarily Negativicutes-like) with
146 median 11 invertons per genome. Lower inverton counts were observed in Firmicutes_A
147 (primarily Clostridia-like) with median 3 invertons per genome), and Firmicutes (primarily
148 Bacillus-like) with median 0 invertons per genome. Comparing the genomic loci of iden-
149 tified invertons against those of predicted gene coding sequences (CDS), we found that
150 just over half the invertons – 952/1837 – intersect a CDS, while the rest were intergenic
151 (Supplementary Table S5). Invertons in Bacteroidota are primarily intergenic, while the
152 opposite is true for Firmicutes_C. Invertons in Actinobacteriota, Firmicutes_A and Ver-
153 rumicrobiota (with single representative strain *Akkermansia muciniphila*) ATCC-BAA-835
154 are roughly evenly split between intergenic and gene-intersecting (Supplementary Section
155 S1).

Fig. 1: Customized workflow reliably detects invertons in metagenomes from defined communities (A) Flowchart of customized workflow to detect and group invertons in hCom2 from metagenomic sequencing data. **(B)** Benchmarking of workflow specificity based on pure isolate cultures - mismapped invertons refers to invertons called in one strain when using another strain's sequencing library as input. **(C)** Heatmap of inverton counts among Bacteroides strains generated by updated PhaseFinder workflow, organized by actual strain (known based on isolate culture identity) and called inverton strain – off diagonal elements thus represent mismapped invertons. Strains are organized by phylogeny, margins correspond to genus. **(D)** Heatmap of inverton counts among Bacteroides strains generated by original PhaseFinder workflow, noting increase of off-diagonal (mismapped) calls between pairs of closely related strains.

156 **Sequence homology in invertible regions enables categorization
157 and motif enrichment analysis of detected invertons**

158 We categorized the 1837 identified invertons into separate inverton groups (Fig. 2A) using
159 homology of their respective IR sequences that flank each inverton. We performed a mul-
160 tiple sequence alignment (MSA) of all 1837 IR sequences, and used the resulting tree of
161 sequences to cluster invertons into groups based on branch length thresholding (Fig. 2B,
162 Supplementary Section S1, Methods–Inverton categorization using IR homology). The
163 optimal branch length threshold was determined using IR sequence motif discoverability
164 as a target metric (Supplementary Section S2, Methods–Inverton categorization using IR
165 homology). This resulted in a total of 146 inverton groups (Figure 2A), with IR motifs
166 identified for 114/146 inverton groups (Supplementary Table S6). Inverton groups ranged
167 in size from 2 to 72 invertons with a median of 9 invertons per group. 29 out of the 146
168 groups had at least 10 invertons from a single phylum, with the largest group (inverton

169 group 131) containing 68/72 invertons from Bacteroidota. Using max inverton count from
170 a single phylum as a metric, we found that the 5 top inverton groups were all dominated
171 by phylum Bacteroidota: after group 131, groups 126, 7, 136 and 143 contained 45/46,
172 42/46, 37/38, and 35/35 invertons respectively from Bacteroidota. We found that the IR
173 motifs from these five groups matched closely to 5 previously published IR motifs found
174 in Bacteroidota [14] (Supplementary Section S3). Furthermore, the IR motif for group
175 138 (which included 32/39 invertons from phylum Verrucomicrobiota, all from *Akkerman-*
176 *sia muciniphila* ATCC-BAA-835) closely resembled the previously published IR motif in
177 *Akkermansia muciniphila* [14]. This independent re-discovery of all 6 previously published
178 IR motifs from Jiang *et al.* validated our inverton detection and grouping approach.


179 We also report a number of inverton groups with previously unpublished motifs across dif-
180 ferent phyla. For instance, focusing on the 29 inverton groups with at least 10 invertons
181 from a single phylum, we found novel IR motifs in inverton groups 128, 137, 122, 48, and
182 68, which all comprised a majority of their invertons from phylum Bacteroidota, or inverton
183 groups 139 and 125 which both comprised a majority of invertons from phylum Firmi-
184 cutes_A (Supplementary Section S3). While many inverton groups appeared dominated
185 by a single phylum, this was not always the case - as a counter-example, we also observed
186 inverton group 145, which consisted of 20 invertons, 9 of which originated from phylum
187 Bacteroidota (across 5 strains) and 10 of which originated from phylum Firmicutes_A
188 (across 7 distinct strains). MSA of the 20 IR sequences in this group revealed a high
189 degree of conservation even across phyla, and moreover leaves on the IR sequence MSA
190 tree did not neatly cluster by phylum (i.e., IR sequences originating in Bacteroidota were
191 not necessarily more similar to each other than those originating in Firmicutes_A, Sup-
192 plementary Section S4). These findings suggest that group 145 invertons may potentially
193 have spread across phyla via horizontal gene transfer.

194 Beyond IR motifs, we next applied motif enrichment search using MEME on full inverton
195 sequences (as opposed to only their IR sequences) to identify motifs enriched in each inverton
196 group (Methods—Motif detection and promoter prediction in invertons). We discovered
197 a total of 266 motifs, spread across 126 inverton groups (Supplementary Table S7). Sev-
198 eral identified motifs highly resemble previously reported inverton-associated promoters,
199 consistent with the role of invertons turning gene expression on / off by changing promoter
200 orientation[14]. For instance, we found motifs highly similar to a previously described
201 Bacteroidota promoter motif [14, 29] independently enriched in 3 distinct Bacteroidota-
202 dominated inverton groups (motifs 126-2, 131-2, and 136-2, Fig. 2C, Supplementary
203 Section S3). Furthermore, we found that invertons in these three groups were differentially
204 distributed between different *Bacteroides* strains (Supplementary Table S5), including
205 closely related strains. As an example, we found that two strains of *Bacteroides thetaio-*
206 *taomicron* present in hCom2 – VPI-5482 and 1-1-6, ANI estimate 98.8% using fastANI
207 [30] – harbor 15 distinct invertons from groups 126, 131, and 136 (Fig. 2B).

208 An instance of a motif similar to the described Bacteroidota promoter [14, 29] was found
209 in 14/15 of these invertons (i.e., either motif 126-2, 131-2, or 136-2). Using motif 131-2
210 as an example, we confirmed that across all of hCom2, instances of this motif tended to
211 be found upstream of and on the same strand as their nearest gene (Fig. 2D), consistent
212 with expectations for a promoter. We observed 566 out of 1217 total motif instances to
213 exhibit this consistent upstream orientation, more than compared to random chance based
214 on 10000 random samples each of (i) shuffling motif loci – median 32/1217 with consis-
215 tent upstream orientation, (ii) permuting motif strand – median 417/1217 with consistent
216 upstream orientation, and (iii) permuting gene strand – median 321/1217 with consis-
217 tent upstream orientation (Fig. 2E). Meanwhile, we also discovered a motif enriched in
218 sequences from inverton group 138 (which consists primarily – 32 out of 39 – of invertons
219 from *Akkermansia*) that highly resembled the previously described *Akkermansia* promoter

²²⁰ motif[14], which also exhibited promoter-like enrichment , though with a lower degree of
²²¹ confidence (Supplementary Section S5).

²²² Beyond testing previously described promoter motifs, we also used random sampling boot-
²²³ strap to detect new putative promoters. We scanned enriched motifs across all hCom2
²²⁴ metagenomes (Supplementary Table S8), and identified motifs whose detected instances
²²⁵ were significantly enriched ($p<0.001$) on the same strand as and upstream of their near-
²²⁶ est gene, meaning observed instances $> 9990/10000$ random samples for all three random
²²⁷ sampling tests (shuffling motif loci, permuting motif strand, and permuting gene strand).
²²⁸ This approach generated a catalog of 8 inverton-associated putative promoter motifs,
²²⁹ which included both previously described promoter motifs as well as several previously
²³⁰ undescribed motifs (Supplementary Section S5). Note that based on the ($p<0.001$) cutoff
²³¹ used, the previously described Bacteroidota promoter motif was counted as a putative pro-
²³² moter motif (listed three times independently as motif 126-2, 131-2 and 136-2), but not
²³³ the previously described *Akkermansia* motif (motif 138-2) [14] (Supplementary Section
²³⁴ S5). In addition to putative promoters, we also found motifs enriched on the same strand
²³⁵ as and downstream of their nearby gene (Supplementary Section S5), which may be indica-
²³⁶ tive of sequence features associated with transcriptional termination or post-transcriptional
²³⁷ modification. Collectively, these findings demonstrated the utility of our community-wide
²³⁸ bioinformatic search as an approach for motif and promoter discovery.

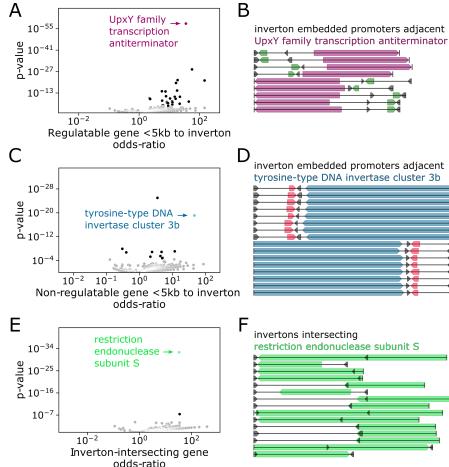
Fig. 2: Enriched motifs detected in specific inverton groups grouped by IR sequence homology **(A)** Log-heatmap of inverton counts by hCom2 strain and by inverton group. hCom2 strains organized by phylogeny, phylum colors as in Fig. 1A. **(B)** Example of tree-building / grouping of identified invertons, subset on a group of 15 invertons in 2 *Bacteroides thetaiotaomicron* strains that were classified into groups 126, 131 and 136. **(C)** Promoter and IR motifs detected as enriched in inverton groups 126, 131 and 136. Promoter motifs found in each of these groups highly resembled previously described *Bacteroides* promoter motif [14, 29]. **(D)** Instances of promoter-like motif from inverton group 131 (motif 131-2) found in *Bacteroides thetaiotaomicron* VPI-5482 genome tended to be oriented upstream of nearest gene (grey). Instances are colored in green if consistent with promoter-like orientation, red otherwise. Asterisk marks instance of inverton embedded promoter that if flipped would be consistent with promoter-like orientation. **(E)** Across all of hCom2, 566 / 1217 total instances of motif 131-2 are consistent with promoter-like orientation – more than would be expected by random chance, based on random shuffling of motif loci, permuting motif strand, or permuting gene strand (10000 random samples tested for each case).

239 **Genomic proximity links distinct inverton groups to specific**
 240 **gene families**

241 We next sought to identify gene families that are enriched in regions proximal to (within
 242 +/-5kb) or directly intersecting identified invertons. As promoters are known to often be
 243 embedded within invertons[14], we further split non-inverton-intersecting genes between
 244 'regulatable' genes which could be driven by a promoter in their associated inverton
 245 (i.e., 5'-end is proximal to inverton for the given gene and all genes between given gene
 246 and inverton), and 'non-regulatable' genes that are nevertheless proximal to invertons
 247 (Supplementary Table S9).

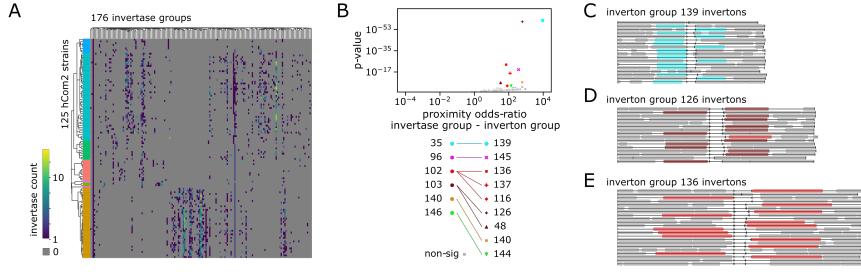
248 We uncovered numerous cases of inverton-group specific gene family enrichment for
249 both 'regulatable' and 'non-regulatable' genes, as well as genes that directly intersect
250 invertons (Supplementary Table S10). For instance, UpxY family transcription antiter-
251 minator was significantly enriched as regulatable genes (Fig. 3A,B) near invertons in
252 Bacteroidota-dominated groups 126, 144, 136 and 137, suggesting possible roles in reg-
253 ulation of exopolysaccharide biosynthesis [9]. Other enriched regulatable genes included
254 many previously described hits related to cell surface products such as TonB-dependent
255 receptor and RagB/SusD family nutrient uptake outer membrane protein (inverton group
256 131), fimbrillin family protein (inverton groups 137, 112, 122), and PEP-CTERM sorting
257 domain-containing protein (inverton group 138).

258 Meanwhile, enriched non-regulatable genes included several invertase families such as
259 tyrosine-type DNA invertase cluster 3b (Fig 3C,D), which was enriched in inverton group
260 126, as well as tyrosine-type recombinase/integrase (inverton groups 139, 145) and site-
261 specific integrase (inverton groups 136, 126, 137, 48, 116). The presence of cell surface
262 products and invertase genes near invertons aligned with previous reports of similar gene
263 enrichment in gut microbes[14]. Our own results further indicated that invertases near
264 invertons – which are often considered likely candidates for controlling inverton flipping [16]
265 – are generally non-regulatable and thus unlikely to themselves be regulated by inverton-
266 embedded promoters. A potential exception however was found in inverton group 145, with
267 tyrosine-type recombinase/integrase gene family found to be enriched in both regulatable
268 as well as non-regulatable orientations near group 145 invertons.


269 Finally we also observed instances of gene families enriched for direct intersection with
270 inverton sequences. For instance, invertons from group 145 were significantly enriched
271 with members of the restriction endonuclease subunit S gene family (Fig. 3E,F). This
272 observation aligns with previous reports of restriction enzymes with switchable specificity
273 where recombination and inversion at enzyme coding sequences leads to production of

274 different isoforms of enzyme protein with different specificities [31–34]. In addition to
275 enrichment of restriction endonuclease subunit S and tyrosine-type recombinase/integrase
276 gene families, inverton group 145 was also enriched for the relaxase/mobilization nuclease
277 domain-containing protein and plasmid mobilization relaxosome protein MobC gene fam-
278 ilies genes, lending further support to the the idea that this group of invertons may have
279 spread via HGT.

280 **Genomic proximity links distinct inverton groups to specific
281 invertases**


282 We next explored whether a bioinformatic approach could link identified inverton groups
283 to specific groups of invertase genes, based on the idea that such genes are often located
284 near the invertons they regulate [16]. Gene annotation detected 3932 invertase genes
285 amongst hCom2 genomes (Supplementary Table S11). We used multiple sequence align-
286 ment and clustering to group these invertase genes into 176 invertase groups based on
287 sequence homology (Fig. 4A, Methods – Genome annotation, invertase detection and cat-
288 egorization, Supplementary Section S6). For each of the 126 identified inverton groups,
289 we systematically checked for each of the 176 invertase groups whether the corresponding
290 invertases are enriched in the proximity of the corresponding invertons.

291 Counting an invertase gene as proximal if it intersects, or is within 5kb of the inverton,
292 we identified inverton group - invertase group pairs with significantly (Fisher's Exact
293 p<0.05 with Bonferroni correction) enriched proximal invertase counts (Supplementary
294 Table S12). This approach revealed 9 such pairs (Fig. 4B, Methods), representing a total
295 of 135 inverton-invertase examples from 52 different strains including members of both
296 Clostridia and Bacteroidia classes (Supplementary Table S11). The most significant link
297 between such pairs was between inverton group 139 – a group of 33 invertons (32 of which
298 are from class Clostridia) – and invertase group 35, a group of genes belonging to the
299 tyrosine-type recombinase/integrase family found in classes Clostridia and Bacteroidia (Fig

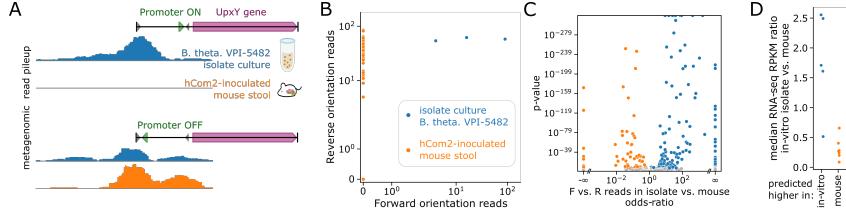
Fig. 3: Cell surface products and invertase genes are enriched with consistent orientation near specific inverton groups **(A)** Volcano plot of regulatable gene families enriched near invertons based on odds ratio of being observed within 5kb of an inverton, relative to rest of the hCom2 genomes. Grey points are non-significant based on Bonferroni p-value correction. **(B)** Genome diagram of all instances of UpX family transcription antiterminator genes near invertons containing previously described Bacteroides promoter motif [14, 29] – coding sequences annotated with this gene function (marked in purple) are consistently oriented in a way that can be regulated by promoter motif (marked in green) upon inverton flipping. Flanking inverton IR regions marked in black. **(C)** Volcano plot of non-regulatable gene families enriched near invertons based on odds ratio of being observed within 5kb of an inverton, relative to rest of the hCom2 genomes. Grey points are non-significant based on Bonferroni p-value correction. **(D)** Genome diagram of all instances of tyrosine-type DNA invertase cluster 3b genes near invertons containing previously described Bacteroides promoter motif [14, 29] – coding sequences annotated with this gene function (marked in blue) are consistently oriented in a way that cannot be regulated by promoter motif (marked in red) upon inverton flipping. Flanking inverton IR regions marked in black. **(E)** Volcano plot of gene families enriched for direct inverton intersection, based on odds ratio of being directly overlapping an inverton, relative to rest of the hCom2 genomes. Grey points are non-significant based on Bonferroni p-value correction. **(F)** Genome diagram of all instances of restriction endonuclease subunit S genes near invertons from group number 145. Coding sequences annotated with this gene function (in green) consistently overlap inverton loci. Flanking inverton IR regions marked in black.

300 4B,C). Meanwhile, among the Bacteroidota-dominated inverton groups, group 136, 137,
 301 and 116 had significant links to invertase group 102, while inverton groups 126 and 48 were
 302 instead linked to invertase group 103 (Fig 4B,D,E). By contrast, other large Bacteroides-
 303 dominated inverton groups such as 131 were not significantly linked to any invertase groups

Fig. 4: Specific invertase groups are enriched near specific inverton groups **(A)** Log-heatmap of invertase counts by hCom2 strain and by invertase group. hCom2 strains organized by phylogeny, phylum colors as in Fig. 1A. **(B)** Volcano plot of inverton-group to invertase-group pairs, based on odds ratio of invertase in given invertase group being observed within 5kb of an inverton in given inverton group. Grey points are non-significant based on Bonferroni p-value correction. Inverton and invertase groups are specified by marker color and shape respectively, with significant links specified in the legend. **(C)** Genome diagram of regions surrounding group 139 invertons, with invertase group 35 genes highlighted in blue – for simplification if multiple invertons of this group are found in the same genome, a single representative is plotted. Nearly all invertons in this group have a nearby group 35 invertase. **(D)** Genome diagram of regions surrounding group 126 invertons, with invertase group 103 genes highlighted in dark red – for simplification if multiple invertons of this group are found in the same genome, a single representative is plotted. **(E)** Genome diagram of regions surrounding group 136 invertons, with invertase group 102 genes highlighted in light red – for simplification if multiple invertons of this group are found in the same genome, a single representative is plotted.

304 (Fig. 4B, Supplementary Section S7). These associations between inverton and invertase
305 groups indicates potential co-evolution of invertase and IR sequences, with instances of
306 multiple inverton groups linked to a single invertase group potentially further suggesting
307 some degree of flexibility in the ability of invertase proteins to control flipping across
308 inverton recognition IR sites.

309 **Differential analysis between metagenomic sample types**
310 **indicates inverton-modulated gene expression changes**
311 **associated with surface adhesion and gut colonization**


312 To investigate how processes of bacterial surface adhesion and gut colonization are linked
313 to inverton orientations at a community-wide level, we compared inverton orientation

314 probabilities between different sample types (Supplementary Table S4). We first identi-
315 fied associations with gut colonization by searching for invertons where our bioinformatic
316 workflow yields a different proportion of sequencing reads supporting the forward and
317 reverse orientations between (i) samples from isolate cultures of individual hCom2 strains
318 and (ii) fecal samples of gnotobiotic mice inoculated with hCom2 (Fig 5A,B), recovered
319 from mice colonized over a total of 5 generations. As an example, we found an inverton
320 in inverton group 126 – B-th-VPI-5482_0:4315126-4315146-4315394-4315414 – which
321 had read support for both forward and reverse orientations in *Bacteroides thetaiotaomi-*
322 *cron* VPI-5482 isolate culture, but only support for the reverse orientation in mouse-stool
323 sequencing samples (Fig. 5A), a trend that was consistent across 69 mouse stool samples
324 and 3 isolate cultures (Fig. 5B). All told we identified 224 directionally biased invertons
325 (across 53 strains) whose forward and reverse read proportions were significantly (Fisher's
326 Exact $p < 0.05$ with Bonferroni correction) different between pooled isolate culture and
327 pooled mouse gut fecal samples (Fig. 5A, Methods, Supplementary Table S13). Applying
328 the same approach we next identified associations specifically with surface adhesion by
329 comparing (iii-a) mixed in vitro cultures of hCom2 as a surface attached community using
330 mucin-agar carriers as a synthetic surface, and (iii-b) corresponding mucin-agar carrier
331 cultures of hCom2, instead sampled from the liquid-phase. This yielded 38 directionally
332 biased invertons (across 16 strains) whose orientation probabilities were significantly differ-
333 ent between mucin-agar surface-attached and liquid-phase samples (Supplementary Table
334 S13).

335 Cross-referencing these directionally biased invertons against (1) our catalog inverton-
336 embedded putative promoters (Supplementary Section S5, Supplementary Table S8) and
337 (2) locations and orientations of regulatable gene CDSs adjacent to these invertons (Sup-
338 plementary Table S9), we generated lists of genes whose expression we predicted to be
339 modulated either up or down by inverton-flipping during either gut colonization (comparing
340 isolate culture vs. mouse stool samples) and surface adhesion (comparing carrier-attached

341 vs. supernatant mixed culture samples) (Methods Gene expression prediction, Supplemen-
342 tary Table S14). We found a number of significant (Fisher's Exact $p < 0.05$ with Bonferroni
343 correction) gene families related to cell surface products (Supplementary Table S15).
344 Some, such as the SLBB domain-containing protein and SH3 beta-barrel fold-containing
345 protein families appeared to be consistently up-regulated in mouse stool compared to
346 isolate culture (Supplementary Table S15), suggesting higher expression during gut colo-
347 nization. Meanwhile, other gene families such as UpxY family transcription antiterminator
348 and polysaccharide biosynthesis/export family protein – both of which are linked to EPS
349 production in Bacteroidota [9] – appeared to be enriched for both down- as well as up-
350 regulation (Supplementary Table S15) during gut colonization (i.e., more of these genes
351 are up-regulated than would be expected by random chance, and also more of these genes
352 are down-regulated than would be expected by random chance), consistent with the notion
353 that cells may be actively remodeling their surface EPS content by turning off produc-
354 tion of certain types in favor of others [9]. Comparing carrier-attached vs. supernatant
355 cultures, we found the FimB/Mfa2 family fimbrial subunit gene family was consistently
356 up-regulated on carrier attached cultures (Supplementary Table S15), consistent with the
357 known role of these genes in adhesion and biofilm formation [35].

358 Next, we sought to use publicly available transcriptomic data to validate some of the
359 differential gene expression predictions we made based on directional enrichment of
360 promoter-embedded invertons. We leveraged a recently published RNA-seq dataset of
361 *Bacteroides thetaiotaomicron* VPI-5482 [36], with read libraries derived from both in vitro
362 culture as well as mouse samples (Table S16). Based on our analysis, we computationally
363 predicted a total of 12 differentially expressed genes in *Bacteroides thetaiotaomicron* VPI-
364 5482 when comparing between isolate in vitro culture and growth in mouse, 5 of which we
365 predict to be upregulated in vitro and 7 of which we predict to be upregulated in mouse. To
366 validate these predictions, we calculate the Median RNA-seq Reads Per Kilobase per Mil-
367 lion mapped reads (RPKM) for these 12 genes in both mouse and in vitro RNA-seq data

Fig. 5: Inverton orientation is modulated by gut colonization and drives differential gene expression **(A)** Example of inverton in *Bacteroides thetaiotaomicron* VPI-5482 from inverton group 126 (B-th-VPI-5482_0:4315126-4315146-4315394-4315414) with different forward and reverse read counts depending on growth condition. While roughly equal forward and reverse read support is observed when cultured in vitro, mouse stool derived samples only show reverse orientation read support. **(B)** Forward vs. reverse read count scatterplot of inverton in (A), demonstrating that reverse orientation enrichment is observed consistently across all mouse samples. **(C)** Volcano plot of invertons with directional preference, based on odds ratio of forward vs. reverse reads count for in vitro isolate vs. mouse samples. **(D)** Median RPKM in-vitro vs. mouse ratios for 12 *Bacteroides thetaiotaomicron* VPI-5482 genes predicted to be differentially expressed between in vitro isolate vs. mouse samples based on inverton orientation. Values greater than 1 correspond to in vitro upregulation relative to mouse. Blue and orange dots represent genes predicted to be upregulated in vitro and in mouse respectively.

368 (Table S17). These calculations reveal that the median RPKM in-vitro vs. mouse ratios
 369 are significantly higher ($p=0.0047$, two-sided Mann-Whitney U test) in genes we predicted
 370 as in-vitro upregulated than in genes we predicted as mouse upregulated (Fig. 5D), pro-
 371 viding preliminary validation for our approach. Collectively, these findings confirmed that
 372 surface adhesion and intestinal colonization in complex gut communities directly modu-
 373 late inverton flipping, and predicted how the expression of key genes are modulated in this
 374 process.

375 Longitudinal analysis across *in vivo* and *in vitro* timepoints

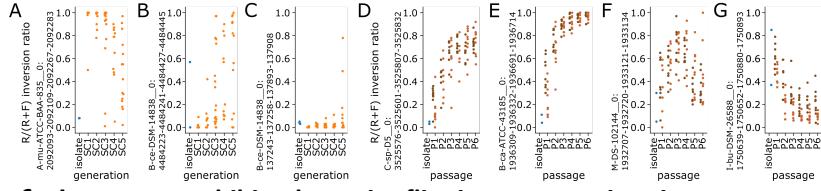
376 In addition to performing differential analysis between different metagenomic sample types
 377 (e.g., isolate culture vs. mouse stool), we also analyzed longitudinal samples across time-
 378 points to better understand inverton dynamics both *in vivo* and *in vitro*. For *in vivo*
 379 analysis, we compared samples across mouse generations, and searched for invertons

380 whose forward-vs.-reverse orientations exhibited significant (Fisher's Exact $p < 0.05$ with
381 Bonferroni correction) differences between early and late generation mice (Methods – Lon-
382 gitudinal analysis of inverton orientation across timepoints). We additionally calculate at
383 each timepoint the F.-vs.-R. inversion ratio – defined as reverse over total read counts
384 ($R/(R+F)$).

385 Using this approach, we identified a total of 123 invertons (Table S18) across 34 strains
386 that exhibited time-dependent behavior, such as an inverton in *Akkermansia muciniphila*
387 ATCC-BAA-835 from inverton group 138 located near two autotransporter domain con-
388 taining proteins (A-mu-ATCC-BAA-835_0:2092093-2092109-2092267-2092283). The
389 F.-vs.-R. inversion ratio for this inverton trended from nearly universal reverse orientation
390 in first generation (SC1) mice to majority forward orientation by fifth generation (SC5)
391 mice (Fig., 6A, Supplementary Section S8). Curiously, we also found this type of trend in
392 some – but not all – other group 138 invertons from *Akkermansia muciniphila* (Supple-
393 mentary Section S9), suggesting the existence of additional layers of regulatory control in
394 determining inverton flipping dynamics beyond simple IR sequence recognition.

395 Our analysis also revealed a wide range of timescales of inverton dynamics, sometimes
396 even within a single bacterial strain. For instance, within *Bacteroides cellulosilyticus* DSM-
397 14838, we observed two distinct invertons – B-ce-DSM-14838_0:4484223-4484241-
398 4484427-4484445 from inverton group 143 and B-ce-DSM-14838_0:137243-137258-
399 137893-137908 from inverton group 131 – that both started from nearly complete forward
400 orientation in SC1 mice and trended toward increasing reverse orientation but with the
401 former doing so at a markedly more rapid rate (Fig. 6B,C). The presence of nutrient
402 uptake genes near the former and exopolysaccharide biosynthesis genes near the latter sug-
403 gested these two invertons may be responsible for regulating different biological functions
404 (Supplementary Section S8).

405 Applying this early-vs.-late enrichment approach with mixed *in vitro* cultures, we also
406 identified invertons whose forward-vs.-reverse orientations were associated with changes
407 across passage timepoints (Table S18), such as an inverton in *Clostridium* sp. D5 from
408 inverton group 139 (C-sp-D5_0:3525576-3525601-3525807-3525832) which exhibits a
409 dynamic shift from mostly forward orientation in passage 1 cultures (P1) toward reverse
410 orientation in later passages (Fig. 6D). As with mouse generational data, we also observed
411 a range of timescales, with an inverton in *Bacteroides caccae* ATCC-43185 from inverton
412 group 131 (B-ca-ATCC-43185_0:1936309-1936332-1936691-1936714) exhibiting partic-
413 ularly a rapid shift from mostly forward orientation in passage 1 cultures (P1) toward
414 nearly complete reverse orientation by P4/P5 (Fig. 6E). Note additionally that timescales
415 involved in *in vitro* cultures are inherently much shorter than mouse generational data
416 as culture passage intervals are 3 days apart, compared with months between mouse
417 generations.


418 We also observed invertons with dynamics that do not appear to converge toward
419 fully reverse nor fully forward orientation, such as one in *Megasphaera* DSMZ-102144
420 from inverton group 51 (M-DS-102144_0:1932707-1932720-1933121-1933134) which
421 exhibits an early shift toward reverse orientation, before stabilizing at a roughly equal mix of
422 reverse and forward orientation reads at later passages (Fig. 6F). Finally, we also observed
423 invertons whose *in vitro* dynamics appeared to be dependent on surface adhesion, such as
424 inverton in *Intestinimonas butyriciproducens* DSM-26588 from inverton group 139 (I-bu-
425 DSM-26588_0:1750639-1750652-1750880-1750893) which exhibited increasing forward
426 orientation overall, but with consistently higher reverse orientation in surface-attached
427 mucin-agar carrier cultures than corresponding supernatant cultures (Fig. 6G). Carrier-vs.-
428 supernatant dependent dynamics were also observed in a collection of 19 invertons (across
429 13 different inverton groups) all from the same strain of *Clostridium* sp. D5 that consis-
430 tently exhibited modest levels of reverse orientation reads in carrier cultures, with virtually
431 no reverse orientation reads in supernatant cultures (Supplementary Section S10). These

432 findings that invertons from different inverton groups (i.e., with disparate IR sequences)
433 can exhibit highly similar trends between surface-attached vs. supernatant cultures over
434 time, while those with highly similar IR sequences can exhibit disparate trends across
435 mouse generations (Supplementary Section S9) – reinforce the idea that invertons pro-
436 duce a wide range of dynamic behaviors during surface adhesion and gut colonization, and
437 that these dynamics are likely mediated by additional layers of regulatory control beyond
438 IR sequence recognition alone.

439 **Methods**

440 **hCom2 mouse generational experiment and metagenomic
441 sequencing**

442 Three male-female pairs of germ free mice were colonized with hCom2 and bred for
443 three generations. Male and female pups were weaned at age 4 weeks and housed in
444 separate cages. For each generation three male-female pairs were co-housed and bred to
445 generate the next generation. Extra pups that were not used for breeding were housed
446 in separate cages by gender. Pups from the Parental generation were labeled as SC1, F1
447 generation labeled as SC2, F2 generation SC3, and F3 generation as SC4. At the beginning
448 of each month, fecal sampling was performed and the stool was sequenced. Metagenomic
449 sequencing was performed as previously described [27]: genomic DNA was extracted from
450 pellets using the DNeasy PowerSoil HTP kit (Qiagen) and quantified in 384-well format
451 using the Quant-iT PicoGreen dsDNA Assay Kit (Thermofisher). Sequencing libraries were
452 generated in 384-well format using a custom low-volume protocol based on the Nextera XT
453 process (Illumina). The concentration of DNA from each sample was normalized to 0.18
454 ng/µL using a Mantis liquid handler (Formulatrix). If the concentration was <0.18 ng/µL,
455 the sample was not diluted further. Tagmentation, neutralization, and PCR steps of the
456 Nextera XT process were performed on a Mosquito HTS liquid handler (TTP Labtech),
457 leading to a final volume of 4 µL per library. During PCR amplification, custom 12-bp

Fig. 6: Invertons exhibit dynamic flipping across *in vivo* mouse generations and *in vitro* culture passages **(A)** Example of inverton in *Akkermansia muciniphila* ATCC-BAA-835 from inverton group 138 (A-mu-ATCC-BAA-835_0:2092093-2092109-2092267-2092283) whose inversion ratio ($R/(R+F)$, so higher scores correspond to more reverse orientation reads) exhibits a dynamic trend across mouse generations, from nearly universal reverse orientation in first generation (SC1) mice, but shifts toward forward orientation in later generations. **(B)** Example of inverton in *Bacteroides cellulosilyticus* DSM-14838 from inverton group 143 (B-ce-DSM-14838_0:4484223-4484241-4484427-4484445) whose inversion ratio shifts from nearly universal forward orientation in first generation (SC1) mice toward reverse orientation in later generations. **(C)** Example of inverton in *Bacteroides cellulosilyticus* DSM-14838 from inverton group 131 (B-ce-DSM-14838_0:137243-137258-137893-137908) whose inversion ratio shifts from nearly universal forward orientation in first generation (SC1) mice toward reverse orientation in later generations, with a markedly slower trend than (B). **(D)** Example of inverton in *Clostridium* sp. D5 from inverton group 139 (C-sp-D5_0:3525576-3525601-3525807-3525832) whose inversion ratio shifts from mostly forward orientation in passage 1 cultures (P1) toward reverse orientation in later passages. **(E)** Example of inverton in *Bacteroides caccae* ATCC-43185 from inverton group 131 (B-ca-ATCC-43185_0:1936309-1936332-1936691-1936714) whose inversion ratio shifts rapidly from mostly forward orientation in passage 1 cultures (P1) toward nearly complete reverse orientation by P4/P5. **(F)** Example of inverton in *Megasphaera* DSMZ-102144 from inverton group 51 (M-DS-102144_0:1932707-1932720-1933121-1933134) whose inversion ratio shifts from mostly forward orientation in passage 1 cultures (P1) toward reverse orientation, before stabilizing at a roughly equal mix of reverse and forward orientation reads. **(G)** Example of inverton in *Intestinimonas butyriciproducens* DSM-26588 from inverton group 139 (I-bu-DSM-26588_0:1750639-1750652-1750880-1750893) whose inversion ratio shifts from mostly reverse orientation in passage 1 cultures (P1) toward forward orientation in later passages, with consistently higher inversion ratios in mucin-agar carrier cultures (dark brown) than corresponding supernatant cultures (light brown).

458 dual unique indices were introduced to eliminate barcode switching, a phenomenon that
 459 occurs on Illumina sequencing platforms with patterned flow cells. Libraries were pooled
 460 at the desired relative molar ratios and cleaned up using Ampure XP beads (Beckman)
 461 to achieve buffer removal and library size selection. The cleanup process was used to
 462 remove fragments <300 bp or >1.5 kbp. Final library pools were quality-checked for size
 463 distribution and concentration using a Fragment Analyzer (Agilent) and qPCR (BioRad).

464 Sequencing reads were generated using a NovaSeq S4 flow cell or a NextSeq High Output
465 kit, in 2x150 bp configuration. 5-10 million paired-end reads were targeted for isolates and
466 20-30 million paired-end reads for communities.

467 Inverton detection using defined community sequencing data

468 We developed a modified Phasefinder [14] workflow – PhaseFinderDC – to detect inver-
469 tons from metagenomic read libraries derived from mixtures of hCom2 strains. A custom
470 hCom2 reference database was generated by concatenating microbial genome sequences
471 for all 125 strains in hCom2. As in the original Phasefinder workflow, EMBOSS einverted
472 was then used to locate inverted repeat sequences and thus generate a list of potential
473 invertons. Based on this list, we then created an augmented genomic reference containing
474 both forward and reverse orientation sequences for each potential inverton. This aug-
475 mented reference then served as the database against which metagenomic sequencing
476 reads are aligned. Here we made a modification to the original Phasefinder workflow for
477 PhaseFinderDC to include all genomic sequences located between potential invertons –
478 in addition to forward / reverse sequences of potential invertons – to aid in filtering of
479 ambiguously aligned reads (discussed further below).

480 Metagenomic read libraries derived from mouse stool samples were pre-processed using
481 Biobakery kneaddata [37] to remove mouse DNA reads – this was skipped for samples
482 derived from pure single-strain and mixed community in vitro cultures. Metagenomic read
483 alignment of read libraries from was then carried out using bowtie2 instead of bowtie (as
484 per original Phasefinder), given that the majority of sequencing reads used in our analyses
485 exceeded 100bp in length. Using mapping quality (MAPQ) scores reported by bowtie2,
486 PhaseFinderDC filtered out ambiguously aligned reads by removing any alignments with
487 scores below 30. For each potential inverton, counts of read alignments unambiguously
488 supporting forward and reverse orientations based on paired-end orientation (Pe_F, Pe_R)
489 and based on directly spanning inversion junction (Span_F, Span_R) were enumerated

490 as per the original Phasefinder workflow for each sample. For each potential inverton,
491 read counts were pooled across isolate culture samples from the given strain, as well
492 as all hCom2 mouse and in vitro mixed culture samples. We called invertons if forward
493 and reverse orientations are supported by at least 5 read alignments each after pool-
494 ing, based on both paired-end orientation as well as direct span (i.e., required pooled
495 $Pe_F \geq 5, Pe_R \geq 5, Span_F \geq 5, Span_R \geq 5$). This threshold is similar
496 to that suggested by the original PhaseFinder publication [14] which used $Pe_F \geq$
497 $5, Pe_R \geq 5, Span_F \geq 3, Span_R \geq 3$. The original publication also used a
498 $R/(R+F) > 0.01$ cutoff, which we omitted here to enable capturing of rarely flipped invert-
499 tons, compensating instead with a slightly more stringent $Span_F \geq 5, Span_R \geq 5$
500 cutoff. Downstream analysis such as calculation of inversion ratios for each called inverton
501 for each sample used Pe_F, Pe_R counts.

502 Inverton categorization using IR homology

503 IR sequences for all 1832 called invertons were used to generate a multiple sequence
504 alignment using Clustal-omega [38]. Based on this MSA, we used TreeCluster [39] to clus-
505 ter invertons into distinct groups based on IR sequence homology. We tested a range of
506 tree-distance thresholds ($T=0.01$ to 0.99 in increments of 0.01) for generating separate
507 groups, with smaller thresholds generating more (smaller, more closely related) groups
508 of invertons. We then used MEME [40] on IR sequence groups to search for enriched
509 sequence motifs applying `-mod zoops -nmotifs 1000 -minw 6 -maxw 100 -objfun`
510 `classic -revcomp -markov_order 0 -evt 0.05` parameters, counting the total num-
511 ber of groups with a detected motif for each tested tree-distance threshold. We then
512 selected a tree-distance cutoff of $T=0.60$ as it maximized the number of groups for which
513 a motif was detected, generating a total of 146 groups of invertons out of which 114
514 MEME was able to detect an enriched sequence motif in the IR sequences (Supplementary
515 Section S2).

516 Motif detection and promoter prediction in invertons

517 For each of the 146 identified groups of invertons, we used MEME to identify
518 motifs enriched within inverton sequences applying `-mod anr -nmotifs 1000 -minw 6`
519 `-maxw 100 -objfun classic -revcomp -markov_order 0 -evt 0.05` parameters,
520 now using the full inverton sequences, as opposed to only the IR sequences. Significantly
521 enriched motifs were then scanned using fimo across all hCom2 genomes, applying a 10^{-8}
522 p-value cutoff to account for the large sequence database size ($4.67 \cdot 10^8$ bp total). For each
523 motif instance detected by fimo, we used bedtools closest [41] to identify location and ori-
524 entation of the closest associated coding sequence. For each motif, we then counted the
525 number of fimo-detected instances that were consistent with those of a promoter, that
526 is to say upstream of its nearest gene, on the same strand. We compared this number
527 against (i) 10000 random samples where the locations of motif instances were shuffled
528 using bedtools shuffle [41], (ii) 10000 random samples where the strand orientations of
529 motif instances were permuted, and (iii) 10000 random samples where the strand orienta-
530 tions of hCom2 genes were permuted. Motifs whose actual count of promoter-consistent
531 instances exceeded 9990/10000 ($>99.9\%$ ile) of all three random samples were identified
532 as putative promoter motifs. Note that as we did not know *a priori* whether the motif
533 or its reverse complement represented a putative promoter element, we performed these
534 tests for all identified motifs and their reverse complements, reporting the version oriented
535 on the same strand as the nearest gene.

536 Gene annotation and enrichment analysis near invertons

537 All hCom2 genomes were annotated using NCBI PGAP pipeline [42] version 2023-05-
538 17.build6771. We identified enrichment of specific annotations near invertons by counting
539 for each annotation the number of instances (i) gene with given annotation is located
540 within ± 5 kb window of any detected inverton, (ii) gene with different annotation is
541 located within ± 5 kb window of any detected inverton, (iii) gene with given annotation

542 is not located within +/-5kb window of any detected inverton, and (iv) gene with differ-
543 ent annotation is not located within +/-5kb window of any detected inverton. For each
544 gene annotation, we compiled these four counts into a 2x2 contingency table, and identi-
545 fied annotations significantly (Fisher's Exact $p < 0.05$ with Bonferroni correction) enriched
546 near invertons. We repeated this analysis independently for each inverton group. We also
547 repeated this analysis by subsetting genes within the +/-5kb window to cases of (a) non-
548 inverton-intersecting genes that were oriented with their 5' end proximal to the inverton
549 and were either adjacent to the inverton or all intervening genes were also oriented with
550 their 5' end proximal to the inverton such that a promoter in the inverton could poten-
551 tially drive expression of said genes – i.e., regulatable, (b) non-inverton-intersecting genes
552 that did not meet the criteria in (a), i.e., non-regulatable, and (c) genes that intersected
553 a detected inverton.

554 **Invertase detection, categorization, and detection of links to
555 inverton groups**

556 Using PGAP annotations, we focused on extracting all coding sequences whose anno-
557 tations contained mention of 'invertase', 'integrase', and 'recombinase'. Treating these
558 collectively as potential invertase genes, we used Clustal-omega [38] to perform a multi-
559 ple sequence alignment on the translated amino acid sequences. We used TreeCluster to
560 cluster invertases into distinct groups based on protein homology, using a tree-distance
561 cutoff of 0.8 (Supplementary Section S6) to yield 176 invertase groups. For each inver-
562 tase group, we counted for each of the 126 inverton groups the number of instances (i)
563 an invertase in the invertase group is located within +/-5kb of an inverton in the inver-
564 ton group, (ii) an invertase in another invertase group is located within +/-5kb of an
565 inverton in the inverton group, (iii) an invertase in the invertase group is located within
566 +/-5kb of an inverton in another inverton group, and (iv) an invertase in another inver-
567 tase group is located within +/-5kb of an inverton in another inverton group. For each

568 invertase-group / inverton-group pair, we compiled these four counts into a 2x2 contin-
569 gency table, and identified significantly (Fisher's Exact $p < 0.05$ with Bonferroni correction)
570 linked invertase-group / inverton-group pairs.

571 **Differential analysis of inverton orientation between different**
572 **microbial growth conditions**

573 To identify invertons whose orientation significantly differed between different microbial
574 growth conditions A-vs.-B, we compared counts of forward and reverse supporting reads
575 (Pe_F, Pe_R) pooled across all samples from condition A versus condition B. For each
576 inverton we compiled the four resulting counts (forward reads pooled across condition A,
577 reverse reads pooled across condition A, forward reads pooled across condition B, and
578 reverse reads pooled across condition B) into a 2x2 contingency table, and applied a Fisher-
579 exact test to identify invertons whose forward-vs.-reverse counts significantly ($p < 0.05$)
580 linked to microbial growth condition, with Bonferroni correction to account for multiple
581 hypothesis testing. We focused on two such A-vs.-B comparisons: (i) samples from pure
582 strain isolate cultures vs. mouse stool samples to explore effect of community colonization
583 in vivo, and (ii) samples from in vitro mucin-carrier vs. supernatant cultures.

584 **Differential gene expression predictions and validation in**
585 ***Bacteroides thetaiotaomicron***

586 We predicted genes to be differentially expressed if they were located downstream of an
587 inverton with a putative promoter motif, and the orientation of the associated inverton
588 was also identified as linked to microbial growth conditions. We validated the 12 total such
589 genes that were predicted to be differentially expressed between mouse stool and pure
590 isolate culture in the *Bacteroides thetaiotaomicron* genome by analyzing published RNA-
591 seq dataset from *Bacteroides thetaiotaomicron* that included both pure isolate culture as
592 well as mouse stool samples [36]. We first used hocort [43] to remove mouse transcriptome

593 derived reads from RNA-seq read libraries, then aligned to hCom2 coding sequences using
594 bowtie2 [44]. Read counts were normalized using conditional quantile normalization with
595 the cqn R package [45] to obtain estimates of reads per kilobase per million mapped
596 reads (RPKM). We then calculate ratios of median RPKM between RNA-seq samples
597 from pure isolate culture versus mouse stool samples to validate predicted differential
598 expression.

599 Longitudinal analysis of inverton orientation across timepoints

600 To identify invertons whose orientation significantly differed between early vs. late gen-
601 eration mouse samples, we compared counts of forward and reverse supporting reads
602 (Pe_F, Pe_R) pooled across all samples from mouse generation 1 [SC1] versus mouse
603 generations 2-5 [SC2,SC3,SC4,SC5]. For each inverton we compiled the four resulting
604 counts (forward reads pooled across generation 1 mice, reverse reads pooled across SC1
605 mice, forward reads pooled across [SC2,SC3,SC4,SC5] mice, and reverse reads pooled
606 across [SC2,SC3,SC4,SC5] mice) into a 2x2 contingency table, and applied a Fisher-
607 exact test to identify invertons whose forward-vs.-reverse counts significantly ($p<0.05$)
608 linked to microbial growth condition, with Bonferroni correction to account for mul-
609 tiple hypothesis testing. We then repeated this analysis with all four possible cutoffs
610 for early vs. late generation ([SC1,SC2]-vs.-[SC3,SC4,SC5], [SC1,SC2,SC3]-vs.-[SC4,SC5],
611 and [SC1,SC2,SC3,SC4]-vs.-[SC5]). Invertons were identified as having significant asso-
612 ciation with mouse generation timepoint if any of these tests passed the $p<0.05$ (with
613 Bonferroni correction) threshold. This same approach was used to identify invertons whose
614 orientation significantly differed between early vs. late passage *in vitro* mixed culture
615 samples (testing ([P1]-vs.-[P2,P3,P4,P5,P6], [P1,P2]-vs.-[P3,P4,P5,P6], [P1,P2,P3]-vs.-
616 [P4,P5,P6], [P1,P2,P3,P4]-vs.-[P5,P6], and [P1,P2,P3,P4,P5]-vs.-[P6]), independently
617 analyzing mucin-carrier-attached and supernatant sample types.

618 Data visualization

619 Custom python and R scripts were developed for data visualization, using the following
620 packages: scipy [46], pandas [47], numpy [48], seaborn [49], python [50], jupyter note-
621 book [51], statsmodels [52], biopython [53], matplotlib [54], R [55], ggtree [56], treeio
622 [57], ggnewscale [58], phytools [59], tidyR [60], dplyr [61], stringr [62], ggplot2 [63], ape
623 [64].

624 Discussion

625 Here we presented a community-wide analysis of invertons in the defined gut microbial
626 community hCom2, providing a customized workflow for detecting invertons in defined
627 microbial communities based on the previously published PhaseFinder algorithm which
628 we used to generate a comprehensive catalog of inverton locations across hCom2. Using
629 the sequence homology found in the IR regions of these detected invertons, we catego-
630 rized discovered invertons into groups, and used these groups to identify enriched motifs.
631 This uncovered a number of promoter-like motifs – including some which were previously
632 undescribed – whose instances were consistently found upstream of their nearest gene.
633 Analyzing the proximity of invertons to nearby genes, we also revealed links between spe-
634 cific groups of invertons and specific groups of invertases, suggesting a potential regulatory
635 link.

636 By analyzing large scale metagenomic sequencing of a defined community across multiple
637 sample types, including isolate cultures vs. mouse fecal samples as well as surface-attached
638 vs. liquid phase cultures, we were able to observe differences in inverton orientation prob-
639 abilities associated with gut colonization and surface adhesion. By detecting directionally
640 biased invertons in more than a third (53/125) of all strains in hCom2, we directly
641 confirmed the hypothesis that colonization and adhesion are associated with inverton
642 dynamics. A key advantage of performing this analysis in hCom2 was the availability of

643 high quality genomes and genome annotations, which enabled us to leverage the discov-
644 ery of directionally biased invertons into bioinformatic predictions of not only the identity
645 of specific modulated genes, but also the direction of predicted modulation – for instance
646 we predicted that colonization / adhesion are associated with a remodeling of EPS moi-
647 eties in *Bacteroides*, aligning with previous work [9]. Beyond different sample types, we
648 also identified invertons whose orientations exhibited changes over timepoints both *in*
649 *vivo* (across mouse generations) and *invitro* (across culture passages). Our findings sug-
650 gest active inverton dynamics across a range of timescales during surface adhesion and
651 gut colonization, mediated by additional layers of regulatory control beyond IR sequence
652 recognition alone.

653 We conclude by noting several limitations to our work and point to areas for further explo-
654 ration. As our analyses are computational in nature, our predicted inverton-associated gene
655 modulations, as well as links between invertase and invertons are only statistical associ-
656 ations. Mechanistic validation of these predictions will require future experimental work,
657 for instance synthetic manipulations such as phase-locked inverton constructs to measure
658 bacterial phenotypes when a particular inverton is locked in a forward or reverse orien-
659 tation. These synthetic approaches can be combined with more sophisticated readouts
660 such as metatranscriptomics on mixed bacterial communities to validate whether puta-
661 tive promoter motifs identified here indeed drive gene expression as we predict, expanding
662 on the limited example we tested with *Bacteroides thetaiotaomicron* VPI-5482. Beyond
663 promoters, future work should follow-up on additional motifs identified as enriched down-
664 stream of CDSs, to investigate whether they play any regulatory roles, for instance as
665 transcriptional terminators. Additional experimental manipulations can also be used to
666 target knockout or over-expression of predicted invertases, to test whether they indeed
667 regulate inverton flipping of their predicted targets. Furthermore, the current analysis has
668 focused on bacterial growth conditions with minimal environmental stress. Future work
669 could augment the community by incorporating pathogenic taxa, and investigate how the

670 presence of environmental stressors such as antibiotic exposure affect the inverton land-
671 scape. By obtaining more sequencing data in variable growth conditions, we would likely
672 also expand the catalog of known invertons, given the observation that invertons flip in
673 certain growth conditions. For instance, while we were only able to call 557 invertons
674 using isolate culture sequencing reads during workflow benchmarking, by augmenting our
675 analysis with sequencing data from different growth conditions (e.g., mixed in vitro cul-
676 ture and mouse stool samples), this increased to 1837 called invertons. Finally, while our
677 work here has focused on inverton-mediated genetic variability, it would be valuable in the
678 future to explore how inverton dynamics across microbial communities are linked to other
679 forms of genetic variability, such as changes that arise as a consequence of mutation and
680 horizontal gene transfer, to more comprehensively profile the cumulative effects of genetic
681 variability on community function.

682 **Supplementary information.** Supplementary Sections S1-S18 are available in the
683 Supplementary Information PDF file. Supplementary Tables S1-S18 are included as CSV
684 files and contain the following data:

685 Table S1: Metadata on hCom2 strains analyzed in this work

686 Table S2: Read libraries analyzed in this work with associated metadata

687 Table S3: Forward/reverse read counts of invertons in isolate culture comparing original
688 PhaseFinder vs PhaseFinderDC

689 Table S4: Forward/reverse read counts of all invertons across all samples, determined
690 using PhaseFinderDC

691 Table S5: Metadata on all identified invertons

692 Table S6: Enriched motifs detected across inverton IR sequences

693 Table S7: Enriched motifs detected across full inverton sequences

694 Table S8: Instances of detected motifs from Table S7 across hCom2 genomes

695 Table S9: Metadata on inverton-proximal genes across hCom2

696 Table S10: Enrichment of proximal genes by gene type, inverton group, regulatable-vs.-

697 nonregulatable-vs.-intersecting

698 Table S11: Invertase genes across hCom2

699 Table S12: Enrichment of invertase groups proximal to inverton groups

700 Table S13: Directionally biased invertons comparing between (1) isolate culture / mouse

701 stool and (2) carrier-attached / liquid-phase mixed culture samples

702 Table S14: Gene regulation predictions based on directionally biased invertons with

703 promoter motifs

704 Table S15: Gene families enriched for inverton-based regulation

705 Table S16: Metadata on transcriptomic datasets used for gene regulation prediction

706 validation

707 Table S17: Gene expression estimated based on transcriptomic datasets

708 Table S18: Directionally biased invertons comparing across timepoints (mouse generation

709 and mixed culture passage)

710 **Acknowledgements.** We thank A. Lind, B. Smith, V. Dubinkina, C. Zhao, J. Wirbel,

711 and M. Fischbach for helpful discussions on the manuscript. This work is supported by

712 funding from Chan Zuckerberg Biohub, Burroughs Wellcome Fund, Gladstone Institutes,

713 NSF grant #1563159, and NHLBI grant #HL160862.

714 **Declarations**

715 **Availability of data and materials**

716 The mouse stool sequencing data generated in this study have been deposited in the
717 NCBI database under BioProject accession code PRJNA1119053. In vitro cultures were
718 analyzed using previously published data [27, 28], as well as new sequencing data that have
719 been deposited in the NCBI database under BioProject accession code PRJNA1119029.
720 Metadata for all metagenomic read libraries analyzed can be found in Supplementary
721 Table S2. Key processed data generated in this study are provided in the Supplementary
722 Tables.

723 PhaseFinderDC code available at: <https://github.com/xiaofanjin/PhaseFinderDC>

724 Code and additional data used for analysis and visualization available at:
725 <https://github.com/xiaofanjin/hcom2-invertons>

726 **Author's contributions**

727 X.J., A.C., and K.S.P. contributed to the design and implementation of the research,
728 to the analysis of the results and to the writing of the manuscript. F.B.Y., A.D., M.J.,
729 A.M.W., and J.Y. contributed to the implementation of the research. R.C. and A.S.B.
730 contributed to the writing of the manuscript. All authors reviewed the manuscript.

731 **References**

732 [1] Zarrinpar, A., Chaix, A., Yooseph, S., Panda, S.: Diet and feeding pattern affect
733 the diurnal dynamics of the gut microbiome. *Cell metabolism* **20**(6), 1006–1017
734 (2014)

735 [2] Bäckhed, F., Roswall, J., Peng, Y., Feng, Q., Jia, H., Kovatcheva-Datchary, P.,
736 Li, Y., Xia, Y., Xie, H., Zhong, H., *et al.*: Dynamics and stabilization of the

737 human gut microbiome during the first year of life. *Cell host & microbe* **17**(5),
738 690–703 (2015)

739 [3] Halfvarson, J., Brislawn, C.J., Lamendella, R., Vázquez-Baeza, Y., Walters,
740 W.A., Bramer, L.M., D'amato, M., Bonfiglio, F., McDonald, D., Gonzalez, A.,
741 *et al.*: Dynamics of the human gut microbiome in inflammatory bowel disease.
742 *Nature microbiology* **2**(5), 1–7 (2017)

743 [4] Garud, N.R., Good, B.H., Hallatschek, O., Pollard, K.S.: Evolutionary dynamics
744 of bacteria in the gut microbiome within and across hosts. *PLoS biology* **17**(1),
745 3000102 (2019)

746 [5] Tropini, C., Earle, K.A., Huang, K.C., Sonnenburg, J.L.: The Gut Microbiome:
747 Connecting Spatial Organization to Function. *Cell Host and Microbe* **21**(4), 433–
748 442 (2017) <https://doi.org/10.1016/j.chom.2017.03.010>

749 [6] McCallum, G., Tropini, C.: The gut microbiota and its biogeography. *Nature*
750 *Reviews Microbiology* **22**(2), 105–118 (2024)

751 [7] Earle, K.A., Billings, G., Sigal, M., Lichtman, J.S., Hansson, G.C., Elias, J.E.,
752 Amieva, M.R., Huang, K.C., Sonnenburg, J.L.: Quantitative imaging of gut
753 microbiota spatial organization. *Cell host & microbe* **18**(4), 478–488 (2015)

754 [8] Abraham, J.M., Freitag, C.S., Clements, J.R., Eisenstein, B.I.: An invertible
755 element of dna controls phase variation of type 1 fimbriae of escherichia coli.
756 *Proceedings of the National Academy of Sciences* **82**(17), 5724–5727 (1985)

757 [9] Krinos, C.M., Coyne, M.J., Weinacht, K.G., Tzianabos, A.O., Kasper, D.L.,
758 Comstock, L.E.: Extensive surface diversity of a commensal microorganism by
759 multiple dna inversions. *Nature* **414**(6863), 555–558 (2001)

760 [10] Coyne, M.J., Weinacht, K.G., Krinos, C.M., Comstock, L.E.: Mpi recombinase
761 globally modulates the surface architecture of a human commensal bacterium.
762 Proceedings of the National Academy of Sciences **100**(18), 10446–10451 (2003)

763 [11] Coyne, M.J., Comstock, L.E.: Niche-specific features of the intestinal bac-
764 teroidales. Journal of bacteriology **190**(2), 736–742 (2008)

765 [12] Gauntlett, J.C., Nilsson, H.-O., Fulurija, A., Marshall, B.J., Benghezal, M.:
766 Phase-variable restriction/modification systems are required for helicobacter
767 pylori colonization. Gut pathogens **6**, 1–5 (2014)

768 [13] Porter, N.T., Canales, P., Peterson, D.A., Martens, E.C.: A subset of polysac-
769 charide capsules in the human symbiont bacteroides thetaiotaomicron promote
770 increased competitive fitness in the mouse gut. Cell host & microbe **22**(4),
771 494–506 (2017)

772 [14] Jiang, X., Hall, A.B., Arthur, T.D., Plichta, D.R., Covington, C.T., Poyet, M.,
773 Crothers, J., Moses, P.L., Tolonen, A.C., Vlamakis, H., *et al.*: Invertible promot-
774 ers mediate bacterial phase variation, antibiotic resistance, and host adaptation
775 in the gut. Science **363**(6423), 181–187 (2019)

776 [15] Yan, W., Hall, A.B., Jiang, X.: Bacteroidales species in the human gut are a
777 reservoir of antibiotic resistance genes regulated by invertible promoters. npj
778 Biofilms and Microbiomes **8**(1), 1 (2022)

779 [16] Trzilova, D., Tamayo, R.: Site-specific recombination—how simple dna inversions
780 produce complex phenotypic heterogeneity in bacterial populations. Trends in
781 Genetics **37**(1), 59–72 (2021)

782 [17] Chanin, R.B., West, P.T., Park, R.M., Wirbel, J., Green, G.Z., Miklos, A.M.,
783 Gill, M.O., Hickey, A.S., Brooks, E.F., Bhatt, A.S.: Intragenic dna inversions

784 expand bacterial coding capacity. bioRxiv (2023)

785 [18] Milman, O., Yelin, I., Kishony, R.: Systematic identification of gene-altering pro-
786 grammed inversions across the bacterial domain. Nucleic Acids Research **51**(2),
787 553–573 (2023)

788 [19] Wen, J., Zhang, H., Chu, D., Chen, X., Li, Y., Liu, G., Zhang, Y., Ning, K.: Deep
789 learning enables reliable and comprehensive profiling of invertible promoters in
790 microbes. bioRxiv, 2023–10 (2023)

791 [20] Beachey, E.H.: Bacterial adherence: adhesin-receptor interactions mediating the
792 attachment of bacteria to mucosal surfaces. Journal of Infectious Diseases **143**(3),
793 325–345 (1981)

794 [21] Testerman, T.L., McGee, D.J., Mobley, H.L.: Adherence and colonization.
795 Helicobacter pylori: physiology and genetics, 379–417 (2001)

796 [22] Chagnot, C., Zorgani, M.A., Astruc, T., Desvaux, M.: Proteinaceous determi-
797 nants of surface colonization in bacteria: bacterial adhesion and biofilm formation
798 from a protein secretion perspective. Frontiers in microbiology **4**, 303 (2013)

799 [23] Lee, S.M., Donaldson, G.P., Mikulski, Z., Boyajian, S., Ley, K., Mazmanian,
800 S.K.: Bacterial colonization factors control specificity and stability of the gut
801 microbiota. Nature **501**(7467), 426–429 (2013)

802 [24] Sicard, J.-F., Le Bihan, G., Vogelee, P., Jacques, M., Harel, J.: Interactions of
803 intestinal bacteria with components of the intestinal mucus. Frontiers in cellular
804 and infection microbiology **7**, 387 (2017)

805 [25] Nishiyama, K., Yokoi, T., Sugiyama, M., Osawa, R., Mukai, T., Okada, N.: Roles
806 of the cell surface architecture of bacteroides and bifidobacterium in the gut

807 colonization. *Frontiers in Microbiology* **12**, 754819 (2021)

808 [26] Zhao, C., Shi, Z.J., Pollard, K.S.: Pitfalls of genotyping microbial communities
809 with rapidly growing genome collections. *Cell Systems* **14**(2), 160–176 (2023)

810 [27] Cheng, A.G., Ho, P.-Y., Aranda-Díaz, A., Jain, S., Yu, F.B., Meng, X., Wang,
811 M., Iakiviak, M., Nagashima, K., Zhao, A., Murugkar, P., Patil, A., Atabakhsh,
812 K., Weakley, A., Yan, J., Brumbaugh, A.R., Higginbottom, S., Dimas, A.,
813 Shiver, A.L., Deutschbauer, A., Neff, N., Sonnenburg, J.L., Huang, K.C., Fis-
814 chbach, M.A.: Design, construction, and in vivo augmentation of a complex gut
815 microbiome. *Cell* (2022) <https://doi.org/10.1016/j.cell.2022.08.003>

816 [28] Jin, X., Yu, F.B., Yan, J., Weakley, A.M., Dubinkina, V., Meng, X., Pollard,
817 K.S.: Culturing of a complex gut microbial community in mucin-hydrogel carriers
818 reveals strain-and gene-associated spatial organization. *Nature Communications*
819 **14**(1), 3510 (2023)

820 [29] Bayley, D.P., Rocha, E.R., Smith, C.J.: Analysis of *cepa* and other *bacteroides*
821 *fragilis* genes reveals a unique promoter structure. *FEMS microbiology letters*
822 **193**(1), 149–154 (2000)

823 [30] Jain, C., Rodriguez-R, L.M., Phillippy, A.M., Konstantinidis, K.T., Aluru, S.:
824 High throughput ani analysis of 90k prokaryotic genomes reveals clear species
825 boundaries. *Nature communications* **9**(1), 5114 (2018)

826 [31] Dybvig, K., Yu, H.: Regulation of a restriction and modification system via
827 dna inversion in *mycoplasma pulmonis*. *Molecular microbiology* **12**(4), 547–560
828 (1994)

829 [32] Dybvig, K., Sitaraman, R., French, C.T.: A family of phase-variable restriction

830 enzymes with differing specificities generated by high-frequency gene rearrange-
831 ments. *Proceedings of the National Academy of Sciences* **95**(23), 13923–13928
832 (1998)

833 [33] De Ste Croix, M., Vacca, I., Kwun, M.J., Ralph, J.D., Bentley, S.D., Haigh, R.,
834 Croucher, N.J., Oggioni, M.R.: Phase-variable methylation and epigenetic reg-
835 ulation by type i restriction-modification systems. *FEMS microbiology reviews*
836 **41**(Supp_1), 3–15 (2017)

837 [34] Atack, J.M., Guo, C., Litfin, T., Yang, L., Blackall, P.J., Zhou, Y., Jennings, M.P.:
838 Systematic analysis of rebase identifies numerous type i restriction-modification
839 systems with duplicated, distinct hsds specificity genes that can switch system
840 specificity by recombination. *Msystems* **5**(4), 10–1128 (2020)

841 [35] Park, Y., Simionato, M.R., Sekiya, K., Murakami, Y., James, D., Chen, W.,
842 Hackett, M., Yoshimura, F., Demuth, D.R., Lamont, R.J.: Short fimbriae of por-
843 phyromonas gingivalis and their role in coadhesion with streptococcus gordonii.
844 *Infection and immunity* **73**(7), 3983–3989 (2005)

845 [36] Kennedy, M.S., Zhang, M., DeLeon, O., Bissell, J., Trigodet, F., Lolans, K.,
846 Temelkova, S., Carroll, K.T., Fiebig, A., Deutschbauer, A., et al.: Dynamic
847 genetic adaptation of bacteroides thetaiotaomicron during murine gut coloniza-
848 tion. *Cell reports* **42**(8) (2023)

849 [37] Beghini, F., McIver, L.J., Blanco-Míguez, A., Dubois, L., Asnicar, F., Mahar-
850 jan, S., Mailyan, A., Manghi, P., Scholz, M., Thomas, A.M., et al.: Integrating
851 taxonomic, functional, and strain-level profiling of diverse microbial communities
852 with biobakery 3. *elife* **10**, 65088 (2021)

853 [38] Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGgettigan, P.A.,

854 McWilliam, H., Valentin, F., Wallace, I.M., Wilm, A., Lopez, R., *et al.*: Clustal
855 w and clustal x version 2.0. *bioinformatics* **23**(21), 2947–2948 (2007)

856 [39] Balaban, M., Moshiri, N., Mai, U., Jia, X., Mirarab, S.: Treecluster: Clustering
857 biological sequences using phylogenetic trees. *PLoS one* **14**(8), 0221068 (2019)

858 [40] Bailey, T.L., Johnson, J., Grant, C.E., Noble, W.S.: The meme suite. *Nucleic
859 acids research* **43**(W1), 39–49 (2015)

860 [41] Quinlan, A.R., Hall, I.M.: Bedtools: a flexible suite of utilities for comparing
861 genomic features. *Bioinformatics* **26**(6), 841–842 (2010)

862 [42] Tatusova, T., DiCuccio, M., Badretdin, A., Chetvernin, V., Nawrocki, E.P.,
863 Zaslavsky, L., Lomsadze, A., Pruitt, K.D., Borodovsky, M., Ostell, J.: Ncbi
864 prokaryotic genome annotation pipeline. *Nucleic acids research* **44**(14), 6614–
865 6624 (2016)

866 [43] Rumbavicius, I., Rounge, T.B., Rognes, T.: Hocort: host contamination removal
867 tool. *BMC bioinformatics* **24**(1), 371 (2023)

868 [44] Langmead, B., Salzberg, S.L.: Fast gapped-read alignment with bowtie 2. *Nature
869 methods* **9**(4), 357–359 (2012)

870 [45] Hansen, K.D., Irizarry, R.A., Wu, Z.: Removing technical variability in rna-
871 seq data using conditional quantile normalization. *Biostatistics* **13**(2), 204–216
872 (2012)

873 [46] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau,
874 D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., Walt, S.J., Brett,
875 M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R.,

876 Larson, E., Carey, C.J., Polat, .I., Feng, Y., Moore, E.W., VanderPlas, J., Lax-
877 alde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R.,
878 Archibald, A.M., Ribeiro, A.H., Pedregosa, F., Mulbregt, P., SciPy 1.0 Contrib-
879 utors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python.
880 Nature Methods **17**, 261–272 (2020) <https://doi.org/10.1038/s41592-019-0686-2>

881 [47] team, T.: Pandas-dev/pandas: Pandas. <https://doi.org/10.5281/zenodo.3509134>
882 . <https://doi.org/10.5281/zenodo.3509134>

883 [48] Harris, C.R., Millman, K.J., Walt, S.J., Gommers, R., Virtanen, P., Cournapeau,
884 D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer,
885 S., Kerkwijk, M.H., Brett, M., Haldane, A., Río, J.F., Wiebe, M., Peterson,
886 P., Gérard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H.,
887 Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature **585**(7825),
888 357–362 (2020) <https://doi.org/10.1038/s41586-020-2649-2>

889 [49] Waskom, M.L.: seaborn: statistical data visualization. Journal of Open Source
890 Software **6**(60), 3021 (2021) <https://doi.org/10.21105/joss.03021>

891 [50] Van Rossum, G., Drake Jr, F.L.: Python Reference Manual. Centrum voor
892 Wiskunde en Informatica Amsterdam, ??? (1995)

893 [51] Kluyver, T., Ragan-Kelley, B., Pérez, F., Granger, B., Bussonnier, M., Frederic,
894 J., Kelley, K., Hamrick, J., Grout, J., Corlay, S., Ivanov, P., Avila, D., Abdalla, S.,
895 Willing, C.: Jupyter Notebooks – a Publishing Format for Reproducible Compu-
896 tational Workflows. In: Loizides, F., Schmidt, B. (eds.) Positioning and Power in
897 Academic Publishing: Players, Agents and Agendas, pp. 87–90 (2016). IOS Press

898 [52] Seabold, S., Perktold, J.: statsmodels: Econometric and statistical modeling with
899 python. In: 9th Python in Science Conference (2010)

900 [53] Cock, P.J.A., Antao, T., Chang, J.T., Chapman, B.A., Cox, C.J., Dalke, A.,
901 Friedberg, I., Hamelryck, T., Kauff, F., Wilczynski, B., Others: Biopython: freely
902 available Python tools for computational molecular biology and bioinformatics.
903 *Bioinformatics* **25**(11), 1422–1423 (2009)

904 [54] Hunter, J.D.: Matplotlib: A 2D graphics environment. *Computing in Science and*
905 *Engineering* **9**(3), 90–95 (2007) <https://doi.org/10.1109/MCSE.2007.55>

906 [55] R Core Team: R: A Language and Environment for Statistical Computing. R
907 Foundation for Statistical Computing, Vienna, Austria (2019). R Foundation for
908 Statistical Computing. <https://www.r-project.org/>

909 [56] Yu, G., Smith, D.K., Zhu, H., Guan, Y., Lam, T.T.-Y.: ggtree: an r package
910 for visualization and annotation of phylogenetic trees with their covariates and
911 other associated data. *Methods in Ecology and Evolution* **8**(1), 28–36 (2017)
912 <https://doi.org/10.1111/2041-210X.12628>

913 [57] Wang, L.-G., Lam, T.T.-Y., Xu, S., Dai, Z., Zhou, L., Feng, T., Guo, P., Dunn,
914 C.W., Jones, B.R., Bradley, T., Zhu, H., Guan, Y., Jiang, Y., Yu, G.: Treeio:
915 An R Package for Phylogenetic Tree Input and Output with Richly Annotated
916 and Associated Data. *Molecular Biology and Evolution* **37**(2), 599–603 (2020)
917 <https://doi.org/10.1093/molbev/msz240>

918 [58] Campitelli, E.: Ggnewscale: Multiple Fill and Colour Scales in 'ggplot2'. (2022).
919 <https://cran.r-project.org/package=ggnewscale>

920 [59] Revell, L.J.: phytools: an R package for phylogenetic comparative biology (and
921 other things). *Methods in Ecology and Evolution* **3**(2), 217–223 (2012) <https://doi.org/10.1111/j.2041-210X.2011.00169.x>

923 [60] Wickham, H., Girlich, M.: Tidyr: Tidy Messy Data. (2022). <https://cran>.

924 [r-project.org/package=tidyr](https://cran.r-project.org/package=tidyr)

925 [61] Wickham, H., François, R., Henry, L., Müller, K.: Dplyr: A Grammar of Data
926 Manipulation. (2021). <https://cran.r-project.org/package=dplyr>

927 [62] Wickham, H.: Stringr: Simple, Consistent Wrappers for Common String Opera-
928 tions. (2019). <https://cran.r-project.org/package=stringr>

929 [63] Wickham, H.: Ggplot2: Elegant Graphics for Data Analysis. Springer, ??? (2016).
930 <https://ggplot2.tidyverse.org>

931 [64] Paradis, E., Schliep, K.: ape 5.0: an environment for modern phylogenetics and
932 evolutionary analyses in R. Bioinformatics **35**, 526–528 (2019)