
Spatial Deconvolution of Cell Types and Cell States at Scale Utilizing TACIT 
 

Khoa L. A. Huynh1*, Katarzyna M. Tyc1,2*, Bruno F. Matuck3*, Quinn T. Easter3, Aditya Pratapa4, 

Nikhil V. Kumar3, Paola Pérez5, Rachel Kulchar 5, Thomas Pranzatelli6, Deiziane de Souza7, 

Theresa M. Weaver3, Xufeng Qu2, Luiz Alberto Valente Soares Junior8, Marisa Dolhnokoff7, David 

E. Kleiner9, Stephen M. Hewitt9, Luiz Fernando Ferraz da Silva7, Vanderson Geraldo Rocha10, 

Blake M. Warner5, Kevin M. Byrd3,5,11#, Jinze Liu1,2#. 

 

1 Department of Biostatistics, Virginia Commonwealth University, Richmond, VA, USA. 
 
2 Massey Cancer Center, Richmond VA, USA. 
 
3 Lab of Oral & Craniofacial Innovation (LOCI), Department of Innovation & Technology Research, ADA 
Science & Research Institute, Gaithersburg, MD, USA. 
 
4 Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA. 
 
5 Salivary Disorders Unit, National Institute of Dental and Craniofacial Research, National Institutes of 
Health, Bethesda, MD, USA. 
 
6 Adeno-Associated Virus Biology Section, National Institute of Dental and Craniofacial Research, National 
Institutes of Health, Bethesda, MD, USA. 
 
7 Department of Pathology, Medicine School of University of Sao Paulo, SP, BR. 
 
8 Division of Dentistry of Hospital das Clinicas of University of Sao Paulo, SP, BR. 
 
9 Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of 
Health, Bethesda, MD, USA. 
 
10 Department of Hematology, Transfusion and Cell Therapy Service, University of Sao Paulo, Sao Paulo, 
Brazil. 
 
11 Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina 
at Chapel Hill, Chapel Hill, NC, USA 
 

CORRESPONDING AUTHORS: 

Jinze Liu: liuj15@vcu.edu 

Kevin Matthew Byrd: kevinmbyrd@gmail.com 

 

Keywords: spatial biology; multimodal, transcriptomics, proteomics, artificial intelligence, 

machine learning, deep learning, multiplex imaging; fluorescence microscopy; brain, intestine, 

salivary gland, cell typing; single cell analysis; spatial multiomics 

 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 3, 2024. ; https://doi.org/10.1101/2024.05.31.596861doi: bioRxiv preprint 

mailto:kevinmbyrd@gmail.com
https://doi.org/10.1101/2024.05.31.596861
http://creativecommons.org/licenses/by-nc/4.0/


ABSTRACT (150) 
 

Identifying cell types and states remains a time-consuming and error-prone challenge for spatial 

biology. While deep learning is increasingly used, it is difficult to generalize due to variability at 

the level of cells, neighborhoods, and niches in health and disease. To address this, we developed 

TACIT, an unsupervised algorithm for cell annotation using predefined signatures that operates 

without training data, using unbiased thresholding to distinguish positive cells from background, 

focusing on relevant markers to identify ambiguous cells in multiomic assays. Using five datasets 

(5,000,000-cells; 51-cell types) from three niches (brain, intestine, gland), TACIT outperformed 

existing unsupervised methods in accuracy and scalability. Integration of TACIT-identified cell with 

a novel Shiny app revealed new phenotypes in two inflammatory gland diseases. Finally, using 

combined spatial transcriptomics and proteomics, we discover under- and overrepresented 

immune cell types and states in regions of interest, suggesting multimodality is essential for 

translating spatial biology to clinical applications.  
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INTRODUCTION (474) 
 

Spatial biology is a dynamic field that focuses on the precise understanding of the spatial 

distribution and relationship of cell types and their associated cell states within their native 

environments1,2. The field has been significantly advanced by rapidly expanding and maturing 

single-cell and spatial multiomics technologies, which preserves the spatial context of cellular and 

architectural features, deepening our understanding of cellular interactions, biological pathways, 

and identifying new cell types that can be used as targets to improve disease treatments and 

precision diagnoses3–8.  

The current era of spatial biology, characterized by single-cell and subcellular resolution, 

multi-omics technologies in nature and even combined modalities on a single tissue section, 

demands more advanced tools for interpretation at scale9. Among the multi-step bioinformatics 

workflow to support the analysis of the multi-plex imaging data10,11,  identifying cell types and their 

associated cell states remains a time-consuming and error-prone challenge due to issues related 

to segmentation noise and signal bleed-through, restricted sets of molecular and protein panel 

markers, and multimodal marker-linked datasets12. Traditional unsupervised clustering methods 

commonly used in scRNA-seq analysis operate by grouping cells based on the overall similarity 

of their marker profiles across the entire panel13–17. Their efficacy heavily relies on the presence 

of abundant markers capable of distinguishing cell populations, a characteristic commonly found 

in single cell sequencing data18. However, a significant challenge arises when dealing with 

predefined marker panels and cell types determined by as few as one marker19. This sparse 

marker set, often of only one modality, lacks power to separate expected cell population in the 

embedded feature space, posing a formidable obstacle for unsupervised clustering to detect all 

cell types especially the rare ones20. Even with extensive parameter tuning combined with multi-

step clustering to identify cell populations of interest, the desired results remain elusive21,22. Deep 

learning algorithms are increasingly utilized in spatial ‘omics for cell type identification, but it 
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requires comprehensive and diverse training data to improve the accuracy and applicability of 

deep learning models in handling the complexities of spatial multiomics23,24. 

To address these challenges, we developed TACIT (Threshold-based Assignment of Cell 

Types from Multiplexed Imaging DaTa), an unsupervised algorithm for assigning cell identities 

based on cell-marker expression profiles. TACIT uses a multi-step machine learning approach to 

group cells into populations, maximizing the enrichment of pre-defined cell type signatures from 

spatial transcriptomics and proteomics data (Fig. 1). Validated against expert annotation and 

available algorithms using five datasets from brain, intestine, and gland tissues in human and 

mouse, TACIT outperformed three existing unsupervised methods in accuracy and scalability. It 

also integrated cell types and states with a Shiny app to reveal new cellular associations in 

Sjögren's Disease and Graft-versus-host Disease, highlighting its clinical relevance. Furthermore, 

we performed spatial transcriptomics and proteomics on the same slide, demonstrating the need 

for multimodal panel designs and flexible analysis pipelines to support translational and clinical 

research applications.   
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RESULTS (2082) 
 

 

Conceptualization of TACIT for Spatial Multimodal 

 

To address the need for advanced spatial omics profiling, we developed an unsupervised 

algorithm called TACIT (Threshold-based Assignment of Cell Types from Multiplexed Imaging 

DaTa). It is generally applicable to any probe-based, single-cell resolved spatial single modality 

or multimodal dataset (i.e., spatial transcriptomics or proteomics; Fig. 1a). Before TACIT can be 

employed, images containing tissues or cells are first segmented to identify cell boundaries (Fig. 

1b). Features like probe intensity (protein antibodies) and count values (mRNA probes) are 

quantified, normalized, and stored in a single or multimodality CELLxFEATURE matrix (Fig. 1c). 

The TYPExMARKER matrix is derived from expert knowledge, with values between 0 and 1, 

indicating the relevance of markers for defining cell types (Fig. 1c). 

TACIT conducts cell type annotation in two rounds. Cells are first clustered into 

microclusters (MCs) to capture highly homogenous cell communities with sizes averaging 

between 0.1–0.5% cells of the population using the Louvain algorithm (Fig 1d). In parallel, for 

each segmented cell, Cell Type Relevance scores (CTRs)  against a predefined cell types will be 

calculated by the multiplication of its normalized marker intensity vector with the cell type 

signature vector (Fig 1d), quantitatively evaluating the congruence of cells' molecular profile with 

considered cell types. The higher the CTR score, the stronger the evidence that the cell is 

associated with a given cell type. TACIT proceeds to learn a threshold that can separate cells into 

groups with strong positive signals and background noise (Fig 1e). For a specific cell type, the 

median CTRs across all MCs are gathered (Fig 1ei). The MCs are reordered by ranking its median 

CTRs values from lowest to highest (Fig 1eii). The segmental regression model is fitted to divide 

the CTRs growth curve into 2 to 4 segments25. The two extremes of these segments represent 

the high relevance group and low relevance group, respectively. (Fig. 1eiii). A positivity threshold 

that minimizes the misclassification rates arising from cell outliers in both high relevance group 
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and low relevance group is then established (Fig. 1eiv). Subsequently, the threshold is applied to 

all cells where the CTRs of cells exceeding the threshold for a specific cell type are labeled with 

positive, with the remaining labeled with negative (Fig 1ev-1evi).  

Cell labeling from the previous step can result in a single cell being labeled multiple cell 

types (Fig. 1f). To resolve the ambiguity, TACIT includes a deconvolution step (Fig. 1g) using the 

k-nearest neighbors (k-NN) algorithm on a feature subspace relevant to the mixed cell type 

category (Methods). The quality of cell type annotation is assessed by p-value and fold change, 

quantifying marker enrichment strength for each cell type (Fig. 1i) and visualized with a heatmap 

of marker expression (Fig. 1h). Following annotation, downstream analysis is performed using a 

custom Shiny app we generated called Astrograph (Fig. 1j; Methods).  

 

Benchmarking TACIT Against Existing Unsupervised Algorithms 

 

We downloaded two human datasets: Colorectal Cancer (PCF-CRC; n=140-TMAs; 

n=235,519-cells; n=56-antibodies) and Healthy Intestine (PCF-HI; n=64-samples; n=2,603,217-

cells; n=56-antibodies); both were generated using the Akoya Phenocycler-Fusion (PCF; formerly 

CODEX) 1.0 system for spatial proteomics26,27. We compared TACIT's performance in cell type 

annotation against CELESTA, SCINA, and Louvain in both datasets, using original annotations 

as reference13,28,29. 

 

In the PCF-CRC dataset, TACIT demonstrated strong consistency with reference 

annotations compared to existing methods. This was evident through UMAP, spatial, and heatmap 

visualizations of cell populations, spatial patterning, and marker expression (Fig. 2a-c). As shown 

in the heatmap, SCINA and Louvain missed a significant portion of rare cell types, with Louvain 

failing to identify 6 out of 17 types and SCINA identifying only 5 in total (Fig. 2c). TACIT achieved 

the highest accuracy, with weighted recall, precision, and F1 scores of 0.74, 0.79, and 0.75, 
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respectively, significantly outperforming CELESTA, Louvain, and SCINA (p<0.05) (Fig. 2d; 

Extended Data 1). TACIT showed stable threshold and evaluation metrics in a bootstrap study 

(Extended Data 2a-d). For dominant cell types (≥1% of the population), TACIT, CELESTA, and 

SCINA exhibited high consistency (R=0.99) in terms cell type annotation, while Louvain slightly 

underperformed (R=0.95) (Fig. 2e). Both TACIT and CELESTA identified all expected rare cell 

types, with TACIT displaying a stronger correlation to the reference (R=0.58) compared to 

CELESTA (R=0.24) (Fig. 2e). Additionally, the accuracy for identifying rare cell types improved 

with an increasing number of resolutions (Extended Data 2e-f). Marker enrichment analysis 

indicated that TACIT's annotations closely matched the signatures (Fig. 2f).  Additional 

experiments were performed on a much larger dataset with 2.6 million cells across 40 slides, 

PCF-HI, derived from human intestine issues. Outperformance of TACIT over Louvain was 

consistently observed in overall accuracy (Figs. 2g, h, j) and enrichment strength (Fig. i), 

especially in its capability in identifying rare cell types (Figs. 2k). Unfortunately, both CELESTA 

and SCINA failed to assign a vast majority of the cells even with extensive parameter tuning 

(Extended Data 1).  

To evaluate TACIT's performance on spatial transcriptomics data, we applied it to a 

published MERFISH dataset from the murine hypothalamic preoptic region of the brain (n=36-

samples; n=1,027,848-cells; n=170-ISH panel)30. TACIT achieved significantly higher weighted 

recall (0.85), precision (0.87), and F1 scores (0.87) than Louvain (Extended Data 3a). Both 

methods showed high correlation with the reference for dominant cell types (R=0.99), but TACIT 

achieved higher correlation for rare cell types (R=0.94) compared to Louvain (R=0.64; Extended 

Data 3b). Spatial and UMAP plot demonstrated that TACIT's cell type identification closely 

matched the reference, with stronger and more distinct expression signatures than Louvain 

(Extended Data 3c-f). These results highlight TACIT's effectiveness for spatial transcriptomics, 

providing reliable cell type identification for both abundant and rare populations. 
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Applying TACIT to unpublished single modality spatial transcriptomics with linked scRNAseq 

 

 Next, TACIT was applied to an unpublished Xenium dataset (PI: Warner, NIH/NIDCR; 

n=21-patients; n=~360,000-cells; n=280-ISH panel) across 24 cell types. We compared TACIT 

against two annotation approaches: Seurat with label transfer from scRNA-seq data (Seurat 

transfer), and Louvain29,31. Signature lists for TACIT were created from the top five most enriched 

genes in each annotated cluster in the Seurat transfer result32. While the UMAP plot shows overall 

consistency in cell type annotation across the three methods, TACIT’s annotation excels in clear 

distinctions among three subtypes of acinar cells (Fig. 3a), corroborated by biologically 

meaningful spatial arrangement of these subtypes (Fig. 3b). TACIT demonstrated higher 

enrichment of signatures than both Louvain and Seurat transfer, with all cell types identified (Fig. 

3c, h, I, g). Zooming into specific subtypes, TACIT clearly distinguishes ductal progenitors and 

ductal cells, while Seurat transfer labeled them all as "ductal cells" and Louvain showed mixed 

annotations (Figs 3d). TACIT also identified four subsets of T cells (CD4+, CD8+, CD8+ 

Exhausted, and Progenitors), which Louvain missed (Fig. 3e). This is a critical population to 

identify for a disease like autoimmune diseases like Sjögren's because T progenitors are crucial 

for maintaining immune tolerance, making them vital targets for therapeutic strategies and clinical 

applications in the future33. Overall, TACIT showed a strong correlation with scRNA-seq (R=0.84), 

higher than Seurat transfer (R=0.49) and Louvain (R=0.69) (Fig. 3f).  

 

Applying TACIT to unpublished same-slide spatial proteomics and transcriptomics 

 

To achieve detailed cell type annotation in spatial multiomics, we linked spatial proteomics 

(PI: Byrd, ADA Science & Research Institute; PCF 2.0; 36-antibody panel; Fig. 4a) and 

transcriptomics (Xenium; 280-ISH panel; Fig. 4b) on the same slide using segmentation mask 

transfer. This captured single-cell data for both TACIT and Louvain (see Methods; n=6-samples; 

424,638-cells). Cellenics (now Trailmaker) was used to generate cell type signatures (Extended 
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Data 4).   Applied to minor salivary glands affected by Graft-versus-Host Disease (GvHD), TACIT 

identified significantly more cell types than Louvain in both datasets (Extended Data 5,6; Figs. 4c-

e). Louvain missed key cell types like vascular endothelial cells and Tregs. The reconstructed 

slide showed high immune cell density in the periductal region, indicating GvHD-associated 

immune infiltration (Fig. 4d). Compared to the pathologist’s annotations, TACIT had a lower error 

rate than Louvain across all cell types (Figs. 4f). 

In spatial proteomics, TACIT again identified more cell types than Louvain (Figs. 4g,i), 

matching the spatial transcriptomic assignments and confirming GVHD-associated immune 

infiltration (Fig. 4h). TACIT uniquely identified vascular and lymphatic endothelial cells, Tregs, and 

NK cells (Fig. 4i). TACIT also had a lower mean error in annotating structural cell types, while 

Louvain over-assigned prevalent types like fibroblasts and ducts (Fig. 4j). Vascular and innate cell 

types are crucial markers for understanding salivary gland parenchymal changes in GVHD; in 

particular, NK cells can contribute to the severity of GVHD by directly killing host cells and 

releasing inflammatory cytokines such as IFN-γ and TNF-α34. This highlights the importance of 

selecting the right tool for accurate cell annotation, from basic to clinical studies involving human 

subjects. 

 

Testing TACIT in linked spatial proteomics and transcriptomics ROIs 

 

Because specific ROIs are often used for diagnosis or understanding disease 

pathophysiology, we decided to evaluate TACIT's performance in confined areas. We selected 

nascent tertiary lymphoid structures (TLS) from GVHD for this application. TLSs pose unique 

challenges for spatial biology due to potential segmentation issues as they are highly 

concentrated with immune cells with large nuclei and little cytoplasm around diverse structural 

niches (epithelial, fibroblast, and vasculature)35. We applied a segmentation pipeline using a 

human-in-the-loop Cellpose3 model and still found areas in the TLS in both proteomic and 
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transcriptomic space where signals like those for B Cells (protein: CD20; mRNA: MS4A1) are 

misappropriated after segmentation Fig. 5a)36.  

TACIT's ability to deconvolve mixed cell phenotypes helps overcome segmentation errors. 

Within the TLS, TACIT identified more adaptive and innate immune cell types than Louvain, 

including Regulatory T Cells and NK Cells (Fig. 5b). Louvain detected fewer cell types with less 

distinct markers per cell type (Fig. 5c). In Voronoi reconstruction, Louvain identified TLS mainly 

composed of B Cells, while TACIT showed primarily T cells surrounded by small vessels (Fig. 5d). 

Neighborhood analyses using Delaunay Triangulation and receptor-ligand pairs revealed different 

TLS phenotypes. TACIT showed expected relationships, such as proximity between dendritic cells 

and T cells, while Louvain showed structural-to-structural cell relationships (Fig. 5e). TACIT 

identified key markers for T cell exhaustion (PD-1/PD-L1 interactions) and small vessels essential 

for immune cell recruitment, while Louvain failed to detect vascular cells and showed less 

granularity in receptor-ligand assignments. This analysis demonstrates that niche- and disease-

level phenotyping can be effectively captured using TACIT’s workflow.  

 

Multimodal Cell Identification with TACIT 

 

 After collecting spatial transcriptomics (Xenium) and spatial proteomics (PCF) data, we 

used the same segmentation masks from Xenium on the PCF data, ensuring matched cell IDs for 

direct comparisons (see: Methods and Fig. 6a). This alignment allowed us to create a cell-by-

protein and gene matrix for each cell, capturing both antibody intensities from PCF and count 

values from Xenium (Figs. 6b,c). Using TACIT, which incorporates marker signatures from both 

PCF and Xenium, we accurately identified cell types; other algorithms could not handle the 

multimodality for these assays. For the first time, the correlation of marker intensities between 

PCF and Xenium for immune cell markers was significantly lower than for structural cell types 

(p<0.0001) (Fig. 6d). Consequently, using the full marker panel on ROIs with many immune cells, 

the agreement between cell type identifications using only PCF markers versus only Xenium 
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markers was about 34% (Fig. 6e and Extended Data 6a). However, focusing on markers common 

to both PCF and Xenium increased the agreement to 81% (Fig. 6f and Extended Data 7a). The 

proportion of cell types was high in the TLS between Xenium and PCF with higher agreement 

when using common markers (Figs. 6g,h). Importantly, for structural cell types like vascular 

endothelial cells (VEC) using our panel, they remained challenging to identify (see Fig. 4). 

For effective clinical translation, it is crucial to accurately assign both spatial cell identity 

and state. To address this, we tested PDCD1/PD1, a key component of the immune checkpoint 

inhibitor (ICI) pathway. The differences observed across all three recipes—unimodal and 

multimodal—highlight the importance of understanding which factors are truly critical for patient 

outcomes, especially as they vary with spatial scales in cell number and sample number. 

Comparing the same markers across both technologies revealed differences in cell states, 

particularly between PD-1 and PDCD1 across all four TLS (Fig. 6i and Extended Data 7b). These 

results were statistically significant for B cells and CD4+ T Cells (Fig 6.j). The same trend followed 

for cell cycling marker Ki-67/MKI67 (Fig. 6k). This is clinically relevant because accurately 

predicting the cell cycle and PD-1 expression in B cells and CD4+ T cells is crucial for optimizing 

immunotherapy, as it helps identify which patients will benefit most from treatments like checkpoint 

inhibitors.  
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DISCUSSION (420) 
 

 

Identifying cell types in multiplex imaging-based spatial omics data remains challenging 

with current technologies. In contrast to unsupervised clustering algorithm requiring extensive 

manual curation, TACIT automates cell type annotation, emulating manual gating with scalability 

and precision. TACIT achieves detailed phenotyping based on the multiplex panel design and 

excels in dominant and rare cell populations without bias. The success of TACIT can be attributed 

to the usage of cell-type specific features, initially evaluating cell type-specific markers, then 

performing mixed cell deconvolution within only relevent subspace, crucial for identifying cell 

types in spatial transcriptomics and proteomics platforms where specific features are sparse. 

 

Our benchmarking of TACIT on three public spatial omics datasets totaling nearly 4.6 

million cells across 51 cell types demonstrating its broader applicability as an assay-, species-, 

organ- and disease-agnostic tool for cell type annotation. Our application of TACIT to the Xenium 

dataset initially annotated by scRNA-seq data through label transfer further demonstrated TACIT's 

effectiveness in refining cell type annotations following the discovery of cell type specific markers 

through existing exploratory analysis. 

The combined analysis of spatial multiomics datasets in GVHD revealed the importance 

of integrating spatial transcriptomics and proteomics for deep phenotyping. PCF and Xenium data 

differ in that PCF provides continuous values while Xenium provides count data, and there is often 

a lack of correlation between corresponding markers, especially structural ones37. Despite these 

challenges, TACIT supports both data types, enabling high-quality targeted deep phenotyping and 

comparative analysis. This facilitates the combination of datasets to uncover important cellular 

neighborhoods and characterize cell states across modalities.  

Proper application of TACIT requires sufficient sampling of cells with abundant background 

signals to derive relevant thresholds, making it less effective when focusing on small regions with 
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few cells. Additionally, TACIT may leave some cells unassigned due to poor marker intensities, 

inaccurate segmentation, or the presence of novel cell types. Further investigation of unannotated 

cells to support novel cell type discovery can be achieved by a variation of TACIT capable of 

identify cell groups exhibiting combinations of positive markers.  

By providing detailed cell type annotations and uncovering rare cell populations, tools like 

TACIT enables the identification of unique cellular neighborhoods and their interactions, which is 

critical for understanding disease progression and therapeutic response in the near future as part 

of clinical research and ultimately, precision clinical care. As TACIT continues to evolve, its 

application in personalized medicine could lead to the development of tailored treatment regimens 

based on the specific cellular composition and state of individual patients' tissues, improving 

outcomes and reducing adverse effects.  
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METHODS 

CELLxFEATURE matrix 

Let 𝑀	be a set of markers used in a spatial omics panel, |M|=m,  and  𝑁	be the set of cells of size 

𝑛 captured in a tissue slide. Let 𝐴!×#	be the CELL by FEATURE information captured in the 

spatial omics experiment following cell segmentation process. For spatial proteomics such as 

PhenoCycler, entry 𝑎$% in the matrix A represents the z-normalized intensity value indicating the 

Intensity level of a specific marker 𝑗	within cell 𝑖. In the context of spatial transcriptomics such as 

Xenium or MERFISH/MERSCOPE, 𝑎$% 	reflects the log-normalized of the count of transcripts for 

each gene.  

 

Cell type signature matrix 

Let Τ be a set of cell types, |Τ| = t, to be captured by the panel. We define a cell signature matrix  

𝑆#×&	of markers that define individual cell types, where each element 𝑠$% in 𝑆 

𝑠$% = /𝑤,				0 < 𝑤 ≤ 1, 𝑖𝑓	marker	𝑖	𝑠𝑒𝑟𝑣𝑒𝑠	𝑎𝑠	𝑎	𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒	𝑜𝑓	cell	type	𝑗	
0, otherwise  

The value 𝑤 indicates the importance of a specific marker in defining a cell type. If such 

information is not available, 𝑤	is set to 1 by default.  

 

Cell type relevance matrix 

Let Γ denote a cell type relevance matrix, with dimension 𝑛 × 𝑝, where 𝑛 is the number of profiled 

cells, and 𝑝 is the number of cell types included in the panel. The cell type relevance (CTR) score 

is computed using the formula: 

Γ	 = 	𝐴	 ∗ 	𝑆	 

where each element in  Γ	provides a quantitative measure of a cell’s relevance to a specific cell 

type. By summing up the relevant markers’ intensity values weighted by their importance (set to 

1 by default), we can directly measure a cell's marker intensity profile alignment with the expected 
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cell type signature. For each cell type, a cell with higher CTR score suggests a stronger 

association between the observed marker intensities with the expected signature of a specific cell 

type, indicating a higher likelihood that the cell belongs to that cell type. 

 

Micro-clustering 

Louvain clustering method from the Seurat version 5 toolkit is applied on the CELLxFEATURE 

matrix 𝐴	to conduct the fine-grained clustering of cells31. The resolution of the clustering is set 

high enough so that the average number of cells per cluster remains between 0.1% to 0.5% cells 

of the entire population. We refer to the resulting clusters as a collection of microclusters (MCs) 

denoted as Φ	 = {𝑐', 𝑐(, … , 𝑐)}. These microclusters are expected to be highly homogeneous, 

capturing a group of cells with highly similar marker profiles and thus with high likelihood to 

represent cells of the same cell type. The distribution of marker values across all markers in Φ 

will be used to approximate the variations of marker values across the diverse cell populations 

they represent.  

 

Segmented regression model 

Next, to identify MCs with distinct cell type relevance, we employed segmented regression model 

aiming to identify specific breakpoints at which the relationship between the MCs changes25.  For 

any given cell type, the median CTR scores across all 𝑘 MCs are calculated and stored as a vector 

𝑧 = (𝑧', 𝑧(, … 𝑧)) = (𝑟', 𝑟(, … , 𝑟))	be a vector where 𝑟$ is the rank of	𝑧$ 	in 𝑧. Next, a segmental 

regression model is fitted with 𝑧 being the dependent variable and 𝑟 as the predictor to identify 

breakpoints that divide the data into distinct linear segments. 

	𝑧 = α* + 𝛽*𝑟 + ∑ β+(𝑟 − φ+),
-
$.'   

Where: 

● α*	represents the intercept of the linear model, 
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● 𝛽* represents the slope of the linear segment before the first breakpoint,  

● 𝛽$ 	represents changes in slope at the breakpoint 𝑖, 

● 𝑔 represents number of breakpoints, 

● φ+ represents the optimal location of breakpoint 𝑖, 

● (𝑟 − φ+),	defined as max(0, 	𝑟 − φ+) for breakpoint 𝑖. 

Our proposed method aims to obtain an optimal fitting by allowing a maximum three breakpoints. 

This is determined by the minimal Akaike Information Criterion (AIC) score achieved among the 

three models the three models (g=1, 2 and 3)38. The breakpoints from the optimal model are then 

utilized to categorize clusters into either "low" or "high" relevance groups, Φ/	and	Φ0, respectively. 

Specifically, the MCs ranking below the lowest breakpoint are classified as Φ/ = {𝑖	|𝑟$ ≤	φ', 1 ≤

𝑖 ≤ 𝜅},	 where 𝑟 is the vector containing the rank positions of MCs. Correspondingly, the MCs 

ranking above the highest breakpoint are considered as high relevance group 	Φ0= {𝑖	|	𝑟$ ≥

	φ123(-), 1 ≤ 𝑖 ≤ 𝜅}.  

 

Optimal threshold 

Next, an optimal CTR threshold to differentiate positive and negative cells of a given cell type is 

determined as follows. Let 𝐶6 denote the set of cells that belong to MCs within	Φ/, formally defined 

as 𝐶6 =	⋃ 𝑐$,$	∈		:! 	𝑐$	 ∈ Φ. Similarly, 𝐶; 	is the set of cells that belong to MCs within	Φ0, defined 

as 𝐶; =	⋃ 𝑐$$	∈		:" , 	𝑐$	 ∈ Φ. Each MC encompasses a range of CTR scores, suggesting that even 

within a highly homogeneous cluster, there is relatively broad range of marker intensity. The 

preferred threshold minimizes the misclassification rate between the two relevance groups. This 

optimization problem aims to find a threshold (𝜃) that minimizes the number of cells in the low 

relevance group		𝐶6 with CTR scores exceeding the threshold, and the number of cells in the high 

relevance group	𝐶; with CTR scores lower than the threshold. The grid search with this objective 

function can be expressed with the formula: 
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𝜃 = 𝑎𝑟𝑔𝑚𝑖𝑛	(|{𝑖	|τ+ > 𝜃, 𝑖	 ∈ C/}| + |{𝑖	|τ+ < 𝜃, 𝑖	 ∈ C0}|), where: 

• θ	represents a desired optimal threshold for a given cell type, 

• τ+ is the CTR score for cell 𝑖, 

 

Cell Type Categorization 

After determining an optimal threshold of CTR score for each cell type, cells exceeding this 

threshold are marked as positive, while the rest are marked as negative. Applying this threshold 

to each cell type results in a binary matrix Β of dimension 𝑛	 × 	𝑝, with 1 indicating a cell is positive 

or 0 indicating negative.	Based on the positivity of individual cells across cell types, cells are 

categorized into three distinct sets:  

1) Clean cells: The set of cells classified as positive for exactly one cell type.  

2) Mixed cells:  The set of cells classified as positive in more than one cell type, suggesting 

a blend of characteristics from multiple cell types.  

3) Unknown cells: The set of cells that are not classified as positive for any cell type.  

 

Deconvolution of Mixed Cells 

The set of mixed cells undergoes a process of cell type deconvolution to assign each cell to its 

final cell type. This step leverages two outcomes from the previous step. Firstly, a significant 

portion of cells classified as clean cells in each individual cell type may now serve as anchor cells 

to resolve the cells with mixed identities. Secondly, even though more than one identity is 

assigned as candidates for mixed cells, a vast majority of cell types are recognized as irrelevant 

and will be eliminated from further consideration. So are the markers from irrelevant cell types, 

allowing the classification algorithm to focus on the relevant markers to resolve the confusion 

while avoiding distractions from irrelevant markers.  
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Let 𝜉, 𝜉 ⊂ Τ,	 be a combination of cell types deemed positive in a set of cells, denotes as 𝑁<#$=.  

Additionally, all the clean cells positive in each of cell types in 𝜉 are also extracted, denoted as 

𝑁<
>?@A!. Let 𝑀< be the set of markers serving as signatures for cell types in 𝜉. Next, a submatrix 

from matrix 𝐴, denotes as 𝐴<, containing the intensity values of both the clean cells and the mixed 

cells, i.e., 𝑁< =	𝑁<>?@A! ⋃ 𝑁<#$=, in the marker set 𝑀< will be extracted. The 𝑘-nearest neighbors 

(KNN) algorithm is applied to cell feature matrix 𝐴< to classify the cells with mixed identities in 𝜉 

39. For each mixed cell in 𝑁<#$=, the algorithm works by first calculating its relative distances to 

clean cells within 𝜉-relevant markers in 	𝑀<. This step is crucial as it utilizes only the signature 

markers for 𝜉, eliminating noise and biases from irrelevant markers in the deconvolution of cell 

types in 𝜉. The 𝑘 neighbors that are closest to each of the mixed cells will be identified according 

to their distance. Finally, the identity of a cell is determined by the mode of the identities of its 𝑘-

nearest clean cell neighbors (𝑘	=10 by default).  

 

Comparisons with other methods 

We compared our proposed method with three existing cell phenotyping methods, namely 

CELESTA, SCINA, Louvain + manual annotation clusters, and Seurat transfer using scRNA. The 

code for CELESTA, SCINA, Louvain annotation and Seurat v5 transfers label scRNA methods 

are publicly available for reproducibility and comparison purposes. 

 

CELESTA28 

CELESTA is a cell type identification algorithm for spatial proteomics that uses an optimization 

framework to assign individual cells to their most likely cell types based on prior knowledge of 

each cell type's marker signatures. It utilizes a marker-scoring function to match a cell’s marker 

expression probability profile to known cell type signatures. In our application, CELESTA was run 

for each of the tissue microarrays (TMAs). The major function included CreateCelestaObject() to 
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create celesta object. FilterCells() to filter out cells that are artifact, with high_marker_threshold = 

0.9, and low_marker_threshold=0.4. AssignCells() function to assigned cell types, with 

max_iteration=10, and cell_change_threshold=0.01. For each cell type, Additional parameters 

including high_expression_threshold_anchor, low_expression_threshold_anchor, 

high_expression_threshold_index, and low_expression_threshold_index need to be defined. As 

no guidance was provided on how to set the parameters, the default setting was used as provided 

in this GitHub (https://github.com/plevritis-lab/CELESTA/tree/main). For PCF-HI datasets, 

CELESTA labeled all cells as Unknown even with the high_expression_threshold_anchor levels 

were set at 0.2.  

 

SCINA13 

SCINA is a method used for cell type identification in scRNA-seq, employing a combination of cell 

type-specific marker signatures and an expression matrix. Data normalization is performed 

through log-transformation before further annotation. A signature matrix (referenced in Table S1) 

is utilized to classify cell types. In the first phase, primary cell types such as vasculature, tumor 

cells, stroma, immune cells, and smooth muscle are identified. Cells labeled as immune or 

unknown in the first round undergo a second round of classification, where they are further 

distinguished into B cells, T cells, CD11c+ dendritic cells, natural killer cells, lymphatics, plasma 

cells, macrophages, and granulocytes. The third round focuses on cells categorized as T cells or 

unknown from the second round, aiming to specify subsets like CD4 T cells, CD8 T cells, 

regulatory T cells (Tregs), and CD45RO+ CD4 T cells. For the PCF-HI, most of the cells return 

Unknown, therefore, we could not include in the analysis. The SCINA algorithm is executed using 

the SCINA() function, with parameters such as max_iter = 100, convergence_n = 10, 

convergence_rate = 0.999, sensitivity_cutoff = 0.9, rm_overlap=TRUE, allow_unknown=TRUE, 

and log_file='SCINA.log'. For more information about SCINA, refer to 

https://github.com/jcao89757/SCINA. 
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Louvain29:  

Louvain clustering is a widely used unsupervised method for identifying cell types in spatial omics 

datasets. This technique, originally developed for community detection in networks, optimizes 

modularity to partition data into clusters, making it particularly effective for distinguishing distinct 

cell populations based on gene expression profiles. To run Louvain clustering on spatial omics 

data, we first normalize the data using z-score normalization to standardize the expression levels. 

Next, we scale the data to ensure that each feature contributes equally to the analysis. We then 

perform dimensionality reduction using Uniform Manifold Approximation and Projection (UMAP) 

on the first 30 principal components to visualize the data in a lower-dimensional space. Finally, 

we apply Louvain clustering on the UMAP dimensions with a resolution of 0.8 to identify distinct 

clusters. After that, FindMarkers() function in Seurat version 5 would be used to find the top 5 

markers that define the clusters31. We look at individual clusters with their expression to assign 

cell types and the top 5 markers to assign the cell type for each cluster.  

 

 Seurat Label Transfer31: Automatic cell labeling was informed by the scRNAseq dataset using 

post-quality control data. Subsequent data scaling was performed using the ScaleData() function. 

Dimension reduction was achieved through PCA and UMAP, utilizing the RunPCA() and 

RunUMAP() functions respectively, focusing on the 30 selected features. The method involved 

the FindTransferAnchors function from Seurat v5. All 25 clusters remained consistent between 

the reference (SC) and query (ST) objects. 

 

Performance metrics 

Compare with reference:  

For a specific cell type, True Positive (TP) calls are defined as cells where the assigned cell types 

from the method match those in the ground truth benchmark dataset. False Positive (FP) calls 

are cells where the assigned cell types by the method do not match the ground truth or reference. 
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False Negative (FN) calls represent cells assigned by the benchmark but not by the method, while 

True Negative (TN) calls are cells not assigned by either the method or the benchmark. The 

weighted score considers the proportion of each cell type in the reference dataset, where 𝑖 is a 

cell type in the set of reference. 

Accuracy = BC,BD
BC,EC,BD,ED

 

Weighted recall = ∑ n BC#
BC#,ED#

o ∗ 𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛$$  

Weighted precision = ∑ n BC#
BC#,EC#

o ∗ 𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛$$  

Weighted F1 = 2 ∗	F@$-G&@H	IJ@>$K$L!∗N@$-G&@H	J@>A??
N@$-G&@H	IJ@>$K$L!,N@$-G&@H	J@>A??

 

 

Benchmark Datasets  

Four multiplexed tissue imaging studies with high confidence cell type assignments were used for 

TACIT evaluation and benchmarking: 

PhenoCycler 1 (PCF-Colorectal cancer)26: Data representing 140 tissue microarray (TMA) spots 

from 35 colorectal cancer (CRC) patients (17 in the CLR group and 18 in the DII group) were 

collected from 36 distinct tissues. In this study, the authors used spatial proteomics to examine 

the tumor environment and how the immune response correlates with survival outcomes in 

colorectal cancer. The TMAs were collected and imaged using a 56-marker CODEX (co-detection 

by indexing) panel, profiling a total of 258,386 cells. Cells identified as immune/vasculature 

(n=2,153) and immune/tumor (n=1,797), along with cells lacking a marker signature—including 

adipocytes (n=1,811), nerves (n=659), undefined (n=6,524), monocytes (n=815), and cells 

categorized as dirt (n=7,357)—were excluded from the analysis. This exclusion resulted in 

235,519 cells being retained for the cell type annotation benchmark analysis. The TMA imaging 

was segmented based on DRAQ5 nuclear stain, pixel intensities were quantified, and spatial 

fluorescence compensation was performed using the CODEX toolkit segmenter (available at 
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https://github.com/nolanlab/CODEX). Subsequently, the cells were subjected to X-shift clustering, 

and the resulting clusters were manually annotated to ensure the accuracy of the cell labels. The 

list of signature was provided in the original paper26. PCF-CRC can be download at: 

https://data.mendeley.com/datasets/mpjzbtfgfr/1. 

PhenoCycler 2 (PCF-Human Intestine)27: Data from 64 sections of the human intestine were 

collected from 8 donors (B004, B005, B006, B008, B009, B010, B011, and B012). In this study, 

the authors used spatial proteomics to examine the structure of the large and small intestines in 

humans. The raw image data were segmented using either the CODEX Segmenter or the 

CellVisionSegmenter (available at https://github.com/nolanlab/CellVisionSegmenter). Employing 

a 57-marker CODEX panel, a total of 2,603,217 cells were profiled. These cells were initially 

grouped using Leiden clustering and subsequently annotated under the supervision of the 

authors40. To ensure accuracy, the cell type labels were further consolidated by the authors by 

inspecting back-annotated cell types on the original images. The list of signatures cell types was 

provided in the original paper and expert domain knowledge. PCF-HI can be download at: 

https://datadryad.org/stash/dataset/doi:10.5061/dryad.pk0p2ngrf. 

 

MERFISH30: The mouse brain datasets include data for 36 mouse sample IDs across a total of 

60 slides. In this study, by combining MERFISH with scRNA-seq, we have elucidated the 

molecular, spatial, and functional organization of neurons within the hypothalamic preoptic region. 

The raw image data were segmented using a seeded watershed algorithm with DAPI and total 

mRNA co-stains. Initially, 1,027,848 cells were profiled. These cells were classified using graph-

based clustering and subsequently annotated by the authors. For our analyses with TACIT, we 

excluded 153,080 cells labeled as 'Ambiguous.' Additionally, to comply with Louvain's method 

requirements, cells where over 70% of genes had zero counts were also removed. The list of 

signatures cell types was provided in the original paper. After these filtering steps, the dataset 
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prepared for comparison with Louvain includes 505,961 cells covering 170 genes. MERFISH can 

be downloaded at:  

https://datadryad.org/stash/dataset/doi:10.5061/dryad.pk0p2ngrf. 

 

Xenium-SjD: A tissue microarray (TMA) was constructed, consisting of 63 cores derived from 

formalin-fixed paraffin-embedded (FFPE) tissue blocks from 21 patients (11 with Sjögren's 

Disease (SjD) and 10 without). Three cores per tissue block were extracted, using a TMA array 

to organize the blocks, and the patient samples were randomized from 1 to 21. To fit within the 

fiduciary framework of the TMA, the section was divided in half by scoring, placing 44 cores on a 

single slide, including 8 additional cores designated for control tissues. The analysis utilized the 

standard 280-plex Human breast cancer panel according to the protocols provided by 10x 

Genomics. 

Xenium-GVHD: A tissue microarray including three patients with chronic graft-versus-host 

disease and three healthy minor salivary glands, derived from FFPE tissue blocks, was mounted 

on a Xenium Slide (10x Genomics). To fit within the fiduciary frame, we melted the original blocks 

and embedded the samples in one block. The analysis utilized the standard 280-plex human 

breast cancer panel from 10x Genomics according to the protocol provided by the company. 

 

Marker Enrichment Strength 

For each marker unique to a specific cell type (a marker that is a signature for only one cell type), 

we calculate the log2 fold change (log2FC) of that marker in the signature cell type compared to 

the mean value in other cell types where it is not a signature. Additionally, we perform a one-sided 

Wilcoxon test to determine if the expression of the marker in the signature cell type is significantly 

greater than its expression in non-signature cell types. 

 

Statistical Analyses 
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Statistical analyses were conducted, and figures were created using R (version 4.3.0). For 

comparisons between two groups, Student’s t-test was used when the assumption of normality 

was met; otherwise, the non-parametric Wilcoxon rank-sum test was applied. For comparisons 

involving more than two groups, analysis of variance (ANOVA) was used, followed by post-hoc 

tests if significant differences were detected. For multiple comparisons, the false discovery rate 

was used to adjust the P-values (Benjamini-Hochberg procedure). Results were considered 

statistically significant if P < 0.05 or if the adjusted P < 0.05 for multiple testing. 

 

Cell-cell interactions and neighborhood analysis 

Spatial omics data from each individual tissue was processed that describes cellular interactions 

as graphs with nodes representing individual cells and edges potential cellular interactions as 

determined by Delaunay triangulation. A 97th  percentile distance threshold was established for 

each tissue to eliminate edges representing improbably long cell-to-cell distances. Cells classified 

as "Unknown" (non-deconvoluted cells) were excluded from the analysis before conducting 

Delaunay triangulation. An interaction matrix was then constructed, with each element 𝑎$% 

representing the number of edges shared between cell type 𝑖 and cell type 𝑗. To visually represent 

these differences, a hierarchically clustered heatmap using Euclidean distance was generated. 

 

Shiny app  

The Shiny app (here called Astrograph) takes the input of the signature matrix and the CSV file 

output from TACIT annotation, which includes spatial information, UMAP coordinates, 

CELLxFEATURE matrix, and marker thresholds. The app provides a user interface with spatial 

plots and UMAP visuals featuring annotations, marker expression thresholds, and weighted cell 

type calculations. Users can also access color annotations, spatial neighborhood connections 

between cell types across the whole tissue or ROI, and Moran's I for each marker and cell type 
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to identify spatial autocorrelation. Additional tools include annotated mean heatmaps, Voronoi 

plots, and proportions of cell types and cell state markers. 

 

Cellenics  

The single-cell RNA sequencing dataset was managed, analyzed, and visualized using the 

Cellenics® community platform (https://scp.biomage.net/) hosted by Biomage 

(https://biomage.net/). Cellenics® is now Trailmaker, just released by Parse Biosciences. Pre-

filtered count matrices were uploaded to Cellenics®. Barcodes were filtered through four 

sequential steps. Barcodes with fewer than 500 UMIs were removed. Barcodes representing dead 

or dying cells were excluded by filtering out those with more than 15% mitochondrial reads. A 

robust linear model was fitted to the relationship between the number of genes with at least one 

count and the number of UMIs per barcode using the MASS package (v. 7.3-56) to filter outliers. 

The model predicted the expected number of genes for each barcode, with a tolerance of 1 - 

alpha, where alpha is 1 divided by the number of droplets in each sample. Droplets outside the 

prediction interval were removed. The scDblFinder R package v. 1.11.3 was used to calculate the 

likelihood of droplets containing multiple cells, and barcodes with a doublet score above 0.5 were 

filtered out. After filtering, each sample contained between 300 and 8000 high-quality barcodes, 

which were then input into the integration pipeline. Initially, data was log-normalized, and the top 

2000 highly variable genes were selected using the variance stabilizing transformation (VST) 

method. Principal component analysis (PCA) was performed, and the top 40 principal 

components, explaining 95.65% of the total variance, were used for batch correction with the 

Harmony R package. Clustering was performed using Seurat’s implementation of the Louvain 

method. For visualization, a Uniform Manifold Approximation and Projection (UMAP) embedding 

was calculated using Seurat’s wrapper for the UMAP package. Cluster-specific marker genes 

were identified by comparing cells of each cluster to all other cells using the presto package’s 

Wilcoxon rank-sum test. Keratinocytes were isolated from the complete experiment by extracting 
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manually annotated barcodes and filtering the Seurat object. These subset samples were then 

input into the Biomage-hosted instance of Cellenics®. Filtering steps were skipped since the data 

was already filtered. The data underwent the same integration pipeline as the full experiment. All 

cells were manually annotated using relevant literature and CellTypist. 

 

Ethical Approval 

All original research (Figures 3-5; Extended Data 5) complies with country-specific regulations for 

ethical research engagement with human participants. 

 

Sample Collection and Tissue Preparation: Deidentified minor salivary gland (MSG) tissues were 

obtained from diagnostic biopsies in healthy and chronic GVHD patients (University of Sao Paulo 

IRB 65309722.9.0000.0068; MTA 45276721.4.0000.0068 IRB/MTA). All patients seen at the 

Dentistry Division of the Hospital das Clinicas of Medicine School of University of Sao Paulo 

reported herein provided informed consent before participation in this research protocol. All 

patients have received full medical and dental assistance during the research time and will be 

followed by the oral medicine team unrestricted. Tissues were fixed in a 10% solution of NBF for 

a minimum of 24h at 4˚C and mounted on paraffin-embedded SuperFrost Plus slides (See 

Supplementary Methods for biopsy and tissue-mounting procedures). 

 

Research participants provided informed consent according to NIH-approved IRB protocols (15-

D-0051, NCT00001390) before any study procedures were performed. All participants were 

assessed and categorized based on the 2016 classification criteria from the American College of 

Rheumatology (ACR) and the European League Against Rheumatism (EULAR). Comparator 

tissues were obtained from subjects (non-SjD) who were otherwise healthy and did not meet the 

2016 ACR-EULAR criteria. All subjects underwent screening for systemic autoimmunity and 

received thorough oral, salivary, rheumatological, and ophthalmological evaluations. Clinical 

investigations adhered to the principles outlined in the Declaration of Helsinki. 
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Clinical Protocol University of Sao Paulo: Patients included in this study were sourced from 

two distinct pathways. One pathway involved direct inclusion from the São Paulo Capital Death 

Verification System. This included patients who had died from acute causes and were under 65 

years of age. These individuals underwent post-mortem minor salivary gland biopsies within 4 

hours of death. Tissue removal was performed using the minimally invasive autopsy technique as 

described by Matuck et al. (2022) in the Journal of Pathology. The collected tissue samples were 

then sent to the histology department at the University of São Paulo School of Medicine for further 

processing as outlined in the described protocol. 

 

GVHD patient biopsies were obtained from the biobank at the University of São Paulo School of 

Medicine. These patients were re-consented and followed up for chronic GVHD clinical 

evaluation. The biopsy samples, taken during episodes of oral lesions, were sent to the histology 

department for processing following the same procedures mentioned above. 

 

Spatial Transcriptomics (Xenium) Sample Preparation: The Xenium workflow, using 

experimental chemistry and prototype instruments and consumables, starts with sectioning 5 μm 

FFPE tissue sections onto a Xenium slide. These sections are then deparaffinized and 

permeabilized to make the mRNA accessible. The mRNAs are targeted by the 313 probes and 

two negative controls: probe controls to assess non-specific binding and genomic DNA (gDNA) 

controls to confirm that the signal comes from RNA. Probe hybridization takes place overnight at 

50 °C with a probe concentration of 10 nM. After a stringency wash to remove un-hybridized 

probes, the probes are ligated at 37 °C for two hours, during which a rolling circle amplification 

(RCA) primer also anneals. The circularized probes are then enzymatically amplified (one hour at 

4 °C followed by two hours at 37 °C), producing multiple copies of the gene-specific barcode for 

each RNA binding event, which results in a high signal-to-noise ratio. After washing, background 
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fluorescence is chemically quenched. The biochemistry is designed to minimize 

autofluorescence, which can be caused by lipofuscins, elastin, collagen, red blood cells, and 

formalin-fixation. Sections are then placed into an imaging cassette for loading onto the Xenium 

Analyzer instrument. 

 

Spatial Transcriptomics - Xenium: Gene Panel Design: The Xenium in Situ technology employs 

targeted panels to detect gene expression, this includes 280 genes from the Xenium Human 

Breast Panel. The probes are designed with two complementary sequences that hybridize to the 

target RNA and a third region encoding a gene-specific barcode. This allows the paired ends of 

the probe to bind the target RNA and ligate to form a circular DNA probe. If an off-target binding 

event occurs, ligation does not happen, which suppresses off-target signals and ensures high 

specificity. 

 

Xenium Analyzer Instrument: The Xenium Analyzer is a fully automated system that includes 

an imager (with an imageable area of approximately 12 × 24 mm per slide), sample handling, 

liquid handling, wide-field epifluorescence imaging, capacity for two slides per run, and an on-

instrument analysis pipeline. The imager uses a fast area scan camera with a high numerical 

aperture, a low read noise sensor, and approximately 200 nm per-pixel resolution. Image 

acquisition on the Xenium Analyzer is performed in cycles. The instrument automatically cycles 

in fluorescently labeled probes for detecting RNA, incubates, images, and removes them. This 

process is repeated for 15 rounds of fluorescent probe hybridization, imaging, and probe removal, 

with Z-stacks taken at a 0.75 μm step size across the entire tissue thickness. 

Image Pre-Processing: The Xenium Analyzer captures Z-stacks of images in every cycle and 

channel, which are then processed and stitched to create a spatial map of the transcripts across 

the tissue section. Stitching is performed on the DAPI image, taking all stacks from different fields 

of view (FOVs) and colors to create a complete 3D morphology image (morphology.ome.tif) for 
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each stained region. Lens distortion is corrected based on instrument calibration data, which 

characterizes the optical system. The Z-stacks are further subsampled to a 3 μm step size, which 

is empirically determined to be useful for cell segmentation quality. Image features are extracted 

from overlapping FOVs and feature matching estimates offsets between adjoining FOVs to ensure 

consistent global alignment across the image. Finally, the 3D DAPI image volumes (Z-stacks) 

generated across FOVs are stitched together. 

 

Multiplex Proteomics (Phenocycler Fusion): The multiplex analysis was performed on 5 µm 

FFPE sections mounted on SuperFrost Plus slides (ThermoFisher, MA, USA). The sections 

underwent deparaffinization and rehydration, followed by immersion in a Coplin jar containing 

1:20 AR9 buffer (Akoya Biosciences, MA, USA). The jar was placed in a pressure cooker for 15 

minutes at low pressure, then cooled at room temperature for 30 minutes. The samples were then 

rinsed in deionized water for 30 seconds and in 100% ethanol for 3 minutes. Pre-staining 

procedures involved immersing the slides in hydration buffer for 2 minutes and staining buffer for 

20 minutes (Akoya Biosciences, MA, USA). The primary antibody cocktail was prepared with 4 

blockers (G, S, J, and N), each at 9.5 µL in 362 µL of staining buffer. For each slide, 150 µL of the 

cocktail was aliquoted and 1 µL of each antibody (as listed below) was added. The slides were 

then placed in a humidity chamber (StainStray, Sigma-Aldrich, MO, USA) and incubated overnight 

at 4°C. Following incubation, slides were fixed in a post-staining solution for 10 minutes. After 

fixation, slides underwent sequential 1-minute PBS washes and a 5-minute immersion in ice-cold 

methanol. The sections were then treated with 200 µL of a final fixative solution for 20 minutes, 

followed by additional washes to remove the fixative. Slides were dried and mounted using the 

Akoya flow cell, which seals the flow cell/coverslip onto the slides for 30 seconds. The slides were 

removed from the press and soaked in 1X PCF buffer (Akoya Biosciences, MA, USA). PCF 

reporter wells were prepared by covering a 15 mL Falcon tube with aluminum foil, then adding 

6.1 mL of nuclease-free water, 675 µL of 10X PCF buffer, 450 µL of PCF assay reagent, and 4.5 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 3, 2024. ; https://doi.org/10.1101/2024.05.31.596861doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.31.596861
http://creativecommons.org/licenses/by-nc/4.0/


µL of concentrated DAPI solution (prepared in-house) to achieve a final DAPI concentration of 

1:1000. This reporter stock solution was distributed into 18 amber vials, with each vial containing 

235 µL of the solution. For each cycle, 5 µL of reporter was added to each vial, resulting in a total 

volume of either 245 µL (for 2 reporters) or 250 µL (for 3 reporters) as detailed in Supplemental 

Methods Table 2. Reporters were selected from Atto550, AlexaFluor 647, and AlexaFluor 750 

based on experimental needs. Distinct pipette tips were used to transfer the contents of each 

amber vial into a 96-well plate. DAPI-containing vials were pipetted into wells in the H-row, while 

reporter-containing vials were distributed into other rows. Once the wells were filled, they were 

sealed with adhesive aluminum foil (Akoya Biosciences, MA, USA). Imaging was conducted using 

a PhenoImager Fusion system connected to a PhenoCycler (PhenoCycler Fusion system from 

Akoya BioSciences) with a 20X objective lens from Olympus. Solutions required for instrument 

operation included ACS-grade DMSO from Fisher Chemical, nuclease-free water, and 1X PCF 

buffer with an added buffer additive. This solution was prepared by mixing 100 mL of 10X PCF 

buffer, 100 mL of buffer additive, and 800 mL of nuclease-free water. 

Antibody List and Reporter List 

PCF Antibody Clone Barcode/Reporter Wavelength 

CD8A C8/144B BX/RX026 Atto550 

CD4 EPR6855 BX/RX003 AF647 

CD20 L26 BX/RX020 AF750 

GZMB D6E9W BX/RX041 Atto550 

FOXP3 236A/E7 BX/RX031 AF647 

Ki67 B56 BX/RX047 Atto550 

PHH3 AKYP0060 BX/RX030 AF647 

HLA-A EP1395Y BX/RX004 AF750 

Galectin-3 M3/38 BX/RX035 Atto550 

CD3E EP449E BX/RX045 AF647 

CD45RO UCHL1 BX/RX017 Atto550 

CD45 D9M81 BX/RX021 AF647 

CD21 AKYP0061 BX/RX032 Atto550 
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PD-L1 73-10 BX/RX043 AF647 

CD14 EPR3653 BX/RX037 Atto550 

PD-1 D4W2J BX/RX046 AF647 

MPO AKYP0113 BX/RX098 Atto550 

CD68 KP1 BX/RX015 AF647 

CD31 EP3095 BX/RX001 AF750 

KRT14 Poly19053 BX/RX002 Atto550 

CD107a H4A3 BX/RX006 AF647 

KRT8/18 C51 BX/RX081 AF750 

CD141 AKYP0124 BX/RX087 Atto550 

ICOS D1K2T BX/RX054 AF647 

SMA AKYP0081 BX/RX013 AF750 

PDPN NC-08 BX/RX023 Atto550 

COL_IV EPR20966 BX/RX042 AF647 

CD34 AKYP0088 BX/RX025 Atto550 

HLA-DR EPR3692 BX/RX033 AF647 

Bcl2 EPR17509 BX/RX085 AF647 

Caveolin D46G3 BX/RX086 AF750 

IFNG AKYP0074 BX/RX020 Atto550 

CD66A/C/E ASL-32 BX/RX016 AF647 

CD56 CAL53 BX/RX028 Atto550 

CD11c 118/A5 BX/RX024 AF647 

PanCK AE-1/AE-3 BX/RX019 AF750 

    

Image Segmentation: qpTIFF images were opened into QuPath 5.0, segmentation was acquired 

in three different methods, the linear nuclei expansion was obtained using Watershed directly 

from QuPath, the Pre trained models were used applying the QuPath extension generated using 

the workflow established by Bankhead P.  

(https://qupath.readthedocs.io/en/latest/docs/advanced/stardist.html). 
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 The HITL methods utilized used a GUI based approach established by Cellpose 3.0 with 

denoising and HITL training in 50 different ROIs of MSG H&E sections. The application of the 

methods was performed into a 3 ROIs of 900 microns x 800 microns in three different GVHD 

patients MSG biopsies. The parameters used by the three methods were the same: Pixel size 

was 0.1micron, Sigma 1, DAPI threshold 12. Cell expansion 10 into the linear model and the pre-

trained model, no cell expansion required for the HITL model. In the HITL model the mask was 

exported to the QuPath allowing the same extraction csv matrix with the cells IDs and the protein 

markers expressed in each cell ID. 

 

Protocol. Combined Xenium and PCF: After the Xenium experiment, the slides underwent a 

quenching process as described in the Xenium Assay 10X Genomics manual. The slides were 

then stored in a container with 50% BPS and 50% glycerol for two days. To resume the 

experiment, the slide was washed in PBS for 3 minutes, and antigen retrieval was performed 

using AR9 Buffer (Akoya Biosciences) in a pressure cooker for 15 minutes at low pressure. The 

rest of the antigen retrieval protocol until the start of the PhenoCycler fusion experiment was 

carried out as described in the 'spatial proteomics' methods section above. 

Mask Transfer:  For the combined Xenium and PCF assay, the cell segmentation masks 

obtained from Xenium analyzer were used for both Xenium and PCF analysis. Since Xenium 

acquisition is performed with a 40x objective lens and PCF with a 20x objective lens, for the 

purposes of cell mask transfer (from Xenium to PCF), the Xenium DAPI image 

(morpholopgy_mip.ome.tif) was down sampled by a factor of 2. The Xenium cell boundary 

polygons (stored in cell_boundaries.csv.gz in the Xenium output folder) were subsequently 

converted to match the downsampled Xenium DAPI image. The cell boundary masks were then 

saved as a .geojson, with their cell names from Xenium analyzer retained, for use in QuPath for 

subsequent analysis. Since it is possible for the sample not be perfectly aligned Xenium and PCF 

experiments, the PCF .qptiff image was registered to the down sampled Xenium DAPI image, 
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using the non-rigid registration workflow in VALIS v1.0.4   

(https://www.nature.com/articles/s41467-023-40218-9). The resulting aligned PCF image is 

saved as an .ome.tiff with the additional downsampled Xenium DAPI channel using the Kheops 

plugin for FIJI (Guiet, R., Burri, O., Chiaruttini, N., Seitz, A., & Eglinger, J. (2021). Kheops (Version 

0.1.8) [Computer software]. https://doi.org/10.5281/zenodo.5256256).   

Manual Quantification: For the comparison of cell assignment methods, manual counting was 

conducted by a pathologist (BFM) within designated Regions of Interest (ROIs). These ROIs 

comprised 1500-1800 cells each. Manual counting involved quantifying cells based on canonical 

marker labels and morphological features. For example, KRT18 combined with specific 

morphological features was used to identify Acinar Cells, PAN-Ck combined with morphological 

features identified Duct cells, CD31 identified Vascular endothelial cells, SMA identified 

Myoepithelial cells, and CD45 identified immune cells. Additionally, specific markers were utilized 

for identifying unique cell types that are determined by a single marker. Upon completion of the 

manual counting process, the quantification data were systematically transferred into a table 

format. This table facilitated the calculation of the presence of each cell type within the respective 

ROIs. To assess the convergence between clusters and TACIT, the average number of cells for 

each type was used to compute the absolute error associated with each cell type.  

DATA AVAILABILITY: 

The benchmark public data can be found at: https://data.mendeley.com/datasets/mpjzbtfgfr/1 

(PCF-CRC), https://datadryad.org/stash/dataset/doi:10.5061/dryad.pk0p2ngrf (PCF-HI), and 

https://datadryad.org/stash/dataset/doi:10.5061/dryad.pk0p2ngrf (MERFISH). Source data for 

reproduced figure available at: https://zenodo.org/records/11397609 . All other data is available 

upon reasonable request.  

 

CODE AVAILABILITY: 
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All codes related to TACIT can be found at https://github.com/huynhkl953/TACIT  
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Figure legends: 

Figure 1. General TACIT Workflow: (a) Multiplex imaging employs both spatial proteomics (top) 

and spatial transcriptomics (bottom). After segmentation (b top), a CELLxFEATURE matrix is 

generated (c). Hierarchical cell type structures (b bottom) are formulated based on panel design, 

expert knowledge, and scRNA-seq marker matching, resulting in a CELLTYPExMARKER matrix 

(c). Cells are organized into microclusters (MCs) by a community-based Louvain algorithm, 

averaging 0.1%-0.5% of the population (d top). These matrices are then used to compute Cell 

Type Relevance (CTR) scores for all cell types across cells (d bottom). Optimal thresholds are 

established to classify cells as clean if they meet one threshold or mixed if multiple (e). The UMAP 

with all features shows no clear separation between two distinct cell types (g – top left); however, 

clear segregation appears when only relevant features are used in the UMAP embedding (g – top 

right). Mixed identities are resolved by analyzing the mode of cell types within their k-nearest 

neighbors (g – bottom). Validation is performed via heatmaps comparing mean marker and cell 

type values with the CELLTYPExMARKER matrix (h – top), and by calculating enrichment scores 

for each cell type (i – bottom). The UMAP plot illustrates spatial distributions with cell type 

annotations (j top-right) and connections of cell type clusters (j bottom-left), combining cell type 

and state analyses (j bottom-right). Extended details of step e: Threshold derivation extends to 

segmental regression on ordered median CTR scores across all MCs to identify breakpoints (i & 

ii), defining “low relevance group (LRG)” and “high relevance group (HRG)” (ii). The determined 

CTR threshold minimizes classification error, distinguishing between LRG and HRG (iv & v). Cells 

above the threshold are highlighted in red on the UMAP, while those below are in grey (vi). 
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Figure 2: Application of TACIT on PhenoCycler data from PCF-CRC (top panel) and PCF-HI 

(bottom panel). (a,g) Examples of spatial plots color-coded by identified cell types, illustrating 

the spatial distribution and clustering of cells as determined by TACIT. These plots demonstrate 

how TACIT preserves the spatial structure of cell types, maintaining consistency with the 

reference data. (e,k) UMAP representations with cell type delineations, showing the clustering of 

cells in a two-dimensional space. TACIT's UMAP plots reveal a higher degree of similarity to the 

reference clusters compared to other methods, indicating its superior performance in accurately 

identifying cell types. (f,i) Heatmaps comparing the mean marker values for each cell type 

identified by TACIT and other existing methods. TACIT's heatmaps exhibit distinct and clear 

unique marker expressions for each cell type, with a diagonal pattern that highlights its precise 

cell type identification capabilities. (d,j) Recall, precision, and F1 score comparisons between 

TACIT (PCF-CRC: 0.74 (Recall), 0.79 (Precision), 0.75 (F1), PCF-HI: 0.73 (Recall), 0.79 

(Precision), 0.75 (F1)) and existing methods, benchmarked against the reference. TACIT 

consistently outperforms other methods, achieving higher recall, precision, and F1 scores, which 

underscores its accuracy and reliability in cell type identification. (e,k) Correlation plots illustrating 

the relationships between different cell type identification methods for both abundant cell types 

and rare cell types. TACIT shows strong correlations with the reference data, particularly for rare 

cell types (PCF-CRC: R=0.58, PCF-HI: R=0.76), where it demonstrates a higher degree of 

similarity in cell type identification compared to other methods. (f,l) Intensity comparison of unique 

markers between TACIT and existing methods. TACIT displays significantly different enrichment 

scores, particularly when compared to methods like Louvain (PCF-CRC & PCF-HI: p-value<0.05) 

or SCINA (PCF-CRC: p-value<0.05), indicating its enhanced ability to identify and distinguish 

unique cell markers. 

 

Figure 3: Application of TACIT on Xenium data. (a) UMAP and (b) spatial plots color-coded by 

identified cell types. The UMAP plots demonstrate TACIT's ability to cluster cells accurately, 
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showing a clear separation of different cell types. Notably, epithelial such as mucous acinar, 

myoepithelial, and seromucous acinar cells form more distinct and clear clusters under TACIT's 

annotation compared to Louvain and Seurat Transfer methods. The spatial plots further illustrate 

the spatial distribution of these cell types, maintaining the structural integrity and spatial 

organization consistent with the reference data. (c) Heatmaps depicting cell types and markers 

between TACIT, Louvain, Seurat transfer, and the signature matrix. TACIT's heatmaps present 

clear and distinct patterns, highlighting its precise identification of cell types and markers. This 

clarity is especially notable when compared to the other methods, which show less distinct marker 

expressions. (d-e) UMAP plots with low granularity cell types across the three methods. TACIT's 

enhanced capabilities are further exemplified by its identification of rare and diverse cell types, 

such as duct cells and duct progenitors, as well as various T cell types including CD4, CD8, CD8 

exhausted, and T cell progenitors. (f) Correlation plot of cell type proportions between the three 

methods in Xenium, compared with scRNA cell type proportions. TACIT shows a higher 

correlation (Spearman Correlation, R=0.84) with scRNA cell type proportions, indicating a more 

consistent and reliable identification of cell types. In contrast, Seurat transfer and Louvain show 

lower correlations of 0.49 and 0.69, respectively. (g) TACIT and Seurat transfer able to find all the 

cell type matches with scRNA. (h-i) Intensity comparison of unique markers between TACIT and 

existing methods. TACIT exhibits a higher intensity of unique marker expressions compared to 

Louvain, with a log2 fold change (p-value<0.05), and shows significant performance over Louvain 

and Seurat transfer, with a -log10 adjusted p-value (p-value<0.05). 

 

Figure 4: Single-Slide Spatial Multiomics Annotation using TACIT (a) Spatial Transcriptomics 

– A Xenium experiment was conducted on minor salivary glands of GVHD patients using a 280-

gene panel focusing on structural and immune cells. The inset shows a high-density immune area 

and the overlay of representative structural, immune, and cell state transcripts in the area of 

interest. (b) Spatial Proteomics – A post-Xenium Phenocycler Fusion experiment was performed 
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on the same slide, using a 36-antibody panel targeting structural and immune cells. The 

segmentation mask was shared between both experiments to extract spatial single-cell data. (c) 

The UMAP of the Xenium data using TACIT and Louvain shows a higher granularity in the 

annotations made by TACIT. The cell types identified solely by TACIT are highlighted in the cell 

type annotation (arrows). (d) Voronoi plot showing TACIT's annotation reconstruction of a GVHD 

case. The inset reveals the heterogeneity of cells detected in a high-density immune infiltrate. (e) 

Venn diagram showing the matched and unique cell types detected by each tool in the spatial 

transcriptomics experiment. TACIT identified 22 cell types, with 4 not matched by Louvain. All cell 

types detected by Louvain were also detected by TACIT. (f). The absolute error of cell assigns 

compared with human pathologist evaluation, for each cell type using TACIT and Louvain. (g) The 

UMAP of the Phenocycler Fusion data using TACIT and Louvain shows a higher granularity in the 

annotations made by TACIT. The cell types identified solely by TACIT are highlighted in the cell 

type annotation (arrows). (h) Voronoi plot showing TACIT's annotation reconstruction based on a 

spatial proteomics assay of a GVHD case. The inset shows the heterogeneity of cells detected in 

a high-density immune infiltrate at a lower resolution compared to the spatial transcriptomics. (i) 

Venn diagram showing that TACIT recognized and assigned 18 cell types, with two structural and 

two immune cell types uniquely detected by TACIT. (j) The absolute error of cell quantity 

signatures using a spatial transcriptomics assay, compared with human pathologist, for each cell 

type using TACIT and Louvain. 

 

Figure 5: Application of TACIT in a Multimodal Single-Slide Tertiary Lymphoid Structure (a) 

Spatial transcriptomics and proteomics assays were used for segmentation to extract spatial 

single-cell data. The segmentation mask was transferred from experiment to the another, even 

then it can present bleed-through of markers between cells; proteomics data can show 

immunofluorescence markers staining the edges of adjacent B cells (arrows). The same issue 

can occur with transcript probes being detected outside the cell boundary, as shown in a tertiary 
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lymphoid structure (TLS) in a GVHD minor salivary gland where the MS4A1 gene is detected 

outside of B cells. (b) TACIT and Louvain have different performances when analyzing high-

density immune areas of interest, such as a TLS. The immune cell proportion identified by TACIT 

showed a more detailed population of cells expected in a TLS compared to Louvain. (c) A heatmap 

shows the genes and proteins used to create cell signatures by TACIT and Louvain. Using the 

same list of genes, TACIT outperforms Louvain in terms of clear markers for each cell type and 

cell recognition in a high-density immune cell area. (d) Voronoi plots illustrate how different 

assignments can create varying outcomes and analyses. The TACIT reconstruction using the 

signature list shows a heterogeneity of immune cells surrounded by small vessels and antigen-

presenting cells, as expected in a TLS. Louvain presented a lower resolution of cell recognition, 

combining all immune cell types into just one innate and one adaptive immune cell type. (e) 

Downstream analysis can be impacted by using different tools to assign cells in multi-omics spatial 

assays. The neighborhood analysis presented by a Delaunay triangulation shows the expected 

proximity of cells in a TLS, such as B cells and dendritic cells with small vessels and T cells using 

TACIT. Louvain presented unilateral interactions, all related to the structural cell types, which were 

the most abundant cell type in the ROI analyzed. (f) The use of a single-slide spatial proteomics 

and transcriptomics opens the possibility of finding cell types and assigning chemokines, 

interleukins, and immune checkpoints to each cell type. This not only detects cellular patterns but 

also begins to explore spatial cell-cell communication validation and interactions. The ROI 

reconstruction using TACIT showed CD247 assigned to T cells, B cells, and macrophages, 

whereas Clustering's signature was unique to B cells and surrounded by capillaries with no other 

interactions. 

 

Figure 6. Multimodal analysis using ST and SP in a single slide. (a) Two assays were 

combined on the same slide and section: Phenocycler Fusion (SP) and Xenium (ST). These were 

performed using a 36-antibody panel and a 280-gene panel. A segmentation mask was created 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 3, 2024. ; https://doi.org/10.1101/2024.05.31.596861doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.31.596861
http://creativecommons.org/licenses/by-nc/4.0/


using a human-in-the-loop approach and inputted into the Xenium Ranger. This mask was then 

transferred to the SP assay, maintaining cell IDs between the two experiments.(b) After 

segmentation, a matrix was extracted containing the pixel values of each immunofluorescent 

channel from the SP and the transcripts per cell from the ST. (c) This cell-by-feature matrix was 

then normalized and cell-assigned using TACIT. (d). The matched number of cells assigned by 

the SP and ST assays was quantified to evaluate the correlation in cell assignment for each major 

cell type – structural and immune cells. The correlation for structural cells using all transcripts and 

proteins was 0.37, and for immune cells, it was 0.01. (e). After the initial annotation, specific cell 

markers were used to assign cell types that had both protein and transcript designations in the 

proteomics and transcriptomics assays. The masks of cells annotated in three different ROIs with 

a high density of immune cells showed 34% agreement when using all markers. (f). A smaller 

subset of matched protein and RNA panels was utilized to improve agreement. The Voronoi mask 

showed better convergence in cell type annotation, increasing cell ID matching to 81%. (g-h) The 

difference in annotation by each approach for each of the six cell types selected using matched 

protein and RNA markers showed an improvement in cell assignment, with the proportion of the 

cell types. (i). After multimodal cell assignment, TACIT was also able to provide cell state markers 

for each cell. PD-1 and PDCD1 were used to understand the ratio of transcripts and proteins in 

high-density immune cell ROIs. The presence of these two markers was analyzed using SP alone, 

ST alone, and the two assays combined. (j) The proportion of positivity cell state in mRNA such 

as PDCD1 and MKI67 are significantly lower than PD-1 (p-value<0.05) and Ki67 (p-value<0.05) 

in protein for B cells and CD4+ T cells across TLS.  

 

Extended Data 1: Quantitative of comparison between TACIT and existing methods for 

individual cell type. (a-c) Boxplots depict recall (a), precision (b), and F1 scores (c) for individual 

cell types in PCF-CRC, demonstrating the performance of TACIT compared to three alternative 

methods. TACIT shows significantly higher recall, precision, and F1 scores than CELESTA (p-
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value<0.05), SCINA (p-value<0.05), and Louvain (p-value<0.05), highlighting its superior 

accuracy in identifying individual cell types within the PCF-CRC dataset. (d) Comparison of cell 

type proportions between TACIT and existing methods, with CELESTA and SCINA showing a 

disproportionately high proportion of the "Others" group in PCF-HI datasets. This over-

representation of undefined cell types indicates a limitation in their classification capabilities. (e) 

Weighted recall, precision, and F1 scores comparing TACIT with existing methods in PCF-HI 

datasets. Even after excluding the "Others" category, TACIT consistently outperforms other 

methods, demonstrating higher weighted recall, precision, and F1 scores. (f-h) Boxplots illustrate 

recall (f), precision (g), and F1 scores (h) for individual cell types in PCF-HI. TACIT's performance 

in these metrics remains higher than CELESTA, SCINA and Louvain, further validating its 

effectiveness in cell type identification.  

 

Extended Data 2: Evaluating Stability and Resolution Impact in TACIT Annotations on PCF-

CRC Datasets. Stability and parameter optimization of TACIT annotations are assessed using 

bootstrap methods on the PCF-CRC datasets. We employed a bootstrap approach by randomly 

selecting 80% of the original data and running TACIT 10 times to evaluate its stability and 

robustness. This method ensures that our findings are not biased by any subset of data and 

provides a comprehensive assessment of TACIT's performance consistency. (a) The boxplot 

displays thresholds for each cell type score across the 10 bootstrap iterations, demonstrating that 

the threshold values remain stable. (b-d) Validation metrics such as recall, precision, and F1 

scores are presented for each iteration. These metrics show minimal variation across the 10 

bootstrap samples, underscoring TACIT's reliability in maintaining high performance metrics 

under different subsets of the data. (e-g) Various resolution levels were tested to assess their 

impact on the performance of TACIT. Higher resolution levels, which correspond to an increased 

number of microclusters, showed a positive correlation with recall values, particularly for rare cell 
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types that constitute less than 1% of the data. This enhancement in recall is crucial for accurately 

identifying and characterizing rare cell populations. 

 

Extended Data 3: Application of TACIT on MERFISH data from mouse brain. (a) UMAP 

representations with cell type delineations provide a visual overview of how TACIT effectively 

clusters cells, showing matching with the reference compared to Louvain clustering. (b) Examples 

of spatial plots color-coded by identified cell types demonstrate the spatial distribution and 

organization of cells as identified by TACIT. These plots emphasize TACIT's ability to preserve 

spatial integrity, showcasing well-defined structures and consistent cell type placement within the 

tissue context. (c) Heatmaps comparing the mean marker values for each cell type identified by 

TACIT and Louvain, along with provided reference data, illustrate the distinct marker expression 

patterns for each cell type. (d) Comparison of weighted recall, precision, and F1 scores between 

TACIT and Louvain, benchmarked against the reference, demonstrates TACIT's superior 

performance. TACIT consistently achieves higher scores across these metrics (Recall = 0.85, 

Precision = 0.87, and F1 = 0.85). (e) Correlation plots illustrating the relationships between 

different cell type identification methods for both abundant (R=0.99) and rare cell types (R=94) 

reveal TACIT's strong correlation with reference data. (f) Intensity comparison of unique markers 

between TACIT and existing methods shows that TACIT exhibits higher intensities of unique 

marker expressions, which log2FC and -log10 adjusted p-value significant different than Louvain 

(p-value<0.05). 

 

Extended Data 4: Using biased cell annotation to discover cell types signatures to support 

spatial analyses. (a) Trailmaker (Parse Biosciences; formerly, Cellenics®) was used to perform 

cell type annotation on UMAPs. (b) Differentially expressed genes that become a marker set per 

cluster were generated using their dot plot tool. 
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Extended Data 5: Heatmap of PCFs in 6 Xenium and PCF paired samples. The heatmap 

displays the mean expression of each antibody and cell type, annotated using three methods: 

Louvain with default resolution = 0.8 (first column), Louvain after manual annotation (second 

column), and TACIT annotation (third column). For the first column, we used Louvain clustering 

with a default resolution of 0.8. In the second column, we manually annotated the Louvain clusters 

by examining the different gene expressions and identifying the top three markers for each cluster. 

We then compared these markers with known signatures to assign cell types to each cluster. In 

the third column, we present the results from TACIT annotation. When comparing TACIT to the 

Louvain-based methods, TACIT provides more unique and clear diagnostic markers, resulting in 

distinct and well-defined cell type annotations. This clarity and uniqueness in marker expression 

underscore TACIT's superior performance in accurately identifying cell types. 

 

Extended Data 6: Heatmap of Xeniums in 6 Xenium and PCF paired samples. The heatmap 

displays the mean expression of each antibody and cell type in the Xenium dataset, annotated 

using three different methods: Louvain with default resolution = 0.8 (first column), Louvain after 

manual annotation (second column), and TACIT annotation (third column). For the first column, 

we utilized Louvain clustering with a default resolution of 0.8. In the second column, the Louvain 

clusters were manually annotated by examining the different gene expressions and identifying the 

top three markers for each cluster. These markers were then compared with known signatures to 

assign specific cell types to each cluster. In the third column, we show the results from TACIT 

annotation. Compared to the Louvain-based methods, TACIT delivers more distinct and unique 

diagnostic markers, leading to clearer and more precise cell type annotations. This enhanced 

clarity and uniqueness in marker expression highlight TACIT's superior capability in accurately 

identifying cell types within the Xenium dataset. 
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Extended Data 7: Multimodal analysis between spatial transcriptomics and spatial 

proteomics in TLS region. (a) TLS region with initial TACIT annotation using the whole panel of 

Xenium and PCF versus TACIT annotation using matched marker sets. When using the entire 

panel, the agreement between the two technologies (Xenium and PCF) was relatively low, with 

agreement rates of 31%, 23%, and 42%. However, focusing on matched marker sets significantly 

improved the agreement to 75%, 80%, and 77%, respectively, between PCF and Xenium. (b) The 

cell state (PDCD1 and PD-1) expression with cell type in the TLS region. This highlights the 

differences in mRNA and RNA cell states, providing insights into the expression patterns and 

potential discrepancies in cell type identification based on different technologies.  

 

Extended Data 8: Signature matrix for all datasets. The input signature matrix for all datasets 

used in this manuscript.  
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Figure 6
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Extended Data 1
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Extended Data 2
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Extended Data 4
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Extended Data 5
Louvain Original Clusters Louvain After Manual Annotation TACIT
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Extended Data 6
Louvain Original Clusters Louvain After Manual Annotation
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Extended Data 7
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