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ABSTRACT (150)

Identifying cell types and states remains a time-consuming and error-prone challenge for spatial
biology. While deep learning is increasingly used, it is difficult to generalize due to variability at
the level of cells, neighborhoods, and niches in health and disease. To address this, we developed
TACIT, an unsupervised algorithm for cell annotation using predefined signatures that operates
without training data, using unbiased thresholding to distinguish positive cells from background,
focusing on relevant markers to identify ambiguous cells in multiomic assays. Using five datasets
(5,000,000-cells; 51-cell types) from three niches (brain, intestine, gland), TACIT outperformed
existing unsupervised methods in accuracy and scalability. Integration of TACIT-identified cell with
a novel Shiny app revealed new phenotypes in two inflammatory gland diseases. Finally, using
combined spatial transcriptomics and proteomics, we discover under- and overrepresented
immune cell types and states in regions of interest, suggesting multimodality is essential for

translating spatial biology to clinical applications.
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INTRODUCTION (474)

Spatial biology is a dynamic field that focuses on the precise understanding of the spatial
distribution and relationship of cell types and their associated cell states within their native
environments'?. The field has been significantly advanced by rapidly expanding and maturing
single-cell and spatial multiomics technologies, which preserves the spatial context of cellular and
architectural features, deepening our understanding of cellular interactions, biological pathways,
and identifying new cell types that can be used as targets to improve disease treatments and
precision diagnoses®2.

The current era of spatial biology, characterized by single-cell and subcellular resolution,
multi-omics technologies in nature and even combined modalities on a single tissue section,
demands more advanced tools for interpretation at scale®. Among the multi-step bioinformatics

workflow to support the analysis of the multi-plex imaging data'®"’

, identifying cell types and their
associated cell states remains a time-consuming and error-prone challenge due to issues related
to segmentation noise and signal bleed-through, restricted sets of molecular and protein panel
markers, and multimodal marker-linked datasets'?. Traditional unsupervised clustering methods
commonly used in sScCRNA-seq analysis operate by grouping cells based on the overall similarity

I"*7_ Their efficacy heavily relies on the presence

of their marker profiles across the entire pane
of abundant markers capable of distinguishing cell populations, a characteristic commonly found
in single cell sequencing data'®. However, a significant challenge arises when dealing with
predefined marker panels and cell types determined by as few as one marker'®. This sparse
marker set, often of only one modality, lacks power to separate expected cell population in the
embedded feature space, posing a formidable obstacle for unsupervised clustering to detect all
cell types especially the rare ones®. Even with extensive parameter tuning combined with multi-

step clustering to identify cell populations of interest, the desired results remain elusive?'?2. Deep

learning algorithms are increasingly utilized in spatial ‘omics for cell type identification, but it


https://doi.org/10.1101/2024.05.31.596861
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.31.596861; this version posted June 3, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

requires comprehensive and diverse training data to improve the accuracy and applicability of
deep learning models in handling the complexities of spatial multiomics®>%*,

To address these challenges, we developed TACIT (Threshold-based Assignment of Cell
Types from Multiplexed Imaging DaTa), an unsupervised algorithm for assigning cell identities
based on cell-marker expression profiles. TACIT uses a multi-step machine learning approach to
group cells into populations, maximizing the enrichment of pre-defined cell type signatures from
spatial transcriptomics and proteomics data (Fig. 1). Validated against expert annotation and
available algorithms using five datasets from brain, intestine, and gland tissues in human and
mouse, TACIT outperformed three existing unsupervised methods in accuracy and scalability. It
also integrated cell types and states with a Shiny app to reveal new cellular associations in
Sjogren's Disease and Graft-versus-host Disease, highlighting its clinical relevance. Furthermore,
we performed spatial transcriptomics and proteomics on the same slide, demonstrating the need

for multimodal panel designs and flexible analysis pipelines to support translational and clinical

research applications.
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RESULTS (2082)
Conceptualization of TACIT for Spatial Multimodal

To address the need for advanced spatial omics profiling, we developed an unsupervised
algorithm called TACIT (Threshold-based Assignment of Cell Types from Multiplexed Imaging
DaTa). It is generally applicable to any probe-based, single-cell resolved spatial single modality
or multimodal dataset (i.e., spatial transcriptomics or proteomics; Fig. 1a). Before TACIT can be
employed, images containing tissues or cells are first segmented to identify cell boundaries (Fig.
1b). Features like probe intensity (protein antibodies) and count values (MRNA probes) are
quantified, normalized, and stored in a single or multimodality CELLXFEATURE matrix (Fig. 1c).
The TYPEXMARKER matrix is derived from expert knowledge, with values between 0 and 1,
indicating the relevance of markers for defining cell types (Fig. 1c).

TACIT conducts cell type annotation in two rounds. Cells are first clustered into
microclusters (MCs) to capture highly homogenous cell communities with sizes averaging
between 0.1-0.5% cells of the population using the Louvain algorithm (Fig 1d). In parallel, for
each segmented cell, Cell Type Relevance scores (CTRs) against a predefined cell types will be
calculated by the multiplication of its normalized marker intensity vector with the cell type
signature vector (Fig 1d), quantitatively evaluating the congruence of cells' molecular profile with
considered cell types. The higher the CTR score, the stronger the evidence that the cell is
associated with a given cell type. TACIT proceeds to learn a threshold that can separate cells into
groups with strong positive signals and background noise (Fig 1e). For a specific cell type, the
median CTRs across all MCs are gathered (Fig 1€e'). The MCs are reordered by ranking its median
CTRs values from lowest to highest (Fig 1e"). The segmental regression model is fitted to divide
the CTRs growth curve into 2 to 4 segments®. The two extremes of these segments represent
the high relevance group and low relevance group, respectively. (Fig. 1e™). A positivity threshold

that minimizes the misclassification rates arising from cell outliers in both high relevance group
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and low relevance group is then established (Fig. 1e"). Subsequently, the threshold is applied to
all cells where the CTRs of cells exceeding the threshold for a specific cell type are labeled with
positive, with the remaining labeled with negative (Fig 1e'-1e").

Cell labeling from the previous step can result in a single cell being labeled multiple cell
types (Fig. 1f). To resolve the ambiguity, TACIT includes a deconvolution step (Fig. 1g) using the
k-nearest neighbors (k-NN) algorithm on a feature subspace relevant to the mixed cell type
category (Methods). The quality of cell type annotation is assessed by p-value and fold change,
quantifying marker enrichment strength for each cell type (Fig. 1i) and visualized with a heatmap
of marker expression (Fig. 1h). Following annotation, downstream analysis is performed using a

custom Shiny app we generated called Astrograph (Fig. 1j; Methods).

Benchmarking TACIT Against Existing Unsupervised Algorithms

We downloaded two human datasets: Colorectal Cancer (PCF-CRC; n=140-TMAs;
n=235,519-cells; n=56-antibodies) and Healthy Intestine (PCF-HI; n=64-samples; n=2,603,217-
cells; n=56-antibodies); both were generated using the Akoya Phenocycler-Fusion (PCF; formerly
CODEX) 1.0 system for spatial proteomics?®?’. We compared TACIT's performance in cell type
annotation against CELESTA, SCINA, and Louvain in both datasets, using original annotations

as reference’®28.29,

In the PCF-CRC dataset, TACIT demonstrated strong consistency with reference
annotations compared to existing methods. This was evident through UMAP, spatial, and heatmap
visualizations of cell populations, spatial patterning, and marker expression (Fig. 2a-c). As shown
in the heatmap, SCINA and Louvain missed a significant portion of rare cell types, with Louvain
failing to identify 6 out of 17 types and SCINA identifying only 5 in total (Fig. 2c). TACIT achieved

the highest accuracy, with weighted recall, precision, and F1 scores of 0.74, 0.79, and 0.75,
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respectively, significantly outperforming CELESTA, Louvain, and SCINA (p<0.05) (Fig. 2d;
Extended Data 1). TACIT showed stable threshold and evaluation metrics in a bootstrap study
(Extended Data 2a-d). For dominant cell types (1% of the population), TACIT, CELESTA, and
SCINA exhibited high consistency (R=0.99) in terms cell type annotation, while Louvain slightly
underperformed (R=0.95) (Fig. 2e). Both TACIT and CELESTA identified all expected rare cell
types, with TACIT displaying a stronger correlation to the reference (R=0.58) compared to
CELESTA (R=0.24) (Fig. 2e). Additionally, the accuracy for identifying rare cell types improved
with an increasing number of resolutions (Extended Data 2e-f). Marker enrichment analysis
indicated that TACIT's annotations closely matched the signatures (Fig. 2f). Additional
experiments were performed on a much larger dataset with 2.6 million cells across 40 slides,
PCF-HI, derived from human intestine issues. Outperformance of TACIT over Louvain was
consistently observed in overall accuracy (Figs. 2g, h, j) and enrichment strength (Fig. i),
especially in its capability in identifying rare cell types (Figs. 2k). Unfortunately, both CELESTA
and SCINA failed to assign a vast majority of the cells even with extensive parameter tuning
(Extended Data 1).

To evaluate TACIT's performance on spatial transcriptomics data, we applied it to a
published MERFISH dataset from the murine hypothalamic preoptic region of the brain (n=36-
samples; n=1,027,848-cells; n=170-ISH panel)**. TACIT achieved significantly higher weighted
recall (0.85), precision (0.87), and F1 scores (0.87) than Louvain (Extended Data 3a). Both
methods showed high correlation with the reference for dominant cell types (R=0.99), but TACIT
achieved higher correlation for rare cell types (R=0.94) compared to Louvain (R=0.64; Extended
Data 3b). Spatial and UMAP plot demonstrated that TACIT's cell type identification closely
matched the reference, with stronger and more distinct expression signatures than Louvain
(Extended Data 3c-f). These results highlight TACIT's effectiveness for spatial transcriptomics,

providing reliable cell type identification for both abundant and rare populations.
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Applying TACIT to unpublished single modality spatial transcriptomics with linked scRNAseq

Next, TACIT was applied to an unpublished Xenium dataset (Pl: Warner, NIH/NIDCR;
n=21-patients; n=~360,000-cells; n=280-ISH panel) across 24 cell types. We compared TACIT
against two annotation approaches: Seurat with label transfer from scRNA-seq data (Seurat
transfer), and Louvain?*?'. Signature lists for TACIT were created from the top five most enriched
genes in each annotated cluster in the Seurat transfer result®2. While the UMAP plot shows overall
consistency in cell type annotation across the three methods, TACIT’s annotation excels in clear
distinctions among three subtypes of acinar cells (Fig. 3a), corroborated by biologically
meaningful spatial arrangement of these subtypes (Fig. 3b). TACIT demonstrated higher
enrichment of signatures than both Louvain and Seurat transfer, with all cell types identified (Fig.
3c, h, 1, g). Zooming into specific subtypes, TACIT clearly distinguishes ductal progenitors and
ductal cells, while Seurat transfer labeled them all as "ductal cells" and Louvain showed mixed
annotations (Figs 3d). TACIT also identified four subsets of T cells (CD4+, CD8+, CD8+
Exhausted, and Progenitors), which Louvain missed (Fig. 3e). This is a critical population to
identify for a disease like autoimmune diseases like Sjoégren's because T progenitors are crucial
for maintaining immune tolerance, making them vital targets for therapeutic strategies and clinical
applications in the future®®. Overall, TACIT showed a strong correlation with scRNA-seq (R=0.84),

higher than Seurat transfer (R=0.49) and Louvain (R=0.69) (Fig. 3f).

Applying TACIT to unpublished same-slide spatial proteomics and transcriptomics

To achieve detailed cell type annotation in spatial multiomics, we linked spatial proteomics
(Pl: Byrd, ADA Science & Research Institute; PCF 2.0; 36-antibody panel; Fig. 4a) and
transcriptomics (Xenium; 280-ISH panel; Fig. 4b) on the same slide using segmentation mask
transfer. This captured single-cell data for both TACIT and Louvain (see Methods; n=6-samples;

424,638-cells). Cellenics (now Trailmaker) was used to generate cell type signatures (Extended
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Data 4). Applied to minor salivary glands affected by Graft-versus-Host Disease (GvHD), TACIT
identified significantly more cell types than Louvain in both datasets (Extended Data 5,6; Figs. 4c-
e). Louvain missed key cell types like vascular endothelial cells and Tregs. The reconstructed
slide showed high immune cell density in the periductal region, indicating GvHD-associated
immune infiltration (Fig. 4d). Compared to the pathologist’'s annotations, TACIT had a lower error
rate than Louvain across all cell types (Figs. 4f).

In spatial proteomics, TACIT again identified more cell types than Louvain (Figs. 4g,i),
matching the spatial transcriptomic assignments and confirming GVHD-associated immune
infiltration (Fig. 4h). TACIT uniquely identified vascular and lymphatic endothelial cells, Tregs, and
NK cells (Fig. 4i). TACIT also had a lower mean error in annotating structural cell types, while
Louvain over-assigned prevalent types like fibroblasts and ducts (Fig. 4j). Vascular and innate cell
types are crucial markers for understanding salivary gland parenchymal changes in GVHD; in
particular, NK cells can contribute to the severity of GVHD by directly killing host cells and
releasing inflammatory cytokines such as IFN-y and TNF-a**. This highlights the importance of
selecting the right tool for accurate cell annotation, from basic to clinical studies involving human

subjects.
Testing TACIT in linked spatial proteomics and transcriptomics ROls

Because specific ROIs are often used for diagnosis or understanding disease
pathophysiology, we decided to evaluate TACIT's performance in confined areas. We selected
nascent tertiary lymphoid structures (TLS) from GVHD for this application. TLSs pose unique
challenges for spatial biology due to potential segmentation issues as they are highly
concentrated with immune cells with large nuclei and little cytoplasm around diverse structural
niches (epithelial, fibroblast, and vasculature)®*. We applied a segmentation pipeline using a

human-in-the-loop Cellpose3 model and still found areas in the TLS in both proteomic and
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transcriptomic space where signals like those for B Cells (protein: CD20; mRNA: MS4A1) are
misappropriated after segmentation Fig. 5a).

TACIT's ability to deconvolve mixed cell phenotypes helps overcome segmentation errors.
Within the TLS, TACIT identified more adaptive and innate immune cell types than Louvain,
including Regulatory T Cells and NK Cells (Fig. 5b). Louvain detected fewer cell types with less
distinct markers per cell type (Fig. 5¢). In Voronoi reconstruction, Louvain identified TLS mainly
composed of B Cells, while TACIT showed primarily T cells surrounded by small vessels (Fig. 5d).
Neighborhood analyses using Delaunay Triangulation and receptor-ligand pairs revealed different
TLS phenotypes. TACIT showed expected relationships, such as proximity between dendritic cells
and T cells, while Louvain showed structural-to-structural cell relationships (Fig. 5e). TACIT
identified key markers for T cell exhaustion (PD-1/PD-L1 interactions) and small vessels essential
for immune cell recruitment, while Louvain failed to detect vascular cells and showed less

granularity in receptor-ligand assignments. This analysis demonstrates that niche- and disease-

level phenotyping can be effectively captured using TACIT’s workflow.

Multimodal Cell Identification with TACIT

After collecting spatial transcriptomics (Xenium) and spatial proteomics (PCF) data, we
used the same segmentation masks from Xenium on the PCF data, ensuring matched cell IDs for
direct comparisons (see: Methods and Fig. 6a). This alignment allowed us to create a cell-by-
protein and gene matrix for each cell, capturing both antibody intensities from PCF and count
values from Xenium (Figs. 6b,c). Using TACIT, which incorporates marker signatures from both
PCF and Xenium, we accurately identified cell types; other algorithms could not handle the
multimodality for these assays. For the first time, the correlation of marker intensities between
PCF and Xenium for immune cell markers was significantly lower than for structural cell types
(p<0.0001) (Fig. 6d). Consequently, using the full marker panel on ROIs with many immune cells,

the agreement between cell type identifications using only PCF markers versus only Xenium
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markers was about 34% (Fig. 6e and Extended Data 6a). However, focusing on markers common
to both PCF and Xenium increased the agreement to 81% (Fig. 6f and Extended Data 7a). The
proportion of cell types was high in the TLS between Xenium and PCF with higher agreement
when using common markers (Figs. 6g,h). Importantly, for structural cell types like vascular
endothelial cells (VEC) using our panel, they remained challenging to identify (see Fig. 4).

For effective clinical translation, it is crucial to accurately assign both spatial cell identity
and state. To address this, we tested PDCD1/PD1, a key component of the immune checkpoint
inhibitor (ICI) pathway. The differences observed across all three recipes—unimodal and
multimodal—nhighlight the importance of understanding which factors are truly critical for patient
outcomes, especially as they vary with spatial scales in cell number and sample number.
Comparing the same markers across both technologies revealed differences in cell states,
particularly between PD-1 and PDCD1 across all four TLS (Fig. 6i and Extended Data 7b). These
results were statistically significant for B cells and CD4+ T Cells (Fig 6.j). The same trend followed
for cell cycling marker Ki-67/MKI67 (Fig. 6k). This is clinically relevant because accurately
predicting the cell cycle and PD-1 expression in B cells and CD4+ T cells is crucial for optimizing
immunotherapy, as it helps identify which patients will benefit most from treatments like checkpoint

inhibitors.
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DISCUSSION (420)

Identifying cell types in multiplex imaging-based spatial omics data remains challenging
with current technologies. In contrast to unsupervised clustering algorithm requiring extensive
manual curation, TACIT automates cell type annotation, emulating manual gating with scalability
and precision. TACIT achieves detailed phenotyping based on the multiplex panel design and
excels in dominant and rare cell populations without bias. The success of TACIT can be attributed
to the usage of cell-type specific features, initially evaluating cell type-specific markers, then
performing mixed cell deconvolution within only relevent subspace, crucial for identifying cell

types in spatial transcriptomics and proteomics platforms where specific features are sparse.

Our benchmarking of TACIT on three public spatial omics datasets totaling nearly 4.6
million cells across 51 cell types demonstrating its broader applicability as an assay-, species-,
organ- and disease-agnostic tool for cell type annotation. Our application of TACIT to the Xenium
dataset initially annotated by scRNA-seq data through label transfer further demonstrated TACIT's
effectiveness in refining cell type annotations following the discovery of cell type specific markers
through existing exploratory analysis.

The combined analysis of spatial multiomics datasets in GVHD revealed the importance
of integrating spatial transcriptomics and proteomics for deep phenotyping. PCF and Xenium data
differ in that PCF provides continuous values while Xenium provides count data, and there is often
a lack of correlation between corresponding markers, especially structural ones®’. Despite these
challenges, TACIT supports both data types, enabling high-quality targeted deep phenotyping and
comparative analysis. This facilitates the combination of datasets to uncover important cellular
neighborhoods and characterize cell states across modalities.

Proper application of TACIT requires sufficient sampling of cells with abundant background

signals to derive relevant thresholds, making it less effective when focusing on small regions with


https://doi.org/10.1101/2024.05.31.596861
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.31.596861; this version posted June 3, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

few cells. Additionally, TACIT may leave some cells unassigned due to poor marker intensities,
inaccurate segmentation, or the presence of novel cell types. Further investigation of unannotated
cells to support novel cell type discovery can be achieved by a variation of TACIT capable of
identify cell groups exhibiting combinations of positive markers.

By providing detailed cell type annotations and uncovering rare cell populations, tools like
TACIT enables the identification of unique cellular neighborhoods and their interactions, which is
critical for understanding disease progression and therapeutic response in the near future as part
of clinical research and ultimately, precision clinical care. As TACIT continues to evolve, its
application in personalized medicine could lead to the development of tailored treatment regimens
based on the specific cellular composition and state of individual patients' tissues, improving

outcomes and reducing adverse effects.
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METHODS

CELLxFEATURE matrix

Let M be a set of markers used in a spatial omics panel, [M|=m, and N be the set of cells of size
n captured in a tissue slide. Let A, ., be the CELL by FEATURE information captured in the
spatial omics experiment following cell segmentation process. For spatial proteomics such as
PhenoCycler, entry a;; in the matrix A represents the z-normalized intensity value indicating the
Intensity level of a specific marker j within cell i. In the context of spatial transcriptomics such as

Xenium or MERFISH/MERSCOPE, q;; reflects the log-normalized of the count of transcripts for

each gene.

Cell type signature matrix
Let T be a set of cell types, |T| = t, to be captured by the panel. We define a cell signature matrix
Smxt of markers that define individual cell types, where each element s;; in S

o {w, O<w<l, if marker i serves as a signature of cell type j
y 0, otherwise
The value w indicates the importance of a specific marker in defining a cell type. If such

information is not available, w is set to 1 by default.

Cell type relevance matrix
Let I denote a cell type relevance matrix, with dimension n X p, where n is the number of profiled
cells, and p is the number of cell types included in the panel. The cell type relevance (CTR) score
is computed using the formula:

=A%S
where each element in T provides a quantitative measure of a cell’s relevance to a specific cell
type. By summing up the relevant markers’ intensity values weighted by their importance (set to

1 by default), we can directly measure a cell's marker intensity profile alignment with the expected


https://doi.org/10.1101/2024.05.31.596861
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.31.596861; this version posted June 3, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

cell type signature. For each cell type, a cell with higher CTR score suggests a stronger
association between the observed marker intensities with the expected signature of a specific cell

type, indicating a higher likelihood that the cell belongs to that cell type.

Micro-clustering

Louvain clustering method from the Seurat version 5 toolkit is applied on the CELLXFEATURE
matrix A to conduct the fine-grained clustering of cells®'. The resolution of the clustering is set
high enough so that the average number of cells per cluster remains between 0.1% to 0.5% cells
of the entire population. We refer to the resulting clusters as a collection of microclusters (MCs)
denoted as ® = {c;,c,, ..., ¢, }. These microclusters are expected to be highly homogeneous,
capturing a group of cells with highly similar marker profiles and thus with high likelihood to
represent cells of the same cell type. The distribution of marker values across all markers in ®
will be used to approximate the variations of marker values across the diverse cell populations

they represent.

Segmented regression model
Next, to identify MCs with distinct cell type relevance, we employed segmented regression model
aiming to identify specific breakpoints at which the relationship between the MCs changes®. For
any given cell type, the median CTR scores across all k MCs are calculated and stored as a vector
z = (24,23, .. Z¢) = (1,73, ...,1,) be a vector where r; is the rank of z; in z. Next, a segmental
regression model is fitted with z being the dependent variable and r as the predictor to identify
breakpoints that divide the data into distinct linear segments.

z= 0o+ Bor + Xi_, Bi(r — @i+

Where:

e , represents the intercept of the linear model,
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e [, represents the slope of the linear segment before the first breakpoint,

e [3; represents changes in slope at the breakpoint i,

e g represents number of breakpoints,

e (; represents the optimal location of breakpoint i,

e (r— ;)4 defined as max(0, r — ;) for breakpoint i.
Our proposed method aims to obtain an optimal fitting by allowing a maximum three breakpoints.
This is determined by the minimal Akaike Information Criterion (AIC) score achieved among the
three models the three models (g=1, 2 and 3)*. The breakpoints from the optimal model are then
utilized to categorize clusters into either "low" or "high" relevance groups, ®;, and &y, respectively.
Specifically, the MCs ranking below the lowest breakpoint are classified as @, = {i |r; < ¢,1 <
i <k}, where r is the vector containing the rank positions of MCs. Correspondingly, the MCs
ranking above the highest breakpoint are considered as high relevance group ®y= {i|r; >

M) 1 < i < k).

Optimal threshold

Next, an optimal CTR threshold to differentiate positive and negative cells of a given cell type is
determined as follows. Let C; denote the set of cells that belong to MCs within @y, formally defined
as €, = Uje o, ¢, ¢; € . Similarly, Cy is the set of cells that belong to MCs within @y, defined
as Cy = Uje o, i, ¢; € . Each MC encompasses a range of CTR scores, suggesting that even
within a highly homogeneous cluster, there is relatively broad range of marker intensity. The
preferred threshold minimizes the misclassification rate between the two relevance groups. This
optimization problem aims to find a threshold (8) that minimizes the number of cells in the low
relevance group C; with CTR scores exceeding the threshold, and the number of cells in the high
relevance group Cy with CTR scores lower than the threshold. The grid search with this objective

function can be expressed with the formula:
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0 = argmin (|{i |t; > 6,i € C.}| + |{i|t; < 0,i € Cy}|), where:
e Orepresents a desired optimal threshold for a given cell type,

e 1;is the CTR score for cell i,

Cell Type Categorization
After determining an optimal threshold of CTR score for each cell type, cells exceeding this
threshold are marked as positive, while the rest are marked as negative. Applying this threshold
to each cell type results in a binary matrix B of dimension n X p, with 1 indicating a cell is positive
or 0 indicating negative. Based on the positivity of individual cells across cell types, cells are
categorized into three distinct sets:

1) Clean cells: The set of cells classified as positive for exactly one cell type.

2) Mixed cells: The set of cells classified as positive in more than one cell type, suggesting

a blend of characteristics from multiple cell types.

3) Unknown cells: The set of cells that are not classified as positive for any cell type.

Deconvolution of Mixed Cells

The set of mixed cells undergoes a process of cell type deconvolution to assign each cell to its
final cell type. This step leverages two outcomes from the previous step. Firstly, a significant
portion of cells classified as clean cells in each individual cell type may now serve as anchor cells
to resolve the cells with mixed identities. Secondly, even though more than one identity is
assigned as candidates for mixed cells, a vast majority of cell types are recognized as irrelevant
and will be eliminated from further consideration. So are the markers from irrelevant cell types,
allowing the classification algorithm to focus on the relevant markers to resolve the confusion

while avoiding distractions from irrelevant markers.
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Let £,& c T, be a combination of cell types deemed positive in a set of cells, denotes as NE””"‘.
Additionally, all the clean cells positive in each of cell types in ¢ are also extracted, denoted as
Ngle“". Let M; be the set of markers serving as signatures for cell types in . Next, a submatrix
from matrix A, denotes as A¢, containing the intensity values of both the clean cells and the mixed
cells, i.e., N = N§'*“" U N{*™, in the marker set M will be extracted. The k-nearest neighbors
(KNN) algorithm is applied to cell feature matrix A; to classify the cells with mixed identities in &
%, For each mixed cell in Ngnix, the algorithm works by first calculating its relative distances to
clean cells within ¢-relevant markers in M. This step is crucial as it utilizes only the signature
markers for &, eliminating noise and biases from irrelevant markers in the deconvolution of cell
types in . The k neighbors that are closest to each of the mixed cells will be identified according
to their distance. Finally, the identity of a cell is determined by the mode of the identities of its k-

nearest clean cell neighbors (k =10 by default).

Comparisons with other methods

We compared our proposed method with three existing cell phenotyping methods, namely
CELESTA, SCINA, Louvain + manual annotation clusters, and Seurat transfer using scRNA. The
code for CELESTA, SCINA, Louvain annotation and Seurat v5 transfers label scRNA methods

are publicly available for reproducibility and comparison purposes.

CELESTA?%

CELESTA is a cell type identification algorithm for spatial proteomics that uses an optimization
framework to assign individual cells to their most likely cell types based on prior knowledge of
each cell type's marker signatures. It utilizes a marker-scoring function to match a cell’'s marker
expression probability profile to known cell type signatures. In our application, CELESTA was run

for each of the tissue microarrays (TMAs). The major function included CreateCelestaObject() to
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create celesta object. FilterCells() to filter out cells that are artifact, with high_marker_threshold =
0.9, and low_marker_threshold=0.4. AssignCells() function to assigned cell types, with
max_iteration=10, and cell_change_threshold=0.01. For each cell type, Additional parameters
including high_expression_threshold_anchor, low_expression_threshold_anchor,
high_expression_threshold_index, and low_expression_threshold_index need to be defined. As
no guidance was provided on how to set the parameters, the default setting was used as provided
in this GitHub (https://github.com/plevritis-lab/CELESTA/tree/main). For PCF-HI datasets,
CELESTA labeled all cells as Unknown even with the high_expression_threshold_anchor levels

were set at 0.2.

SCINA™

SCINAis a method used for cell type identification in scRNA-seq, employing a combination of cell
type-specific marker signatures and an expression matrix. Data normalization is performed
through log-transformation before further annotation. A signature matrix (referenced in Table S1)
is utilized to classify cell types. In the first phase, primary cell types such as vasculature, tumor
cells, stroma, immune cells, and smooth muscle are identified. Cells labeled as immune or
unknown in the first round undergo a second round of classification, where they are further
distinguished into B cells, T cells, CD11c+ dendritic cells, natural killer cells, lymphatics, plasma
cells, macrophages, and granulocytes. The third round focuses on cells categorized as T cells or
unknown from the second round, aiming to specify subsets like CD4 T cells, CD8 T cells,
regulatory T cells (Tregs), and CD45RO+ CD4 T cells. For the PCF-HI, most of the cells return
Unknown, therefore, we could not include in the analysis. The SCINA algorithm is executed using
the SCINA() function, with parameters such as max_iter = 100, convergence_n = 10,
convergence_rate = 0.999, sensitivity_cutoff = 0.9, rm_overlap=TRUE, allow_unknown=TRUE,
and log_file="SCINA.log". For  more information about  SCINA, refer to

https://github.com/jcao89757/SCINA.
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Louvain®:

Louvain clustering is a widely used unsupervised method for identifying cell types in spatial omics
datasets. This technique, originally developed for community detection in networks, optimizes
modularity to partition data into clusters, making it particularly effective for distinguishing distinct
cell populations based on gene expression profiles. To run Louvain clustering on spatial omics
data, we first normalize the data using z-score normalization to standardize the expression levels.
Next, we scale the data to ensure that each feature contributes equally to the analysis. We then
perform dimensionality reduction using Uniform Manifold Approximation and Projection (UMAP)
on the first 30 principal components to visualize the data in a lower-dimensional space. Finally,
we apply Louvain clustering on the UMAP dimensions with a resolution of 0.8 to identify distinct
clusters. After that, FindMarkers() function in Seurat version 5 would be used to find the top 5
markers that define the clusters®'. We look at individual clusters with their expression to assign

cell types and the top 5 markers to assign the cell type for each cluster.

Seurat Label Transfer®': Automatic cell labeling was informed by the scRNAseq dataset using
post-quality control data. Subsequent data scaling was performed using the ScaleData() function.
Dimension reduction was achieved through PCA and UMAP, utilizing the RunPCA() and
RunUMAP() functions respectively, focusing on the 30 selected features. The method involved
the FindTransferAnchors function from Seurat v5. All 25 clusters remained consistent between

the reference (SC) and query (ST) objects.

Performance metrics

Compare with reference:

For a specific cell type, True Positive (TP) calls are defined as cells where the assigned cell types
from the method match those in the ground truth benchmark dataset. False Positive (FP) calls

are cells where the assigned cell types by the method do not match the ground truth or reference.
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False Negative (FN) calls represent cells assigned by the benchmark but not by the method, while
True Negative (TN) calls are cells not assigned by either the method or the benchmark. The
weighted score considers the proportion of each cell type in the reference dataset, where i is a

cell type in the set of reference.

TP+TN

Accuracy = TP+FP+TN+FN

Weighted recall = Zi( L ) * Proportion;

TPi{+FN;

TP;
TP;{+FP;

Weighted precision = }; ( ) * Proportion;

. Weighted precisionxweighted recall
Weighted F1 = 2 « -dned precs 2
weighted precision+weighted recall

Benchmark Datasets
Four multiplexed tissue imaging studies with high confidence cell type assignments were used for

TACIT evaluation and benchmarking:

PhenoCycler 1 (PCF-Colorectal cancer)®: Data representing 140 tissue microarray (TMA) spots

from 35 colorectal cancer (CRC) patients (17 in the CLR group and 18 in the DIl group) were
collected from 36 distinct tissues. In this study, the authors used spatial proteomics to examine
the tumor environment and how the immune response correlates with survival outcomes in
colorectal cancer. The TMAs were collected and imaged using a 56-marker CODEX (co-detection
by indexing) panel, profiling a total of 258,386 cells. Cells identified as immune/vasculature
(n=2,153) and immune/tumor (n=1,797), along with cells lacking a marker signature—including
adipocytes (n=1,811), nerves (n=659), undefined (n=6,524), monocytes (n=815), and cells
categorized as dirt (n=7,357)—were excluded from the analysis. This exclusion resulted in
235,519 cells being retained for the cell type annotation benchmark analysis. The TMA imaging
was segmented based on DRAQ5 nuclear stain, pixel intensities were quantified, and spatial

fluorescence compensation was performed using the CODEX toolkit segmenter (available at
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https://github.com/nolanlab/CODEX). Subsequently, the cells were subjected to X-shift clustering,
and the resulting clusters were manually annotated to ensure the accuracy of the cell labels. The
list of signature was provided in the original paper®®. PCF-CRC can be download at:
https://data.mendeley.com/datasets/mpjzbtfgfr/1.

)27:

PhenoCycler 2 (PCF-Human Intestine Data from 64 sections of the human intestine were

collected from 8 donors (B004, BO05, BO06, BO08, BO09, B010, BO11, and B012). In this study,
the authors used spatial proteomics to examine the structure of the large and small intestines in
humans. The raw image data were segmented using either the CODEX Segmenter or the
CellVisionSegmenter (available at https://github.com/nolanlab/CellVisionSegmenter). Employing
a 57-marker CODEX panel, a total of 2,603,217 cells were profiled. These cells were initially
grouped using Leiden clustering and subsequently annotated under the supervision of the
authors*°. To ensure accuracy, the cell type labels were further consolidated by the authors by
inspecting back-annotated cell types on the original images. The list of signatures cell types was
provided in the original paper and expert domain knowledge. PCF-HI can be download at:

https://datadryad.org/stash/dataset/doi:10.5061/dryad.pkOp2ngrf.

MERFISH*: The mouse brain datasets include data for 36 mouse sample IDs across a total of
60 slides. In this study, by combining MERFISH with scRNA-seq, we have elucidated the
molecular, spatial, and functional organization of neurons within the hypothalamic preoptic region.
The raw image data were segmented using a seeded watershed algorithm with DAPI and total
MRNA co-stains. Initially, 1,027,848 cells were profiled. These cells were classified using graph-
based clustering and subsequently annotated by the authors. For our analyses with TACIT, we
excluded 153,080 cells labeled as 'Ambiguous.’ Additionally, to comply with Louvain's method
requirements, cells where over 70% of genes had zero counts were also removed. The list of

signatures cell types was provided in the original paper. After these filtering steps, the dataset
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prepared for comparison with Louvain includes 505,961 cells covering 170 genes. MERFISH can
be downloaded at:

https://datadryad.org/stash/dataset/doi:10.5061/dryad.pkOp2ngrf.

Xenium-SjD: A tissue microarray (TMA) was constructed, consisting of 63 cores derived from
formalin-fixed paraffin-embedded (FFPE) tissue blocks from 21 patients (11 with Sjogren's
Disease (SjD) and 10 without). Three cores per tissue block were extracted, using a TMA array
to organize the blocks, and the patient samples were randomized from 1 to 21. To fit within the
fiduciary framework of the TMA, the section was divided in half by scoring, placing 44 cores on a
single slide, including 8 additional cores designated for control tissues. The analysis utilized the
standard 280-plex Human breast cancer panel according to the protocols provided by 10x
Genomics.

Xenium-GVHD: A tissue microarray including three patients with chronic graft-versus-host

disease and three healthy minor salivary glands, derived from FFPE tissue blocks, was mounted
on a Xenium Slide (10x Genomics). To fit within the fiduciary frame, we melted the original blocks
and embedded the samples in one block. The analysis utilized the standard 280-plex human

breast cancer panel from 10x Genomics according to the protocol provided by the company.

Marker Enrichment Strength

For each marker unique to a specific cell type (a marker that is a signature for only one cell type),
we calculate the log2 fold change (log2FC) of that marker in the signature cell type compared to
the mean value in other cell types where it is not a signature. Additionally, we perform a one-sided
Wilcoxon test to determine if the expression of the marker in the signature cell type is significantly

greater than its expression in non-signature cell types.

Statistical Analyses
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Statistical analyses were conducted, and figures were created using R (version 4.3.0). For
comparisons between two groups, Student’s t-test was used when the assumption of normality
was met; otherwise, the non-parametric Wilcoxon rank-sum test was applied. For comparisons
involving more than two groups, analysis of variance (ANOVA) was used, followed by post-hoc
tests if significant differences were detected. For multiple comparisons, the false discovery rate
was used to adjust the P-values (Benjamini-Hochberg procedure). Results were considered

statistically significant if P < 0.05 or if the adjusted P < 0.05 for multiple testing.

Cell-cell interactions and neighborhood analysis

Spatial omics data from each individual tissue was processed that describes cellular interactions
as graphs with nodes representing individual cells and edges potential cellular interactions as
determined by Delaunay triangulation. A 97" percentile distance threshold was established for
each tissue to eliminate edges representing improbably long cell-to-cell distances. Cells classified
as "Unknown" (non-deconvoluted cells) were excluded from the analysis before conducting

Delaunay triangulation. An interaction matrix was then constructed, with each element q;;

representing the number of edges shared between cell type i and cell type j. To visually represent

these differences, a hierarchically clustered heatmap using Euclidean distance was generated.

Shiny app

The Shiny app (here called Astrograph) takes the input of the signature matrix and the CSV file
output from TACIT annotation, which includes spatial information, UMAP coordinates,
CELLXFEATURE matrix, and marker thresholds. The app provides a user interface with spatial
plots and UMAP visuals featuring annotations, marker expression thresholds, and weighted cell
type calculations. Users can also access color annotations, spatial neighborhood connections

between cell types across the whole tissue or ROI, and Moran's | for each marker and cell type
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to identify spatial autocorrelation. Additional tools include annotated mean heatmaps, Voronoi

plots, and proportions of cell types and cell state markers.

Cellenics

The single-cell RNA sequencing dataset was managed, analyzed, and visualized using the
Cellenics® community  platform  (https://scp.biomage.net/) hosted by Biomage
(https://biomage.net/). Cellenics® is now Trailmaker, just released by Parse Biosciences. Pre-
filtered count matrices were uploaded to Cellenics®. Barcodes were filtered through four
sequential steps. Barcodes with fewer than 500 UMIs were removed. Barcodes representing dead
or dying cells were excluded by filtering out those with more than 15% mitochondrial reads. A
robust linear model was fitted to the relationship between the number of genes with at least one
count and the number of UMIs per barcode using the MASS package (v. 7.3-56) to filter outliers.
The model predicted the expected number of genes for each barcode, with a tolerance of 1 -
alpha, where alpha is 1 divided by the number of droplets in each sample. Droplets outside the
prediction interval were removed. The scDblFinder R package v. 1.11.3 was used to calculate the
likelihood of droplets containing multiple cells, and barcodes with a doublet score above 0.5 were
filtered out. After filtering, each sample contained between 300 and 8000 high-quality barcodes,
which were then input into the integration pipeline. Initially, data was log-normalized, and the top
2000 highly variable genes were selected using the variance stabilizing transformation (VST)
method. Principal component analysis (PCA) was performed, and the top 40 principal
components, explaining 95.65% of the total variance, were used for batch correction with the
Harmony R package. Clustering was performed using Seurat’s implementation of the Louvain
method. For visualization, a Uniform Manifold Approximation and Projection (UMAP) embedding
was calculated using Seurat’s wrapper for the UMAP package. Cluster-specific marker genes
were identified by comparing cells of each cluster to all other cells using the presto package’s

Wilcoxon rank-sum test. Keratinocytes were isolated from the complete experiment by extracting
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manually annotated barcodes and filtering the Seurat object. These subset samples were then
input into the Biomage-hosted instance of Cellenics®. Filtering steps were skipped since the data
was already filtered. The data underwent the same integration pipeline as the full experiment. All

cells were manually annotated using relevant literature and CellTypist.

Ethical Approval
All original research (Figures 3-5; Extended Data 5) complies with country-specific regulations for

ethical research engagement with human participants.

Sample Collection and Tissue Preparation: Deidentified minor salivary gland (MSG) tissues were
obtained from diagnostic biopsies in healthy and chronic GVHD patients (University of Sao Paulo
IRB 65309722.9.0000.0068; MTA 45276721.4.0000.0068 IRB/MTA). All patients seen at the
Dentistry Division of the Hospital das Clinicas of Medicine School of University of Sao Paulo
reported herein provided informed consent before participation in this research protocol. All
patients have received full medical and dental assistance during the research time and will be
followed by the oral medicine team unrestricted. Tissues were fixed in a 10% solution of NBF for
a minimum of 24h at 4°C and mounted on paraffin-embedded SuperFrost Plus slides (See

Supplementary Methods for biopsy and tissue-mounting procedures).

Research participants provided informed consent according to NIH-approved IRB protocols (15-
D-0051, NCT00001390) before any study procedures were performed. All participants were
assessed and categorized based on the 2016 classification criteria from the American College of
Rheumatology (ACR) and the European League Against Rheumatism (EULAR). Comparator
tissues were obtained from subjects (non-SjD) who were otherwise healthy and did not meet the
2016 ACR-EULAR criteria. All subjects underwent screening for systemic autoimmunity and
received thorough oral, salivary, rheumatological, and ophthalmological evaluations. Clinical

investigations adhered to the principles outlined in the Declaration of Helsinki.
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Clinical Protocol University of Sao Paulo: Patients included in this study were sourced from
two distinct pathways. One pathway involved direct inclusion from the Sdo Paulo Capital Death
Verification System. This included patients who had died from acute causes and were under 65
years of age. These individuals underwent post-mortem minor salivary gland biopsies within 4
hours of death. Tissue removal was performed using the minimally invasive autopsy technique as
described by Matuck et al. (2022) in the Journal of Pathology. The collected tissue samples were
then sent to the histology department at the University of Sdo Paulo School of Medicine for further

processing as outlined in the described protocol.

GVHD patient biopsies were obtained from the biobank at the University of Sdo Paulo School of
Medicine. These patients were re-consented and followed up for chronic GVHD clinical
evaluation. The biopsy samples, taken during episodes of oral lesions, were sent to the histology

department for processing following the same procedures mentioned above.

Spatial Transcriptomics (Xenium) Sample Preparation: The Xenium workflow, using
experimental chemistry and prototype instruments and consumables, starts with sectioning 5 um
FFPE tissue sections onto a Xenium slide. These sections are then deparaffinized and
permeabilized to make the mRNA accessible. The mRNAs are targeted by the 313 probes and
two negative controls: probe controls to assess non-specific binding and genomic DNA (gDNA)
controls to confirm that the signal comes from RNA. Probe hybridization takes place overnight at
50 °C with a probe concentration of 10 nM. After a stringency wash to remove un-hybridized
probes, the probes are ligated at 37 °C for two hours, during which a rolling circle amplification
(RCA) primer also anneals. The circularized probes are then enzymatically amplified (one hour at
4 °C followed by two hours at 37 °C), producing multiple copies of the gene-specific barcode for

each RNA binding event, which results in a high signal-to-noise ratio. After washing, background
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fluorescence is chemically quenched. The biochemistry is designed to minimize
autofluorescence, which can be caused by lipofuscins, elastin, collagen, red blood cells, and
formalin-fixation. Sections are then placed into an imaging cassette for loading onto the Xenium

Analyzer instrument.

Spatial Transcriptomics - Xenium: Gene Panel Design: The Xenium in Situ technology employs
targeted panels to detect gene expression, this includes 280 genes from the Xenium Human
Breast Panel. The probes are designed with two complementary sequences that hybridize to the
target RNA and a third region encoding a gene-specific barcode. This allows the paired ends of
the probe to bind the target RNA and ligate to form a circular DNA probe. If an off-target binding
event occurs, ligation does not happen, which suppresses off-target signals and ensures high

specificity.

Xenium Analyzer Instrument: The Xenium Analyzer is a fully automated system that includes
an imager (with an imageable area of approximately 12 x 24 mm per slide), sample handling,
liquid handling, wide-field epifluorescence imaging, capacity for two slides per run, and an on-
instrument analysis pipeline. The imager uses a fast area scan camera with a high numerical
aperture, a low read noise sensor, and approximately 200 nm per-pixel resolution. Image
acquisition on the Xenium Analyzer is performed in cycles. The instrument automatically cycles
in fluorescently labeled probes for detecting RNA, incubates, images, and removes them. This
process is repeated for 15 rounds of fluorescent probe hybridization, imaging, and probe removal,
with Z-stacks taken at a 0.75 uym step size across the entire tissue thickness.

Image Pre-Processing: The Xenium Analyzer captures Z-stacks of images in every cycle and
channel, which are then processed and stitched to create a spatial map of the transcripts across
the tissue section. Stitching is performed on the DAPI image, taking all stacks from different fields

of view (FOVs) and colors to create a complete 3D morphology image (morphology.ome.tif) for
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each stained region. Lens distortion is corrected based on instrument calibration data, which
characterizes the optical system. The Z-stacks are further subsampled to a 3 uym step size, which
is empirically determined to be useful for cell segmentation quality. Image features are extracted
from overlapping FOVs and feature matching estimates offsets between adjoining FOVs to ensure
consistent global alignment across the image. Finally, the 3D DAPI image volumes (Z-stacks)

generated across FOVs are stitched together.

Multiplex Proteomics (Phenocycler Fusion): The multiplex analysis was performed on 5 ym
FFPE sections mounted on SuperFrost Plus slides (ThermoFisher, MA, USA). The sections
underwent deparaffinization and rehydration, followed by immersion in a Coplin jar containing
1:20 AR9 buffer (Akoya Biosciences, MA, USA). The jar was placed in a pressure cooker for 15
minutes at low pressure, then cooled at room temperature for 30 minutes. The samples were then
rinsed in deionized water for 30 seconds and in 100% ethanol for 3 minutes. Pre-staining
procedures involved immersing the slides in hydration buffer for 2 minutes and staining buffer for
20 minutes (Akoya Biosciences, MA, USA). The primary antibody cocktail was prepared with 4
blockers (G, S, J, and N), each at 9.5 pL in 362 L of staining buffer. For each slide, 150 uL of the
cocktail was aliquoted and 1 uL of each antibody (as listed below) was added. The slides were
then placed in a humidity chamber (StainStray, Sigma-Aldrich, MO, USA) and incubated overnight
at 4°C. Following incubation, slides were fixed in a post-staining solution for 10 minutes. After
fixation, slides underwent sequential 1-minute PBS washes and a 5-minute immersion in ice-cold
methanol. The sections were then treated with 200 uL of a final fixative solution for 20 minutes,
followed by additional washes to remove the fixative. Slides were dried and mounted using the
Akoya flow cell, which seals the flow cell/coverslip onto the slides for 30 seconds. The slides were
removed from the press and soaked in 1X PCF buffer (Akoya Biosciences, MA, USA). PCF
reporter wells were prepared by covering a 15 mL Falcon tube with aluminum foil, then adding

6.1 mL of nuclease-free water, 675 uL of 10X PCF buffer, 450 uL of PCF assay reagent, and 4.5
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uL of concentrated DAPI solution (prepared in-house) to achieve a final DAPI concentration of
1:1000. This reporter stock solution was distributed into 18 amber vials, with each vial containing
235 pL of the solution. For each cycle, 5 uL of reporter was added to each vial, resulting in a total
volume of either 245 pL (for 2 reporters) or 250 pL (for 3 reporters) as detailed in Supplemental
Methods Table 2. Reporters were selected from Atto550, AlexaFluor 647, and AlexaFluor 750
based on experimental needs. Distinct pipette tips were used to transfer the contents of each
amber vial into a 96-well plate. DAPI-containing vials were pipetted into wells in the H-row, while
reporter-containing vials were distributed into other rows. Once the wells were filled, they were
sealed with adhesive aluminum foil (Akoya Biosciences, MA, USA). Imaging was conducted using
a Phenolmager Fusion system connected to a PhenoCycler (PhenoCycler Fusion system from
Akoya BioSciences) with a 20X objective lens from Olympus. Solutions required for instrument
operation included ACS-grade DMSO from Fisher Chemical, nuclease-free water, and 1X PCF
buffer with an added buffer additive. This solution was prepared by mixing 100 mL of 10X PCF
buffer, 100 mL of buffer additive, and 800 mL of nuclease-free water.

Antibody List and Reporter List

PCF Antibody | Clone Barcode/Reporter | Wavelength
CD8A C8/144B BX/RX026 Atto550
CD4 EPR6855 | BX/RX003 AF647
CD20 L26 BX/RX020 AF750
GZMB D6E9W BX/RX041 Atto550
FOXP3 236A/E7 BX/RX031 AF647
Ki67 B56 BX/RX047 Atto550
PHH3 AKYP0060 | BX/RX030 AF647
HLA-A EP1395Y | BX/RX004 AF750
Galectin-3 M3/38 BX/RX035 Atto550
CD3E EP449E BX/RX045 AF647
CD45R0O UCHLA1 BX/RX017 Atto550
CD45 DOM81 BX/RX021 AF647
CD21 AKYP0061 | BX/RX032 Atto550



https://doi.org/10.1101/2024.05.31.596861
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.31.596861; this version posted June 3, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

PD-L1 73-10 BX/RX043 AF647
CD14 EPR3653 | BX/RX037 Atto550
PD-1 D4W2J BX/RX046 AF647
MPO AKYP0113 | BX/RX098 Atto550
CD68 KP1 BX/RX015 AF647
CD31 EP3095 BX/RX001 AF750
KRT14 Poly19053 | BX/RX002 Atto550
CD107a H4A3 BX/RX006 AF647
KRT8/18 C51 BX/RX081 AF750
CD141 AKYP0124 | BX/RX087 Atto550
ICOS D1K2T BX/RX054 AF647
SMA AKYP0081 | BX/RX013 AF750
PDPN NC-08 BX/RX023 Atto550
COL_IV EPR20966 | BX/RX042 AF647
CD34 AKYP0088 | BX/RX025 Atto550
HLA-DR EPR3692 | BX/RX033 AF647
Bcel2 EPR17509 | BX/RX085 AF647
Caveolin D46G3 BX/RX086 AF750
IFNG AKYP0074 | BX/RX020 Atto550
CDG66A/C/E ASL-32 BX/RX016 AF647
CD56 CALS3 BX/RX028 Atto550
CD11c 118/A5 BX/RX024 AF647
PanCK AE-1/AE-3 | BX/RX019 AF750

Image Segmentation: qpTIFF images were opened into QuPath 5.0, segmentation was acquired
in three different methods, the linear nuclei expansion was obtained using Watershed directly
from QuPath, the Pre trained models were used applying the QuPath extension generated using
the workflow established by Bankhead P.

(https://qupath.readthedocs.io/en/latest/docs/advanced/stardist.html).
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The HITL methods utilized used a GUI based approach established by Cellpose 3.0 with
denoising and HITL training in 50 different ROIs of MSG H&E sections. The application of the
methods was performed into a 3 ROIs of 900 microns x 800 microns in three different GVHD
patients MSG biopsies. The parameters used by the three methods were the same: Pixel size
was 0.1micron, Sigma 1, DAPI threshold 12. Cell expansion 10 into the linear model and the pre-
trained model, no cell expansion required for the HITL model. In the HITL model the mask was
exported to the QuPath allowing the same extraction csv matrix with the cells IDs and the protein

markers expressed in each cell ID.

Protocol. Combined Xenium and PCF: After the Xenium experiment, the slides underwent a
quenching process as described in the Xenium Assay 10X Genomics manual. The slides were
then stored in a container with 50% BPS and 50% glycerol for two days. To resume the
experiment, the slide was washed in PBS for 3 minutes, and antigen retrieval was performed
using AR9 Buffer (Akoya Biosciences) in a pressure cooker for 15 minutes at low pressure. The
rest of the antigen retrieval protocol until the start of the PhenoCycler fusion experiment was

carried out as described in the 'spatial proteomics' methods section above.

Mask Transfer: For the combined Xenium and PCF assay, the cell segmentation masks
obtained from Xenium analyzer were used for both Xenium and PCF analysis. Since Xenium
acquisition is performed with a 40x objective lens and PCF with a 20x objective lens, for the
purposes of cell mask transfer (from Xenium to PCF), the Xenium DAPI image
(morpholopgy_mip.ome.tif) was down sampled by a factor of 2. The Xenium cell boundary
polygons (stored in cell_boundaries.csv.gz in the Xenium output folder) were subsequently
converted to match the downsampled Xenium DAPI image. The cell boundary masks were then
saved as a .geojson, with their cell names from Xenium analyzer retained, for use in QuPath for
subsequent analysis. Since it is possible for the sample not be perfectly aligned Xenium and PCF

experiments, the PCF .gptiff image was registered to the down sampled Xenium DAPI image,
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using the non-rigid registration workflow in VALIS v1.0.4

(https://www.nature.com/articles/s41467-023-40218-9). The resulting aligned PCF image is

saved as an .ome.tiff with the additional downsampled Xenium DAPI channel using the Kheops
plugin for FIJI (Guiet, R., Burri, O., Chiaruttini, N., Seitz, A., & Eglinger, J. (2021). Kheops (Version

0.1.8) [Computer software]. https://doi.org/10.5281/zenodo0.5256256).

Manual Quantification: For the comparison of cell assignment methods, manual counting was
conducted by a pathologist (BFM) within designated Regions of Interest (ROls). These ROIls
comprised 1500-1800 cells each. Manual counting involved quantifying cells based on canonical
marker labels and morphological features. For example, KRT18 combined with specific
morphological features was used to identify Acinar Cells, PAN-Ck combined with morphological
features identified Duct cells, CD31 identified Vascular endothelial cells, SMA identified
Myoepithelial cells, and CD45 identified immune cells. Additionally, specific markers were utilized
for identifying unique cell types that are determined by a single marker. Upon completion of the
manual counting process, the quantification data were systematically transferred into a table
format. This table facilitated the calculation of the presence of each cell type within the respective
ROls. To assess the convergence between clusters and TACIT, the average number of cells for

each type was used to compute the absolute error associated with each cell type.

DATA AVAILABILITY:

The benchmark public data can be found at: https://data.mendeley.com/datasets/mpjzbtfgfr/1

(PCF-CRC), https://datadryad.org/stash/dataset/doi:10.5061/dryad.pkOp2ngrf (PCF-HI), and

https://datadryad.org/stash/dataset/doi:10.5061/dryad.pkOp2ngrf (MERFISH). Source data for

reproduced figure available at: https://zenodo.org/records/11397609 . All other data is available

upon reasonable request.
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All codes related to TACIT can be found at https://github.com/huynhkI953/TACIT
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Figure legends:

Figure 1. General TACIT Workflow: (a) Multiplex imaging employs both spatial proteomics (top)
and spatial transcriptomics (bottom). After segmentation (b top), a CELLXFEATURE matrix is
generated (c). Hierarchical cell type structures (b bottom) are formulated based on panel design,
expert knowledge, and scRNA-seq marker matching, resulting in a CELLTYPEXMARKER matrix
(c). Cells are organized into microclusters (MCs) by a community-based Louvain algorithm,
averaging 0.1%-0.5% of the population (d top). These matrices are then used to compute Cell
Type Relevance (CTR) scores for all cell types across cells (d bottom). Optimal thresholds are
established to classify cells as clean if they meet one threshold or mixed if multiple (€). The UMAP
with all features shows no clear separation between two distinct cell types (g — top left); however,
clear segregation appears when only relevant features are used in the UMAP embedding (g — top
right). Mixed identities are resolved by analyzing the mode of cell types within their k-nearest
neighbors (g — bottom). Validation is performed via heatmaps comparing mean marker and cell
type values with the CELLTYPEXMARKER matrix (h — top), and by calculating enrichment scores
for each cell type (i — bottom). The UMAP plot illustrates spatial distributions with cell type
annotations (j top-right) and connections of cell type clusters (j bottom-left), combining cell type
and state analyses (j bottom-right). Extended details of step e: Threshold derivation extends to
segmental regression on ordered median CTR scores across all MCs to identify breakpoints (i &
ii), defining “low relevance group (LRG)” and “high relevance group (HRG)” (ii). The determined
CTR threshold minimizes classification error, distinguishing between LRG and HRG (iv & v). Cells

above the threshold are highlighted in red on the UMAP, while those below are in grey (vi).
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Figure 2: Application of TACIT on PhenoCycler data from PCF-CRC (top panel) and PCF-HI
(bottom panel). (a,g) Examples of spatial plots color-coded by identified cell types, illustrating
the spatial distribution and clustering of cells as determined by TACIT. These plots demonstrate
how TACIT preserves the spatial structure of cell types, maintaining consistency with the
reference data. (e,k) UMAP representations with cell type delineations, showing the clustering of
cells in a two-dimensional space. TACIT's UMAP plots reveal a higher degree of similarity to the
reference clusters compared to other methods, indicating its superior performance in accurately
identifying cell types. (f,i) Heatmaps comparing the mean marker values for each cell type
identified by TACIT and other existing methods. TACIT's heatmaps exhibit distinct and clear
unique marker expressions for each cell type, with a diagonal pattern that highlights its precise
cell type identification capabilities. (d,j) Recall, precision, and F1 score comparisons between
TACIT (PCF-CRC: 0.74 (Recall), 0.79 (Precision), 0.75 (F1), PCF-HI: 0.73 (Recall), 0.79
(Precision), 0.75 (F1)) and existing methods, benchmarked against the reference. TACIT
consistently outperforms other methods, achieving higher recall, precision, and F1 scores, which
underscores its accuracy and reliability in cell type identification. (e,k) Correlation plots illustrating
the relationships between different cell type identification methods for both abundant cell types
and rare cell types. TACIT shows strong correlations with the reference data, particularly for rare
cell types (PCF-CRC: R=0.58, PCF-HI: R=0.76), where it demonstrates a higher degree of
similarity in cell type identification compared to other methods. (f,l) Intensity comparison of unique
markers between TACIT and existing methods. TACIT displays significantly different enrichment
scores, particularly when compared to methods like Louvain (PCF-CRC & PCF-HI: p-value<0.05)
or SCINA (PCF-CRC: p-value<0.05), indicating its enhanced ability to identify and distinguish

unique cell markers.

Figure 3: Application of TACIT on Xenium data. (a) UMAP and (b) spatial plots color-coded by

identified cell types. The UMAP plots demonstrate TACIT's ability to cluster cells accurately,
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showing a clear separation of different cell types. Notably, epithelial such as mucous acinar,
myoepithelial, and seromucous acinar cells form more distinct and clear clusters under TACIT's
annotation compared to Louvain and Seurat Transfer methods. The spatial plots further illustrate
the spatial distribution of these cell types, maintaining the structural integrity and spatial
organization consistent with the reference data. (c) Heatmaps depicting cell types and markers
between TACIT, Louvain, Seurat transfer, and the signature matrix. TACIT's heatmaps present
clear and distinct patterns, highlighting its precise identification of cell types and markers. This
clarity is especially notable when compared to the other methods, which show less distinct marker
expressions. (d-e) UMAP plots with low granularity cell types across the three methods. TACIT's
enhanced capabilities are further exemplified by its identification of rare and diverse cell types,
such as duct cells and duct progenitors, as well as various T cell types including CD4, CD8, CD8
exhausted, and T cell progenitors. (f) Correlation plot of cell type proportions between the three
methods in Xenium, compared with scRNA cell type proportions. TACIT shows a higher
correlation (Spearman Correlation, R=0.84) with scRNA cell type proportions, indicating a more
consistent and reliable identification of cell types. In contrast, Seurat transfer and Louvain show
lower correlations of 0.49 and 0.69, respectively. (g) TACIT and Seurat transfer able to find all the
cell type matches with scRNA. (h-i) Intensity comparison of unique markers between TACIT and
existing methods. TACIT exhibits a higher intensity of unique marker expressions compared to
Louvain, with a log2 fold change (p-value<0.05), and shows significant performance over Louvain

and Seurat transfer, with a -log10 adjusted p-value (p-value<0.05).

Figure 4: Single-Slide Spatial Multiomics Annotation using TACIT (a) Spatial Transcriptomics
— A Xenium experiment was conducted on minor salivary glands of GVHD patients using a 280-
gene panel focusing on structural and immune cells. The inset shows a high-density immune area
and the overlay of representative structural, immune, and cell state transcripts in the area of

interest. (b) Spatial Proteomics — A post-Xenium Phenocycler Fusion experiment was performed
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on the same slide, using a 36-antibody panel targeting structural and immune cells. The
segmentation mask was shared between both experiments to extract spatial single-cell data. (c)
The UMAP of the Xenium data using TACIT and Louvain shows a higher granularity in the
annotations made by TACIT. The cell types identified solely by TACIT are highlighted in the cell
type annotation (arrows). (d) Voronoi plot showing TACIT's annotation reconstruction of a GVHD
case. The inset reveals the heterogeneity of cells detected in a high-density immune infiltrate. (e)
Venn diagram showing the matched and unique cell types detected by each tool in the spatial
transcriptomics experiment. TACIT identified 22 cell types, with 4 not matched by Louvain. All cell
types detected by Louvain were also detected by TACIT. (f). The absolute error of cell assigns
compared with human pathologist evaluation, for each cell type using TACIT and Louvain. (g) The
UMAP of the Phenocycler Fusion data using TACIT and Louvain shows a higher granularity in the
annotations made by TACIT. The cell types identified solely by TACIT are highlighted in the cell
type annotation (arrows). (h) Voronoi plot showing TACIT's annotation reconstruction based on a
spatial proteomics assay of a GVHD case. The inset shows the heterogeneity of cells detected in
a high-density immune infiltrate at a lower resolution compared to the spatial transcriptomics. (i)
Venn diagram showing that TACIT recognized and assigned 18 cell types, with two structural and
two immune cell types uniquely detected by TACIT. (j) The absolute error of cell quantity
signatures using a spatial transcriptomics assay, compared with human pathologist, for each cell

type using TACIT and Louvain.

Figure 5: Application of TACIT in a Multimodal Single-Slide Tertiary Lymphoid Structure (a)
Spatial transcriptomics and proteomics assays were used for segmentation to extract spatial
single-cell data. The segmentation mask was transferred from experiment to the another, even
then it can present bleed-through of markers between cells; proteomics data can show
immunofluorescence markers staining the edges of adjacent B cells (arrows). The same issue

can occur with transcript probes being detected outside the cell boundary, as shown in a tertiary
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lymphoid structure (TLS) in a GVHD minor salivary gland where the MS4A1 gene is detected
outside of B cells. (b) TACIT and Louvain have different performances when analyzing high-
density immune areas of interest, such as a TLS. The immune cell proportion identified by TACIT
showed a more detailed population of cells expected in a TLS compared to Louvain. (c) Aheatmap
shows the genes and proteins used to create cell signatures by TACIT and Louvain. Using the
same list of genes, TACIT outperforms Louvain in terms of clear markers for each cell type and
cell recognition in a high-density immune cell area. (d) Voronoi plots illustrate how different
assignments can create varying outcomes and analyses. The TACIT reconstruction using the
signature list shows a heterogeneity of immune cells surrounded by small vessels and antigen-
presenting cells, as expected in a TLS. Louvain presented a lower resolution of cell recognition,
combining all immune cell types into just one innate and one adaptive immune cell type. (e)
Downstream analysis can be impacted by using different tools to assign cells in multi-omics spatial
assays. The neighborhood analysis presented by a Delaunay triangulation shows the expected
proximity of cells in a TLS, such as B cells and dendritic cells with small vessels and T cells using
TACIT. Louvain presented unilateral interactions, all related to the structural cell types, which were
the most abundant cell type in the ROI analyzed. (f) The use of a single-slide spatial proteomics
and transcriptomics opens the possibility of finding cell types and assigning chemokines,
interleukins, and immune checkpoints to each cell type. This not only detects cellular patterns but
also begins to explore spatial cell-cell communication validation and interactions. The ROI
reconstruction using TACIT showed CD247 assigned to T cells, B cells, and macrophages,
whereas Clustering's signature was unique to B cells and surrounded by capillaries with no other

interactions.

Figure 6. Multimodal analysis using ST and SP in a single slide. (a) Two assays were
combined on the same slide and section: Phenocycler Fusion (SP) and Xenium (ST). These were

performed using a 36-antibody panel and a 280-gene panel. A segmentation mask was created
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using a human-in-the-loop approach and inputted into the Xenium Ranger. This mask was then
transferred to the SP assay, maintaining cell IDs between the two experiments.(b) After
segmentation, a matrix was extracted containing the pixel values of each immunofluorescent
channel from the SP and the transcripts per cell from the ST. (c) This cell-by-feature matrix was
then normalized and cell-assigned using TACIT. (d). The matched number of cells assigned by
the SP and ST assays was quantified to evaluate the correlation in cell assignment for each major
cell type — structural and immune cells. The correlation for structural cells using all transcripts and
proteins was 0.37, and for immune cells, it was 0.01. (e). After the initial annotation, specific cell
markers were used to assign cell types that had both protein and transcript designations in the
proteomics and transcriptomics assays. The masks of cells annotated in three different ROls with
a high density of immune cells showed 34% agreement when using all markers. (f). A smaller
subset of matched protein and RNA panels was utilized to improve agreement. The Voronoi mask
showed better convergence in cell type annotation, increasing cell ID matching to 81%. (g-h) The
difference in annotation by each approach for each of the six cell types selected using matched
protein and RNA markers showed an improvement in cell assignment, with the proportion of the
cell types. (i). After multimodal cell assignment, TACIT was also able to provide cell state markers
for each cell. PD-1 and PDCD1 were used to understand the ratio of transcripts and proteins in
high-density immune cell ROls. The presence of these two markers was analyzed using SP alone,
ST alone, and the two assays combined. (j) The proportion of positivity cell state in mMRNA such
as PDCD1 and MKI67 are significantly lower than PD-1 (p-value<0.05) and Ki67 (p-value<0.05)

in protein for B cells and CD4+ T cells across TLS.

Extended Data 1: Quantitative of comparison between TACIT and existing methods for
individual cell type. (a-c) Boxplots depict recall (a), precision (b), and F1 scores (c) for individual
cell types in PCF-CRC, demonstrating the performance of TACIT compared to three alternative

methods. TACIT shows significantly higher recall, precision, and F1 scores than CELESTA (p-
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value<0.05), SCINA (p-value<0.05), and Louvain (p-value<0.05), highlighting its superior
accuracy in identifying individual cell types within the PCF-CRC dataset. (d) Comparison of cell
type proportions between TACIT and existing methods, with CELESTA and SCINA showing a
disproportionately high proportion of the "Others" group in PCF-HI datasets. This over-
representation of undefined cell types indicates a limitation in their classification capabilities. (e)
Weighted recall, precision, and F1 scores comparing TACIT with existing methods in PCF-HI
datasets. Even after excluding the "Others" category, TACIT consistently outperforms other
methods, demonstrating higher weighted recall, precision, and F1 scores. (f-h) Boxplots illustrate
recall (f), precision (g), and F1 scores (h) for individual cell types in PCF-HI. TACIT's performance
in these metrics remains higher than CELESTA, SCINA and Louvain, further validating its

effectiveness in cell type identification.

Extended Data 2: Evaluating Stability and Resolution Impact in TACIT Annotations on PCF-
CRC Datasets. Stability and parameter optimization of TACIT annotations are assessed using
bootstrap methods on the PCF-CRC datasets. We employed a bootstrap approach by randomly
selecting 80% of the original data and running TACIT 10 times to evaluate its stability and
robustness. This method ensures that our findings are not biased by any subset of data and
provides a comprehensive assessment of TACIT's performance consistency. (a) The boxplot
displays thresholds for each cell type score across the 10 bootstrap iterations, demonstrating that
the threshold values remain stable. (b-d) Validation metrics such as recall, precision, and F1
scores are presented for each iteration. These metrics show minimal variation across the 10
bootstrap samples, underscoring TACIT's reliability in maintaining high performance metrics
under different subsets of the data. (e-g) Various resolution levels were tested to assess their
impact on the performance of TACIT. Higher resolution levels, which correspond to an increased

number of microclusters, showed a positive correlation with recall values, particularly for rare cell
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types that constitute less than 1% of the data. This enhancement in recall is crucial for accurately

identifying and characterizing rare cell populations.

Extended Data 3: Application of TACIT on MERFISH data from mouse brain. (a) UMAP
representations with cell type delineations provide a visual overview of how TACIT effectively
clusters cells, showing matching with the reference compared to Louvain clustering. (b) Examples
of spatial plots color-coded by identified cell types demonstrate the spatial distribution and
organization of cells as identified by TACIT. These plots emphasize TACIT's ability to preserve
spatial integrity, showcasing well-defined structures and consistent cell type placement within the
tissue context. (c) Heatmaps comparing the mean marker values for each cell type identified by
TACIT and Louvain, along with provided reference data, illustrate the distinct marker expression
patterns for each cell type. (d) Comparison of weighted recall, precision, and F1 scores between
TACIT and Louvain, benchmarked against the reference, demonstrates TACIT's superior
performance. TACIT consistently achieves higher scores across these metrics (Recall = 0.85,
Precision = 0.87, and F1 = 0.85). (e) Correlation plots illustrating the relationships between
different cell type identification methods for both abundant (R=0.99) and rare cell types (R=94)
reveal TACIT's strong correlation with reference data. (f) Intensity comparison of unique markers
between TACIT and existing methods shows that TACIT exhibits higher intensities of unique
marker expressions, which log2FC and -log10 adjusted p-value significant different than Louvain

(p-value<0.05).

Extended Data 4: Using biased cell annotation to discover cell types signatures to support
spatial analyses. (a) Trailmaker (Parse Biosciences; formerly, Cellenics®) was used to perform
cell type annotation on UMAPs. (b) Differentially expressed genes that become a marker set per

cluster were generated using their dot plot tool.
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Extended Data 5: Heatmap of PCFs in 6 Xenium and PCF paired samples. The heatmap
displays the mean expression of each antibody and cell type, annotated using three methods:
Louvain with default resolution = 0.8 (first column), Louvain after manual annotation (second
column), and TACIT annotation (third column). For the first column, we used Louvain clustering
with a default resolution of 0.8. In the second column, we manually annotated the Louvain clusters
by examining the different gene expressions and identifying the top three markers for each cluster.
We then compared these markers with known signatures to assign cell types to each cluster. In
the third column, we present the results from TACIT annotation. When comparing TACIT to the
Louvain-based methods, TACIT provides more unique and clear diagnostic markers, resulting in
distinct and well-defined cell type annotations. This clarity and uniqueness in marker expression

underscore TACIT's superior performance in accurately identifying cell types.

Extended Data 6: Heatmap of Xeniums in 6 Xenium and PCF paired samples. The heatmap
displays the mean expression of each antibody and cell type in the Xenium dataset, annotated
using three different methods: Louvain with default resolution = 0.8 (first column), Louvain after
manual annotation (second column), and TACIT annotation (third column). For the first column,
we utilized Louvain clustering with a default resolution of 0.8. In the second column, the Louvain
clusters were manually annotated by examining the different gene expressions and identifying the
top three markers for each cluster. These markers were then compared with known signatures to
assign specific cell types to each cluster. In the third column, we show the results from TACIT
annotation. Compared to the Louvain-based methods, TACIT delivers more distinct and unique
diagnostic markers, leading to clearer and more precise cell type annotations. This enhanced
clarity and uniqueness in marker expression highlight TACIT's superior capability in accurately

identifying cell types within the Xenium dataset.


https://doi.org/10.1101/2024.05.31.596861
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.31.596861; this version posted June 3, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Extended Data 7: Multimodal analysis between spatial transcriptomics and spatial
proteomics in TLS region. (a) TLS region with initial TACIT annotation using the whole panel of
Xenium and PCF versus TACIT annotation using matched marker sets. When using the entire
panel, the agreement between the two technologies (Xenium and PCF) was relatively low, with
agreement rates of 31%, 23%, and 42%. However, focusing on matched marker sets significantly
improved the agreement to 75%, 80%, and 77%, respectively, between PCF and Xenium. (b) The
cell state (PDCD1 and PD-1) expression with cell type in the TLS region. This highlights the
differences in mRNA and RNA cell states, providing insights into the expression patterns and

potential discrepancies in cell type identification based on different technologies.

Extended Data 8: Signature matrix for all datasets. The input signature matrix for all datasets

used in this manuscript.
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‘ TACIT: Threshold-based Assignment of Cell Types from Multiplexed Imaging DaTa
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Figure 2

‘ Visual Spatial Proteomics in Colorectal Cancer ‘ ‘ Q itative Spatial ics in C Cancer
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Figure 3

‘ Visual Spatial Transciptomics in Sjégren’s Disease
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Figure 6

‘ Simultaneous Evaluation of Same-Slide Single Cell, Spatial Multiomics using TACIT
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