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ABSTRACT

Pea, Pisum sativum, is an excellent model system through which Gregor Mendel established
the foundational principles of inheritance. Surprisingly, till today, the molecular nature of the
genetic differences underlying the seven pairs of contrasting traits that Mendel studied in detail
remains partially understood. Here, we present a genomic and phenotypic variation map,
coupled with haplotype-phenotype association analyses across a wide range of traits in a global
Pisum diversity panel. We focus on a genomics-enabled genetic dissection of each of the seven
traits Mendel studied, revealing many previously undescribed alleles for the four characterized
genes, R, Le, I and A, and elucidating the gene identities and mutations for the remaining three
uncharacterized traits. Notably, we identify: (1) a ca. 100kb deletion upstream of the
Chlorophyll synthase (ChlG) gene, which generates aberrant transcripts and confers the yellow
pod phenotype of gp mutants; (2) an in-frame premature stop codon mutation in a Dodeca-
CLE41/44 signalling peptide which explains the parchmentless mutant phenotype
corresponding to p; and (3) a 5bp in-frame deletion in a CIK-like receptor kinase gene
corresponding to the fasciated stem phenotype fa, which Mendel described in terms of flower
position, and we postulate the existence of a Modifier of fa (Mfa) locus that masks this meristem
defect. Mendel noted the pleiotropy of the a mutation, including inhibition of axil ring
anthocyanin pigmentation, a trait we found to be controlled by allelic variants of the gene D
within an R2R3-MYB gene cluster. Furthermore, we characterize and validate natural variation
of a quantitative genetic locus governing both pod width and seed weight, characters that
Mendel deemed were not sufficiently demarcated for his analyses. This study establishes a
cornerstone for fundamental research, education in biology and genetics, and pea breeding

practices.
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MAIN TEXT

Pea is an Old World crop first brought into cultivation about 10,000 years ago in the Fertile
Crescent!. Pea is mainly grown as a field crop, with about % of the area for dry seed and ¥4 for
use as a Vvegetable, totalling about three billion USD in export value in 2022

(https://www.fao.org/faostat/en/#data/). Pea also has a minor use as a fodder crop and is often

grown in home gardens. The nutritional and environmental benefits of this pulse crop have
been discussed elsewhere?2,

Pea has considerable diversity, both genetically and phenotypically. The nucleotide
diversity in Pisum (from & = 8.2 x 107* among wild Pisum to m = 2.4 x 10~*in cultivars)?, is
about tenfold greater than that in the human population®, reflecting bidirectional introgression
between the cultigen and wild genotypes. Pisum sativum (meaning cultivated pea) is a subset
of Pisum as a whole; wild peas designated P. fulvum are noticeably distinct®’ and carry a
translocation with respect to the rest of Pisum*, which creates a fertility barrier. Similarly, the
independently domesticated P. abyssinicum®? differs in karyotype with respect to the rest of
Pisum?*, again presenting a fertility barrier. Thus, Pisum comprises four major divisions; the
cultivated forms P. sativum and P. abyssinicum and the wild forms P. fulvum and P. elatius.

The morphological diversity within Pisum has been documented since at least the 16™
century, with Gerard'® (p1045) illustrating four forms: P. majus, P. minus, P. umbellatum
(fasciated) and P.excorticatum (parchmentless) and discussing several others, such as those
with seeds “which being drie are cornered”. If by this description, Gerard was referring to
wrinkled peas, then three of the variant forms that Mendel studied®!, viz. peas with stem
fasciation, parchmentless pods, and wrinkled seeds, had been recorded nearly 300 years earlier,
while the white flowered forms, as previously noted, were described about 13002, Pea is
predominantly inbreeding, with large flowers; these two features, and the many easily

distinguishable characteristics of pea, made this species ideal for Gregor Mendel’s studies of


https://www.fao.org/faostat/en/#data/
https://doi.org/10.1101/2024.05.31.596837
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.31.596837; this version posted June 3, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

82 inheritance using hybridization'%3. For example, the seven variants that Mendel studied in
83  detail were clearly distinguished in the seed catalogues of the time!4, representing different
84  agronomic forms, end uses, or market types, as they still do today.
85 Mendel’s work on peas was described by Allan Franklin as “The best experiments ever
86  done™'®. Pea serves as an excellent plant model system; in addition to its significant historical
87  contribution to the development of genetics, approximately 60 pea genes have been
88  characterized at the molecular level'®. However, much remains unknown about the molecular
89  nature of the contrasting traits that Mendel studied, even though the genetic loci were named
90 over a century ago'’. The four cloned genes R, Le, | and A have been characterized for some
91  time!2823 but the extent of their natural allelic variation, its distribution and genomic context
92 s still largely unknown*1624 The gene identities of the remaining three Mendel traits, P (or V,
93  pod form), Gp (pod colour) and Fa (or Fas, fasciation), remain uncharacterized. Candidates
94  for Gpand P have been tentatively proposed, based on specific GWAS analyses and bi-parental
95  mapping studies?>%%; however, further work is needed to confirm or reject these proposals.
96 In this study, we couple sequence-based genomic diversity analysis with phenotypic
97  variation to elucidate gene identity underlying traits of interest in one of the world’s major
98  Pisum germplasm collections'®. We illustrate this by describing the genomic context of the
99  seven well-known traits that Mendel studied in detail. We further demonstrate how this can be
100  expanded to elucidate the molecular basis of other characters, including several quantitative

101 traits that Mendel discussed but considered too variable for simple analysis.

102 RESULTS

103  Genomic Variation Map of a Pisum Core Collection

104  To build a pea genomic variation map, and particularly to characterize each of the genetic loci
105  underpinning the traits that Mendel studied, we selected a core diversity panel from the JI

106  Pisum Germplasm Collection, a widely-used collection, historically and globally*¢. The panel
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107  included 500 representative Pisum accessions, selected using Corehunter 3 and based on prior
108  genotyping data?’?8. This set was augmented by the inclusion of an additional 130 lines
109  previously chosen for other diversity studies (www.pcgin.org) and included parents of mutant
110 and mapping populations together with 67 lines comprising all accessions designated P.
111 abyssinicum, P. humile or P. fulvum (Fig. 1a, Supplementary Table 1). We performed next-
112  generation short-read whole-genome resequencing for these 697 Pisum accessions, resulting in
113  approximately 80 Gb of clean reads, with a coverage of about 20X for each accession
114  (Supplementary Table 2). We built a genomic variation map encompassing 154.8 million high-

115  quality single nucleotide polymorphisms (SNPs) with respect to the ZW6 assembly?*, as well

116  to Caméor vla* (Supplementary Table 3-4). This revealed the pattern of accession relationships
117  and defined population structure at a high resolution within Pisum (Supplementary Table 5)
118  which is broadly consistent with previous results?®, and we proposed eight major Pisum groups
119 (G1-G8) (Fig. 1b, 1d-e). These accessions do not have a tree-like relationship but have a
120  reticulated network structure (Fig. 1e). Within the diversity panel, we particularly recorded the
121 phenotypic variation for each of the seven pairs of contrasting traits that Mendel studied (Fig.

122 1c) and associated this with genomic diversity (Fig. 1f and Supplementary Table 6-11).

123 Novel Alleles for Mendel’s Four Characterized Genes

124  Haplotype-phenotype association coupled with linkage analysis of bi-parental mapping
125  populations elucidated the genetic basis of Mendel’s pea traits and revealed their genetic
126  structure (Fig. 2). From the significance of the association between SNP variants and the
127  phenotypic differences which Mendel described'**3, we can see that for each trait, a small
128 number of specific genetic loci contribute to the trait variation. Our novel discoveries are
129  summarized (Extended Data Fig. 1) and explained below for each trait.

130 Round vs wrinkled seeds
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131  Our association genomics analysis of round and wrinkled seeds (Supplementary Table 12)
132  identified a single strong but broad signal, at the expected genomic position of R, encoding
133  Starch Branching Enzyme 12%(PsSBEL). The insertion of Ips-r, a 1021bp non-autonomous Ac-
134 like transposable element, within exon 22 of the PsSBE1 coding sequence, predicts a truncated
135  protein (from 922 aa to 890 aa) due to a premature stop codon?*2° (Fig. 2c, Extended Data Fig.
136  2), although multiple r transcripts have also been detected®. Genetic differentiation between
137  round and wrinkled types in breeding programmes could be the underlying reason for the broad
138  GWAS peak: round types are field peas, grown for their dry seed, while wrinkled types are a
139  class of peas grown for harvesting before maturity as fresh peas or for the freezing market®!,
140  The single GWAS peak also indicates that there is no genetic heterogeneity associated with
141 this phenotype within the set of lines we have examined.

142  Green vs yellow cotyledons

143  We identified a strong signal at the expected position of I, the gene encoding Mg-dechelatase®*-
144 2 which catalyses the first step in chlorophyll degradation and underlies the genetic difference
145  Dbetween green vs yellow cotyledons (Supplementary Fig. 1, Supplementary Table 13). We
146  found two classes of i alleles (Fig. 2c and Extended Data Fig. 3), which explain most of the
147  green cotyledon mutants in this diversity panel. The more common mutant allele (designated
148  as i-1) is the insertion of a 5,696 nt TAR element (a Tyl-Copia LTR retrotransposon) which
149  probably corresponds to group 3 alleles as previously suggested?! but not identified, nor was
150 its frequency characterized at the population level. The second allele we discovered is a novel
151 408 bp deletion in the promoter of the Mg-dechelatase gene (Supplementary Fig. 2), which we
152  designate as the ‘i-2” allele, explaining 15 accessions with green cotyledons. Neither the 6bp
153 insertion event corresponding to the i*'?’7> allele?! nor the i allele?* described as group 4 was
154  found in any accession of our diversity panel (JI2775 was not included in this study), so it is

155  presumed that these alleles are rare. Several minor peaks with a -logio(p) value ~10, distinct
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156  from the I locus, can be seen in the Manhattan plot (Fig. 2b). Modifiers of cotyledon colour are
157  well known and ten genetic loci that contribute to this effect have been identified®?, but their
158 location with respect to these additional GWAS peaks could not been determined.

159  Presence or absence of anthocyanin pigment

160  Our haplotype-phenotype association study of pigmented vs white flowers (Supplementary
161  Table 14) revealed a single strong signal spanning a genomic region consistent with the
162  location of A, which encodes a bHLH transcription factor!? (Fig. 2) required for the expression
163  of chalcone synthase in epidermal tissues®, thereby enabling anthocyanin pigmentation. We
164  discovered several novel haplotypes within the structural gene (Extended Data Fig. 4). The
165  wild types (A) with pigmented flowers were assigned to haplotype (Hap) 1 based on the
166  distribution of functional variants, but Hapl is remarkably diverse at other positions. The two
167  most common a alleles correspond to Hap5, carrying the splice donor site variant (G to A),
168  originally identified in Caméor, and Hap2, with an additional ‘A’ nucleotide in exon 6 creating
169  apremature stop codon, as originally identified in J11987%2. Two new variants (Hap3, with four
170  accessions and Hap4, with one accession) are deletions of part (the first two exons), or almost
171  the entirety (the first six exons) of the gene.

172 Remarkably, we found one accession with coloured flowers that carried the splice donor
173 site mutation which should render the gene dysfunctional. This allele (in J10233, Hap5) has an
174  additional ‘T’ nucleotide in what would be the sixth intron of the wild type allele, but it lies
175  between the wild-type splice donor site and the splice site used in the Caméor allele, adding
176  nine nucleotides to the transcript, one more than in the a@m°r allele (Extended Data Fig. 4).
177  Thus this ‘T’ insertion is an intragenic suppressor mutation, which restores wild type gene
178  function by restoring the reading frame in the JI0233 transcript, resulting in the predicted
179  addition of three amino acids to the A protein (Supplementary Fig. 3).

180  Internode length
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181  Variation in internode length in our analysis corresponds to Mendel’s plant height character
182  (Supplementary Table 15). We identified a significant peak (chr5: 620824850-652929960) at
183 the end of chromosome 5, which spans the location of Le encoding GA 3-oxidasel
184  (Psat05G0825300, also called GA 3pB-hydroxylase) (Fig. 2), but does not extend to Lh*
185  (Psat05G0840800, chr5:650785676-650788204), another gene conditioning plant height,
186  closely linked to Le. That the GWAS approach finds this single peak suggests that variation at
187  other known loci involved in regulation of the type and abundance of plant hormones affecting
188 plant height, or internode length, does not contribute significantly to natural phenotypic
189  variation in this trait. We observed five haplotypes associated with Le (Extended Data Fig. 5),
190  but the reduced height le variants were exclusively found in haplotype 1, which carries the

191  known G-A substitution at chr5:63990191918.19,

192 GENE IDENTITY AND VARIATION OF THE UNCHARACTERIZED TRAITS

193  Three of Mendel’s seven traits have remained poorly characterised®: ‘the difference in the
194  colour of the unripe pod’ (Gp), ‘the difference in the shape of the ripe pod’ (conditioned by
195  either of two loci, P or V), and ‘the difference in the position of the flowers’ (thought to be
196  conditioned by either of two loci, Fa or Fas). Gene identities and allelic variation underlying
197  these traits were investigated in this study.

198  Pod colour

199  Although Gp is usually discussed in relation to pod colour, Mendel noted that yellow pods are
200  just one feature of the gp mutant. In mature flowering and fruiting plants, yellow tissues are
201  seen in the petiole, rachis, tendrils and leaflet midribs of young leaves, and also in the pedicel,
202  peduncle and sepals (Fig. 3a and Supplementary Fig. 4). There are also significant differences
203 in the physiological and biochemical properties of pod and leaf tissue, and differences in
204  chloroplast development®, between the green (GpGp) and the yellow podded (gpgp) varieties

205  (Fig. 3b). Here we found that even the green leaves of gp lines have disturbed development of
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206  thylakoid membranes (Fig. 3c) and this was reflected in a difference in productivity between
207  Gp and gp isolines (Supplementary Fig. 5).

208 All yellow podded lines in the JI Pisum germplasm collection were shown to be allelic to
209  gp. Thus, there is only one known yellow pod locus and we show below that there is only one
210  yellow podded gp allele. Genetic mapping and association genomics analysis found that all
211  these yellow podded lines carried a ca. 100 kb deletion within the GWAS interval, which co-
212  segregated with gp (Supplementary Figs. 6-8 and Supplementary Table 16-21). With respect
213  tothe ZW6 assembly, this deletion removes three entire genes, as well as part of exon5 and the
214 whole of exon 6 from a gene encoding a TIR-NBS-LRR (NLR, Past03G0414100) protein.

215 Interestingly, this deletion is adjacent to the gene encoding chlorophyll synthase (ChlG,
216  Psat03G0413700), but the structure of the ChlG gene is intact in all the gp lines and the
217  encoded amino acid sequence is identical to the wild type (Fig. 3d). Mapping RNA-seq reads
218  to their matched gp genome assemblies of J12366 and JI0015 predicted novel transcripts from
219  ChIG, including intron read-through and a fusion of the truncated TIR-NBS-LRR and ChIG
220  transcripts, confirmed by transcriptome sequencing (Fig. 3e-f, Supplementary Figs. 9-10).
221  Furthermore, RNA-seq and gPCR data showed that ChlIG transcript abundance was reduced in
222  gp pods with respect to gp leaves, whereas the abundance of the fused NLR-ChIG transcript in
223  gp lines is similar in pods and leaves (Fig. 3g). We propose that disruption of chlorophyll
224  synthesis by transcriptional interference from the expression of aberrant transcripts is the
225  reason for the yellowing of otherwise green tissues in the gp mutant (Supplementary Note).
226 To test the hypothesis that Gp corresponds to ChlIG, we obtained a TILLING mutant®’
227  with a premature stop codon (W121%*) in ChIG (Fig. 3h). This mutant could not be recovered
228  as a homozygote, although the mutant allele could be transmitted through both pollen and egg
229  cells, so we conclude that the homozygous mutation is embryo lethal, but it is not lethal in

230  either gametophyte. We reasoned that the phenotype of a Gpgp, ChIGMChIGY?*" double
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231  heterozygote would be informative; if Gp did not correspond to ChlG then it should be viable
232  and green-podded and our hypothesis would be refuted. Conversely, if Gp did correspond to a
233  functional ChIG then it should be yellow podded. Of the sixteen F1 double heterozygotes we
234 derived from the cross between gpgp and the TILLING mutant heterozygotes, half had yellow
235  pods, and all of these yellow podded F1s carried the ChIGY'?1" null allele (Fig. 3i-j). This result
236  upheld our hypothesis and showed that the gp mutant does not provide a fully functional ChlG.
237 The evidence presented above demonstrates that a ChlG deficiency mediates the mutant
238  phenotype, and establishes that ChIG is allelic to Gp. The large genomic deletion upstream of
239  ChIG in the gp lines generates fused aberrant transcripts spanning ChlG and an upstream TIR-
240  NBS-LRR gene. The detailed molecular mechanism of this defect in chlorophyll synthesis and
241  the possible role of the other genes affected by the deletion event remain to be established;
242  however, our current understanding predicts that ablation of the NLR gene in a gp mutant,
243  thereby removing the fused NLR-ChIG transcripts, would restore the wild-type green pod
244 colour.

245  Pod shape

246  The difference in the shape of the ripe pod was described by Ruel in 1537 as ‘Valvulae etia
247  recetes eorum quae nullo pedameto fulciuntur, ante que durescat, edendo sunt’3® which roughly
248  translated means ‘Those where the valves provide little support are to be eaten before they
249  harden’, indicating that, as today, these are a vegetable form. The lack of a sclerenchyma layer
250 in pea pods (pod parchment) is conditioned by the recessive allele at either (or both) of the
251 genes P and V. It is uncertain which of these genes Mendel was discussing; he could have
252  worked with either, or perhaps both (Supplementary Note). Mendel used this parchmentless
253  variant in several crosses, including the four factor cross described in his second letter to
254  Nageli®®. Our GWAS analysis identified several regions that are statistically correlated with

255  this phenotype (Supplementary Table 22) and of these, two correspond to the expected
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256  positions of P and V (Fig. 2b), suggesting that both p and v alleles are relatively common. The
257  additional signals may correspond to genes affecting pod wall thickness (N) or structure (Sin)*°
258  (Extended Data Fig. 6)

259 Notably, within our 8.3Mb GWAS peak at the end of Chrl (Fig. 2b), the gene
260 Psat01G0420500 had the greatest significance, which is consistent with a 0.92Mb interval
261  defined in the JI0816 x JI12822 F2 mapping population (Supplementary Table 17-19, Extended
262  DataFig. 6a-d). Psat01G0420500 is annotated as encoding a Dodeca-CLE peptide and includes
263  the tracheary element differentiation inhibitory factor (TDIF) of CLE41/44%%. One allele of this
264  gene, carrying an in-frame premature stop codon (R79*) upstream of the TDIF motif (Fig. 2c,
265 Extended Data Fig. 6e-g), fully explains the p phenotype. CLE41 peptides repress the
266  formation of xylem* and specify positional information that determines the rate and orientation
267  of cell divisions in vascular tissue in conjunction with the receptor kinase PXY39%. TDIF is
268 proposed to be a non-cell autonomous signalling peptide controlling cell fate** and
269 lignification®. This suggests a model for P whereby this TDIF peptide interacts with a PXY-
270  like protein to specify pea pod sclerenchyma development.

271 The genomic interval corresponding to V, as identified by GWAS, spans a broad region
272  (Chr6 610-650Mb). A 3Mb interval (Chr6 628-631Mb) in the middle of the GWAS peak, was
273  the most significant location for the identification of candidate genes to V (Extended Data Fig.
274 7, Supplementary Table 23). Within this interval, we found that accessions with parchmentless
275  pods, including those which lack the R79* mutation in CLE41/44 (PPwv) and those with the
276  double mutantion (ppwv), are clustered into haplotype 2 of Psat05G0805200, a cell wall
277  invertase. While this gene is a plausible candidate for V further work is needed to fully explain
278  the v alleles (Supplementary Note and Extended Data Fig. 7 and Supplementary Fig. 12).

279  Fasciation
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280  Mendel discussed “the position of the flowers” on the stem of pea and used the name Pisum
281  umbellatum, a term previously used by Gerard®® to describe the fasciated form (Supplementary
282  Table 24) with an umbellate inflorescence. In pea, fasciation can vary in its severity, from stem
283  bifurcation to an extreme clustering of flowers at the apex. We conducted a comparative
284  analysis of field phenotypes and microscopic observations in the apical meristem of fasciated
285  vs wild type plants (Supplementary Fig. 13). The bunched apical flowers of the mutant are
286  borne on a wider stem with additional vascular strands derived from a broadened apical
287  meristem. There are several pea genes, which when mutant, have a fasciated phenotype; of
288 these, Fa vs fa (chromosome 4 linkage group 1V) is considered to be the gene Mendel
289  studied*®#’.

290 Our GWAS analysis identified a broad signal (Chr4 0-40Mb) (Fig. 2b), which underwent
291  further refinement through investigation of F2 populations using bulked segregant analysis
292  (BSA), narrowing the interval down to a 15Mb region (Supplementary Fig. 14). Subsequent
293  fine-mapping led to the delineation of a 1.33Mb interval (Chr4 18.18-19.51Mb, ZWS6)
294  (Extended Data Fig. 8a-e, and Supplementary Table 17-19, 25-26). We found that all the
295  accessions with fasciated phenotypes were clustered together within haplotype 5 of this 1.33Mb
296 interval (Extended Data Fig. 8f); however, JI1713 and JI0815 in haplotype 5 are not fasciated
297  (see explanation below and in the supplementary notes). A similar analysis was performed with
298  each gene within this interval, revealing a significant finding: only one gene, Psat04G0031700,
299  co-segregated with fasciation. All accessions with the recessive phenotype (fasciation) are
300 clustered into haplotype (Hap) 3 of this gene, which is characterized by a 5bp deletion in exon
301 2, creating a frameshift and premature stop codon which would render the protein non-
302 functional, thereby explaining fasciation in fa lines (Extended Data Fig. 8g, h). This gene
303  encodes a cell membrane-localized Senescence-Associated Receptor-Like Kinase, a class of

304 CLAVATA3 INSENSITIVE RECEPTOR KINASES (CIK) signalling receptor kinases known for
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305 their role in maintaining the structure of the shoot apical meristem*. Our hypothesis that a
306  module involving PsCIK, identified here, and PsWUS and PsCLV3 (Supplementary Fig. 15),
307  key genes expressed in the shoot apex and known to be involved in meristem maintenance in
308  other contexts*?, can now be tested using biochemical genetics.

309 There is a second unexpected minor signal on chromosome 6 linkage group 11 in our
310  GWAS analysis, which is consistent with the BSA analysis showing a small signal at chr6LGlI
311  (Supplementary Notes). In the JI0816 (fa) x JI12822 (Fa) F2 population (Supplementary Table
312  17-19), we noticed that out of 395 scored individuals, 32 had a wild-type phenotype but carried
313  the recessive allele at fa (Extended Data Fig. 9), as was also the case in the GWAS and BSA
314  studies. This suggests a model whereby the recessive allele of a gene in this region at chréLGllI
315 masks the fasciated phenotype. Accordingly, we designated this second locus as “modifier of
316 fa” (mfa) (Supplementary Notes). In this model, individuals that are recessive for both loci, the
317 fafa mfamfa genotype (double recessive), have a wild-type appearance. This proposal would
318 explain why some accessions, like JI1713 and JI0815, carry the 5bp deletion in
319 Psat04G0031700 (PsCIK1) but are not fasciated. Previous studies have highlighted complexity
320 in the segregation of fasciation, with reports of both reversals of dominance and two-factor
321  segregation ratios (15:1) in F2 populations for some crosses®, rather than the expected one-
322  factor segregation ratio (3:1). These unusual features may, in part, be explained by the
323  previously unrecognised gene Mfa (Extended Data Fig. 9). The nature of Mfa remains to be
324  determined, but it resides within the interval ZW6 Chr6: 244,689,457-253,701,016 identified

325 in this study (Supplementary Fig. 14).

326 From Mendel’s Genetic Loci to Quantitative Traits
327 It has been argued that Mendel’s motivation in studying inheritance was related to an applied
328 plant breeding program®. In this work, we measured 74 additional agriculturally relevant

329  characters within our Pisum diversity panel, including seed, pod, flower, leaf, and plant
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330 architecture traits (Supplementary Table 27, Extended Data Fig. 10a,b). A comprehensive
331  genome-wide association study established hundreds of significant marker—trait associations
332  (Supplementary Table 28), including several previously cloned loci such as Er1%, PI%3 Af*,
333  TIP, Rms1%, Hrd, St%8 Rms3°°, K®, Rms4® and Sn®! (Fig. 4a, Supplementary Table 29). In
334  addition, our analyses clearly determined the physical locations of 20 historically defined
335 genetic loci (Fig. 4a), to within an average genomic interval 12 Mb (ca. 150 protein-coding
336  genes). Examples include: the Aero locus (at the end of Chr2), associated with silver flecking
337  on pea stipules®?; the Bt locus (at the beginning of Chr3), influencing the pointed tip of the
338  pod®; and the N locus (at the beginning of Chr4), enhancing pod thickness for snap peas“C.
339  Furthermore, in addition to the three newly characterized of Mendel’s pea traits, our study
340 uncovered several potentially important new loci: the LC (Leaf Colour) locus on Chrl,
341 impacting leaf colour intensity, and Organ size locus (Osl), controlling pod width and grain
342  weight which was validated below. These results demonstrate the high-quality of our dataset
343 and the reliability of the association genomics analyses, laying a solid foundation for future
344 functional elucidation in peas, both for fundamental research and pea breeding.

345  Genetic complexity that Mendel discussed: pleiotropy and epistasis

346  In his 1866 paper, Mendel noted the pleiotropic effects of the seed coat/flower colour trait (A
347  vs a) and specifically referred to the presence or absence of axil ring pigmentation as one of
348 these effects. A regulates the presence or absence of anthocyanin pigmentation throughout the
349 plant and a is epistatic to d, which regulates the pattern of axil ring pigmentation®°. The range
350 of axil pigmentation patterns in pea (Supplementary Fig. 16) is reminiscent of leaf marking in
351  Trifolium® and Medicago®® both of which are controlled by similar MYB transcription factors.
352 Our GWAS analysis revealed two strong signals associated with axil ring pigmentation
353  (in coloured flower lines) (Fig. 4e-f, Supplementary Table 30). One of these corresponds to A

354  (Chr6), while the other is at the expected position of D (Chr2) where there is a cluster of MYB
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355  genes®® (Supplementary Fig. 17). The potential role of one of these MYB genes was investigated
356  further by Virus-Induced Gene Silencing (VIGS), which showed that the MYB-encoding gene
357  Psat02G0138300 (PsMYB16) affect the accumulation of the axil ring anthocyanin
358  pigmentation (Supplementary Figs. 18-19). Furthermore, deletion of another two MYB genes
359  atthe same locus, PsSMYB104 and PsMYB106¢7, in the Fast Neutron (FN) induced mutant line
360 FN1218/6, resulted in the complete absence of axil ring pigmentation (Fig. 4g). The FN1218/6
361  deletion is allelic to the d allele in JIO073 and JI2202 (P. abyssinicum, a taxon that lacks axil
362  ring pigmentation) (Supplementary Figs. 20-22), implicating these genes as corresponding to
363 D.

364 The results presented here reveal the complexity of axil ring pigmentation regulated by D.
365  There are multiple alleles of D within the MYB gene cluster, and many spontaneous conversions
366  from one allelic form to another®, suggesting that it is the combination of alleles at several of
367  these MYB genes which determines the presence, absence or pattern of this pigmentation. Both
368 aand a2 are epistatic to d, and we can postulate that the MYBs involved in the D / d phenotypes
369 are part of a MYB (D) — bHLH (A) - WD40 (A2) complex!?68.69,

370 A quantitative trait essential in pea breeding

371  Mendel examined the segregation of traits that have clear alternative states; he also noted that
372  seed size (among other traits) differed between his parental lines, but considered that this
373  quantitative difference was not suitable for his analyses. Seed size in pea defines some market
374  classes such as the so-called ‘marrowfat’ types, with large irregular shaped seeds and a high
375 protein content. Seed size has been the subject of QTL analyses’®"?, and we have investigated
376  this further within our diversity panel.

377 We discovered a significant novel locus on chromosome 2 that influences both pod width
378 and hundred grain weight (Supplementary Fig. 23) and is in a similar location to a previously

379  described seed size QTL in Medicago and pea’" (Fig. 4b, c). We designated this locus Organ
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380 size 1, PsOsl. Combining fine-mapping (Supplementary Fig. 24 and Supplementary Table 32)
381 and differential gene expression analysis, we identified Psat02G0011300 as a gene candidate
382 for PsOsl (Supplementary Figs. 25-26), which encodes a SIAMESE-related protein
383  (SIM/SMR), a cyclin-dependent protein kinase inhibitor (CKI), influencing cell division and
384  enlargement during the cell cycle and consequently altering plant cell size”. Functional
385 validation from the VIGS (Supplementary Fig. 27) approach, coupled with a transgenic
386  overexpression line in Arabidopsis (Supplementary Figs. 28-29) demonstrate the key role of

387  PsOsl in regulating seed weight and pod width.

388 DISCUSSION

389  Despite the clarity of his 1866 paper, there is some dispute about what Mendel did. It has been
390 argued that Mendel was not primarily interested in inheritance’® ", or that he had a pre-formed
391 theory of inheritance that he sought to demonstrate, even to the extent of fabricating data to
392  conform with his theory®. These views are mutually exclusive, and we reject them both3%7°.
393 We have shown that variation in the genes underlying the seven pairs of contrasting traits
394  that Mendel studied corresponds to a remarkable diversity of mutational mechanisms
395  (Supplementary Table 33). There are several point mutations in a, one affecting the pattern of
396 splicing and two different single nucleotide insertions affecting the reading frame, while le
397  corresponds to an amino acid substitution caused by a missense mutation. The parchmentless
398  mutation p corresponds to a single nucleotide substitution generating a premature stop codon,
399  while insertion events of class | and class Il transposons explain green cotyledons (i) and
400  wrinkled seeds (r), respectively??3, We have also uncovered additional novel types of
401  variation, corresponding to DNA deletions that lead to loss-of-function, such as the remarkable
402  case of gp, with a large DNA deletion upstream of ChlG, a promoter deletion in the i-2 allele,
403  the fa allele with a small deletion within an exon, and new alleles of a with one or more exons

404  deleted. An unexpected discovery in this study was of the existence of an intragenic suppressor
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405  allele of A which implies that the a allele was in existence long enough for this unlikely second
406  site mutation to have occurred. The earliest known mention of a white flowered pea in the
407  1300s* most likely reflects the history of documentation rather than of this mutant allele. It is
408 interesting that this intragenic suppressor mutation corresponds to a shift in the position of an
409 intron, which is rarely identified, even in inter-specific comparisons of many genes®.

410 The biological processes these genes represent range from variation in the activity of
411  enzymes in primary metabolism (r, i, gp), hormone interconversion (le), transcription factor
412  regulation of secondary metabolism (a), to the regulation of cell fate during development (p,
413  fa). It is noteworthy that the two green vs yellow phenotypic differences correspond to
414  disruption of either the final step of chlorophyll synthesis (gp) or the first step of chlorophyll
415  degradation (i) and this synthesis vs degradation difference accounts for which phenotype,
416  green or yellow, corresponds to the dominant vs recessive allele. The elucidation of the
417  biochemical and regulatory mechanisms underlying these genes are outside of the scope of this
418  study, but the genomic and genetic discoveries and insights presented here are crucial to help
419  us further understand Mendel’s pea traits. For example, based on the discovery of the fused
420  aberrant transcripts arising from the NLR-CHLG genomic region, we propose that transcript
421  stability is altered by transcriptional interference during chlorophyll synthesis or through a
422  nonsense-mediated decay pathway, leading to an increased degradation rate of CHLG
423  transcripts (Supplementary Notes). In addition, to confirm the gene identity of V and Mfa, more
424 investigation in biochemical genetics is needed to elucidate the potential Mfa-CIK-CLV3-WUS
425  regulatory network underlying the meristem defects.

426 A longstanding question in relation to Mendel’s pea work was whether the phenotypic
427  variation he described corresponded to rare variants of genes which explain only a minor
428  proportion of the genetic variation for that trait. Our GWAS analyses emphatically show that

429  this is not the case, and indeed that in one case where genetic heterogeneity was expected
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430  (fasciation) the variation we detected corresponded to a single genetic locus (Fa), albeit with a
431  previously unsuspected modifier locus (Mfa). There are three caveats to this claim. The first is
432  that the parchmentless pod is (as has long been known) determined by either P or V, or the
433  combination of these two distinct and independent genetic loci. A second caveat is that for
434  green vs yellow cotyledon, there are clearly multiple GWAS peaks, albeit with lower
435  significance than that of I. This probably reflects the influence of the seed maturation process
436  on the penetrance of this phenotype (as was noted by Mendel in his 1866 paper). Finally, we
437  observed an unusual feature of the GWAS peak corresponding to Gp, where there is a broad
438  shoulder corresponding to most of the short arm of this chromosome. The reason for this is
439  unknown.

440 This raises two general questions about GWAS analyses in defining genetic variation
441  underlying traits. First, do broad GWAS peaks provide sufficient resolution to identify a
442  manageable number of candidate genes? Second, how do the positions of significant GWAS
443  signals correspond to previously described genetic variants? We have seen that for the seven
444 Mendelian traits (and D), the GWAS peaks are significant, and all correspond well to the
445  expected genetic loci. Furthermore, in our broad survey of many other agronomic traits for
446  genotype-phenotype associations (Fig. 4a), nearly all the GWAS peaks correspond to the
447  location of previously described genetic loci. This demonstrates that pea is an excellent model
448  system for association genomics studies and GWAS is a suitable first step for trait-gene
449  discovery and functional elucidation. The reliability of GWAS in pea is partly due to the fact
450 that an unusually high proportion of pea genes are single copy?, and we established a high-
451  quality genomic and phenotypic variation map from a global Pisum diversity panel, within
452  which there is a rich reservoir of genetic diversity, as shown in this study. However, the pea

453  genome is large and gene density is low throughout the chromosomes, maintaining a strong
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454  extended linkage disequilibrium. Presumably this is, in part, because of the strict inbreeding
455  habit of pea.

456 We have shown how additional complementary approaches can narrow down these
457 intervals to candidate genes. For the genes characterised, GWAS intervals alone were
458 insufficient to delineate small sets of candidate genes. Additional resources such as specific
459  biparental mapping populations, FN mutants, and functional validation are necessary. Future
460  work requires innovative approaches and new technologies like the long-read DNA and RNA
461  sequencing, a mature pea transformation system and targeted gene editing. These would help
462  to examine in detail the multiple aberrant transcripts produced at the gp locus, transcriptional
463  disruption by intronic LTR insertion in the i-1 mutant, and genetic complexity of alleles at D
464  due to gene redundancy within the MYB gene clusters, to further advance our understanding of
465  Mendel’s traits.

466 The genomic, genetic and phenomic dataset from this large collection of Pisum accessions
467  represents a permanent and invaluable resource. The very large numbers of genotype-
468  phenotype associations we have found represent the beginning of a new phase of systematic
469 trait dissection at the molecular and genetic level in pea. This study is essential for pea basic

470  research, education in biology and genetics, and breeding practices.
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Fig. 1 | Genotypic and phenotypic variation with respect to population and genome

structure within Pisum. a, Taxa types and other classifications as indicated by colour on the

right, including the wild taxa: P. fulvum, P. elatius, and ‘other wild’ (various named taxa

Supplementary Tables 1, 5) and domesticated taxa: P. abyssinicum and P. sativum classified

into ‘cultivars’, ‘landraces’, and ‘other’ that mostly comprises genetic stocks. The number in

the brackets indicates the number of accessions for each classification. b, Admixture K = 3

(average of 5 runs), Admixture K = 5 (average of 3 runs), Admixture K = 8 (one run that splits

K = 5 groups) and accessions strongly assigned to Admixture groups (by colour, grey =

admixture) (corresponding to Supplementary Table 5); c, Distribution of phenotypes in

Mendel’s seven pea traits, with initials labelled: R (Round, pale) vs W (Wrinkled, black), seed

shape; Y (Yellow) vs G (Green), cotyledon colour; P (Pigmented, purple) vs W (White, pale),
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562  flower colour; | (Inflated, pale) vs C (Constricted, black), pod shape; G (Green) vs Y (Yellow),
563  pod colour; A (Axial, pale) vs T (Terminal, black), flower position; and T (Tall) vs D (Dwarf),
564 internode length. The bar is proportional to internode length. d, PCA of PLINK distance matrix
565  for all accessions, those with Q-value >0.75 indicated by colour. e, Splits Tree8! analysis of
566  accessions with Q-value >0.75 indicated by colour. f, Pisum genomic variation map distributed
567 along all seven chromosomes, including SNPs, insertions and deletions (<50bp), large-scale

568 structural variations (SV), and the linkage disequilibrium (LD) based haplotype map.
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570  Fig. 2| Genetic architecture and genomic diversity of the genes underlying the seven traits
571 that Mendel studied. a, Pictures of the contrasting phenotypes of the seven traits. b,

572  Manhattan plots from the whole genome-wide association study (GWAS) for phenotypic
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573  differences of each trait as scored in this study and plotted against the ZW6 assembly. c, Gene
574  models for wild type and natural mutant alleles for each of the seven traits (more details are

575  described in the Main Text, Extended Data Figures and Supplementary notes).
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580 Fig. 3| The gp mutant. a, General view of near-isogenic plants (BC6 Sl1of the cross JI0015
581 gpgp x Caméor GpGp) developed in this study. Pot size is 9 cm diameter. Note the yellow
582  peduncle and pale sepals as well as the yellow vs green pods on gp compared to Gp. b, TEM

583  sections of pod mesocarp cells. Note the large starch grain (S) in Gp compared to gp and the
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584  poorly developed thylakoid membranes (arrows) in gp compared to Gp. ¢, TEM sections of
585 leaflet spongy mesophyll cells. Note the poorly developed thylakoid membranes (arrows) in
586  gp compared to Gp. d, A ca. 100 kb deletion adjacent to ChlG is illustrated for gp compared to
587  ZW6 (Gp), the deletion event in gp lines is illustrated on a Gp reference genome by dashed
588  box, affecting five genes. The ca. 100 kb deletion event was called using ZW6 as the reference,
589  the gene content and orientation is based on ZW6 genome annotation. e, RNA-seq data shows
590 the pattern of read-through transcription in gp lines (JI0015 and JI12366) across the ca. 100kb
591  deletion and internally within ChIG. f, Predicted structure of two transcripts in gp mutant pods:
592 a fused aberrant transcript (T1) and the ChIG transcript (TO). g, RPKM counts for exons
593 adjacent to the ca. 100 kb deletion compared between leaves and pods of J12366; the horizontal
594  bars in the left indicate the average transcript abundance (measured by TPM) of T1 and TO in
595 both pods and leaves. h, Crossing scheme for a complementation test between Caméor M4
596  TILLING line 411.1 carrying one lethal allele of ChlG and gp (JI0015), with the two types of
597  expected F1 genotype. ChIGWT and ChlG"*?'" represent the wild type and TILLING mutant of
598 ChIG. WT represents the presence of the wild type (Caméor) sequence between ChlG and the
599  TIR-NBS-LRR gene, while A% represents the ca. 100 kb deletion which co-segregates with gp.
600 The question being addressed is whether ChIG"*?" - WT does or does not complement gp
601  (ChIGWT — 49%). i, F1 pods segregating for green vs yellow, F1_x — indicates plant number; the
602  parental lines (TILL_6 hetand JI0015) and wild type Caméor are also indicated. j, Codominant
603 PCR marker test confirming all plants presumed to be F1s are Gpgp heterozygotes (upper
604  panel) and a dCAPS marker PCR test confirming that only the yellow podded F1 plants

605 inherited the ChIGW2I* TILLING allele. M, DNA size marker.
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607  Fig. 4 | A Genome-Phenome association map for identification of genetic loci that confer
608 agronomic traits. a, Summary of the most significant trait-marker associations underlying a
609 variety of agronomic traits presented as a combined Manhattan plot. The detailed information
610  for each of these genetic loci is in Supplementary Table 28. Gene symbols marked in a circle
611  correspond to Mendel’s loci; symbols in red indicate novel genetic loci or genes discovered in
612 this study; symbols in blue are previously characterised and cloned genes positioned with
613  respect to the ZW6 assembly; symbols in black are suggestions from known genetic map
614  locations, but without specific gene candidate and position. b, Manhattan plot of GWAS data
615 relating to hundred grain weight (HGW). ¢, Manhattan plot of GWAS data relating to pod
616  width (PW). The HGW and PW genomic intervals span the same 8Mb genomic region, named

617 Organ Size 1 (PsOsl). d, Narrowed genomic interval of PsOs1 on Chr2 defined by two F2
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618 mapping populations and BSA analysis (Supplementary Fig. 23-24, Online Method) as a
619  1.01Mb region encompassing 11 protein-coding genes, in which Psat02G0011300 (marked in
620  yellow) is the most highly expressed gene. Psat02G0011300 encodes a SIAMESE-related
621  protein (SIM/SMR), a cyclin-dependent protein kinase inhibitor, the gene functional validation
622  was presented in supplementary note and supplementary Figs. 25-30. e, Manhattan plot of
623  GWAS data on the presence or absence of axial ring pigmentation across our diversity panel,
624  using phenotypic data collected at Shenzhen (2021); f, Manhattan plot of GWAS data on the
625 presence or absence of axial ring pigmentation, on a subset of phenotypic data excluding
626  accessions carrying the white flowers (aa). These data were collected at Harbin (northern China,
627  2022). A peak at the expected genomic position of D is significantly associated with the
628 accumulation of axillary anthocyanin, and the peak at Chr6 is the location of A. g, Genomic
629 interval of D on Chr2 defined by RIL mapping, GWAS analyses, further defined by
630 bioinformatic analysis of Fast Neutron mutants as a MYB gene cluster'?6465 with the genes
631 PsMYB104 and PsMYB106 both deleted in the d mutant line, FN1218/6. The box outlined with
632 a dashed line indicates the approximate position of the deletion detected in FN1218/6 from
633  mapping of sequence reads. Inset photographs show the contrasting phenotypes in every case.
634
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Extended Data Fig. 1 | A schematic illustration of the genetic loci for each of Mendel’s seven
traits plotted along the seven chromosomes (linkage groups). The previously cloned genes (R,
I, A, Le) are annotated in black text, while the three remaining genes with gene identity and
variations elucidated in this study (P, Gp, Fa) are highlighted in red text. The proposed gene
candidate for V is highlighted in grey as this awaits more experimental data analysis. Difference
in the form of the ripe pods on chromosome 1 (LGVI, PP/pp) and 5 (LGIII, VV/w); Yellow
versus green cotyledons (11/ii) on chromosome 2 (LGI); round seed versus wrinkled seed (RR/rr)
and the colour of unripe pod (GpGp/gpgp) on chromosome 3 (LGV); difference in the position
of the flower (FaFa/fafa) on chromosome 4 (LGIV); tall versus dwarf plants (LeLe/lele) on

chromosome 5 (LGIII); seed coat (and flower) colour (AA/aa) on chromosome 6 (LGII).
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658 Extended Data Fig. 2 | Haplotype-Phenotype association study for seed shape (round vs.

659  wrinkled). a, Manhattan plot of GWAS based on the ZW6 genome reference explaining the
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660  round vs wrinkled phenotype, as illustrated. The single strong signal is consistent with the R
661 locus located on the long arm of Chr3. b, Local detail of the genomic interval shows the gene
662 list, with the Starch Branching Enzyme 1 gene (SBE1, Psat03G0136800, chr3:108,732,329-
663  108,770,7182%) highlighted in red. The local linkage disequilibrium map is plotted below where
664  the data points corresponding to SBE1 (it is at 108,732,329-108,770,718) are marked in red;
665 the significance values of these data points are quite low indicating that the SNP variants here
666  are not causative and presumably do not distinguish the r alleles from the wild type R progenitor.
667 ¢, a population-based haplotype clustering and haplotype-phenotype association analysis of
668  SBE1, showing that most of the accessions with wrinkled seeds are clustered in Haplotype 6
669  which is consistent with the causal variation of Ips-r insertion event (marked in orange colour)
670 in the last exon. Note that this haplotype does not have unique SNPs. A few accessions with
671  wrinkled seeds distributed elsewhere are caused by the rb allele®®#2 (310399, JI2822) or the
672  previously described variant in JI2110, cv Kebby (see also panel d). d, the distribution of the
673  different phenotypes (which were classified into six categories: Spherical (green dots),
674  Marrowfat (green dots), Dimpled (purple dots), Dentate (purple dots), Wrinkled (red dots), and
675  Very Wrinkled (red dots)) recorded in this study, corresponding to the different haplotypes
676  given in panel c. e, the full sequence of the Ips-r element (1,021 bp), the 8bp site duplication
677 (AGTAGAAT) sequences bounding the insertion event are highlighted in red. The extension
678 of exon 22 into Ips-r is indicated by the blue boxes around the codons and the premature
679  termination codon is boxed in red.

680
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683 Extended Data Fig. 3 | Haplotype-Phenotype association study for cotyledon colour
684  (yellow vs. green). a, Manhattan plot of GWAS based on the ZW6 genome reference, where
685  the strongest signal is consistent with the I locus located on the short arm of Chr2. The genomic
686 interval is a narrowed down into a 1Mb region around the Stay Green gene (SGR,
687  Psat02G0529500) highlighted in red. The local linkage disequilibrium map is shown below.
688  The significance value of the data point from the local GWAS corresponding to | is low; the
689  causative variation is an indel and the SNPs do not distinguish the i allele from its | progenitor.
690 b, a population-based haplotype clustering and haplotype-phenotype association analysis of

691  SGR, showing that most of the accessions with green seeds are clustered in Haplotype 9 which
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corresponds to the Tyl-copia insertion event in the last intron between exon4 and exon5. Note
that this haplotype does not have unique SNPs. Haplotype 2 corresponds to a promoter deletion
event that presumably disrupts the expression of SGR. Some of the other accessions with green
seeds distributed elsewhere are possibly caused by other genes or by premature maturation of
the seeds. The Tyl-copia insertion is marked in yellow both within the gene structure (top) and
in the haplotype heatmap (in the middle of Hap9). ¢, SGR gene structures identified in this
study and previously?L. In this study only two allelic forms of i were found; i-1 in Haplotype 9

and i-2 in Haplotype 2.
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701 Extended Data Fig. 4 | Haplotype-Phenotype association study for flower colour

702  (pigmented vs. white). a, Manhattan plot of GWAS with respect to the ZW6 genome reference,
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703  showing a single strong signal which is consistent with the A locus located on the short arm of
704 Chr6. b, Manhattan plot of GWAS with respect to the Caméor v1a genome reference, showing
705 asecond signal (marked with a red star) found in the middle of Chr6é which, with reference to
706  the genetic map®, was attributed to an assembly error. ¢, Local detail of the genomic interval
707  showing the gene list with the basic Helix-Loop-Helix (bHLH transcription factor,
708  Psat06G0169800) highlighted in red. The local linkage disequilibrium map is shown below. d,
709  apopulation-based haplotype clustering analysis of the bHLH gene. Upper panel for the whole
710  gene, lower for panel functionally relevant SNPs. Five different haplotypes are indicated, most
711  of the purple flowered lines (as shown in the left bar) belong to Hapl carrying the G of the wild
712 type intron 6 splice donor site'?. Haplotypes 2-4 are mutant types with white flowers: The Hap2
713  allele has an additional A in exon 5, as originally described for JI11987%2; Hap3 corresponds to
714 the deletion of exons 1 and 2. Hap4 has a deletion of exons 1 to 6. Hap5 (including the ZW6
715  reference genome) is the most common mutant type with white flowers and carries the G to A
716  substitution at the intron 6 splice donor site first described in Caméor*2. However, within Hap5,
717  there is one exception (J10233) which carries this G to A substitution but has fully pigmented
718  flowers (see main text). It is worth mentioning that the coding sequence (the bHLH transcript)
719  isonthe—strand in the reference genome (ZW6), here we standardize the comparison between
720  the wild-type and the mutant types. e, Gene structures corresponding to the variants described
721  inpanel d. f, frequency distribution of the phenotypes (pigmented/purple vs. white) for each of
722  the haplotypes. g, read mapping to confirm the exon deletion events that disrupt gene function
723  conferring white flowers of Hap3 and Hap4 as shown in panel d/e.

724
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726  Extended Data Fig. 5 | Haplotype-Phenotype association study for plant height (tall vs.

727  dwarf). a, Two images showing the contrasting traits of stem length (long vs. short). b,
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Manhattan plot of GWAS, showing a single strong signal consistent with the Le locus located
on the short arm of Chr5, based on the ZW6 genome reference. Local detail of a 0.5Mb region
within this genomic interval including the GA 3-oxidasel gene®®!® Psat05G0825300,
highlighted in red. The local linkage disequilibrium map is shown below. c, a population-based
haplotype clustering analysis of the GA 3-oxidasel gene, showing five different haplotypes.
Most accessions with short stem length are clustered into Hapl carrying the previously
described G to A mutation'®%°, all the other haplotypes (Hap2-5) have the G nucleotide. The
reference genome (ZW6) belongs to mutant type in the Ala229Thr substitution (nucleotide G
to A) position. d, distribution of the phenotypes (plant height, Harbin location) corresponding
to accessions carrying the mutant (A, le) or the wild type (G, Le) allele; e, distribution of the

phenotypes (plant height, Harbin location) corresponding to the different haplotypes (Hap1-5).
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Extended Data Fig. 6 | Gene identity and causal variations underlying parchmentless
pods (P vs. p). a, Manhattan plot of GWAS based on the ZW6 genome reference for
parchmentless pods (See also Fig. 2b of the main text). b, Close-up Manhattan plot of the most
significant region in panel a. ¢, F2 mapping genetic interval from the cross JI0816xJ12822,
showing the mapped locus between the markers AX-183563747 and AX-183563750 (chrl:
380049894-380967975) (Supplementary Table 17-19). d, Map of gene positions within the P
interval with Psat01G0420500 encoding a tracheary element differentiation inhibition factor

CLE41/44 indicated in yellow. e, Allelic/haplotype variation for Psat01G0420500. Note that
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749  Hapl has a silent A to C transversion at chrl 380699321, close to chrl 380699320 of Hap3,
750  where the T to A transversion is responsible for the Arg79* nonsense mutation. f, Haplotypes
751 of Psat01G0420500 corresponding to accessions with ‘parchmentless’ phenotypes. g,
752  Predicted amino acid sequence of Psat01G0420500 indicating the position of the Arg79*
753  mutation in relation to the TDIF33 motif.

754
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757  Extended Data Fig. 7 | V and parchmentless pods. a, Manhattan plot of GWAS based on the
758  ZW6 genome reference from a subset of accessions that include only the lines carrying the
759  R79* allele (haplotype 3 in Extended Data Fig. 6 panel €) of gene Psat01G0420500 and wild
760  type accessions (i.e. no vv mutants), showing the P GWAS signal but not the V GWAS signal.
761 b, GWAS from a subset of accessions (contrary to panel a) that exclude the lines carrying
762  haplotype 3 (Extended Data Fig. 6 panel €) of gene Psat01G0420500, (i.e. no pp mutants);
763  therefore, no pp mutants but only the vv mutant, showing only the V GWAS signal but not the

764 P GWAS signal. c, Close-up of the local details of the chromosome 5 GWAS peak to V. d,
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765  previously published genetic mapping of V vs v. e, candidate gene list within the V genetic
766 interval with Psat05G0805200 indicated in orange. f, Allelic/haplotype variation across the
767  diversity panel for Psat05G0805200 showing the cluster of parchmentless accessions in Hap2.
768 g, summary and distribution of haplotypes of P and V among the parchmentless accessions.

769
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771  Extended Data Fig. 8 | Gene and allele discovery of gene candidate PsCIK1 for Fa. a,
772  Manhattan plot of GWAS based on the ZW6 genome reference for fasciation revealing a peak

773  of significance between 0 and 40 Mb on chromosome 4; b, Close up of Manhattan plot of
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774  GWAS in the region of the peak in a; ¢, Bulked segregant mapping analyses in the F2 of the
775  cross Cameor (FaFa) x JI0814 (fafa), and in the F2 of JI2822 (FaFa) x JI0816 (fafa), further
776  narrowed down the genetic interval; d, Fine mapping in Caméor x JI0814 (Mapping 1), with 8
777  pairs of KASP markers narrowed the Fa region to chr4: 18144306-19945776 (Supplementary
778  Table 25); Fine genetic mapping in the JI0816xJ12822 population (Mapping 2) limited Fa to
779  the interval chr4:18180969-19506907 (marker interval AX-183636277-AX183633456,
780  Supplementary Table 17). e, Local detail of the genomic interval in panel d showing 20 protein-
781  coding genes annotated as indicated. Psat04G0031700 which encodes a Senescence-
782  Associated Receptor-Like Kinase is highlighted in orange; f, a population-based haplotype
783  clustering analysis across the diversity panel for the 1.33Mb Fa region identified showing a
784  cluster of fasciated accessions in Hap5; g, a population-based haplotype clustering analysis of
785  Psat04G0031700 (PsCIK1) showing a 5bp deletion associated with the fasciated phenotype,
786  and all the fasciated accessions are clustered into Hap3. h, Amino acid sequence alignment of
787  CIK1 proteins from the wild-type line (J12822, Fa, Psat04G0031700), the mutant line (J10816,

788  fa, Psat04G0031700-5bp), and the ortholog from Arabidopsis (AT2G23950.1, AtCIK2).
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Extended Data Fig. 9 | Segregation of Fa and Mfa. a, An excel spreadsheet is shown with
genotype data (rows) for individuals in the JI0816xJ12822 F2 population (columns). The F2
individuals are sorted left to right according to their phenotype and their genotypic scores

at Fa and Mfa. In the central upper part of the figure, homozygous JI0816 genotypes (fafa) are


https://doi.org/10.1101/2024.05.31.596837
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.31.596837; this version posted June 3, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

794  represented in yellow, homozygous JI2822 genotypes (FaFa) are represented in green, and
795  heterozygotes (Fafa) are represented in blue. In the central lower part of the figure,
796  homozygous JI0816 genotypes (MfaMfa) are represented in yellow, homozygous JI2822
797  genotypes (mfamfa) are represented in green, and heterozygotes (Mfamfa) are represented in
798  blue. The limits of recombination intervals are marked by horizontal black lines. Wild-type
799  (dark green) and fasciated (orange) phenotype scores are shown above the genotyping data.
800 Homozygous and heterozygous genotypes at a proposed modifier locus, mfa, are shown below
801 the genotyping data. F2 individuals informative for the positioning of Fa are marked with a red
802  box; b, Tables explaining a one gene model of the summarised numerical data from panel a,
803  where genotype fa/fa is fasciated; ¢, Tables explaining a two gene model of the summarised
804  numerical data from panel a, showing postulated Fa Mfa interaction, where the dominant
805 allele Mfa is required for fasciation to occur. In this model fa/fa mfa/mfa is wild type but fa/fa
806 Mfa/_is fasciated. In both tables the numbers in red are F2 individuals with unexpected
807  genotype/phenotype combinations.

808
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Extended Data Fig. 10 | Identification of genomic loci conferring major agronomic traits.
a, Multi-site phenotyping experiments were conducted to measure 81 traits from distinct
climate zones, in three different locations: Southern China (22°N, Shenzhen), Northern China
(45°N, Harbin), and the UK (52°N, Norwich). b, Illustrative photographs and drawings of
phenotypic data collected for four (seed, leaf, flower, pod) out of the six high-level trait
categories (including plant architecture, and root) scored in this study. The points in the
hexagon indicate the total number of sub-traits collected. The red line indicates the total number
of phenotypes collected (Supplementary Table 27). c, Significant marker-trait associations

(MTASs) with genetic effects for component traits from seeds, pods, leaves, flowers, roots and
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820 plant architecture. The total number of sub-traits for each category is shown in parentheses.
821  Genomic locations for the MTAs are given along the seven chromosomes of pea; d, Manhattan
822  plot of GWAS based on the ZW6 genome reference, explaining green pod vs purple pod
823  phenotypes corresponding to the Pur and Pu loci e, Manhattan plot of GWAS based on the
824  ZW6 genome reference, explaining variation in flowering time corresponding to the Hr% locus;
825 f, Manhattan plot of GWAS based on the ZW6 genome reference, explaining brown vs black
826  hilum colour phenotypes, corresponding to the Pl locus®® g, Manhattan plot of GWAS based
827  onthe ZW6 genome reference, explaining the leaf with leaflets and tendrils vs leaf with tendrils
828  only phenotypes, corresponding to the Af locus®* h, Manhattan plot of GWAS based on the
829  ZW6 genome reference, explaining variation in flower number corresponding to the Fn and
830  Fna loci. i, Manhattan plot of GWAS based on the ZW6 genome reference, explaining the
831  acute vs blunt pod tip phenotypes corresponding to the Bt locus

832

833 ONLINE METHODS

834  Plant Materials and Methods
835 Germplasm panel
836 A total of 697 accessions, maximising genetic diversity, were selected from the JI Pisum

837  Germplasm Collection for this study. (Supplementary Table 1 and www.seedstor.ac.uk). These

838 are also maintained at the Agricultural Genomics Institute at Shenzhen (AGIS), Chinese
839  Academy of Agricultural Sciences (CAAS), China.

840 DNA extraction for whole-genome resequencing

841 Genomic DNA was extracted from approximately 50 mg leaf tissue of three-week old
842  seedlings. Extraction used the oKtopureTM system (LGC Biosearch Technology) following
843 tissue desiccation with silica for 48 h. A bespoke protocol was used with the following volumes

844  per sample: 250 pl lysis buffer, 170 pl Binding buffer, 20 ul sbeadexTM suspension, 300 pl
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845  PN1 wash buffer, 300 pl PN2 wash buffer, 300 pl PN2 wash buffer (x3 wash cycles) and using
846 75 ul final Elution buffer. For each accession, a minimum of 6 pug of genomic DNA was used
847  to construct a 150 bp paired-end sequencing library with an insert size of 500 bp following the
848  manufacturer's protocols (employing PCR-free methods), which was subsequently sequenced
849  on the DNBSEQ Platform at BGI-Shenzhen resulting in ~80 Gb clean reads with a coverage
850  of ~20X for each accession.

851 Phenotyping

852 DNA was extracted from a single plant whose seed was bulked up for progeny
853  phenotyping. The diversity panel was planted in three different sites, Norwich, UK (52.62° N,
854  1.28° E), Shenzhen (Southern China, 22.61° N, 114.51° E) and Harbin (Northern China, 45.86°
855 N, 126.83° E). In China, four rounds of phenotyping were conducted. Specific subsets of
856  accessions and some F2 populations were grown indoors in the greenhouse of Shenzhen
857  Agricultural Field Farm, with 16 hours of light/8 hours of darkness. Phenotypes collected at
858  the three stations (2020 -2023), and a historical JIC phenotype dataset were curated in Seedstor
859  (www.seedstor.ac.uk). In Shenzhen, peas were planted in winter (October) and harvested in
860  March the following year, while in Norwich and Harbin;-they were planted in spring (March
861 to April) and harvested in August to October of the same year.

862 For the phenotyping of pod colour (green vs yellow podded lines), a field trial of three
863  1m? microplots of 100 seeds each was sown in Spring 2023 where a 1:1 ratio of BC6 S3 GpGp
864  and gpgp seeds (selfed seed of S2 homozygotes) were mixed and sown at random in each plot.
865 At the pod filling stage, the Gp plants were tagged and at plot harvest seed was collected from
866 individual plants to determine the the yield of Gp and gp homozygotes. Seeds were weighed
867 and counted on a Data Count R25+ machine (data-technologies.com). Pod length and width
868  were measured on 25 randomly selected pods. For the phenotyping of organ size, Pod width

869 (PW) and hundred grain weight (HGW) were measured in mature pods of the F2 and F2:3
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870  populations post-harvest. In the F2 populations, PW was assessed using 15 representative pods,
871  divided into three groups of five, with the total width of each group measured sequentially. For
872  the F2:3 populations, PW was determined using 5 representative pods, with their total width
873  measured in a similar manner. HGW was calculated by randomly weighing 100 seeds from
874  each accession, and repeating the process three times to obtain an average weight for each
875  accession. Other more specific phenotypes were collected as described in Supplementary Table

876 27 and in line with published descriptors https://www.seedstor.ac.uk/search-phenotypes.php.

877  Construction of the Pea Genomic Variation Map

878 Read Mapping, SNP calling and SNP annotation

879 The trimmed clean reads of each accession were aligned against the reference genome of
880  pea (P. sativum) cultivar, ZW624# and Caméor v1.0%, using BWA-MEM (v0.7.17) with default
881  parameters®*®, Unmapped, non-unique and duplicated reads were filtered out using
882  SAMtools®’ (v1.9) and Picard (v2.20.3-SNAPSHOT) before variants were called by a standard
883  pipeline of Genome Analysis Toolkit (GATK?®, v4.1.2). SNPs were further filtered to remove
884  low-quality variants defined as (1) SNPs with more than two alleles; (2) SNPs with QD<2.0,
885 FS>60.0, MQ<40.0, SOR>3.0, MQRankSum<—12.5, ReadPosRankSum<-8.0; (3) SNPs with
886  observed heterozygosity (Hobs) exceeding the maximum calculated value (Hobs max) based on
887  the Inbreeding Coefficient (F), where F was calculated as 1 - (Hobs/Hexp), With Hexp defined as
888  2p(1-p) using the frequency of the non-reference allele, and Hobs max was determined as 10*(1-
889  Fmedian)*Hexp for variants with F>0 and MAF >0.05; (4) SNPs with missing rate >20% and
890 MAF <0.01. SnpEff® (version 4.3t) was used to annotate the SNPs, and functional significance
891  was then categorized based on their positions with respect to genes (intergenic regions, exons,
892 introns, splicing sites, untranslated regions, upstream and downstream regions) and mutation
893  consequences (missense, start codon gain or loss, stop codon gain or loss and splicing

894  mutations).
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895 Identification of Indels, gene PAV and gene CNVs, and SV

896 Small InDels (<=50bp) were called using GATK (v4.1.2) and filtered following the
897  criteria: QD < 2.0 || low_QD || FS > 200.0 || high_FS || ReadPosRankSum < -20.0 ||
898 low_ReadPosRankSum before they were annotated using SnpEff (v4.3t). Read depth variation
899  from read mapping analysis was used to identify gene presence and absence variation (PAV)
900 and gene copy number variation (CNV) through normalization and correction in statistical
901 analyses, following five steps: (1), mapped read depth at each gene was counted for each
902 accession; (2), a correction for read depth variation (RDV) was applied, accounting for highly
903  similar genes through all-vs-all CDS alignment using BLASTN. Recently duplicated genes
904  were collapsed into representative genes to minimize depth bias, which were further
905 normalized by dividing the corrected read depth of the gene by the average sequencing depth
906  of the accession; (3) the distribution of read depth vs. GC content was used to correct read
907  depth bias for each gene resulting from differential GC contents; (4), read depth variation was
908 corrected for genomic regions with insertions or deletions in the genome reference; (5),
909  subspecies-unique and shared CNVs were characterized by calculating the number of
910 accessions with different copy numbers for each gene within each subspecies.

911 Different categories of structural variants (SVs: duplication, inversion, translocation, and
912 large-scale deletion/insertion) were detected based on read mapping (read depth and read pair
913 relationships) on PCR-duplicate-marked bam files using Delly®® (v 0.8.7) with default
914  parameters; a summary of SVs identified is given in Supplementary Table 10.

915 Linkage disequilibrium (LD) analysis and Pea Haplotype map (HapMap)

916 A two-step LD pruning process was implemented to generate a high-quality core SNP

917  dataset for the construction of a haplotype map®!. Initially, SNPs were pruned based on linkage

918  disequilibrium (LD) using PLINK®2, with a window size of 10 kb, a window step of one SNP,

919 and an r? threshold of 0.8. A second round of LD pruning was conducted with a window size
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920 of 50 kb, a window step of one SNP, and the same r? threshold of 0.8. For population LD-based
921 haplotype analysis, the filtered SNPs were phased using Beagle (v 21Apr21.304)%,
922  Subsequently, haplotype blocks were delineated utilizing PLINK with specific parameters (--
923  blocks no-pheno-req --blocks-max-kb 1000 --geno 0.1 --blocks-min-maf 0.05). To merge
924  adjacent blocks maintaining significant LD, D’ statistic values were calculated between all
925  SNPs of consecutive blocks. If the lower quartile (Q1) exceeded 0.98, the adjacent blocks were
926  merged. After filtering for the inbreeding coefficient, HAPPE®* was employed to identify

927  haplotype clusters (haplogroups) for each block.

928  Construction of Mapping Populations
929 JI10816 x J12822 F2 population
930 Lines JI0816 and JI2822 (Supplementary Table 17), both of short stature, are maintained

931 in the JI Pisum germplasm collection (https://www.seedstor.ac.uk/). JI0816, also known as

932 WBH 1185, has pink flowers, a fasciated stem and yellow pods lacking pod parchment,
933  corresponding to the mutant alleles b, fa, gp and p, respectively. JI2822, a recombinant inbred
934 line derived from the cross JI0015 x JI0399, is wild type at these four loci. JIO015 and JI0816
935 share the gp allele, indicating that these two lines had a common parent, therefore segments of
936  the genetic map are devoid of segregating alleles. 1000 F2 seeds from 9 F1 plants (J12822 x
937  JI0816) were sown at the JIC field station in Spring 2022. DNA preps from 942 plants were
938  prepared from individual leaflets using the Qiagen DNeasy protocol (www.giagen.com). Of
939 these, 405 were genotyped using an axiom SNP array as described by Ellis et al®. The
940  phenotypic and genotypic data are available in Supplementary Tables 17-19, and the sequences
941  corresponding to the axiom markers are available in Supplementary Table 3 of Ellis et al®é.
942 JI10015xJ10399 and J12822xJ12233

943 Three populations have been used for mapping Gp. The first to be used was the previously

944  recombinant described inbred population JI0015xJ10399 (Supplementary Table 20), later
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945  genotyped by Neogen UK, using an Infinium array as described previously’2. The second was
946  an F2 population derived from a cross between two of these RILs JI12822 GpGp and JI2833
947  gpgp which was screened using PCR for markers already mapped in JI0015xJI10399 in order to
948 identify informative individuals (Supplementary Table 21). These, together with selected RILs
949  with informative recombination events were genotyped with Axiom markers as described
950 elsewnhere (cite ref #90). Gp also segregates in the JI0816 x JI2822 F2 population as described
951 above. The marker data are available in the supplementary file Gp mapping in JI0015 x JI0399
952  (Supplementary Table 20-21).

953 Other F2 mapping populations and Bulked Segregant Analysis (BSA)

954 We selected parental lines with contrasting pairs of traits to map genetic loci of interest in
955 F2 populations using mapping by sequencing®® of bulked segregants. For genetic loci
956  controlling uncharacterised Mendel traits; flower position (axial vs. terminal), pod colour
957  (yellow vs. green), pod shape (inflated vs. constricted), crosses were made between Caméor
958  (axial) x JI0814 (fasciated) and JI1995 (green pod) x JI2366 (yellow pod)-—F2 populations for
959 the P/V loci (pod shape) were derived from four crosses, with JI0077 (PPwv), J10466 (ppVV),
960  JI0467 (ppVV) and JI0074 (PPvv) as male parents and JI1995 (PPVV) as the female parent. F2
961 populations for the D locus (one (D) or two (DY) axial rings of anthocyanin pigmentation)
962  were derived from three crosses, with JI0191 (DY), JI0794 (D%) and JI1669 (DY) as male
963  parents and JI0328 (D) as the female parent. F2 populations for the Fn/Fna loci (flower
964  numbers) were derived from four crosses, with JI0441 (1fpn), JI2410 (3fpn), J10745 (2fpn) and
965  JIO746 (3fpn) as male parents and JI1995 (2fpn) as the female parent. The markers and BSA
966 analysis of the F2 population is from#,

967 Approximately 300 plants from the F2 population of each of these crosses were planted
968 in Shenzhen, China-Wild type and mutant and bulked DNA samples were prepared by mixing

969 equal amounts of DNA from 30 accessions with the dominant and recessive phenotypes,
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970  respectively. DNA was isolated from fresh leaves using the CTAB method®). 50X depth
971  genome sequences for each of the parents and the bulked samples were generated. Short reads
972  were aligned against the ZW6 reference genome using BWA-MEM (v0.7.17) and SNPs were
973 identified using Samtools (v1.9). The variation dataset was analysed using the G's value
974  method of the QTLseqr package (v0.7.5.2).

975 Marker development and QTL mapping

976 The organ size-related quantitative trait locus (PsOsl) was fine-mapped using 21
977  Kompetitive Allele Specific PCR (KASP) markers for SNPs distinguishing accessions JI0074
978  and JI1995 after whole-genome resequencing in the candidate region. Each KASP marker was
979  designed with two allele-specific forward primers (Supplementary Table 34) and one common
980 reverse primer, based on 200 bp sequences upstream and downstream of target genic SNPs,
981 following the standards of LGC Genomic Ltd., Hoddesdon, UK. The genetic linkage map was
982  constructed using JoinMap V4.0 software. Windows QTL Cartographer V2.5 software
983 facilitated inclusive composite interval mapping (ICIM) for identifying and analysing QTLSs.

984 A logarithm of odds (LOD) score of >3.0 was deemed indicative of a QTL.

985  Genetic mapping of Gp

986 Green vs yellow pod colour segregates in the recombinant inbred (RIL) population
987  derived from the cross between JI0015 (gpgp) and JI0399 (GpGp). The JI0015xJ10399 RIL
988  population comprises 90 recombinant inbred lines, which, together with their parents were
989  genotyped using an Infinium array (Neogen UK) that detected 13,204 biallelic SNPs. This
990 enabled us to position 5,209 PsCam markers on a genetic map (JI0015xJ10399) and place Gp
991  between the markers PsCam005046 and PsCam056084 (and their co-segregating markers).
992  Additional mapping was undertaken, using an Axiom SNP array with 84,691 features®® of
993  selected F2 progeny of a cross between JI2822 (Gp) and JI12833 (gp) together with RILs from

994  JI0015xJ10399 crossings known to have recombination events at informative locations. J12822
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995 and JI2833 are both RILs from the JI0015xJI0399 population. With respect to the ZW6
996  assembly?*, this placed Gp between the axiom markers AX-183865165 (Chr2:320968993) and
997  AX-183571028 (Chr3:325580858) (J10015xJI10399). Analysis of an F2 population derived
998  from crosses between J12822 (Gp) and J10816 (gp) placed Gp between the axiom markers AX-
999 183571050 (Chr3:321020350) and AX-183879077, (Chr3:324762848 see, Supplementary
1000 Table 17 JI0816xJ12822).
1001 We performed different association genomics analysis for pod colours, including the SNP-
1002  based GWAS, LD-based haplotype GWAS, kmer-derived IBS-based haplotype GWAS, and
1003  the SV-based GWAS (Supplementary Fig. 6), all resulting in consistent and significant single
1004  GWAS peaks for pod colour located in the expected position of Gp, as seen in Manhattan plots
1005  (Supplementary Fig. 6).
1006 Allelism tests for gp
1007 Crosses were made between pairs of yellow-podded lines in the JIC germplasm collection
1008  (Supplementary Table 17). Seed and vegetative phenotypes were used to identify F1 progeny
1009 plants, and those accessions allelic, or non-allelic, to gp were identified by their yellow, or
1010  green pod colour, respectively.
1011 Near isogenic lines for Gp vs gp
1012 The JI0015 gp allele was introgressed into the Caméor background by sequential back-
1013  crossing and F1 progeny testing using a codominant PCR marker assay with one forward
1014 (25994 F) and two reverse (25994 15R and 25994 399R) primers (Supplementary Table 17).
1015  Gp (596 bp) and gp (688 bp) alleles were distinguished in a 35 cycle, 10s-30s-60s Touchdown

1016  PCR reaction that reduces the initial 62°C annealing temperature to 50°C in the first 10 cycles.

1017  Genome-wide Association Study
1018 The multi-location and multi-season phenotypic dataset was used to perform genome-

1019  wide association studies with SNP matrix using GEMMA (v0.98.1)°7, employing parameters
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1020  (gemma-0.98.1-linux-static -miss 0.9 —gk -0 kinship.txt and gemma-0.98.1-linux-static -miss
1021 0.9 -Imm -k Kkinship.txt). The structural variation matrix was used to test for association with
1022  phenotypic variation for each of the selected traits using the same parameters as above. The
1023  haplotype map was used to test for association with phenotypic variation for each of the
1024  selected traits using RTM-GWAS®8 with parameters (rtm-gwas-gsc —vcf in.vcf —out out.matrix
1025  and rtm-gwas-assoc —vcf in.vcf --covar out.matrix.evec --no-gxe).The results were visualized

1026  using in-house R scripts.

1027  Gene Functional Validation Experiments
1028 Fast Neutron mutants
1029 Several Fast Neutron mutants from a population described by Domoney et al. (2013)%°,

1030  were included in this project. These were:

1031 FN1453/1 sil - like

1032 FN1091/4 lacking axil ring pigmentation, allelic to d

1033 FN1218/6 lacking axil ring pigmentation, allelic to d

1034 FN2026/7 coch2 candidate

1035 FN2073/5 lacking axil ring pigmentation, not allelic to d

1036 FN2076/5 VicA FN deletion line

1037 Crosses were made between pairs of lines lacking axil ring pigmentation (Supplementary

1038  Fig. 20) to test for complementation. Where possible, vegetative phenotypes were used to
1039 identify F1 progeny plants, and those accessions allelic, or non-allelic, to d were identified by
1040 the absence, or presence of pigmented axil rings, respectively.

1041 Gene Silencing by Virus-Induced Gene Silencing (VIGS) assay

1042 VIGS in peas was conducted in accordance with published methodology as described.
1043  Primers specific to the VIGS-PsOs1 constructs are provided in Supplementary Table 34. Spe |

1044  and EcoRI were used to linearize the pCAPE2 vector, which was kindly provided by Li et al.
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1045  (2019)'°, and corresponding fragments of targets were ligated into the vector to construct the
1046  vectors for VIGS assay. The negative control vector, pPCAPE2-Con, was constructed in the
1047  same way by replacing the PSCHLG fragment in pCAPE2-PsCHLG with a 529 bp insert
1048  derived from a cDNA fragment of Bean yellow mosaic virus (GenBank accession no.
1049  AJ622899). The positive control vector, pPCAPE2-PDS, targeting the phytoene desaturase gene,
1050  was also provided by Li et al (2019)°, These vectors were transferred into Agrobacterium
1051 tumefaciens (GV3101) and VIGS assays carried out following the protocol described by

1052  Constantin et al. (2004)1%2. Briefly, Agrobacterium strains carrying these vectors were shaken

1053  separately until OD600=1.2, followed by the collection and resuspension of the bacteria in
1054  injection buffer (NaCl: 10 mM/L, CaCl2: 10 mM/L, Acetosyringone: 0.1 mM/L) to a
1055  concentration of OD600=1.2. After resting for 2-3 hours, the solution of PCAPE2-target gene,
1056 PCAPE2-PDS (positive control), and PCAPE2-Con (negative control) was mixed with
1057 PCAPEL, separately, in equal proportions, and injected into 10-day-old compound leaves of
1058  the acceptant lines (Yunnan2070 or JI1995). After 24 h of darkness, they were transferred to
1059 longday conditions. New leaves of positive control plants bleached in about 10 days, indicating
1060  successful silencing of PDS. VIGS was employed for PSCHLG, PsMYB16 gene within the D
1061 locus, and PsOsl which is described in detail below. The PSCHLG-VIGS fragment is,
1062 AATATATGGAAGATTCGTCTTCAACTTACAAAGCCTGTAACTTGGCCTCCATTAG
1063 TTTGGGGTGTAGTTTGTGGTGCTGCTGCTTCTG. Other gene-specific primers used for
1064  VIGS constructs are listed in Supplementary Table 34.

1065 Transformation, gene overexpression and silencing of PsOs1

1066 The PsOs1 coding sequence of JI0074 was amplified (primers listed in Supplementary
1067  Table 34) and integrated into the pPCAMBIA1305 vector, resulting in the pPCAMBIA1305-
1068  PsOsliioo7a construct. The plasmid was then introduced into Agrobacterium tumefaciens

1069 GV3101, which was subsequently employed to transform Arabidopsis thaliana (Col-0) via the
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1070 floral dip technique. T3 generation homozygous transgenic Arabidopsis lines were selected for
1071  measurement of thousand-seed weight and the dimensions of elongated siliques.

1072 GUS staining, GFP fluorescence observations and Flow cytometry

1073 The pCAMBIA1305-PsOsliiges vector was constructed using the same methodology,
1074  with primers detailed in Supplementary Table 34. Both vectors, pPCAMBIA1305-PsOs1i1995
1075 and pCAMBIA1305-PsOslioo74, Were introduced into the Agrobacterium tumefaciens strain
1076  GV3101. In these experiments, H2B-mCherry served as a nucleus marker. The agrobacteria
1077  were resuspended and infiltrated into Nicotiana benthamiana leaf epidermal cells using an
1078 infiltration buffer consisting of 10 mM MES (pH 5.6), 10 mM MgCl2, and 150 pM
1079  acetosyringone, at an ODsoo of 0.8. Fluorescence was observed 48 hours after infiltration using
1080  aconfocal laser-scanning microscope.

1081 To compare the promoter activities of JI0074 and J11995, we cloned sequences 3000 bp
1082  upstream of the coding region and inserted them into pPCAMBIA1300-GUS, resulting in the
1083  constructs Prosioo7a-GUS and Prosinges-GUS. These were expressed in tobacco leaves and
1084  subsequently stained using a GUS Staining Kit (Coolaber Biotech, Beijing, China). GUS
1085 activity was quantified using the GUS Gene Quantitative Detection Kit (Coolaber Biotech,
1086  Beijing, China). For a detailed examination of PsOsl expression patterns in Arabidopsis,
1087  various Arabidopsis tissues were sampled from Progioo74-GUS transgenic plants. Post-ethanol
1088  decolorization, observations and photographs were taken under a microscope. Details of the
1089  primers used are provided in Supplementary Table 34.

1090 Intact nuclei from pea pods were isolated using LBO1 lysis buffer (Coolaber Biotech,
1091  Beijing, China), followed by RNA removal and subsequent PI staining. The nuclei were then
1092  quantified using a CytoFLEX flow cytometer. A minimum of 20,000 nuclei were counted for
1093 each sample, and each experiment was replicated at least three times. Data analysis was

1094  conducted using FLOWJO software, and representative images were presented. The
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1095 endoreduplication index (El) was calculated using the formula: EI=[(0x% 2C)+(1%x% 4C)+(2x%
1096  8C)+(3x% 16C)+(4x% 32C)]/100.

1097 Anatomical studies and transmission electron microscopic (TEM) observation

1098 Upon sampling, the shoot apices of Caméor and fa mutant line JI0814, and the pod walls
1099  of JIO074 and JI11995 were immediately preserved in FAA fixative. Paraffin sectioning was
1100  performed following established methodologies. Staining was conducted using safranin and
1101  fast green (JI0074 and J11995) and Toluidine blue (Caméor and JI0814). Prepared slides were
1102  scanned using a NanoZoomer, and cell quantification was carried out using NDP.view?2
1103  software.

1104 For TEM studies, pea leaflets and pods (18 days after flowering) were removed from BC3
1105  S2gpgp and GpGp plants, after 9 h of daylight. Tissue (Imm?) pieces were placed in a solution
1106  of 2.5% (v/v) glutaraldehyde in 0.05M sodium cacodylate, pH 7.3 for fixation. Samples were
1107  left overnight at room temperature, then processed for embedding (Leica EM TP embedding
1108 machine Leica, Milton Keynes, UK) by washing out the fixative with three successive 15
1109  minute washes in 0.05M sodium cacodylate, followed by fixation in 1% (w/v) OsO4in 0.05M
1110  sodium cacodylate for 2 h at room temperature. After three, 15 minute washes in distilled
1111  water, samples were dehydrated in an ethanol series (30%, 50%, 70%, 95% and two changes
1112  of 100% ethanol), then infiltrated with LR White resin (London Resin Company, Reading, UK)
1113 by successive changes of resin:ethanol mixes at room temperature (1:1 for 1 h, 2:1 for 1 h, 3:1
1114  for 1 h, 100% resin for 1 h, then 100% resin for 16 h, and 100% resin for a further 8 h). Samples
1115  were polymerised in LR White resin at 60°C for 16 h, then sectioned with a diamond knife
1116  (Leica UCT7 ultramicrotome, Leica, Milton Keynes, UK). Ultrathin sections (approximately
1117  90nm) were placed on 200 mesh formvar and carbon-coated copper grids (Agar Scientific,
1118  Stansted, UK). Sections were stained with 2% (w/v) uranyl acetate for 1 h and 1% (w/v) lead

1119 citrate for 1 minute, washed in distilled water and air dried. Grids were viewed in a FEI Talos
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1120  200C transmission electron microscope (FEI UK Ltd, Cambridge, UK) at 200kV and imaged

1121  using a Gatan OneView 4K x 4K digital camera (Gatan, Cambridge, UK) to record DM4 files.

1122 RNA-seq and Gene Expression

1123 RNA extraction and Pea transcriptome

1124 At China, plant tissues (seed, root, nodule, leaflet, stem, flower, pod, stipule, tendril and
1125 apical bud) at different development stages (seedling, flowering and podding) were collected
1126  and fixed in Trizol before RNA extraction. Tissues were ground in liquid nitrogen and the
1127  FastPure Universal Plant Total RNA Isolation Kit (Vazyme, Nanjing, China) was used to
1128  extract total RNA, the quality of which was assessed by gel electrophoresis. For each sample,
1129  we performed short read RNA-sequencing using the DNBSEQ Platform at BGI group
1130  Shenzhen to generate 6-8 Gb raw RNA reads for each accession.

1131 At JIC, RNA was prepared from young developing pods (flat pod stage, ~60-70 mm in
1132  length) of each of the parental and RI lines derived from the cross between JI0015 (gpgp) and
1133  JI0399 (GpGp). Developing seeds were removed from the pods which were then rapidly frozen
1134  in liquid nitrogen. High-quality RNA lacking genomic DNA was extracted from 97 individual
1135  pod samples, using a Spectrum™ Plant Total RNA Kit (Sigma-Aldrich), and used for RT-PCR
1136 and RNA-seq experiments focussed on the identification and characterisation of gene
1137  candidates for gp. For the latter analysis, green-podded and yellow-podded RILs (95 in total)
1138  were assigned to three groups for each phenotype, ensuring that lines with contrasting plant
1139  phenotypes (e.g. plant height) were randomly distributed among the replicate groups (G1, G2
1140 and G3 for green-podded RILs; Y1, Y2 and Y3 for yellow-podded RILs, with 15-17 RILs per
1141  pool). Equal amounts of RNA from every line within a group were pooled. RNA-seq (Illumina
1142  HiSeq4000) and initial bioinformatic analyses were carried out by the Earlham Institute,
1143 Norwich, UK.

1144 Quantitative real-time PCR (QRT-PCR)
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1145 Total RNA was reverse transcribed to cDNA using Vazyme's HiScript Il First Strand
1146  cDNA Synthesis Kit (+gDNA wiper). RT-qPCR analysis was conducted using Vazyme's Taq
1147  Pro Universal SYBR qPCR Master Mix, employing specific primers, with PSACTIN serving
1148  asthe internal standard. Expression levels of genes were quantified relative to the control based
1149  using 22T method. Results represent the mean + SD from three separate biological
1150 experiments. The primers used for RT-gPCR primers used are provided in Supplementary

1151  Table 34.

1152  Statistical Methods

1153 General Statistical Analysis

1154 Statistical analyses were conducted in R software suite (version 4.2, https://www.r-
1155  project.org/) unless otherwise stated. Two-tailed Students’ t-tests in the analyses of the
1156  phenotypes, such as seed weight and pod width, between different accessions were performed
1157  using the ‘t.test’ package in R software (v4.2). The correlation between different traits were
1158  tested by calculating the coefficients of Pearson correlation, as well as the P values, using the
1159  ‘cor.test’ package, with the method set to “Pearson’ for the correlation analyses between
1160 quantitative traits. Traits collected at different locations and in different years were analysed
1161 by calculating their rank correlations by setting the option ‘method’ to ‘Spearman’. The
1162  correlation between qualitative traits was assessed using the chi-square test using the ‘chisq.test’
1163  package in R. Gene expression levels in different lines or tissues under different treatments was
1164  analysed using DESeq2'%, in which the genes with a false discovery rate (Bonferroni) lower
1165 than 0.01 were defined as significantly regulated genes.

1166 Principal component analysis (main text Fig. 1) was performed on the PLINK distance
1167 matrix using an Excel add-in downloaded from RIKEN, now available at

1168  https://systemsomicslab.github.io/compms/others/main.html#Statistics.

1169 Population Structure Analysis
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1170 The core high-quality SNP dataset was used for population structural analyses. PCA and
1171  t-SNE analyses were first performed using beta Python modules sklearn.decomposition and
1172  sklearn.manifold. ADMIXTURE? (version 1.3.0) was employed to analyse the population
1173  structure, with K increasing from 2 to 16.

1174 Genetic differentiation (Fst) and nucleotide diversity (m) were calculated with VCFtools
1175  (version 0.1.13). Fst scores were calculated within a nonoverlapping 100-kb windows and =
1176  was calculated for each individual site and averaged across the genome for each group. LD was
1177  calculated on SNP pairs within a 500-kb window using PopLDdecay'%(version 3.31;

1178  https://github.com/BGI-shenzhen/PopLDdecay) and the decay was measured by the distance

1179  at which the Pearson’s correlation efficient (r2) dropped to half of the maximum. Splits Tree

1180 analysis of the PLINK distance matrix was performed using SplitsTree4®!,
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