

1 **Collaboration between IL-7 and IL-15 enables adaptation of tissue-resident and circulating**
2 **memory CD8⁺ T cells**

3
4 Nicholas N. Jarjour^{1,2,*}, Talia S. Dalzell^{1,2}, Nicholas J. Maurice^{1,2}, Kelsey M. Wanhanen^{1,2},
5 Changwei Peng^{1,2,4}, Taylor A. DePauw^{1,2}, Katharine E. Block^{1,2}, William J. Valente^{1,2}, K. Maude
6 Ashby^{1,2}, David Masopust^{1,3}, Stephen C. Jameson^{1,2,5,**}

7 ¹Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA

8 ²Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN
9 55455, USA

10 ³Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455,
11 USA

12 ⁴Present address: Department of Immunology & HMS Center for Immune Imaging, Harvard
13 Medical School, Boston, MA 02115, USA

14 ⁵Lead contact

15 *Correspondence: njarjour@umn.edu

16 **Correspondence: james024@umn.edu

17

18 **SUMMARY**

19 Interleukin-7 (IL-7) is considered a critical regulator of memory CD8⁺ T cell homeostasis, but this
20 is primarily based on analysis of circulating and not tissue-resident memory (T_{RM}) subsets.
21 Furthermore, the cell-intrinsic requirement for IL-7 signaling during memory homeostasis has not
22 been directly tested. Using inducible deletion, we found that *Il7ra* loss had only a modest effect
23 on persistence of circulating memory and T_{RM} subsets and that IL-7Ra was primarily required for
24 normal basal proliferation. Loss of IL-15 signaling imposed heightened IL-7Ra dependence on
25 memory CD8⁺ T cells, including T_{RM} populations previously described as IL-15-independent. In
26 the absence of IL-15 signaling, IL-7Ra was upregulated, and loss of IL-7Ra signaling reduced

27 proliferation in response to IL-15, suggesting cross-regulation in memory CD8⁺ T cells. Thus,
28 across subsets and tissues, IL-7 and IL-15 act in concert to support memory CD8⁺ T cells,
29 conferring resilience to altered availability of either cytokine.

30

31 **Keywords**

32 Adaptive immunity, immune memory, CD8⁺ T cells, memory homeostasis, interleukin-7,
33 interleukin-15, interleukin-7 receptor α , proliferation

34

35 **Highlights**

36 Tissue-resident and circulating memory CD8⁺ T cells modestly decline after loss of IL-7Ra
37 IL-7Ra is required for normal self-renewal of memory CD8⁺ T cells
38 Combined loss of IL-7 and IL-15 causes a profound defect across memory CD8⁺ T cell subsets
39 Cross-regulation of IL-7 and IL-15 signaling occurs in memory CD8⁺ T cells

40

41 **INTRODUCTION**

42 Classical immunological memory is formed in the wake of a successful immune response and
43 establishes stable cellular and humoral immunity against the eliciting pathogen. Together these
44 form the basis for a potent and protective recall response upon re-exposure to the pathogen,
45 mediating long-term defense of the organism. CD8⁺ T cell memory was first characterized in
46 circulating populations found in the blood and lymphoid organs, but more recently abundant
47 tissue-resident memory CD8⁺ T cells (T_{RM}) have been identified in diverse organs¹⁻³. These
48 populations are locally maintained independent of contribution from the circulation^{4,5}, acquire
49 tissue-specific gene expression programs⁶⁻¹², and are capable of local expansion and control of
50 infection and cancer at the point of origin¹³⁻¹⁷. Perhaps in part because T_{RM} adapt to their tissue
51 environments, their requirements for generation and maintenance are known to differ from those
52 of circulating memory populations^{2,3}.

53 The common gamma chain-(γ C)-dependent cytokines IL-7 and IL-15 are each thought to
54 be critical for maintenance of CD8 $^{+}$ T cell memory, based largely on early studies of circulating
55 populations¹⁸⁻²⁵. With regard to T_{RM} requirements for IL-7 and IL-15 signaling, levels of the
56 receptor components IL-2R β and IL-7R α are known to be reduced on some T_{RM}^{26,27}, which could
57 indicate lessened dependence on tonic levels of these cytokines. Indeed, more recent work has
58 revealed that requirements for IL-15 are in fact variable for memory CD8 $^{+}$ T cells (particularly for
59 some T_{RM}), depending on the memory subset, route of infection, and number of previous recall
60 responses^{28,29}. However, we recently showed that IL-15 responsiveness is conserved across
61 circulating and resident memory CD8 $^{+}$ T cell subsets, including populations that do not depend
62 on IL-15 for normal homeostasis, indicating that such memory populations retain the capacity to
63 respond to IL-15²⁷. IL-7 is still considered a crucial regulator of CD8 $^{+}$ T cell memory³⁰⁻³³, though
64 few studies have assessed this for T_{RM}³⁴. Notably, seminal early work used transfer of T cells
65 derived from germline *Il7ra*^{-/-} mice and antibody blockade of IL-7 signaling to assess requirements
66 for memory CD8 $^{+}$ T cells in the blood and lymphoid tissues^{20,22}. As noted by the authors as a
67 concern, development of T cells in *Il7ra*^{-/-} mice is severely compromised and IL-7R α blockade
68 may elicit lymphopenia. Global and lifelong deficiency in IL-7R α could result in confounding
69 defects in naïve CD8 $^{+}$ T cells that exaggerate the requirement for IL-7R α in memory CD8 $^{+}$ T cells
70 or, alternatively, adaptation to become IL-7R α -independent, underestimating the true severity of
71 IL-7R α deficiency^{20,35}. Other studies have assessed IL-7 dependence in a variety of ways, with
72 mild to severe defects in the absence of IL-7 signaling during and after memory differentiation³⁵⁻
73 ⁴¹. In light of these concerns, Carrette and Surh³¹ highlighted the importance of cell-intrinsically
74 ablating IL-7 signaling during T cell memory homeostasis, without globally inhibiting IL-7 signaling.
75 Intriguingly, IL-7R α is regulated by IL-7 and IL-15 signaling in primarily naïve T cell populations,
76 suggesting that loss of one signaling modality could alter the other⁴². Taken together, how IL-7
77 and IL-15 regulate memory CD8 $^{+}$ T cells (and especially the T_{RM} compartment) is in need of
78 reassessment. Therefore, we set out to specifically address the role for IL-7R α in the homeostasis

79 of circulating and tissue-resident memory CD8⁺ T cells and to attempt to resolve how IL-7 and IL-
80 15 jointly regulate CD8⁺ T cell memory.

81 Unexpectedly, inducible deletion of *Il7ra* caused relatively modest impairment of memory
82 CD8⁺ T cell maintenance for both circulating and resident memory subsets, including T_{RM}
83 populations that were previously described as IL-15-independent. IL-7Ra was required for normal
84 basal proliferation of memory cells during homeostasis in most locales, but not in response to
85 recall stimulation. Deficiency in IL-15 led to IL-7Ra upregulation and greatly augmented IL-7Ra-
86 dependence, suggesting that IL-15-independent CD8⁺ T cell memory is explained by
87 compensatory IL-7 signaling. Loss of signaling for both cytokines caused a pronounced defect in
88 memory cells in all sites tested. Furthermore, loss of IL-7Ra during memory homeostasis resulted
89 in reduced proliferation in response to IL-15 treatment, suggesting cooperativity between IL-7 and
90 IL-15. We propose a new model for cytokine regulation of CD8⁺ T cell memory, primarily relying
91 on integrated regulation by IL-7 and IL-15 with capacity for adaptation in the absence of either
92 cytokine.

93

94 **RESULTS**

95 **Inducible deletion of *Il7ra* in pre-formed memory CD8⁺ T cells has modest effects on**
96 **maintenance, but alters proliferation.**

97 To assess whether IL-7Ra was stringently required for established CD8⁺ T cell memory cells,
98 *Il7ra*^{fl/fl} mice were backcrossed and intercrossed with the tamoxifen-inducible *Ubc-cre*^{ERT2} and P14
99 TCR transgenic lines. Congenically distinct control (*Ubc-cre*^{ERT2} *Il7ra*^{+/+} or Cre-negative *Il7ra*^{fl/fl})
100 and *Ubc-cre*^{ERT2} *Il7ra*^{fl/fl} P14 T cells were adoptively co-transferred to recipients, followed by
101 infection with LCMV Armstrong to elicit differentiation into memory cells. Tamoxifen could then be
102 given at a memory timepoint to ablate *Il7ra* in pre-formed memory P14 cells (**Figure 1A**) and
103 specifically interrogate the importance of IL-7Ra during memory homeostasis. Co-transfer was
104 used so that (after administration of tamoxifen) IL-7Ra-sufficient and -deficient P14 T cells could

105 compete within the same recipient, increasing sensitivity to detect an advantage for IL-7Ra-
106 sufficient memory cells. First, deletion was confirmed via staining for CD127 (IL-7Ra), revealing
107 robust tamoxifen-inducible loss of CD127 on *Ubc-cre*^{ERT2} *Il7ra*^{fl/fl} P14 T cells across tissues, as
108 well as generally lower CD127 expression by control P14 T cells in non-lymphoid tissues (most
109 clearly for the IEL, SG, and FRT) (**Figures 1B-1D**)²⁶. Loss of CD127 was essentially completed
110 within a week of starting tamoxifen treatment (data not shown). Nevertheless, while we expected
111 a profound defect to appear in the absence of IL-7Ra, at least for circulating memory
112 populations²⁰, loss of *Il7ra* only conferred a minor competitive disadvantage (~2-3 fold by ~2
113 months post-tamoxifen) and did not result in selective loss of lymphoid or nonlymphoid tissue
114 (NLT) memory populations (**Figures 1E, S1A, and S1B**). This is a notable contrast with IL-15
115 deficiency, which has been reported to cause substantial defects in memory CD8⁺ T cell
116 homeostasis across lymphoid tissues and several non-lymphoid tissue sites, although loss of IL-
117 15 has very little effect on T_{RM} in some sites (such as small intestine and female reproductive
118 tract)²⁸. One possible explanation for IL-15-independent memory CD8⁺ T cell populations is that
119 IL-15-dependent sites were largely IL-7-independent, and IL-15-independent sites (IEL, FRT)
120 were highly IL-7-dependent. However, this simplistic explanation did not hold true in our hands,
121 indicating that cytokine regulation of CD8⁺ T cell memory has an additional layer of complexity.

122 To compare IL-7Ra dependence of established memory CD8⁺ T cells to that of a
123 population known to be highly IL-7Ra-dependent^{20,43,44}, naïve control and *Ubc-cre*^{ERT2} *Il7ra*^{fl/fl} P14
124 T cells were co-transferred into naïve recipients (**Figure S2A**). In tamoxifen-treated mice, induced
125 *Il7ra*-deficient naïve P14 T cells were rapidly lost and exhibited a profound competitive
126 disadvantage (>25 fold by ~2 weeks post-tamoxifen), as previously described⁴⁴ and in stark
127 contrast with memory P14 T cells (**Figures 1E versus S2B and S2C**). By two weeks after
128 tamoxifen treatment, remaining *Ubc-cre*^{ERT2} *Il7ra*^{fl/fl} naïve CD8⁺ T cells were largely CD127-
129 positive escapees of Cre-mediated recombination, in contrast to memory P14 T cells, which
130 largely remained CD127-negative (**Figures 1C and 1D versus S2D**). Therefore, memory CD8⁺

131 T cells exhibited a modest dependence on IL-7R α across subsets and far greater resilience than
132 naïve CD8 $^{+}$ T cells to loss of IL-7R α .

133 After administration of tamoxifen, *Il7ra*-deficient P14 T cells showed relatively normal
134 proportions of T_{RM} phenotype subsets, but a slightly higher proportion of KLRG1 $^{+}$ long-lived
135 effector cells (LLEC) and a slightly lower proportion of CD62L $^{+}$ central memory cells (T_{CM})
136 (**Figures 1F-1H, S1C, and S1D**). In all experiments, intravenous labelling was used to
137 discriminate vascular and tissue-localized memory cells⁴⁵, while CD69/CD103 expression was
138 also used to identify T_{RM}^{4,27}. No clear differences were observed when assessing
139 necrotic/apoptotic cells via Annexin V (**Figure S1E**). However, consistent with previous
140 reports^{20,39,40}, Bcl2 staining was reduced for circulating memory cells in the absence of IL-7R α ,
141 though Bcl2 levels of IL-7R α -deficient memory cells remained higher than those of naïve T cells
142 (**Figures S1F and S1G**)⁴⁶. Taken together, induced ablation of *Il7ra* in pre-formed memory CD8 $^{+}$
143 T cells did not result in a strong predisposition towards cell death.

144 However, when proliferation of memory P14 T cells was assessed after ablation of *Il7ra*,
145 we observed a consistent reduction in the proportion of cycling cells across circulating memory
146 populations using both Ki67 staining and BrdU incorporation (as an indicator of DNA synthesis
147 during S phase) (**Figures 2A-2D, S3A, and S3B**). Proliferation was also reduced for most NLT
148 populations, but memory P14 T cells in the SG and IEL were only modestly affected (**Fig. 2A-2D,**
149 **S3A, and S3B**). For proliferation of specific memory subsets, induced loss of *Il7ra* affected all
150 circulating memory populations, but again had a more complex effect on NLT-localized
151 populations (**Figures S3C-F**). However, generally consistent trends were observed for resident
152 phenotype (CD69-positive \pm CD103-positive) and circulating phenotype memory P14 T cells
153 within the same tissue. Taken together, our data indicate that IL-7R α regulates self-renewal of
154 memory CD8 $^{+}$ T cells, with the most pronounced effect on circulating memory populations.

155 As P14 TCR transgenic T cells could be unusual in their IL-7-dependence, we also
156 assessed the impact of induced *Il7ra* loss from LCMV-specific polyclonal CD8 $^{+}$ T cells. Mixed

157 bone marrow chimeras were generated using congenically distinct control (*Il7ra*^{fl/fl}) and *Ubc-*
158 *cre*^{ERT2} *Il7ra*^{fl/fl} marrow transferred into irradiated wildtype recipients. After reconstitution, these
159 animals were infected with LCMV to elicit antigen-specific memory populations trackable with
160 peptide/MHC tetramers for the D^b-restricted gp33, gp276, and NP396 epitopes of LCMV (**Figure**
161 **3A**). After establishment of memory populations, tamoxifen was given to delete *Il7ra*, allowing us
162 to track the effects of IL-7Ra deficiency for these oligoclonal populations of different specificities.
163 Employing mixed chimeras allowed us to assess direct competition between IL-7Ra-sufficient and
164 -deficient naïve and memory CD8⁺ T cells as well as to mitigate the impact of potential
165 lymphopenia (due to loss of IL-7Ra) via control bone marrow cells.

166 As expected^{20,43,44} and as we observed in the P14 system, loss of *Il7ra* conferred a
167 disadvantage to naïve CD44^{lo} CD62L⁺ polyclonal CD8⁺ T cells, which also experienced strong
168 selection for IL-7Ra (CD127)-expressing escapees of *Il7ra* deletion (**Figures 3B and 3C**). When
169 the ratio of control *Il7ra*^{fl/fl} cells to CD127-negative *Ubc-cre*^{ERT2} *Il7ra*^{fl/fl} cells was calculated to
170 account for CD127-positive escapees, favoritism for IL-7Ra-sufficient naïve phenotype CD8⁺ T
171 cells became even more stark (**Figures 3D**). In contrast, for memory CD8⁺ T cells binding pooled
172 gp276/D^b/NP396/D^b tetramers or gp33/D^b tetramer, inducible loss of *Il7ra* again had only a
173 relatively modest effect (**Figures 3E and S4A-S4C**). Furthermore, the proportion of CD127-
174 positive, LCMV-specific escapee memory cells was relatively stable over time, in contrast to the
175 strong selection observed for IL-7Ra-sufficient naïve CD8⁺ T cells (**Figures 3F, 3G, S4D, and**
176 **S4E**). Tetramer-binding memory populations showed reduced proliferation in the absence of *Il7ra*,
177 particularly for circulating populations (**Figures 3H, S4F, and S4G**). While trends were generally
178 comparable to the P14 system, some differences in IL-7Ra dependence of proliferation were
179 observed, particularly for the salivary gland (which exhibited greater IL-7Ra dependence in the
180 chimera system). Among other explanations, it is possible that loss of IL-7Ra from half of the
181 hematopoietic compartment in bone marrow chimeras resulted in a degree of lymphopenia, or
182 alternatively that precursor frequency or TCR specificity may alter the degree of IL-7Ra

183 dependence for proliferation. Taken together, resilience to loss of IL-7R α was a conserved
184 property across the P14 TCR transgenic and oligoclonal antigen-specific populations, with a
185 conserved role for IL-7R α in maintaining a normal proportion of proliferating memory CD8 $^+$ T cells.
186 Loss of IL-7R α did not result in rapid and severe attrition of CD8 $^+$ T cell memory.

187

188 **Efficient recall of memory CD8 $^+$ T cells can occur in the absence of IL-7R α**

189 While durability of CD8 $^+$ T cell memory was relatively normal after inducible deletion of *Il7ra*,
190 capacity to recall in response to antigen might still be impaired. For example, IL-2R α is required
191 for normal programming of circulating memory CD8 $^+$ T cells during memory differentiation. In its
192 absence, memory CD8 $^+$ T cell homeostasis is largely normal, with a severe defect appearing only
193 upon recall⁴⁷. Therefore, we deleted *Il7ra* from pre-formed memory P14 T cells, waited >4 weeks,
194 and then subjected mice to heterologous challenge with *Listeria monocytogenes* expressing gp33
195 (Lm-gp33)⁴⁸ (**Figure 4A**). Lm-gp33 was used to specifically recall gp33-specific P14 T cells and
196 avoid confounding effects of antibodies against other LCMV antigens. To track the kinetics of the
197 recall response, animals were bled over time. Irrespective of loss of IL-7R α (and the subsequent
198 2-3 fold defect), in the blood we observed a robust increase in control and *Ubc-cre*^{ERT2} *Il7ra*^{fl/fl} P14
199 T cells after recall, near universal acquisition of Ki67 and granzyme B, and a profound shift from
200 CD62L $^+$ central memory phenotype cells to KLRG1 $^+$ effector phenotype cells (**Figures 4B-4H**).
201 Therefore, loss of IL-7R α during memory homeostasis did not obviously compromise the ability
202 of circulating memory CD8 $^+$ T cells to recall.

203

204 **Deficiency in IL-15 signaling confers heightened dependence on IL-7R α**

205 While our data did not support the notion that IL-15-independent memory populations^{28,29} were
206 more highly IL-7R α -dependent, we considered the possibility that memory CD8 $^+$ T cells are
207 instead regulated by the combination of IL-7 and IL-15 signaling. The lack of exclusive IL-15
208 dependence for some memory CD8 $^+$ T cell subsets does not preclude a role for IL-15 in concert

209 with other cytokines in regulating such memory populations. As mentioned above, IL-15-
210 independent memory CD8⁺ T cells respond robustly to IL-15 therapy²⁷, supporting that memory
211 cells adapt to γC cytokine availability irrespective of homeostatic requirements. Furthermore,
212 enhanced severity of a combinatorial defect in IL-7 and IL-15 signaling has been proposed for
213 circulating memory in the setting of a lymphopenic host or after transfer of day 10 effector
214 cells^{22,35,36,49}. Such redundancy could explain why IL-7 and IL-15 are individually less critical to
215 CD8⁺ T cell memory than predicted and would have significant implications for their stability in the
216 face of altered cytokine availability. We therefore considered whether IL-7Ra-deficient memory
217 cells were more severely affected in the absence of IL-15.

218 To address this, control and *Ubc-cre*^{ERT2} *Il7ra*^{fl/fl} P14 T cells were transferred to IL-15-
219 sufficient (*Il15*^{+/+} or *Il15*^{+/-}) and *Il15*^{-/-} recipient mice followed by LCMV infection to elicit memory
220 differentiation. First, by assessing control memory P14 T cell populations in IL-15-sufficient and -
221 deficient recipients, we confirmed IL-15 independence of LCMV-elicited P14 memory cells in the
222 IEL and FRT as previously reported²⁸, while also establishing that liver memory cells have a
223 moderate IL-15 dependence (**Figure S5A**). To determine the combinatorial effects of IL-7Ra/IL-
224 15 deficiency, tamoxifen-treated IL-15-sufficient recipients were compared with untreated- and
225 tamoxifen-treated *Il15*^{-/-} recipients. When tracking memory P14 populations in the blood after
226 administration of tamoxifen, a greatly enhanced competitive advantage was observed for IL-7Ra-
227 sufficient P14 cells in *Il15*^{-/-} recipients (**Figure 5A**). This led to profound selection for *Ubc-cre*^{ERT2}
228 *Il7ra*^{fl/fl} CD127-expressing escapees of deletion over time; both features are consistent with a
229 heightened requirement for IL-7Ra in the absence of IL-15 signaling (**Figure 5B**). When an
230 adjusted ratio of control to genuinely CD127-negative *Ubc-cre*^{ERT2} *Il7ra*^{fl/fl} P14 cells was
231 calculated, this revealed a nearly 100:1 competitive advantage for control cells in IL-15-deficient
232 hosts (**Figure 5C**). In light of the outgrowth of CD127-expressing escapees of deletion, we took
233 advantage of variation in the efficiency of *Il7ra* deletion using two independent cohorts, one with
234 high efficiency deletion of *Il7ra* (Cohort 1, estimated at ~90-95% for blood T_{CM} from concurrent

235 wildtype recipients) and one with moderate efficiency deletion of *Il7ra* (Cohort 2, estimated at ~70-
236 75% in the same manner) to address two related points (**Figures S5B and S5C**). In Cohort 1,
237 escapees of deletion were quite rare, allowing clear assessment of the severe competitive
238 disadvantage of lacking *Il7ra* across tissues and memory subsets in *Il15*^{-/-} recipients by ratio
239 (**Figures 5D-5F and S5D**). However, it was challenging to accurately assess the phenotype of
240 the remaining *Ubc-cre*^{ERT2} *Il7ra*^{fl/fl} P14 cells, especially in NLT, because of their extreme scarcity,
241 though it appeared that a significant majority of these cells were CD127-positive escapees of Cre-
242 mediated recombination (**Figure 5E, 5F, and S5E**). However, in Cohort 2, while the higher
243 proportion of escapees limited the ratio that could be observed between donors (**Figure S6A**), it
244 allowed observation of competition within the *Ubc-cre*^{ERT2} *Il7ra*^{fl/fl} P14 population after tamoxifen.
245 While CD127-positive escapees in B6 recipients had only a small advantage, persisting *Ubc-*
246 *cre*^{ERT2} *Il7ra*^{fl/fl} P14 cells in *Il15*^{-/-} hosts became nearly 100% CD127-positive in circulating
247 populations and exhibited nearly normal gMFI for CD127 in lymphoid and NLT sites, consistent
248 with selection for IL-7Ra-sufficient escapees (**Figures 5G and S6B-S6E**). Across both cohorts,
249 combined deficiency in IL-7Ra and IL-15 resulted in reductions in P14 counts (**Figure S6F**).
250 Therefore, lack of IL-15 imposed a heightened requirement for IL-7Ra and revealed cooperativity
251 between γC cytokines which conferred resilience to altered cytokine availability.

252

253 **Integrated regulation of IL-7 and IL-15 signaling modulates CD8⁺ T cell memory**

254 Previous work on predominantly naïve CD8⁺ T cells revealed that IL-7 (and other cytokines
255 including IL-15) downregulated mRNA and protein for IL-7Ra as a mechanism to conserve IL-7
256 and allow signaling for as many cells as possible⁴². However, it has not been determined whether
257 a similar mechanism holds for memory cells. CD127 expression appeared to be upregulated on
258 control P14 T cells in *Il15*^{-/-} recipient mice (**Figure 5G**), so we quantitated this across IL-15-
259 sufficient and -deficient animals. Strikingly, CD127 was upregulated on control memory P14 T
260 cells from most tissues of *Il15*^{-/-} recipients (**Figures 6A and 6B**). When CD127 levels were

261 assessed on circulating memory CD8⁺ T cells after in vivo IL-7 or IL-15 complex treatment (IL-7c
262 and IL-15c, a more potent and long-lasting method to administer cytokine^{27,50-52}), in both cases
263 CD127 was downregulated (**Figures 6C-6F**). Downregulation of IL-7Ra by IL-15c treatment
264 suggested that the observed increase in CD127 staining across memory subsets in *Il15*^{-/-}
265 recipients could be due to a lack of IL-15 signaling and may act as a compensatory mechanism
266 to allow enhanced IL-7 sensitivity. As IL-7Ra was regulated by IL-15 signaling, we then asked
267 whether loss of IL-7Ra from homeostatic memory P14 T cells altered IL-15 responsiveness. We
268 first assessed whether inducible deletion of *Il7ra* resulted in upregulation of IL-2R β (CD122).
269 However, there was no clear evidence of this (**Figures S7A and S7B**), suggesting that any altered
270 sensitivity of IL-7Ra-deficient memory CD8⁺ T cells to IL-15 did not occur at the level of receptor
271 expression. We next treated mice with a low dose of IL-15 (2 μ g) to induce an intermediate
272 response⁵³ of memory CD8⁺ T cells and thereby assess whether IL-7Ra-sufficient and -deficient
273 memory cells differed in IL-15 sensitivity. Indeed, loss of IL-7Ra from homeostatic memory cells
274 impaired proliferation in response to low dose IL-15 for circulating memory P14 T cells as well as
275 some resident populations to a more modest extent (**Figures 6G and S7C**). This phenotype was
276 enhanced when specifically gating on CD127-negative *Ubc-cre*^{ERT2} *Il7ra*^{fl/fl} P14 T cells in the blood
277 and lymphoid tissues (**Figure 6H**). Taken together, IL-7 and IL-15 signaling exhibit cross-
278 regulation, suggesting both compensatory and cooperative relationships between these cytokines
279 to support memory CD8⁺ T cells

280

281 **DISCUSSION**

282 The dogma that IL-7 and IL-15 each fulfill exclusive roles essential for memory CD8⁺ T cell
283 maintenance has been widely accepted in the field, despite repeated findings inconsistent with
284 this model^{22,28,29,38,41}. Previous experimental approaches to address the role of IL-7 signaling are
285 difficult to interpret because of potential confounding effects on hematopoiesis, T cell
286 development, naïve T cell homeostasis, and memory differentiation, with substantial T-

287 lymphopenia when IL-7 or its receptor are ablated or blocked. Using inducible deletion of a floxed
288 *Il7ra* allele, we rigorously assessed the cell-intrinsic role of IL-7Ra in homeostasis of defined,
289 antigen-specific populations of memory CD8⁺ T cells in lymphoreplete hosts. Counter to prevailing
290 models, IL-7Ra played a nuanced role in maintenance of memory CD8⁺ T cells, with ablation
291 leading to impaired proliferation of memory CD8⁺ T cells in most sites and gradual attrition.
292 However, loss of IL-15 greatly augmented dependence on IL-7Ra, even among T_{RM} populations
293 that are classified as IL-15-independent. These data, together with the observation that loss of
294 either IL-7 or IL-15 signaling affected the signaling pathway for the other cytokine, argue that
295 memory CD8⁺ T cells dynamically adapt to available homeostatic cytokines, and thus that IL-7 or
296 IL-15 “dependence” is not fixed.

297 A major focus of this study was to investigate the roles of IL-7 and IL-15 in T_{RM}. Because
298 these populations adapt to the tissues in which they reside⁶⁻¹², it would not be surprising if T_{RM} in
299 distinct sites exhibited different homeostatic requirements, consistent with reduced IL-2R β and
300 IL-7Ra expression on some T_{RM}^{26,27}. Indeed, previous reports^{28,29} indicated T_{RM} populations in
301 some sites were IL-15-independent, while T_{RM} in other tissues stringently required IL-15 much like
302 circulating memory, as confirmed in our study. It was unclear whether IL-15-independent T_{RM}
303 would exhibit heightened sensitivity to IL-7 or, alternatively, no requirement for either IL-7 or IL-15
304 at all. Instead, induced *Il7ra* ablation caused gradual decline of memory CD8⁺ T cells in all sites,
305 a resilience that is presumably acquired during memory differentiation as it is not shared with
306 naïve CD8⁺ T cells, as previously reported⁴⁴. Interestingly, the most notable impact of IL-7Ra loss
307 was impaired basal proliferation of most memory CD8⁺ T cells (although this was muted among
308 T_{RM} in some sites), in contrast to the prevailing notion that IL-7 predominantly regulates memory
309 cell survival in normal (i.e. non-irradiated) hosts^{20,22}. Goldrath et al previously noted that blockade
310 of IL-7Ra might elicit lymphopenia-induced proliferation (i.e. via IL-15). This likely confounded
311 previous analyses, but using inducible deletion of *Il7ra*, we now describe a role for IL-7Ra in basal
312 proliferation of most memory CD8⁺ T cell subsets. While changes were not observed in cell death,

313 loss of IL-7Ra during memory homeostasis did reduce Bcl2 levels on circulating memory cells, as
314 predicted based on previous work^{20,39,40}. Therefore, future studies should take into account the
315 impact of IL-7Ra on both self-renewal and survival of memory CD8⁺ T cells. Despite their defect
316 in basal proliferation, IL-7Ra-deficient circulating memory CD8⁺ T cells were capable of robust
317 antigen-elicited proliferation during recall. This suggests that cells which are quiescent prior to
318 TCR engagement are not excluded from recall in favor of memory cells actively undergoing basal
319 proliferation.

320 While loss of IL-7Ra did perturb basal proliferation, memory CD8⁺ T cell subsets
321 experienced only gradual attrition over time (2-3 fold up to 2.5 months after tamoxifen), likely due
322 to low requirements for self-renewal. Our findings appear to stand in contrast to previous studies
323 of CD8⁺ T cells lacking normal IL-7Ra signaling during activation and memory differentiation,
324 which showed a competitive defect in excess of 10:1 approximately one month after transfer^{20,39}.
325 However, our study focused on the role of IL-7Ra in mediating homeostasis of pre-formed memory
326 CD8⁺ T cells, not the differentiation of such cells. Indeed, a role for IL-7Ra has previously been
327 shown in supporting the generation of CD8⁺ memory-precursors and establishing a durable
328 memory CD8⁺ T cell pool^{35,36,39,41}. By inducibly ablating *Il7ra* after memory CD8⁺ T cell
329 differentiation, we could selectively interrogate the contribution of IL-7Ra to memory CD8⁺ T cell
330 homeostasis. The capacity of memory CD8⁺ T cells to persist after loss of IL-7 signaling may be
331 critical for their stability during temporary alterations in IL-7 availability *in vivo*. This could
332 potentially occur during inflammation or tissue damage affecting IL-7-producing stromal cells,
333 though little is known regarding physiological perturbations in IL-7 expression^{20,54-57}.

334 Our data also indicated that CD8⁺ T cell memory populations in an IL-15-deficient
335 environment adopted a heightened reliance on IL-7 signaling, likely resolving the enigma of IL-
336 15-independent memory subsets. Furthermore, we demonstrate *in vivo* crosstalk between IL-7
337 and IL-15 signaling in memory CD8⁺ T cells. Previous studies of naïve T cell populations showed
338 that IL-7Ra expression is reduced by stimulation with diverse cytokines (including IL-7 itself and

339 IL-15)⁴². These findings were confirmed *in vivo* for memory CD8⁺ T cells, and we also showed
340 that surface levels of IL-7R α are enhanced on memory P14 T cells in *Il15*^{-/-} hosts. As
341 downregulation of IL-7R α has previously been proposed as an IL-7 conservation mechanism to
342 allow efficient distribution of IL-7 amongst a population of cells⁴², it may be that the previously
343 reported defects in CD8⁺ T cell memory in *Il15*^{-/-} mice^{19,21-25,28,29} are not solely due to IL-15
344 deficiency, but also to inefficient use of IL-7 at the population level. In turn, the modest defect we
345 describe after loss of IL-7R α from homeostatic memory cells may not be exclusively due to loss
346 of IL-7 sensitivity. We found that loss of IL-7R α can impair proliferation of memory CD8⁺ T cells in
347 response to IL-15, suggesting that intact IL-7 signaling also has a secondary effect on IL-15
348 responsiveness. In a physiological context, these mechanisms could potentially conserve IL-7
349 while maximizing IL-7 and IL-15 signal strength across a memory population, thereby moderating
350 the effect of local changes in cytokine availability due to consumption and competition. We
351 propose that IL-7 and IL-15 collaborate to support memory CD8⁺ T cells in homeostasis, not only
352 via redundancy (as both strongly activate STAT5 as well as other shared pathways, including
353 PI3K/Akt and MAP kinases), but also by cross-regulation. This affords a measure of resilience
354 and adaptability in the absence of signaling for either cytokine, but results in a severe defect
355 across homeostatic memory populations when both signals are absent. During inflammation,
356 cytokine availability undergoes major alterations, including marked increases in IL-15 during viral
357 infection due to type 1 interferon⁵³ and also altered cytokine turnover. The flexibility of memory
358 CD8⁺ T cells to adapt to individual loss (or gain) of IL-7 and IL-15 signaling may help to ensure
359 their stability during inflammation. It is intriguing to speculate that in an inflammatory setting,
360 memory CD8⁺ T cells may rely on an expanded cadre of cytokines, with important implications for
361 their stability and long-term maintenance.

362

363 **LIMITATIONS OF THE STUDY**

364 The present study (and many previous publications) employed memory CD8⁺ T cells which
365 differentiated in *Il15*^{-/-} recipient mice and therefore lacked IL-15 throughout both differentiation and
366 memory homeostasis, which may overrepresent the requirement for IL-15 during memory
367 homeostasis. Future work should address the specific role for IL-15 signaling in memory CD8⁺ T
368 cell homeostasis. The mechanism by which IL-7Ra licenses full IL-15 responsiveness is not clear.
369 Preliminary data suggest that strong IL-15 signals (i.e. IL-15 complexes) can overcome the
370 requirement for homeostatic IL-7Ra, suggesting that IL-7Ra acts to enhance the response to IL-
371 15 at more physiological levels.

372

373 **ACKNOWLEDGEMENTS**

374 N.N.J. is a Damon Runyon Fellow supported by the Damon Runyon Cancer Research Foundation
375 (Grant No. DRG-2427-21) and the National Institute of Allergy and Infectious Diseases (Grant No.
376 1K22AI177360-01). K.M.W. was supported by National Cancer Institute (NCI) (Grant No. F30
377 CA250321). N.J.M. was supported by NCI (Grant No. K00 CA245735). K.M.A was supported by
378 NIAID (Grant No. T32 AI007313). This work was funded by NIAID Grant No. R01 AI038903 to
379 S.C.J. The authors thank M. Jenkins and K. Osum for critical reading of the manuscript. The
380 authors acknowledge the S.C.J., D.M., K. A. Hogquist, and M. Jenkins laboratories for valuable
381 feedback and reagents. The gp33/D^b, gp276/D^b, and NP396/D^b monomers were obtained through
382 the NIH Tetramer Core Facility. The authors dedicate this work to the memory of Leo Lefrancois
383 and Charlie Surh.

384

385 **AUTHOR CONTRIBUTIONS**

386 Conceptualization: N.N.J., S.C.J. Methodology: N.N.J., T.S.D., C.P., T.A.D., K.M.A., D.M, S.C.J.
387 Formal analysis: N.N.J., S.C.J. Investigation: N.N.J., T.S.D., N.J.M, K.M.W., C.P., T.A.D., K.E.B.,
388 W.J.V., K.M.A. Resources: D.M., S.C.J. Data Curation: N.N.J., S.C.J. Writing-Original Draft:

389 N.N.J., S.C.J. Writing-Review & Editing: All Authors. Visualization: N.N.J., S.C.J. Supervision:

390 N.N.J., S.C.J.

391

392 **DECLARATION OF INTERESTS**

393 The authors declare no competing interests.

394

395

396

397

398

399

400

401

402

403

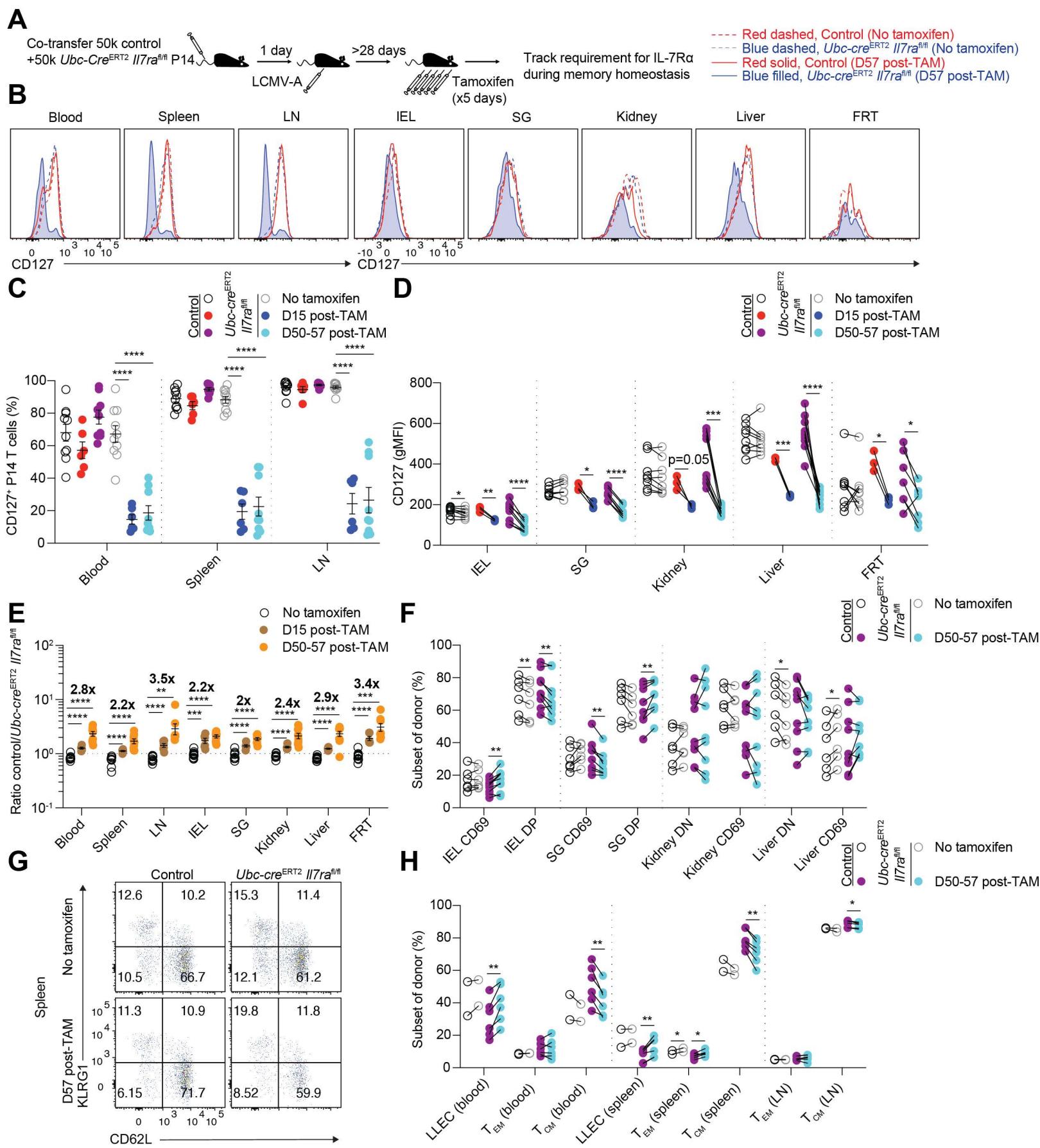
404

405

406

407

408


409

410

411

412

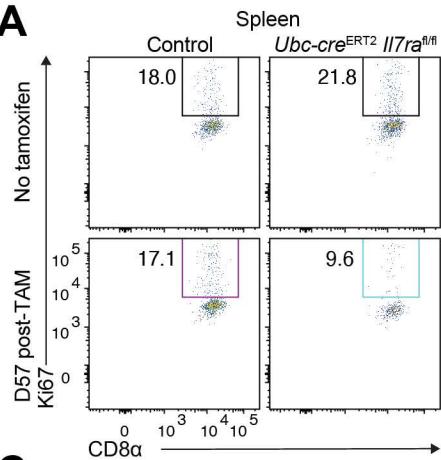
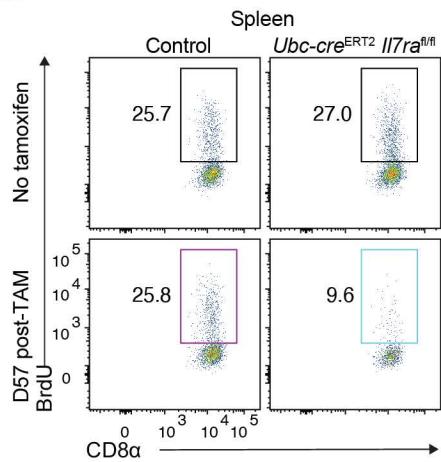
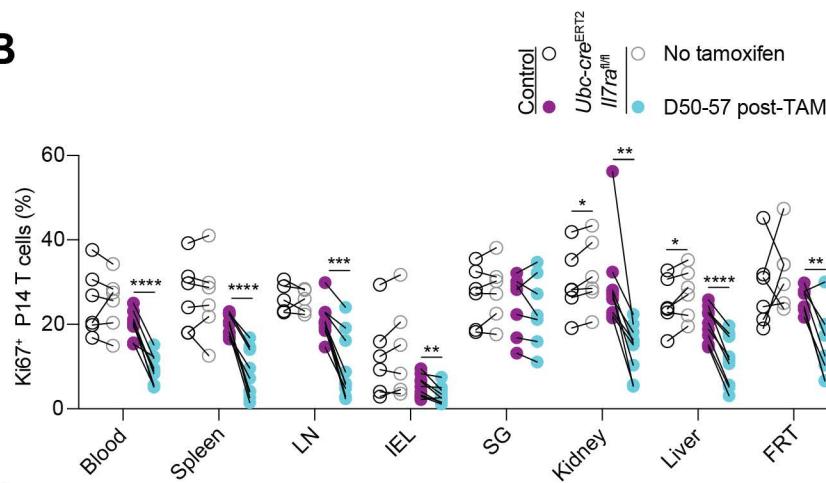
413

Figure 1

414 **Figure 1: Circulating and resident memory P14 T cells are resilient to loss of *Il7ra* during
415 memory homeostasis.**

416 (A) Congenic control (*Ubc-cre*^{ERT2} *Il7ra*^{+/+} or *Il7ra*^{fl/fl}) and *Ubc-cre*^{ERT2} *Il7ra*^{fl/fl} P14 T cells were co-
417 transferred to recipients, followed by LCMV-Armstrong infection one day later. After resting to
418 memory phase (>28 days), some mice were given i.p. tamoxifen for 5 consecutive days to initiate
419 Cre-mediated recombination of the floxed *Il7ra* allele and tracked over time via congenic markers.
420 (B) Representative flow cytometry for CD127 (IL-7Ra) on control and *Ubc-cre*^{ERT2} *Il7ra*^{fl/fl} memory
421 P14 T cells and quantitation for (C) percent CD127⁺ and (D) CD127 gMFI as in (B) from untreated
422 and tamoxifen-treated mice. (E) Quantitation of the ratio of control and *Ubc-cre*^{ERT2} *Il7ra*^{fl/fl} P14 T
423 cells from untreated and tamoxifen-treated mice. (F) Quantitation of the proportions of NLT
424 memory P14 subsets (DN, CD69⁻ CD103⁻. DP CD69⁺ CD103⁺) from each donor from untreated
425 and tamoxifen-treated mice. (G) Representative flow cytometry for CD62L and KLRG1 for splenic
426 memory P14 T cells and (H) quantitation of the proportion of long-lived effector cells (LLEC,
427 KLRG1⁺ CD62L⁻), T effector memory (T_{EM} KLRG1⁻ CD62L⁻), and T central memory (T_{CM} KLRG1⁻
428 CD62L⁺) from each donor from untreated and tamoxifen-treated mice as in (G). LN, inguinal LN.
429 IEL, small intestine intraepithelial lymphocytes. SG, salivary gland. FRT, female reproductive tract.
430 Data are (B,G) representative of 3 experiments (n=6-9/group), (C,E,F,H) compiled from 2-5
431 experiments (n=4-10/group), or (D) compiled from 1-5 experiments (n=3-10/group). Error is
432 expressed as \pm S.E.M. Unpaired (C,E) and paired Student's t tests (D,F,H).* p<0.05. ** p<0.01.
433 *** p<0.001. **** p<0.0001. See also Figures S1 and S2.

434




435

436

437

438

439

A**C****B****D****Figure 2**

440 **Figure 2: Loss of *Il7ra* alters proliferation of memory CD8⁺ T cell subsets**

441 Congenic control (*Ubc-cre*^{ERT2} *Il7ra*^{+/+} or *Il7ra*^{fl/fl}) and *Ubc-cre*^{ERT2} *Il7ra*^{fl/fl} P14 T cells were co-
442 transferred to recipients, followed by LCMV-Armstrong infection one day later. After resting to
443 memory phase (>28 days), some mice were given i.p. tamoxifen for 5 consecutive days to initiate
444 Cre-mediated recombination of the floxed *Il7ra* allele. (A) Representative flow cytometry for Ki67
445 expression and (B) quantitation of the proportion of Ki67-expressing control and *Ubc-cre*^{ERT2}
446 *Il7ra*^{fl/fl} memory P14 T cells as in (A) from untreated and tamoxifen-treated mice. (C)
447 Representative flow cytometry for BrdU incorporation and (D) quantitation of the proportion of
448 BrdU-incorporating control and *Ubc-cre*^{ERT2} *Il7ra*^{fl/fl} memory P14 T cells as in (C) from untreated
449 and tamoxifen-treated mice. Data are (A,C) representative of 3 experiments (n=5-9/group) or
450 (B,D) compiled from 3-5 experiments (n=5-9/group). Error is expressed as \pm S.E.M. Paired
451 Student's t tests. * p<0.05. ** p<0.01. *** p<0.001. **** p<0.0001. See also Figures S1 and S3.

452

453

454

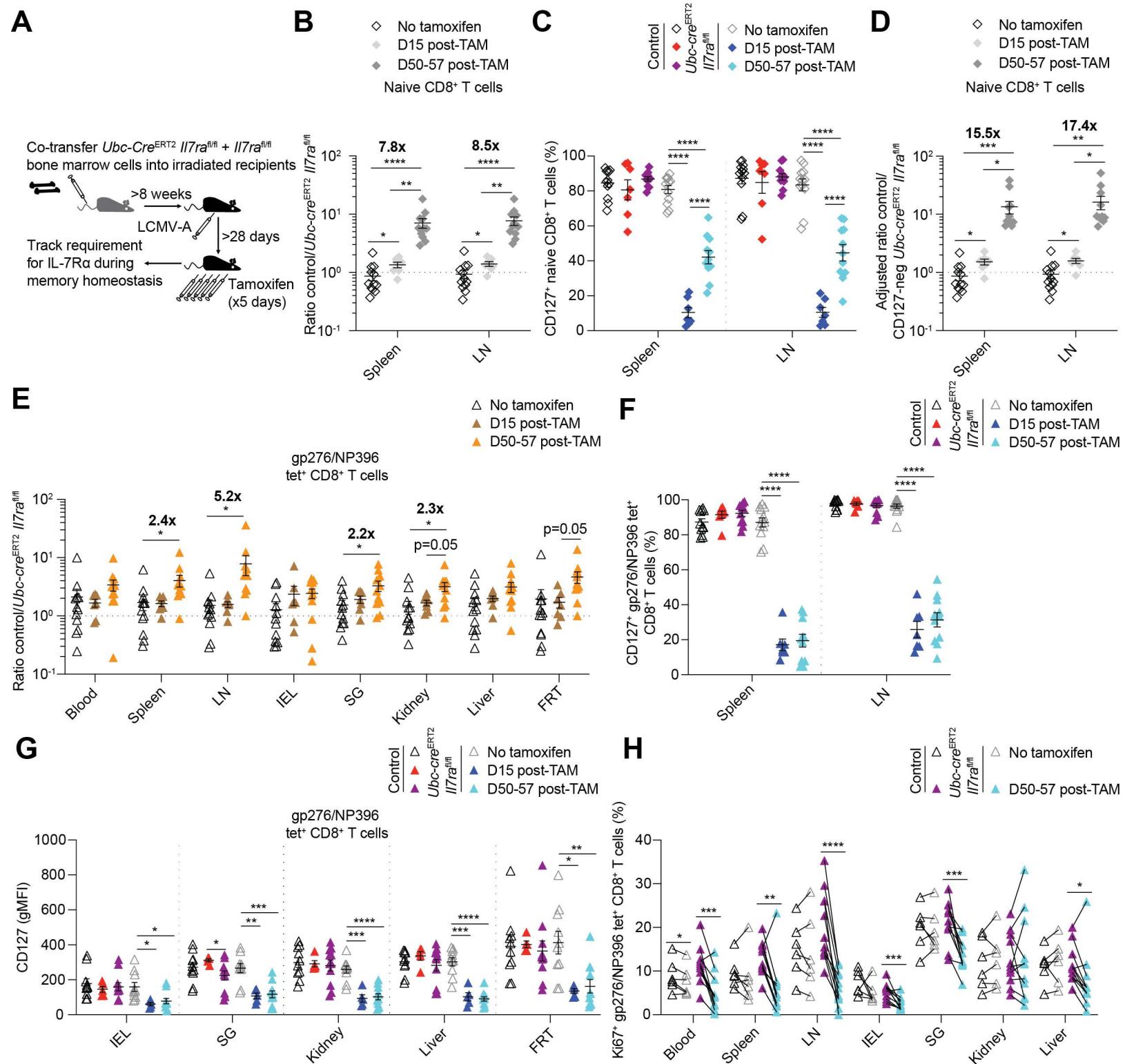
455

456

457

458

459


460

461

462

463

464

Figure 3

465 **Figure 3: Oligoclonal memory CD8⁺ T cells of defined antigen specificity are resilient to**
466 **loss of *Il7ra* during memory homeostasis**

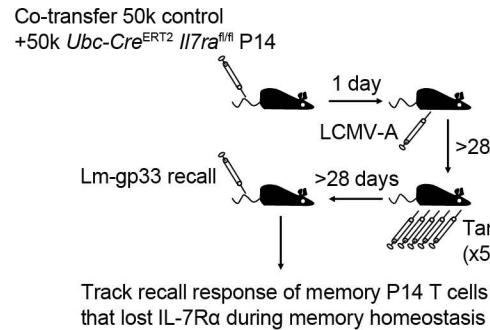
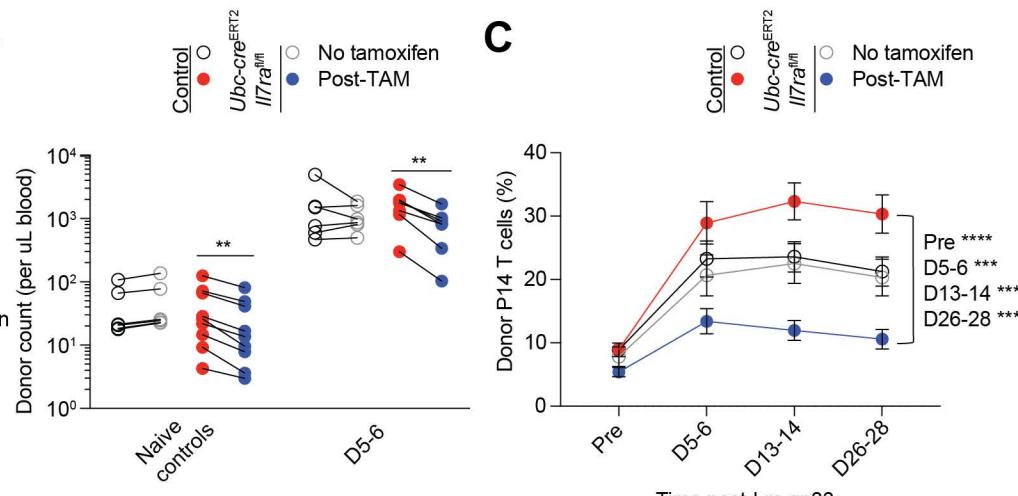
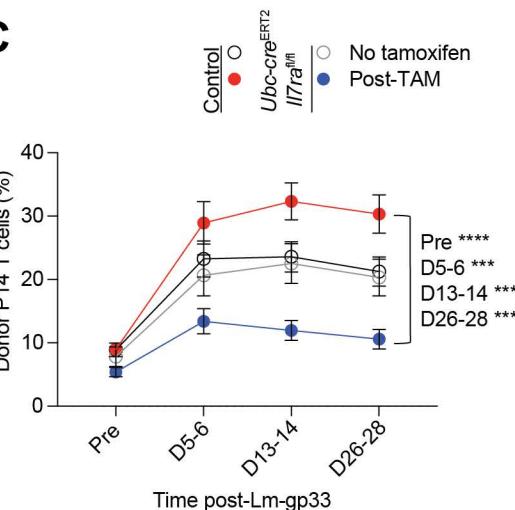
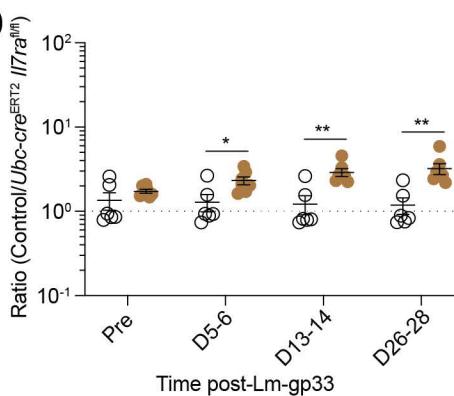
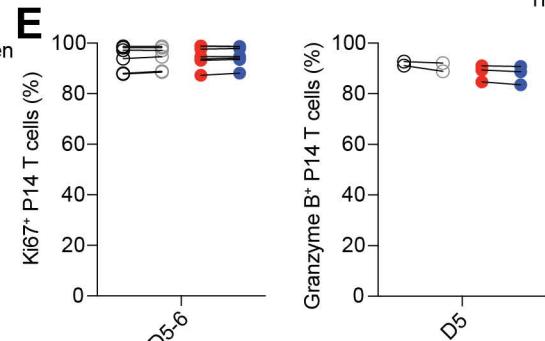
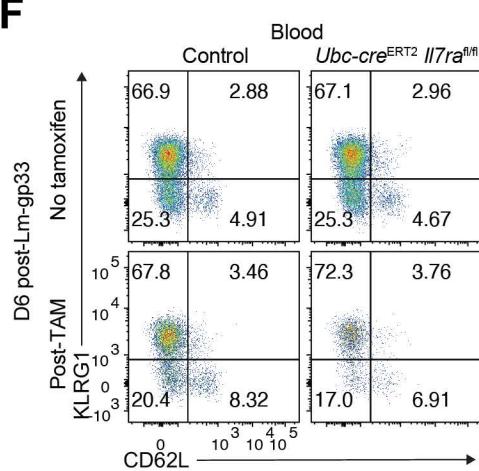
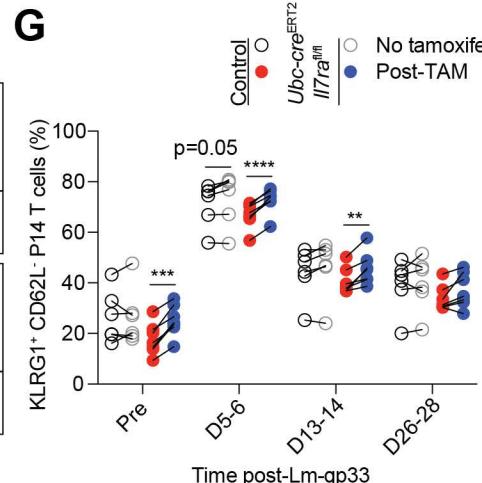
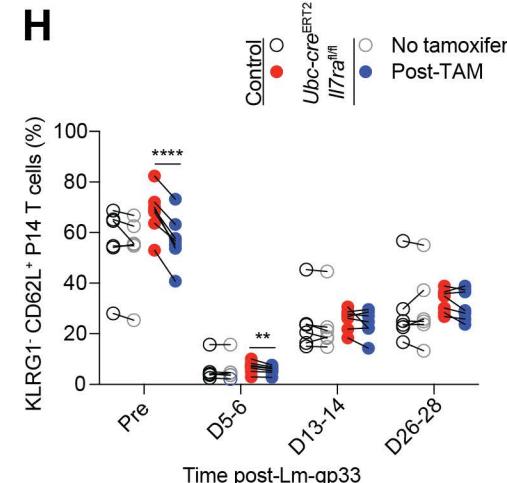
467 (A) Congenic *Il7ra*^{fl/fl} *Ubc-cre*^{ERT2}-negative (control) and -positive bone marrow was co-transferred
468 to lethally irradiated recipients. After >8 weeks of reconstitution, animals were infected with LCMV-
469 Armstrong. After resting to memory phase (>28 days), some mice were given i.p. tamoxifen for 5
470 consecutive days to initiate Cre-mediated recombination of the floxed *Il7ra* allele and tracked over
471 time via tetramer staining and congenic markers. (B-D) Quantitation of control and *Ubc-cre*^{ERT2}
472 *Il7ra*^{fl/fl} naïve (CD44^{lo} CD62L⁺) CD8⁺ T cells for (B) ratio, (C) proportion CD127⁺, and (D) ratio of
473 control to CD127⁻ *Ubc-cre*^{ERT2} *Il7ra*^{fl/fl} naïve cells from untreated and tamoxifen-treated bone
474 marrow chimeras. (E) Quantitation of the ratio of control and *Ubc-cre*^{ERT2} *Il7ra*^{fl/fl}
475 gp276/D^b/NP396/D^b tetramer-binding memory cells from untreated and tamoxifen-treated bone
476 marrow chimeras. (F-H) Quantitation of the (F) proportion CD127⁺, (G) CD127 gMFI, and (H)
477 proportion of Ki67-expressing cells for control and *Ubc-cre*^{ERT2} *Il7ra*^{fl/fl} gp276/D^b/NP396/D^b
478 tetramer-binding memory cells from untreated and tamoxifen-treated bone marrow chimeras.
479 Data are compiled from 3-7 experiments (n=6-12/group). Error is expressed as \pm S.E.M. Unpaired
480 (B-G) and paired Student's t tests (H). * p<0.05. ** p<0.01. *** p<0.001. **** p<0.0001. See also
481 Figure S4.

482

483

484

485









486

487

488

489

490

A**B****C****D****E****F****G****H****Figure 4**

491 **Figure 4: Ablation of the *Il7ra* during memory homeostasis does not significantly impair**
492 **antigen-elicited recall of circulating memory**

493 (A) Congenic control (*Ubc-cre*^{ERT2} *Il7ra*^{+/+} or *Il7ra*^{fl/fl}) and *Ubc-cre*^{ERT2} *Il7ra*^{fl/fl} P14 T cells were co-
494 transferred to recipients, followed by LCMV-Armstrong infection one day later. After resting to
495 memory phase (>28 days), some mice were given i.p. tamoxifen for 5 consecutive days to initiate
496 Cre-mediated recombination of the floxed *Il7ra* allele and rested (>28 days). Animals were then
497 infected intravenously with ~500,000 colony forming units of *Listeria monocytogenes* expressing
498 gp33 (Lm-gp33) to reactivate P14 T cells. (B) Control and *Ubc-cre*^{ERT2} *Il7ra*^{fl/fl} P14 T cells were
499 quantitated per μ L blood from untreated and tamoxifen-treated Lm-gp33-reactivated mice and
500 Lm-gp33-naïve controls. (C and D) Quantitation of the (C) percent (of CD8⁺ T cells) and (D) ratio
501 of control and *Ubc-cre*^{ERT2} *Il7ra*^{fl/fl} P14 T cells from the blood of untreated and tamoxifen-treated
502 Lm-gp33-reactivated mice. (E) Quantitation of the proportion of Ki67-expressing (left) and
503 granzyme B-expressing (right) control and *Ubc-cre*^{ERT2} *Il7ra*^{fl/fl} P14 T cells from the blood of
504 untreated and tamoxifen-treated Lm-gp33-reactivated mice. (F) Representative flow cytometry for
505 KLRG1 and CD62L expression, (G) quantitation of the proportion of KLRG1⁺ CD62L⁻ P14 T cells
506 as in (F), and (H) quantitation of the proportion of KLRG1⁻ CD62L⁺ P14 T cells as in (F) from
507 control and *Ubc-cre*^{ERT2} *Il7ra*^{fl/fl} P14 T cells from untreated and tamoxifen-treated Lm-gp33-
508 reactivated mice. Data are (B-E,G,H) compiled from 3 experiments (n=6-7/group), except
509 granzyme B data (1 experiment, n=2-3/group), or (F) representative of 3 experiments (n=6-
510 7/group). Error is expressed as \pm S.E.M. Unpaired (D) and paired Student's t tests (B-C,E,G,H).

511 * p<0.05. ** p<0.01. *** p<0.001. **** p<0.0001.

512

513

514

515

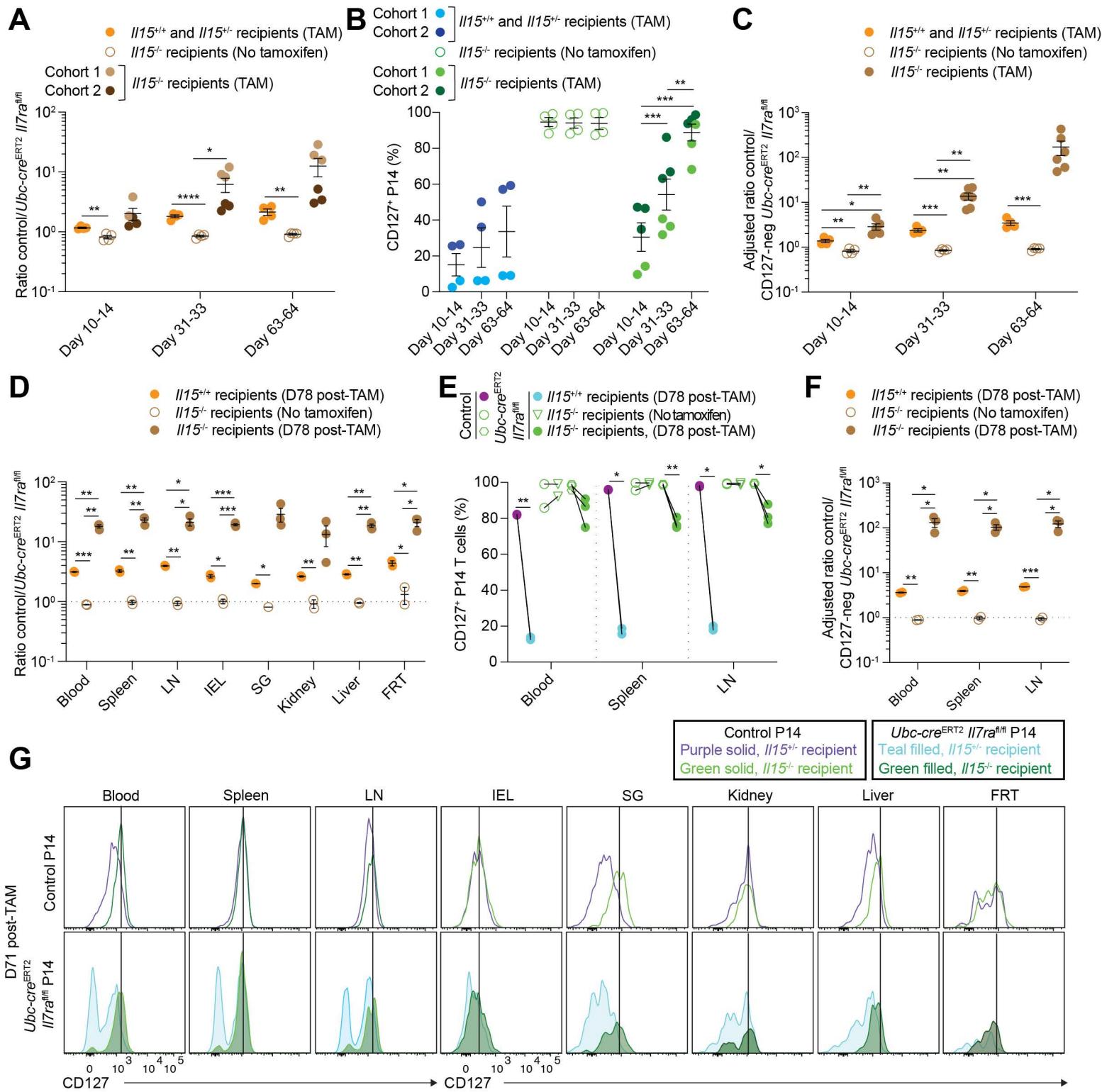


Figure 5

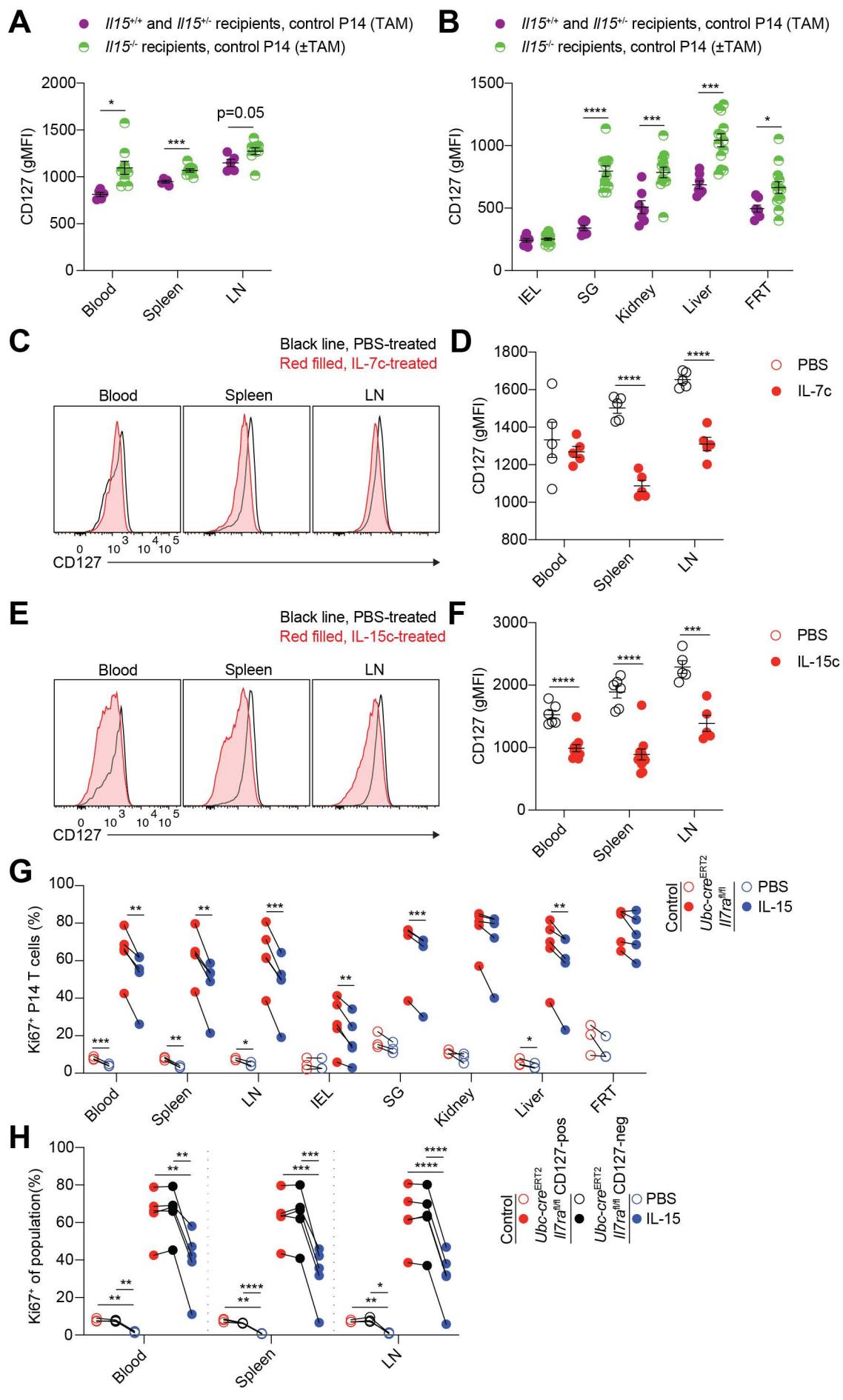
516 **Figure 5: Redundancy between IL-7 and IL-15 affords resilience to loss of individual**
517 **cytokines**

518 Congenic control (*Ubc-cre*^{ERT2} *Il7ra*^{+/+} or *Il7ra*^{f/f}) and *Ubc-cre*^{ERT2} *Il7ra*^{f/f} P14 T cells were co-
519 transferred to IL-15-sufficient (*Il15*^{+/+} or *Il15*^{+/−}) or -deficient recipients, followed by LCMV-
520 Armstrong infection one day later. After resting to memory phase (>28 days), some mice were
521 given i.p. tamoxifen for 5 consecutive days to initiate Cre-mediated recombination of the floxed
522 *Il7ra* allele and tracked over time in the blood via gp33/D^b tetramer staining and congenic markers.
523 (A-C) Cohort 1 and 2 control and *Ubc-cre*^{ERT2} *Il7ra*^{f/f} memory P14 T cells were quantitated for the
524 (A) ratio, (B) proportion CD127⁺, and (C) adjusted ratio of control to CD127-negative *Ubc-cre*^{ERT2}
525 *Il7ra*^{f/f} memory P14 T cells from the blood of untreated and tamoxifen-treated mice. (D-F) Cohort
526 1 control and *Ubc-cre*^{ERT2} *Il7ra*^{f/f} P14 T cells were quantitated for the (D) ratio, (E) proportion
527 CD127⁺, and (F) adjusted ratio of control and CD127-negative *Ubc-cre*^{ERT2} *Il7ra*^{f/f} memory P14 T
528 cells from untreated and tamoxifen-treated mice. (G) Representative flow cytometry for CD127
529 expression on Cohort 2 control and *Ubc-cre*^{ERT2} *Il7ra*^{f/f} P14 T cells from *Il15*^{+/−} or *Il15*^{−/−} recipients.
530 Data are (A-C) compiled from 2 experiments (3-6/group) or (D-G) representative of/derived from
531 1 experiment (n=2-3/group, except SG, No tamoxifen [n=1]). Error is expressed as ± S.E.M.
532 Unpaired (A-D,F) or paired (E) Student's t tests. * p<0.05. ** p<0.01. *** p<0.001. **** p<0.0001.
533 See also Figures S5 and S6.

534

535

536


537

538

539

540

541

Figure 6

542 **Figure 6: Cross-regulation of IL-7 and IL-15 signaling modulates CD8⁺ T cell memory**

543 (A and B) As in Figure 5, congenic control (*Ubc-cre*^{ERT2} *Il7ra*^{+/+} or *Il7ra*^{fl/fl}) and *Ubc-cre*^{ERT2} *Il7ra*^{fl/fl}
544 P14 T cells were co-transferred to IL-15-sufficient (*Il15*^{+/+} or *Il15*^{fl/fl}) or -deficient recipients, followed
545 by LCMV-Armstrong infection one day later. After resting to memory phase (>28 days), some mice
546 were given i.p. tamoxifen for 5 consecutive days to initiate Cre-mediated recombination of the
547 floxed *Il7ra* allele and tracked over time in the blood via gp33/D^b tetramer staining and congenic
548 markers. Quantitation of CD127 gMFI for (A) lymphoid tissue- and (B) non-lymphoid tissue-
549 localized control memory P14 T cells from untreated and tamoxifen-treated mice (some data
550 points are also shown in Figs. S5E, S6D, and S6E). (C-F) Congenic wildtype P14 T cells were
551 transferred to recipients, followed by LCMV-Armstrong infection one day later. After resting to
552 memory phase (>28 days), mice were given PBS and (C and D) IL-7c or (E and F) IL-15c on day
553 0 and 2 with sacrifice on day 4. (C and E) Representative flow cytometry for CD127 expression
554 on memory P14 T cells from PBS- and cytokine complex-treated mice and (D and F) quantitation
555 of CD127 gMFI as in (C and E). (G, H) Congenic control (*Il7ra*^{fl/fl}) and *Ubc-cre*^{ERT2} *Il7ra*^{fl/fl} P14 T
556 cells were co-transferred to recipients, followed by LCMV-Armstrong infection one day later. After
557 resting to memory phase (>28 days), all mice were given i.p. tamoxifen for 5 consecutive days to
558 initiate Cre-mediated recombination of the floxed *Il7ra* allele and then rested (>28 days). Mice
559 were then treated with PBS or 2 µg IL-15. (G) Quantitation of the proportion of Ki67-expressing
560 control and *Ubc-cre*^{ERT2} *Il7ra*^{fl/fl} memory P14 T cells from PBS or IL-15-treated mice. (H)
561 Quantitation of the proportion of Ki67-expressing control, *Ubc-cre*^{ERT2} *Il7ra*^{fl/fl} CD127⁺, and *Ubc-*
562 *cre*^{ERT2} *Il7ra*^{fl/fl} CD127⁻ memory P14 T cells from PBS or IL-15-treated mice. Data are (A,B,D,F-H)
563 compiled from 2-3 experiments (n=3-13/group) or (C,E) representative of 2-3 experiments (n=4-
564 12/group). Error is expressed as ± S.E.M. Unpaired (A,B,D,F) or paired (G,H) Student's t tests. *
565 p<0.05. ** p<0.01. *** p<0.001. **** p<0.0001. See also Figure S6.

566

567

568

569 **KEY RESOURCES TABLE**

570

571 **RESOURCE AVAILABILITY**

572 **Lead contact**

573 Further information and requests for resources and reagents should be directed to

574 the lead contact, Stephen Jameson (james024@umn.edu).

575

576 **Materials availability**

577 This study did not generate unique reagents.

578

579

580

581

582

583

584

585 **EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS**

586 **Mice**

587 See also the Key Resources Table. C57BL/6J and JAXboy mice were purchased from Jackson

588 Laboratory for use as *Il7ra*^{f/f} P14 transfer recipients. *Il15*^{-/-} mice¹⁹ were backcrossed to C57BL/6J

589 and bred in house as heterozygous by heterozygous and heterozygous by homozygous for use

590 as *Il7ra*^{f/f} P14 transfer recipients; in some experiments C57BL/6J were also used as *Il15*^{+/+}

591 recipients. For all lines backcrossed, speed congenics from Transnetyx were used. CD45.1/1

592 and CD45.2/2 C57BL/6N (purchased from Charles River) were used as recipients for mixed bone

593 marrow chimera experiments and cytokine complex therapy experiments. *Il7ra*^{f/f} mice⁵⁸ with a

594 floxed exon 3 of the *Il7ra* gene were purchased from Jackson Laboratory on a mixed background
595 (used for BM chimera experiments) and were backcrossed 5-6 generations to C57BL/6J (used
596 for adoptive transfer experiments). *Ubc-cre*^{ERT2} mice were purchased from Jackson Laboratory.
597 LCMV-gp33/D^b-specific P14 TCR transgenic mice⁵⁹ were backcrossed and maintained on the
598 C57BL/6J and C57BL/6N backgrounds as separate lines. C57BL/6J P14 mice were intercrossed
599 with *Il7ra*^{f/f}, *Ubc-cre*^{ERT2}, and Jaxboy mice to generate congenically distinct donor mice. *Ubc-*
600 *cre*^{ERT2}-positive male breeders were crossed to female *Il7ra*^{f/f} mice lacking the Cre transgene and
601 offspring were typed for the floxed allele and the recombined version to identify spontaneous
602 germline deletion in the absence of tamoxifen⁶⁰, which was rare for this strain. Donors (control
603 and experimental derived from the same breeding colony, sibling/littermates used when possible)
604 and recipients were used between 6-14 weeks of age. Female animals were used as recipients
605 (and donors) in our study, due to limitations on housing males for long-term memory experiments
606 due to aggression. Animals were housed under specific pathogen-free conditions at the University
607 of Minnesota; infections were performed in a BSL2 animal facility. All animal procedures were
608 approved by the institutional animal care and use committee of the University of Minnesota.

609

610 **Pathogens and infections**

611 Infections and treatments: Mice were infected intraperitoneally (i.p.) with LCMV Armstrong at
612 2*10⁵ PFU. Mice were rechallenged intravenously with ~500,000 colony forming units of Listeria
613 monocytogenes expressing gp33⁴⁸.

614

615 **METHOD DETAILS**

616 **Tamoxifen treatment**

617 Tamoxifen was dissolved in corn oil at 20 mg/mL for >5 hours at 37C with 250 rpm shaking (New
618 Brunswick Scientific, Excella E24 Incubator Shaker Series) and vortexing, with protection from
619 light. Tamoxifen in oil was prepared fresh for each course of treatment. Mice were given 100 uL

620 (2 mg) i.p. on 5 consecutive days, per the Jackson Laboratory (<https://www.jax.org/research-and-faculty/resources/cre-repository/tamoxifen>). For P14 cohorts 1 and 2, high efficiency or moderate efficiency deletion was confirmed respectively to be conserved across different batches of tamoxifen and for both naïve and memory cells derived from the same donor. Variability in Cre activity, even between littermates, has been previously reported⁶⁰.

625

626 **BrdU treatment**

627 1 mg was given i.p. at the start of treatment, with continuous BrdU administration via drinking water ad libitum (0.8 mg/mL in 2% sucrose water with protection from light). BrdU water was 629 changed every other day.

630

631 **Cytokine treatment**

632 For low dose IL-15 treatment, 2 µg mIL-15 were given i.p. as published⁵³ on days 0 and 2 before 633 harvest on day 3. For IL-7 and IL-15 complex treatment, mice were treated on days 0 and 2 before 634 harvest on day 4. IL-7c were formed with 1.5 µg mIL-7 and 7.5 µg anti-IL-7 antibody per mouse, 635 combined in equal volume and incubated for 2-3 minutes at RT, followed by dilution in PBS to 200 636 uL, and were placed on ice before injection i.p.⁵². IL-15c were prepared as previously 637 described^{27,61}.

638

639 **CD8⁺ T cell adoptive transfers**

640 CD8⁺ T cells were isolated from the spleens of donor P14 TCR transgenic mice with the Miltenyi 641 Biotec CD8a⁺ T cell isolation kit, mouse and Miltenyi Biotec LS columns. 50,000 cells from each 642 donor were transferred to naïve recipient mice by retro-orbital or tail vein injection before LCMV- 643 A infection to elicit memory. To track naïve P14 T cells, ~1.5-2M P14 T cells from each donor 644 were co-transferred, followed by tamoxifen treatment as above within a week (generally ~4 days 645 post-transfer).

646

647 **Mixed BM chimeras**

648 Recipient mice were given split-dose irradiation (2 doses of 500 rads, RS 2000 irradiator [Rad
649 Source]) on two consecutive days, followed by intravenous transfer of 4M BM cells from each
650 donor (isolated from hind limb femurs and tibias without red blood cell lysis). Mice were given two
651 weeks of antibiotic-treated water (polymyxin B sulfate salt 15 mg/L, neomycin trisulfate salt
652 hydrate 40 mg/L) during reconstitution. After >8 weeks, animals were infected with LCMV-
653 Armstrong as above and rested for >4 weeks to establish memory. Animals were then treated with
654 tamoxifen as above.

655

656 **Tissue harvests**

657 5 minutes before harvest, mice were given 3 µg anti-CD8α PerCP/Cy5.5 by retro-orbital
658 injection⁴⁵. Animals were then cheek bled into heparin and sacrificed for tissue harvest. The
659 inguinal LNs and the spleen were collected into harvest media (either RPMI 1640 supplemented
660 with 5% fetal bovine serum [heat inactivated before use] or 1x Hanks' balanced salt solution
661 [HBSS] supplemented with 2.38 g/L Hepes], 2.1 g/L sodium bicarbonate, and 5% FBS) and
662 passed through a 70-µm cell strainer. For IEL, the small intestine (SI) was excised and divested
663 of fat and doused in IEL media (1x HBSS supplemented with Hepes, sodium bicarbonate, and
664 2% FBS) to keep moist. The Peyer's patches were then removed and fecal contents were
665 extruded from the lumen, which was then cut open. The sample was cut into 3-4 longitudinal
666 sections, vortexed, and left on ice in 20 mL IEL medium. IEL medium was decanted, and tissue
667 was washed with 30 mL of fresh IEL medium. Tissue was then transferred to 50 mL Erlenmeyer
668 flasks with stir bars and 30 mL of IEL dithioerythritol (DTE) media supplemented with additional
669 FBS to 5% and 154 mg/L dithioerythritol. After 30 min of stirring at 37 °C on a Variomag Poly 15,
670 the supernatant was decanted through a 70 µm filter. 20 mL of IEL DTE media was added,
671 followed by vortexing. After allowing tissue to settle, the supernatant was filtered and combined

672 with the previous supernatant fraction. For liver, the organ was excised, avoiding the gallbladder,
673 and placed in 5 mL harvest media on ice. It was then disrupted using a GentleMACS C tube on a
674 GentleMACS Dissociator (m_spleen_01.01 twice) and filtered. For SG, kidney, FRT. SGs
675 (submandibular, part of the sublingual) were excised, and cervical LNs were removed if present.
676 The parotid was excluded to avoid lymphoid contamination. The kidney capsule was removed
677 during isolation. The FRT was collected inclusive of the ovaries to the vagina and was bisected
678 open. All tissues were placed in harvest media on ice. Tissues were finely minced with scissors
679 and transferred to Erlenmeyer flasks with stir bars. 30 mL of collagenase solution (RPMI 1640
680 supplemented with 1 mM MgCl₂, 1 mM CaCl₂, 111.6 mg/L Hepes, 292 mg/L L-glutamine, and 5%
681 FBS) containing 0.364 mg/mL collagenase I (SG, kidney) or 0.5 mg/mL collagenase IV (FRT) was
682 added. Tissues were then incubated at 37 °C with stirring for 45-55 min (SG, kidney) or 60-70 min
683 (FRT). After digestion, supernatants were filtered, and the remaining tissue was transferred to a
684 GentleMACS C tube as above for liver. GentleMACS contents were then filtered and combined
685 with the previous fraction. All NLTs were pelleted and resuspended in 5 mL of room temperature
686 (RT) 44% Percoll (diluted with RPMI 1640), before underlay with 3 mL of RT 67% Percoll (diluted
687 with PBS). Percoll was mixed with 10x PBS before use. Samples were centrifuged for 20 min at
688 800 g at RT, with minimum acceleration and deceleration. The interface was collected, diluted
689 with harvest media, and used for downstream analysis. Red blood cells in blood and spleen
690 samples were lysed with ACK buffer (150 mM ammonium chloride, 1 mM potassium bicarbonate,
691 and 0.1 mM EDTA [ethylenediaminetetraacetic acid] in water) before staining.
692

693 **Flow Cytometry**

694 Samples and splenic single stain controls were washed in fluorescence-activated cell sorter
695 (FACS) buffer (2% FBS, 2 mM EDTA in 1x PBS), followed by Fc blocking for 5 min.
696 Antibodies/viability dye for staining were then added for 20 min at 4 °C with concurrent tetramer
697 staining when used. Samples were then washed before fixation, washed after fixation, and stored

698 in FACS buffer at 4 °C before intracellular staining 1 to 2 d later. Antibodies/viability dyes are listed
699 in the Key Resources Table. All surface antibodies were used at 1/200, except anti-CD69 and
700 anti-CD127 (1/100). Viability dye was used at 1/1,000. Intracellular Staining. For Ki67 (1/200),
701 Bcl2 (1/50), and Granzyme B staining (1/200), the Tonbo Foxp3/Transcription Factor Staining
702 Buffer Kit was used according to the standard protocol, with an additional 15-min incubation in 1x
703 Perm buffer plus 2% Normal Rat Serum before antibody staining for 45-60 min at RT. BrdU
704 staining was done using a modified protocol for the BD Cytofix/Cytoperm
705 Fixation/Permeabilization Solution Kit. Briefly, cells were washed in 1x Perm/Wash (P/W) buffer
706 and then incubated for 10 min at 4 °C in 1x P/W buffer plus dimethyl sulfoxide (1 part 10x P/W, 1
707 part DMSO, and 8 parts water). Samples were then washed in 1x P/W buffer and refixed in
708 Cytofix/Cytoperm buffer for 5 min at RT, followed by washing in 1x P/W buffer. Cells were then
709 digested with deoxyribonuclease (DNase) I at 37 °C for at least 50 min. DNase was stored at -80
710 °C as a 2 mg/mL stock in PBS and diluted to 600 µg/mL in 1x PBS immediately before use. After
711 digestion, cells were washed in 1x P/W buffer and stained with anti-BrdU antibody (1/100) for 50-
712 60 min at RT. Cells were washed with 1x P/W buffer and then with FACS buffer. All NLT samples
713 were filtered, and CountBright Plus counting beads were added to flow tubes before analysis.
714 Samples were acquired using BD LSRII, LSRFortessa X20 and X30, and LSRFortessa flow
715 cytometers and FACSDiva software. Analysis was done using FlowJo v7 and v10. Singlet
716 lymphocytes were gated by forward scatter area (FSC-A)/side scatter area (SSC-A) and FSC-
717 A/FSC-width (FSC-W). Live cells were then gated according to i.v. labeling status (blood, i.v.-
718 positive; LN, IEL, SG, FRT, i.v.-negative; spleen and kidney, i.v.-low; liver, not gated by i.v. labeling
719 status). CD8α⁺/TCRβ⁺ cells were then divided by CD45 congenic staining into host and donor
720 populations, with gp33/D^b tetramer staining to exclude the host for *Il15*^{-/-} and naïve CD8⁺ T cell
721 experiments. Tetramer binding cells were gated as tet⁺ CD44^{hi}. To validate BrdU gating, each
722 experiment included a control animal not given BrdU, tissues from which were processed and
723 stained alongside the other samples to serve as negative controls. For subsetting of memory,

724 blood, spleen, and LN P14 T cells were gated as KLRG1⁺ CD62L⁻ (long-lived effector cells),
725 KRG1⁻ CD62L⁻ (T effector memory), and KLRG1⁻ CD62L⁺ (T central memory). For the adjusted
726 ratio of control to CD127-negative *Ubc-cre*^{ERT2} *Il7ra*^{fl/fl} P14 T cells, adjusted ratios were only
727 calculated for recipients that had received tamoxifen and could therefore have lost the IL-7Ra.
728 For animals not receiving tamoxifen, the simple ratio of donor to donor was used, meaning the
729 ratios shown for no tamoxifen recipients are identical for the simple and adjusted ratio graphs.
730 For salivary gland, P14 T cells were split into two CD69⁺ resident subsets, differing in expression
731 of CD103. In rare cases, dominance of CD69/CD103 double-negative cells in SG samples
732 revealed lymphoid tissue contamination, and these samples were excluded. For kidney and liver,
733 P14 T cells were split into CD69⁺ resident and CD69⁻ circulating memory.

734

735 **Tetramer reagents**

736 Tetramers were made using biotinylated monomers (H-2D^b KAVYNFATM [gp33/D^b]; H-2D^b
737 SGVENPGGYCL [gp276/D^b]; H-2D^b FQPQNGQFI [NP396/D^b]) from the NIH Tetramer Core at
738 Emory University. For gp33/D^b monomer, PE/Cy7-streptavidin was used. For gp276/D^b and
739 NP396/D^b, R-PE-streptavidin was used. Fluorophore-conjugated streptavidin was added to 20 µg
740 of monomer, in 10 additions of 3.18 µg, each 10 min after the other (at room temperature).
741 Tetramer was then stored at 4 °C before use.

742

743 **Software**

744 Flow cytometry data was acquired in FACSDiva and analyzed in FlowJo v7 and v10. Statistical
745 calculations and graphing were performed using GraphPad Prism v9. Figures were generated in
746 Adobe Illustrator 2023.

747

748 **QUANTIFICATION AND STATISTICAL ANALYSIS**

749 All statistical analyses were performed in Prism, as specified in the figure legends. Unpaired, two-
750 tailed Student's t tests were applied to determine the difference between two independent groups.
751 Paired, two-tailed Student's t tests were applied to determine the difference between two related
752 groups (i.e. co-transferred populations within the same recipient animal). Where no p value is
753 provided for a relevant comparison, the result was not significant. Infrequently, a ratio could not
754 be calculated due to no cells in the *Il7ra*-deficient group remaining (i.e. 100 *Il7ra*-sufficient cells
755 divided by 0 *Il7ra*-deficient treated cells). In this case, the ratio was set conservatively at the
756 minimum possible value (i.e. 100:0 becomes 100:1, or a ratio of 100). Infrequently, too few events
757 (less than five events) were captured for accurate quantitation of downstream parameters (i.e.
758 Ki67, BrdU, CD127 gMFI). In such cases, these values were excluded for these parameters. In
759 rare cases of sickness, animals were excluded. Error bars represent the SEM.

760

761 **SUPPLEMENTAL INFORMATION**

762

763 Figures S1-S7

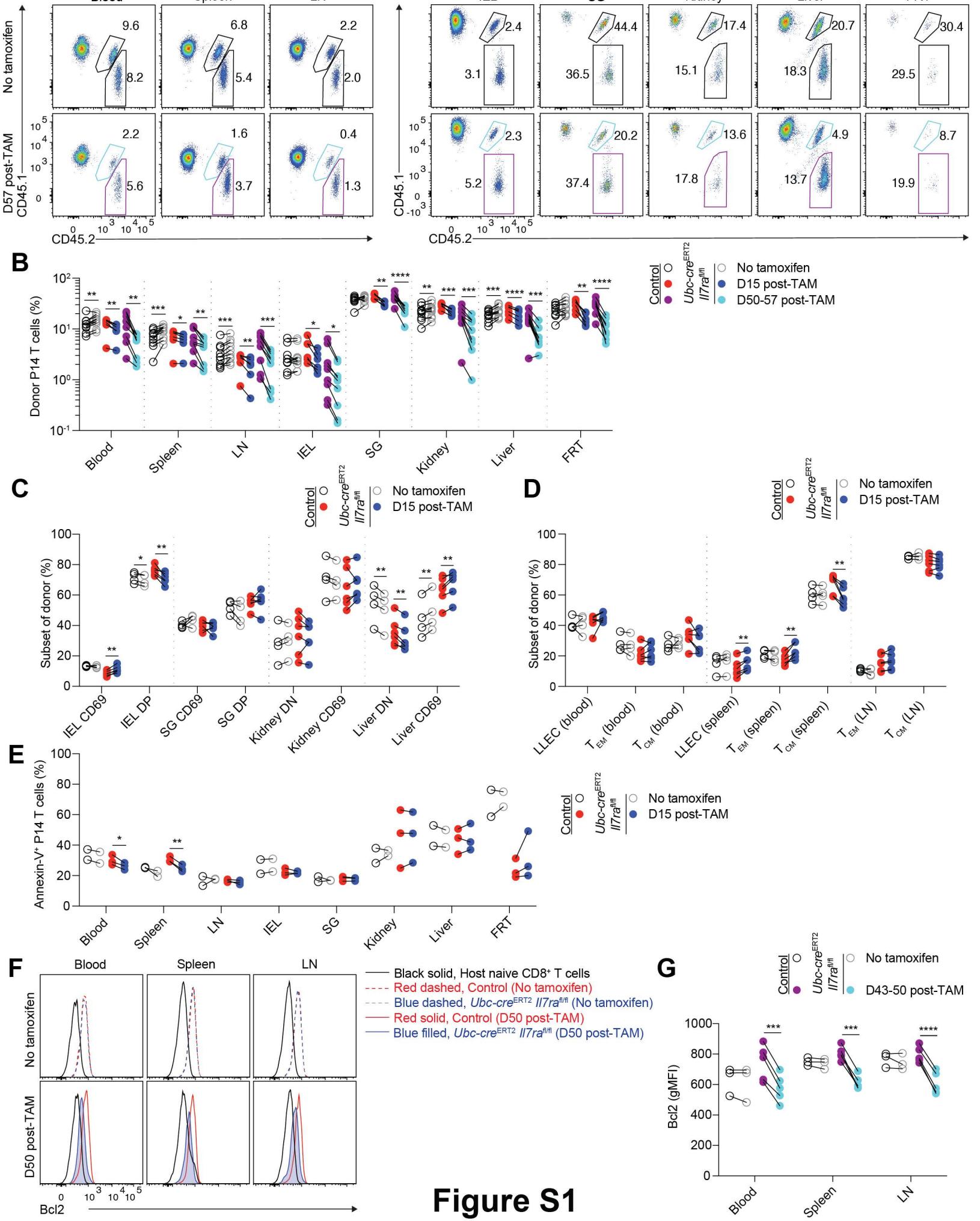
764

765

766

767

768


769

770

771

772

773

Figure S1

774 **Figure S1, related to Figures 1 and 2. Loss of *Il7ra* from homeostatic memory cells reduces**

775 **Bcl2 levels**

776 As in Figures 1 and 2, congenic control (*Ubc-cre*^{ERT2} *Il7ra*^{+/+} or *Il7ra*^{fl/fl}) and *Ubc-cre*^{ERT2} *Il7ra*^{fl/fl} P14

777 T cells were co-transferred to recipients, followed by LCMV-Armstrong infection one day later.

778 After resting to memory phase (>28 days), some mice were given i.p. tamoxifen for 5 consecutive

779 days to initiate Cre-mediated recombination of the floxed *Il7ra* allele. (A) Representative flow

780 cytometry for congenic markers (CD45.2/2 control and CD45.1/2 *Ubc-cre*^{ERT2} *Il7ra*^{fl/fl}) and

781 quantitation of the (B) percent (of CD8⁺ T cells) as in (A), (C) proportions of NLT memory P14

782 subsets, (D) proportions of LLEC, T_{EM}, and T_{CM}, and (E) proportion of annexin V-staining control

783 and *Ubc-cre*^{ERT2} *Il7ra*^{fl/fl} memory P14 T cells from untreated and tamoxifen-treated mice. (F)

784 Representative flow cytometry for Bcl2 expression and (G) quantitation of Bcl2 gMFI on control

785 and *Ubc-cre*^{ERT2} *Il7ra*^{fl/fl} memory P14 T cells from untreated and tamoxifen-treated mice as in (F).

786 Data are (A,F) representative of 2-3 experiments (n=3-9/group), (B-D) compiled from 2-5

787 experiments (n=6-9/group), (E) from 1 experiment (n=2-3/group), or (G) compiled from 2

788 experiments (n=3-5/group). Error is expressed as \pm S.E.M. Paired Student's t tests. * p<0.05. **

789 p<0.01. *** p<0.001. **** p<0.0001.

790

791

792

793

794

795

796

797

798

799

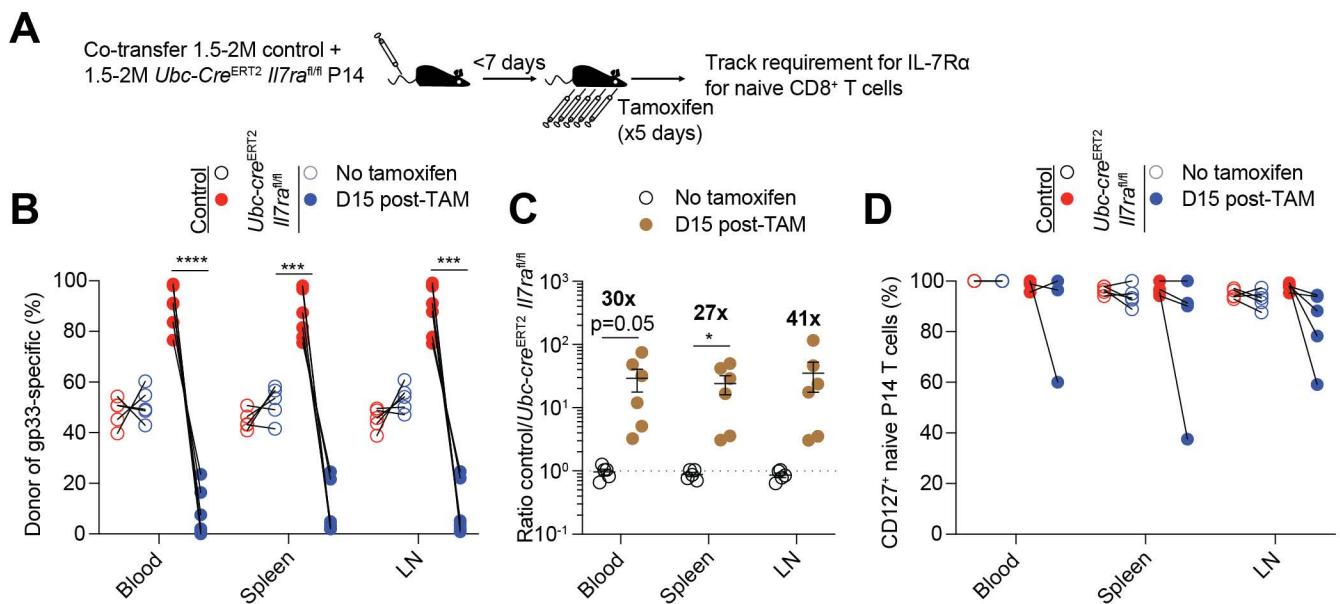


Figure S2

800 **Figure S2, related to Figure 1. Naïve P14 T cells are profoundly dependent on IL-7Ra**

801 (A) 1.5-2 million congenic control (*Ubc-cre*^{ERT2} *Il7ra*^{+/+} or *Il7ra*^{f/f}) and *Ubc-cre*^{ERT2} *Il7ra*^{f/f} P14 T
802 cells were co-transferred to naive recipients. Within 1 week of transfer, some mice were given i.p.
803 tamoxifen for 5 consecutive days to initiate Cre-mediated recombination of the floxed *Il7ra* allele
804 and tracked over time via gp33/D^b tetramer staining and congenic markers. (B-D) Quantitation of
805 the (B) percent (of gp33/D^b tetramer-binding CD8⁺ T cells), (C) ratio, and (D) percent CD127⁺ of
806 control and *Ubc-cre*^{ERT2} *Il7ra*^{f/f} naïve P14 T cells from untreated and tamoxifen-treated mice. Data
807 are compiled from 3 experiments (n=3-6/group). Error is expressed as \pm S.E.M. Unpaired (C) or
808 paired (B,D) Student's t tests. * p<0.05. ** p<0.01. *** p<0.001. **** p<0.0001.

809

810

811

812

813

814

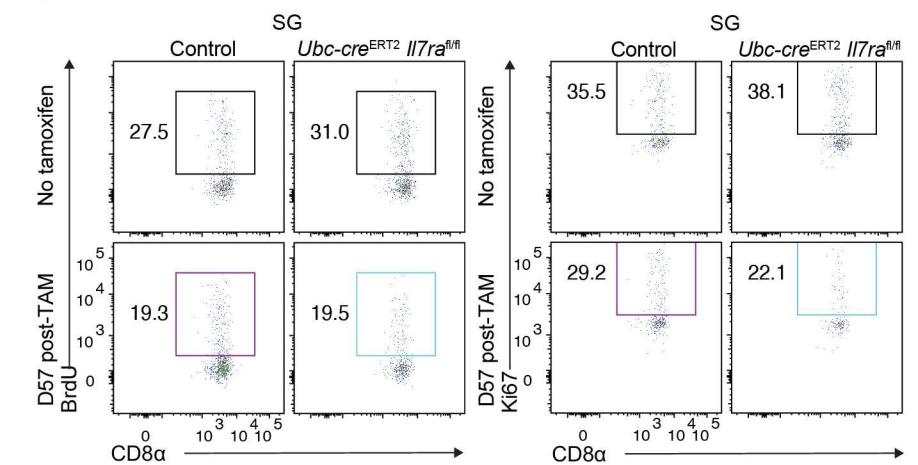
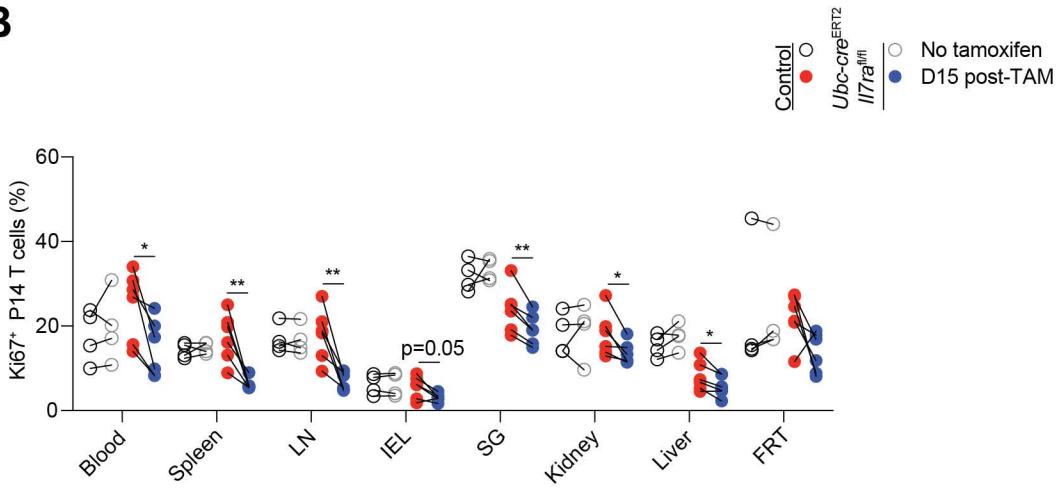
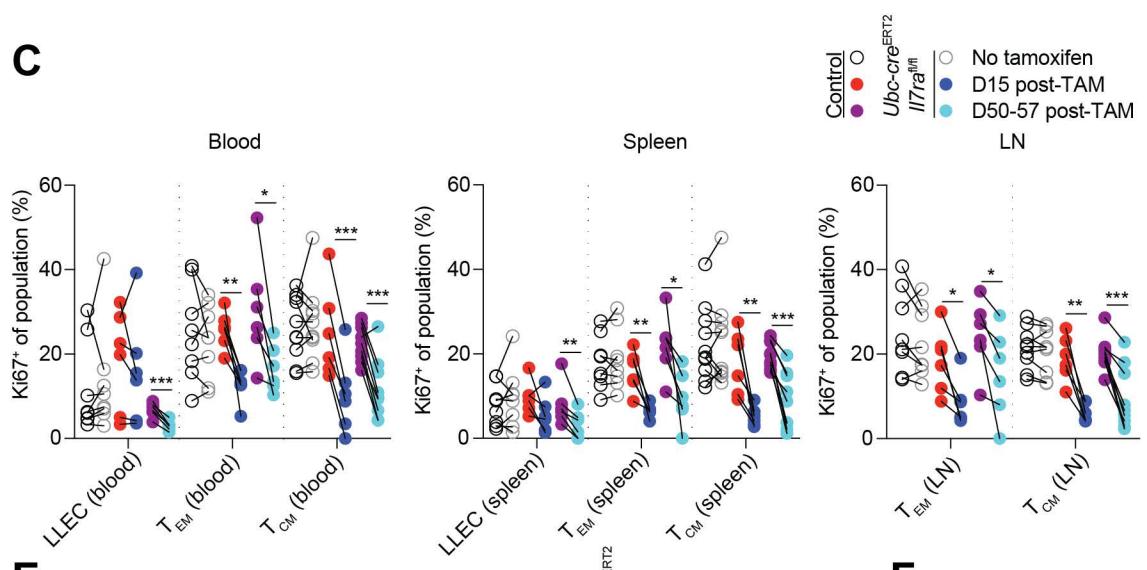
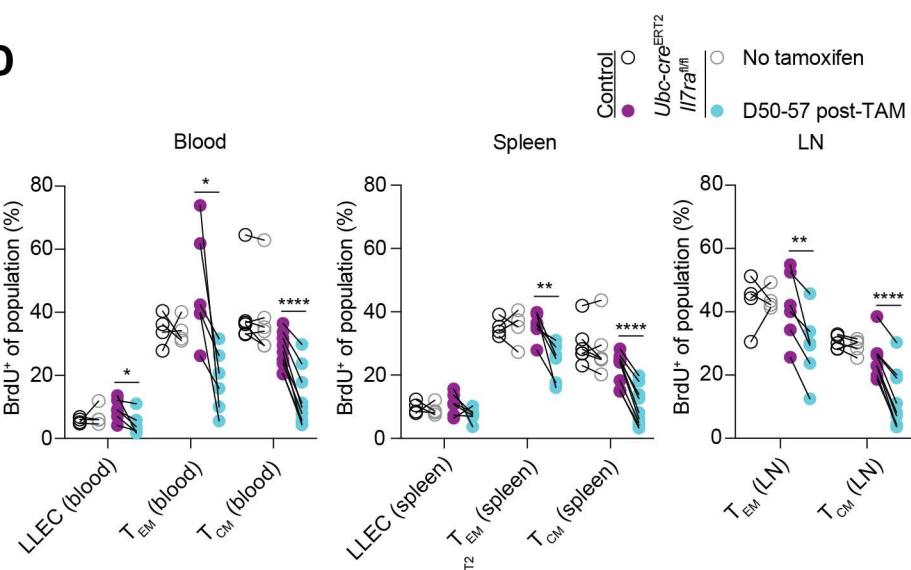
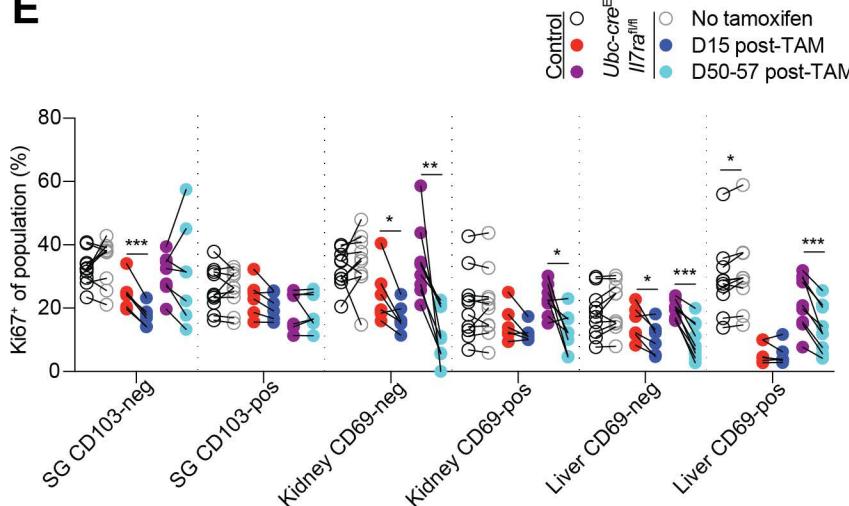
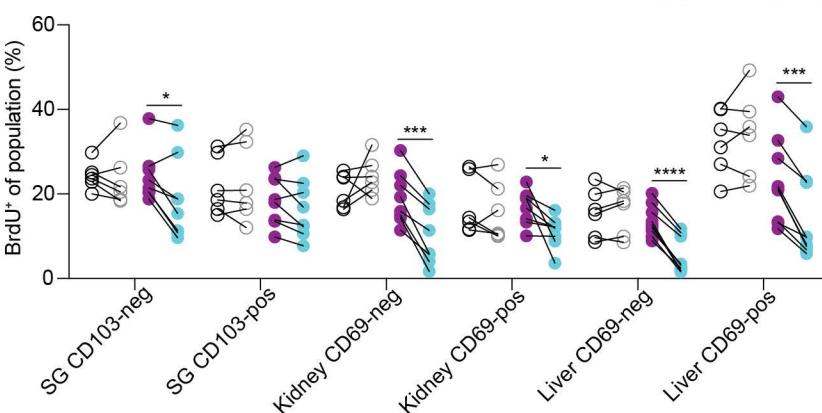
815

816

817

818

819







820

821

822

823

824

A**B****C****D****E****F****Figure S3**

825 **Figure S3, related to Figure 2. Loss of IL-7R α affects circulating and resident memory P14**

826 **subsets**

827 As in Figures 1 and 2, congenic control (*Ubc-cre*^{ERT2} *Il7ra*^{+/+} or *Il7ra*^{fl/fl}) and *Ubc-cre*^{ERT2} *Il7ra*^{fl/fl} P14
828 T cells were co-transferred to recipients, followed by LCMV-Armstrong infection one day later.
829 After resting to memory phase (>28 days), some mice were given i.p. tamoxifen for 5 consecutive
830 days to initiate Cre-mediated recombination of the floxed *Il7ra* allele. (A) Representative flow
831 cytometry for Ki67 expression and BrdU incorporation from the salivary gland and (B) quantitation
832 of the proportion of Ki67-expressing control and *Ubc-cre*^{ERT2} *Il7ra*^{fl/fl} memory P14 T cells as in (A)
833 and Fig. 2A) from untreated and tamoxifen-treated mice. (C and D) Quantitation of the proportion
834 of (C) Ki67-expressing and (D) BrdU-incorporating circulating memory P14 subsets from
835 untreated and tamoxifen-treated mice. (E and F) Quantitation of the proportion of (E) Ki67-
836 expressing and (F) BrdU-incorporating NLT memory P14 subsets from untreated and tamoxifen-
837 treated mice. Data are compiled from 2-5 experiments (n=4-10/group). Error is expressed as \pm
838 S.E.M. Paired Student's t tests. * p<0.05. ** p<0.01. *** p<0.001. **** p<0.0001.

839

840

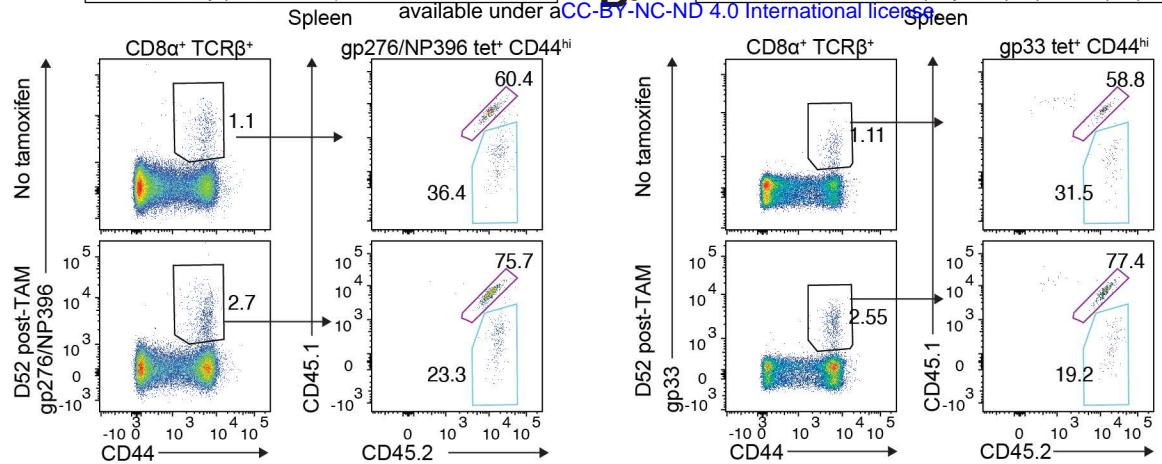
841

842

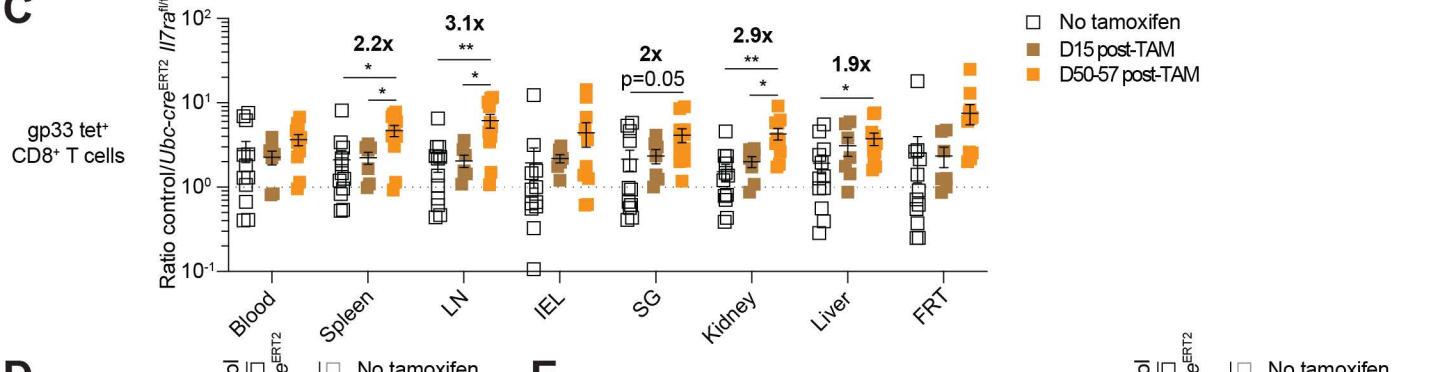
843

844

845


846

847


848

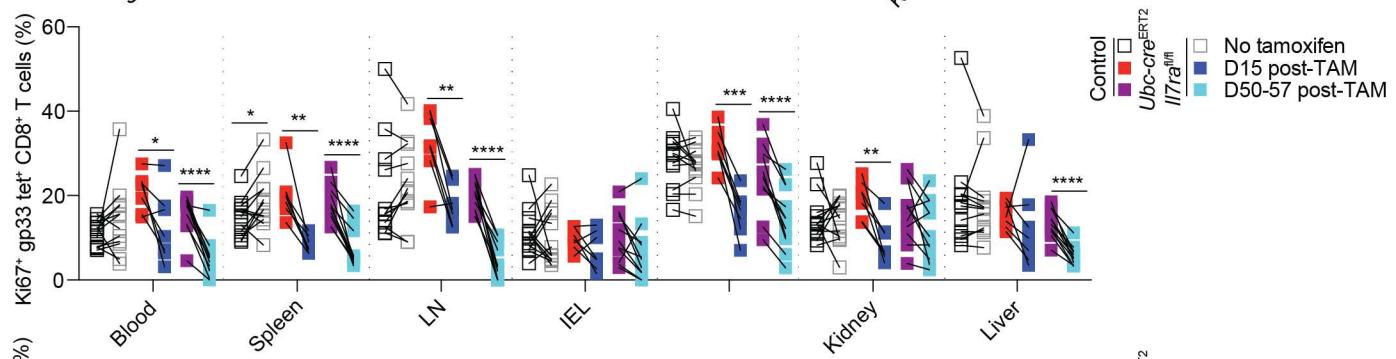
849

A

C

D

Control *Ubc-cre^{ERT2}* /*l7ra^{fl/fl}*


No tamoxifen D15 post-TAM D50-57 post-TAM

E

Control *Ubc-cre^{ERT2}* /*l7ra^{fl/fl}*

No tamoxifen D15 post-TAM D50-57 post-TAM

F

G

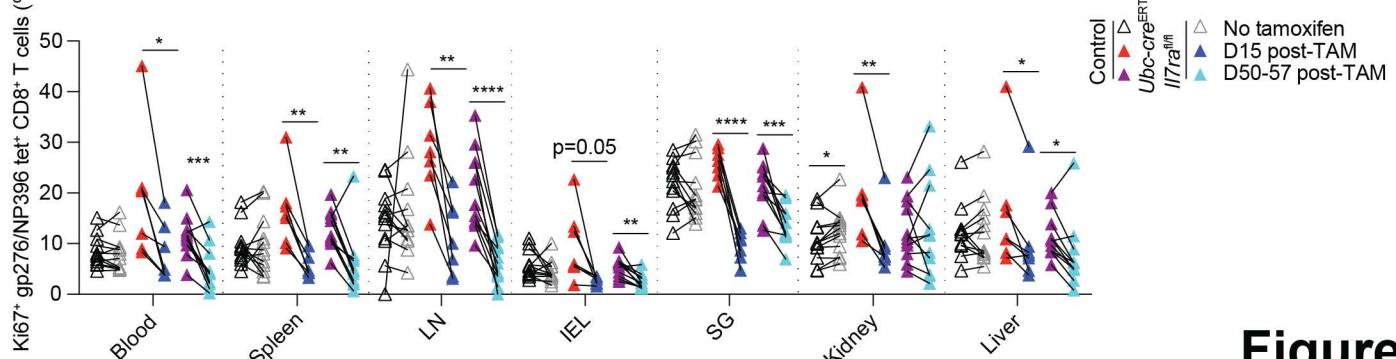
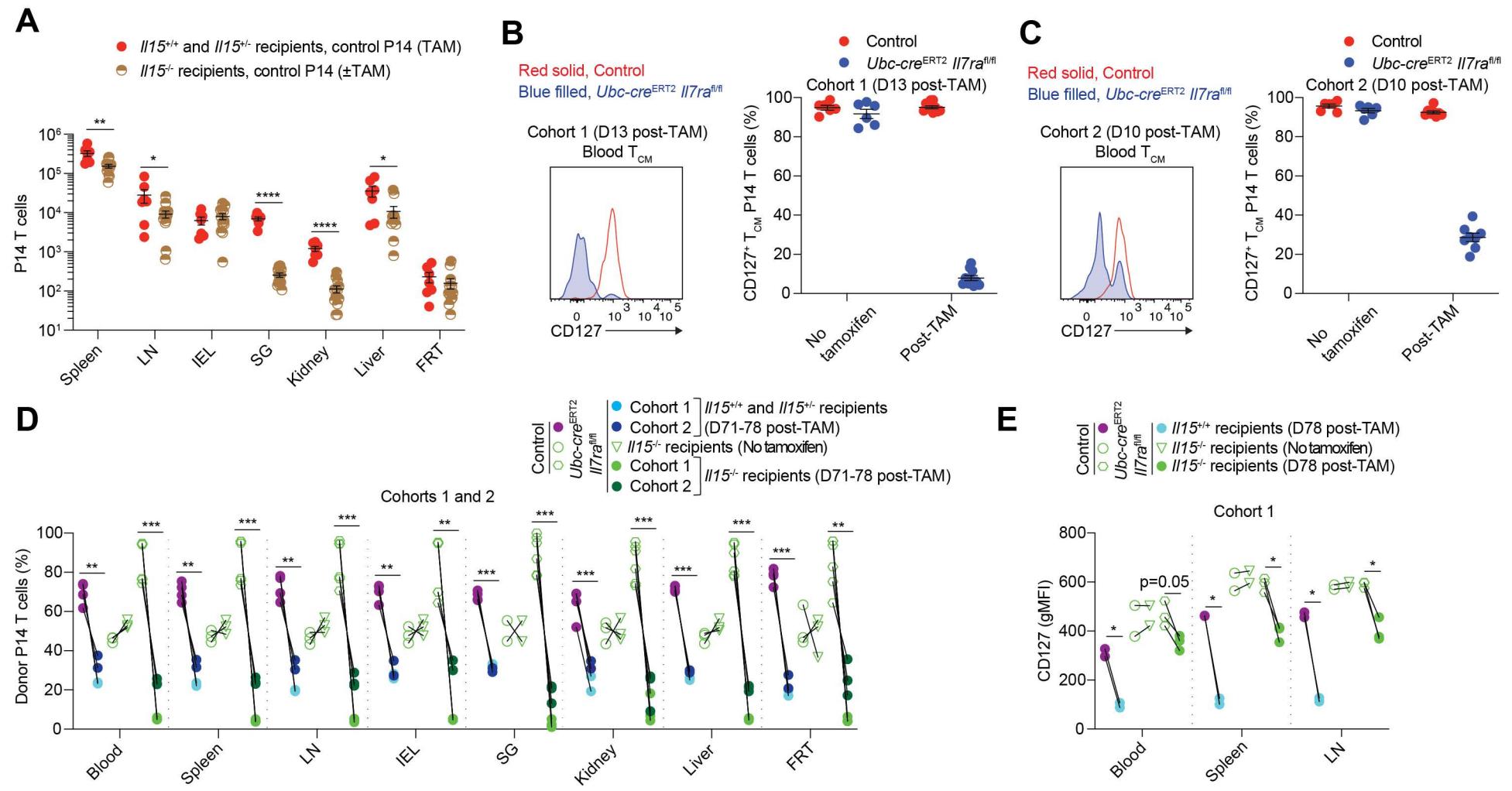


Figure S4

850 **Figure S4, related to Figure 3. Antigen-specific memory CD8⁺ T cells are resilient to loss of**
851 ***Il7ra* during memory homeostasis**

852 As in Figure 3, congenic *Il7ra*^{fl/fl} *Ubc-cre*^{ERT2}-negative (control) and -positive bone marrow was co-
853 transferred to lethally irradiated recipients. After >8 weeks of reconstitution, animals were then
854 infected with LCMV-Armstrong. After resting to memory phase (>28 days), some mice were given
855 i.p. tamoxifen for 5 consecutive days to initiate Cre-mediated recombination of the floxed *Il7ra*
856 allele and tracked over time via congenic markers. (A and B) Representative staining with (A)
857 pooled gp276/D^b and NP396/D^b tetramers and (B) gp33/D^b tetramer for splenic memory CD8⁺ T
858 cells and CD45.1/CD45.2 congenic gating (CD45.1/2 *Il7ra*^{fl/fl} and CD45.2/2 *Ubc-cre*^{ERT2} *Il7ra*^{fl/fl})
859 from untreated and tamoxifen-treated bone marrow chimeras. (C) Ratio of control and *Ubc-cre*^{ERT2}
860 *Il7ra*^{fl/fl} gp33/D^b tetramer-binding memory cells from untreated and tamoxifen-treated bone
861 marrow chimeras gated as in (B). (D-F) Quantitation of the (D) proportion CD127⁺, (E) CD127
862 gMFI, and (F) proportion of Ki67-expressing cells for control and *Ubc-cre*^{ERT2} *Il7ra*^{fl/fl} gp33/D^b
863 tetramer-binding memory cells from untreated and tamoxifen-treated bone marrow chimeras. (G)
864 Quantitation of the proportion of Ki67-expressing cells for control and *Ubc-cre*^{ERT2} *Il7ra*^{fl/fl}
865 gp276/D^b/NP396/D^b tetramer-binding memory cells from untreated and tamoxifen-treated bone
866 marrow chimeras (shares some data points with 3H). Data are (A,B) representative of 4
867 experiments (n=6-12/group) or (C-G) compiled from 3-7 experiments (n=6-12/group). Error is
868 expressed as \pm S.E.M. Unpaired (C-E) and paired Student's t tests (F,G). * p<0.05. ** p<0.01. ***
869 p<0.001. **** p<0.0001.

870


871

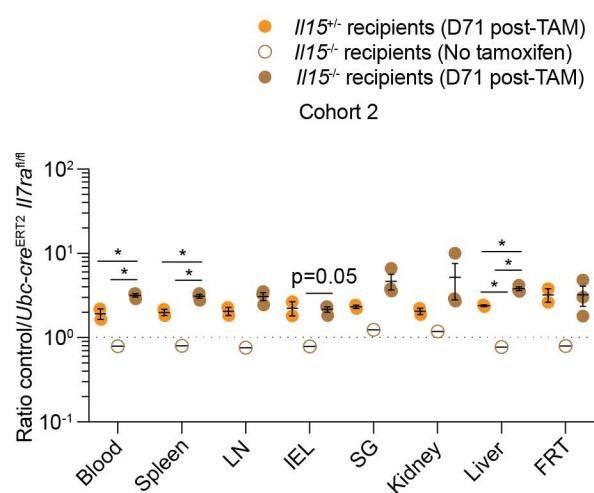
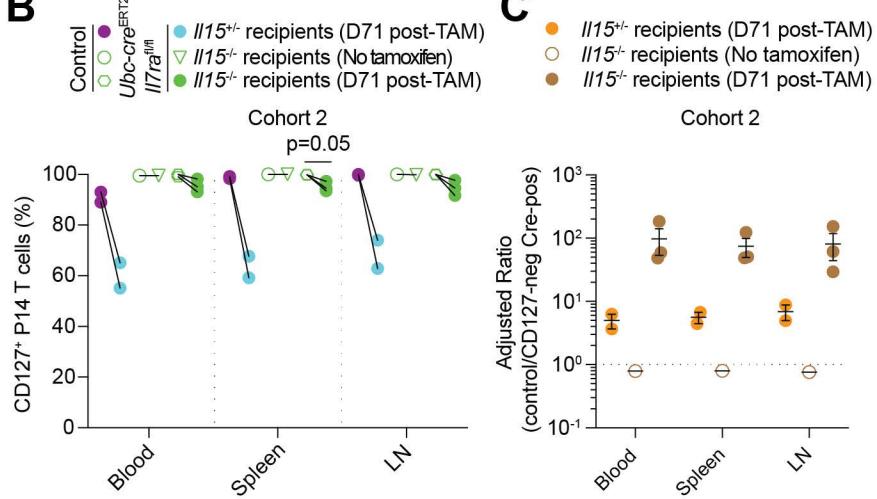
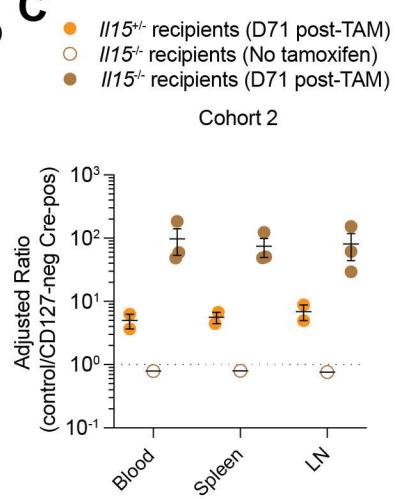
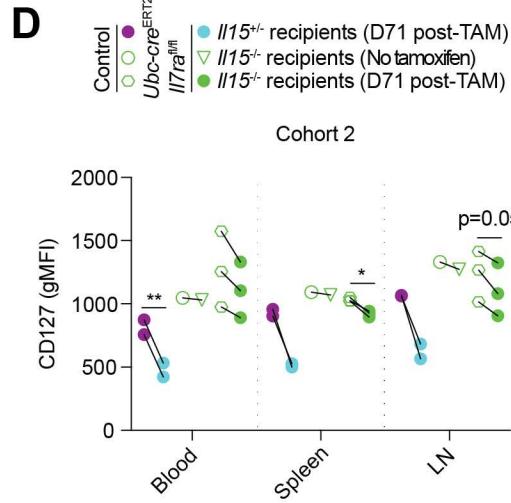
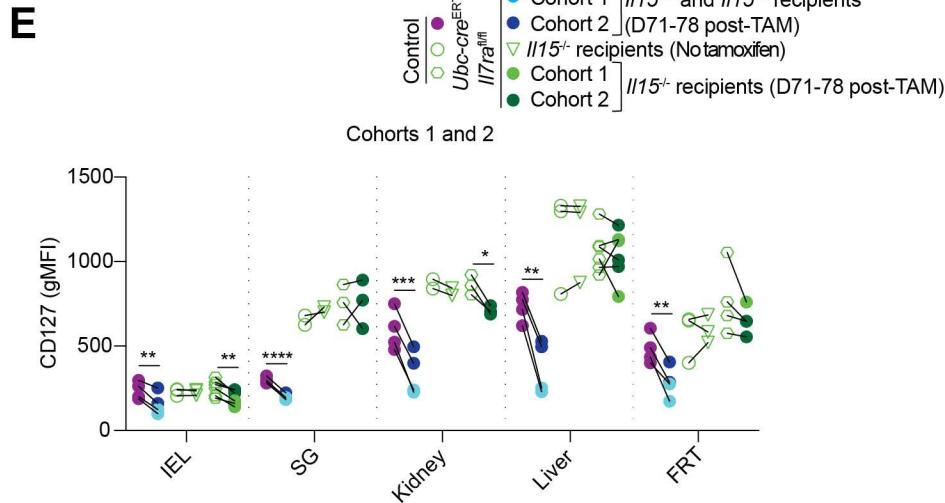
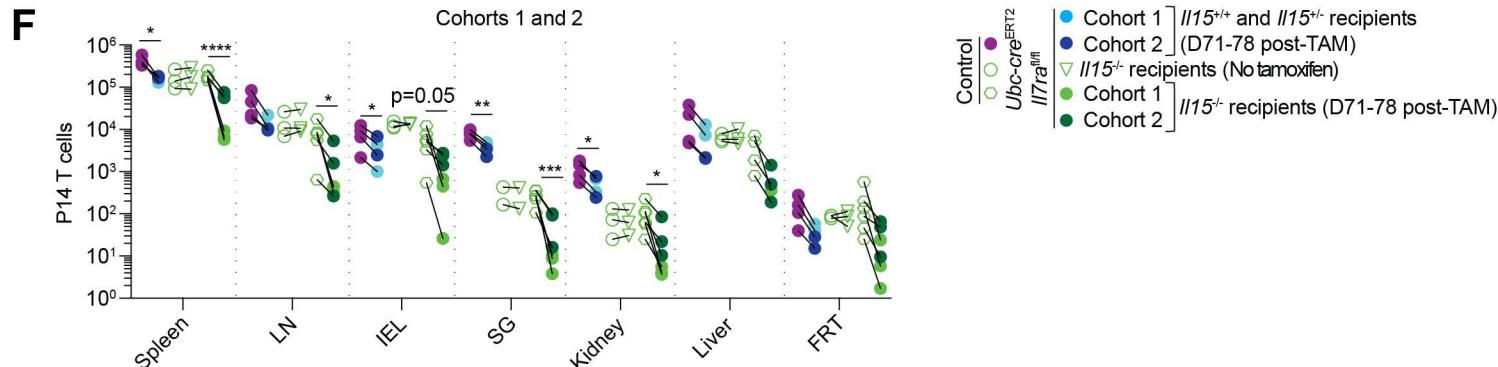
872

873

874

Figure S5

875 **Figure S5, related to Figure 5. Redundancy between IL-7 and IL-15 affords resilience to**
876 **loss of individual cytokines, part 1.**







877 (A, D, and E) As in Figure 5, congenic control (*Ubc-cre*^{ERT2} *Il7ra*^{+/+} or *Il7ra*^{fl/fl}) and *Ubc-cre*^{ERT2}
878 *Il7ra*^{fl/fl} P14 T cells were co-transferred to IL-15-sufficient (*Il15*^{+/+} and *Il15*⁺⁻) or -deficient recipients,
879 followed by LCMV-Armstrong infection one day later. After resting to memory phase (>28 days),
880 some mice were given i.p. tamoxifen for 5 consecutive days to initiate Cre-mediated
881 recombination of the floxed *Il7ra* allele and tracked over time in the blood via gp33/D^b tetramer
882 staining and congenic markers. (A) Quantitation of control memory P14 T cells from untreated
883 and tamoxifen-treated mice at D109-116 post-LCMV. (B and C) Congenic control and *Ubc-cre*^{ERT2}
884 *Il7ra*^{fl/fl} P14 T cells were co-transferred to recipients (here wildtype, but also concurrently to IL-15-
885 deficient recipients), followed by LCMV-Armstrong infection one day later. After resting to memory
886 phase (>28 days), some mice were given i.p. tamoxifen for 5 consecutive days to initiate Cre-
887 mediated recombination of the floxed *Il7ra* allele and tracked over time in the blood. Left,
888 representative flow cytometry for CD127 expression and right, quantitation of the proportion of
889 blood CD127⁺ T_{CM} P14 for (B) high efficiency Cohort 1 and (C) moderate efficiency Cohort 2. (D
890 and E) As in Fig. S5A, Cohort 1 and 2 control and *Ubc-cre*^{ERT2} *Il7ra*^{fl/fl} memory P14 T cells were
891 quantitated for (D) percent donor (of gp33/D^b tetramer-binding CD8⁺ T cells) and (E) CD127 gMFI
892 from untreated and tamoxifen-treated mice. Data are compiled from (A) 3 experiments (n=6-
893 13/group), (B,C) one experiment representative of 3-4 experiments (n=6-10/group), (D) 2
894 experiments (n=2-6/group), or (E) 1 experiment (n=2-3/group). Error is expressed as \pm S.E.M.
895 Unpaired (A) and paired Student's t tests (D, E). * p<0.05. ** p<0.01. *** p<0.001. **** p<0.0001.

896

897

898

899

A**B****C****D****E****F****Figure S6**

900 **Figure S6, related to Figure 5. Redundancy between IL-7 and IL-15 affords resilience to**
901 **loss of individual cytokines, part 2.**

902 As in Figures 5 and S5, (A-D) Cohort 2 control and *Ubc-cre*^{ERT2} *Il7ra*^{f/f} memory P14 T cells were
903 quantitated for (A) ratio, (B) proportion CD127⁺, (C) adjusted ratio of control to CD127-negative
904 *Ubc-cre*^{ERT2} *Il7ra*^{f/f} memory P14 T cells, and (D) CD127 gMFI from untreated and tamoxifen-
905 treated mice. (E) Cohort 1 and 2 control and *Ubc-cre*^{ERT2} *Il7ra*^{f/f} memory P14 T cells were
906 quantitated for CD127 gMFI from untreated and tamoxifen-treated mice. (F) Quantitation of
907 Cohort 1 and 2 control and *Ubc-cre*^{ERT2} *Il7ra*^{f/f} memory P14 T cells from untreated and tamoxifen-
908 treated mice (some data points are also shown in Fig. S5A). Data are (A-D) from 1 experiment
909 (n=1-3/group) or (E,F) compiled from 1-2 experiments (n=2-6/group). Error is expressed as ±
910 S.E.M. Unpaired (A,C) and paired Student's t tests (B,D-F). * p<0.05. ** p<0.01. *** p<0.001. ****
911 p<0.0001.

912

913

914

915

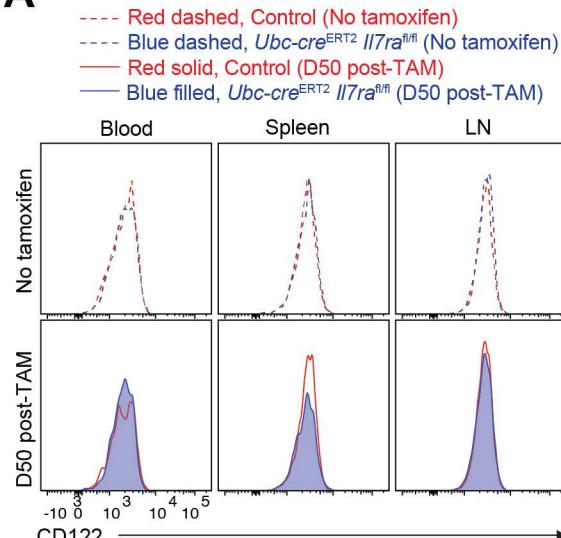
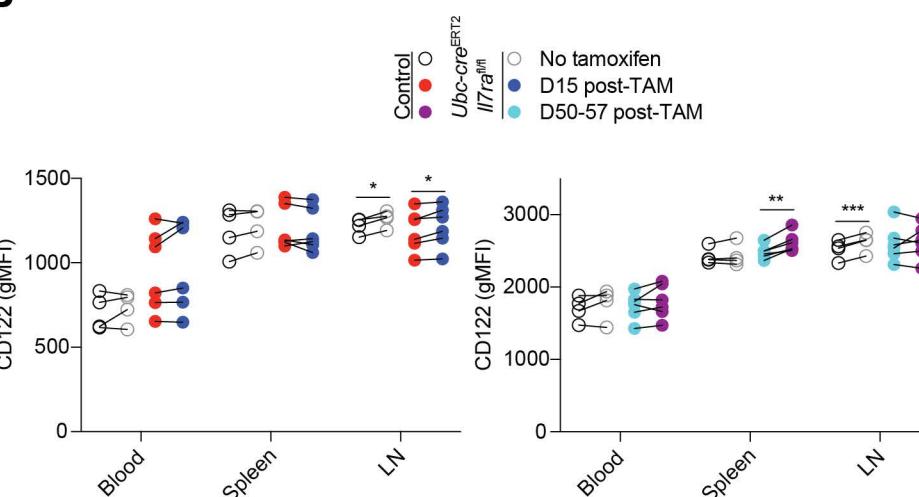
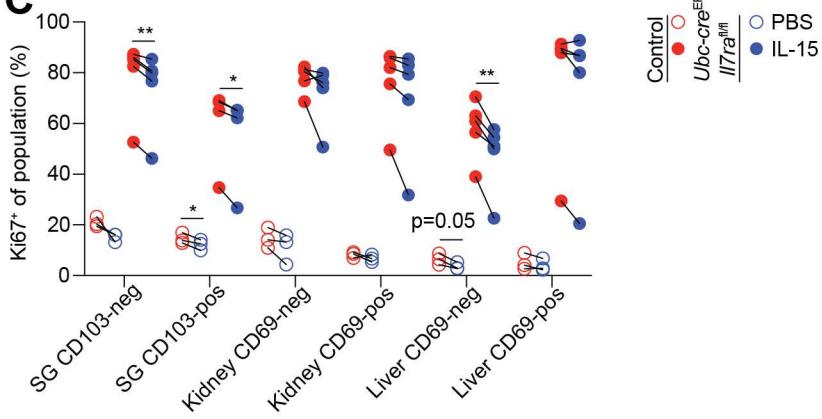
916

917

918

919

920




921

922

923

924

925

A**B****C****Figure S7**

926 **Figure S7, related to Figure 6. IL-7R α regulates responsiveness to IL-15**

927 (A and B) As in Figures 1 and 2, congenic control (*Ubc-cre*^{ERT2} *Il7ra*^{+/+} or *Il7ra*^{f/f}) and *Ubc-cre*^{ERT2}
928 *Il7ra*^{f/f} P14 T cells were co-transferred to recipients, followed by LCMV-Armstrong infection one
929 day later. After resting to memory phase (>28 days), some mice were given i.p. tamoxifen for 5
930 consecutive days to initiate Cre-mediated recombination of the floxed *Il7ra* allele. (A)
931 Representative flow cytometry for CD122 expression and (B) quantitation of CD122 gMFI as in
932 (A) for control and *Ubc-cre*^{ERT2} *Il7ra*^{f/f} P14 T cells from untreated and tamoxifen-treated recipients.
933 Left, D15 post-TAM timepoint. Right, D50-57 post-TAM timepoint. (C) As in Figure 6G-H,
934 quantitation of the proportion of Ki67-expressing NLT memory subset P14 T cells from PBS- and
935 IL-15-treated mice (all previously treated with tamoxifen). Data are (A) representative of 2
936 experiments (n=4-6/group) or (B,C) compiled from 2-3 experiments (n=4-12/group). Error is
937 expressed as \pm S.E.M. Paired Student's t tests. * p<0.05. ** p<0.01. *** p<0.001. **** p<0.0001.

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952 **REFERENCES**

953 1. Masopust, D., Vezys, V., Marzo, A.L., and Lefrancois, L. (2001). Preferential localization of
954 effector memory cells in nonlymphoid tissue. *Science* 291, 2413-2417.
955 <https://doi.org/10.1126/science.1058867>

956 2. Jameson, S.C. and Masopust, D. (2018). Understanding Subset Diversity in T Cell Memory.
957 *Immunity* 48, 214-226. <https://doi.org/10.1016/j.immuni.2018.02.010>

958 3. Masopust, D. and Soerens, A.G. (2019). Tissue-Resident T Cells and Other Resident
959 Leukocytes. *Ann. Rev. Immunol.* 37, 521-546. <https://doi.org/10.1146/annurev-immunol-042617-053214>

960 4. Steinert, E.M., Schenkel, J.M., Fraser, K.A., Beura, L.K., Manlove, L.S., Igyártó, B.Z., Southern,
961 P.J., Masopust, D. (2015). Quantifying Memory CD8 T Cells Reveals Regionalization of
962 Immunosurveillance. *Cell* 161, 737-748. <https://doi.org/10.1016/j.cell.2015.03.031>

963 5. Wijeyesinghe, S., Beura, L.K., Pierson, M.J., Stolley, J.M., Adam, O.A., Ruscher, R., Steinert,
964 E.M., Rosato, P.C., Vezys, V., Masopust, D. (2021). Expansible residence decentralizes immune
965 homeostasis. *Nature* 592, 457-462. <https://doi.org/10.1038/s41586-021-03351-3>

966 6. Mackay, L.K., Rahimpour, A., Ma, J.Z., Collins, N., Stock, A.T., Hafon, M.-L., Vega-Ramos, J.,
967 Lauzurica, P., Mueller, S.N., Stefanovic, T., et al. (2013). The developmental pathway for
968 CD103(+)CD8+ tissue-resident memory T cells of skin. *Nat. Immunol.* 14, 1294-1301.
969 <https://doi.org/10.1038/ni.2744>

970 7. Milner, J.J., Toma, C., Yu, B., Zhang, K., Omilusik, K., Phan, A.T., Wang, D., Getzler, A. J.,
971 Nguyen, T., Crotty, S., et al. (2017). Runx3 programs CD8 + T cell residency in non-lymphoid
972 tissues and tumours. *Nature* 552, 253-257. <https://doi.org/10.1038/nature24993>

973 8. Kumar, B.V., Ma, W., Miron, M., Granot, T., Guyer, R.S., Carpenter, D.J., Senda, T., Sun, X.,
974 Ho, S.-H., Lerner, H., et al. (2017). Human Tissue-Resident Memory T Cells Are Defined by Core
975 Transcriptional and Functional Signatures in Lymphoid and Mucosal Sites. *Cell Rep.* 20, 2921-
976 2934. <https://doi.org/10.1016/j.celrep.2017.08.078>

978 9. Frizzell, H., Fonseca, R., Christo, S.N., Evrard, M., Cruz-Gomez, S., Zanluqui, N.G., von
979 Scheidt, B., Freestone, D., Park, S.L., McWilliam, H.E.G., et al. (2020). Organ-specific isoform
980 selection of fatty acid-binding proteins in tissue-resident lymphocytes. *Sci. Immunol.* 5, eaay9283.
981 <https://doi.org/10.1126/sciimmunol.aay9283>

982 10. Christo, S.N., Evrard, M., Park, S.L., Gandolfo, L.C., Burn, T.N., Fonseca, R., Newman, D.M.,
983 Alexandre, Y.O., Collins, N., Zamudio, N.M., et al. (2021). Discrete tissue microenvironments
984 instruct diversity in resident memory T cell function and plasticity. *Nat. Immunol.* 22, 1140-1151.
985 <https://doi.org/10.1038/s41590-021-01004-1>

986 11. Crowl, J.T., Heeg, M., Ferry, A., Milner, J.J., Omilusik, K.D., Toma, C., He, Z., Chang, J.T., and
987 Goldrath, A.W. (2022). Tissue-resident memory CD8 + T cells possess unique transcriptional,
988 epigenetic and functional adaptations to different tissue environments. *Nat. Immunol.* 23, 1121-
989 1131. <https://doi.org/10.1038/s41590-022-01229-8>

990 12. Poon, M.M.L., Caron, D.P., Wang, Z., Wells, S.B., Chen, D., Meng, W., Szabo, P.A., Lam, N.,
991 Kubota, M., Matsumoto, R., et al. (2023). Tissue adaptation and clonal segregation of human
992 memory T cells in barrier sites. *Nat. Immunol.* 24, 309-319. [https://doi.org/10.1038/s41590-022-01395-9](https://doi.org/10.1038/s41590-022-
993 01395-9)

994 13. Gebhardt, T., Wakim, L.M., Eidsmo, L., Reading, P.C., Heath, W.R., and Carbone, F.R. (2009).
995 Memory T cells in nonlymphoid tissue that provide enhanced local immunity during infection with
996 herpes simplex virus. *Nat. Immunol.* 10, 524-530. <https://doi.org/10.1038/ni.1718>

997 14. Jiang, X., Clark, R.A., Liu, L., Wagers, A.J., Fuhlbrigge, R.C., and Kupper, T.S. (2012). Skin
998 infection generates non-migratory memory CD8+ T(RM) cells providing global skin immunity.
999 *Nature* 483, 227-231. <https://doi.org/10.1038/nature10851>

1000 15. Beura, L.K., Mitchell, J.S., Thompson, E.A., Schenkel, J.M., Mohammed, J., Wijeyesinghe,
1001 S., Fonseca, R., Burbach, B.J., Hickman, H.D., Vezys, V., et al. (2018). Intravital mucosal imaging
1002 of CD8 + resident memory T cells shows tissue-autonomous recall responses that amplify
1003 secondary memory. *Nat. Immunol.* 19, 173-182. <https://doi.org/10.1038/s41590-017-0029-3>

1004 16. Park, S.L., Zaid, A., Hor, J.L., Christo, S.N., Prier, J.E., Davies, B., Alexandre, Y.O., Gregory,
1005 J.L., Russell, T.A., Gebhardt, T., et al. (2018). Local proliferation maintains a stable pool of tissue-
1006 resident memory T cells after antiviral recall responses. *Nat. Immunol.* 19, 183-191.
1007 <https://doi.org/10.1038/s41590-017-0027-5>

1008 17. Park, S.L., Buzzai, A., Rautela, J., Hor, J.L., Hochheiser, K., Effern, M., McBain, N., Wagner,
1009 T., Edwards, J., McConville, R., et al. (2019). Tissue-resident memory CD8 + T cells promote
1010 melanoma-immune equilibrium in skin. *Nature* 565, 366-371. [https://doi.org/10.1038/s41586-019-0958-0](https://doi.org/10.1038/s41586-019-
1011 0958-0)

1012 18. Lodolce, J.P., Boone, D.L., Chai, S., Swain, R.E., Dassopoulos, T., Trettin, S., and Ma, A.
1013 (1998). IL-15 receptor maintains lymphoid homeostasis by supporting lymphocyte homing and
1014 proliferation. *Immunity* 9, 669-676. [https://doi.org/10.1016/s1074-7613\(00\)80664-0](https://doi.org/10.1016/s1074-7613(00)80664-0)

1015 19. Kennedy, M.K., Glaccum, M., Brown, S.N., Butz, E.A., Viney, J.L., Embers, M., Matsuki, N.,
1016 Charrier, K., Sedger, L., Willis, C.R., et al. (2000). Reversible defects in natural killer and memory
1017 CD8 T cell lineages in interleukin 15-deficient mice. *J. Exp. Med.* 191, 771-780.
1018 <https://doi.org/10.1084/jem.191.5.771>

1019 20. Schluns, K.S., Kieper, W.C., Jameson, S.C., and Lefrancois, L. (2000). Interleukin-7 mediates
1020 the homeostasis of naïve and memory CD8 T cells in vivo. *Nat. Immunol.* 1, 426-432.
1021 <https://doi.org/10.1038/80868>

1022 21. Becker, T.C., Wherry, E.J., Boone, D., Murali-Krishna, K., Antia, R., Ma, A., and Ahmed, R.
1023 (2002). Interleukin 15 is required for proliferative renewal of virus-specific memory CD8 T cells. *J.*
1024 *Exp. Med.* 195, 1541-1548. <https://doi.org/10.1084/jem.20020369>

1025 22. Goldrath, A.W., Sivakumar, P.V., Glaccum, M., Kennedy, M.K., Bevan, M.J., Benoist, C.,
1026 Mathis, D., and Butz, E.A. (2002). Cytokine requirements for acute and Basal homeostatic
1027 proliferation of naive and memory CD8+ T cells. *J. Exp. Med.* 195, 1515-1522.
1028 <https://doi.org/10.1084/jem.20020033>

1029 23. Judge, A.D., Zhang, X., Fujii, H., Surh, C.D., and Sprent, J. (2002). Interleukin 15 controls
1030 both proliferation and survival of a subset of memory-phenotype CD8(+) T cells. *J. Exp. Med.* **196**,
1031 935-946. <https://doi.org/10.1084/jem.20020772>

1032 24. Schluns, K.S., Williams, K., Ma, A., Zheng, X.X., and Lefrançois, L. (2002). Cutting edge:
1033 requirement for IL-15 in the generation of primary and memory antigen-specific CD8 T cells. *J.*
1034 *Immunol.* **168**, 4827-4831. <https://doi.org/10.4049/jimmunol.168.10.4827>

1035 25. Sandau, M.M., Kohlmeier, J.E., Woodland, D.L., and Jameson, S.C. (2010). IL-15 regulates
1036 both quantitative and qualitative features of the memory CD8 T cell pool. *J. Immunol.* **184**, 35-44.
1037 <https://doi.org/10.4049/jimmunol.0803355>

1038 26. Masopust, D., Vezys, V., Wherry, E.J., Barber, D.L., and Ahmed, R. (2006). Cutting edge: gut
1039 microenvironment promotes differentiation of a unique memory CD8 T cell population. *J. Immunol.*
1040 **176**, 2079-2083. <https://doi.org/10.4049/jimmunol.176.4.2079>

1041 27. Jarjour, N.N., Wanhainen, K.M., Peng, C., Gavil, N.V., Maurice, N.J., Borges da Silva, H.,
1042 Martinez, R.J., Dalzell, T.S., Huggins, M.A., Masopust, D., et al. (2022). Responsiveness to
1043 interleukin-15 therapy is shared between tissue-resident and circulating memory CD8 + T cell
1044 subsets. *Proc. Natl. Acad. Sci. U.S.A.* **119**, e2209021119.
1045 <https://doi.org/10.1073/pnas.2209021119>

1046 28. Schenkel, J.M., Fraser, K.A., Casey, K.A., Beura, L.K., Pauken, K.E., Vezys, V., and
1047 Masopust, D. (2016). IL-15-Independent Maintenance of Tissue-Resident and Boosted Effector
1048 Memory CD8 T Cells. *J. Immunol.* **196**, 3920-3926. <https://doi.org/10.4049/jimmunol.1502337>

1049 29. Verbist, K.C., Field, M.B., and Klonowski, K.D. (2011). Cutting edge: IL-15-independent
1050 maintenance of mucosally generated memory CD8 T cells. *J. Immunol.* **186**, 6667-6671.
1051 <https://doi.org/10.4049/jimmunol.1004022>

1052 30. Kaech, S.M. and Cui, W. (2012). Transcriptional control of effector and memory CD8+ T cell
1053 differentiation. *Nat. Rev. Immunol.* **12**, 749-761. <https://doi.org/10.1038/nri3307>

1054 31. Carrette, F. and Surh, C.D. (2012). IL-7 signaling and CD127 receptor regulation in the control
1055 of T cell homeostasis. *Semin. Immunol.* 24, 209-217. <https://doi.org/10.1016/j.smim.2012.04.010>

1056 32. Hashimoto, M., Im, S.J., Araki, K., and Ahmed, R. (2019). Cytokine-Mediated Regulation of
1057 CD8 T-Cell Responses During Acute and Chronic Viral Infection. *Cold Spring Harb. Perspect.*
1058 *Biol.* 11, a028464. <https://doi.org/10.1101/cshperspect.a028464>

1059 33. Kawabe, T., Yi, J., and Sprent, J. (2021). Homeostasis of Naive and Memory T Lymphocytes.
1060 *Cold Spring Harb. Perspect. Biol.* 13, a037879. <https://doi.org/10.1101/cshperspect.a037879>

1061 34. Adachi, T., Kobayashi, T., Sugihara, E., Yamada, T., Ikuta, K., Pittaluga, S., Saya, H., Amagai,
1062 M., and Nagao, K. (2015). Hair follicle-derived IL-7 and IL-15 mediate skin-resident memory T cell
1063 homeostasis and lymphoma. *Nat. Med.* 21, 1272-1279. <https://doi.org/10.1038/nm.3962>

1064 35. Buentke, E., Mathiot, A., Tolaini, M., Di Santo, J., Zamoyska, R., and Seddon, B. (2006). Do
1065 CD8 effector cells need IL-7R expression to become resting memory cells? *Blood* 108, 1949-
1066 1956. <https://doi.org/10.1182/blood-2006-04-016857>

1067 36. Kaech, S.M., Tan, J.T., Wherry, E.J., Konieczny, B.T., Surh, C.D., and Ahmed, R. (2003).
1068 Selective expression of the interleukin 7 receptor identifies effector CD8 T cells that give rise to
1069 long-lived memory cells. *Nat. Immunol.* 4, 1191-1198. <https://doi.org/10.1038/ni1009>

1070 37. Lenz, D.C., Kurz, S.K., Lemmens, E., Schoenberger, S.P., Sprent, J., Oldstone, M.B.A., and
1071 Homann, D. (2004). IL-7 regulates basal homeostatic proliferation of antiviral CD4+ T cell memory.
1072 *Proc. Natl. Acad. Sci. U.S.A.* 101, 9357-9362. <https://doi.org/10.1073/pnas.0400640101>

1073 38. Klonowski, K.D., Williams, K.J., Marzo, A.L., and Lefrançois, L. (2006). Cutting edge: IL-7-
1074 independent regulation of IL-7 receptor alpha expression and memory CD8 T cell development.
1075 *J. Immunol.* 177, 4247-4251. <https://doi.org/10.4049/jimmunol.177.7.4247>

1076 39. Carrio, R., Rolle, C.E., and Malek, T.R. (2007). Non-redundant role for IL-7R signaling for the
1077 survival of CD8+ memory T cells. *Eur. J. Immunol.* 37, 3078-3088.
1078 <https://doi.org/10.1002/eji.200737585>

1079 40. Osborne, L.C., Dhanji, S., Snow, J.W., Priatel, J.J., Ma, M.C., Miners, M.J., Teh, H.-S.,
1080 Goldsmith, M.A., and Abraham, N. (2007). Impaired CD8 T cell memory and CD4 T cell primary
1081 responses in IL-7R alpha mutant mice. *J. Exp. Med.* **204**, 619-631.
1082 <https://doi.org/10.1084/jem.20061871>

1083 41. Rubinstein, M.P., Lind, N.A., Purton, J.F., Filippou, P., Best, J.A., McGhee, P.A., Surh, C.D.,
1084 and Goldrath, A.W. (2008). IL-7 and IL-15 differentially regulate CD8+ T-cell subsets during
1085 contraction of the immune response. *Blood* **112**, 3704-3712. <https://doi.org/10.1182/blood-2008-06-160945>

1087 42. Park, J.-H., Yu, Q., Erman, B., Appelbaum, J.S., Montoya-Durango, D., Grimes, H.L., and
1088 Singer, A. (2004). Suppression of IL7Ralpha transcription by IL-7 and other prosurvival cytokines:
1089 a novel mechanism for maximizing IL-7-dependent T cell survival. *Immunity* **21**, 289-302.
1090 <https://doi.org/10.1016/j.jimmuni.2004.07.016>

1091 43. Surh, C.D. and Sprent, J. (2005). Regulation of mature T cell homeostasis. *Semin. Immunol.*
1092 **17**, 183-191. <https://doi.org/10.1016/j.smim.2005.02.007>

1093 44. Jacobs, S.R., Michalek, R.D., and Rathmell, J.C. (2010). IL-7 Is Essential for Homeostatic
1094 Control of T Cell Metabolism In Vivo. *J. Immunol.* **184**, 3461–3469.
1095 <https://doi.org/10.4049/jimmunol.0902593>

1096 45. Anderson, K.G., Mayer-Barber, K., Sung, H., Beura, L., James, B.R., Taylor, J.J., Qunaj, L.,
1097 Griffith, T.S., Vezys, V., Barber, D.L., et al. (2014). Intravascular staining for discrimination of
1098 vascular and tissue leukocytes. *Nat. Protoc.* **9**, 209-222. <https://doi.org/10.1038/nprot.2014.005>

1099 46. Grayson, J.M., Zajac, A.J., Altman, J.D., and Ahmed, R. (2000). Cutting edge: increased
1100 expression of Bcl-2 in antigen-specific memory CD8+ T cells. *J. Immunol.* **164**, 3950-3954.
1101 <https://doi.org/10.4049/jimmunol.164.8.3950>

1102 47. Williams, M.A., Tynnik, A.J., and Bevan, M.J. (2006). Interleukin-2 signals during priming are
1103 required for secondary expansion of CD8+ memory T cells. *Nature* **441**, 890-893.
1104 <https://doi.org/10.1038/nature04790>

1105 48. Kaech, S.M. and Ahmed, R. (2001). Memory CD8+ T cell differentiation: initial antigen
1106 encounter triggers a developmental program in naïve cells. *Nat. Immunol.* 2, 415-422.
1107 <https://doi.org/10.1038/87720>

1108 49. Tan, J.T., Ernst, B., Kieper, W.C., LeRoy, E., Sprent, J., and Surh, C.D. (2002). Interleukin (IL)-
1109 15 and IL-7 jointly regulate homeostatic proliferation of memory phenotype CD8+ cells but are not
1110 required for memory phenotype CD4+ cells. *J. Exp. Med.* 195, 1523-1532.
1111 <https://doi.org/10.1084/jem.20020066>

1112 50. Rubinstein, M.P., Kovar, M., Purton, J.F., Cho, J.-H., Boyman, O., Surh, C.D., and Sprent, J.
1113 (2006). Converting IL-15 to a superagonist by binding to soluble IL-15R α . *Proc. Natl. Acad. Sci. U.S.A.* 103, 9166-9171. <https://doi.org/10.1073/pnas.0600240103>

1115 51. Stoklasek, T.A., Schluns, K.S., and Lefrançois, L. (2006). Combined IL-15/IL-15R α immunotherapy maximizes IL-15 activity in vivo. *J. Immunol.* 177, 6072-6080.
1116 <https://doi.org/10.4049/jimmunol.177.9.6072>

1118 52. Boyman, O., Ramsey, C., Kim, D.M., Sprent, J., and Surh, C.D. (2008). IL-7/anti-IL-7 mAb
1119 complexes restore T cell development and induce homeostatic T Cell expansion without
1120 lymphopenia. *J. Immunol.* 180, 7265-7275. <https://doi.org/10.4049/jimmunol.180.11.7265>

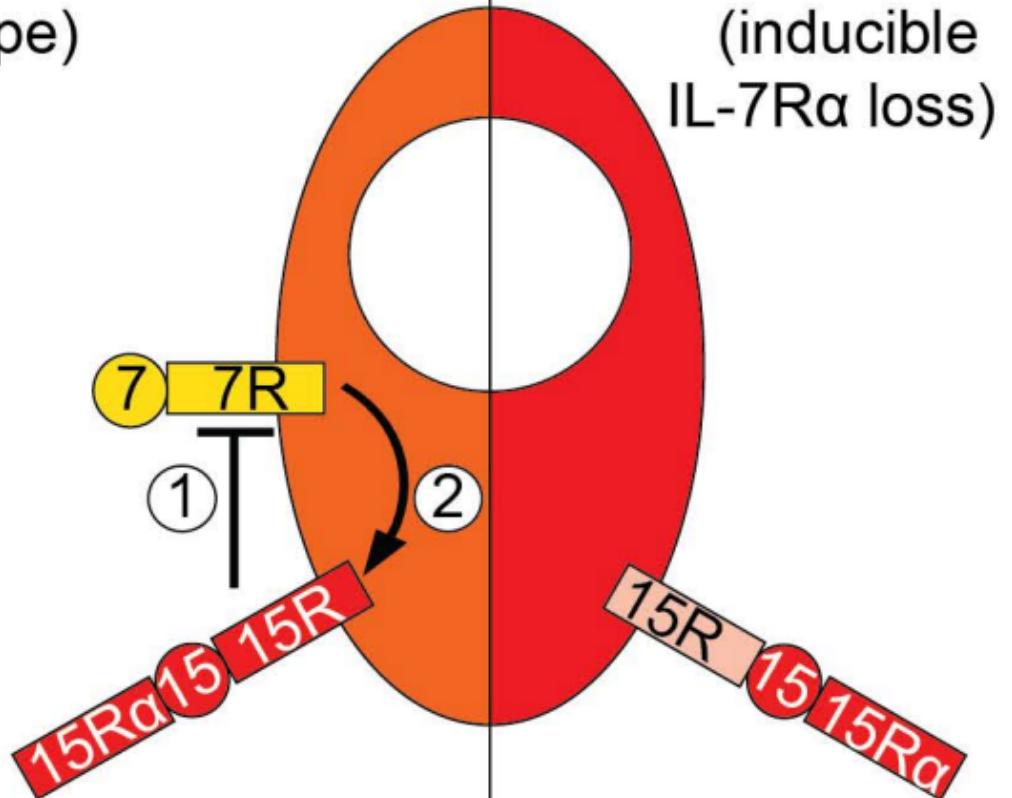
1121 53. Zhang, X., Sun, S., Hwang, I., Tough, D., and Sprent, J. (1998). Potent and selective
1122 stimulation of memory-phenotype CD8+ T cells in vivo by IL-15. *Immunity* 8, 591-599.
1123 [https://doi.org/10.1016/s1074-7613\(00\)80564-6](https://doi.org/10.1016/s1074-7613(00)80564-6)

1124 54. Link, A., Vogt, T.K., Favre, S., Britschgi, M.R., Acha-Orbea, H., Hinz, B., Cyster, J.G., and
1125 Luther, S.A. (2007). Fibroblastic reticular cells in lymph nodes regulate the homeostasis of naive
1126 T cells. *Nat. Immunol.* 8, 1255-1265. <https://doi.org/10.1038/ni1513>

1127 55. Onder, L., Narang, P., Scandella, E., Chai, Q., Iolyeva, M., Hoorweg, K., Halin, C., Richie, E.,
1128 Kaye, P., Westermann, J., et al. (2012). IL-7-producing stromal cells are critical for lymph node
1129 remodeling. *Blood* 120, 4675-4683. <https://doi.org/10.1182/blood-2012-03-416859>

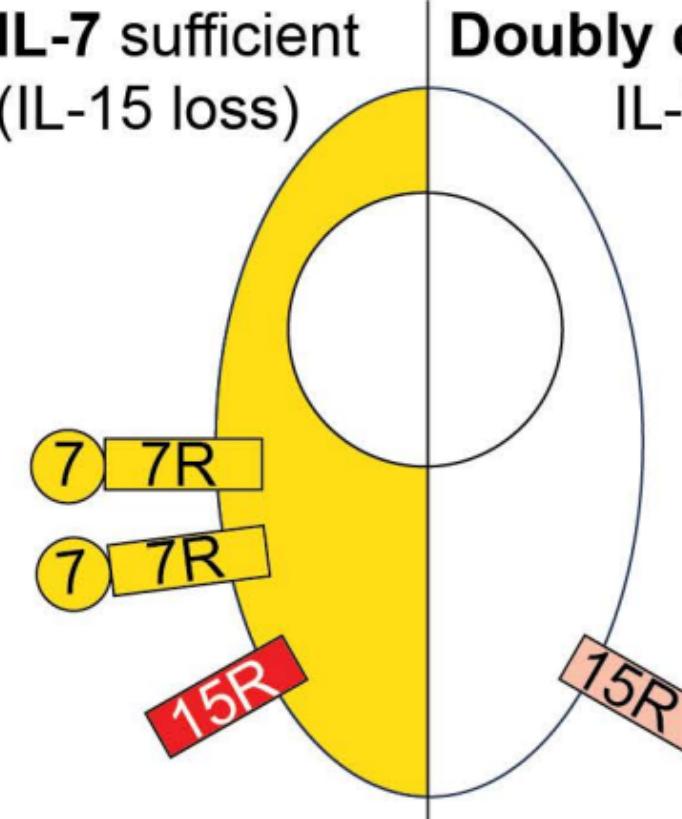
1130 56. Sheikh, A., Jackson, J., Shim, H. B., Yau, C., Seo, J. H., and Abraham, N. (2022). Selective
1131 dependence on IL-7 for antigen-specific CD8 T cell responses during airway influenza infection.
1132 Sci. Rep. 12, 135. <https://doi.org/10.1038/s41598-021-03936-y>

1133 57. Ikuta, K., Hara, T., Abe, S., Asahi, T., Takami, D., and Cui, G. (2021). The Roles of IL-7 and
1134 IL-15 in Niches for Lymphocyte Progenitors and Immune Cells in Lymphoid Organs. Curr. Top.
1135 Microbiol. Immunol. 434, 83-101. https://doi.org/10.1007/978-3-030-86016-5_4


1136 58. McCaughtry, T.M., Etzensperger, R., Alag, A., Tai, X., Kurtulus, S., Park, J.-H., Grinberg, A.,
1137 Love, P., Feigenbaum, L., Erman, B., et al. (2012). Conditional deletion of cytokine receptor chains
1138 reveals that IL-7 and IL-15 specify CD8 cytotoxic lineage fate in the thymus. J. Exp. Med. 209,
1139 2263-2276. <https://doi.org/10.1084/jem.20121505>

1140 59. Pircher, H., Mak, T.W., Lang, R., Ballhausen, W., Rüedi, E., Hengartner, H., Zinkernagel, R.
1141 M., and Bürki, K. (1987). T cell tolerance to Mlsa encoded antigens in T cell receptor V beta 8.1
1142 chain transgenic mice. EMBO J. 8, 719-727. <https://doi.org/10.1002/j.1460-2075.1989.tb03431.x>

1143 60. Heffner, C.S., Herbert, P., Babiuk, R.P., Sharma, Y., Rockwood, S.F., Donahue, L.R., Eppig,
1144 J.T., and Murray, S.A. (2012). Supporting conditional mouse mutagenesis with a comprehensive
1145 cre characterization resource. Nat. Comm. 3, 1218. <https://doi.org/10.1038/ncomms2186>


1146 61. Burrack, K.S., Huggins, M.A., Taras, E., Dougherty, P., Henzler, C.M., Yang, R., Alter, S., Jeng,
1147 E.K., Wong, H.C., Felices, M., et al. (2018). Interleukin-15 Complex Treatment Protects Mice from
1148 Cerebral Malaria by Inducing Interleukin-10-Producing Natural Killer Cells. Immunity 48, 760-772.
1149 <https://doi.org/10.1016/j.immuni.2018.03.012>

IL-7 and IL-15 sufficient
(wildtype)

Normality

IL-15 sufficient
(inducible
IL-7Ra loss)

Adaptation

IL-7 sufficient
(IL-15 loss)

Doubly deficient (inducible
IL-7Ra and IL-15 loss)

- ① IL-15 signaling reduces surface IL-7Ra levels
- ② IL-7Ra supports IL-15 responsiveness

Loss

Key resources table

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Antibodies		
Anti-mIL-7 antibody (M25)	BioXCell	BE0048, RRID:AB_1107711
FITC anti-CD45.1 (A20)	BioLegend	110706, RRID:AB_313494
PE anti-CD45.1 (A20)	BioLegend	110708, RRID:AB_313497
violetFluor450 anti-CD45.1 (A20)	Tonbo	75-0453-U100, RRID:AB_2621949
BUV737 anti-CD45.1 (A20)	BD	565212, RRID:AB_2722493
FITC anti-CD45.2 (104)	Tonbo	35-0454-U500, RRID:AB_2621692
PE anti-CD45.2 (104)	Tonbo	50-0454-U100, RRID:AB_2621766
BUV737 anti-CD45.2 (104)	BD	612778, RRID:AB_2870107
PerCP/Cy5.5 anti-CD8 α (53-6.7) i.v. labelling	Tonbo	65-0081-U100, RRID:AB_2621882
PE/Cy7 anti-CD8 α (53-6.7)	Tonbo	60-0081-U100, RRID:AB_2621832
BV786 anti-CD8 α (53-6.7)	BD	563332, RRID:AB_2721167
BUV395 anti-CD8 α (53-6.7)	BD	563786, RRID:AB_2732919
PE anti-CD122 (TM- β 1)	BD, BioLegend	553362 (RRID:AB_394809), 123210 (RRID:AB_940615)
BV510 anti-CD44 (IM7)	BD	563114, RRID:AB_2738011
redFluor710 anti-CD44 (IM7)	Tonbo	80-0441-U100, RRID:AB_2621985
BV510 anti-CD103 (M290)	BD	563087, RRID:AB_2721775
BV421 anti-CD69 (H1.2F3)	BioLegend	104528, RRID:AB_10900250
BV421 anti-CD127 (A7R34)	BioLegend	135024, RRID:AB_10897948
BUV737 anti-CD127 (A7R34)	BD	612841, RRID:AB_2870163
BV605 anti-TCR β (H57-597)	BD	562840, RRID:AB_2687544
BV786 anti-CD62L (MEL-14)	BD	564109, RRID:AB_2738598
BV711 anti-KLRG1 (2F1)	BD	564014, RRID:AB_2738542
FITC anti-Bcl2 (10C4)	Thermo Fisher Scientific	11-6992-42, RRID:AB_10734060
PE anti-Granzyme B (GB11)	Thermo Fisher Scientific	GRB04 RRID:AB_2536538

APC anti-BrdU (Bu20a)	Thermo Fisher Scientific	17-5071-42, RRID:AB_11040534
APC anti-Ki67 (SolA15)	Thermo Fisher Scientific	17-5698-82, RRID:AB_2688057
Mouse Fc block	BD	553142, RRID:AB_394657
Bacterial and virus strains		
Lymphocytic choriomeningitis virus-Armstrong	Rafi Ahmed, Emory	NA
Listeria monocytogenes-gp33	Rafi Ahmed, Emory	Generated by Dr. Hao Shen (UPenn) first reported PMID: 11323695
Chemicals, peptides, and recombinant proteins		
Collagenase I	Worthington Biochemical	LS004197
Collagenase IV	Thermo Fisher Scientific	17104019
Dithioerythritol	EMD Millipore	233152
Percoll	GE Healthcare	17-0891-09
Mouse Interleukin 7	Shenandoah Biotechnologies	200-03AF
Mouse Interleukin 15	BioLegend	566304
Mouse Interleukin 15	Tonbo	21-8153-U500
IL-15R α -Fc chimera	R&D Systems	551-MR
5-Bromo-2'-deoxyuridine	Sigma Aldrich	B5002
gp33/D ^b monomer (H-2D ^b KAVYNFATM)	NIH Tetramer Core	NA
gp276/D ^b monomer (H-2D ^b SGVENPGGYCL)	NIH Tetramer Core	NA
NP296/D ^b monomer (H-2D ^b FQPQNGQFI)	NIH Tetramer Core	NA
Polymyxin B sulfate salt	Sigma Aldrich	P4932
Neomycin trisulfate salt hydrate	Sigma Aldrich	N6386
Tamoxifen	Sigma Aldrich	T5648
Corn oil	Sigma Aldrich	C8267
Sucrose	Sigma Aldrich	S1888
RPMI 1640	Corning	10-040-CV
10x HBSS	Corning	20-020-CF
FBS	Atlas Biologicals	FS-0050-AD
DNase I	Sigma Aldrich	D5025
Normal Rat Serum	Stem Cell Technologies	13551
Critical commercial assays		
CD8a+ T cell isolation kit	Miltenyi Biotec	130-104-075
Cytofix/Cytoperm Fixation/Permeabilization Solution Kit	BD	554714
FoxP3/Transcription Factor Staining Buffer Kit	Tonbo	TNB-0607-KIT
Experimental models: Organisms/strains		
Mouse: C57BL/6J	Jackson Laboratories	000664 RRID:IMSR_JAX:000664
Mouse: C57BL/6J- <i>Ptprc</i> ^{em6Lutzy} /J	Jackson Laboratories	033076 RRID:IMSR_JAX:033076

Mouse: NCI C57BL/6NCr	Charles River	556
Mouse: NCI B6-Ly5.1/Cr	Charles River	564, RRID:IMSR_CRL:564
Mouse: <i>Il7tm1.1Asin</i> /J	McCaughtry et al/Jackson Laboratories	022143 RRID:IMSR_JAX:022143
Mouse: <i>Il15tm1lmx</i>	Kennedy et al/David Masopust, Minnesota	RRID:MGI:3590155
Mouse: P14 TCR transgenic	Pircher et al/Rafi Ahmed, Emory	NA
Mouse: B6.Cg- <i>Ndor1</i> ^{Tg(UBC-cre/ERT2)1Ejb} /1J	Jackson Laboratories	007001 RRID:IMSR_JAX:007001
Software and algorithms		
Prism v9.5.0	Graphpad	RRID:SCR_002798
Illustrator 2023 27.2	Adobe	RRID:SCR_010279
Flowjo v10.8.2	Treestar/BD	RRID:SCR_008520
BD FACSDiva	BD	RRID:SCR_001456
Other		
Ghost Dye Red e780	Tonbo	13-0865-T500
R-PE-streptavidin	Thermo Fisher Scientific	S21388
PE/Cy7-streptavidin	Thermo Fisher Scientific	25-4317-82
LS columns	Miltenyi Biotec	130-042-401
QuadroMACS Separator	Miltenyi Biotec	130-091-051
GentleMACS Dissociator	Miltenyi Biotec	130-093-235, RRID:SCR_020267
GentleMACS C Tubes	Miltenyi Biotec	130-093-237, RRID:SCR_020270
RS 2000 irradiator	Rad Source	
Variomag Poly 15	Thermo Fisher Scientific	50094595
CountBright Plus counting beads	Invitrogen	C36995