

1 An implantable biohybrid nerve model towards synaptic deep brain 2 stimulation

3
4 Léo Siffringer, Alex Fratzl, Blandine F. Clément, Parth Chansoria, Leah S. Mönkemöller, Jens Duru, Stephan
5 J. Ihle, Simon Steffens, Anna Beltraminelli, Eylul Ceylan, Julian Hengsteler, Benedikt Maurer, Sean M. Weaver,
6 Christina M. Tringides, Katarina Vulić, Srinivas Madduri, Marcy Zenobi-Wong, Botond Roska, János Vörös and
7 Tobias Ruff

9 **Abstract**

10 Restoring functional vision in blind patients lacking a healthy optic nerve requires bypassing retinal circuits,
11 ideally, by directly stimulating the visual thalamus. However, available deep brain stimulation electrodes do
12 not provide the resolution required for vision restoration. We developed an implantable biohybrid nerve model
13 designed for synaptic stimulation of deep brain targets. The interface combines a stretchable stimulation array
14 with an aligned microfluidic axon guidance system seeded with neural spheroids to facilitate the development
15 of a 3 mm long nerve-like structure. A biodegradable hydrogel nerve conduit was used as a bridge between the
16 tissue and the biohybrid implant. We demonstrated stimulation of spheroids within the biohybrid structure *in*
17 *vitro* and used high-density CMOS microelectrode arrays to show faithful activity conduction across the device.
18 Finally, implantation of the biohybrid nerve onto the mouse cortex showed that neural spheroids grow axons *in*
19 *vivo* and remain functionally active for more than 22 days post-implantation.

20 **Main**

21 The ability to regrow sensory nerves to the original destinations in the adult mammalian brain is restricted [1] due to
22 the growth-inhibitory environment of the extracellular matrix in the central nervous system, which prevents axonal
23 regeneration [2, 3]. Optogenetic [4, 5, 6], electrical [7, 8], ultrasound [9] and transcranial magnetic stimulation
24 techniques [10] have been developed to stimulate denervated brain regions. For sensory restoration applications,
25 stimulation interfaces primarily target the cortex due to its easy accessibility. However, the scale of the neural
26 ensembles and the complexity of processing in the cortex has hindered attempts at sensory restoration using cortex
27 mounted electrodes [11, 12]. Stimulating the primary target regions of sensory organs could lead to a more natural
28 perception of the information, since the higher level sensory processing performed in the cortex is maintained [13,
29 14]. Targeting these regions is not without challenges: (1) they are often located in deep brain regions making
30 access difficult and (2) the dense packing of neurons necessitates high specificity for stimulation targets. [15].
31 Commercially available deep brain electrodes have up to 8 electrodes that each stimulate a cubic millimeter of
32 neural tissue including thousands of neurons [16] and axons. Miniaturization of the electrodes combined with
33 improved stimulation protocols have increased the specificity to ~10 neurons [8]; nevertheless, electrode alignment
34 [17], lack of cell specificity [18, 19, 20, 21], and the immune response [22] limit the feasibility of this technology for
35 long term sensory neurorehabilitation.

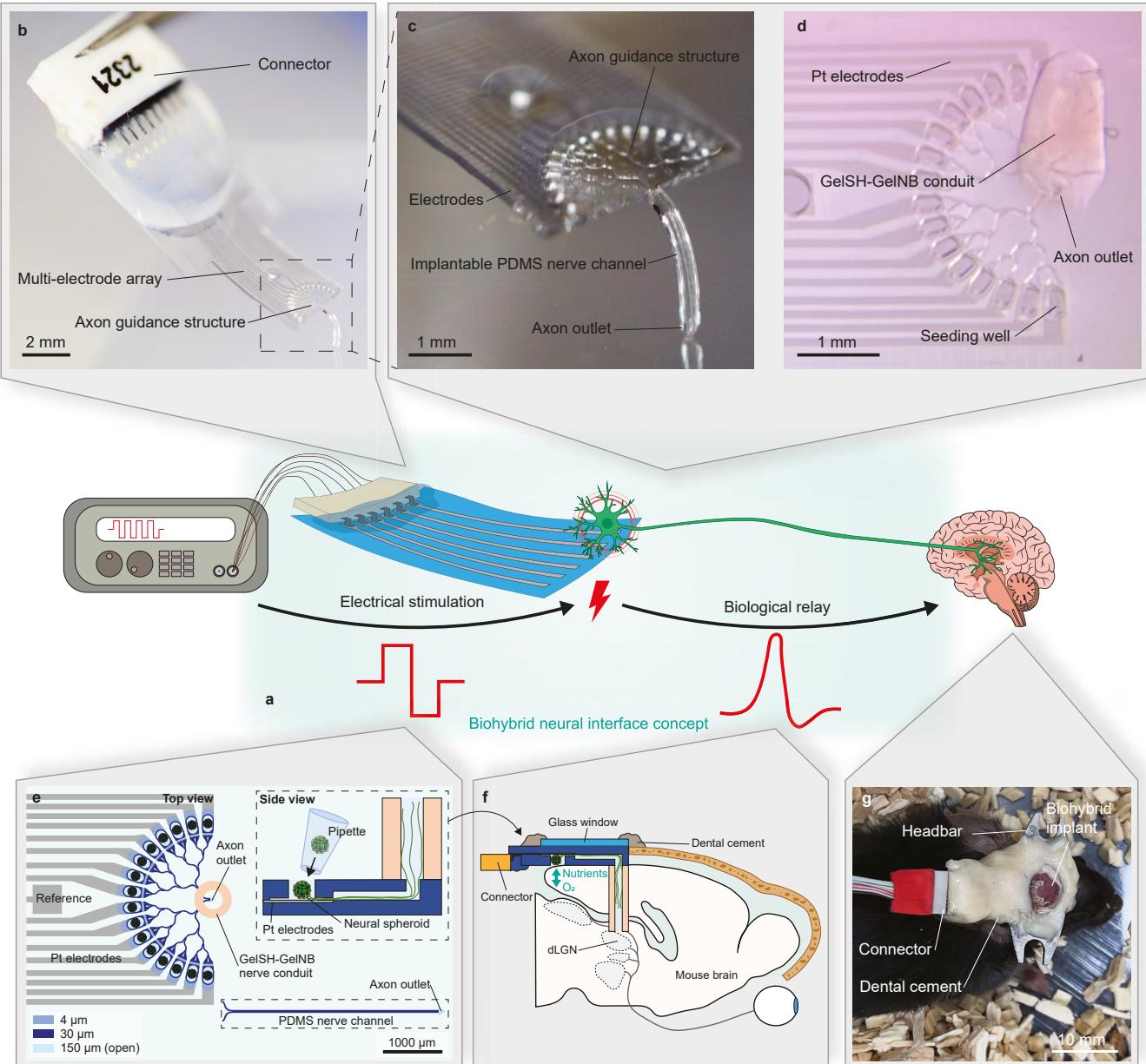
36 Biohybrid approaches, in which living cells integrated with stimulation electrodes are grafted into the tissue,
37 have been proposed to overcome these challenges[23, 24, 25, 26, 27, 28]. While allogeneic and xenogeneic trans-
38 plantations of neurons and organoids into adult brains have functionally integrated new neurons into developed
39 neural networks[29, 30], neural implants have yet to leverage this for improving biocompatibility, cell specificity and
40 stimulation resolution. In this work, we present an implantable biohybrid nerve model targeting deep brain synaptic
41 stimulation (Fig. 1 a). A polydimethylsiloxane (PDMS) axon guidance structure containing spheroids of neurons
42 is integrated with a stretchable stimulation array to enable isolated stimulation of individual units of neurons and
43 the formation of a more than 3 mm long artificial nerve-like fascicle. The axons are led into deep brain regions
44 by a gelatin-based conduit. Besides demonstrating the full functionality of the biohybrid implant *in vitro*, we also
45 show the feasibility of implantation and the survival and axonal growth of neurons in the hybrid implant *in vivo*.
46 As an outlook, specific recommendations for future studies to achieve axonal integration and synaptic stimulation
47 for fully functional biohybrid stimulation electrodes are discussed.

48 1 Results

49 1.1 Concept of an implantable biohybrid nerve model

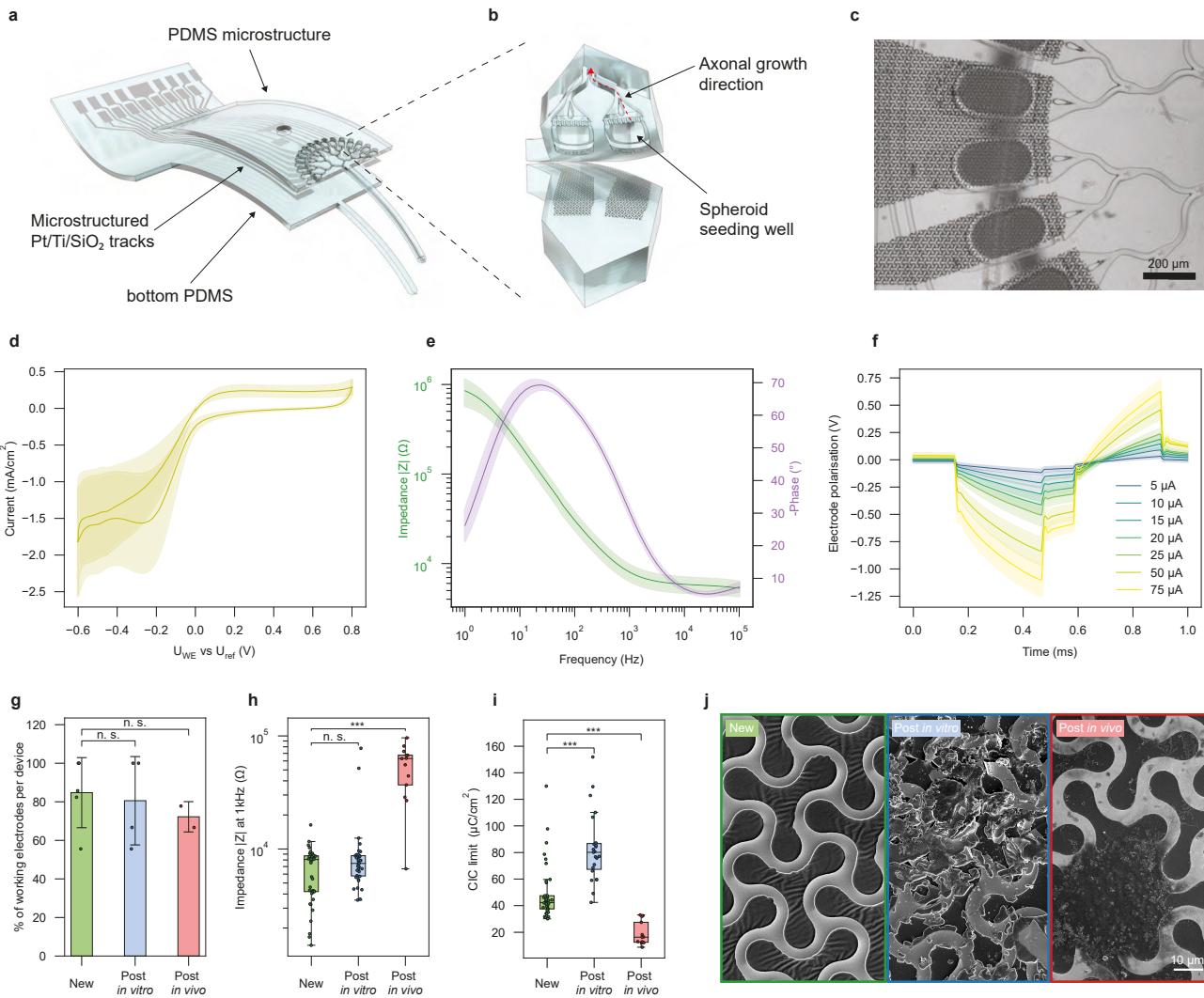
50 The biohybrid device consists of a stretchable PDMS-based platinum multielectrode array, a plasma bonded axon
51 guidance microstructure, and an omnics connector for interfacing with external electronics (Fig.1a). The guidance
52 structure contains 16 isolated neural seeding wells enabling stimulation of individual neural units while converging
53 all axons into a common nerve-forming structure that can be implanted and directed towards the targeted deep brain
54 region. We developed two implantable biohybrid nerve models: In the first model, a 3 mm long PDMS nerve channel
55 enables the formation of the artificial nerve-like structure (Fig.1b,d). In the second model, a UV-crosslinkable and
56 bioresorbable GelSH-GelNB hydrogel conduit replaces the PDMS nerve channel for increased biocompatibility to
57 converge and direct axons towards their target region (Fig.1c,d).

58 Prior to implantation, neural spheroids are placed in each of the 16, 150 μm deep, seeding wells (Fig.1d). The
59 biohybrid implant is flipped upside down onto the craniotomized cortical surface such that the neural spheroids
60 receive nutrients and oxygen directly from the brain (Fig.1d,e). Neurons in the implant can grow axons along the
61 microfluidic guidance system towards a target structure in the brain (Fig.1e). In our initial *in vivo* experiments
62 the implant is fixed onto the mouse brain together with a metal headbar for 2-photon imaging. For electrical
63 stimulation, the implant is connected to external stimulation electronics via a multichannel omnics connector
64 (Fig.1f).


66 1.2 Fabrication and characterization of the biohybrid MEA

67 The implant has 3 layers: a PDMS substrate, microstructured tracks and electrodes, and a PDMS microstructure
68 for electrical insulation and axonal guidance (Fig.2a, Extended Data Fig.E1). The tracks consist of a stack of
69 $\text{SiO}_2/\text{Ti}/\text{Pt}$ transferred on the PDMS substrate using template stripping transfer printing [31]. The tracks and
70 electrodes have a specific meander shape on the micrometer scale [32] to improve mechanical compliance (Supple-
71 mentary Fig.S1). The PDMS microstructure covers the electrode tracks up to the electrode sites assuring electric
72 insulation. Seeding wells sit on top of the electrode with axon guidance channels leading to the nerve channel
73 (Fig.2b). The microstructuring of the electrode enables functional calcium imaging of the underlying spheroids
74 (Fig.2c).

75 The electrochemical performance of the electrodes was assessed in phosphate-buffered saline solution (PBS) (see
76 Methods). Cyclic voltammetry (CV) was performed between -0.6 and +0.8 V (electrochemical window of Pt in PBS
77 against Ag / AgCl [33]) (Fig.2d). According to electrochemical impedance spectroscopy (EIS) the microelectrodes
78 exhibited an impedance of $8 \pm 1.9 \text{ k}\Omega$ ($n = 13$) at 1kHz. The current injection performance of the electrodes
79 was evaluated by injecting cathodic-first rectangular, biphasic current pulses (300 μs per phase, 100 μs interphase
80 delay). The current was then ramped up until the electrode polarization (removing the ohmic drop) surpassed the
81 electrochemical window, which happens between the injection of 50 and 75 μA (Fig.2d). This corresponds to a
82 charge injection capacity (CIC) of $50 \pm 14 \mu\text{C}/\text{cm}^2$ ($n = 13$). Next, we investigated the effect of seeding neural
83 spheroids on the electrodes. We compared the electrochemical performance of *in vitro* (neurobasal media at 37 °C
84 for 34 days) and *in vivo* (implanted into the mouse brain for 36 days) aged implants with new devices (Fig.2g-
85 j). The number of working electrodes (impedance at 1kHz $< 100 \text{ k}\Omega$) remained unchanged for all aging groups.
86 However, the impedance of the explanted electrodes has increased significantly (Fig.2h). In addition, the charge
87 injection capacity (CIC) surprisingly increased significantly during *in vitro* aging but showed the expected decrease
88 after *in vivo* implantation compared to new implants (Fig.2i). Taken together, these results suggests that although
89 the expected biofouling happens during implantation the resulting electrical properties of the electrodes remain
90 within the suitable range for the proposed stimulation. We imaged a sample from each condition in a scanning
91 electron microscope (SEM) to investigate the underlying cause (Fig. 2j). Some debris are visible on the surface of
92 the electrodes aged *in vitro*. The origin of the debris is unknown, but we hypothesize that it is coming from the
93 spheroids that were seeded on the electrodes. The post *in vivo* sample also shows contamination on the surface of
94 the electrodes. It is unclear whether this is coming from the spheroids in the device or the host animal.


95 1.3 Axon growth within the implantable biohybrid nerve model

96 The biohybrid concept requires that axons (1) grow towards the nerve channel and (2) avoid turning back or growing
97 into neighboring seeding wells. This we achieved by introducing specific geometric features into the microstructure.
98 In timelapse movies we tracked growth cones of growing axons using a convolutional neural network and analysed
99 how the critical parameters (*e.g.* channel width, number of loops redirecting axons, *etc.*) affect axonal growth
100 speed and growth directionality (Supplementary Fig.S3,S4), resulting in the axon guidance layout shown in Fig.3a
101 and Supplementary Fig.S5. Each of the 16 seeding wells contains 1-2 800-neuron spheroids. Neuronal spheroids
102 extend axons through an axon filter consisting of $10 \times 10 \times 4 \mu\text{m}$ small channels that prevent neural cell bodies from

Fig. 1: Concept and implementation of the implantable biohybrid nerve model a: The implantable biohybrid nerve model with a PDMS based nerve channel. b: Magnification of the biohybrid axon guidance structure that is implanted on the cortex. The flexible PDMS nerve channel can be implanted into the brain to target the visual thalamus. c: Biohybrid implant in which the PDMS channel has been replaced with a GelSH-GelNB hydrogel conduit. d: Schematic of the biohybrid implant. The microfluidic axon guidance structure is aligned on top of the Pt-based microelectrode array and seeded with neural spheroids. The implantable nerve channel is made of PDMS with an axon outlet at the end or consists of a GelSH-GelNB based hydrogel conduit vertically fabricated on top of the axon outlet. Neural spheroids are seeded into each of the 16 seeding wells to grow axons towards the nerve channel. e: The biohybrid implant is flipped around and implanted onto the cortical surface of a craniotomized mouse brain. The PDMS or hydrogel nerve channel is directed towards the lateral geniculate nucleus (LGN). f: The implant is fixed onto the mouse head using a glass window and dental cement. A headbar enables subsequent mounting on a 2-Photon microscope for imaging. During stimulation experiments the implant is connected through an omnics connector.

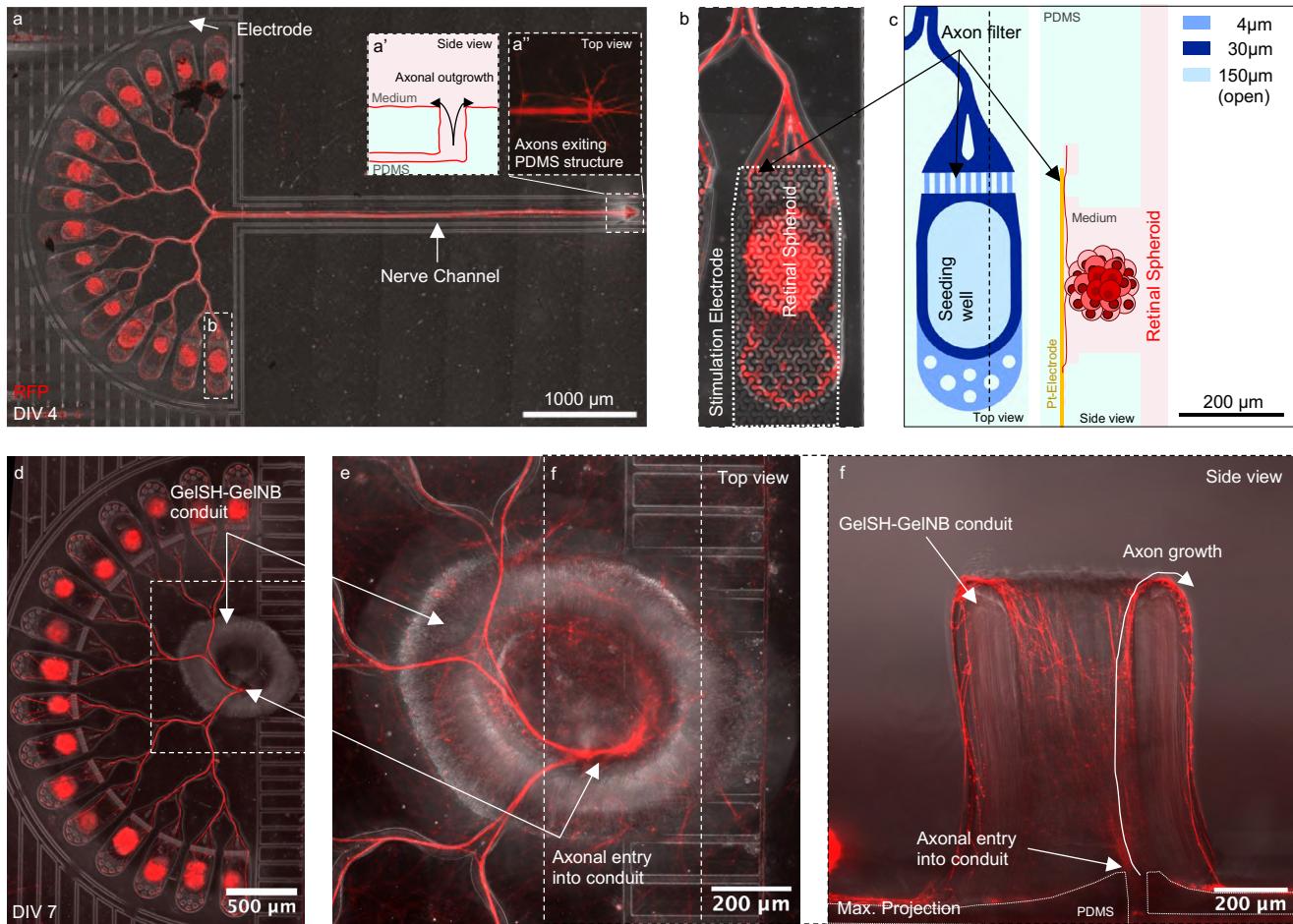

103 entering the channel system (Fig.3b,c and Supplementary Fig.S5c,d). The axons entering the channel systems are
 104 directionally merged (Supplementary Fig.S5e-h and Supplementary Movie 1) towards a nerve channel. At the end
 105 of the nerve channel, a triangular axon outlet facilitates axonal outgrowth for potential target innervation (Fig.3a
 106 and Supplementary Fig.S5i,j). Time-lapse recordings showed that axons enter the nerve channel in less than 16 h
 107 and reach the end of the 3.6 mm long nerve channel 44 h after seeding the retinal spheroids (Supplementary Fig.S8

Fig. 2: Microfabrication and electrochemical characterization of the biohybrid implant a: Exploded view of the biohybrid device, comprised of 3 layers: a PDMS substrate, a multielectrode array, and a PDMS microstructure. b: Zoom-in on a seeding well area with the underlying microstructured electrodes. The axons of the spheroids seeded in the well area can grow along the microchannels (red arrow). c: Detailed micrograph of the electrodes, seeding wells and axonal guidance channels. d: Cyclic voltammetry (CV) of microelectrodes at 200 mV/s ($n = 13$ electrodes), exhibiting the electrochemical window between -0.6 and 0.8 V. e: Electrical impedance spectroscopy (EIS) of microelectrodes after microfabrication (before spheroids seeding), showing the module (green line) and phase (purple line) of the impedance versus frequency. $n = 13$ electrodes. f: Voltage response of microelectrodes to current-controlled biphasic pulses of 300 μ s per phase with a 100 μ s delay between phases. $n = 13$ electrodes, for every electrode and every current step 10 pulses were acquired and averaged. g: Comparison of the percentage of electrodes working in different conditions. New: devices after fabrication, *In vitro*: devices aged *in vitro* for 34 days. The devices were used once or twice for *in vitro* stimulation experiments. *Ex vivo*: devices measured when explanted after 36 days *in vivo*. (P = 0.16 and P = 0.5 for New vs *in vitro* and *ex vivo* respectively) h: Comparison of the electrode impedance at 1kHz in different conditions. (P = 0.16 and P = 4.4e-7 for New vs. *in vitro* and *ex vivo* respectively) i: Comparison of the charge injection capacity (CIC) of electrodes in different conditions. (P = 1.5e-7 and P = 1.4e-7 for New vs *In vitro* and *Ex vivo* respectively) j: SEM images comparing the electrode surface at different aging stages. Left: sample after fabrication, middle: sample after aging *in vitro*, right: sample after aging *in vivo*. In d, e, and f data are mean (solid lines) \pm standard deviation (shaded area). In h, data is mean (bars) and standard deviation (error bars). In boxplots, the median, quartile box and minimum and maximum values (excluding outliers) are shown. The significance was tested using a Mann-Whitney U test. The difference between two groups is considered significant if the P-value < 0.05, and *** denotes P < 0.001.

108 and Supplementary Movie 1). Focused ion beam scanning electron microscopy (FIB-SEM) of the artificial nerve-like
 109 structure and subsequent segmentation showed that the axons form a bundle of up to 1200 axons (Supplementary
 110 Fig.S10).

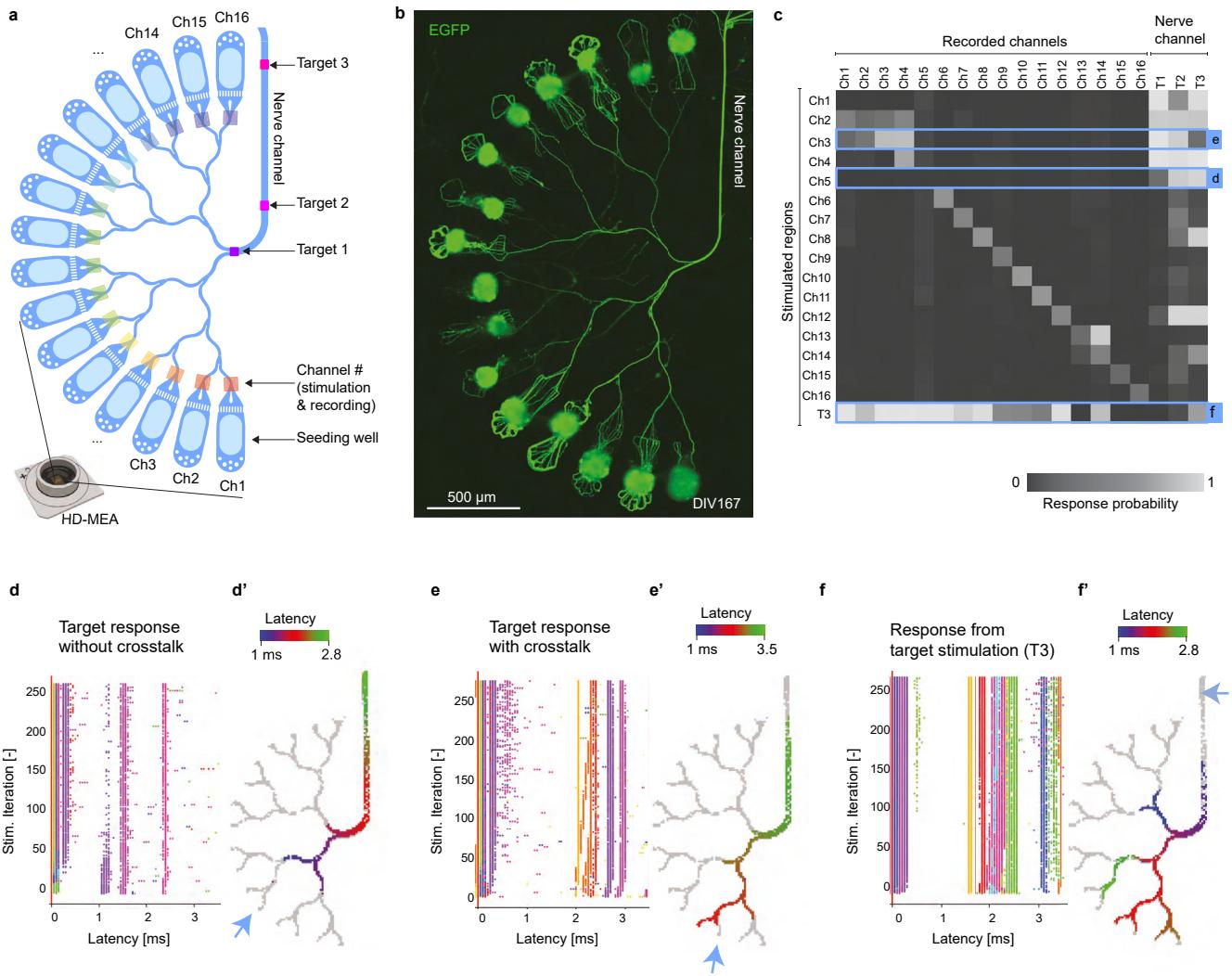
111
 112 Integration of the guided axons from the implant to the underlying tissue was achieved using a bioresorbable
 113 hydrogel [34, 35] conduit that would enable temporary guidance to the target region in the host brain followed
 114 by integration into the host tissue. Using UV-curable gel-SH gel-NB we built hydrogel conduits of about 300 μm
 115 inner diameter onto the axon outlet of the implant (Fig.4d and Supplementary Fig.S9) [36]. After 7 days, axons
 116 transited into the conduit and grew along the inside wall of the conduit (Fig.4e,f and Supplementary Fig.S13).
 117 Lateral force applied to the conduit shows that the bond to PDMS is strong enough to withstand the *in vivo*
 118 implantation procedure (Supplementary Movie 3 and Supplementary Fig.S9). Matrigel filled glass (Supplementary
 119 Fig.S11) or collagen conduits (Supplementary Fig.S12 and Supplementary Movie 2) could also serve as alternative
 120 axon-guidance structures.

Fig. 3: Axon growth within the biohybrid nerve model a: Retinal spheroids grow axons through the matrigel-coated axon guidance structure to form a nerve-like structure within 3.5 days after seeding. The triangular shape favors axonal outgrowth over axon re-entry into the channel. a': Side view of the axon outlet at the end of the nerve channel. The triangular shape favors axonal outgrowth over axon re-entry into the channel. a'': Retinal axons exit the nerve channel at the axon outlet at the end of the channel. b: One of the 16 seeding wells with an underlying electrode. Neural somata are prevented from entering the channel by an axon filter which consists of 9, 4x10 μm small channels. c: Top and side view schematic of the seeding well. Retinal spheroids are manually seeded into each seeding well. d: Biohybrid implant in which the PDMS channel was replaced by a GelSH-GelNB nerve conduit directly fabricated onto the axon outlet. e: Magnification top view of the hydrogel conduit. f: Side view maximum projection of the hydrogel conduit to illustrate how axons exit the PDMS microstructure and grow up along and out of the conduit. Once they have reached the top of the conduit, the axons continued to grow along the outside walls of the conduit as there is no target structure *in vitro*.

121 1.4 Spike propagation within the biohybrid microstructure

122 Stimulation-induced action potential spikes need to reach their target and should not propagate into neighbouring
123 stimulating channels (crosstalk). We used high-density CMOS-based MEAs (HD-MEAs) to verify that the spheroids
124 in the guidance structures can be reliably and selectively stimulated without cross-stimulation from other source
125 channels. For these experiments, the microstructure with the nerve-forming channel was laid flat onto the sensing
126 area of the HD-MEA (Fig.4a). The impedance map [37] confirmed proper adhesion onto the CMOS electrodes
127 (Extended Data Fig. E2a) and confined axonal growth within the axon guidance microstructure for up to 167 days
128 (Fig.4b). Spontaneous activity recordings confirmed active and healthy cultures up to DIV110 (Extended Data
129 Fig.4b). We assessed stimulation-induced spike propagation within the biohybrid structure by repeatedly (250×)
130 stimulating the axons at each of the 16 source channels and recording the corresponding elicited action potential
131 events within the following 3.5 ms at both the source channels and at defined locations along the nerve channel
132 (Fig.4d, e, f). The location of the recorded spikes was color coded according to Fig.4a. We can distinguish 3 different
133 signal propagation trends: (1) Stimulation-induced spikes propagate from the stimulated source channel towards the
134 end of the nerve channel without entering any other source channel (no crosstalk) (Fig. 4d' and supplementary movie
135 4). (2) Spikes reach the target channel but also enter into a neighbouring source channel (Fig.4e' and supplementary
136 movie 5) or (3) only propagate into another source channel without reaching the target channel thereby causing
137 crosstalk between the source channels (Extended Data Fig.E2d). We stimulated the nerve at location "Target 3"
138 to confirm results from individual channel stimulations (Fig.4a) and observed that spikes travelled into 13 out of
139 16 source channels (Fig.4c, f, f' and supplementary movie 6). In summary, 7 out of 16 stimulated channels could
140 elicit a response in the target nerve channel including crosstalk at DIV110 (Fig.4c). Stimulations of two biological
141 replicates at DIV 27 showed a target response including crosstalk from a lower number of source channels (1/16
142 and 6/16) (Extended Data Fig.E2c, c').

143 1.5 *In vitro* stimulation of the implantable nerve model


144 Next, we stimulated the seeded spheroids on our soft, implantable microelectrode array. A PDMS well for culture
145 media was glued around the microstructure (Fig.5a). Neural activity of spheroids in the implant (Fig.5b) was
146 measured by functional Calcium imaging (Extended Data Fig.E3a). Electrical stimulation of working electrodes (2
147 V peak to peak, 200 Hz, parameters based on prior *in vitro* experiments [38]) resulted in a consistent calcium response
148 (Fig.5c,d and Extended Data Fig.E3f,g-j). Stimulated GCaMP fluorescence propagated along the main branch (blue
149 traces 2-4) but did not show any detectable signal in the side branches (red traces 5-6) or the neighbouring seeding
150 wells (red traces 7-8) (Fig.5c). Neural activity could be induced in up to 50 % of the seeding wells using the tested
151 implants (Extended Data Fig.E3).

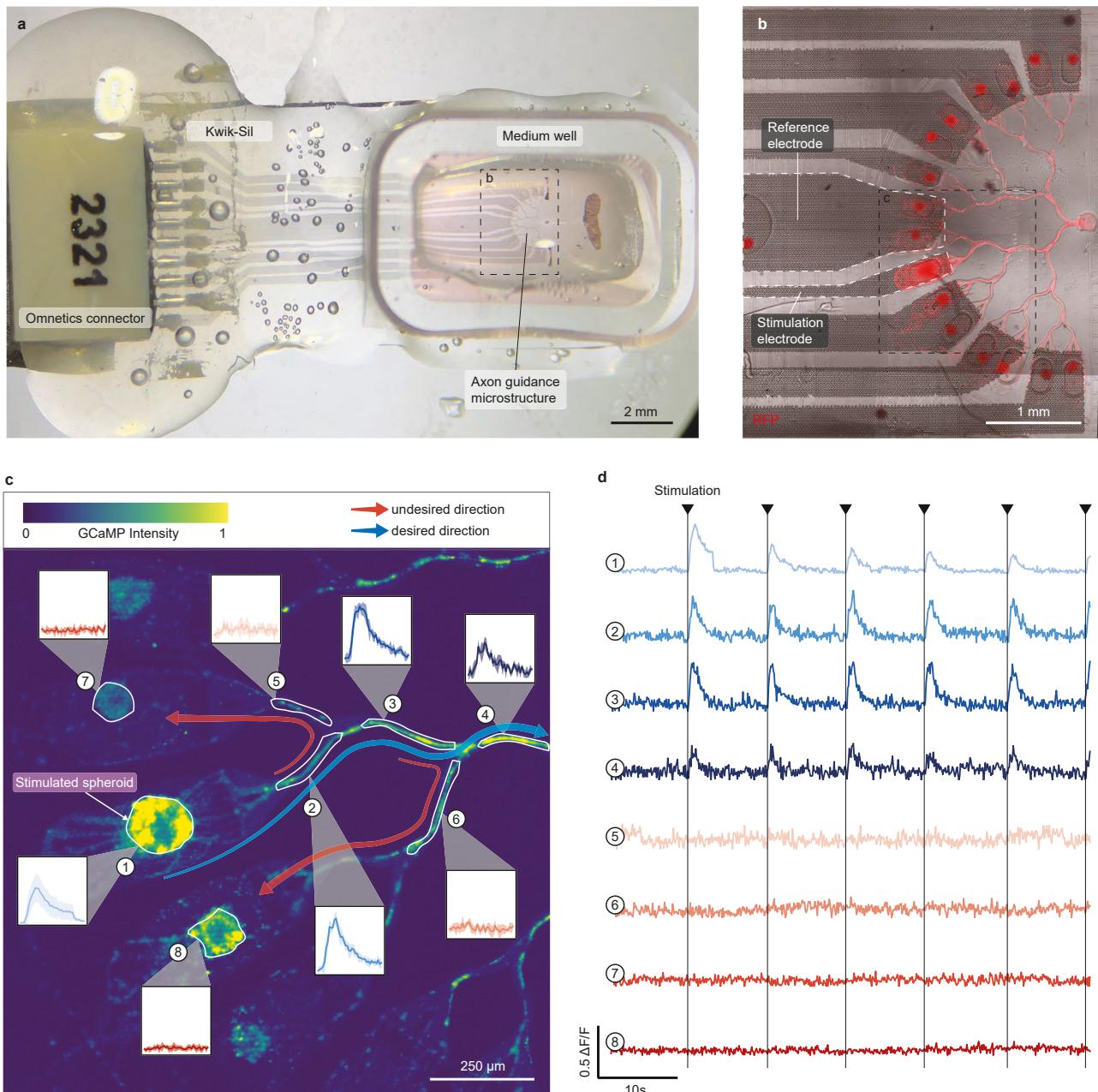
152 1.6 *In vivo* implantation of the biohybrid implant

153 The feasibility of the implantable biohybrid nerve model was tested in a living mammalian model. This involved
154 overcoming numerous challenges due to the difficulty of fully controlling all relevant parameters within an *in vivo*
155 environment. After a small craniotomy over the left primary visual cortex in 30-60 day old B57BL/6 mice the
156 implant was inverted in a way that the neural spheroids were facing the brain (Fig.6a,b). In order to minimize risk
157 of excessive bleeding, all except one device was implanted epidurally (TableS1). We prevented neural spheroids from
158 falling out of the implant during implantation by submersing the implant in a high viscosity medium containing
159 1% methylcellulose. While lowering the implant manually onto the cortical surface the PDMS nerve channel was
160 inserted towards the dorsolateral geniculate nucleus (dLGN) in the visual thalamus (Extended Data Fig.E4a). A 4-
161 mm glass window together with a headbar were fixed on the cranium to protect the device and enable head fixation
162 under the two-photon microscope (Fig.6a,b). Mice integrated the implant successfully with a 100% survival rate
163 post surgery and showed no behavioral impairments in the days and weeks following the surgery (supplementary
164 movie 9).

165 Next, we asked how epidural implantation affects viability and axonal growth of implanted spheroids. *In vivo*
166 two-photon fluorescence imaging (Fig.6c) showed that in DIV0 or DIV1 seeded implants, spheroids extended axons
167 for 4-5 days after implantation in 8 out of 9 imaged mice, with axons reaching the nerve channel in 6 cases (Fig.6d-
168 g, Extended Data Fig.E4b, Table S1). The spheroids showed intact fluorescent neural morphologies for up to 22
169 days after implantation (S1 and Extended Data Fig.E4c and Table S1). Devices implanted with a pre-developed 7
170 days old nerve structure showed intact neural structures when imaged directly after implantation (Extended Data
171 Fig.E4d-f). For both implant strategies, axonal growth and intact axonal morphology were observed for up to
172 5 days (TableS1 and Extended Data Fig.E4h-i). Beyond this period, an autofluorescent (green channel) fibrous
173 structure emerged replacing the red fluorescing axons (Extended Data Fig.E4j).

174 Finally, we could show that the implants with a GelSH-GelNB conduit were sufficiently robust for *in vivo*
175 implantation (Fig.6h-i and Extended Data Fig.E4k-m). Neural spheroids showed strong mRuby expression 4 days
176 after implantation (Fig.6k, Table S1) and axonal growth within the axon guidance structure (Fig.6k, Table S1).

Fig. 4: Measuring stimulation-induced action potential spikes within the biohybrid axon guidance structure to assess target response **a**: Schematic of the biohybrid axon guidance structure mounted onto the HD-MEA. Colored rectangles indicate the location of specific stimulation and recording channels and regions. **b**: Fluorescence image showing axonal growth of retinal spheroids within axon guidance structure mounted on the HD-MEA at DIV167. **c**: Stimulation response matrix shows different response types (target response and crosstalk) within the biohybrid structure at DIV110. Response probability is the normalized number of detected spikes in each recorded channel or region after stimulation. **(d, e, f)**: Stimulation induced raster plot (SIRP) of spikes propagating into the nerve channel. Colormap indicates channel location according to subpanel a. **(d)**: response without cross talk. **(e)**: response with cross talk. **(f)**: Retrograde response upon target stimulation. **(d', e', f')**: Latency map outlining the elicited response propagation within 3.5ms. Blue arrow indicates stimulated channel. Grey pixels indicate all recorded electrodes. **(d')**: response without cross talk. **(e')**: response with cross talk. **(f')**: Retrograde response upon target stimulation.


177 Post-mortem histology showed that the GelSH-GelNB conduit integrated into the brain tissue and was still present
 178 after 22 days (Extended Data Fig.E4k-m) of implantation [34, 35].

179 Finally, *in vivo* spontaneous calcium (GCaMP8m) activity recordings of neural spheroids demonstrated viability
 180 and neuronal function for up to 22 days (Fig.6l-n).

181 Overall *in vivo* implantations demonstrate that neurons show initial healthy axonal growth down into the nerve
 182 channel and good viability within epidurally implanted biohybrid devices.

183 2 Discussion

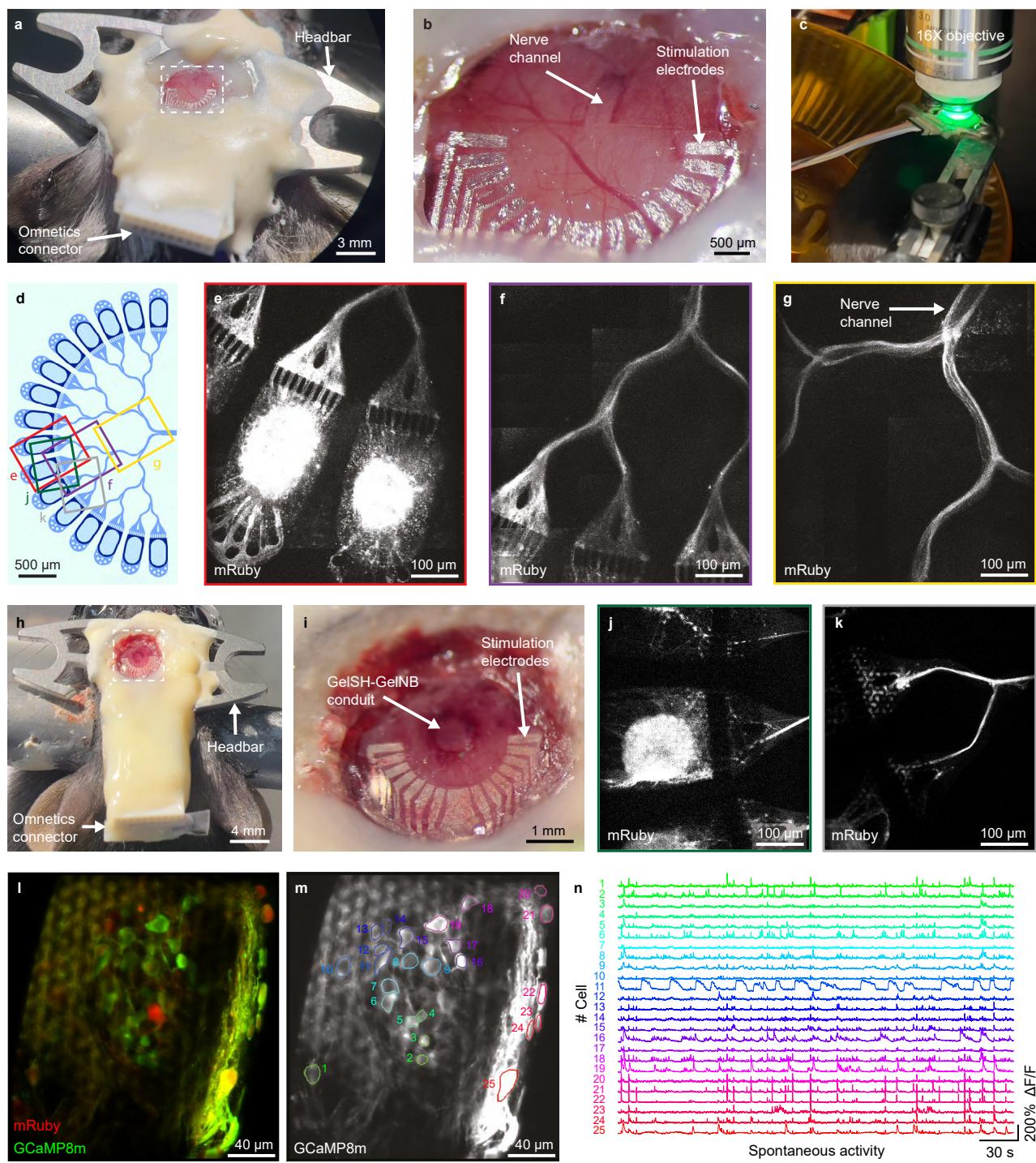

184 In this work, we developed an implantable biohybrid nerve model towards synaptic deep brain stimulation. The
 185 concept is centered on electrically and functionally isolating individual neural units within an implantable nerve

Fig. 5: Electrical stimulation of neural spheroids in the biohybrid implant a: Biohybrid implant with a medium well mounted on top of the axon guidance structure for *in vitro* stimulation of seeded neurons during functional calcium imaging. b: Axon guidance structure with underlying microelectrode array at DIV11. The multi-electrode array has 8 stimulation electrodes and 1 reference electrode. RFP labelled spheroids were grown within the microstructure. Image was log processed to enhance axon visibility. c: The neural spheroids were labeled with the calcium indicator GCaMP8m. One spheroid was repeatedly stimulated (2 V peak to peak, 200 Hz) and the corresponding calcium response inside the spheroid and along the channels was measured. Blue arrow indicates desired signal propagation. Red arrow indicates undesired signal propagation. d: Repeated electrical stimulation (arrows) induced a calcium response in the neural spheroid (trace 1) and along the axonal main branch (traces 2,3,4). No calcium response could be detected in neighboring spheroids (traces 7,8) or side branches (traces 5,6). Blue traces indicate traces recorded along the desired signal propagation path and red traces along undesired paths.

186 structure in order to exploit neurons as synaptic relays. We believe that future developments of the biohybrid
 187 strategy have the potential to increase the stimulation resolution and long term biocompatibility of currently
 188 available deep brain stimulation electrodes.

189 The biohybrid device was fabricated following a simple process flow. Once the template is fabricated, it can be
 190 reused several times to perform the template-stripping transfer-printing procedure, which leads to easy fabrication

Fig. 6: Implantation of the biohybrid implant a: Mouse with biohybrid implant and PDMS nerve channel. b: Zoom from a showing the biohybrid implant on the cortex. The nerve channel enters the brain at the level of the dLGN. c: Awake two-photon imaging setup. d: Schematic layout of the implanted axon guidance structure. e: Two-photon image of cortical spheroids in the seeding wells four days after implantation. f: Two-photon image of axonal growth 4 days after implantation. g: Two-photon image of axonal growth into the nerve channel 4 days after implantation. h: Biohybrid implant with the GelSH-GelNB conduit. i: Zoomed inset from h showing the biohybrid implant fixed on the top of the exposed cortical surface. The GelSH-GelNB conduit enters the brain at the level of the dLGN. j: Two-photon image of cortical spheroids in the seeding wells of the GelSH-GelNB conduit four days after implantation. k: Two-photon image of axonal growth. l: Cortical spheroids expressing mRuby and GCaMP8m 22 days after implantation. m: GCaMP8m expression with ROIs for quantifications shown in n. n: Spontaneous calcium activity traces of individual neurons at 22 days after implantation.

191 of MEAs on PDMS. The devices showed satisfying performance, highlighted by a successful *in vitro* spheroid
192 stimulation as well as good electrochemical properties. The yield of working electrodes per device should be
193 improved, but most of the non-working channels can be traced back to the interface between the omnics connector
194 and the Pt tracks. Future iterations might benefit from using a flexible cable connector such as that used in Fallegger
195 *et al.* [39] to increase the number of working electrodes. When performing the aging experiment, the impedance
196 of the electrodes after being implanted *in vivo* increases, as expected and reported in different works [33, 27, 40].
197 However, the impedance increase saturates at an acceptable level after 4 weeks *in vitro* with periodic stimulation.
198 This indicates that the electrode-electrolyte interface is stable and that the electrodes do not dissolve or delaminate
199 (a scotch tape test was performed after MEA fabrication and shows that the tracks are solidly bonded to the PDMS
200 substrate, Supplementary Fig. S2). The CIC of the electrodes also exhibits values similar to what can be found in
201 the literature for flat Pt [41, 42] along with the expected decrease after *in vivo* aging due to physical processes such
202 as biomolecule absorption, fundamental differences in counter-ion transport, and diffusional limitations on charge
203 transfer [33, 43].

204 We used edge guidance-based mechanisms to direct the axons into the desired direction [44]. The inherent
205 stochastic characteristics of axonal growth introduce a level of unpredictability in directing axonal growth when
206 only relying on-edge guidance mechanisms [45]. This may lead to signal propagation into neighboring channels and
207 potential synaptic crosstalk. Indeed our stimulation experiments on CMOS MEAs confirmed that spikes not only
208 propagate into the nerve channel but also into neighbouring seeding wells. It remains to be tested if the observed
209 crosstalk can elicit secondary spikes in neighbouring channels that would negatively affect the channel selectivity
210 and stimulation resolution. Moreover, future studies need to analyze if and how confining non-myelinated axons
211 into an artificial nerve like structure leads to any synaptic or non-synaptic crosstalk between the axons themselves.
212 The low number of seeding wells and the high number of neurons per seeding well in the here presented model
213 required only four merges to converge axons from all seeding wells into the nerve channel. Therefore, the guidance
214 motifs used in our model were sufficient to form a nerve-like structure. For future versions of the biohybrid interface,
215 however, one should reduce the number of neurons per seeding well (ideally 1 per electrode) and increase the number
216 of electrodes to provide useful high-resolution sensory input to the brain. Depending on the merging architecture,
217 this will require each axon to cross a significantly higher number of channel merges, which will increase the chance
218 of axons turning into the wrong channel. Thus, future biohybrid neural interfaces should also benefit from different
219 guidance approaches, *e.g.* based on molecular gradients used to direct axons *in vivo* [46, 47].

220 The presented nerve model is embedded into a stretchable and soft PDMS-based stimulation array to reduce
221 foreign body response [48] after *in vivo* implantation. The stretchability of our device was in line with what
222 is required for our application since only rather small strain occur during implantation and on the brain once
223 implanted. The ability to stimulate and read out functional activity may enhance existing nerve models to develop
224 new strategies for nerve regeneration [49].

225 *In vivo* we have found that neural spheroids were able to grow and extend axons down into the nerve channel
226 within the first 3 days of epidural implantation. However, about 4 days after implantation, axons started to degrade
227 with a strong increase in autofluorescence along the axon guidance paths and seeding wells. This autofluorescence
228 may be due to degrading neuronal structures or a triggered immune response with *e.g.* phagocytizing macrophages
229 or microglia [50] around the developed neuronal structures [51]. As we implanted rat neurons into wild type mouse
230 brains, neuronal death could be the result of an immune response or because of an increased demand for oxygen
231 and nutrients from developing neurons that cannot be matched by the passive diffusion of nutrients through the
232 meninges. Future studies might benefit from subdural implantation into immunodeficient mice or rats, as direct
233 transplantation of neurons, spheroids, or organoids into such models has previously led to successful neuron survival
234 and neural network integration *in vivo* [52, 29, 30].

235 In summary, we have presented and characterized an implantable nerve model showing first feasibility towards
236 *in vivo* application. Although we have yet to demonstrate axons transitioning from the implant into neural tissue to
237 form functional synapses *in vivo* (our previous work has shown feasibility of this approach *in vitro* [38]), we present
238 promising initial findings on neural viability and axonal growth after implantation. In future clinical applications
239 of the biohybrid technology patient specific iPSC derived neurons can be integrated into the biohybrid device to
240 provide personalized sensory restoration.

241 3 Methods

242 3.1 Primary neuron cultures

243 3.1.1 Primary cell source and cell dissociation

244 Primary cortical and retinal cells from E18 embryos of pregnant Sprague-Dawley rats (EPIC, ETH Phenomics
245 Center, Switzerland) were used for all experiments in compliance with 3 R regulations. Previous to the experiments,
246 approval was obtained from Cantonal Veterinary Office Zurich, Switzerland, under license SR 31175 - ZH048/19.

247 Briefly, E18 time-mated pregnant rats (Janvier Laboratories, France) were sacrificed, and the embryos were removed.
248 Embryonic eyes and cortex tissue were dissected and stored in Hibernate medium on ice.

249 Tissues were enzymatically digested using a Papain solution (50 mg Bovine serum albumin (BSA) (A7906,
250 Sigma-Aldrich) and 90.08 mg D-glucose (Y0001745, Sigma-Aldrich) in 50 ml sterile PBS, and vortexing 5 mL of
251 the solution with 2.5 mg Papain (P5306, Sigma-Aldrich) and 5 μ l DNase (D5025, Sigma-Aldrich)).

252 The Hibernate medium was carefully aspirated from the tubes containing retinal and cortical tissue. 2.5 ml
253 of the prepared Papain solution were added into each tube. The tubes were incubated for 15 min at 37 °C and
254 gently shaken every 5 min. The Papain solution was aspirated without disturbing the pellets, and 5 ml warmed
255 Neurobasal™ medium (21103049, Gibco, Thermo Fisher Scientific) with 5 % B27 supplement (17504044, Gibco,
256 Thermo Fisher Scientific) and 10 % Fetal bovine serum (FBS) (10500056, Gibco, Thermo Fisher Scientific) was
257 added. After 3 min of incubation, the media was removed. The incubation and aspiration steps were repeated twice
258 using Neurobasal™ medium with 5 % B27 supplement. After the last aspiration, 2-4 ml warmed RGC medium
259 (medium as in [53]) were added to the retina and to the cortex tissue tube. Lastly, tissues were mechanically
260 dissociated using a 1 ml pipette until complete dissociation of the tissue.

261 3.1.2 Spheroid generation

262 Commercially available AggreWell™ 400 microwell plates (AggreWell 400 24-well plate, 34415, StemCell Technologies)
263 were coated with 500 μ l of AggreWell™ Anti-adherence rinsing solution (7010, StemCell Technologies) and
264 rinsed with 2 ml Neurobasal™ medium. The medium was replaced with 1 ml RGC (Retinal spheroids) or Neu-
265 robasal medium (Cortical spheroids) and pH-equilibrated in the incubator before seeding 960000 cells per well to
266 achieve a spheroid size of 800 cells per spheroid. Immediately after seeding the cells were transfected with an
267 adeno-associated virus (AAV). Retinal and cortical spheroids were transfected with a mRuby, EGFP or GCaMP8m
268 expressing AAV (scAAV- DJ/2-hSyn1-chl-mRuby3-SV40p(A), ssAAV-DJ/2-hSyn1-jGCaMP8m-WPRE-SV40p(A),
269 ssAAV-retro/2-hSyn1-chI-EBFP2-WPRE-SV40p(A). All adeno-associated viral vectors were provided by the Viral
270 Vector Facility of the University of Zurich. For producing homogeneously sized spheroids, the AggreWell™ plate
271 was centrifuged at 100 g for 3 min and transferred into the incubator at 37 °C with 5 % CO₂. Spheroids were ready
272 for seeding after 24h.

273 3.2 Biohybrid Implant Fabrication

274 3.2.1 Fabrication of the PDMS multielectrode array

275 The entire process flow is illustrated in Supplementary Figure E1. The MEA tracks were first fabricated on a Si
276 wafer and subsequently transferred on PDMS. Firstly, a 525 μ m thick 4 in Si wafer (Microchemicals GmbH) was
277 patterned using standard photolithography (photoresist AZ ECI3102, spincoating 3 krpm for 30 s, softbake 60 s
278 at 90 °C; exposure in EVG 620NT (EV Group), i-line exposure 110 mJ/cm², post-exposure bake 60 s at 11 °C;
279 development 60 s in AZ726 MIF, hardbake 120 s at 110 °C) and RIE etched (Oxford NGP80 (Oxford Instruments,
280 10 min at 100 W, 100 mTorr, 30/12/10 sccm SF6/O₂/CHF₃) to create the microstructured tracks layout. The
281 wafer was then cleaned in DMSO at 80 °C for 30 min, rinsed in DI water, and briefly plasma-cleaned (3 min at
282 250 W, 1 mbar, Technics Plasma 100-E (Technics Plasma GmbH)). A second photolithography and etching step
283 was carried out to delimit the individual devices (photoresist AZ P 4620, spincoating 3 krpm for 40 s, softbake
284 180 s at 110 °C; broadband exposure 500 mJ/cm²; development 4 min 30 s in AZ2026 MIF, hardbake 360 s at
285 110 °C; etching in PlasmaPro Estrelas 100 (Oxford Instruments), Bosch Process to etching depth \sim 100 μ m).
286 The wafer was then cleaned in a similar fashion as before. Prior to the material stack evaporation, the wafer
287 was silanized (Trichloro(1H,1H,2H,2H-perfluoroctyl)silane, Sigma-Aldrich 448931), vacuum-assisted deposition
288 to create an anti-adhesive layer that is crucial for the subsequent transfer process. Then, a stack of SiO₂/Ti/Pt
289 (25nm/5nm/100nm) was evaporated on the wafer (E-beam evaporation, Plassys MEB550S). The MEAs were then
290 stripped from the SI wafer and were transferred on PDMS following a procedure described in [31]. Briefly, a 15 %
291 solution of PVA (Mowiol 18-88, Sigma-Aldrich 81365) in water was spin-coated onto a 125 μ m thick PEN foil
292 (Coloprint tech-films GmbH) and cured at 60 °C for 10 min. The patterned Si wafer with the SiO₂/Ti/Pt stack was
293 heated up to 120 °C on a hotplate and the PEN/PVA was laminated onto it using a silicone roller while applying
294 minimal pressure. At room temperature, the PEN/PVA was stripped from the wafer, effectively picking up only
295 the patterned MEAs. The receiving substrate for the transfer was prepared by silanizing a 4 in wafer, followed by
296 spin-coating PDMS (Sylgard 184, 1:10) at 500 rpm for 30 sec and curing it in an oven at 80 °C overnight. Once
297 cured, the PDMS wafer and the PEN/PVA with the patterned SiO₂/Ti/Pt were plasma activated (Tergeo Plasma
298 (PIE Scientific), 35 W, duty ratio 50/255, 5 sccm O₂ 10 sccm H₂O, 25 s) and brought into contact to be bound
299 together. The assembly was immediately heated up to 120 °C on a hotplate (and weighted down to ensure good
300 contact for bonding) for at least 30 min. At room temperature, the PEN foil was peeled off the PVA. The PDMS
301 wafer with PVA was then immersed in boiled water for 2 times 5 min with a DI water rinse in between to dissolve

302 the PVA. The MEAs on PDMS were then cut manually using a scalpel and were carefully lifted off the support
303 wafer for subsequent handling.

304 **3.2.2 Design of the PDMS microstructures**

305 PDMS microstructure layouts were designed using AutoCAD (Autodesk). The layouts were sent to WunderliChips
306 GmbH (Zurich, Switzerland) for the fabrication of a master template wafer, as well as PDMS replica that were
307 extracted to remove uncured monomers using ethyl acetate.

308 **3.2.3 Assembly of the biohybrid implant for *in vivo* implantation**

309 First, the PDMS MEA and microstructure were assembled using plasma bonding. Both were subjected to a plasma
310 treatment (Tergeo, 35 W, duty ratio 50/255, 5 sccm O₂ 10 sccm H₂O, 40 s), then a drop of water (~20µl) was
311 dispensed on the MEA and the microstructure was manually aligned on top using a stereomicroscope. The assembly
312 was heated at 100 °C on a hotplate for ~ 30 min to dry the water and ensure a good bond. An omnnetics connector
313 was aligned by hand and glued on the pads of the MEA using a silver conductive paste (Sigma-Aldrich 901769) and
314 cured at 100 °C for 1 h. The connection points were then encapsulated in a soft silicone (Kwik-Sil, World Precision
315 Instruments). Lastly, the device was cut to shape using a scalpel. Immediately prior coating and seeding, the whole
316 device was plasma activated.

317 **3.2.4 Assembly of the biohybrid implant for *in vitro* stimulations**

318 The devices for *in vitro* testing were fabricated in a similar fashion as the devices for *in vivo* implantation up to
319 the connector gluing and encapsulating. Then, the device was glued on a glass slide and a PDMS frame was glued
320 around the microstructure to act as a reservoir for culture medium (using Kwik-Sil as glue). Immediately prior
321 coating and seeding, the whole device was plasma activated to increase hydrophilicity and thereby ensure that the
322 coating solution and culture medium enter the axon guidance channel system.

323 **3.2.5 Coating and spheroid seeding for *in vivo* implantation**

324 The implants were coated with 1:25 matrigel dissolved in RGC medium. A drop of matrigel was applied only at
325 the nerve outlet of the microstructure to minimize surface coating and capillary forces enabled complete filling of
326 the microstructure. The implant was then immediately submerged in RGC medium and equilibrated in a 37 °C
327 5 % V/V CO₂ incubator.

328 **3.3 FLight based gel-NB gel-SH conduit fabrication**

329 We used thiol-norbornene clickable resins based on our previous work for the fabrication of the conduits [54]. A
330 thiol-ene click chemistry-based system is less prone to network defects and swelling and the crosslinking chemistry
331 is faster, when compared to chain-growth polymerization-based hydrogels such as gelatin methacryloyl (GelMA). In
332 the present work, we used 2.5 % w/v thiolated gelatin (GelSH) and 2.5 % norbornene-functionalized gelatin (GelNB)
333 in phosphate buffered saline (PBS). Lithium phenyl (2,4,6-trimethylbenzoyl) phosphinate (LAP) at 0.05 % w/v was
334 added as the photoinitiator. We used the prototype FLight device developed in-house at ETH Zurich. The device
335 is based on the filamented light fabrication technique [36], and relies on optical self-focusing and modulation insta-
336 bility to fabricate cm-scale constructs featuring highly aligned microfilaments. These microfilaments are prevalent
337 throughout the length of the constructs and are excellent guidance cues for cell alignment and proliferation. For the
338 fabrication of the devices, the PDMS devices were first plasma activated (Tergeo plasma cleaner, Oxygen, 1 min 10 s,
339 25 Watt), were placed in 2-well ibidi dishes (ibidi, 80286) and positioned in the Flight projection system capable of
340 a top-down projection of filamented light. The projection images (concentric circles equaling the cross-section of the
341 conduits) were positioned such that the open lumen of the conduits was perfectly aligned with the open channel of
342 the PDMS devices. Next, the devices were submersed in the resin (depending on conduit length 1-2 mm), followed
343 by a 8 s long light exposure at 64 mW/cm² to fabricate the conduits. The constructs were then washed gently with
344 warm PDMS at 37 °C, followed by the secondary crosslinking using transglutaminase (5 U/ml) for 30 min.

345 **3.4 Microelectrodes electrochemical characterization**

346 Electrochemical characterization of the microelectrodes was performed using a Metrohm Autolab (PGSTAT302N)
347 potentiostat in 1x PBS. An Ag/AgCl electrode (Sigma-Aldrich Z113085) was used as reference, and a Platinum foil
348 was used as counter electrode. The microelectrodes were characterized by performing cyclic voltammetry (CV),
349 electrochemical impedance spectroscopy (EIS) and charge injection capacity (CIC) determination. The CV was
350 performed between -0.6 V and 0.8 V (6 cycles, 200 mV/s). The EIS was measured between 1 Hz and 100 kHz. CV
351 was always performed prior to EIS characterization. For the CIC determination, the electrodes were pulsed with a

352 set current (for 300 μ s at negative, 100 μ s at 0, and 300 μ s at positive) 10 times. The potential of the microelectrode
353 was recorded, and this step was repeated for increasing currents.

354 **3.4.1 Data analysis**

355 Electrochemical characterization data were analyzed using Python 3.8 packages (Pandas, Numpy, Scipy, Lmfit,
356 Matplotlib). Microelectrode charge injection capacity (CIC) was established by determining at what current the
357 potential at the surface of the electrode (removing the ohmic drop) surpassed the water window (-0.6 V for cathodic
358 pulses, and 0.8V for anodic pulses versus Ag/AgCl).

359 **3.4.2 SEM**

360 The SEM images of the electrodes after the aging tests were taken on a TFS Magellan 400 with a beam voltage of
361 5 kV and current of 100 pA. Prior to imaging, the samples stored in PBS were washed with DI water and dried.
362 They were then sputtered with PtPd (6nm) to create a conductive layer (Safematic CCU-010 HV).

363 **3.5 Mechanical stability evaluation**

364 **3.5.1 Adhesion test**

365 The adhesion of Pt/Ti/SiO₂ tracks to the PDMS was tested performing a tape test. Standard scotch tape was
366 laminated onto the MEA, pressed down by hand to ensure good contact, then peeled off. Optical images were taken
367 before and after to assess the robustness of the tracks.

368 **3.5.2 Stretching test**

369 A MEA was mounted on a homemade stretch setup consisting of two linear bearings actuated by a micrometer
370 screw each. The device was clamped onto the bearings and the assembly was brought under an optical microscope
371 (ADD model). The device was stretched manually using the micrometer screws and pictures were taken at regular
372 intervals.

373 **3.6 Spike propagation analysis on HD-MEAs**

374 **3.6.1 Mounting PDMS microstructures on HD-MEAs**

375 HD-MEA chips were plasma activated for 1 min (air plasma) and coated with 0.1 mg/ml poly-D-lysine (PDL)
376 in PBS for 30 min, washed three times with ultrapure water and dried using a nitrogen gun. Extracted PDMS
377 microstructures were aligned on top of the sensing area and filled with matrigel through desiccation (1:25 in RGC
378 medium on ice). The matrigel solution was immediately after replaced with 1 ml RGC or Neurobasal medium.
379 Medium was changed every 3 days. Recordings were performed the day after changing the medium.

380 **3.6.2 Spheroid seeding**

381 Primary retinal or cortical neurons were aggregated into spheroids as described in section "spheroid formation" at
382 a size of 800 cells/spheroid and transfected with an EGFP expressing AAV (scAAV-DJ/2-hSyn1-chl-loxP-EGFP-
383 loxP-SV40p(A)) at 15000 vg/cell. Two neural spheroids were manually seeded into each of the 16 seeding wells as
384 described in section "spheroid generation".

385 **3.6.3 Acquisition of spontaneous and stimulation-based electrical activity recordings with HD-
386 MEAs**

387 For the spike propagation analysis within the biohybrid microstructures we used HD-MEAs (26400 electrodes ar-
388 ranged in a grid of 220×120 electrodes, 3.85×2.1 mm², pitch=17.5 μ m, MaxOne+, MaxWell Biosystems, Switzer-
389 land) with bare platinum electrodes and a flat surface topology. A maximum of 1024 stimulation electrodes can
390 be simultaneously connected to the amplifiers for recording. We recorded from about 1000 electrodes specifically
391 selected to cover the whole biohybrid design spanning area. Additionally, we established regions of interest at the
392 exit of each seeding well and along the nerve channel for the stimulation-induced propagation analysis. Stimulation
393 was performed with a single electrode. Axons inside each channel were sequentially stimulated with a rectangular
394 cathodic-first biphasic pulse at 2 V peak-to-peak, 4 Hz and 400 μ s pulse width. Data were collected at a sampling
395 frequency of 20 kHz, with a 10-bit resolution and a recording range of about \pm 3.2 mV, yielding a least significant
396 bit (LSB) of 6.3 μ V. Using customized software developed with the MaxWell Python API, we stored the raw traces
397 and performed spike detection with a custom algorithm [55].

398 3.6.4 Data analysis of spontaneous and stimulation-based electrical activity recordings

399 Raw voltages traces were band-passed filtered (4th order acausal Butterworth filter, 300-3500 Hz). The baseline
400 noise of the signal was characterized for each electrode using the median absolute deviation (MAD). Spikes were
401 detected by identifying negative signal peaks below a threshold of 5 times the baseline noise. Successive events
402 within 2 ms were discarded to avoid multiple detection of the same spike. The response upon electrical stimulation
403 consisted in detecting spikes occurring within a time window of 3.5 ms after each stimulation pulse at each specific
404 region of interest characterized by a set of electrodes (set of 5 electrodes at input channels Ch1-16 and set of 15
405 electrodes at target regions 1-3). Quantification of the response was done by binning the detected spikes with a
406 bin size of 0.5 ms for each individual region. The response probability was calculated as the normalized number of
407 detected spikes in each recorded channel or region after stimulation. The total expected response is the number of
408 stimulation pulses divided by the number of selected recording electrodes at the regions). The latency maps were
409 obtained by calculating the stimulation-triggered average spike waveform for all recorded electrodes (time window
410 of 3.5 ms). Latency values correspond to the time of the maximum absolute amplitude of the obtained average
411 spike waveform in this time window. For clarity, latency is only plotted for electrodes that exhibit an average spike
412 waveform amplitude above half of the maximum waveform amplitude across all electrodes.

413 3.6.5 Fluorescence imaging of the networks on HD-MEAs

414 For fluorescence imaging of the CMOS chips using an inverted confocal microscope (Olympus, FluoView 3000,
415 Lasers: 488nm, 561nm) all excess medium was removed and a round glass coverslip (10 mm diameter) was mounted
416 on top of the PDMS microstructure. The surface tension between the cover slip and the chip enabled us to invert
417 the chip for imaging in an inverted microscope. For mounting in the CLSM, the CMOS chip was placed in the
418 recording unit which in turn was mounted into a custom made metal insert that fits into the stage of the microscope.
419 This configuration enabled inverted mounting for imaging.

420 3.7 *In vivo* experiments

421 3.7.1 Animals

422 Animal experiments were performed in accordance with standard ethical guidelines (European Communities Guide-
423 lines on the Care and Use of Laboratory Animals, 86/609/EEC) and were approved by the Veterinary Department
424 of the Canton of Basel-Stadt. For all *in vivo* experiments, both male and female 30–120 days old wild-type (WT)
425 mice of C57BL/6 background were used, maintained on a normal 12-hour light/dark cycle, and group-housed in a
426 pathogen-free environment with *ad libitum* access to food and drinking water.

427 3.7.2 Preparation of the biohybrid implant for *in vivo* experiments

428 For *in vivo* implantation, the implants were fabricated and assembled as described in section "Biohybrid Implant
429 Fabrication". The implants were seeded with neurons either 7, 1 or 0 days before implantation. Implants had
430 to be transferred from ETH Zurich to the IOB in Basel. For transport, the retinal ganglion cell medium was
431 replaced with retinal ganglion cell medium containing 1 % methylcellulose. The resulting increased viscosity reduced
432 medium turbulence during transport and prevented neural spheroids from being washed out of the seeding wells.
433 For transport, a custom-made battery powered 5 % CO₂ and 37 °C temperature controlled incubation box "inkugo"
434 [56] was used. Implants were stored inside inkugo until implantation.

435 3.7.3 Surgical procedures and implantation of the biohybrid implant

436 Surgeries were performed in 30–60 day old WT mice. Prior to the start of surgery, animals were anaesthetized using
437 a Fentanyl/Medetomidine/Midazolam (FMM) mixture (0.05 mg/kg Fentanyl, 0.5 mg/kg Medetomidine, 5 mg/kg
438 Midazolam; subcutaneous injection). Hair were removed from the head using a trimmer (Isis GT421, Aesculap).
439 Animals were then placed in a stereotaxic frame (Model 1900, KOPF Instruments) and ocular gel (Humigel, Virbac)
440 was applied to prevent dehydration of the cornea during surgery. A local anaesthetic (0.25 % Bupivacaine, 0.2 %
441 Lidocaine) was injected at the site of skin incision several minutes before removing the skin using fine surgical
442 scissors. The exposed skull was then carefully cleaned and cleared of connective tissue before being stereotactically
443 aligned using the anatomical bregma and lambda coordinates. A custom-made stainless steel head-mounting bar was
444 fixed onto the skull using dental cement (Superbond C&B). After the cement hardened, a 4-mm diameter craniotomy
445 was made over the left hemisphere with a dental drill, exposing the visual cortex and the cortical surface above the
446 location (from skull at bregma, medial-lateral: -2.0 mm, anterior-posterior: -2.2 mm) of the dorsolateral geniculate
447 nucleus (dLGN). Given that in most cases, devices were implanted epidurally, the dura mater was kept intact during
448 the craniotomy. In case the device was implanted subdurally, the dura was carefully removed using a fine forceps.
449 Using the stereotaxic setup, an injection needle (26G, 0.45 mm diameter) was then slowly inserted to a depth of

450 2.8 mm (from skull at bregma) to form a physical path to implant the device into the dLGN. The biohybrid device
451 was then manually placed onto the cortex such that the neuronal seeding well openings faced the cortical surface
452 allowing for direct nutrient support for the on-chip grown neurons. The nerve forming PDMS channel or collagen
453 tube were inserted into the brain using the prepared physical path until the microstructure of the device aligned
454 onto the cortical surface. A small round cover glass of 4-mm diameter (CS-4R, Warner Instruments) was placed
455 on top of the biohybrid device and while gently applying pressure to seal the craniotomy and flatten the surface
456 of the brain, it was carefully fixed to the skull using a cyanoacrylate adhesive (Pattex Ultra Gel). Finally, the
457 remaining exposed parts of the device including the connector were covered in light-curing dental cement (ESPE
458 RelyX Unicem 2, 3M) to increase their robustness for *in vivo* applications. At the end of the surgery, a Wake mix
459 solution (0.5 mg/kg Flumazenil, 2.5 mg/kg Atipamezol; subcutaneous injection), was administered for recovery
460 and Buprenorphine (0.1 mg/kg; subcutaneous injection) was applied to reduce postoperative pain. Analgesia was
461 maintained by Carprofen (4 mg/kg; subcutaneous injection every 12 hours) for 48 hours.

462 **3.7.4 *In vivo* two-photon imaging of axon growth in the biohybrid implant**

463 Axon growth in the biohybrid implant was assessed *in vivo* using a two-photon microscope (FEMTOSmart series,
464 Femtonics). For day 0 imaging, mice were head-fixed under the microscope just after the implantation surgery, prior
465 to the end of anaesthesia, and placed onto a heating blanket. For imaging sessions on later days, recordings were
466 performed in awake mice, which were first habituated to head fixation on the imaging setup while being able to
467 move on a horizontal running wheel similar to the one in their home cage. Two-photon images were acquired with
468 a 16X water immersion objective (Nikon, NA = 0.8) and the emitted fluorescence was detected by photomultiplier
469 tube detectors (PMTs; high sensitivity GaAsP detectors, Femtonics). mRuby was detected by a red PMT and
470 autofluorescence was simultaneously imaged by means of a green PMT. The MESc software (Femtonics) was used
471 to control the microscope in resonant scanning mode and the laser (InSight X3, Spectra-Physics), which was tuned
472 to either 980 nm or 1045 nm. A transparent ultrasound gel (GEL G008, FIAB) was placed on top of the glass
473 window in which the objective was immersed for imaging. Imaging positions in the horizontal plane were varied
474 by moving the mouse together with head-fixation device, which was mounted on a motorized stage (MT-1078/MT-
475 2078/MT-2278, Sutter).

476 **3.7.5 *In vivo* two-photon calcium imaging of neurons in the biohybrid implant**

477 To record the calcium activity of neurons in the biohybrid implant, the same two-photon microscope as described
478 in the previous section was used. The spontaneous calcium activity of the GCaMP8m⁺ neurons was assessed by
479 head-fixing the mouse under the microscope while it was able to move on the horizontal running wheel. GCaMP8m
480 was excited at a wavelength of 930 nm and frames were recorded at 26.8 Hz. Spontaneous activity in each imaging
481 location was recorded for about 4 to 6 minutes.

482 **3.7.6 Data analysis of calcium activity recordings**

483 Calcium activity recordings were analysed by custom-written routines in MATLAB (Mathworks). Given that
484 recordings were performed in awake animals, horizontal motion in the imaging field was first corrected using the
485 NoRMCorre algorithm [57]. Then, cells were manually selected on the mean projection image of the corrected
486 calcium imaging movie using the region of interest (ROI) plugin in ImageJ (<https://imagej.net>). The calcium
487 traces of a single cell were computed by taking the average fluorescence within the ROI at any given timepoint.
488 Additionally, for each cell, to correct for non-specific neuropil fluorescence contaminating the ROI, the 30th percentile
489 of the fluorescence within a 10-pixel wide ring at a 5-pixel distance from the ROI edge was subtracted from the
490 mean ROI fluorescence, as it is commonly done in calcium imaging [58]. It was also ensured that the neuropil rings
491 did not contain other cells. Finally, the calcium trace of each cell was subtracted and divided by a slow (20-s long)
492 moving low-pass (30th percentile) filtered version of itself to obtain a normalize $\Delta F/F$ trace. The final $\Delta F/F$ trace
493 was then filtered by a 200-ms long average filter for display purposes.

494 **3.7.7 Histology**

495 At the end of experiments mice were deeply anaesthetized with a Ketamine/Xylazine mixture (120 mg/kg Ketamine,
496 16 mg/kg Xylazine; intraperitoneal injection) and transcardially perfused with cold phosphate buffered saline (PBS)
497 followed by 4 % paraformaldehyde (PFA) in PBS. Implants were removed and brains were extracted and placed in
498 4 % PFA for storage at 4 °C. To confirm the correct targeting of the implant within the neural tissue, brains were
499 washed three times for 10 min in PBS, embedded in 4 % agarose and cut at a thickness of 150 μ m using a vibratome
500 (VT1000S vibratome, Leica Biosystems). Brain slices were stained with Hoechst 33342 (10 μ g/ml) in PBS and
501 then embedded in ProLong Gold Antifade Mountant (Thermo Fisher Scientific). Slices were imaged around the
502 implantation site using a confocal microscope (Olympus, Fluoview 3000, Lasers: 405 nm and 561 nm).

503 4 Acknowledgements

504 The research was financed by ETH Zurich, the Swiss National Science Foundation (Project Nr: 165651), the Swiss
505 Data Science Center, a FreeNovation grant, the Human Frontiers Science Program Organization, HFSPO, and
506 an EMBO Postdoctoral Fellowship (A.F., ALT 688-2022). We thank Georg Kosche for his technical support in
507 two-photon calcium imaging. PC would like to acknowledge funding from the Swiss National Science Foundation
508 (Ambizione grant PZ00P2 216356; Spark grant CRSK-2 220980). The authors thank ScopeM and in particular
509 Lucas Miriam Susanna and Stephan Handschin of ScopeM for their support and assistance in this work.

510 5 Author information

511 These authors contributed equally: Léo Siffringer and Alex Fratzl.

512 5.1 Authors and Affiliations

513 **Laboratory of Biosensors and Bioelectronics, ETH and University of Zurich, Gloriastrasse 39, 8092 514 Zurich, Switzerland**

515 Léo Siffringer, Blandine F. Clément, Leah S. Mönkemöller, Jens Duru, Simon Steffens, Anna Beltraminelli, Eylul
516 Ceylan, Stephan J. Ihle, Benedikt Maurer, Sean M. Weaver, Christina M. Tringides, Katarina Vulić, János Vörös,
517 Tobias Ruff

518 **Institute of Molecular and Clinical Ophthalmology Basel, Mittlere Str. 91, 4031 Basel, Switzerland**

519 Alex Fratzl and Botond Roska

520 **Tissue Engineering and Biofabrication, Department of Health Sciences and Technology ETH 521 Zürich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland**

522 Parth Chansoria, Marcy Zenobi-Wong

523 **Bioengineering and Neuroregeneration, University of Geneva, Rue Gabrielle-Perret-Gentil 4, 524 1211, Geneva, Switzerland**

525 Srinivas Madduri

526 5.2 Contributions

527 T.R. conceived and designed the study. A.F. and T.R. performed *in vivo* experiments. L.S. and T.R. designed
528 the biohybrid implants. L.S. fabricated and characterized the biohybrid implants. B.F.C. performed stimulation
529 experiments on CMOS and analyzed spike propagation on CMOS MEAs. L.S. and T.R. performed and analyzed *in*
530 *vitro* stimulation experiments. A.B. characterized axonal growth in glass tubes. T.R. characterized axonal growth in
531 collagen conduits. S.M. provided collagen conduits. S.S. and S.J.I. optimized directionality of axonal growth. E.C.,
532 J.D., C.M.T, T.R. and L.S. optimized coating conditions for axonal growth on PDMS. L.M. and T.R. characterized
533 axonal growth in the final implants. P.C. fabricated GelSH-GelNB conduits. L.S. and J.H. performed SEM imaging.
534 S.J.I. designed the implant PCBs. K.V. contributed to neural spheroid preparation. J.V., B.R., S.W., S.J.I, B.M.,
535 C.M.T., K.V. and S.M. provided advice in various aspects of the project. The manuscript was jointly written by
536 L.S., A.F., B.F.C. and T.R. and was revised by all authors.

537 5.3 Corresponding author

538 **Laboratory of Biosensors and Bioelectronics, ETH and University of Zurich, Gloriastrasse 39, 8092 539 Zurich, Switzerland**

540 Tobias Ruff.

542 6 Ethics declarations

543 6.1 Competing interests

544 The authors declare no competing interests.

545 References

546 [1] Daniel J Chew, James W Fawcett, and Melissa R Andrews. “The challenges of long-distance axon regeneration
547 in the injured CNS”. In: *Progress in brain research* 201 (2012), pp. 253–294.

548 [2] Hong-Jiang Li et al. "Exploring optic nerve axon regeneration". In: *Current neuropharmacology* 15.6 (2017),
549 pp. 861–873.

550 [3] Noemie Vilallongue et al. "Guidance landscapes unveiled by quantitative proteomics to control reinnervation
551 in adult visual system". In: *Nature Communications* 13.1 (2022), p. 6040.

552 [4] José-Alain Sahel et al. "Partial recovery of visual function in a blind patient after optogenetic therapy". In:
553 *Nature medicine* 27.7 (2021), pp. 1223–1229.

554 [5] Weijian Yang and Rafael Yuste. "Holographic imaging and photostimulation of neural activity". In: *Current
555 opinion in neurobiology* 50 (2018), pp. 211–221.

556 [6] Adriaan J Taal et al. "Optogenetic stimulation probes with single-neuron resolution based on organic LEDs
557 monolithically integrated on CMOS". In: *Nature Electronics* 6.9 (2023), pp. 669–679.

558 [7] Aviva Abosch et al. "Long-term recordings of local field potentials from implanted deep brain stimulation
559 electrodes". In: *Neurosurgery* 71.4 (2012), pp. 804–814.

560 [8] Roy Lycke et al. "Low-threshold, high-resolution, chronically stable intracortical microstimulation by ultra-
561 flexible electrodes". In: *Cell Reports* 42.6 (2023).

562 [9] Noah S Philip and Amanda R Arulpragasam. "Reaching for the unreachable: low intensity focused ultrasound
563 for non-invasive deep brain stimulation". In: *Neuropsychopharmacology* (2022).

564 [10] Ali Jannati et al. "Assessing the mechanisms of brain plasticity by transcranial magnetic stimulation". In:
565 *Neuropsychopharmacology* 48.1 (2023), pp. 191–208.

566 [11] Michael S Beauchamp et al. "Dynamic stimulation of visual cortex produces form vision in sighted and blind
567 humans". In: *Cell* 181.4 (2020), pp. 774–783.

568 [12] János A Perge et al. "Intra-day signal instabilities affect decoding performance in an intracortical neural
569 interface system". In: *Journal of neural engineering* 10.3 (2013), p. 036004.

570 [13] Hieu T Nguyen et al. "Thalamic visual prosthesis". In: *IEEE Transactions on Biomedical Engineering* 63.8
571 (2016), pp. 1573–1580.

572 [14] John S Pezaris and Emad N Eskandar. "Getting signals into the brain: visual prosthetics through thalamic
573 microstimulation". In: *Neurosurgical focus* 27.1 (2009), E6.

574 [15] Alessandro Motta et al. "Dense connectomic reconstruction in layer 4 of the somatosensory cortex". In: *Science*
575 366.6469 (2019), eaay3134.

576 [16] Jessica Frey et al. "Past, present, and future of deep brain stimulation: hardware, software, imaging, physiology
577 and novel approaches". In: *Frontiers in Neurology* 13 (2022), p. 825178.

578 [17] Jan Niklas Petry-Schmelzer et al. "Non-motor outcomes depend on location of neurostimulation in Parkinson's
579 disease". In: *Brain* 142.11 (2019), pp. 3592–3604.

580 [18] Balint Nagy et al. "Different patterns of neuronal activity trigger distinct responses of oligodendrocyte pre-
581 cursor cells in the corpus callosum". In: *PLoS Biology* 15.8 (2017), e2001993.

582 [19] V Vedam-Mai et al. "Deep brain stimulation and the role of astrocytes". In: *Molecular psychiatry* 17.2 (2012),
583 pp. 124–131.

584 [20] Albert J Fenoy et al. "Deep brain stimulation: are astrocytes a key driver behind the scene?" In: *CNS
585 neuroscience & therapeutics* 20.3 (2014), pp. 191–201.

586 [21] Nathaniel P Williams et al. "Effects of central nervous system electrical stimulation on non-neuronal cells".
587 In: *Frontiers in Neuroscience* 16 (2022), p. 967491.

588 [22] Joseph W Salatino et al. "Glial responses to implanted electrodes in the brain". In: *Nature biomedical engineering* 1.11
589 (2017), pp. 862–877.

590 [23] Marjolaine Boulingre, Roberto Portillo-Lara, and Rylie Green. "Biohybrid neural interfaces: Improving the
591 biological integration of neural implants". In: *Chemical Communications* (2023).

592 [24] Wan-Lou Lei et al. "All Biodisintegratable Hydrogel Biohybrid Neural Interfaces with Synergistic Perform-
593 ance of Microelectrode Array Technologies, Tissue Scaffolding, and Cell Therapy". In: *Advanced Functional
594 Materials* (2023), p. 2307365.

595 [25] T Stieglitz et al. "A biohybrid system to interface peripheral nerves after traumatic lesions: design of a high
596 channel sieve electrode". In: *Biosensors and Bioelectronics* 17.8 (2002), pp. 685–696.

597 [26] Amy E Rochford et al. "When bio meets technology: biohybrid neural interfaces". In: *Advanced Materials*
598 32.15 (2020), p. 1903182.

599 [27] Amy E Rochford et al. “Functional neurological restoration of amputated peripheral nerve using biohybrid
600 regenerative bioelectronics”. In: *Science Advances* 9.12 (2023), eadd8162.

601 [28] Benozir Ahmed et al. “Implementation and testing of a biohybrid transition microelectrode array for neural
602 recording and modulation”. In: *bioRxiv* (2023), pp. 2023–08.

603 [29] Susanne Falkner et al. “Transplanted embryonic neurons integrate into adult neocortical circuits”. In: *Nature*
604 539.7628 (2016), pp. 248–253.

605 [30] Omer Revah et al. “Maturation and circuit integration of transplanted human cortical organoids”. In: *Nature*
606 610.7931 (2022), pp. 319–326.

607 [31] Raphael F. Tiefenauer et al. “Fast and Versatile Multiscale Patterning by Combining Template-Stripping
608 with Nanotransfer Printing”. In: *ACS Nano* 12.3 (Mar. 2018), pp. 2514–2520. ISSN: 1936-0851. DOI: 10.1021/
609 acsnano.7b08290.

610 [32] Nicolas Vachicouras et al. “Microstructured thin-film electrode technology enables proof of concept of scalable,
611 soft auditory brainstem implants”. In: *Science Translational Medicine* 11.514 (Oct. 2019), eaax9487. DOI:
612 10.1126/scitranslmed.aax9487.

613 [33] Giuseppe Schiavone et al. “Guidelines to Study and Develop Soft Electrode Systems for Neural Stimulation”.
614 en. In: *Neuron* 108.2 (Oct. 2020), pp. 238–258. ISSN: 0896-6273. DOI: 10.1016/j.neuron.2020.10.010.

615 [34] Giulia Comini et al. “Survival and maturation of human induced pluripotent stem cell-derived dopaminergic
616 progenitors in the parkinsonian rat brain is enhanced by transplantation in a neurotrophin-enriched hydrogel”.
617 In: *Journal of Neural Engineering* 21.2 (2024), p. 024002.

618 [35] Srinivas Madduri et al. “Effect of controlled co-delivery of synergistic neurotrophic factors on early nerve
619 regeneration in rats”. In: *Biomaterials* 31.32 (2010), pp. 8402–8409.

620 [36] Hao Liu et al. “Filamented Light (FLight) Biofabrication of Highly Aligned Tissue-engineered Constructs”.
621 In: *Advanced Materials* 34.45 (2022), p. 2204301.

622 [37] Jens Duru et al. “Engineered biological neural networks on high density CMOS microelectrode arrays”. In:
623 *Frontiers in neuroscience* 16 (2022), p. 829884.

624 [38] Giulia Amos et al. “Engineering an in vitro retinothalamic nerve model”. In: *Frontiers in Neuroscience* 18
625 (May 2024). ISSN: 1662-453X. DOI: 10.3389/fnins.2024.1396966. URL: <http://dx.doi.org/10.3389/fnins.2024.1396966>.

626 [39] Florian Fallegger et al. “A low-profile electromechanical packaging system for soft-to-flexible bioelectronic
627 interfaces”. en. In: *APL Bioengineering* 7.3 (Sept. 2023), p. 036109. ISSN: 2473-2877. DOI: 10.1063/5.0152509.

629 [40] Scott F. Lempka et al. “In vivo impedance spectroscopy of deep brain stimulation electrodes”. en. In: *Journal
630 of Neural Engineering* 6.4 (June 2009), p. 046001. ISSN: 1741-2552. DOI: 10.1088/1741-2560/6/4/046001.

631 [41] C. Boehler, T. Stieglitz, and M. Asplund. “Nanostructured platinum grass enables superior impedance re-
632 duction for neural microelectrodes”. In: *Biomaterials* 67 (Oct. 2015), pp. 346–353. ISSN: 0142-9612. DOI:
633 10.1016/j.biomaterials.2015.07.036.

634 [42] Rylie A. Green et al. “Variation in Performance of Platinum Electrodes with Size and Surface Roughness”.
635 en. In: *Sensors and Materials* 24.4 (2012), pp. 165–180. ISSN: 0914-4935. DOI: 10.18494/SAM.2012.821.

636 [43] Ronald T. Leung et al. “In Vivo and In Vitro Comparison of the Charge Injection Capacity of Platinum
637 Macroelectrodes”. In: *IEEE Transactions on Biomedical Engineering* 62.3 (Mar. 2015), pp. 849–857. ISSN:
638 1558-2531. DOI: 10.1109/TBME.2014.2366514.

639 [44] Renaud Renault et al. “Asymmetric axonal edge guidance: a new paradigm for building oriented neuronal
640 networks”. In: *Lab on a Chip* 16.12 (2016), pp. 2188–2191.

641 [45] Jacob P Sunnerberg et al. “Axonal growth on surfaces with periodic geometrical patterns”. In: *Plos one* 16.9
642 (2021), e0257659.

643 [46] Guo-li Ming et al. “Adaptation in the chemotactic guidance of nerve growth cones”. In: *Nature* 417.6887
644 (2002), pp. 411–418.

645 [47] William J Rosoff et al. “A new chemotaxis assay shows the extreme sensitivity of axons to molecular gradients”.
646 In: *Nature neuroscience* 7.6 (2004), pp. 678–682.

647 [48] Alejandro Carnicer-Lombarte et al. “Foreign body reaction to implanted biomaterials and its impact in nerve
648 neuroprosthetics”. In: *Frontiers in Bioengineering and Biotechnology* 9 (2021), p. 622524.

649 [49] Parvathi Varier et al. “A brief review of in vitro models for injury and regeneration in the peripheral nervous
650 system”. In: *International Journal of Molecular Sciences* 23.2 (2022), p. 816.

651 [50] Jacob M Stillman et al. “Lipofuscin-like autofluorescence within microglia and its impact on studying mi-
652 croglial engulfment”. In: *Nature Communications* 14.1 (2023), p. 7060.

653 [51] Pierre Bourdely et al. “Autofluorescence identifies highly phagocytic tissue-resident macrophages in mouse
654 and human skin and cutaneous squamous cell carcinoma”. In: *Frontiers in Immunology* 13 (2022), p. 903069.

655 [52] Laura A Struzyna et al. “Tissue engineered nigrostriatal pathway for treatment of Parkinson’s disease”. In:
656 *Journal of tissue engineering and regenerative medicine* 12.7 (2018), pp. 1702–1716.

657 [53] Giulia Amos et al. “Engineering an in vitro retinothalamic nerve model”. In: *bioRxiv* (2024), pp. 2024–03.

658 [54] Parth Chansoria et al. “Synergizing Algorithmic Design, Photoclick Chemistry and Multi-Material Volumetric
659 Printing for Accelerating Complex Shape Engineering”. In: *Advanced Science* 10.26 (2023), p. 2300912.

660 [55] Jens Duru et al. “Investigation of the input-output relationship of engineered neural networks using high-
661 density microelectrode arrays”. In: *Biosensors and Bioelectronics* 239 (2023), p. 115591.

662 [56] Jens Duru et al. “A modular and flexible open source cell incubator system for mobile and stationary use”.
663 In: *bioRxiv* (2024), pp. 2024–03.

664 [57] Eftychios A Pnevmatikakis and Andrea Giovannucci. “NoRMCorre: An online algorithm for piecewise rigid
665 motion correction of calcium imaging data”. In: *Journal of neuroscience methods* 291 (2017), pp. 83–94.

666 [58] Liang Liang et al. “A fine-scale functional logic to convergence from retina to thalamus”. In: *Cell* 173.6 (2018),
667 pp. 1343–1355.

668 [59] Csaba Forró et al. “Modular microstructure design to build neuronal networks of defined functional connec-
669 tivity”. In: *Biosensors and Bioelectronics* 122 (2018), pp. 75–87.

670 [60] Joseph Redmon and Ali Farhadi. “Yolov3: An incremental improvement”. In: *arXiv preprint arXiv:1804.02767*
671 (2018).

672 [61] Srinivas Madduri, M Papaloizos, and B Gander. “Trophically and topographically functionalized silk fibroin
673 nerve conduits for guided peripheral nerve regeneration”. In: *Biomaterials* 31.8 (2010), pp. 2323–2334.

674 [62] Srinivas Madduri, Michaël Papaloizos, and Bruno Gander. “Synergistic effect of GDNF and NGF on axonal
675 branching and elongation in vitro”. In: *Neuroscience research* 65.1 (2009), pp. 88–97.

676 [63] Patricia Sieber et al. “Advanced therapeutic medicinal product for promoting nerve regeneration”. In: () .