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Autism spectrum disorder (ASD) is a class of complex neurodevelopment disorders with high genetic heterogeneity. Long
non-coding RNAs (IncRNAs) are vital regulators that perform specific functions within diverse cell types and play pivotal
roles in neurological diseases including ASD. Therefore, studying the specific regulation of IncRNAs in various cell types
is crucial for deciphering ASD molecular mechanisms. Existing computational methods utilize bulk transcriptomics data
across all of cells or samples, which could reveal the commonalities of IncCRNA regulation in the pathogenesis of ASD, but
ignore the specificity of IncRNA regulation across various cell types. Here, we present Cycle (Cell type-specific INcCRNA
regulatory network) to construct the landscape of cell type-specific INcRNA regulation in ASD. We have found that each
ASD cell type is unique in IncRNA regulation, and more than one-third and all of cell type-specific IncRNA regulatory
networks are characterized as scale-free and small-world, respectively. Across 17 ASD cell types, we have discovered 19
rewired and 11 conserved modules, and eight rewired and three conserved hubs underlying within the discovered cell type-
specific INncRNA regulatory networks. Moreover, the discovered rewired and conserved modules and hubs are significantly
enriched in ASD-related terms. Furthermore, more similar ASD cell types tend to be connected with higher strength in the
constructed cell similarity network. Finally, the comparison results demonstrate that Cycle is a potential method for

uncovering cell type-specific IncRNA regulation.

Introduction

Autism spectrum disorder (ASD) refers to a collection of
neurodevelopmental disorders exhibiting profound genetic
diversity and complexity [1,2]. Since childhood, ASD indi-
viduals have a wide range of difficulties and deficiencies in
social interaction, language communication [3]. Despite
striking progress in studying ASD has demonstrated that
ASD possesses strong genetic heterogeneity and numerous
molecules participate in regulating a series of complex bio-
logical processes, including neuronal activity [4] and im-
mune response [2], an understanding of the pathobiology of
ASD is still largely unclear. Unlocking the underlying patho-
genesis of ASD at the molecular regulatory level holds pro-
found implications in early detection and personalized
treatment.

Long non-coding RNAs (IncRNAs) comprise a category
of non-coding RNAs that are typically longer than 200 nu-
cleotides, which act as regulators to make significant contri-
butions to neurological diseases, e.g. ASD [3,5]. In the field
of neurobiology, previous studies [3,6] have revealed that
numerous IncRNAs exert biological functions specific to cell
types, including neuronal differentiation, synaptic develop-
ment, and plasticity [7]. In addition, IncRNA regulation also
exhibits to be tissue-specific [8], and cell developmental-
stage specific [9]. Due to the heterogeneity and complexity
in the development of ASD, studying cell type-specific or dy-
namic IncRNA regulation could provide a new perspective
for discovering potential therapeutic strategies for ASD.

At present, devising computational methods constitutes
a highly promising way to decipher the function of IncRNAs
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in modulating ASD-related biological processes. By using
bulk transcriptomics data, computational methods for iden-
tifying IncRNA regulation can be grouped into three pri-
mary categories: sequence-based methods that rely on nu-
cleic acid sequence characteristics, expression-based meth-
ods focusing on variations in IncRNA expression levels, and
integration-based methods that combine multiple sources
of data. Sequence-based methods calculate the binding en-
ergy of RNA base pairs to infer IncRNA-target binding pairs.
A prime example is LncTar [10], which utilizes the nearest
neighbour thermodynamic model to compute the binding
free energy of IncRNA-RNA pairs. Expression-based meth-
ods have been firmly established and encompass a diverse
range of statistical [11,12], deep learning [13,14], or causal
inference [15] approaches. These methods utilize gene ex-
pression profiles to derive and establish IncRNA-target cor-
relation or causality pairs. Alternatively, integration-based
methods [16,17] combine a variety types of data (e.g., se-
quence information and expression profiles), thereby en-
hancing the precision and reliability of IncRNA target pre-
diction. The major limitation of the above methods using
bulk transcriptomics data is that they ignore the heteroge-
neity of IncRNA regulation across various samples (cell
lines or tissues). As single-cell and single-nucleus RNA se-
quencing technology continues to evolve, inferring IncRNA
regulation with single-cell or cell type resolution opens a
way to specifically explore IncRNA regulation applicable to
unique cells or cell types in ASD. Regarding cell-specific
gene regulation, CSN (Cell-Specific Network) method [18]
pioneers the construction of cell-specific networks using
single-cell transcriptome data. Subsequently, as an
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improvement of CSN, c-CSN [19], loc-CSN [20], and p-CSN
[21] are also presented to infer conditional, local, and par-
tial cell-specific networks, respectively. Specifically, for ex-
ploring cell-specific miRNA regulation, CSmiR [22] has also
been developed to investigate single-cell level modulation
of miRNA expression. In terms of regulation specific to indi-
vidual cell types, scHumanNet [23] aims to generate special-
ized gene regulatory networks (GRNs) for individual cell
types by leveraging the information contained in the Hu-
manNet reference interactome and single-cell expression
data. The recently developed scMTNI [24] method inte-
grates single-cell multi-omics datasets to build GRNs spe-
cific to cell types across cell lineages. However, these cell-
specific or cell type-specific regulation approaches priori-
tize primarily on transcription factor or miRNA regulation,
rather than IncRNA regulation. To infer IncRNA regulation
specific to biological conditions, CDSIncR [9] could infer
IncRNA regulatory networks corresponding to distinct de-
velopmental states of the brain neocortex. Given that the
pathogenesis of ASD involves a series of cell types and bio-
logical processes regulated by IncRNAs, thus it is crucial to
study cell type-specific IncRNA regulation in ASD.

To explore the dynamic IncRNA regulation across vari-
ous ASD cell types, we put forward a distinctively original
method, Cycle (Cell type-specific IncRNA regulatory net-
work), to model cell type-specific IncRNA regulatory net-
works in ASD. Cycle has two main contributions as follows.
Firstly, contrary to considering all types of interactions en-
compassing those between mRNAs, between IncRNAs, and
also between IncRNAs and mRNAs, Cycle primarily concen-
trates on identifying IncRNA-mRNA interactions. Secondly,
taking the diversity and specificity of cells and cell types
into consideration, Cycle identifies IncRNA regulatory net-
works specific to each cell type.

We have applied Cycle into single-nucleus RNA-sequenc-
ing (snRNA-seq) data of ASD brain tissues [25] for model-
ling the landscape of cell type-specific IncRNA regulation in
ASD. Our research has found that each ASD cell type is
unique in IncRNA regulation. Notably, over one-third of the
cell type-specific IncRNA regulatory networks are scale-free,
and all of them exhibit to be small-world. Among 17 ASD cell
types, we have inferred 19 rewired modules and 11 con-
served modules, along with eight rewired hubs and three
conserved hubs leveraging these cell type-specific IncRNA
regulatory networks. Importantly, these discovered re-
wired and conserved modules, and conserved hubs are sig-
nificantly associated with ASD-related terms. Additionally,
ASD cell types that are more similar tend to be strongly con-
nected in the constructed cell similarity network. Finally,
our comparison results suggest that Cycle represents a
promising approach in elucidating cell type-specific IncRNA
regulation.

Results

The landscape of cell type-specific INncRNA regulation in
ASD

Following the workflow of Cycle, we model the landscape of
IncRNA regulation across 17 ASD cell types. The number of
IncRNA-mRNA interactions and hub IncRNAs tends to be
various across 17 ASD cell types (Figure 1a). In the case of
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IncRNA-mRNA interactions, L4 and microglia cells obtain
the largest and least number of interactions, respectively. In
the case of hub IncRNAs, L2/3 and ASTFB have the largest
and least number of hubs, respectively. Network topological
analysis displays that 6 out of 17 (~35.29%) cell type-spe-
cific IncRNA-mRNA regulatory networks adhere to a power
law distribution, and all of cell type-specific IncRNA-mRNA
networks display higher densities compared to their corre-
sponding random networks (Figure 1b and Supplemen-
tary Table 1). These results indicate that over one-third of
these cell type-specific IncRNA regulatory networks tend to
be scale-free, and all of these cell type-specific IncRNA reg-
ulatory networks exhibit to be small-world.
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Figure 1: The IncRNA regulation landscape across 17 cell types. (a)
The number of IncRNA-mRNA interactions and hub IncRNAs within
each cell type. (b) The topological properties of INcRNA-mRNA regula-
tory networks for each cell type.
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Each ASD cell type is unique in IncRNA regulation
In this section, we investigate the uniqueness, conservation
and dynamics of IncRNA regulation among various ASD cell
types. We have found that the IncRNA regulatory networks
and hub IncRNAs between any couples of 17 ASD cell types
are various, indicating the uniqueness of each cell type
(Figure 2a and 2b). For the IncRNA regulatory networks,
nearly half pairs between 17 cell types (~46.32%) have a
difference value with more than 0.500. Specifically, the
highest difference value (0.951) between 17 cell types is
between microglia and NeuNRGN-II (Figure 2a). For hub
IncRNAs, more than one-third pairs between 17 cell types
(~36.76%) have a difference value with more than 0.500,
and the highest difference value (0.844) between 17 cell
types also exists between L5/6-CC and Neu-mat (Figure
3b). These results have suggested that each ASD cell type is
unique in IncRNA regulatory networks and hub IncRNAs.
With regard to conservative and dynamic analysis,
115,108 IncRNA-mRNA interactions and eight hub IncRNAs
(CPVL-AS2, LINC00343, LINC01202, LINC01619, LINC01811,
LINC02301, LINC03013, SYNPO2L-AS1) only exist in one cell
type, and 63 IncRNA-mRNA interactions and three hub
IncRNAs (ANKRD17-DT, LINC01572, MIRLET7BHG) exist in
at least 90% cell types (Figure 2c). In total, we have
obtained 115,108 rewired interactions, 63 conserved
interactions, eight rewired hubs, and three conserved hubs
across 17 ASD cell types. Overall, the number of rewired
interactions or hubs is larger than that of conserved
interactions or hubs, indicating that IncRNA regulation
tends to be dynamic across ASD cell types.
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Figure 2: Uniqueness of INcCRNA regulation across ASD cell types. (a-b) Unigueness of IncRNA-mRNA regulatory networks and hub IncRNAs in
each ASD cell type. (c) The radar chart of IncRNA-mRNA interactions and hub IncRNAs.

Rewired and conserved IncRNA regulatory modules and
hub IncRNAs are closely associated with ASD

Based on the rewired and conserved IncRNA-mRNA
regulatory networks, we have further discovered 19
rewired and 11 conserved modules. To reveal the
fundamental biological significance of IncRNA regulation
associated with ASD, we conduct functional and disease
enrichment analysis of the rewired and conserved IncRNA
regulatory modules and hub IncRNAs. We have found that
all of the rewired and conserved IncRNA regulatory
modules exhibit significant enrichment in one or more
terms belonging to GO, KEGG, Reactome, DO, NCG or
DisGeNET databases (Figure 3). Among 19 rewired IncRNA
regulatory modules, Module 10 has the largest number of
terms or pathways enriched. For 11 conserved IncRNA
regulatory modules, Module 7 has the highest number of
enriched terms or pathways enriched. For the rewired and
conserved IncRNA regulatory modules, several significant
functional enriched terms, e.g., the GO term "regulation of
neuron projection development (G0:0010975)", KEGG
pathway "Pathways of neurodegeneration - multiple
diseases (hsa05022)", Reactome pathway "Neuronal
System (R-HSA-112316)" show a close relationship with
the progression and emergence of ASD traits. In addition,
DisGeNET terms (Autistic behavior (C0856975) and
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Abnormality of brain morphology (C4021085), DO terms
(autism spectrum disorder (DOID:0060041)), and NCG
term (pan-cancer_paediatric) are also highly related to ASD
(refer to Supplementary Table 2 for more detailed
information).

From the rewired and conserved IncRNA-mRNA
regulatory networks, we have inference eight rewired hubs
and three conserved hubs. The rewired hubs are not found
to be significantly enriched in any particular biological
pathway, and the conserved hub IncRNAs are significantly
enriched in 184 KEGG, 3074 GO, and 364 Reactome terms
or diseases, indicating their participate in ASD-related
biological processes. The rewired hubs did not exhibit
enrichment on the pathways from the functional analysis
database. Notably, several of these terms, such as Reactome
pathway "PI3K/AKT Signaling in Cancer (R-HSA-2219528)",
KEGG pathway "PI3K-Akt signaling pathway (hsa04151)",
and GO term "negative regulation of neurogenesis
(GO:0050768)", are strongly linked to ASD (see details in
Supplementary Table 2).

Altogether, the rewired and conserved IncRNA
regulatory modules, and conserved hub IncRNAs are
strongly linked with the pathophysiological progression of
ASD.

b Enrichment analysis of conserved modules
Module 1 4 5% —=
Module 2 { Fil
Module 34 BB Typcs
Module 4 { fk—om DisGeNet
Module 5 { S - DO
Module 6 4 Bilh— 4 - GO
Module 74 [HH—& ~~ KEGG
Module 8 2 - $& NCG
Module 9 4 S5-I Reactome
Module 10 { £ai—m
Module 11 4 S8

T T T T
100 200 300 400

Number of enriched terms or pathways

Figure 3: Enrichment analysis of rewired and conserved modules. (a) The number of enriched terms for rewired modules. (b) The number of

enriched terms for conserved modules.

Xiong et al. 2024 (preprint)


https://doi.org/10.1101/2024.05.31.594791
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.31.594791; this

version posted June 3, 2024. The copyright holder for this preprint

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

made available under aCC-BY

Cell similarity network

In this section, we further construct a cell similarity
network by using IncRNA-mRNA interactions and hub
IncRNAs in each ASD cell type. If the similarity value of a
cell-cell pair is larger than the median value of similarity,
the cell-cell pair is considered to be a link in the cell
similarity network. As a result, we have found that L4 is
similar with the largest number of other ASD cell types,
while ASTFB is similar with the least number of other ASD
cell types (Figure 4).

Netimat INSV2C

NeuNRGNI INVIP

Figure 4: Cell similarity network. Cell similarity network between 17
ASD cell types by using IncRNA-mRNA interactions and hub IncRNAs.
A larger circle denotes that the cell type is similar with a larger number
of other cell types.

In comparison with the other method

CDSIncR [9] is the first method to carry out research on cell
type-specific IncRNA regulation. In this section, a
performance comparison was conducted between Cycle and
CDSIncR in terms of modelling cell type-specific IncRNA
regulation. To ensure fairness, the significance threshold for
p-value of CDSIncR and Cycle is set equally. We conduct a
comparison of the number of validated IncRNA-mRNA

-NC 4.0 International license.

interactions predicted by Cycle and CDSIncR [9]. For each
ASD cell type, Cycle outperforms CDSIncR by yielding a
higher number of validated IncRNA-mRNA interactions
(Figure 5). The comparison yields insights indicating that
Cycle is better than CDSIncR in modelling cell type-specific
IncRNA regulation.
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Figure 5: Comparison results. Comparison between Cycle and
CDSIncR in the number of validated IncRNA-mRNA interactions.

Materials and Methods

The flowchart of Cycle

Cycle includes three main components (Figure 6). Firstly, Cycle conducts
data preprocessing including gene annotation, feature selection, and data
splitting to acquire the expression data pertaining to the highly expressed
IncRNAs and mRNAs in 17 ASD cell types. For each ASD cell type, Cycle fur-
ther identifies IncRNA regulatory networks specific to it. In total, 17 cell
type-specific IncRNA regulatory networks are modelled. Derived from the
constructed cell type-specific IncRNA regulatory networks, Cycle further
deduces the rewired and conserved modules and hubs. Finally, Cycle can
perform four types of downstream analyses, including network topological
analysis, uniqueness analysis, cell similarity network construction, and en-
richment analysis. The details of each component will be described in the
following.
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Figure 6: Workflow of Cycle. Firstly, Cycle extracts the matched IncRNA and mRNA expression data by using gene annotation information
from HGNC (HUGO Gene Nomenclature Committee), and further retains the highly expressed IncRNAs and mRNAs for each cell type. In
total, we have obtained 17 cell type-specific expression data of highly expressed IncRNAs and mRNAs. Secondly, Cycle models cell type-
specific IncRNA regulatory networks for 17 ASD cell types. Furthermore, Cycle identifies the rewired and conserved modules, and infers
hubs utilizing the established IncRNA regulatory networks specifically modelled for individual cell types. Finally, Cycle conducts four types
of downstream analyses, including modules identification, hub inference, network topological analysis, uniqueness analysis, cell similarity
network construction, and enrichment analysis. Created with BioRender.com.

Single-nucleus RNA-sequencing data in ASD
We obtain ASD snRNA-seq data from the Sequence Read Archive (SRA)
with accession number PRJNA434002 [25]. As a preprocessing step, we
utilized gene annotation information from HGNC (HUGO Gene Nomencla-
ture Committee, https://www.genenames.org/) and selected genes whose
expression levels were higher than the average expression level across all
cells. In total, we have retained 813 IncRNAs and 5,133 mRNAs highly ex-
pressed in 52,003 ASD cells. The 52,003 ASD cells are categorized into 17
cell types, including oligodendrocyte precursor cells (OPC), oligodendro-
cytes, microglia cells, fibrous astrocytes (ASTFB), protoplasmic astrocytes
(ASTPP), layer 2/3 excitatory neurons (L2/3), layer four excitatory neu-
rons (L4), layer 5/6 corticofugal projection neurons (L5/6), layer 5/6 cor-
tico-cortical projection neurons (L5/6-CC), SV2C interneurons (IN-SV2C),
somatostatin interneurons (IN-SST), VIP interneurons (IN-VIP), parvalbu-
min interneurons (IN-PV), endothelial cells, NRGN-expressing neurons
(NeuNRGN-I), NRGN-expressing neurons (NeuNRGN-II), and maturing
neurons (Neu-mat). Detailed information on 17 ASD cell types can be found
in Supplementary Table 1.
Identification of cell type-specific INncRNA regulatory networks
For each cell type, modelling cell type-specific networks is grounded upon
the identification and characterization of cell-specific regulatory networks.
Hence, the initial undertaking for the Cycle method is to precisely
determine cell-specific IncRNA regulatory networks. Here, Cycle adapts
CSN [18] with local strategy [20] to quantitatively estimate the correlation
strength of IncRNA-mRNA relationship pairs in each cell. Within each cell,
significantly cell-specific IncRNA-mRNA interactions are subsequently
consolidated to model a cell-specific IncRNA-mRNA regulatory network.
In cell k, I, and m, are the expression values of IncRNA IncR, and

mRNA mR_ , respectively, pl("'?) is calculated as the interaction strength be-

tween IncR, and mR,, in the following:
) K
L. SNl (1)

where N is the number of cells for ASD snRNA-seq data, n|(k) and nr(nk) are
the neighbourhood number of I, and m, inthebinsofcell kfor IncR, and
mR,, , respectively, and n|(n|:) is the neighbourhood number of (Ik,mk) in

the interaction bin of cell k.
Owing to the specificity and heterogeneity of cells, self-adaptive win-

dow size B|(k) and B,(nk) of bins in cell k are iteratively generated based on

local standard deviations as follows:
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Every value carries a corresponding p-value, and a significantly
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smaller p-value (e.g., p < 0.01) evidences higher credibility for genuine
IncRNA-mRNA interactions from a statistical perspective.

For each cell, we only focus on the IncRNA-mRNA interactions with
statistical significance (e.g. p-value less than 0.01). If a significant IncRNA-
mRNA interaction exists in more than 90% of total cells of a cell type, the
IncRNA-mRNA interaction is regarded as one of a collection of IncRNA-
mRNA interactions specifically for the cell type. By integrating all of the
distinctive IncRNA-mRNA interactions peculiar to individual cell types, Cy-
cle constructs 17 cell type-specific IncRNA-mRNA regulatory networks.

Network topological analysis

Topological analysis contributes to exploring the characteristics and
organization of biological networks including IncRNA regulatory networks.
Degree and density are two widely used metrics to characterize a biological
network. If the node degree distribution of a cell type-specific IncRNA
regulatory network adheres to a power-law distribution with a p-value of
a Kolmogorov-Smirnov test [26] larger than 0.05, the network tends to be
a scale-free network. If the characteristic density of a cell type-specific
IncRNA regulatory network is higher than that of its corresponding
random networks at a significance level (e.g, 0.05), the network is
regarded as a small-world network. Here, for each cell type-specific
IncRNA regulatory network, we generate 1,000 random networks by
randomizing the IncRNA-mRNA interactions. We utilize the Student's t-test
for statistically quantifying the differences between the built cell type-
specific IncRNA regulatory networks and their corresponding random
networks. In this work, the igraph R package [27] is applied to analyze the
topological attributes of the constructed cell type-specific IncRNA
regulatory networks.

Hub IncRNA inference
Hub IncRNAs with high connectivity play key pivot roles in a cell type-
specific IncRNA regulatory network. Rather than inferring hubs as those
with a node degree exceeding a giving value, we assume that the node
degree of IncRNAs follows the Poisson distribution [28-30]. For each
IncRNA, we calculate the p-value of it accordingly presented:
k-1 e,g/li
p(x=k)=1-p(x<k)=1-)" - (5)

i=0

where A=np, p :% , N is the number of IncRNAs, m is the number of

IncRNA-mRNA pairs in a IncRNA-mRNA regulatory network,and A’ isthe

number of all possible IncRNA-mRNA interactions. In this work, a IncRNA
with p-value less than 0.05 is viewed as a hub IncRNA.

Conservative and dynamic analysis

In the cell type-specific IncRNA regulatory networks, the conserved and
rewired interactions and hubs reveal the commonality and heterogeneity
of different ASD cell types, providing new insights into conservative and
dynamic IncRNA regulation across ASD cell types. Previous studies [15,31]
have shown that IncRNA regulation is 'on’ in some biological conditions but
is 'off' in other biological conditions. Here, IncRNA-mRNA interactions or
hub IncRNAs existing in at least 90% ASD cell types are considered as the
conserved IncRNA regulatory network or hub IncRNAs, and IncRNA-mRNA
interactions or hub IncRNAs existing in only one ASD cell type are viewed
as the rewired IncRNA regulatory network or hub IncRNAs. To further
identify highly connected functional modules within the conserved and
rewired IncRNA regulatory networks, we have applied the Markov Cluster
(MCL) algorithm to discover the conserved and rewired IncRNA regulatory
modules. In every module, the combined total of IncRNAs and mRNAs
should amount to at least three.

Uniqueness of cell type-specific INcRNA regulation

In-depth exploration of the uniqueness of IncRNA regulation between ASD
cell types involves focusing on the difference of IncRNA-mRNA interactions
or hub IncRNAs between any pairs of cell types. Regarding cell type-
specific IncRNA regulatory networks, we use the Simpson model [32] to

estimate the similarity sim; between ASD cell types i and j . The

difference dif; between ASD cell types i and j is computed as described

below.


https://doi.org/10.1101/2024.05.31.594791
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.31.594791; this version posted June 3, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

Cell type-specific IncRNA regulatory network

dif; =1—sim (6)
- |RIOLR] @
" min(|LR||LR)])

where LR; and LR; are IncRNA-mRNA interactions or hub IncRNAs
existing in ASD cell types i and j , |LRi|ﬂ|LRJ-| represents the
intersection number of IncRNA-mRNA interactions or hub IncRNAs

between LR, and LRJ. , and min(|LRi|,|LRj|) is the smaller number of

IncRNA-mRNA interactions or hub IncRNAs between LR, and LR;. A

larger value of dif; denotes a higher uniqueness between ASD cell types i
and j.

Enrichment analysis

To understand the conservative and dynamic biological processes in the
conserved and rewired IncRNA-mRNA regulatory modules, we conduct
enrichment analysis with miRspongeR [33] and clusterProfiler [34] R
packages. The databases used for functional enrichment analysis include
Gene Ontology (GO) [35], Kyoto Encyclopedia of Genes and Genomes
(KEGG) [36], and Reactome Pathway database (Reactome) [37].
Additionally, three disease databases including Disease Ontology (DO) [38],
DisGeNET [39], and Network of Cancer Genes (NCG) [40] are also
considered for disease enrichment analysis. With regard to hub IncRNAs,
we employ RNAenrich [41], a powerful comprehensive web server for
ncRNA functional enrichment, to explore potential pathways, biological
processes and diseases which they participate. In this work, the enriched
KEGG, GO, Reactome, DO, DisGeNET or NCG term that exhibits a
statistically significant enrichment with an adjusted p-value<0.05
(adjusted by the Benjamini-Hochberg approach) is viewed as notably
enriched. Moreover, we collect experimentally validated IncRNA-target
interactions from NPInter v5.0 [42], LncTarD v2.0 [43] and
LncRNA2Target [44].

Discussion

ASD is a set of complex neurodevelopmental disorders that
manifest with varying symptoms among individuals.
Exploring the regulatory mechanisms of IncRNA within and
between different ASD cell types holds significance in
elucidating the etiology and ontogeny of ASD. Our work
develops a novel approach called Cycle, designed to model
cell type-specific IncRNA regulatory networks in ASD. For
each ASD cell type, we have shown that the IncRNA
regulation tends to be unique. Moreover, the rewired and
conserved IncRNA regulatory modules and hub IncRNAs are
significantly enriched in several ASD-related terms or
pathways. In addition, cell similarity network can help to
know which cell types are similar with the least or largest
number of other ASD cell types. In comparison with
CDSIncR, Cycle performs better in inferring cell type-
specific IncRNA regulation.

In future, Cycle can be further improved in the following
three aspects. Firstly, Cycle mainly focuses on IncRNA
regulation specific to ASD cell types. In future, it is necessary
to study condition-specific IncRNA regulation, e.g., sex-
specific or region-specific IncRNA regulation. Secondly,
Cycle only infers the association/correlation rather than
causal relationships between IncRNAs and mRNAs. In
future, we will conduct cell type-specific IncRNA causal
regulation research. Thirdly, competing endogenous RNA
(ceRNA) hypothesis [45] suggests that IncRNAs have the
potential to modulate gene expression by acting as ceRNAs,
thus it is strongly needed to identify cell type-specific
IncRNA-related ceRNA networks for comprehensively
understanding IncRNA regulation.

Xiong et al. 2024 (preprint)

Conclusion

Overall, Cycle is useful for modelling the landscape of cell
types-specific IncRNA regulation in ASD. Cycle gains insights
into the IncRNA regulation underlying ASD across various
cell types, and provide potential treatment strategies.
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