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Autism spectrum disorder (ASD) is a class of complex neurodevelopment disorders with high genetic heterogeneity. Long 
non-coding RNAs (lncRNAs) are vital regulators that perform specific functions within diverse cell types and play pivotal 
roles in neurological diseases including ASD. Therefore, studying the specific regulation of lncRNAs in various cell types 
is crucial for deciphering ASD molecular mechanisms. Existing computational methods utilize bulk transcriptomics data 
across all of cells or samples, which could reveal the commonalities of lncRNA regulation in the pathogenesis of ASD, but 
ignore the specificity of lncRNA regulation across various cell types. Here, we present Cycle (Cell type-specific lncRNA 
regulatory network) to construct the landscape of cell type-specific lncRNA regulation in ASD. We have found that each 
ASD cell type is unique in lncRNA regulation, and more than one-third and all of cell type-specific lncRNA regulatory 
networks are characterized as scale-free and small-world, respectively. Across 17 ASD cell types, we have discovered 19 
rewired and 11 conserved modules, and eight rewired and three conserved hubs underlying within the discovered cell type-
specific lncRNA regulatory networks. Moreover, the discovered rewired and conserved modules and hubs are significantly 
enriched in ASD-related terms. Furthermore, more similar ASD cell types tend to be connected with higher strength in the 
constructed cell similarity network. Finally, the comparison results demonstrate that Cycle is a potential method for 
uncovering cell type-specific lncRNA regulation. 

 

Introduction 
Autism spectrum disorder (ASD) refers to a collection of 
neurodevelopmental disorders exhibiting profound genetic 
diversity and complexity [1,2]. Since childhood, ASD indi-
viduals have a wide range of difficulties and deficiencies in 
social interaction, language communication [3]. Despite 
striking progress in studying ASD has demonstrated that 
ASD possesses strong genetic heterogeneity and numerous 
molecules participate in regulating a series of complex bio-
logical processes, including neuronal activity [4] and im-
mune response [2], an understanding of the pathobiology of 
ASD is still largely unclear. Unlocking the underlying patho-
genesis of ASD at the molecular regulatory level holds pro-
found implications in early detection and personalized 
treatment. 

Long non-coding RNAs (lncRNAs) comprise a category 
of non-coding RNAs that are typically longer than 200 nu-
cleotides, which act as regulators to make significant contri-
butions to neurological diseases, e.g. ASD [3,5]. In the field 
of neurobiology, previous studies [3,6] have revealed that 
numerous lncRNAs exert biological functions specific to cell 
types, including neuronal differentiation, synaptic develop-
ment, and plasticity [7]. In addition, lncRNA regulation also 
exhibits to be tissue-specific [8], and cell developmental-
stage specific [9]. Due to the heterogeneity and complexity 
in the development of ASD, studying cell type-specific or dy-
namic lncRNA regulation could provide a new perspective 
for discovering potential therapeutic strategies for ASD. 

At present, devising computational methods constitutes 
a highly promising way to decipher the function of lncRNAs 

in modulating ASD-related biological processes. By using 
bulk transcriptomics data, computational methods for iden-
tifying lncRNA regulation can be grouped into three pri-
mary categories: sequence-based methods that rely on nu-
cleic acid sequence characteristics, expression-based meth-
ods focusing on variations in lncRNA expression levels, and 
integration-based methods that combine multiple sources 
of data. Sequence-based methods calculate the binding en-
ergy of RNA base pairs to infer lncRNA-target binding pairs. 
A prime example is LncTar [10], which utilizes the nearest 
neighbour thermodynamic model to compute the binding 
free energy of lncRNA-RNA pairs. Expression-based meth-
ods have been firmly established and encompass a diverse 
range of statistical [11,12], deep learning [13,14], or causal 
inference [15] approaches. These methods utilize gene ex-
pression profiles to derive and establish lncRNA-target cor-
relation or causality pairs. Alternatively, integration-based 
methods [16,17] combine a variety types of data (e.g., se-
quence information and expression profiles), thereby en-
hancing the precision and reliability of lncRNA target pre-
diction. The major limitation of the above methods using 
bulk transcriptomics data is that they ignore the heteroge-
neity of lncRNA regulation across various samples (cell 
lines or tissues). As single-cell and single-nucleus RNA se-
quencing technology continues to evolve, inferring lncRNA 
regulation with single-cell or cell type resolution opens a 
way to specifically explore lncRNA regulation applicable to 
unique cells or cell types in ASD. Regarding cell-specific 
gene regulation, CSN (Cell-Specific Network) method [18] 
pioneers the construction of cell-specific networks using 
single-cell transcriptome data. Subsequently, as an 
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improvement of CSN, c-CSN [19], loc-CSN [20], and p-CSN 
[21] are also presented to infer conditional, local, and par-
tial cell-specific networks, respectively. Specifically, for ex-
ploring cell-specific miRNA regulation, CSmiR [22] has also 
been developed to investigate single-cell level modulation 
of miRNA expression. In terms of regulation specific to indi-
vidual cell types, scHumanNet [23] aims to generate special-
ized gene regulatory networks (GRNs) for individual cell 
types by leveraging the information contained in the Hu-
manNet reference interactome and single-cell expression 
data. The recently developed scMTNI [24] method inte-
grates single-cell multi-omics datasets to build GRNs spe-
cific to cell types across cell lineages. However, these cell-
specific or cell type-specific regulation approaches priori-
tize primarily on transcription factor or miRNA regulation, 
rather than lncRNA regulation. To infer lncRNA regulation 
specific to biological conditions, CDSlncR [9] could infer 
lncRNA regulatory networks corresponding to distinct de-
velopmental states of the brain neocortex. Given that the 
pathogenesis of ASD involves a series of cell types and bio-
logical processes regulated by lncRNAs, thus it is crucial to 
study cell type-specific lncRNA regulation in ASD. 

To explore the dynamic lncRNA regulation across vari-
ous ASD cell types, we put forward a distinctively original 
method, Cycle (Cell type-specific lncRNA regulatory net-
work), to model cell type-specific lncRNA regulatory net-
works in ASD. Cycle has two main contributions as follows. 
Firstly, contrary to considering all types of interactions en-
compassing those between mRNAs, between lncRNAs, and 
also between lncRNAs and mRNAs, Cycle primarily concen-
trates on identifying lncRNA-mRNA interactions. Secondly, 
taking the diversity and specificity of cells and cell types 
into consideration, Cycle identifies lncRNA regulatory net-
works specific to each cell type. 

We have applied Cycle into single-nucleus RNA-sequenc-
ing (snRNA-seq) data of ASD brain tissues [25] for model-
ling the landscape of cell type-specific lncRNA regulation in 
ASD. Our research has found that each ASD cell type is 
unique in lncRNA regulation. Notably, over one-third of the 
cell type-specific lncRNA regulatory networks are scale-free, 
and all of them exhibit to be small-world. Among 17 ASD cell 
types, we have inferred 19 rewired modules and 11 con-
served modules, along with eight rewired hubs and three 
conserved hubs leveraging these cell type-specific lncRNA 
regulatory networks. Importantly, these discovered re-
wired and conserved modules, and conserved hubs are sig-
nificantly associated with ASD-related terms. Additionally, 
ASD cell types that are more similar tend to be strongly con-
nected in the constructed cell similarity network. Finally, 
our comparison results suggest that Cycle represents a 
promising approach in elucidating cell type-specific lncRNA 
regulation. 

Results 

The landscape of cell type-specific lncRNA regulation in 
ASD 

Following the workflow of Cycle, we model the landscape of 
lncRNA regulation across 17 ASD cell types. The number of 
lncRNA-mRNA interactions and hub lncRNAs tends to be 
various across 17 ASD cell types (Figure 1a). In the case of 

lncRNA-mRNA interactions, L4 and microglia cells obtain 
the largest and least number of interactions, respectively. In 
the case of hub lncRNAs, L2/3 and ASTFB have the largest 
and least number of hubs, respectively. Network topological 
analysis displays that 6 out of 17 (~35.29%) cell type-spe-
cific lncRNA-mRNA regulatory networks adhere to a power 
law distribution, and all of cell type-specific lncRNA-mRNA 
networks display higher densities compared to their corre-
sponding random networks (Figure 1b and Supplemen-
tary Table 1). These results indicate that over one-third of 
these cell type-specific lncRNA regulatory networks tend to 
be scale-free, and all of these cell type-specific lncRNA reg-
ulatory networks exhibit to be small-world. 

 
Figure 1: The lncRNA regulation landscape across 17 cell types. (a) 
The number of lncRNA-mRNA interactions and hub lncRNAs within 
each cell type. (b) The topological properties of lncRNA-mRNA regula-
tory networks for each cell type. 

Each ASD cell type is unique in lncRNA regulation 

In this section, we investigate the uniqueness, conservation 
and dynamics of lncRNA regulation among various ASD cell 
types. We have found that the lncRNA regulatory networks 
and hub lncRNAs between any couples of 17 ASD cell types 
are various, indicating the uniqueness of each cell type 
(Figure 2a and 2b). For the lncRNA regulatory networks, 
nearly half pairs between 17 cell types (~46.32%) have a 
difference value with more than 0.500. Specifically, the 
highest difference value (0.951) between 17 cell types is 
between microglia and NeuNRGN-II (Figure 2a). For hub 
lncRNAs, more than one-third pairs between 17 cell types 
(~36.76%) have a difference value with more than 0.500, 
and the highest difference value (0.844) between 17 cell 
types also exists between L5/6-CC and Neu-mat (Figure 
3b). These results have suggested that each ASD cell type is 
unique in lncRNA regulatory networks and hub lncRNAs. 

With regard to conservative and dynamic analysis, 
115,108 lncRNA-mRNA interactions and eight hub lncRNAs 
(CPVL-AS2, LINC00343, LINC01202, LINC01619, LINC01811, 
LINC02301, LINC03013, SYNPO2L-AS1) only exist in one cell 
type, and 63 lncRNA-mRNA interactions and three hub 
lncRNAs (ANKRD17-DT, LINC01572, MIRLET7BHG) exist in 
at least 90% cell types (Figure 2c). In total, we have 
obtained 115,108 rewired interactions, 63 conserved 
interactions, eight rewired hubs, and three conserved hubs 
across 17 ASD cell types. Overall, the number of rewired 
interactions or hubs is larger than that of conserved 
interactions or hubs, indicating that lncRNA regulation 
tends to be dynamic across ASD cell types.  

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 3, 2024. ; https://doi.org/10.1101/2024.05.31.594791doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.31.594791
http://creativecommons.org/licenses/by-nc/4.0/


Cell type-specific lncRNA regulatory network 

Xiong et al. 2024 (preprint)   3 

 
Figure 2: Uniqueness of lncRNA regulation across ASD cell types. (a-b) Uniqueness of lncRNA-mRNA regulatory networks and hub lncRNAs in 
each ASD cell type. (c) The radar chart of lncRNA-mRNA interactions and hub lncRNAs. 

 

Rewired and conserved lncRNA regulatory modules and 
hub lncRNAs are closely associated with ASD 

Based on the rewired and conserved lncRNA-mRNA 
regulatory networks, we have further discovered 19 
rewired and 11 conserved modules. To reveal the 
fundamental biological significance of lncRNA regulation 
associated with ASD, we conduct functional and disease 
enrichment analysis of the rewired and conserved lncRNA 
regulatory modules and hub lncRNAs. We have found that 
all of the rewired and conserved lncRNA regulatory 
modules exhibit significant enrichment in one or more 
terms belonging to GO, KEGG, Reactome, DO, NCG or 
DisGeNET databases (Figure 3). Among 19 rewired lncRNA 
regulatory modules, Module 10 has the largest number of 
terms or pathways enriched. For 11 conserved lncRNA 
regulatory modules, Module 7 has the highest number of 
enriched terms or pathways enriched. For the rewired and 
conserved lncRNA regulatory modules, several significant 
functional enriched terms, e.g., the GO term "regulation of 
neuron projection development (GO:0010975)", KEGG 
pathway "Pathways of neurodegeneration - multiple 
diseases (hsa05022)", Reactome pathway "Neuronal 
System (R-HSA-112316)" show a close relationship with 
the progression and emergence of ASD traits. In addition, 
DisGeNET terms (Autistic behavior (C0856975) and 

Abnormality of brain morphology (C4021085), DO terms 
(autism spectrum disorder (DOID:0060041)), and NCG 
term (pan-cancer_paediatric) are also highly related to ASD 
(refer to Supplementary Table 2 for more detailed 
information).  

From the rewired and conserved lncRNA-mRNA 
regulatory networks, we have inference eight rewired hubs 
and three conserved hubs. The rewired hubs are not found 
to be significantly enriched in any particular biological 
pathway, and the conserved hub lncRNAs are significantly 
enriched in 184 KEGG, 3074 GO, and 364 Reactome terms 
or diseases, indicating their participate in ASD-related 
biological processes. The rewired hubs did not exhibit 
enrichment on the pathways from the functional analysis 
database. Notably, several of these terms, such as Reactome 
pathway "PI3K/AKT Signaling in Cancer (R-HSA-2219528)", 
KEGG pathway "PI3K-Akt signaling pathway (hsa04151)", 
and GO term "negative regulation of neurogenesis 
(GO:0050768)", are strongly linked to ASD (see details in 
Supplementary Table 2).  

Altogether, the rewired and conserved lncRNA 
regulatory modules, and conserved hub lncRNAs are 
strongly linked with the pathophysiological progression of 
ASD.  

 
Figure 3: Enrichment analysis of rewired and conserved modules. (a) The number of enriched terms for rewired modules. (b) The number of 
enriched terms for conserved modules. 
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Cell similarity network 

In this section, we further construct a cell similarity 
network by using lncRNA-mRNA interactions and hub 
lncRNAs in each ASD cell type. If the similarity value of a 
cell-cell pair is larger than the median value of similarity, 
the cell-cell pair is considered to be a link in the cell 
similarity network. As a result, we have found that L4 is 
similar with the largest number of other ASD cell types, 
while ASTFB is similar with the least number of other ASD 
cell types (Figure 4). 

 
Figure 4: Cell similarity network. Cell similarity network between 17 
ASD cell types by using lncRNA-mRNA interactions and hub lncRNAs. 
A larger circle denotes that the cell type is similar with a larger number 
of other cell types. 

In comparison with the other method 

CDSlncR [9] is the first method to carry out research on cell 
type-specific lncRNA regulation. In this section, a 
performance comparison was conducted between Cycle and 
CDSlncR in terms of modelling cell type-specific lncRNA 
regulation. To ensure fairness, the significance threshold for 
p-value of CDSlncR and Cycle is set equally. We conduct a 
comparison of the number of validated lncRNA-mRNA 

interactions predicted by Cycle and CDSlncR [9]. For each 
ASD cell type, Cycle outperforms CDSlncR by yielding a 
higher number of validated lncRNA-mRNA interactions 
(Figure 5). The comparison yields insights indicating that 
Cycle is better than CDSlncR in modelling cell type-specific 
lncRNA regulation.  
 

 
Figure 5: Comparison results. Comparison between Cycle and 
CDSlncR in the number of validated lncRNA-mRNA interactions. 

Materials and Methods 

The flowchart of Cycle 

Cycle includes three main components (Figure 6). Firstly, Cycle conducts 
data preprocessing including gene annotation, feature selection, and data 
splitting to acquire the expression data pertaining to the highly expressed 
lncRNAs and mRNAs in 17 ASD cell types. For each ASD cell type, Cycle fur-
ther identifies lncRNA regulatory networks specific to it. In total, 17 cell 
type-specific lncRNA regulatory networks are modelled. Derived from the 
constructed cell type-specific lncRNA regulatory networks, Cycle further 
deduces the rewired and conserved modules and hubs. Finally, Cycle can 
perform four types of downstream analyses, including network topological 
analysis, uniqueness analysis, cell similarity network construction, and en-
richment analysis. The details of each component will be described in the 
following.
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Figure 6: Workflow of Cycle. Firstly, Cycle extracts the matched lncRNA and mRNA expression data by using gene annotation information 
from HGNC (HUGO Gene Nomenclature Committee), and further retains the highly expressed lncRNAs and mRNAs for each cell type. In 
total, we have obtained 17 cell type-specific expression data of highly expressed lncRNAs and mRNAs. Secondly, Cycle models cell type-
specific lncRNA regulatory networks for 17 ASD cell types. Furthermore, Cycle identifies the rewired and conserved modules, and infers 
hubs utilizing the established lncRNA regulatory networks specifically modelled for individual cell types. Finally, Cycle conducts four types 
of downstream analyses, including modules identification, hub inference, network topological analysis, uniqueness analysis, cell similarity 
network construction, and enrichment analysis. Created with BioRender.com. 
 

Single-nucleus RNA-sequencing data in ASD 
We obtain ASD snRNA-seq data from the Sequence Read Archive (SRA) 
with accession number PRJNA434002 [25]. As a preprocessing step, we 
utilized gene annotation information from HGNC (HUGO Gene Nomencla-
ture Committee, https://www.genenames.org/) and selected genes whose 
expression levels were higher than the average expression level across all 
cells. In total, we have retained 813 lncRNAs and 5,133 mRNAs highly ex-
pressed in 52,003 ASD cells. The 52,003 ASD cells are categorized into 17 
cell types, including oligodendrocyte precursor cells (OPC), oligodendro-
cytes, microglia cells, fibrous astrocytes (ASTFB), protoplasmic astrocytes 
(ASTPP), layer 2/3 excitatory neurons (L2/3), layer four excitatory neu-
rons (L4), layer 5/6 corticofugal projection neurons (L5/6), layer 5/6 cor-
tico-cortical projection neurons (L5/6-CC), SV2C interneurons (IN-SV2C), 
somatostatin interneurons (IN-SST), VIP interneurons (IN-VIP), parvalbu-
min interneurons (IN-PV), endothelial cells, NRGN-expressing neurons 
(NeuNRGN-I), NRGN-expressing neurons (NeuNRGN-II), and maturing 
neurons (Neu-mat). Detailed information on 17 ASD cell types can be found 
in Supplementary Table 1. 

Identification of cell type-specific lncRNA regulatory networks 
For each cell type, modelling cell type-specific networks is grounded upon 
the identification and characterization of cell-specific regulatory networks. 
Hence, the initial undertaking for the Cycle method is to precisely 
determine cell-specific lncRNA regulatory networks. Here, Cycle adapts 
CSN [18] with local strategy [20] to quantitatively estimate the correlation 
strength of lncRNA-mRNA relationship pairs in each cell. Within each cell, 
significantly cell-specific lncRNA-mRNA interactions are subsequently 
consolidated to model a cell-specific lncRNA-mRNA regulatory network. 

In cell k, kl  and km  are the expression values of lncRNA llncR  and 

mRNA mmR , respectively, ( )
k

lm  is calculated as the interaction strength be-

tween llncR  and mmR  in the following: 

 ( )
( ) ( ) ( )

 = − 

k k k
k lm l m

lm

n n n

N N N
  (1) 

where N is the number of cells for ASD snRNA-seq data, ( )k

ln and ( )k

mn  are 

the neighbourhood number of kl  and km  in the bins of cell k for llncR  and 

mmR , respectively, and ( )k

lmn is the neighbourhood number of ( ),k kl m  in 

the interaction bin of cell k. 
Owing to the specificity and heterogeneity of cells, self-adaptive win-

dow size ( )k

lB and ( )k

mB of bins in cell k are iteratively generated based on 

local standard deviations as follows: 
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where 
( )

0 =
k

lm  represents the mean value of 
( )
k

lm , and 

( )

( ) ( ) ( )( ) ( )( )
( )4 1


− −

=
−

k k k k

l m l m
k
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n n n n n n

n n
 denotes the standard deviation of 

( )
k

lm . 

Every 
( )k

lmz
 value carries a corresponding p-value, and a significantly 

smaller p-value (e.g., p < 0.01) evidences higher credibility for genuine 
lncRNA-mRNA interactions from a statistical perspective. 

For each cell, we only focus on the lncRNA-mRNA interactions with 
statistical significance (e.g., p-value less than 0.01). If a significant lncRNA-
mRNA interaction exists in more than 90% of total cells of a cell type, the 
lncRNA-mRNA interaction is regarded as one of a collection of lncRNA-
mRNA interactions specifically for the cell type. By integrating all of the 
distinctive lncRNA-mRNA interactions peculiar to individual cell types, Cy-
cle constructs 17 cell type-specific lncRNA-mRNA regulatory networks. 

Network topological analysis 
Topological analysis contributes to exploring the characteristics and 
organization of biological networks including lncRNA regulatory networks. 
Degree and density are two widely used metrics to characterize a biological 
network. If the node degree distribution of a cell type-specific lncRNA 
regulatory network adheres to a power-law distribution with a p-value of 
a Kolmogorov-Smirnov test [26] larger than 0.05, the network tends to be 
a scale-free network. If the characteristic density of a cell type-specific 
lncRNA regulatory network is higher than that of its corresponding 
random networks at a significance level (e.g., 0.05), the network is 
regarded as a small-world network. Here, for each cell type-specific 
lncRNA regulatory network, we generate 1,000 random networks by 
randomizing the lncRNA-mRNA interactions. We utilize the Student's t-test 
for statistically quantifying the differences between the built cell type-
specific lncRNA regulatory networks and their corresponding random 
networks. In this work, the igraph R package [27] is applied to analyze the 
topological attributes of the constructed cell type-specific lncRNA 
regulatory networks. 

Hub lncRNA inference 
Hub lncRNAs with high connectivity play key pivot roles in a cell type-
specific lncRNA regulatory network. Rather than inferring hubs as those 
with a node degree exceeding a giving value, we assume that the node 
degree of lncRNAs follows the Poisson distribution [28–30]. For each 
lncRNA, we calculate the p-value of it accordingly presented: 

 ( ) ( )
1

0

1 1
!


− −

=

 = −  = −
k i

i

e
p x k p x k

i
  (5) 

where  = np , 
2

=
n

m
p

A
, n  is the number of lncRNAs, m is the number of 

lncRNA-mRNA pairs in a lncRNA–mRNA regulatory network, and 2
nA  is the 

number of all possible lncRNA-mRNA interactions. In this work, a lncRNA 
with p-value less than 0.05 is viewed as a hub lncRNA. 

Conservative and dynamic analysis 
In the cell type-specific lncRNA regulatory networks, the conserved and 
rewired interactions and hubs reveal the commonality and heterogeneity 
of different ASD cell types, providing new insights into conservative and 
dynamic lncRNA regulation across ASD cell types. Previous studies [15,31] 
have shown that lncRNA regulation is 'on' in some biological conditions but 
is 'off' in other biological conditions. Here, lncRNA-mRNA interactions or 
hub lncRNAs existing in at least 90% ASD cell types are considered as the 
conserved lncRNA regulatory network or hub lncRNAs, and lncRNA-mRNA 
interactions or hub lncRNAs existing in only one ASD cell type are viewed 
as the rewired lncRNA regulatory network or hub lncRNAs. To further 
identify highly connected functional modules within the conserved and 
rewired lncRNA regulatory networks, we have applied the Markov Cluster 
(MCL) algorithm to discover the conserved and rewired lncRNA regulatory 
modules. In every module, the combined total of lncRNAs and mRNAs 
should amount to at least three. 

Uniqueness of cell type-specific lncRNA regulation 
In-depth exploration of the uniqueness of lncRNA regulation between ASD 
cell types involves focusing on the difference of lncRNA-mRNA interactions 
or hub lncRNAs between any pairs of cell types. Regarding cell type-
specific lncRNA regulatory networks, we use the Simpson model [32] to 

estimate the similarity ijsim  between ASD cell types i  and j . The 

difference ijdif  between ASD cell types i  and j  is computed as described 

below. 
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 1= −ij ijsi imd f   (6) 

 
( ),

=
i j

ij

i j

LR LR
sim

min LR LR
  (7) 

where iLR  and jLR  are lncRNA-mRNA interactions or hub lncRNAs 

existing in ASD cell types i  and j , i jLR LR  represents the 

intersection number of lncRNA-mRNA interactions or hub lncRNAs 

between iLR  and jLR , and ( ),i jmin LR LR  is the smaller number of 

lncRNA-mRNA interactions or hub lncRNAs between iLR  and jLR . A 

larger value of ijdif denotes a higher uniqueness between ASD cell types i  

and j . 

Enrichment analysis 
To understand the conservative and dynamic biological processes in the 
conserved and rewired lncRNA-mRNA regulatory modules, we conduct 
enrichment analysis with miRspongeR [33] and clusterProfiler [34] R 
packages. The databases used for functional enrichment analysis include 
Gene Ontology (GO) [35], Kyoto Encyclopedia of Genes and Genomes 
(KEGG) [36], and Reactome Pathway database (Reactome) [37]. 
Additionally, three disease databases including Disease Ontology (DO) [38], 
DisGeNET [39], and Network of Cancer Genes (NCG) [40] are also 
considered for disease enrichment analysis. With regard to hub lncRNAs, 
we employ RNAenrich [41], a powerful comprehensive web server for 
ncRNA functional enrichment, to explore potential pathways, biological 
processes and diseases which they participate. In this work, the enriched 
KEGG, GO, Reactome, DO, DisGeNET or NCG term that exhibits a 
statistically significant enrichment with an adjusted p-value<0.05 
(adjusted by the Benjamini-Hochberg approach) is viewed as notably 
enriched. Moreover, we collect experimentally validated lncRNA-target 
interactions from NPInter v5.0 [42], LncTarD v2.0 [43] and 
LncRNA2Target [44]. 
 

Discussion 
ASD is a set of complex neurodevelopmental disorders that 
manifest with varying symptoms among individuals. 
Exploring the regulatory mechanisms of lncRNA within and 
between different ASD cell types holds significance in 
elucidating the etiology and ontogeny of ASD. Our work 
develops a novel approach called Cycle, designed to model 
cell type-specific lncRNA regulatory networks in ASD. For 
each ASD cell type, we have shown that the lncRNA 
regulation tends to be unique. Moreover, the rewired and 
conserved lncRNA regulatory modules and hub lncRNAs are 
significantly enriched in several ASD-related terms or 
pathways. In addition, cell similarity network can help to 
know which cell types are similar with the least or largest 
number of other ASD cell types. In comparison with 
CDSlncR, Cycle performs better in inferring cell type-
specific lncRNA regulation.  

In future, Cycle can be further improved in the following 
three aspects. Firstly, Cycle mainly focuses on lncRNA 
regulation specific to ASD cell types. In future, it is necessary 
to study condition-specific lncRNA regulation, e.g., sex-
specific or region-specific lncRNA regulation. Secondly, 
Cycle only infers the association/correlation rather than 
causal relationships between lncRNAs and mRNAs. In 
future, we will conduct cell type-specific lncRNA causal 
regulation research. Thirdly, competing endogenous RNA 
(ceRNA) hypothesis [45] suggests that lncRNAs have the 
potential to modulate gene expression by acting as ceRNAs, 
thus it is strongly needed to identify cell type-specific 
lncRNA-related ceRNA networks for comprehensively 
understanding lncRNA regulation. 

Conclusion 
Overall, Cycle is useful for modelling the landscape of cell 
types-specific lncRNA regulation in ASD. Cycle gains insights 
into the lncRNA regulation underlying ASD across various 
cell types, and provide potential treatment strategies. 
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