

1 **Microbial aerotrophy enables continuous**

2 **primary production in diverse cave ecosystems**

3 Sean K. Bay^{1,2,3*}, Gaofeng Ni^{4 #}, Rachael Lappan^{1,4,5 #}, Pok Man Leung^{1,4 #}, Wei Wen Wong⁶,
4 Sophie Holland^{1,4}, Nadeesha Athukorala⁴, Kalinka Sand Knudsen⁷, Ziqi Fan⁴, Melina Kerou⁸,
5 Surbhi Jain⁴, Oliver Schmidt^{4,9}, Vera Eate⁶, David A. Clarke^{1,2}, Thanavit Jirapanjawat⁴,
6 Alexander Tveit⁹, Tim Featonby^{3,10}, Susan White¹⁰, Nicholas White¹¹, Melodie A. McGeoch^{1,2},
7 Caitlin M. Singleton⁷, Perran L.M. Cook⁶, Steven L. Chown^{1,2*} & Chris Greening^{1,4*}

8 ¹ Securing Antarctica's Environmental Future, Monash University, Melbourne, Victoria,
9 Australia.

10 ² School of Biological Sciences, Monash University, Melbourne, Victoria, Australia.

11 ³ Department of Microbiology, Anatomy, Physiology & Pharmacology, La Trobe University,
12 Melbourne, Victoria, Australia.

13 ⁴ Department of Microbiology, Biomedicine Discovery Institute, Monash University,
14 Melbourne, Victoria, Australia.

15 ⁵School of Earth, Atmosphere and Environment, Monash University, Melbourne, Victoria,
16 Australia.

17 ⁶School of Chemistry, Monash University, Melbourne, Victoria, Australia.

18 ⁷ Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg
19 University, Aalborg, Denmark.

20 ⁸ Archaea Biology and Ecogenomics Unit, Department of Functional and Evolutionary
21 Biology, University of Vienna, Vienna, Austria.

22 ⁹ Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and Economics,
23 The Arctic University of Norway, Tromsø, Norway

24 ¹⁰ Department of Environment and Genetics, La Trobe University, Melbourne, Victoria,
25 Australia.

26 ¹¹ Victorian Speleological Association Inc., Melbourne, Victoria, Australia.

27 [#] These authors contributed equally to this work.

28 * Corresponding authors Dr Sean K Bay (S.Bay@latrobe.edu.au), Prof Chris Greening
29 (chris.greening@monash.edu), Prof Steven Chown (steven.chown@monash.edu).

30

31 **Abstract**

32 Most aerated cave ecosystems are assumed to be oligotrophic given they receive minimal
33 inputs of light energy. Diverse microorganisms have nevertheless been detected within
34 caves, though it remains unclear what strategies enable them to meet their energy and
35 carbon needs. Here we determined the processes and mediators of primary production in
36 aerated limestone and basalt caves through paired metagenomic and biogeochemical
37 profiling. Based on 1458 metagenome-assembled genomes, over half of microbial cells in
38 caves encode enzymes to use atmospheric trace gases as energy and carbon sources. The
39 most abundant microbes in these systems are chemosynthetic primary producers, notably
40 the novel gammaproteobacterial methanotrophic order *Ca. Methylocavales* and two
41 uncultivated actinobacterial genera predicted to grow on atmospheric hydrogen, carbon
42 dioxide, and carbon monoxide. *In situ* and *ex situ* biogeochemical and isotopic
43 measurements consistently confirmed that these gases are rapidly consumed at rates
44 sufficient to meet community-wide energy needs and drive continual primary production.
45 Conventional chemolithoautotrophs, which use trace lithic compounds such as ammonium
46 and sulfide, are also enriched and active alongside these trace gas scavengers. These
47 results indicate that caves are unique in both their microbial composition and the
48 biogeochemical processes that sustain them. Based on these findings, we propose caves
49 are the first known ecosystems where atmospheric trace gases primarily sustain growth
50 rather than survival and define this process as 'aerotrophy'. Cave aerotrophy may be a
51 hidden process supporting global biogeochemistry.

52 53 **Introduction**

54
55 Found beneath one fifth of land surfaces, terrestrial caves provide unique habitats for life,
56 given that they are dark, humid, thermally insulated, and relatively isolated systems^{1–3}. The
57 interiors of caves are typically oligotrophic habitats because, with specific exceptions (e.g.
58 seasonally flooded, anthropogenically lit caves), they contain minimal photosynthetically-
59 derived organic matter. Transport of dissolved organic carbon in groundwater may support
60 microbial communities⁴, though its refractory nature means it is of limited importance⁵.
61 Despite this energy limitation, the sediments and mineral surfaces of caves harbour
62 abundant and diverse microbiota. Caves are enriched with the same nine dominant bacterial
63 phyla as surface soils⁶, with many of these taxa thought to be aerobic organoheterotrophs^{7–}
64 ¹⁰. Some bacteria and archaea within caves are capable of harnessing chemical energy from
65 reduced sulfur, nitrogen, and iron compounds present in drip water and mineral surfaces^{11–14}.
66 Given that these lithic compounds generally occur in trace amounts, chemosynthetic

67 processes are thought to play a minor role in cave microbial ecosystems, except in globally
68 rare, deep geothermally-heated caves usually isolated from the surface¹⁵⁻²⁰.

69 A potential alternative source of energy and carbon in typical cave ecosystems is the
70 atmosphere itself. We have recently discovered that atmospheric molecular hydrogen (H₂)
71 and carbon monoxide (CO) are critical energy sources supporting the biodiversity of soils
72 and waters worldwide, and enable complex ecosystems to form in oligotrophic environments
73 such as Antarctic soils²¹⁻²⁵. Bacteria use high-affinity hydrogenases and CO dehydrogenases
74 to liberate electrons from these gases for aerobic respiration and carbon fixation *via* the
75 Calvin-Benson-Bassham (CBB) cycle²⁶. Aerobic methanotrophs, which use atmospheric
76 methane (CH₄) as a dual energy and carbon source²⁷⁻²⁹, have also been identified in various
77 cave systems and mediate CH₄ oxidation rates comparable to those of surface soils³⁰⁻⁴⁰.
78 Considering these findings, we sought to disentangle the relative roles of atmospheric, lithic,
79 and solar energy sources in supporting primary production and energy conservation in cave
80 ecosystems. To do so, we integrated genome-resolved metagenomic profiling, *in situ* and *ex*
81 *situ* biogeochemical and isotopic measurements, and thermodynamic modelling of sediment
82 and biofilm microbial communities collected along transects from four aerated limestone and
83 basalt caves sampled within Australia.

84

85 **Results and Discussion**

86

87 **Most cave microbes encode enzymes to harvest atmospheric energy sources**

88

89 The samples from the four caves we sampled (Fig. 1a, Extended Data Table 1) spanned a
90 broad range of organic carbon (0.08-28.4%), pH (3.6-8.7), and moisture levels (10.8-55.8%).
91 Based on shotgun metagenomic profiling, microbial communities varied substantially
92 between cave sediments and biofilms, between lithology types, and with cave depth (Fig. 1b
93 & 1c; Extended Data Table 3a-g). Microbial abundance (av. 6.7×10^9 rRNA gene copies per
94 gram of dry sediment) and richness (av. 582 Nearest Taxonomic Units per sample; Chao1
95 (based on metagenomic 16S rRNA gene) decreased by 3.3-fold and 1.5-fold, respectively,
96 between the cave entrance and interior sediments (Fig. 1; Extended Data Table 2 & 3b). In
97 line with most other sampled caves⁹, Actinobacteriota, Proteobacteria, Acidobacteriota,
98 Chloroflexota, and Gemmatimonadota were the most common phyla, along with
99 Thermoproteota (predominantly Nitrosphaerales) (Fig. 1b & 1c; Extended Data Table 3d).
100 Metagenomic assembly and binning yielded 1458 dereplicated high- and medium-quality
101 metagenome-assembled genomes (MAGs) spanning 36 different phyla.

102 Inferring the energy and carbon acquisition strategies of the cave microbes by
103 searching for 52 conserved marker genes in the MAGs and short reads (Fig 2a; Extended

104 Data Table 4a-c) suggested that most cave bacteria mediate aerobic respiration using both
105 organic compounds and trace gases as substrates (Fig. 2a-b). Numerous MAGs (44%,
106 normalised to genome completeness), accounting for 54% of mapped metagenomic reads
107 (Extended Data Table 4c), encoded enzymes to consume one or more atmospheric trace
108 gases, namely form I CO dehydrogenases for CO oxidation (25.4% genomes / 73%
109 community based on short reads; Fig. 2a-b; Extended Data Fig. 1), group 1 and 2 [NiFe]-
110 hydrogenases for H₂ oxidation (25.8% / 43%; Fig. 2a-b; Extended Data Fig. 2), and
111 particulate methane monooxygenases for CH₄ oxidation (2.9% / 5.1%; Fig. 2a-b; Extended
112 Data Fig. 3a-c). These findings suggest that most microbial cells in caves can oxidise trace
113 gases. Many cave microbes can also use lithic energy sources such as sulfide (11.3% / 19%;
114 Fig. 2a-b), thiosulfate (6.6% / 7.3%, Fig. 2a-b), ammonia (4.1% / 3.6%; Extended Data Fig.
115 4), nitrite (1.2% / 3.7%; Extended Data Fig. 5), and ferrous iron (2.7% / 2.3%; Fig. 2a-b).
116 Photosynthesis genes were abundant in sediments and biofilms at the entrance of each
117 cave, but declined by an average of 75-fold in the cave interior. Conversely, we observed
118 enrichment in cave interiors compared to the entrance of the genes enabling the oxidation of
119 CH₄ (7-fold), ammonium (1.9-fold), nitrite (2.3-fold), sulfide (1.3-fold), and to a lesser extent,
120 H₂ (1.3-fold), and CO (1.3-fold) oxidation. Concordant patterns were observed for carbon
121 fixation genes, with the photosynthetic cyanobacterial type IB RuBisCO decreasing 38-fold,
122 and the chemosynthetic, predominantly actinobacterial type IE RuBisCO increasing 2-fold in
123 cave interiors compared to entrances (Extended Data Table 4b & c; Fig. 2a & b; Extended
124 Data Fig. 6). Some carbon fixation also likely occurs through 4-hydroxybutyrate cycle (2.7% /
125 2.4%), reductive tricarboxylic acid cycle (1.2% / 2.2%), and 3-hydroxypropionate cycle (0.6%
126 / 0.7%). Altogether, these findings indicate a shift from photosynthetic to chemosynthetic
127 primary production in cave ecosystems, driven both by atmospheric and lithic substrates.

128 To ensure these insights were representative of caves worldwide, we further
129 analysed twelve previously published metagenomes representative of diverse global cave
130 ecosystems (Fig. 2a, Extended Data Table 4a). Oxidation of ambient trace gases and, to a
131 lesser extent, lithic inorganic compounds are widespread strategies in sediments and rocks
132 of cave interiors. For example, in rock metagenomes from Monte Cristo Cave (Brazil) and in
133 white microbial mats in Kipuka Kanohina Cave (Hawaii), almost all microbes encode high-
134 affinity hydrogenases⁴¹. The three exceptions are photosynthetic biofilms collected from an
135 illuminated entrance and sinkhole, as well as a cave lake likely to receive considerable
136 organic inputs (Extended Data Table 4a).

137

138 **Novel microbes drive cave energy acquisition and primary production**

139

140 We used genome-resolved metagenomics and phylogenetic analyses to resolve
141 which microbes mediate these processes (Extended Data Table 4c; Extended Data Fig. 1 to
142 6). Most hydrogenases, CO dehydrogenases, and RuBisCOs were co-encoded by the most
143 abundant Actinobacteriota lineages residing in the caves (primarily classes Actinomycetia,
144 Thermoleophilia, Acidimicrobia, and *Ca. Aridivitria*)²³ (Fig. 3a), suggesting that they are the
145 dominant primary producers in these ecosystems. Multiple phyla nevertheless encoded each
146 of these enzymes (12 hydrogenase-, 11 CO dehydrogenase-, and 11 RuBisCO-encoding
147 phyla), highlighting that trace gas oxidation and chemosynthesis are ubiquitous traits
148 (Extended Data Table 4). These enzymes were also encoded by various uncultivated
149 lineages, for example with CO dehydrogenases being encoded by high-quality genomes
150 from the candidate bacterial phyla CSP1-3 and KSB1, as well as two enigmatic orders (RBG-
151 16-68-12, UBA184) of Thermoplasmata archaea inhabiting diverse cave samples (Extended
152 Data Fig. 1). Corroborated by the short-read analysis (Fig. 2a, Extended Data Table 4b),
153 almost all of these hydrogenases are high-affinity clades (groups 1h, 1l, and 2a [NiFe]-
154 hydrogenases^{23,42,43}) (Fig. 2a), highlighting adaptation to atmospheric concentrations rather
155 than higher concentrations of these gases. Of the 30 most abundant microbes based on
156 genome read mapping (Extended Data Fig. 3a-b, Extended Data Table 4c), 21 were capable
157 of trace gas oxidation including four methanotrophs (all affiliated with the USCy / JACCXJ01
158 clade), whereas none mediated photosynthesis, nitrification, sulfide oxidation, or iron
159 oxidation. The top ten most abundant microbes (comprising 7.6% of all reads) were all from
160 uncultivated genera from Pseudonocardiaceae and Egibacteraceae (both within class
161 Actinomycetia), each of which co-encoded RuBisCO with either CO dehydrogenase and/or
162 uptake hydrogenases. This indicates that caves select highly productive actinobacterial
163 primary producers that grow on atmospheric energy and carbon sources. These
164 Actinobacteriota are the most abundant lineages in the cave biofilms, whereas the
165 methanotrophs are the single most abundant species in the cave sediments.

166 We comprehensively analysed the energy and carbon acquisition pathways of the
167 three most abundant predicted hydrogenotrophs in the caves (Fig. 3b), namely the candidate
168 genera herein named *Hydrogenomurus*, *Hydrogenocavus*, and *Hydrogenolapis* (all
169 etymological information in **Supplementary Note 2**; formerly Pseudonocardiaceae GCA-
170 003244245, Egibacteraceae JACCXR01, and Actinomycetia JACCUZ01). These lineages
171 were selectively enriched in distinct niches, with *Hydrogenomurus* prevalent across basalt
172 caves and constituting over half of multiple biofilm communities (up to 73%),
173 *Hydrogenocavus* dominant in limestone biofilms and moonmilks (up to 54%), and
174 *Hydrogenolapis* abundant in limestone biofilms and sediments (Fig. 3a; Extended Data Table
175 4c). All three taxa encoded high-affinity group 1h [NiFe]-hydrogenases and CO
176 dehydrogenases, consistent with use of trace gases as an energy source. In addition, these

177 MAGs encoded a complete TCA cycle and a near complete suite of aerobic respiratory
178 complexes (I-V), indicating they can conserve energy through both lithotrophic and
179 organotrophic aerobic respiration. Both *Hydrogenomurus* and *Hydrogenocavus* also encoded
180 type IE RuBisCO and a complete CBB cycle, indicating they are facultative
181 chemolithoautotrophs; the lack of enzymes for oxidation of lithic compounds strongly
182 suggests reductants necessary for carbon fixation are provided by H₂ and CO. Their
183 autotrophic capacity likely underlines their dominance along oligotrophic cave mineral
184 surfaces. Conversely, *Hydrogenolapis* appears to be solely reliant on organic carbon
185 sources, potentially including peptides and mono- and disaccharides, based on the presence
186 of various ABC transporters. Energy provided by atmospheric trace gases likely enables
187 these microbes to allocate more organic carbon for anabolism⁴⁴. All taxa encoded the
188 pentose phosphate and Embden–Meyerhof–Parnas pathways for organic carbon catabolism,
189 although only *Hydrogenomurus* MAGs encoded all genes necessary for complete glycolysis
190 from glucose.

191 Methanotrophs were the most enriched metabolic specialists in the cave interior,
192 based on both genomic read mapping (Fig. 3a; Extended Data Table 4b) and marker gene
193 profiles (Fig. 2a & b). Therefore, we performed an in-depth analysis to resolve the
194 evolutionary history and functional capabilities of putative cave methanotrophs encoding
195 particulate methane monooxygenases (pMMO), as elaborated in **Supplementary Note 1**. A
196 genome tree revealed that these bacteria span the alphaproteobacterial genus *Methylocella*
197 (encompassing *Methylocapsa* within the GTDB framework), the gammaproteobacterial order
198 Methylococcales, and two candidate gammaproteobacterial orders herein named
199 Methyloligotrophales and Methylocavales (formerly JACCXJ01 and CAJXQU01; etymology
200 in **Supplementary Note 2**) (Extended Data Fig. 3a). These methanotrophs were
201 progressively enriched from entrance and cave sediments to biofilms, with a single
202 Methyloligotrophales MAG encompassing 10.8% of microbes in a complex limestone
203 sediment (Fig. 3a; Extended Data Table 4c), suggesting CH₄ is a primary growth substrate of
204 cave communities. While *Methylocella* and Methyloligotrophales encompass the USC α and
205 USC γ lineages of atmospheric methanotrophs^{27,28,45,46}, Methylocavales is not known to be
206 methanotrophic and is represented by just one previously reported genome that lacks *pmo*
207 genes. Consistent with being novel methanotrophs, the cave-exclusive Methylocavales
208 bacteria each encoded complete *pmoCAB* operons and their PmoA protein formed a novel
209 clade sister with Methyloligotrophales (Extended Data Fig. 3b). They also encode a complete
210 set of genes to oxidise methanol (lanthanide-dependent methanol dehydrogenases),
211 formaldehyde (tetrahydromethanopterin pathway), and formate (formate dehydrogenase) to
212 carbon dioxide for energy conservation (Extended Data Fig. 3c). However, in common with
213 other atmospheric gammaproteobacterial methanotrophs, including the Methyloligotrophales

214 MAGs analysed, the carbon assimilation pathways used remain incompletely resolved
215 (**Supplementary Note 1**).

216 Although the capacity for oxidation of lithic substrates was less widespread,
217 numerous chemolithoautotrophs were nevertheless highly enriched in cave sediments and
218 biofilms. Most notable are nitrifiers, including ammonia-oxidising archaea and bacteria, as
219 well as nitrite-oxidising and comammox Nitrospirales (Fig. 2a & b; Extended Data Table 4b-
220 c). Members of three archaeal families, Nitrososphaeraceae, Nitrosopumilaceae (e.g.
221 acidophilic *Nitrosotalea* dominant in basalt caves), and novel clade Nitrosomiraceae (e.g. Ca.
222 *Nitrosomiratus*⁴⁷ abundant in limestone caves), vastly outnumber ammonia-oxidizing bacteria
223 (*Nitrosospira*) (Fig. 3a); most encode high-affinity Amt1 ammonia transporters, carbon
224 sequestering ABC-type bicarbonate transporters, and carbonic anhydrase consistent with
225 their oligotrophic lifestyle⁴⁸. Remarkably, urease, cyanase, and glycine cleavage system
226 genes were also present in most MAGs, suggesting these archaea also sequester ammonia
227 from organic substrates such as urea, cyanate, and glycine. Comammox Nitrospirales
228 (genus Palsa-1315), which include lineages known for their high affinity for ammonia⁴⁹, were
229 also widely distributed (Extended Data Table 4b-c). These cave nitrifiers use distinct
230 pathways to fix CO₂, spanning 4-hydroxybutyrate cycle (*Nitrososphaerales*), reductive
231 tricarboxylic acid cycle (Nitrospirales), and CBB cycle (*Nitrosospira*). Altogether, these
232 findings indicate that caves select for oligotrophic chemolithoautotrophs, and that nitrifiers
233 are likely important primary producers given their autotrophic lifestyle and enrichment. Apart
234 from nitrification, some nine phyla were capable of sulfide oxidation, including numerous
235 Proteobacteria and Actinobacteriota MAGs. We also reconstructed genomes of iron-oxidising
236 Acidobacteriota and Proteobacteria (Fig. 2a & b).

237

238 **Trace gas oxidation occurs at high rates alongside lithic substrate oxidation**

239

240 To substantiate these findings, we performed *in situ* and *ex situ* profiling of the
241 processes of trace gas oxidation and lithic substrate oxidation in each cave. *In situ*
242 measurements of ambient average concentrations of CH₄, H₂ and CO at the cave entrance
243 were 1.89, 0.63 and 0.11 ppmv, respectively (Fig. 4a; Extended Data Fig. 7), which reflect
244 similar global average concentration of these gases in the lower troposphere⁵⁰⁻⁵². Ambient air
245 concentrations of CH₄ and H₂ gases in limestone caves decreased 1.6-fold and 1.8-fold
246 respectively from the cave entrance to the interior, suggesting microbial consumption (Fig.
247 4a; Extended Data Fig. 7). *In situ* CH₄ fluxes greatly increased from -4.7 nmol m⁻² s⁻¹ at the
248 entrance to an average of -37 nmol m⁻² s⁻¹ inside, confirming vast methanotroph activity
249 within caves (Fig. 4b; Extended Data Fig. 7, Extended Data Table 5a). In contrast, H₂ fluxes

250 were highest at the entrance and modestly declined inside the cave, averaging around -25
251 nmol m⁻² s⁻¹ (Fig. 4b; Extended Data Fig. 7, Extended Data Table 5a).

252 Given the limitations in conducting flux measurements only in areas with sufficient
253 sediment depth for flux chambers, we employed microcosm incubations with bulk sediments
254 and biofilms extracted from cave walls to validate these observations. The microbes within
255 cave sediments and biofilms rapidly consumed all three gases to below atmospheric
256 concentrations (Fig. 4c; Extended Data Fig. 8, Extended Data Table 5b). Oxidation rates
257 were highest for H₂ on average, followed by CH₄ and CO. Notably, *ex situ* CH₄ oxidation
258 rates closely matched *in situ* patterns, especially in limestone caves, with a remarkable 7-fold
259 increase from entrance to deep zones (Fig. 4c; Extended Data Fig. 8, Extended Data Table
260 5b), in line with metagenomic observations of increased methanotrophic abundance (Fig.
261 2a). We also tested whether lithic substrates, namely ammonium and sulfide, were also used
262 as energy sources given the metagenomic observations (Fig. 2a). The cave sediments
263 contained varying concentrations of ammonium (1.35 – 40.2 mg/kg), sulfur (7.3 – 2468
264 mg/kg), and iron (6.96 – 2003 mg/kg) as potential chemical energy sources for
265 chemolithoautotrophs (Extended Data Table 1). Ammonium was oxidised at variable rates
266 across the samples and increased from the entrance to the cave interior (Fig. 4e; Extended
267 Data Fig. 9; Extended Data Table 6). These incubations also revealed the accumulation of
268 nitrite and nitrate, consistent with stepwise nitrification processes occurring within the cave
269 environments. Sulfide oxidation was also evident from the accumulation of the end-product
270 sulfate (Fig. 4e; Extended Data Fig. 9; Extended Data Table 6).

271

272 **Trace gas oxidation drives community-wide carbon and energy provision**

273

274 Thermodynamic calculations based on bulk oxidation rates of H₂, CO, and CH₄ and cell
275 estimates from metagenomics-adjusted qPCR quantification of 16S rRNA genes, revealed
276 that trace gas oxidation rates yielded an average power output of 1.5×10^{-15} , 3.7×10^{-17} , and
277 2.6×10^{-13} W per H₂, CO, and CH₄-oxidising cell, respectively. Power per cell outputs were
278 similar between lithology types and cave depths for H₂ and CO, but for CH₄ were significantly
279 higher in basalt compared to limestone and between surface and subsurface (Fig. 4d;
280 Extended Data Table 5b). For H₂ and CO, these calculations are within the average range of
281 maintenance energy reported for various isolates of cultured, typically copiotrophic aerobic
282 organoheterotrophs (10^{-12} – 10^{-17} W cell⁻¹)⁵³⁻⁵⁵ and exceed the theoretical maintenance at
283 the limits of life (10^{-17} – 10^{-19} W cell⁻¹)^{56,57}. These rates are averaged for all cells and
284 samples, although some microbes likely grow by rapidly co-consuming these gases, notably
285 the highly abundant *Hydrogenocavus* and *Hydrogenomurus*. For methanotrophs, these rates
286 greatly exceed the realm to support growth of recently cultivated atmospheric methanotrophs

287 $(1.9 \times 10^{-15} \text{ W} - 6.1 \times 10^{-16} \text{ cell}^{-1})^{45,58}$. Altogether, these models indicate that the rates of
288 atmospheric trace gas consumption are sufficient to sustain the growth of the methanotrophs
289 and the survival of the hydrogenotrophs in these caves, with some bacteria potentially also
290 mediating chemolithoautotrophic growth by using atmospheric H₂ and/or CO to fix CO₂.

291 To probe the major pathways contributing to the organic matter in caves, we
292 quantified the fractionation signature of biomass ¹³C/¹²C in cave sediments and biofilms (Fig.
293 5a). Two autotrophically-grown hydrogenotrophs and three methanotrophs (including
294 atmospheric CH₄ oxidiser *Methylocapsa gorgona*) were also analysed for their carbon
295 fractionation as a comparison. Cave sample organic fractions display a depletion of ¹³C
296 ($\delta^{13}\text{C}_{\text{organic}}$) ranging from -21.7 to -67.4 ‰, consistent with patterns of hydrogenotrophs and
297 biomass derived from CBB cycle but distinct from other carbon fixation pathways^{59,60} (Fig.
298 5a). $\delta^{13}\text{C}_{\text{organic}}$ was progressively more negative from sediments in limestone caves to
299 biofilms in basalt caves, in line with the increasing trends of *rbcL* and *pmoA* gene abundance
300 (Fig. 2a, Fig. 5b). Random forest analysis reveals *rbcL* abundance is the best carbon
301 assimilation gene predictor for $\delta^{13}\text{C}_{\text{organic}}$ (Fig. 5b), and also the most negatively correlated
302 with $\delta^{13}\text{C}_{\text{organic}}$ among all metabolic marker genes (Spearman's *rho* = -0.56, *p* = 2.0 × 10⁻⁶).
303 This analysis suggests organic carbon in caves is predominantly derived from the CBB cycle.
304 CH₄ assimilation, which yields biomass strongly depleted in ¹³C, may also contribute to the
305 highly negative $\delta^{13}\text{C}_{\text{organic}}$ in some cave samples, such as a biofilm sample with a $\delta^{13}\text{C}_{\text{organic}}$ of
306 -67.4 ‰ (Fig. 5a). This was supported by methane carbon assimilation as a function of cell
307 specific methane oxidation rates (Fig. 5c).

308 Finally, we traced radioisotope incorporation of ¹⁴C-CO₂ into biomass to ascertain the
309 relative contributions of dark, hydrogenotrophic, and photosynthetic CO₂ fixation pathways,
310 including as a source of the $\delta^{13}\text{C}_{\text{organic}}$ signatures. Whereas photosynthesis was strongly
311 stimulated in the entrance of basalt caves, it was negligible otherwise. Hydrogenotrophic CO₂
312 fixation was observed in cave interiors, with two-fold and five-fold more carbon fixed in
313 limestone and basalt caves respectively compared to dark conditions (Fig. 5d; Extended
314 Data Table a). Notably, biofilm and basalt sediment microbes mediated particularly high
315 hydrogenotrophic CO₂ fixation activities ($6.7 \times 10^{-12} \text{ nmol cell}^{-1} \text{ min}^{-1}$) compared to average
316 rates by limestone sediment microbes ($6.9 \times 10^{-13} \text{ nmol cell}^{-1} \text{ min}^{-1}$). This supports the
317 metagenomic inferences that H₂ is the predominant driver of CO₂ fixation and likely the
318 observed $\delta^{13}\text{C}_{\text{organic}}$ signatures in caves. Methanotrophs also contribute significantly to
319 carbon acquisition, as they assimilate 1.8×10^{-7} to $2.0 \times 10^{-12} \text{ nmol C cell}^{-1} \text{ min}^{-1}$, which is
320 further supported by their high activities based on the *in situ* flux analysis (Fig. 5b; Extended
321 Data Table 7b). These experiments demonstrate that microbial energy and carbon
322 acquisition from atmospheric substrates occur at significant rates with chemosynthetic
323 primary productivity being continuously sustained across a range of cave surfaces given the

324 relatively stable environmental settings. Aboveground, this type of chemosynthetic primary
325 productivity typically exhibits greater flux variation due to environmental conditions such as
326 aridity.

327

328

329 **Conclusions**

330

331 Here we provide strong metagenomic and biogeochemical evidence that diverse caves are
332 atmospherically-powered ecosystems. Primary production appears to be driven by highly
333 abundant and active methanotrophs, as well as novel lineages of actinobacterial
334 lithoautotrophs, that continuously use the gases methane, hydrogen, carbon dioxide, and
335 carbon monoxide present in cave atmospheres. Cave ecosystems differ from polar desert
336 soils, the other major type of ecosystem shown to be primarily atmospherically-powered^{21–23},
337 in that trace gases appear to drive substantial continual growth rather than long-term survival
338 in these nutrient-deprived environments. This is reflected by the abundant primary producers
339 in cave sediments and biofilms, the rapid fluxes and activities of trace gas oxidisers, and the
340 theoretical considerations based on thermodynamic and biogeochemical modelling. On this
341 basis, we propose defining the term ‘aerotrophy’ as “the process of growth through the use of
342 atmospheric trace gases as energy and carbon sources” and redefine caves as ecosystems
343 often driven by ‘aerotrophic microorganisms’. Nevertheless, there is much spatial variation in
344 the mediators and rates of this process across cave ecosystems. Other energetic processes
345 co-occur, including chemolithoautotrophic nitrification and sulfide oxidation, with these
346 processes likely becoming dominant in environments where these substrates are more
347 abundant. Aerotrophy might not be as dominant in the numerous caves that have more
348 extensive solar or organic carbon inputs, are disconnected from the atmosphere, or are
349 otherwise largely anoxic. Nonetheless, the occurrence of caves beneath 20% of ice-free
350 terrestrial areas suggests that aerotrophy likely supports large and diverse ecosystems
351 worldwide. Cave aerotrophy may thus be a hidden process influencing global
352 biogeochemical cycling of hydrogen, methane, and carbon.

353 **Figure captions**

354 **Figure 1 | Cave microbial community composition and structure.** **a**, Map showing
355 geographic and lithological setting of the caves studied. Detailed cave morphology, major
356 environment features, study sites, scale, and sites are shown. **b**, Phylum-level community
357 composition at the sample level, vertical-coloured bars show the environmental diversity
358 captured according to sample types such as biofilms and soils. **c**, Boxplot of 16S rRNA gene
359 copy number for bulk sediments and peanut butter biofilms according to site and host
360 lithology. **d**, Boxplot of observed and estimated richness according to site and host lithology.
361 **e**, Non-metric multidimensional scaling using Bray-Curtis similarity comparing differences in
362 community structure according to lithology.

363 **Figure 2 | Metabolic potential of energy and carbon acquisition.** **a**, Heatmap showing the
364 metabolic potential of the community as average gene copies per organisms for conserved
365 marker genes of major energy and carbon acquisition pathways across limestone and
366 volcanic caves in Australia in comparison to global samples. **b**, Metabolic potential at the
367 genome resolved level (MAGs). Each dot in the blue shading represents the presence of
368 encoded metabolic functions and the shading represents average genome completeness at
369 the phylum level. Orange lollipop charts show the percentage of genes encoded across all
370 MAGs and purple lollipop charts show the relative abundance maximum for each phylum.

371 **Figure 3 | Abundance and capabilities of the most abundant functional groups in**
372 **caves.** **a**, Differential abundance of key taxa, at family level, between cave entrance, interior
373 sediment, and interior biofilm samples. Box plots show the relative abundance, based on
374 read mapping, of MAGs of hydrogenotrophs (teal), methanotrophs (red), nitrifiers (blue),
375 sulfur oxidisers (yellow), and phototrophs (green). Pairs are denoted with asterisks showing
376 significant enrichment. Taxonomic classification is shown at genus level for taxa used for
377 metabolic mapping. Except for Cyanobacteriota, taxa are shown at family level and at its
378 preceding rank if unclassified, with brackets showing phylum level affiliation (Ac –
379 Actinobacteriota; Pr - Proteobacteria; Do – Deltobacteriota; Th – Thermoproteota; Ni –
380 Nitrospirota). **b**, Metabolic reconstruction of the three dominant hydrogenotrophic taxa, the
381 candidate genera *Hydrogenomurus*, *Hydrogenocavus*, and *Hydrogenolapis*. All encode
382 genes consistent with trace atmospheric gas oxidation, including a group 1h [NiFe]
383 hydrogenase and CO dehydrogenase. **c**, Metabolic reconstruction of the three dominant
384 methanotrophic MAGs, *Methylocella* (USCa), *Methyloligotrophales* (USCy), and
385 *Methylocavales*. All encode particulate methane monooxygenase and a methanol
386 dehydrogenase. Carbon fixation in *Methylocella* MAGs can occur via the tetrahydrofolate
387 pathway and serine cycle, but remains unresolved in the Gammaproteobacterial MAGs.

388 **Figure 4 | In situ, ex situ and energy yield measurements for trace gases H₂, CO and**

389 **CH₄.** **a**, *In situ* atmospheric concentrations (ppmv.) for all four caves, faceted by each of the

390 three gasses and site. **b**, *In situ* sediment–atmosphere gas fluxes (J_{atm} negative values

391 indicate net gas consumption). **c**, Bulk sediment oxidation rates over time faceted by each

392 gas and site. **d**, Amount of power per cell derived from the oxidation of each trace gas,

393 coloured bars depict the range of literature values of maintenance energy requirements or

394 endogenous metabolic rates of different pure cultures (green⁶¹, yellow⁶², lilac⁶³) and

395 hydrogen oxidisers in deep marine sediments (pink^{62,64}). **e**, Rates of nitrogen and sulfur

396 compound metabolism, with positive values indicating accumulation and negative values

397 showing uptake. Nitrification is expected to result in ammonium (NH_4^+) consumption and

398 nitrite (NO_2^-), nitrate (NO_3^-), and nitrous oxide (N_2O) production, whereas sulfide oxidation is

399 expected to cause sulfate (SO_4^{2-}) production. All boxplots show min., max., median, and IQR.

400 **Figure 5 | Major carbon acquisition processes and activities in caves.** **a**, Boxplot

401 showing depletion of biomass ^{13}C stable isotope ($\delta^{13}C_{organic}$) across cave sediments, biofilms,

402 and selected autotrophically-grown hydrogenotroph and methanotroph pure cultures.

403 Coloured bars depict the range of literature values of $\delta^{13}C_{organic}$ of biomass produced from 4-

404 hydroxybutyrate cycle (4HB cycle; green), 3-hydroxypropionate cycle (3HP cycle; yellow),

405 reductive tricarboxylic acid cycle (rTCA; blue), and Calvin-Benson-Bassham cycle (CBB

406 cycle; pink). $\delta^{13}C_{organic}$ for pure cultures and literature values were adjusted based on the use

407 of atmospheric CO_2 ($\delta^{13}C$: -8.5‰) and CH_4 ($\delta^{13}C$: -47.2‰) as sole carbon sources. **b**,

408 Heatmap showing the abundance ratio of key carbon assimilation marker genes (*pmoA*, *mcr*,

409 *hbsT*, *aclB*, *rbcL*) in biofilm against sediment communities (top) and random forest analysis

410 (% Mean Squared Error) of these genes as predictors for cave $\delta^{13}C_{organic}$ values (bottom). **c**,

411 Boxplot showing methane carbon assimilation rate as a function of cellular oxidation rates

412 normalised by median methane carbon assimilation fraction commonly observed across soil

413 ecosystems. **d**, Cellular ^{14}C - CO_2 fixation rates faceted by lithology, comparing cave entrance

414 with interior across three conditions.

415 **Footnotes**

416 **Acknowledgements**

417 This research was conducted as part of the Australian Research Council (ARC) SRIEAS
418 grant Securing Antarctica's Environmental Future (SR200100005; awarded to S.L.C., C.G.,
419 M.A.M.) and a Monash University Faculty of Science Strategic Uplift Seed Grant (Awarded to
420 S.K.B., P.C., W.W.W.). S.K.B. and R.L. are supported by an ARC Discovery Early Career
421 Research award (DE230101346; DE230100542). C.G. is supported by an NHMRC EL2
422 Fellowship (APP1178715). C.M.S. is supported by a Novo Nordisk Foundation Postdoctoral
423 Fellowship grant (NNF20OC0065005). K.S.K. is supported by the DarkScience project
424 (Villum Foundation). G.N. and P.M.L. acknowledge the Early Career Postdoctoral Fellowship
425 (ECPF23-8566329039 & ECPF23-1113137961) awarded by Faculty of Medicine, Nursing
426 and Health Science (FMNHS) at Monash University. A.T.T. and O.S. were supported by the
427 Research Council of Norway (projects Living on Air, 315129 and Harvesting Energy from Air,
428 347122). Z.F. is supported by Monash University-China Scholarship Council Joint
429 Scholarship (CSC202308240008). This study used the MASSIVE M3 and MonARCH
430 supercomputing infrastructure. We are grateful of Tess Hutchinson and Michaela Wawryk for
431 technical support.

432 **Author contribution**

433 S.K.B., C.G., and S.L.C conceived this study. S.K.B. planned and led field work, designed
434 and led experiments and analysed data. Different authors were responsible for performing
435 fieldwork (S.K.B., R.L., T.F., P.M.L., S.W., N.W.), field logistics (S.K.B., S.W., T.F., N.W.),
436 DNA extraction and qPCR (S.K.B., R.L., T.J.), gas chromatography (S.K.B.), nitrification and
437 sulfide oxidation assays (W.W.W., V.E., P.M.L.C.), pure culture preparation (N.A., S.J., O.S.,
438 A.T.), carbon stable isotope measurement (W.W.W., P.M.L., Z.F., V.E., P.M.L.C.), ¹⁴C
439 radioisotope tracing (S.K.B.), spatial analysis and mapping (D.A.C., T.F., S.W., M.A.M.),
440 metagenomic community and metabolic analysis (S.K.B., G.N., C.G. P.M.L.), MAG
441 construction and annotation (G.N.), and metabolic reconstruction (S.H., K.S.K., N.K., M.K,
442 C.M.S., S.K.B., G.N., C.G., P.M.L.). S.L.C. and C.G. provided most resourcing, supervision,
443 and funding. S.K.B., C.G., S.L.C., and P.M.L. wrote the paper with input from all authors.

444 **Data Availability Statement**

445 All previously sequenced metagenomes analysed in this study are available at NCBI
446 BioProject with the accession numbers listed in Supplementary Data Table 4a. All
447 metagenomes sequenced for this project are deposited at the NCBI Sequence Read Archive
448 PRJNA1048116. All metagenome assembled genomes are available at

449 <https://figshare.com/s/80196efcf5886c767713> and will be published to GenBank prior to
450 publication.

451 **Ethics declarations**

452 The authors declare no competing financial interests.

453

454 **References**

- 455 1. Klimchouk, A. *et al.* *Hypogene Karst Regions and Caves of the World Toca Da Boa Vista.* (2017).
- 457 2. Chen, Z. *et al.* The World Karst Aquifer Mapping project: concept, mapping procedure
458 and map of Europe. *Hydrogeol J* **25**, 771–785 (2017).
- 459 3. Palmer, A. N. Origin and morphology of limestone caves. *Geol Soc Am Bull* **103**, 1–21
460 (1991).
- 461 4. Ravn, N. R., Michelsen, A. & Reboleira, A. S. P. S. Decomposition of Organic Matter
462 in Caves. *Front Ecol Evol* **8**, (2020).
- 463 5. Dong, H. *et al.* Spatiotemporal dynamics of dissolved organic matter in subtropical
464 karst cave waters identified by optical properties. *Geosphere* (2024).
- 465 6. Delgado-Baquerizo, M. *et al.* A global atlas of the dominant bacteria found in soil.
466 *Science* **359**, 320–325 (2018).
- 467 7. Joseph, S. J., Hugenholtz, P., Sangwan, P., Osborne, C. A. & Janssen, P. H.
468 Laboratory Cultivation of Widespread and Previously Uncultured Soil Bacteria. *Appl
469 Environ Microbiol* **69**, 7210–7215 (2003).
- 470 8. De Mandal, S., Chatterjee, R. & Kumar, N. S. Dominant bacterial phyla in caves and
471 their predicted functional roles in C and N cycle. *BMC Microbiol* **17**, 1–9 (2017).
- 472 9. Zhu, H. Z. *et al.* Bacteria and Metabolic Potential in Karst Caves Revealed by
473 Intensive Bacterial Cultivation and Genome Assembly. *Appl Environ Microbiol* **87**, 1–
474 17 (2021).
- 475 10. Zhu, H. Z. *et al.* Diversity, distribution and co-occurrence patterns of bacterial
476 communities in a karst cave system. *Front Microbiol* **10**, 1–12 (2019).
- 477 11. Tetu, S. G. *et al.* Life in the dark: metagenomic evidence that a microbial slime
478 community is driven by inorganic nitrogen metabolism. *ISME J* **7**, 1227–1236 (2013).
- 479 12. Holmes, A. J. *et al.* Phylogenetic structure of unusual aquatic microbial formations in
480 Nullarbor caves, Australia. *Environ Microbiol* **3**, 256–264 (2001).
- 481 13. Kimble, J. C., Winter, A. S., Spilde, M. N., Sinsabaugh, R. L. & Northup, D. E. A
482 potential central role of Thaumarchaeota in N-Cycling in a semi-arid environment, Fort
483 Stanton Cave, Snowy River passage, New Mexico, USA. *FEMS Microbiol Ecol* **94**, 1–
484 17 (2018).
- 485 14. Ortiz, M. *et al.* Making a living while starving in the dark: metagenomic insights into the
486 energy dynamics of a carbonate cave. *ISME J* **8**, 478–491 (2014).

487 15. Sarbu, S. M., Kane, T. C. & Kinkle, B. K. A chemoautotrophically based cave
488 ecosystem. *Science* (1979) **272**, 1953–1954 (1996).

489 16. Nicolosi, G. *et al.* Sulfidic Habitats in the Gypsum Karst System of Monte Conca (Italy)
490 Host a Chemoautotrophically Supported Invertebrate Community. *Int J Environ Res
491 Public Health* **19**, (2022).

492 17. Chen, Y. *et al.* Life without light: Microbial diversity and evidence of sulfur- and
493 ammonium-based chemolithotrophy in Movile Cave. *ISME Journal* **3**, 1093–1104
494 (2009).

495 18. Kumaresan, D. *et al.* Aerobic proteobacterial methylotrophs in Movile Cave: genomic
496 and metagenomic analyses. *Microbiome* **6**, 1 (2018).

497 19. Read, K. J. H., Melim, L. A., Winter, A. S. & Northup, D. E. Bacterial Diversity in
498 Vadose Cave Pools: Evidence for Isolated Ecosystems. *Journal of Cave and Karst
499 Studies* **83**, 163–188 (2021).

500 20. Spanning, R. J. M. Van *et al.* Methanotrophy by a *Mycobacterium* species that
501 dominates a cave microbial ecosystem. *Nat Microbiol* **7**, 2089–2100 (2022).

502 21. Ji, M. *et al.* Atmospheric trace gases support primary production in Antarctic desert
503 surface soil. *Nature* **552**, 400–403 (2017).

504 22. Bay, S. K. *et al.* Chemosynthetic and photosynthetic bacteria contribute differentially to
505 primary production across a steep desert aridity gradient. *ISME J* **15**, 3339–3356
506 (2021).

507 23. Ortiz, M. *et al.* Multiple energy sources and metabolic strategies sustain microbial
508 diversity in Antarctic desert soils. *Proceedings of the National Academy of Sciences
509 USA* **118**, e2025322118 (2021).

510 24. Ray, A. E. *et al.* Atmospheric chemosynthesis is phylogenetically and geographically
511 widespread and contributes significantly to carbon fixation throughout cold deserts.
512 *ISME Journal* **16**, 2547–2560 (2022).

513 25. Lappan, R. *et al.* Molecular hydrogen in seawater supports growth of diverse marine
514 bacteria. *Nat Microbiol* **8**, 581–595 (2023).

515 26. Greening, C. & Grinter, R. Microbial oxidation of atmospheric trace gases. *Nat Rev
516 Microbiol* **20**, 513–528 (2022).

517 27. Dunfield, P. F., Knief, C. & Lipski, A. Diversity and Activity of Methanotrophic Bacteria.
518 *American Society for Microbiology* **69**, 6703–6714 (2003).

519 28. Knief, C. Diversity and habitat preferences of cultivated and uncultivated aerobic
520 methanotrophic bacteria evaluated based on *pmoA* as molecular marker. *Front
521 Microbiol* **6**, 1346 (2015).

522 29. Bay, S. K. *et al.* Trace gas oxidizers are widespread and active members of soil
523 microbial communities. *Nat Microbiol* **6**, 246–256 (2021).

524 30. Matthey, D. P. *et al.* Methane in underground air in Gibraltar karst. *Earth Planet Sci Lett*
525 **374**, 71–80 (2013).

526 31. Fernandez-Cortes, A. *et al.* Subterranean atmospheres may act as daily methane
527 sinks. *Nat Commun* **6**, 1–11 (2015).

528 32. McDonough, L. K. *et al.* Spatial variability of cave-air carbon dioxide and methane
529 concentrations and isotopic compositions in a semi-arid karst environment. *Environ
530 Earth Sci* **75**, 700 (2016).

531 33. Webster, K. D., Mirza, A., Deli, J. M., Sauer, P. E. & Schimmelmann, A. Consumption
532 of atmospheric methane in a limestone cave in Indiana, USA. *Chem Geol* **443**, 1–9
533 (2016).

534 34. Waring, C. L. *et al.* Seasonal total methane depletion in limestone caves. *Sci Rep* **7**,
535 1–12 (2017).

536 35. Nguyẽn-Thuỳ, D. *et al.* Subterranean microbial oxidation of atmospheric methane in
537 cavernous tropical karst. *Chem Geol* **466**, 229–238 (2017).

538 36. Cheng, X.-Y. *et al.* USC γ Dominated Community Composition and Cooccurrence
539 Network of Methanotrophs and Bacteria in Subterranean Karst Caves. *Microbiol
540 Spectr* **9**, (2021).

541 37. Cheng, X. *et al.* Niche differentiation of atmospheric methane-oxidizing bacteria and
542 their community assembly in subsurface karst caves. *Environ Microbiol Rep* (2022).

543 38. Zhao, R., Wang, H., Cheng, X., Yun, Y. & Qiu, X. Upland soil cluster γ dominates the
544 methanotroph communities in the karst heshang cave. *FEMS Microbiol Ecol* **94**, 1–13
545 (2018).

546 39. Allenby, A. *et al.* Occurrence of methane-oxidizing bacteria and methanogenic
547 archaea in earth's cave systems—A metagenomic analysis. *Front Ecol Evol* **10**,
548 (2022).

549 40. Martin-Pozas, T. *et al.* Role of subterranean microbiota in the carbon cycle and
550 greenhouse gas dynamics. *Science of the Total Environment* **831**, 154921 (2022).

551 41. Bendia, A. G. *et al.* Metagenome-Assembled Genomes from Monte Cristo Cave
552 (Diamantina, Brazil) Reveal Prokaryotic Lineages As Functional Models for Life on
553 Mars. *Astrobiology* **22**, 293–312 (2022).

554 42. Greening, C., Berney, M., Hards, K., Cook, G. M. & Conrad, R. A soil actinobacterium
555 scavenges atmospheric H₂ using two membrane-associated, oxygen-dependent
556 [NiFe] hydrogenases. *Proceedings of the National Academy of Sciences* **111**, 4257–
557 4261 (2014).

558 43. Grinter, R. *et al.* Structural basis for bacterial energy extraction from atmospheric
559 hydrogen. *Nature* **615**, (2023).

560 44. Carini, P. Hazardous gases sustain microbes underfoot. *Nat Microbiol* **6**, 145–146
561 (2021).

562 45. Tveit, A. T. *et al.* Simultaneous oxidation of atmospheric methane, carbon monoxide
563 and hydrogen for bacterial growth. *Microorganisms* **9**, 1–12 (2021).

564 46. Tveit, A. T. *et al.* Widespread soil bacterium that oxidizes atmospheric methane.
565 *Proceedings of the National Academy of Sciences* **116**, 8515–8524 (2019).

566 47. Zheng, Y. *et al.* Novel order-level lineage of ammonia-oxidizing archaea widespread in
567 marine and terrestrial environments. *ISME J* **18**, wrad002 (2024).

568 48. Offre, P., Kerou, M., Spang, A. & Schleper, C. Variability of the transporter gene
569 complement in ammonia-oxidizing archaea. *Trends Microbiol* **22**, 665–675 (2014).

570 49. Kits, K. D. *et al.* Kinetic analysis of a complete nitrifier reveals an oligotrophic lifestyle.
571 *Nature* **549**, 269–272 (2017).

572 50. Constant, P., Poissant, L. & Villemur, R. Tropospheric H₂ budget and the response of
573 its soil uptake under the changing environment. *Science of the Total Environment* **407**,
574 1809–1823 (2009).

575 51. Conrad, R. The global methane cycle: recent advances in understanding the microbial
576 processes involved. *Environ Microbiol Rep* **1**, 285–292 (2009).

577 52. Novelli, P. C., Masarie, K. A., Tans, P. P. & Lang, P. M. Recent changes in
578 atmospheric carbon monoxide. *Science* **263**, 1587–1590 (1994).

579 53. DeLong, J. P., Okie, J. G., Moses, M. E., Sibly, R. M. & Brown, J. H. Shifts in
580 metabolic scaling, production, and efficiency across major evolutionary transitions of
581 life. *Proceedings of the National Academy of Sciences* **107**, 12941–12945 (2010).

582 54. Kempes, C. P. *et al.* Drivers of bacterial maintenance and minimal energy
583 requirements. *Front Microbiol* **8**, 31 (2017).

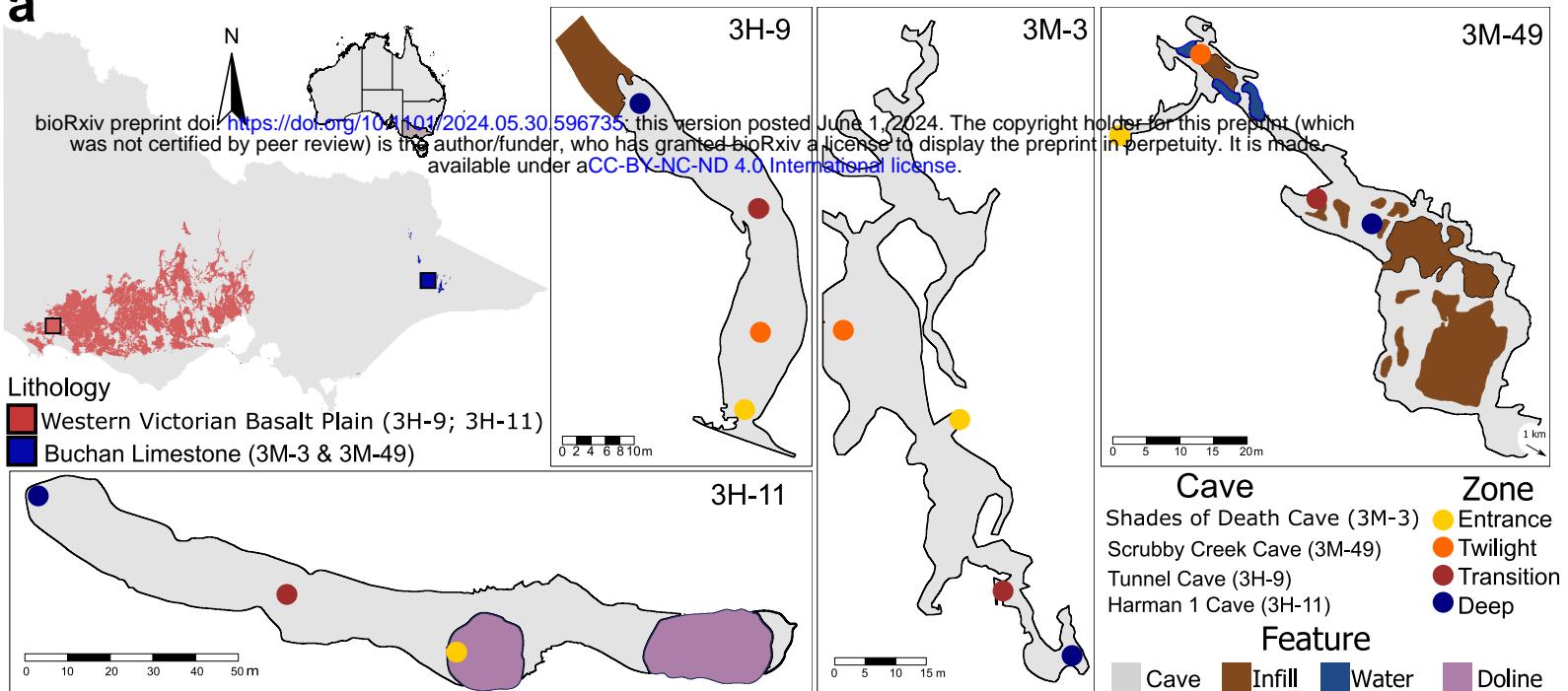
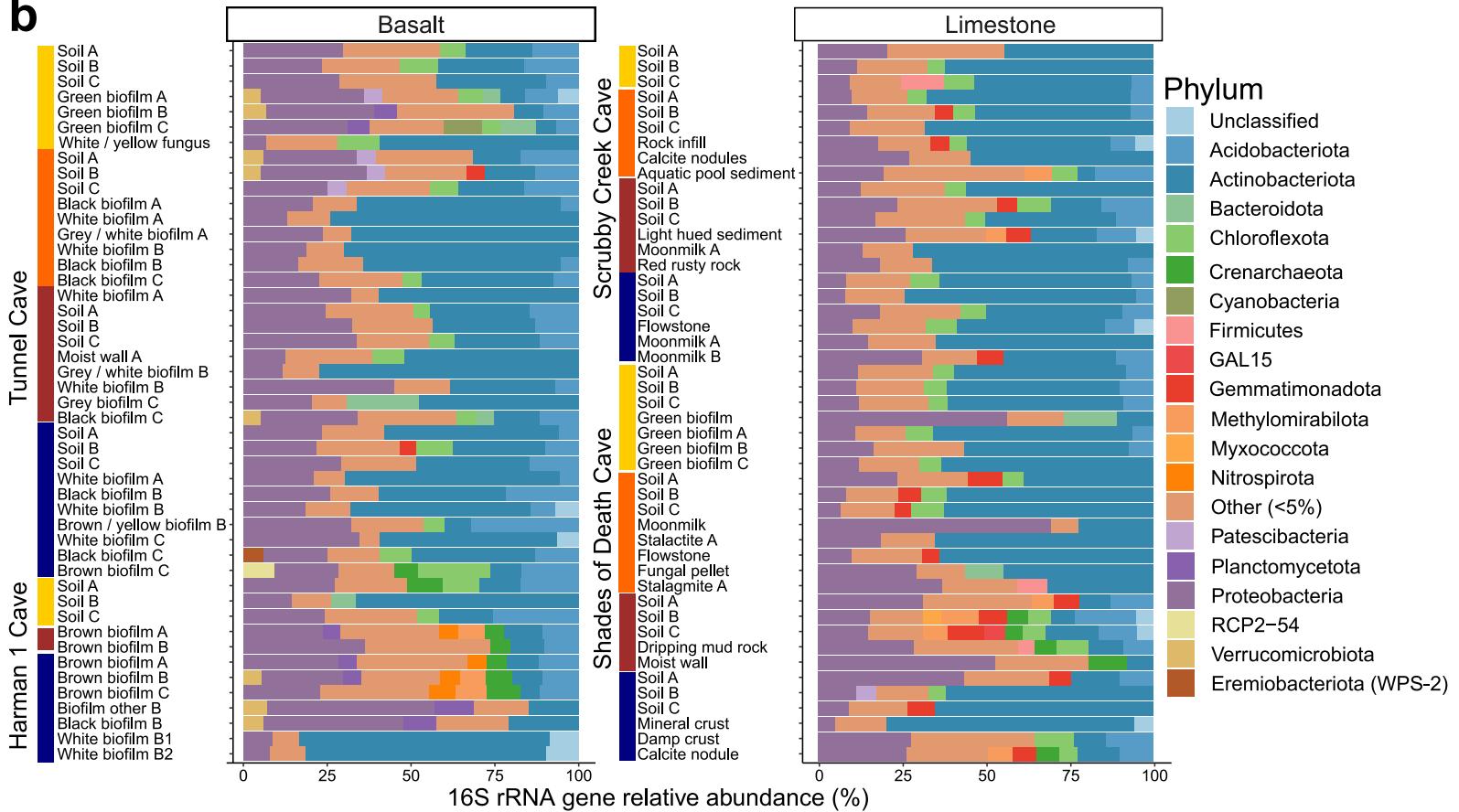
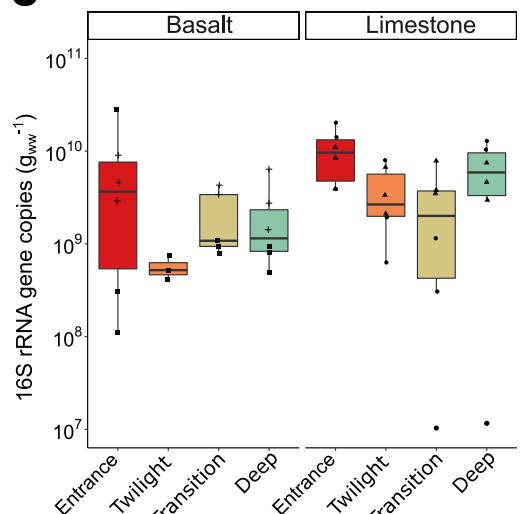
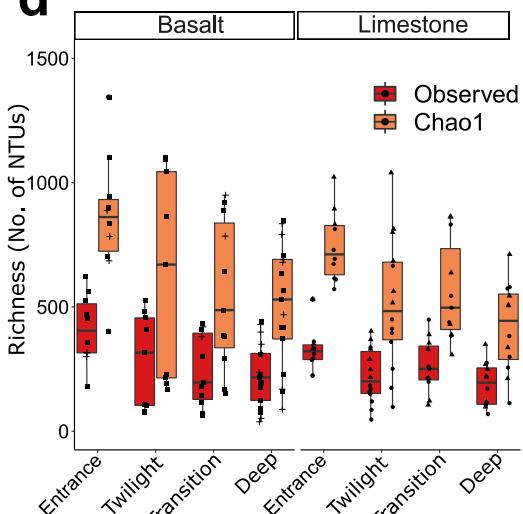
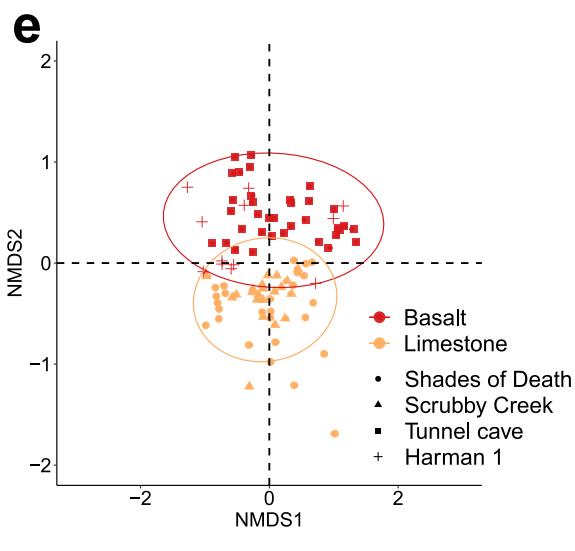
584 55. Marschall, E., Jogler, M., Henßge, U. & Overmann, J. Large-scale distribution and
585 activity patterns of an extremely low-light-adapted population of green sulfur bacteria
586 in the Black Sea. *Environ Microbiol* **12**, 1348–1362 (2010).

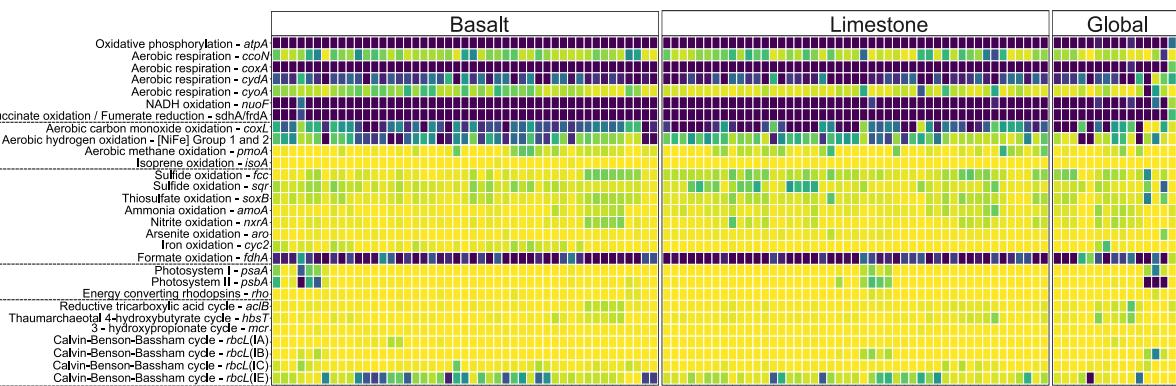
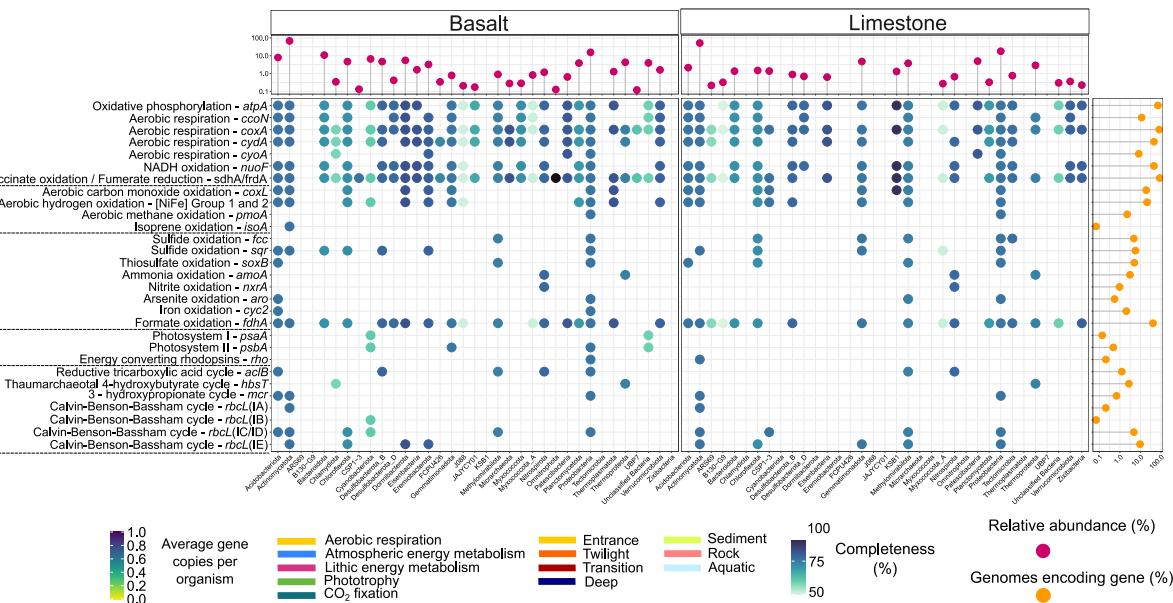
587 56. LaRowe, D. E. & Amend, J. P. Power limits for microbial life. *Front Microbiol* **6**, 718
588 (2015).

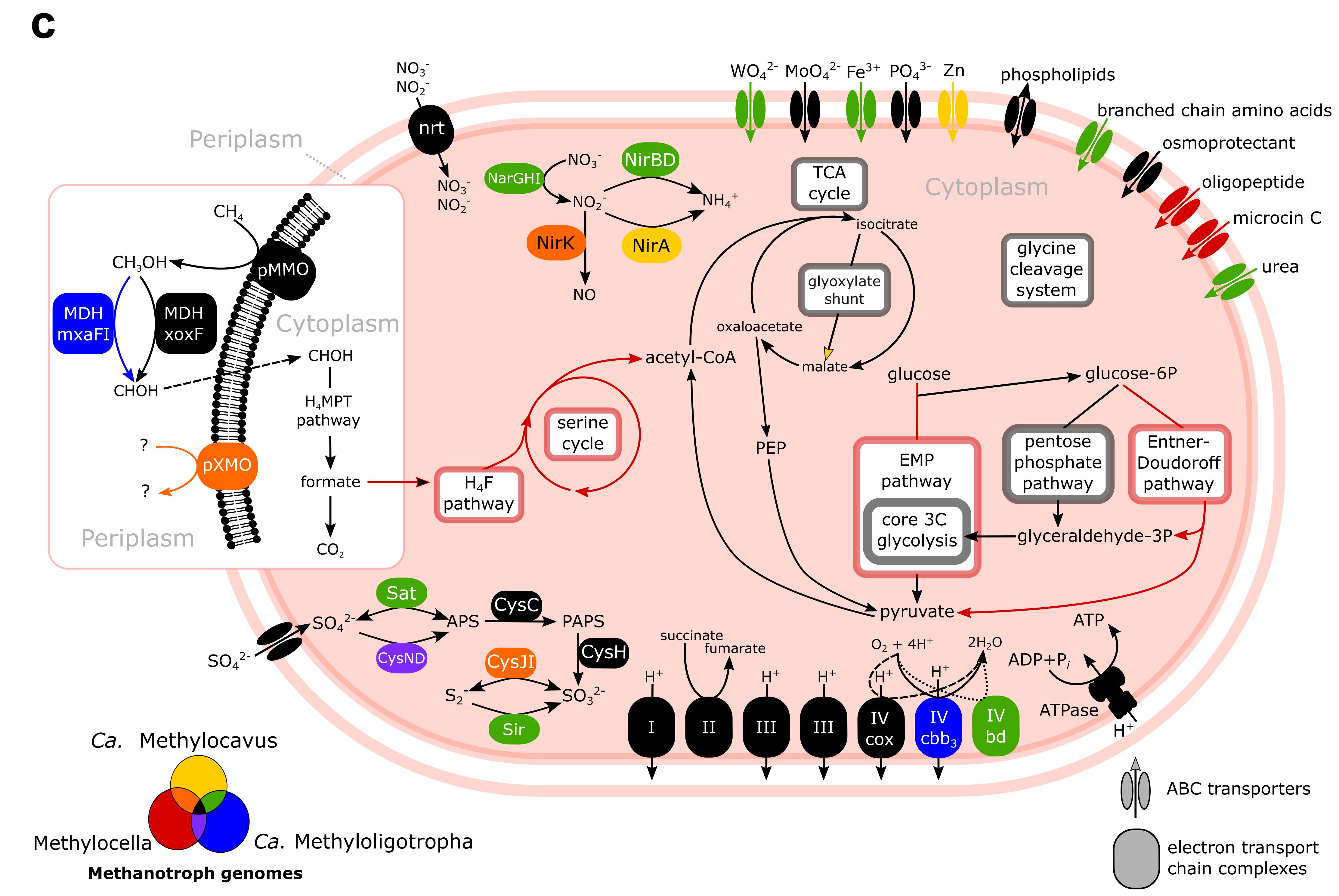
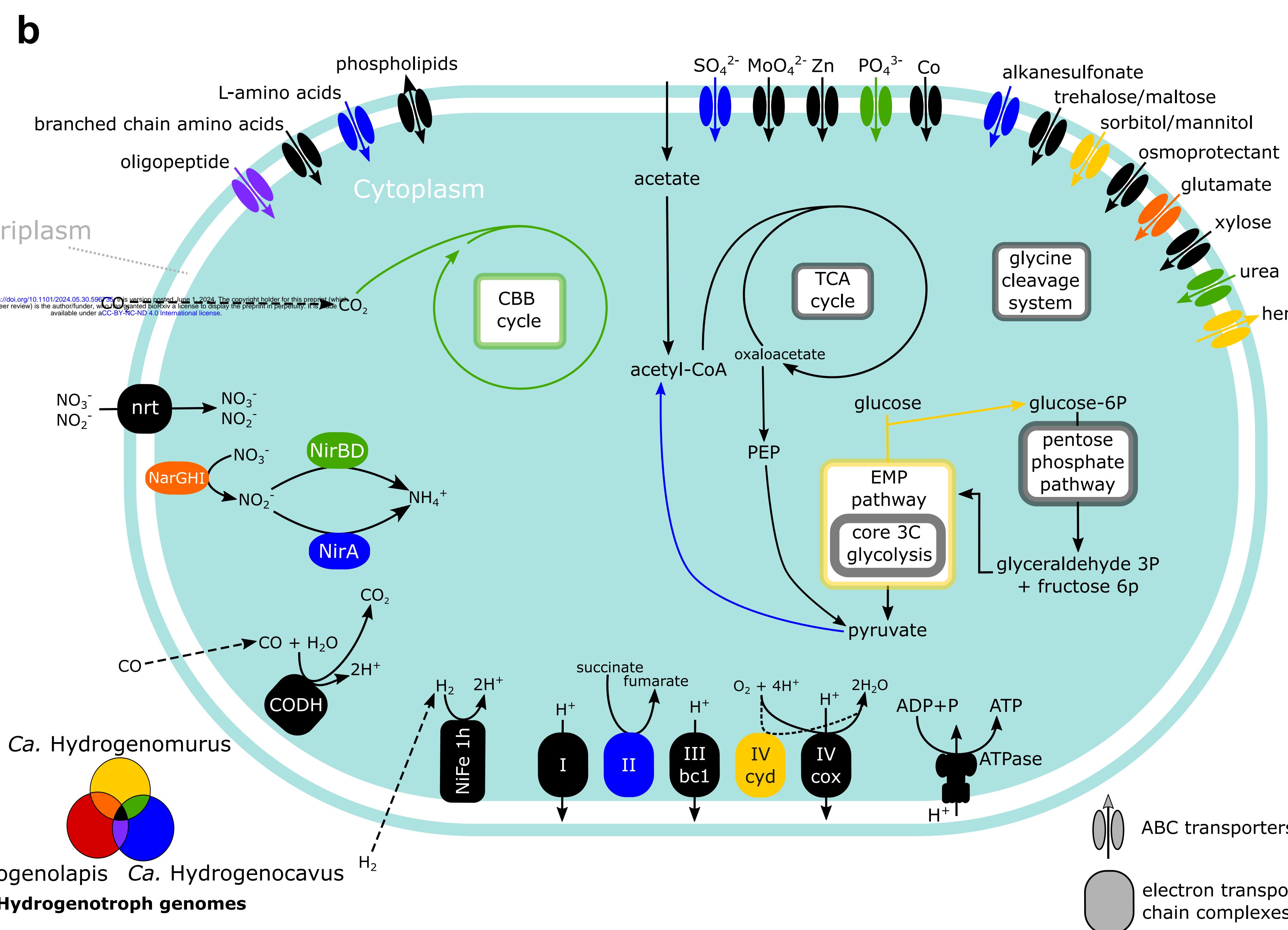
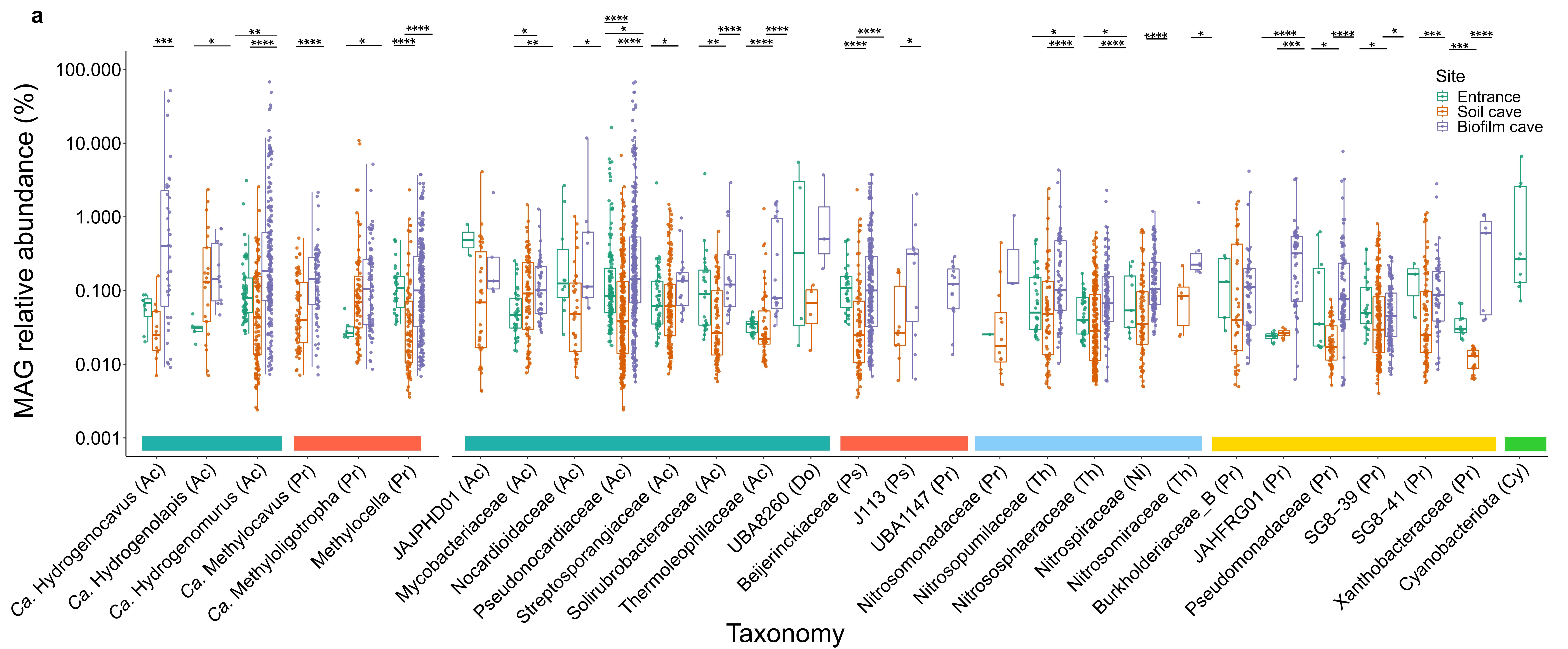
589 57. Bradley, J. A. *et al.* Widespread energy limitation to life in global subseafloor
590 sediments. *Sci Adv* **6**, eaba0697 (2020).

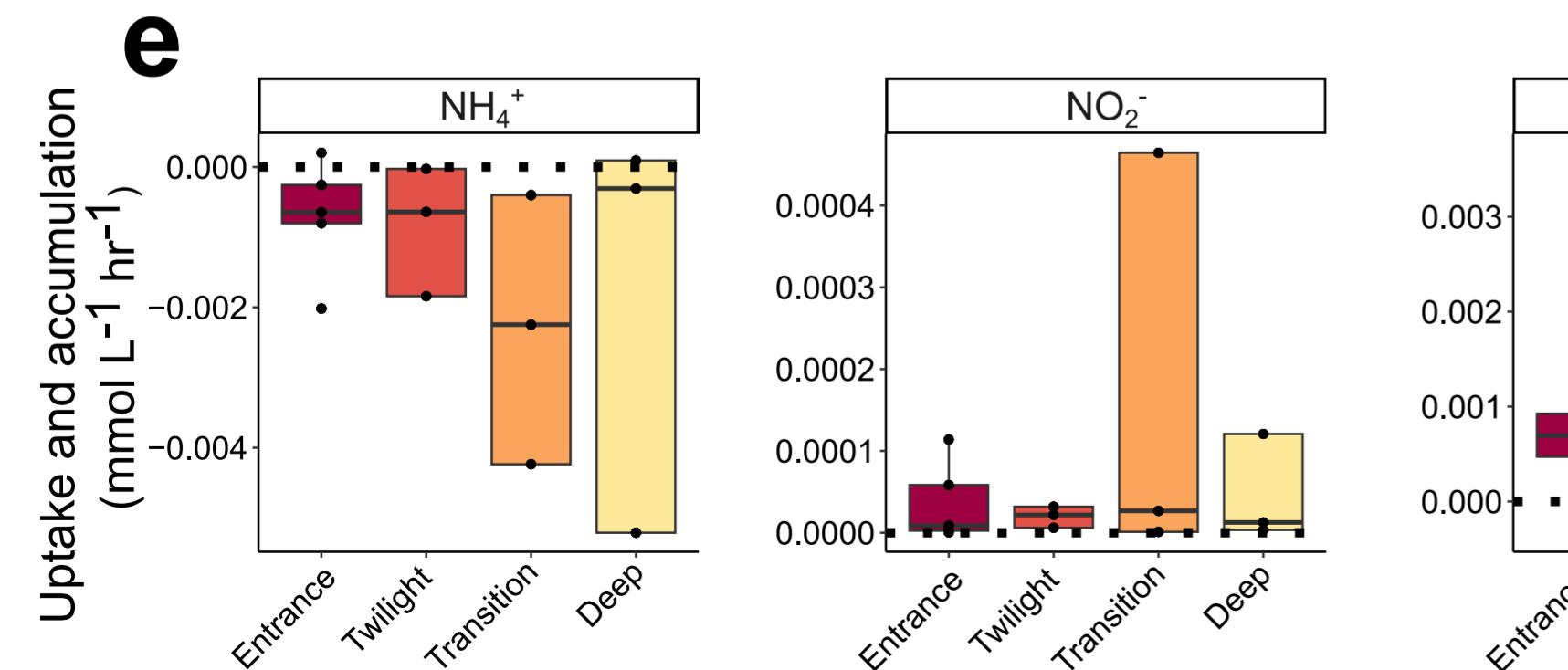
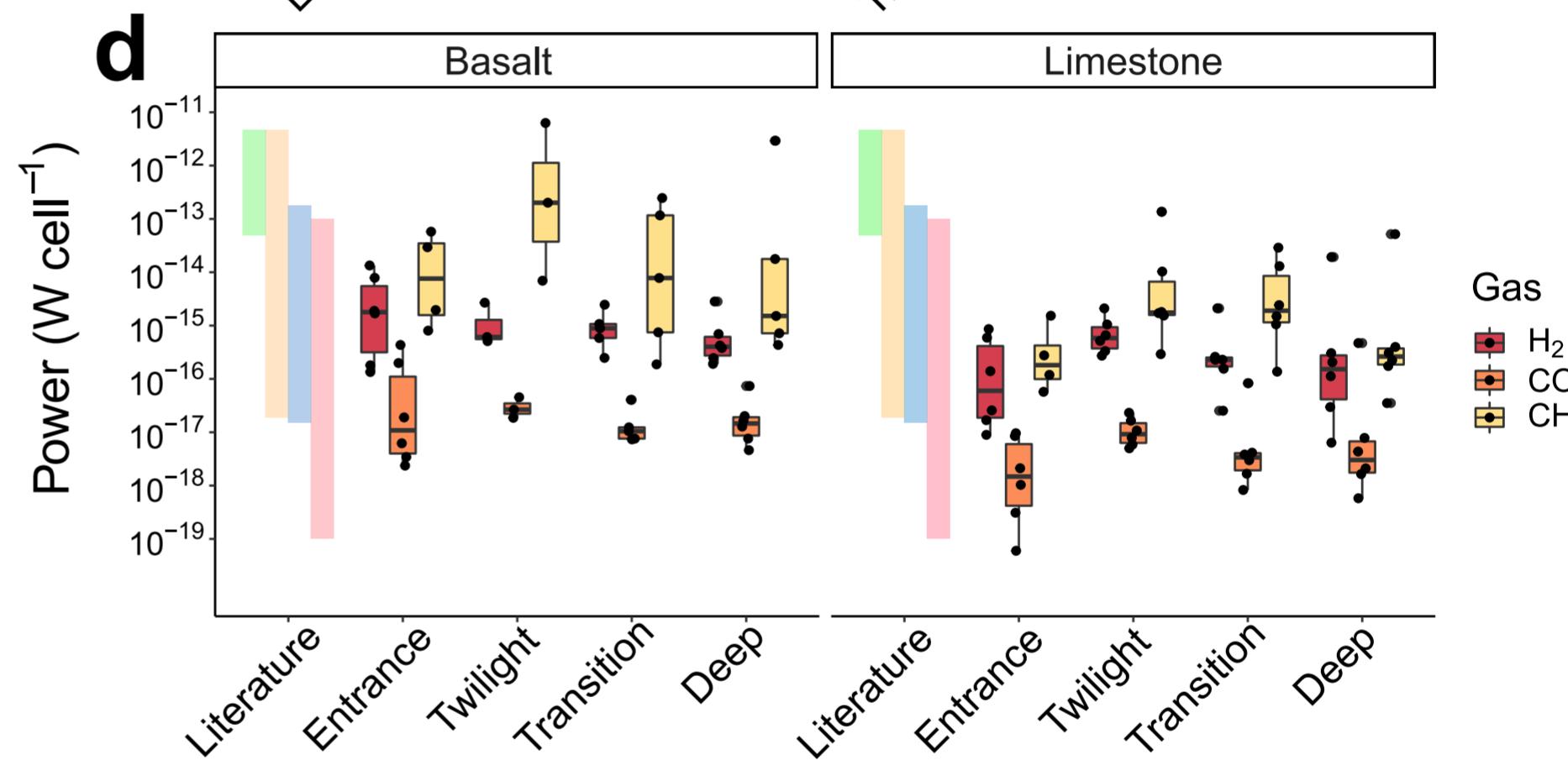
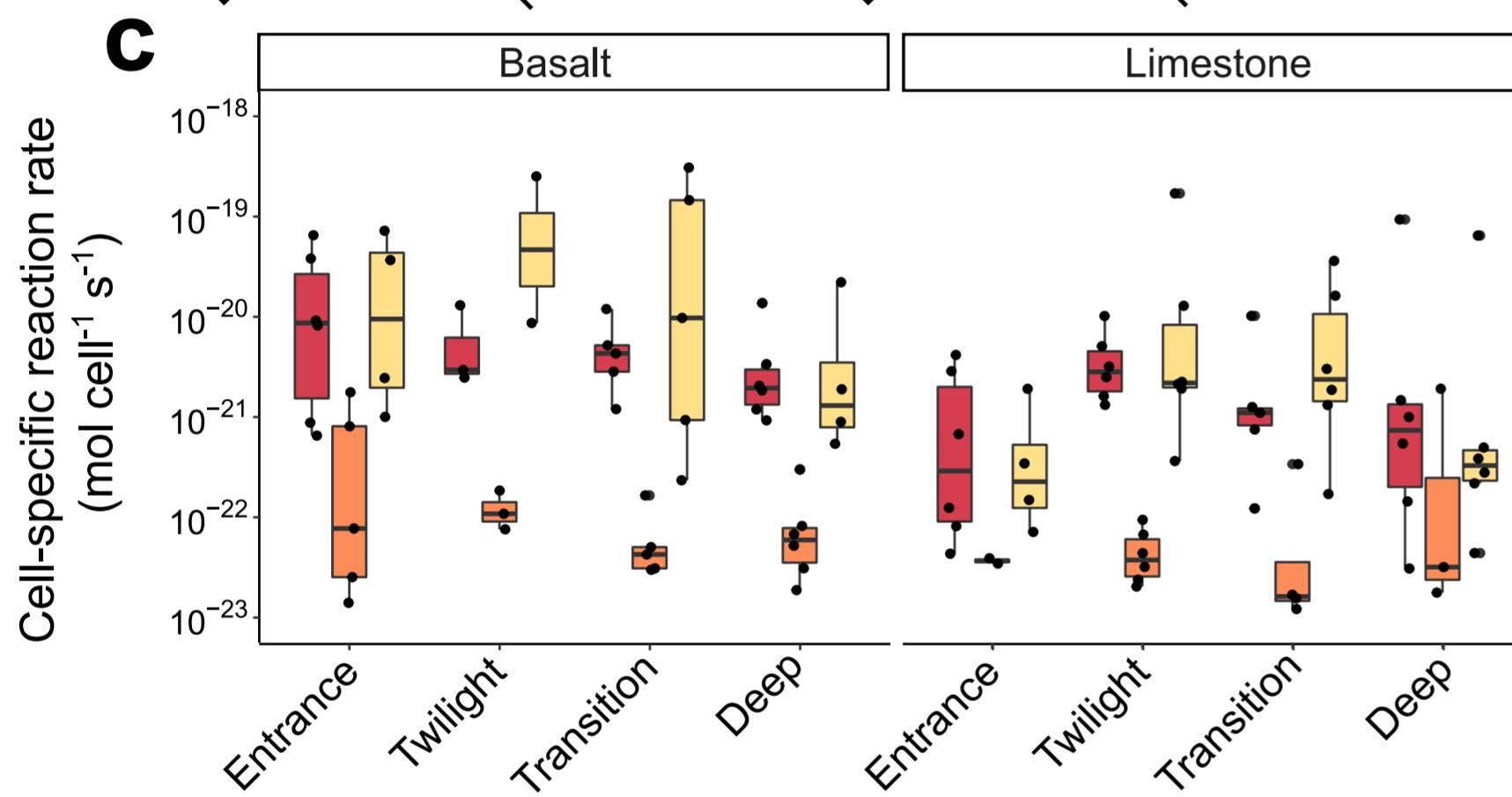
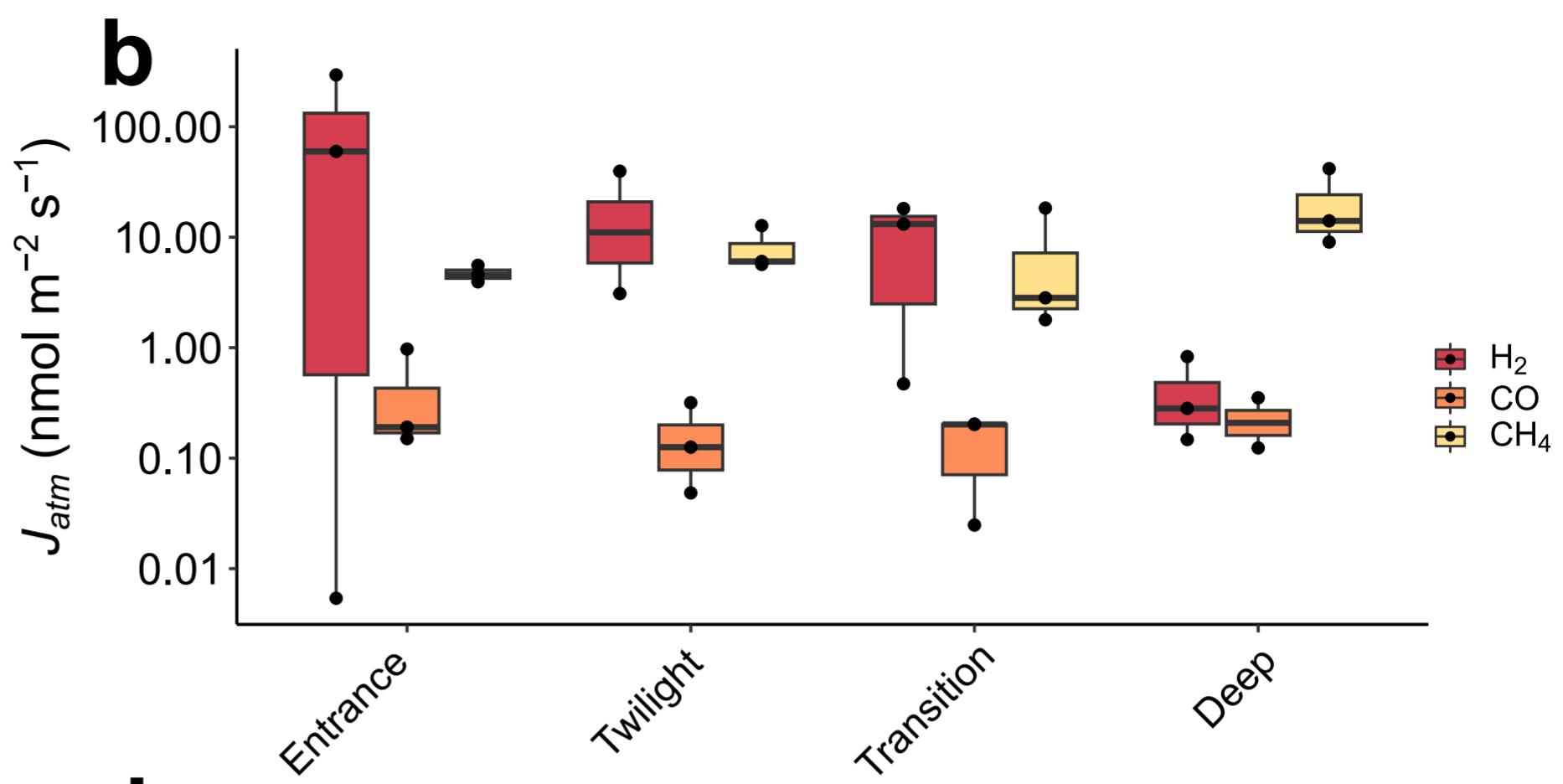
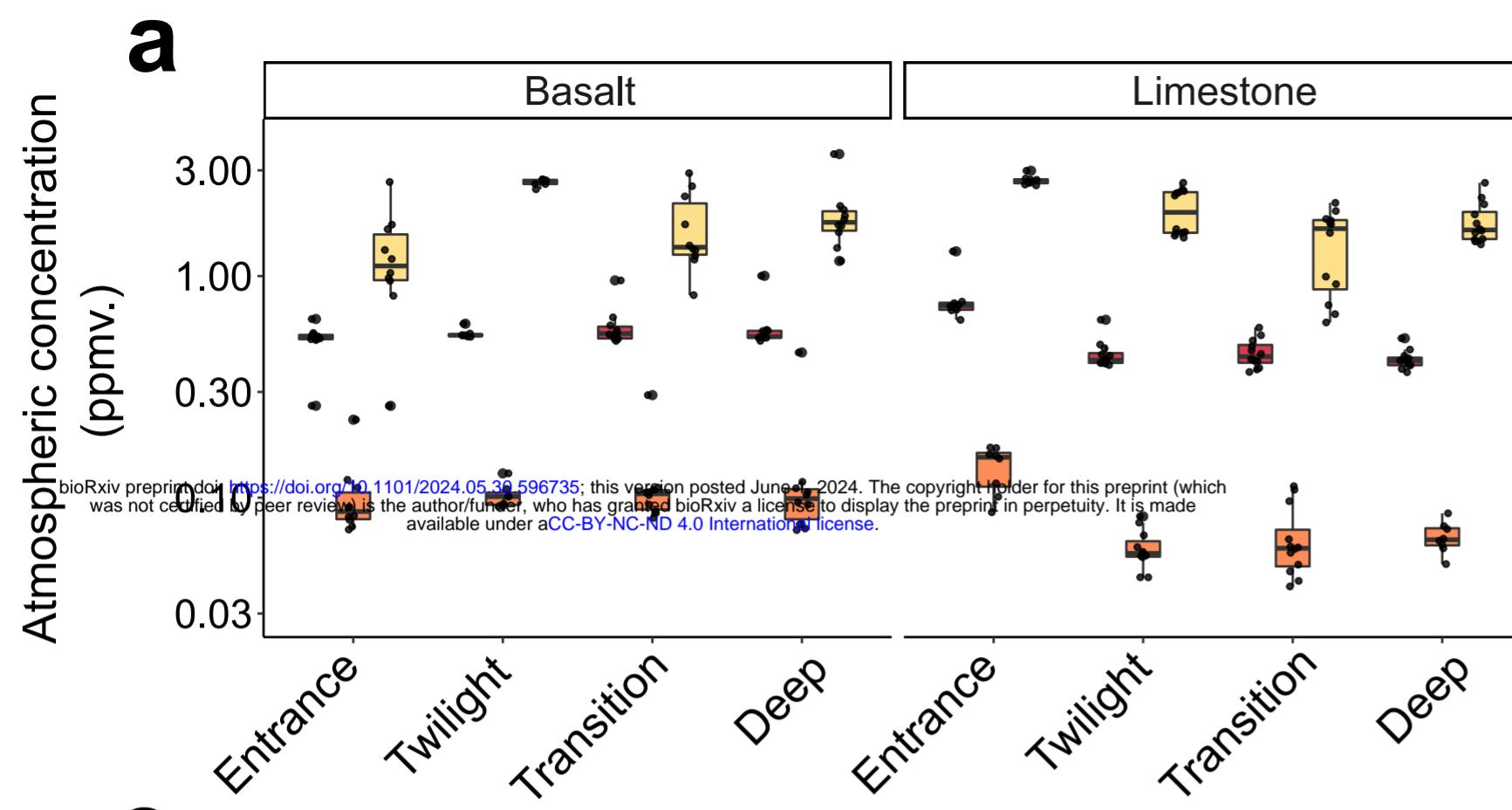
591 58. Schmider, T. *et al.* Physiological basis for atmospheric methane oxidation and
592 methanotrophic growth on air. *Nat Commun* **15**, 4151 (2024).

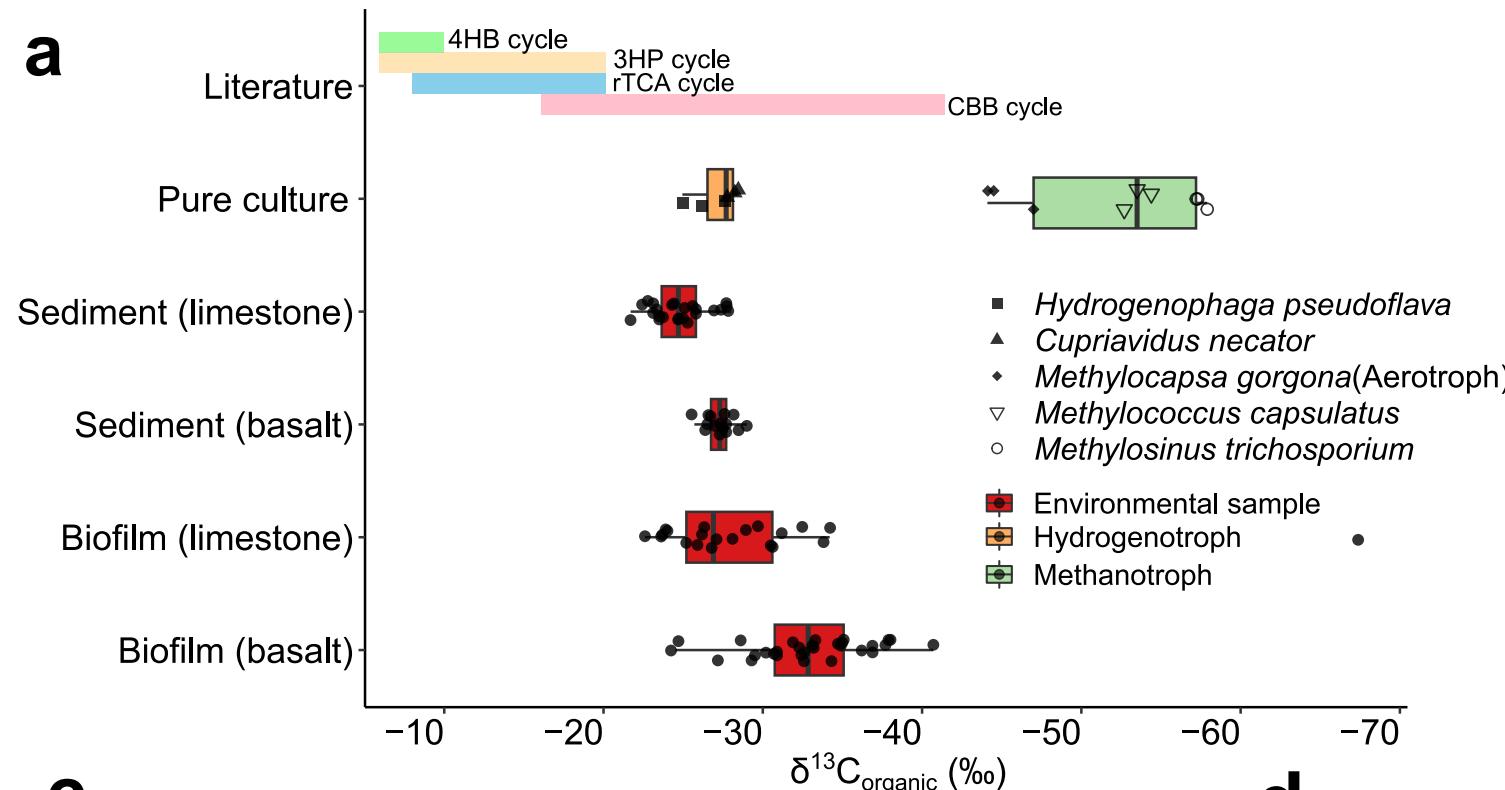
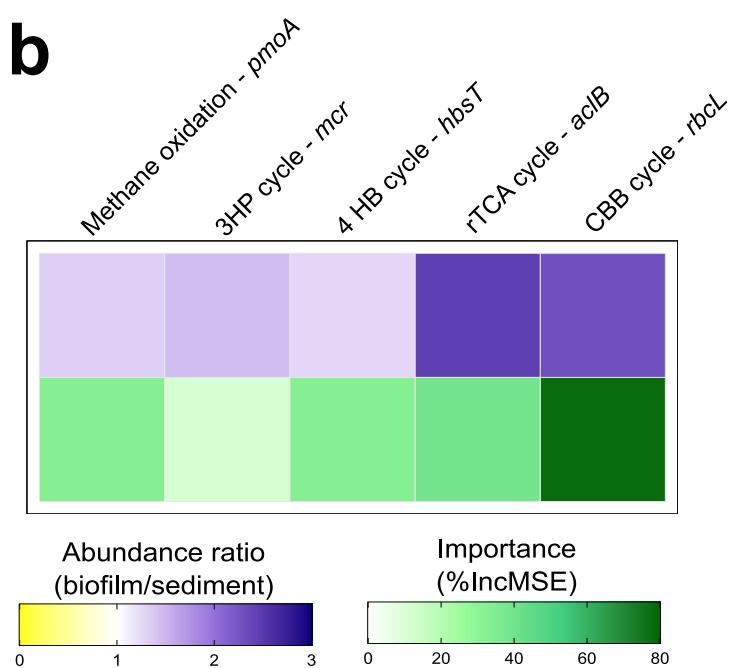
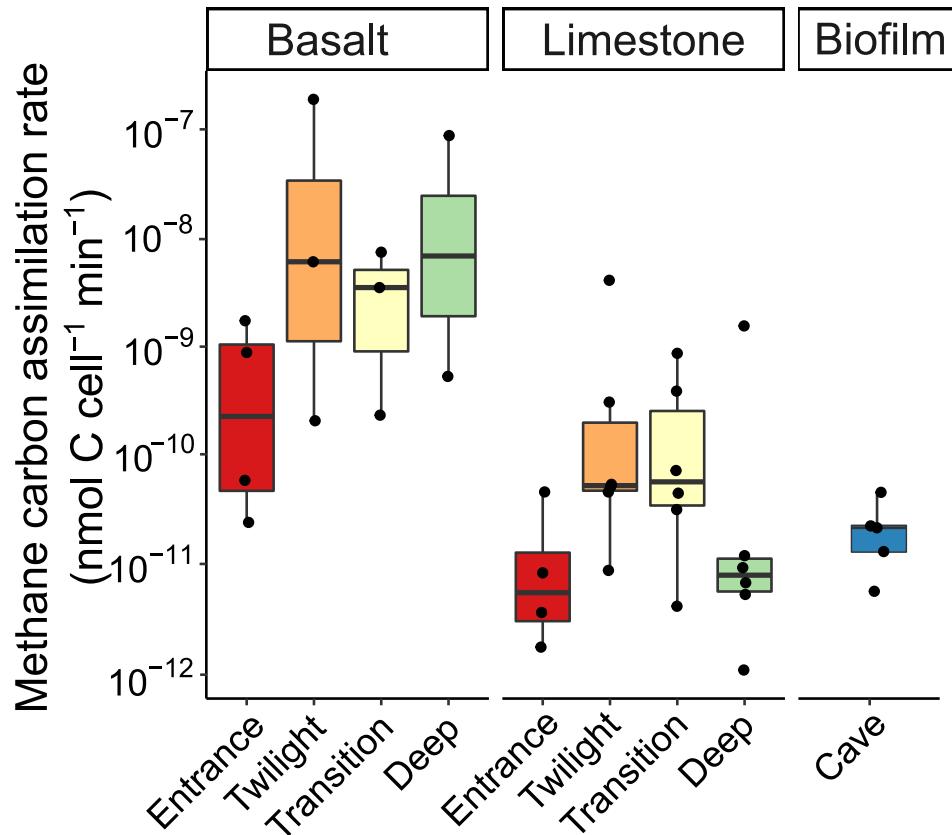
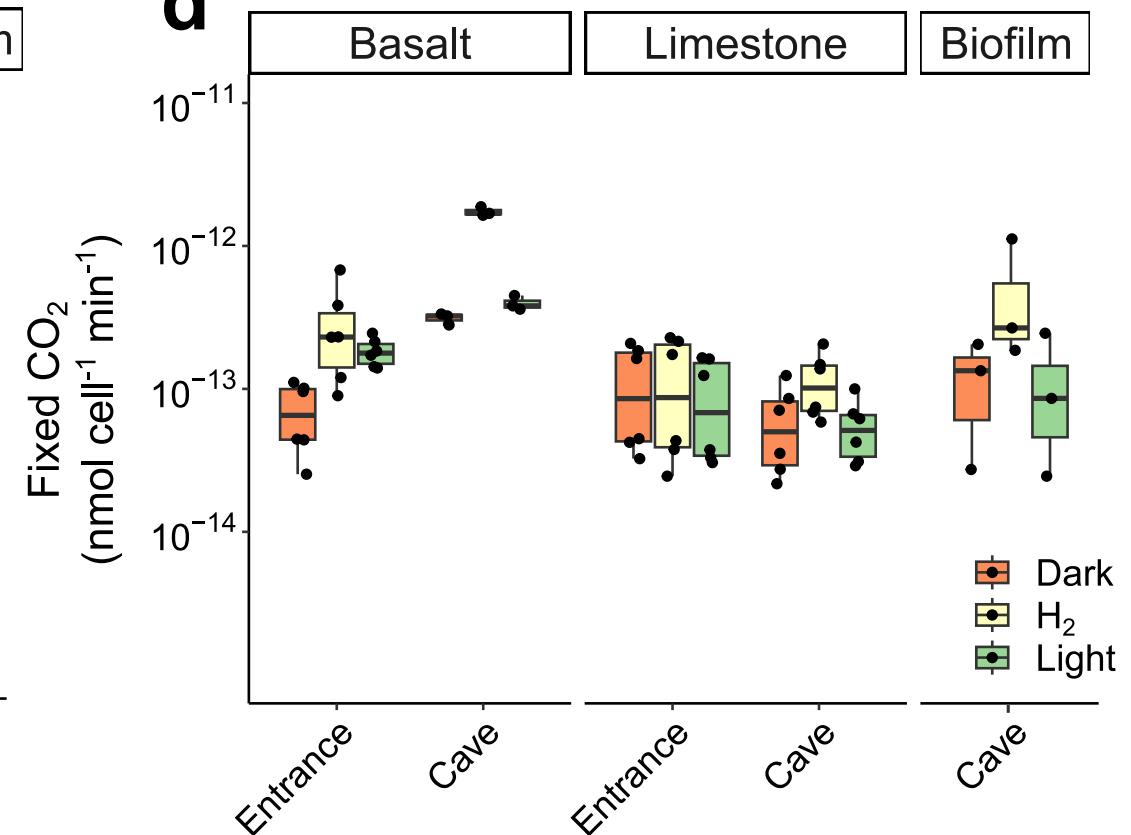
593 59. Berg, I. A. *et al.* Autotrophic carbon fixation in archaea. *Nat Rev Microbiol* **8**, 447–460
594 (2010).






595 60. Garcia, A. K., Cavanaugh, C. M. & Kacar, B. The curious consistency of carbon
596 biosignatures over billions of years of Earth-life coevolution. *ISME J* **15**, 2183–2194
597 (2021).



598 61. Tijhuis, L., Van Loosdrecht, M. C. M. & Heijnen, J. J. A thermodynamically based
599 correlation for maintenance gibbs energy requirements in aerobic and anaerobic
600 chemotrophic growth. *Biotechnol Bioeng* **42**, 509–519 (1993).




601 62. LaRowe, D. E. & Amend, J. P. Power limits for microbial life. *Front Microbiol* **6**, 718
602 (2015).






603 63. DeLong, J. P., Okie, J. G., Moses, M. E., Sibly, R. M. & Brown, J. H. Shifts in
604 metabolic scaling, production, and efficiency across major evolutionary transitions of
605 life. *Proceedings of the National Academy of Sciences* **107**, 12941–12945 (2010).





606 64. Bradley, J. A. *et al.* Widespread energy limitation to life in global subseafloor
607 sediments. *Sci Adv* **6**, eaba0697 (2020).

a**b****c****d****e**

a**b**

a**b****c****d**