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1 Abstract

2  The progressive aridification of the Australian continent, and coincident decline of mesic

3  forest, has been a powerful driver of allopatric and environmental speciation in native

4  gpecies. Therelictual mesic forests of the eastern seaboard now harbor a diverse group of

5 endemic fauna, including the wood-feeding cockroaches of the genus Panesthia, which

6 reached the continent viatwo separate invasions from Melanesia. The more recent of these

7  colonization events gave rise to agroup of five recognized species, occurring in mainland

8  woodlands, sclerophylls and rainforests, as well as the forests and grasslands of the Lord

9 Howelsland Group. Dueto limited sampling in molecular studies and doubt regarding the
10 standing taxonomy, there s little certainty about relationships among the species and poor
11  understanding of the effects of ancient climatic changes upon their evolution. We undertook a
12 comprehensive phylogenetic analysis of the clade, using complete mitogenomes and nuclear
13  ribosomal markers from nearly all known morphaospecies and populations. Our time-
14  calibrated phylogenetic analyses reveal six unrecognized, highly divergent lineages, and
15  suggest that these have arisen primarily through vicariance as rainforests fragmented during
16  Plio-Pleistocene glacial cycles (2-5 million years ago). Ancestral niche reconstructions also
17  evidence atropical rainforest origin for the group, followed by at least three niche transitions
18 intodrier forest, including one associated with the singular colonization of the Lord Howe
19 Island Group. Finally, we find evidence of frequent, parallel wing reduction, in potential
20  association with the contraction of forest habitats into small refugia. Our results reiterate the
21  far-reaching role of ancient aridification in driving speciation, niche expansion and
22  morphological evolution in Australian fauna.
23

24  Keywords: systematics, biogeography, Australia, mesic biome, insects, Panesthia
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1. Introduction

The mesic forests of eastern Australia are among the most biodiverse habitats in the
world (Ebach, 2017; Williams et al., 2011b). Occurring in a peri-coastal distribution from
Queensland to Victoria, these forests are the fragmented relics of the Gondwanan rainforests
that once spanned the entire continent (Hill, 1994; White, 1986, 1994). This fragmentation,
caused by the gradual aridification of the Miocene and the dramatic arid cycles of the Plio-
Pleistocene, saw rainforests progressively replaced by drier sclerophyll and woodland
elements, with transformative effects upon the mesic biota (Bryant and Krosch, 2016; Byrne
et a., 2011; Harvey et al., 2017). Untangling the complex dynamics of vicariance, adaptation
and niche transition remains a central goal in Australian biogeography.

A group of consequent interest are the saproxylic (dead wood-feeding) cockroaches of
the genus Panesthia. Originating in Asia, the Panesthia invaded Australia in two independent
waves in the middle and late Miocene, following the collision of the Sahul and Sundaland
tectonic plates (Beasleyl Hall et al., 2021b; Lo et al., 2016; Maekawa et al., 2003). The latter
of these colonizations has attained a broad geographic range spanning mesic, sclerophyll and
woodland forests across the Australian eastern seaboard, as well as the Lord Howe Island
Group (LHIG), avolcanic archipelago ~600 km east of New South Wales (Beccaloni, 2014;
Roth, 1977). Intriguingly, the insects themselves are highly sedentary and typically reside
long-term within decaying logs. Many lineages have also undergone degrees of secondary
wing reduction, rendering them completely flightless; while full-winged individuals manually
remove their wings soon after the final molt, thereby losing flight capacity (Bell et a., 2007b;
O'Nelll et al., 1987). Their low vagility and habitat specificity position the group (hereafter
“Panesthia”) as sensitive biogeographic indicators, and raise the question of how they were

impacted by the fragmentation of mesic forest.
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The clade comprises an *archipelagic’ array of isolated mesic lineages; as well asless
wet-adapted species that have broader, contiguous distributions through the surrounding
matrix of drier sclerophyll or open woodlands. The origins of the mesic populations remain
contentious, with two broad models advanced across the literature. Based on the present
habitats of Melanesian relatives, it has been suggested that the ancestral Panesthia were
rainforest obligates (Maekawa et al., 2003), which presumably diversified through vicariance
as mesic environments fragmented. This explanation would be consistent with many
paradigmatic examples of allopatric speciation across the mesic biome (e.g. Bell et al., 2007a;
Moreau et al., 2015; Oberski et al., 2018; Rix and Harvey, 2012). However, the distribution
of mesic Panesthia, spanning the entire eastern seaboard, is unusually broad for a dispersal-
limited invertebrate (reviewed by Bryant and Krosch, 2016), and their ancestral habitat
remains poorly characterized. An alternative explanation is that the ancestors of the extant
species had aready come to inhabit dry sclerophyll or woodland, and subsequently colonized
individual rainforest refugia as they dispersed (Beasley /Hall et al., 2021b). Transitions from
dry, even arid, habitat to rainforest have been reported in a wide range of species (Byrne et
al., 2018), including sedentary invertebrates (e.g., Rix et al., 2021). Interestingly, the most
widespread taxon within the group, Panesthia cribrata, is known from both wet and dry
sclerophyll, and shows a close morphological affinity to multiple, geographically separated
rainforest lineages.

The most divergent habitat niche is now observed in P. lata, which is endemic to the
LHIG. Estimated to have colonized the archipelago 2—6 million years ago (Lo et a., 2016),
the species occupies rainforest on Lord Howe Island itself, and more exposed grasslands on
several of the surrounding islets. The cockroaches are also unigue in constructing shallow
burrows under stones or leaf litter, rather than inhabiting logs (Rose, 2003). It has been

suggested that the offshore islet populations expanded their nichein situ in response to the
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exposed conditions of the archipelago (Beasley1Hall et al., 2021b). However, without a clear
understanding of the ancestral habitat of mainland congeners, and of the speciesitself, the
evolution of environmental tolerances of P. lata remains opaque.

To date, biogeographic understanding has been limited by systematic irresolution. The
monophyly of the Panesthia is well supported, yet estimates of the relationships within the
group have been highly unstable between studies (Beasley1Hall et al., 2021b; Legendre et
a., 2017; Legendre et a., 2015; Lo et al., 2016). While five species are presently recognized,
there is mounting evidence of discordance between genetic results and the morphol ogy-based
taxonomy, suggesting cryptic speciation and phenotypic parallelism (Beasley IHall et al.,
2021b; Djernaess et a., 2020; Lo et al., 2016). Previous investigations have included only few
representatives of the clade and have lacked the resolution to confidently delimit species or
interrogate geographic patterns of diversity.

Here we undertake the first comprehensive phylogenetic investigation of the
Panesthia, including novel populations never previously examined in taxonomic or genetic
studies. In clarifying their systematics and evolutionary history, we explore three
fundamental questions: 1) Did the contemporary distribution of mesic lineages arise through
vicariance, or were these habitats separately colonized by dry-forest ancestors?; 2) Were the
ancestors of P. lata pre-adapted to the drier conditions of the LHIG, or did the species expand
its niche following island colonization?, and 3) Do flightless morphs share a common
ancestry, or has wing reduction occurred in parallel? The results of our study highlight the

complex evolutionary dynamics associated with Australia’ s mesic biome.
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96 2. Methods

97  2.1. Sampling and DNA sequence data

98 Samples of mainland taxa were collected between 1998 and 2023 from across New

99  South Wales and Queensland, Australia. Specimens were stored in 70-100% ethanol or in
100 pinned collection prior to DNA extraction, and are presently held in the private collections of
101 H.A.Roseand J.A. Walker. Due to the scarcity of P. lata in collection, we retrieved
102  specimensfrom the LHIG in July and August of 2022, from Blackburn Island, Roach Island
103  and anewly discovered relict population on Lord Howe Island (Adams et al., in prep.). In
104  supplement, we subsampled tissue from historical specimens of P. lata collected on Lord
105 Howe Island and Ball’s Pyramid between 1869 and 1973, sourced from the Australian
106  Museum, Sydney and the Macleay Museum, Sydney. A full list of material with GenBank
107  accession numbersis provided in Supplementary Table S1.
108 DNA was extracted from leg muscle tissue to avoid contamination from
109 Blattabacterium bacterial endosymbionts, which occur in abdominal fat bodies (Kinjo et al.,
110 2015). DNA sequencing was outsourced to the Australian National Insect Collection,
111 Canberra, utilizing an approach suitable for highly fragmented historical DNA (see Jin et al.,
112 2020; Zwick and Zwick, 2023 for methods). In summary, genomic DNA was extracted using
113 proteinase K digestion and a silicafilter-based approach in a 384-well format. Up to 5 ng of
114  extracted DNA were used to build ligation-based whole-genome shotgun DNA sequencing
115 libraries, utilizing an acoustic liquid handler (Echo 525; Beckman Coulter, California, USA)
116 to miniaturize reaction volumes for increased reaction efficiency. DNA libraries of different
117 sampleswere pooled equimolar and sequenced at the Australian National University’s
118 Biomolecular Resource Facility on an Illumina NovaSeq 6000 platform, using an S1 flow cell
119 and a300-cycle sequencing kit. The output of 1.65 billion 150 bp paired-end reads were

120  demultiplexed to yield amedian of 27,321 reads per sample. Output data included reads from
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most or al of the mitochondrial genome (hereafter “mitogenome”), as well as the nuclear
ribosomal operon (which encodes 18S, 5.8S and 28S ribosomal RNA, alongside the internal
transcribed spacers ITSL and ITS?).

We assembled raw reads into contigs using SPAdes v.3.12.0 (Bankevich et al., 2012)
with default settings and sampling k values of 33, 55, 77, 91, and 121. To generate
mitogenomes, contigs produced in SPAdes were imported into Geneious Prime v.2022.1.1

(https://www.genei ous.com) and assembled to a reference sequence using the Map to

Reference tool with default settings and medium sensitivity. Where available, we extracted
the single contig comprising the near-complete mitogenome (ca. 15,000 bp). Otherwise, we
extracted the consensus sequence of multiple contigs, selecting the bases with the highest
representation. Reference sequences were chosen to represent the closest known sister taxon
to each sample, based on the phylogenetic framework of Beasley-Hall et al. (2021b); these
were sourced from GenBank or from mitogenomes generated presently.

We annotated mitogenomes using the MITOS web server (Bernt et a., 2013) under
default settings for invertebrate mitochondrial DNA. Duplicated annotations and split genes
were corrected in Geneious, and we checked for errors against published references for
Panesthia parva, Panesthia sloanei and Panesthia angustipennis (Beasleyl/Hall et al.,
2021b). We then aligned the sequences for each gene individually using the MUSCLE
algorithm (Edgar, 2004) within Geneious. The control region was omitted from our analyses,
asit includes repetitive DNA regions that are not reliably assembled from short reads
(Bourguignon et a., 2018). Nuclear markers were generated via the same steps, initialy
using a nuclear ribosomal operon reference sequence for Panesthia angustipennis
(comprising, in order, 18S, ITSL, 5.8S, IT and 28S, Che et d., 2022).The final
mitochondrial and nuclear alignments represented atotal of 14,707 bp and 5,596 bp,

respectively, and were analysed separately to account for potential genealogical discordance.
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One novel morphospecies, known from Koombooloomba State Forest, Queensland,
was discovered after the main round of sequencing. We used polymerase chain reaction
(PCR) amplification to generate a 604 bp fragment of mitochondrial CO1 and a 352 bp
fragment of mitochondrial 16S from a single specimen (see Supplementary Table S2 for
primers and PCR protocols). Econotag™ master mix (New England Biolabs, Massachusetts,
USA) was used as the source of free nucleotides and reaction buffers. PCR products were
cleaned using Exosap-1T (Thermo Fisher Scientific, Massachusetts, USA) and sent to
Macrogen (Seoul, Gyeonggi, South Korea) for Sanger sequencing.

In total, 137 ingroup taxa were sequenced successfully. We combined these sequences
with a complete mitogenome of the ingroup taxon Panesthia parva, and six outgroup
representatives of the Australian and Melanesian Panesthiinae, which were retrieved from
GenBank (Supplementary Table S1). Each gene alignment was manually checked for reading
frames and premature stop codons in Seqotron v.1.0.1 (Fourment and Holmes, 2016), and
ambiguously aligned regions were removed. We then tested for substitutional saturation using
Xia' s method in DAMBETY (Xia, 2018), and in its absence retained all codon positions for

analysis.

2.2. Phylogenetic analysis

For the mitochondrial data set, we opted for a biologically relevant partitioning
scheme consisting of first, second and third codon positions of protein-coding genes, rRNAs
and tRNAs, in accordance with previous phylogenomic studies of the Blattodea
(Beasleyl Hall et al., 2021b; Bourguignon et a., 2014; Bourguignon et al., 2018; Cameron et
a., 2012). However, we modified the scheme by implementing a separate partition for CO1,
to enable calibration of the molecular clock (for atotal of six partitions). We used the

Model Finder function (Kalyaanamoorthy et al., 2017) to infer the best-fitting substitution
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171  model for each partition, based on Bayesian information criterion scores (Supplementary
172  Table S3). For the nuclear data set, we co-estimated the optimal scheme and substitution
173 model using ModelFinder (2 partitions: 185+5.85+28S, ITS1+1TS2; Supplementary Table
174  S3). This scheme was also modified for molecular dating by implementing a separate

175  partition for 28S (for atotal of three partitions). Preliminary analyses showed that the

176  segregation of CO1 and 28Sdid not affect the inferred tree topologies.

177 Maximum-likelihood (ML) phylogenetic analyses were performed in IQTREE v.2.2.2
178 (Minh et a., 2020). Node support was estimated using 10,000 ultrafast bootstrap replicates
179  (UFBoot; Hoang et d., 2018) and the SH-like approximate likelihood-ratio test (SH-aLRT)
180  with 1,000 iterations. Following recommendations of the package, we considered UFBoot >
181  0.95and SH-aLRT > 0.8 to indicate strong support.

182 We undertook two additional analyses to investigate the discordance of the

183  mitogenomic and nuclear topologies (see Results). First, we tested whether the signal from
184  thenuclear data set was significantly inconsistent with the mitogenomic results. Using

185 IQTREE, we analysed the nuclear markers under topology constraints following the species-
186 level branching order of the mitogenomic ML topology, and statistically compared its

187  adequacy relative to the unconstrained nuclear tree using six different metrics

188  (Supplementary Table $4). Second, to assess the relative information content of the two data
189  sets, we estimated ML and Bayesian trees using a concatenated alignment comprising all
190 mitochondrial and nuclear loci. Partitions and substitution models were as described

191  previoudly.

192

193 2.3. Molecular dating

194 Phylogenetic trees and evolutionary timescales were jointly estimated using Bayesian

195 inferencein BEAST v.10.4 (Suchard et al., 2018). We modeled among-lineage rate variation
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196  using an uncorrelated lognormal relaxed clock (Drummond et al., 2006) and specified a birth-
197  death tree prior, which is most appropriate for the combination of interspecific and

198 intraspecific sampling in the data set (Ritchie et al., 2016). Each partition was assigned a
199  separate GTR+I+G substitution model, representing the closest model to those estimated in
200  ModelFinder. We ran two independent chains, drawing samples every 10° steps until

201  convergence was observed in Tracer v.1.7.2 (Rambaut et a., 2018) and the effective sample
202  sizefor each parameter reached > 200 (1.5x10° steps for the mitogenomic data set, 1x10°
203  stepsfor the nuclear data set). The maximum-clade-credibility tree was generated in

204  TreeAnnotator with a 10% burn-in.

205 There are no known fossil calibrations proximal to the Mio-Pliocene divergences
206 inferred for the Panesthia (BeasleyHall et al., 2021b; Lo et a., 2016). We consequently
207  utilized two different techniques to estimate the evolutionary timescale. First, we followed
208 Beasleyr1Hall et al. (20214) to specify an informative prior distribution for the substitution
209 rate, based on the late Miocene diversification of Mediterranean Dolichopoda crickets

210 (Allegrucci et al., 2011). The genus is ecologically and biologically similar to the Panesthia,
211 comprising nonvagile, subterranean species of comparable body size (Allegrucci et al., 2021).
212 Inaddition, the diversification of Dolichopoda, initiating ca. 7 Ma, is temporally proximal to
213 the Mio-Pliocene radiation of the Panesthia estimated by BeasleylHall et d. (2021b). For
214  the mitogenomic analysis, we specified asubstitution rate prior for CO1 (1.6x107 + 1.1x10™
215  substitutions/site/Myr), due to its conserved substitution rate across insect orders (Gaunt and
216  Miles, 2002; Papadopoulou et al., 2010). For the nuclear analysis, the only available rate
217  estimate was for 28S (6.4x10™ + 4x10°® substitutions/site/Myr). These were applied as

218 normal priors with uncertainty corresponding to the standard deviation, and the rates of

219 remaining partitions were estimated during analysis.

10
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For our second approach, we applied two secondary calibrations to the backbone
nodes of the tree, based on the evolutionary timescale inferred by Beasley[” Hall et al.
(2021b). Using the mitogenomic data set, we specified normal priors for the age of the root
(29.18 £ 4.06 Ma) and for the node uniting Panesthia with the P. angustipennis complex
(25.02 £ 5.42 Ma). Because the date estimates in Beasley[1Hall et al. (2021b) were inferred
using ancient fossi| calibrations, which tend to artifactually deepen shallow nodes (Hipsley
and Miller, 2014; Ho et al., 2011), we consider the second approach to represent a
conservative upper bound and primarily focus on results from the Dolichopoda rate of

evolution.

2.4. Species delimitation

To investigate the presence of unrecognized species diversity, we followed a two-step
process to delimit highly divergent, monophyletic clades (hereafter “operational taxonomic
units’, or OTUs; see Supplementary Material for full methods). First, we generated OTU
hypotheses de novo from the mitogenomic data set using the Generalized Mixed Yule
Coalescent (GMYC; Zhang et a., 2013) and the distance-based Assemble Species by
Automatic Partitioning (ASAP; Puillandre et al., 2021). Then, in accordance with best
practice outlined by Carstens et al. (2013), we validated the output delimitations in Bayesian
Phylogenetics and Phylogeography v.4.1.4 (BPP; Yang, 2015), using both the mitogenomic

and nuclear data sets.

2.5. Historical biogeography and niche evolution

We reconstructed ancestral geographic ranges and habitat niches using the ultrametric

phylogeny inferred in BEAST, with the input tree pruned to include a single representative of

11
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244  each OTU. Dueto theinstability of the nuclear topology across analyses (see Results),

245 reconstructions were only performed with the mitochondrial data set.

246 We explored changes in geographic range with the R package BioGeoBEARS

247  (Matzke, 2013). Taxa were divided among five biogeographic zones: North Queensland,

248  Central Queensland, Mid-Eastern Australia, South-Eastern Australia, and the LHIG. These
249  correspond to zoogeographical subregions outlined by Ebach et al. (2013), which reflect well-
250  documented partitionsin the distributions of eastern seaboard fauna. Colonization of the

251 LHIG was assumed to be unidirectional, while all other transitions were coded as

252  equiprobable and time-constant. Based on contemporary ranges, the maximum number of
253  areaswas et as two.

254 We compared three widely applied biogeographic models, each with unique

255  assumptions about the cladogenetic and anagenetic processes underpinning speciation. These
256  were Dispersal-Extinction-Cladogenesis (DEC), Dispersal-Vicariance analysis (DIVA-like)
257 and Bayesian Analysis of Biogeography (BayArea-like). Models were run under default

258  parameters and compared using the corrected Akaike information criterion (AlICc). We opted
259  not to include the jJump dispersal parameter (+J) due to ongoing debate regarding its

260 datistical validity (Matzke, 2022; Ree and Sanmartin, 2018).

261 We also explored the timing of transitions between wet, dry, and open forest using
262  ancestral niche reconstruction in the R package Nichevol v.1.19 (Owens et al., 2020). Species
263  were split across three major habitat categories (following Braby et al., 2020; Mitchell et al.,
264  2014): closed forest (rainforest, wet sclerophyll or vine thicket; canopy cover > 80%,

265  precipitation:evaporation > 0.4), open forest (dry sclerophyll and scrub; canopy cover 50—
266  80%) and woodland (canopy cover < 50%). We then modeled the change in habitat along the
267  phylogeny using a maximum-likelihood framework. To avoid overestimating niche lability

268 (Barveet d., 2011; Owenset al., 2020), Nichevol allows the presence of ataxon in anicheto

12
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be coded as “uncertain”. We considered a niche to be uncertain unless the species was
confirmed to be absent from the niche in an area adjacent to its known habitat. Ecological
data were compiled from the personal observations of H. A. Rose and J. A. Walker and

validated against the Cockroach Species File Online database (Beccaloni, 2014).

2.6. Evolution of flight loss

Lastly, we modeled the evolution of wing morphology using ancestral state
reconstructions (ASRs). We classified OTUs as fully winged (macropterous), partialy
winged (brachypterous) or vestigially winged (micropterous) (see Figure 4 for representative
images). Present-day characters were mapped onto our mitogenomic species tree, and ASRs
were performed in the R package phytoolsv.2.1.1 (Revell, 2012). We reconstructed changes
along the topology using a continuous-time Markov chain model, and estimated the most
likely state at each node. The Panesthia are understood to have originated from macropterous
ancestors (Lo et al., 2016), thus we included the closest known outgroup species P.
angusti pennis angustipennis, and fixed the root of the tree to be macropterous. We undertook
two reconstructions, the first with a unidirectional rate matrix permitting only evolution away
from the ancestral state (since wing re-evolution is considered highly unlikely; Trueman et
al., 2004). Our second reconstruction permitted free transitions between al character states
(by specifying abidirectional “al rates different” model). As one OTU was found to be
highly polymorphic, we undertook separate analyses reconstructing wing evolution within the

OTU, using a single representative from each sampling locality.
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3. Results
3.1. Phylogenetic relationships and species delimitation

Our analyses uniformly support the monophyly of the Panesthia. Maximum-
likelihood and Bayesian analyses of the mitogenomic data set produced near-identical
estimates of the phylogeny, differing only in the placements of some terminal branches
(Figure 1). Genetic relationships within and between major lineages were generally clustered
by geographic locality, with the northern Queensland samples (Clades A+B + P. sp.
Koombooloomba) forming successive sister groups to a clade comprising samples from
central and southern Queensland, New South Wales, and the LHIG (Clade C).

The three species delimitation methods applied to this data set yielded similar
estimates of OTUs: 10 from GMY C, 12 from ASAP and 11 from BPP (Figure 1). Since the
BPP analysis incorporated both mitochondrial and nuclear markers, and produced
delimitations that best reflect accepted species boundaries, we consider the 11-OTU scheme
to be the most robust and refer to this in subsequent sections.

Four of the OTUs correspond to novel localities previously unsampled in taxonomic
or genetic studies: P. sp. Cape Upstart, P. sp. Airlie Beach, P. sp. Mt. Windsor and P. sp.
Koombooloomba. Further, P. cribrata was found to comprise three divergent clades, which
we presently refer to as P. cribata North, P. cribrata Central and P. cribrata South. The
monophyly of each OTU was well supported (excluding P. sp. Koombooloombaand P. sp.
Mt. Windsor, each of which was represented by a single sample). The phylogenetic positions
of all OTUs were also resolved with uniformly high support (PP, UFBoot, SH-aLRT > 0.95),
excepting the crown node of Clade B (PP = 0.97, UFBoot = 0.9, SH-aLRT = 69.5) and the
node uniting P. sp. Koombooloomba with its sister group (PP = 0.91, UFBoot = 0.97, SH-

aLRT = 84.3; but note that only two markers were sequenced for this sample).
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314 The mitochondrial OTUs were consistently recovered as monophyletic in our analyses
315 of the nuclear ribosomal loci, with the exception of P. cribrata Central and P. cribrata South,
316  which were paraphyletic in the ML and Bayesian trees, respectively (Figure 2,

317  Supplementary Figure S1; note that P. sp. Koombooloomba was absent from the nuclear data
318  set). However, the branching order of the OTUs and the populations within OTUs were

319 somewhat discordant with the mitochondrial results, and differed between ML and Bayesian
320 analyses (in both cases with relatively low node support; Figure 2, Supplementary Figure S1).
321 Themost significant conflict was the position of P. lata, which was placed substantially

322  deeper in the phylogeny, either on its own branch in ML analysis (UFBoot = 46, SH-aLRT =
323 60.7) or assister to P. sp. Airlie Beach in Bayesian analysis (PP = 0.95).

324 The constrained nuclear tree, which followed the mitogenomic branching order, was
325 strongly rejected by al six metricsin IQTREE in favor of the unconstrained tree

326  (Supplementary Table $4), indicating that the phylogenetic signal from the nuclear datais
327  sgnificantly incongruent with the mitogenomic topology. However, when we estimated an
328 ML tree from a concatenated alignment comprising all available loci, the species-level

329 topology was almost identical to the mitogenomic tree, differing solely in the placement of P.
330 lataassister to P. cribrata Central + South (UFBoot = 98, SH-aLRT = 99.8; Supplementary
331 Figure S2).

332

333  3.2. Molecular dating

334 Based on COL rate calibration of the mitogenomic data set, the stem age of the

335 Panesthiawas placed at ca. 7.62 Ma (95% credible interval [Cl] 5.79-9.53 Ma), with a

336  crown age of ca. 5.30 Ma (95% CI 4.06-6.66 Ma). The stem ages of all eleven OTUswere

337  dated to the Pliocene or early Pleistocene (ca. 1.8-5 Ma), with intraspecific divergences
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occurring in the middle to late Pleistocene (< 1.5 Ma, excluding the Ball’ s Pyramid lineage of
P. lata, which diverged from conspecifics ca. 1.51 Ma, 95% CI 1.08-1.96 Ma).

The evolutionary timescale recovered from nuclear loci yielded a curiously deep stem
age, albeit with abroad 95% CI (14.61 Ma, 95% CI 5.16-24.82 Ma). The remaining nodes
had younger and |ess precise age estimates than in the mitogenomic analysis (Supplementary
Figure S1). The crown age of the Panesthia was estimated as ca. 4.84 Ma (95% CI 2.47-7.84
Ma), while all species-level cladogenesis was estimated to have occurred in the late Pliocene
and early—middle Pleistocene (ca. 0.5-3 Ma).

As anticipated, secondary calibration using node ages from Beasley |Hall et al.
(2021b) produced a substantially deeper estimated timescale, with a stem age of 22.41 Ma
(95% CI 15.46-28.89 Ma; Supplementary Figure S3). All interspecific divergences were
estimated to have occurred in the middle to late Miocene (ca. 5.3-15.3 Ma), followed by

intraspecific diversification throughout the Pliocene and Pleistocene (< 5.0 Ma).

3.3. Historical biogeography

In BioGeoBEARS analysis, the best-fitting model was DIV A-like (A1Cc = 49.64),
compared with DEC (AlICc = 50.78) and BayArea-like (Al1Cc = 57.65). The ancestral state
was well resolved (most probable state > 50%) for nearly all internal nodes, excluding only
the clade comprising P. lata + P. cribrata South. Under this scenario, the most recent
common ancestor (MRCA) of the Panesthia occurred in North Queensland (Figure 3). All
ancestral and contemporary ranges in Clades A+B were placed in Central Queensland, while
the crown node of Clade C was estimated to occur in Central Queensland alone, suggesting a
southward range expansion. Presently, all mainland OTUs except P. cribrata South occur in
Central or North Queensland, while the latter is found in Mid-eastern Australia and South-

eastern Australia. The ancestral range of P. lata, which is presently endemic to the LHIG,
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could not be confidently resolved between Central Queensland, Mid-eastern Australia, or
South-eastern Australia

Ancestral niche reconstruction in Nichevol suggested that the MRCA of the Panesthia
inhabited exclusively closed forest (Figure 3). This niche was retained in the ancestors of all
lineages in Clades A + B; however, we inferred a niche expansion into open forest within
Clade C, occurring in the ancestor of P. matthewsi + P. cribrata Central + P. lata + P.
cribrata South. In addition, two contemporary OTUs were found to have independently
expanded or shifted their niche into woodland: P. parva, which inhabits woodlands only; and
P. lata, which inhabits mesic closed forest, open forest, woodland and xeric grasslands (not
labeled). No mesic lineages were found to have evolved from dry forest or woodland

ancestors.

3.4. Wing mor phology

Ancestral state reconstructions consistently found that wing reduction has occurred
multiple times within the Panesthia. When wing re-evolution was prohibited, wing reduction
was inferred to have occurred six timesin total, including twice within P. cribrata Central
(Figure 4). Five OTUs were exclusively micropterous, arising from four independent wing
reductions: P. lata, P. matthewsi, P. cribrata North, and P. sp. Cape Upstart + P. sp. Brandy
Creek (Figure 4a). In contrast, P. cribrata Central was found to be wing polymorphic. When
wing evolution was modeled within the species, we inferred two populations to have
independently become brachypterous (Murgon and Kroombit Tops) and a single population
to have become micropterous (Gayndah), having evolved from a shared, brachypterous

ancestor with the Kroombit Tops population (Figure 4b).
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The scenario varied slightly when wing re-evolution was permitted, with an estimate
of eight independent wing reductions (Supplementary Figure $4). All flightless lineages were
inferred to have independently arisen from macropterous ancestors, including P. sp. Cape
Upstart and P. sp. Airlie Beach, and the Gayndah and Kroombit Tops populations of P.

cribrata Central.

18


https://doi.org/10.1101/2024.05.30.596734
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.30.596734; this version posted June 3, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

available under aCC-BY-NC 4.0 International license.

4. Discussion

4.1. Phylogenetic relationships

This study substantially clarifies the evolution and systematics of the Panesthia.
Previously thought to comprise five species, our results reveal unrecognized diversity in
rainforest isolates across Queensland, and we provisionally identify eleven divergent
lineages. With the notable exception of P. cribrata, there was strong support for the
monophyly of established species in both nuclear and mitochondrial analyses. In contrast,
geographic sampling was sufficient to discern three divergent mitochondrial clades within P.
cribrata, which were polyphyletic with respect to P. lata and P. matthewsi. This potentially
explains the inconsistent relationships between these species across previous studies
(Beasleyl_Hall et a., 2021b; Lo et al., 2016), and echoes suggestions that P. cribrata
represents a species complex (Beasley IHall et a., 2021b; Roth, 1977). However, we are
currently unable to discern morphological boundaries between the three cribrata lineages,
and note that the non-monophyly P. cribrata South and Central in nuclear analyses may
indicate ongoing gene flow at the boundary of their ranges. Taxonomic study is underway to
determine whether and how to partition the putative complex, as well as to formally describe
the novel OTUs identified by our study.

Mitogenomic analyses supported a southward grade of diversification, with al north
Queensland samples forming successive sister lineages to those present in south-east
Queensland and New South Wales. Thisis consistent with the understanding that the
Panesthia dispersed southwards across Australia following their arrival from Melanesia
(Maekawa et al., 2003). A similar overall pattern was found by Lo et al. (2016) and Beasley-
Hall et a. (2021b), using primarily mitochondrial markers with lower taxon sampling.

Although the nuclear topologies also supported a north—south geographical gradient, the trees
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were less strictly geographically clustered, and estimated an early divergence of P. lata. This
aligns with the results of Legendre et al. (2015, 2017), where P. lata was inferred to be sister
to aclade uniting P. cribrata and P. ancaudel lioides, based on analysis of concatenated
mitochondrial and nuclear genes.

Mito-nuclear discordanceis not unusual in data sets spanning the boundary between
species- and population-level processes, and could indicate incomplete lineage sorting,
selection or introgression. Nuclear introgression would be consistent with the male-biased
dispersal observed in Panesthia species (O'Neill et al., 1987). However, given the slower
evolution and low node support of the nuclear phylogenies, it is likely that much of the
discordanceis due to low phylogenetic information content (Zink and Barrowclough, 2008).
This interpretation is broadly supported by our analyses of the concatenated data set, which
produced atopology almost identical to that inferred from mitogenomes. Therefore, we focus
our discussions on the mitogenomic results, noting well-supported discrepancies where
relevant. In future, the extent of introgression could be investigated using awider suite of

nuclear markers, such as single-nucleotide polymorphisms.

4.2. Mainland biogeography

The Panesthia were found to have diverged from Melanesian ancestors in the late
Miocene (ca. 7.62 Ma). By this point, paleobotanic and phylogeographic data suggest that
rainforest had substantially retracted, with both mesic and sclerophyllous elements occurring
across the eastern seaboard (Byrne et al., 2011; Martin, 2006; Rix and Harvey, 2012).
Nonetheless, the ancestral Panesthia were inferred to be wet-forest obligates. A rainforest
origin is concordant with the ecology of the genus in Southeast Asia (Roth, 1979b; Wang et
a., 2014), although the precise relationships between Australian and M elanesian species are

unclear because much of the latter’s diversity remains undescribed. A wider body of evidence
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also indicates that faunal exchange from Asiawas dominated by rainforest species (e.g.,
Braby et al., 2020; Rowe et al., 2011; Roycroft et al., 2022), suggesting that pal eobotanic
conditions were favorable to their dispersal.

The Panesthia now attain their greatest diversity in Queensland, comprising nine
potential species. In sharp conflict with the hypothesis that rainforest patches were colonized
by woodland-adapted ancestors (Beasdey1Hall et a., 2021b; Roth, 1977), eight of these were
found to have ether retained the ancestral closed forest niche or only expanded into open
forest (i.e., broadly remained within the mesic biome), with only a single transition to open
woodland in the early-divergent species P. parva. The stem age of the species (ca. 4.02 Ma)
coincides with aperiod of rapid woodland expansion, which may have driven this
unidirectional xeric adaptation (e.g., Hugall et a., 2008; Rix et al., 2021). Panesthia parva
displays a unique ecology among the genus, residing in dry, dead treetops and subsisting for
months without moisture (J.A. Walker, pers. obs.). Potentially, the associated physiological
and behavioral adaptations prohibit a reversion to inhabiting rainforest.

Our results suggest that most species arose through vicariance as mesic forests
retracted. The two most speciose clades were found to occur primarily in the Northern and
Central Queensland bioregions (Clades B+C; Figure 3). The boundary between these two
regions corresponds to the Saint Lawrence Gap, an expanse of dry grassland that forms an
arid barrier to dispersal in mesic organisms (Bryant and Krosch, 2016). While the timing of
its formation is not resolved with high precision, a number of phylogeographic studies have
detected divergences across the gap that date to the mid Pliocene (Baker et al., 2008; Burke et
a., 2013; Chapple et al., 2011). Thistimeframe corresponds to the divergence between the
two Panesthia clades (ca. 3.87 Ma) and suggests that they may have been isolated by the
grasslands’ formation. Ecological surveys undertaken by the authors have failed to detect

Panesthia within the gap, indicating that it remains a barrier to this day.
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466 Within the two clades, OTUs were found to typically occupy small habitat ranges,
467  spanning one or few patches of rainforest or fringing open forest (i.e., P. ancaudellioides, P.
468  sp. Cape Upstart, P. sp. Brandy Creek, P. cribrata North, P. matthewsi; Figure 2). Micro-
469  endemism is common in dispersal-limited invertebrates, which can persist long-term in small
470 forestisolates (e.g., Harvey et al., 2017; Oberski et al., 2018). Based on our time-calibrated
471  phylogeny, most speciation occurred during the Pliocene (ca. 2.5-5 Ma). During this period,
472  intense glacia and interglacial cycles are thought to have caused substantial and rapid

473  retractionsin rainforest (Hill, 1994; White, 1986, 1994), producing the highly fragmented
474  distribution seen today. In concordance, species-level structure dated to the Pliocene has been
475  observed in many mesic lineages across the eastern seaboard (Baker et al., 2008; Heimburger
476  eta., 2022; Lucky, 2011; Moreau et a., 2015; Mutton et a., 2019; Ponniah and Hughes,
477  2004; Sotaet al., 2005).

478 In contrast to the fine-scale endemism observed in northern and central Queensland,
479  the southern reaches of the group’s range are occupied by P. cribrata Central + South, which
480  span larger, contiguous distributions from southern Queensland to Victoria. The boundary
481  between the two corresponds to a region of dry sclerophyll, which presumably limits

482  secondary contact (the Brisbane Valley Barrier; Bryant and Krosch, 2016). While present
483  sampling did not cover the complete range of P. cribrata South, genetic relationships within
484  the OTUs were not consistently arranged by geographic locality or habitat type, and close
485  relationships were found between samples from distant rainforest and dry forest sites (e.g.,
486  Mogo, Capertee Valley and Kempsey). This contrasts with the stricter geographic clustering
487  and deeper structure seen in co-occurring rainforest invertebrates (Garrick et al., 2004;

488 Garrick et al., 2008; Garrick et a., 2012; Symula et a., 2008) and suggests ongoing gene

489  flow between wet and dry sclerophyll populations. Thus, our findings suggest that both
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niche-conserved vicariance and more recent dispersal through drier forest have contributed to
the contemporary distribution of the Panesthia.

Finally, secondary calibration with date estimates from Beasley-Hall et al. (2021b)
yielded a substantially deeper evolutionary timescale. Under this scenario, the speciation of
the Panesthia would have occurred against a backdrop of more gradual Miocene
aridification, associated with the incipient fragmentation of east-coast rainforests (Byrne et
a., 2011). A number of studies have estimated comparable (e.g., Lucky, 2011; Rix and
Harvey, 2012; Tallowin et al., 2019) — or older (Gunter et a., 2019; Oberski et a., 2018) —
speci es ages across the eastern seaboard, indicating that some or all of the biogeographic
barriers between Panesthia clades may have formed during the Miocene. Thus, we cannot

rule out this alternative explanation for the group’s evolution.

4.3. Colonization of the Lord Howe Island Group

The Lord Howe Island cockroach P. lata is one of the most poorly understood
members of the genus. Previous studies have only included one (Beasley IHall et a., 2021b;
Legendreet al., 2017; Legendre et al., 2015) or two (Lo et al., 2016) representatives of the
species, leaving open questions regarding the timing, route and number of dispersals to the
LHIG. By sampling across the full spatial extent of the LHIG, we robustly resolve P. lata asa
monophyletic group and evidence the species reaching the islands in a single dispersal event.
Our analyses also reveal appreciable population structure across the archipelago, which we
discuss elsewhere in a focused population genetic investigation of the species (Adamset al.,
in prep.).

The LHIG is highly remote, and the ancestors of P. lata presumably arrived by
rafting. Range reconstructions based on the mitogenomic topology were unable to clearly

estimate a biogeographic region of origin; however, the species was united with P. cribrata
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South, which is found in New South Wales and far-southern Queensland. The LHIG occurs
due east of Port Macquarie, New South Wales, thus a parsimonious explanation is that the
islands were colonized from a nearby section of the mainland. However, we note that the
phylogenies estimated from nuclear or concatenated mito-nuclear markers instead unite P.
lata with species occurring further north in Queensland. In which case, propagules could
potentially have been transported southwards by surface currents, following the establishment
of the East Australian Current at |least by the mid-Pliocene (Christensen et al., 2021,
Przeslawski et al., 2011). Although biogeographic studies of LHIG terrestrial fauna are
scarce, a sister relationship with Queensland species has been found in endemic Armadillo
isopods (Lillemets and Wilson, 2002) and peloridiid moss bugs (Burckhardt, 2009). Similar
patterns are also observed across a large range of marine taxa (e.g., Colgan and Woods, 2022,
Veron and Done, 1979; Williams et al., 20114).

Panesthia lata is notable for its tolerance of the uniquely exposed conditions on the
small islets surrounding Lord Howe Island proper. Y et, even when accounting for its
discordant placement between topologies, P. lata was consistently nested among rainforest or
sclerophyllous lineages, and its ancestral habitat was inferred to be either closed or open
forest. This suggests that the speciesinitially established in rainforest, which is widespread
on the main island, before subsequently expanding its environmental tolerance. Due to the
non-monophyly of island populations within P. lata (Figure 1), it is challenging to discern
precisely when and how the niche shift(s) occurred. Potentially, the species may have
expanded its environmental tolerance early in its evolutionary history, and subsequently
spread to the drier, more exposed islets. The label accompanying the samples from Ball’s
Pyramid, which diverged early in the species’ history, indicates that they were collected from
leaf litter (an unusually dry habitat for Panesthia). Alternatively, it is also plausible that niche

expansions occurred multiple timesin parallel, in association with the isolation of each islet
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lineage. Further study is underway to investigate ecological differences among these

populations and to refine hypotheses regarding their evolution.

4.4. Wing mor phology

The Panesthia display a broad range of wing morphologies, spanning macropterous,
brachypterous and micropterous forms. Even when accommodating the possibility of wing
re-evolution (Forni et al., 2022), our reconstructions estimate that wing reduction has
occurred 6-8 times independently, including at least twice within P. cribrata Central. Given
the recency of diversification, possible explanations for the frequent wing reduction include
de novo mutation, selection on standing polymorphism, or phenotypic plasticity. However,
inconsistently with plasticity, wing morphs were strictly partitioned between allopatric
populations, with no polymorphism at any single sampling locality. Long-term culture of
Panesthia has also found wing morphology to be stable across generations (>10 years; H.A.
Rose, JA. Walker, pers. obs.). Therefore, it islikely that each instance of flight lossis
independent, corroborating previous reports of frequent wing loss across the subfamily
Panesthiinae (Bell et al., 2007b; Roth, 1977, 19794, b, 1982).

The tendency towards wing reduction is presumably tied to the saproxylic niche. Due
to the energetic mai ntenance costs of flight apparatus, wings are strongly selected against and
frequently lost in confined habitats such as logs (Bell et a., 2007b; Roff, 1990). Likewise, the
manual shedding of wings in macropterous lineages is ubiquitous, and presumably aleviates
energetic costs through the histolysis of flight muscles (Roff, 1989; Tanaka, 1994). Hence, it
isunclear how fitness varies between facultatively flightless (macropterous, wing-shed) and
permanently flightless (wing-reduced) morphs, and whether any environmental pressures

encourage permanent wing reduction.
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One potential correlate that unites wing-reduced lineages is their occupation of small
habitat patches. In addition to the island-endemic P. lata, all mainland flightless lineages
have disjunct ranges spanning one or few mesic isolates. A long-standing hypothesis suggests
that flight is selected against in insular habitats, to reduce dispersal into surrounding,
unsuitable environments (reviewed by Waters et a., 2020). However, it is unknown how
frequently, or how far, macropterous cockroaches fly prior to shedding. Measuring dispersal
ability prior to wing-shedding would be needed to clarify the potentially deleterious nature of
thistrait in insular habitats. Likewise, habitat insularity may co-vary with other potentialy
relevant variables such as temperature, altitude or environmental stability (Roff, 1990, 1994),
which were not considered in our habitat reconstructions. The presence of wing
polymorphism in P. cribrata Central provides an exemplary model system in which to
compare closely related, morphologically divergent populations. Fitness assays of different
wing morphs of P. cribrata Central, complemented by more granular ecological and genomic

analyses, could illuminate the underpinnings of this striking parallel evolution.

4.5. Conclusions

This study provides new insights into the diversity of the Panesthia, revealing 11
divergent genetic lineages. Niche reconstructions suggest that the ancestors of the group
occupied closed mesic forest and subsequently speciated through both vicariance and
transitions into drier forests as rainforests retracted during the Pliocene. The retraction of
rainforest into insular refugia may have also driven parallel wing reduction by exerting
selective pressure against flight, although further work is required to test this hypothesis. Our
findings further reveal that P. lata most likely reached the LHIG in a single colonization

event, and that the species expanded into adrier niche after establishment on the archipelago.
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Overall, our integration of mainland and island taxa offers a holistic view of historical

bi ogeography across two disparate geographic realms.
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Figure 1. Dated phylogeny of the Panesthia inferred from complete mitochondrial genomes

in BEAST and IQTREE. The evolutionary timescale was inferred using a previous estimate

of the COL substitution rate (Allegrucci et al. 2011). PP: posterior probability, UFBoot:

ultrafast bootstrap, SH-aLRT: SH-like approximate likelihood ratio test, QLD: Queensland,
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NSW: New South Wales, LHIG: Lord Howe Island Group. Size of node labels varied for
visual clarity. Letters A—C denote crown nodes of major clades. Stars denote tips with
varying position between BEAST and IQTREE analyses. Results of species delimitation
analyses are displayed to the right of tips. GMY C and ASAP results are based on
mitochondrial genomes only, while BPP results are based on mitochondrial genomes and the
nuclear ribosomal operon. Nomenclature and coloration of operational taxonomic units

follows BPP results. | nset: distribution of sampling localities in eastern Australia.
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Figure 2. Maximum-likelihood phylogeny of the Panesthia inferred from the nuclear
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coloration of operational taxonomic units follows the mitogenomic (BPP) resullts.
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Figure 4. Evolution of wing morphology with wing re-evolution prohibited, reconstructed in phytools over the Bayesian chronogram inferred

from complete mitogenomes in BEAST. a) Ancestral wing morphology of the 11 operational taxonomic units (OTUSs). b) Ancestral wing

morphology within the polymorphic OTU Panesthia cribrata Central, pruned to include a representative selection of sampling localities. Circles

at nodes indicate the most probable ancestral state and the square at the root node the fixed ancestral state. States at all internal nodes were
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estimated with probability > 50%. Stars denote an inferred reduction of wings from a macropterous ancestor. | nset: representative habitus
images of wing morphs. Arrows indicate reduced forewings. Photographs by Braxton Jones.
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