

1 ***Transcriptional remodeling by OTX2 directs specification and patterning of mammalian***
2 ***definitive endoderm***

3
4

5 Ee LS^{#1}, Medina-Cano D^{#2}, Uyehara CM¹, Schwarz C³, Goetzler E¹, Salataj E¹, Polyzos A¹,
6 Madhuranath S¹, Evans T⁴, Hadjantonakis AK², Apostolou E¹, Vierbuchen T² and Stadtfeld M^{1*}

7

8 ¹ Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill
9 Cornell Medicine, New York, NY 10065, USA.

10 ² Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer
11 Center, New York, NY 10065, USA.

12 ³ Emerald Cloud Lab, Austin, TX 78728 USA.

13 ⁴ Department of Surgery, Weill Cornell Medicine, New York, NY 10065, USA; Center for
14 Genomic Health, Weill Cornell Medicine, New York, NY 10065, USA.

15

16

17 *#denotes equal contribution*

18 * Corresponding and lead author (mas4011@med.cornell.edu)

19

20

21

- *Mouse and human pluripotent cells with multipurpose degron alleles establish versatile*
22 *platforms to dissect cell type-specific functions of the pleiotropic transcription factor*
23 *OTX2*
- *OTX2 controls molecular programs required for anterior-posterior patterning of the*
25 *developing gut*
- *OTX2 establishes and maintains chromatin accessibility at distinct distal gene*
27 *regulatory elements in definitive endoderm*
- *OTX2 functions as a patterning factor across different germ layers and species*

28

29

30

31

32 **Summary**

33 The molecular mechanisms that drive essential developmental patterning events in the
34 mammalian embryo remain poorly understood. To generate a conceptual framework for gene
35 regulatory processes during germ layer specification, we analyzed transcription factor (TF)
36 expression kinetics around gastrulation and during *in vitro* differentiation. This approach
37 identified *Otx2* as a candidate regulator of definitive endoderm (DE), the precursor of all gut-
38 derived tissues. Analysis of multipurpose degron alleles in gastruloid and directed differentiation
39 models revealed that loss of OTX2 before or after DE specification alters the expression of core
40 components and targets of specific cellular signaling pathways, perturbs adhesion and migration
41 programs as well as de-represses regulators of other lineages, resulting in impaired foregut
42 specification. Key targets of OTX2 are conserved in human DE. Mechanistically, OTX2 is
43 required to establish chromatin accessibility at candidate enhancers, which regulate genes
44 critical to establishing an anterior cell identity in the developing gut. Our results provide a working
45 model for the progressive establishment of spatiotemporal cell identity by developmental TFs
46 across germ layers and species, which may facilitate the generation of gut cell types for
47 regenerative medicine applications.

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63 **Introduction**

64 Pluripotency exit and morphogenetic changes during gastrulation that result in the acquisition of
65 the germ layers ectoderm, mesoderm, and endoderm are central processes for tissue
66 specification in the post-implantation mammalian embryo and set the stage for later
67 organogenesis (Bardot and Hadjantonakis, 2020; Tam and Behringer, 1997). Genetic studies in
68 model organisms have identified numerous modulators of gastrulation, including regulators of
69 signaling pathways that instruct germ layer identity (Morgani and Hadjantonakis, 2020) and cell
70 surface molecules that promote correct morphogenetic cell migration and adhesion (Muncie et
71 al., 2020). In addition, DNA-binding transcription factors (TFs) have been recognized as
72 important regulators of germ layer and organ specification (Cui et al., 2018; Tam and Loebel,
73 2007) whose dysregulation can drive developmental and congenital disorders.

74 Recent single-cell profiling experiments have provided high-resolution atlases of
75 transcriptional changes associated with gastrulation and the emergence of specific germ layers
76 in mouse and human embryos (Nowotschin et al., 2019; Pijuan-Sala et al., 2019; Qiu et al.,
77 2022; Tyser et al., 2021; Zeng et al., 2023). Yet, our understanding of how specific TFs
78 coordinate the transcriptional remodeling required for germ layer specification and organ
79 development at the molecular level remains superficial. This lack of knowledge is due to (i) the
80 inaccessibility of the post-implantation mammalian embryo, (ii) the associated difficulty in
81 generating sufficient cellular material for in-depth molecular characterization of TF functions, and
82 (iii) limitations of existing gene knockout (KO) models concerning specificity and spatiotemporal
83 control, suggesting a need for more tractable experimental systems.

84 Embryonic stem cells (ESCs) are attractive tools for studying developmental processes
85 (Gaertner et al., 2019). Still, standard mouse ESC (mESC) differentiation protocols are highly
86 variable and yield disorganized and/or heterogeneous cell populations that inadequately mirror
87 embryonic patterning processes (Bernardo et al., 2011; Drukker et al., 2012; Yu et al., 2011).
88 Human ESCs (hESCs) achieve more homogenous differentiation responses upon suitable
89 stimulation (Hawkins et al., 2021; Loh et al., 2014; Pan et al., 2020), possibly because they
90 resemble a post-implantation “primed” state of development (Tesar et al., 2007). Accordingly,
91 converting naïve mESCs into a primed state allows near-homogenous, signaling-mediated
92 differentiation into tissues such as definitive endoderm (DE), the precursor of all gut-derived
93 organs (Medina-Cano et al., 2022). For the interrogation of protein function, in-frame fusions of

94 degron tags such as FKBP12^{F36V} (referred to as the dTAG system) (Nabet et al., 2018) to
95 proteins of interest has emerged as a powerful approach to enable acute, controlled and specific
96 depletion of candidate factors (Jaeger and Winter, 2021; Prozzillo et al., 2020), which has been
97 applied to address developmental questions (Abuhashem et al., 2022; Bisia et al., 2023).
98 Integrating degron alleles into synchronized directed differentiation regimens, therefore, in
99 principle, represents a tractable and versatile experimental platform to dissect the function of
100 developmental TFs at high temporal resolution.

101 OTX2 is a conserved homeobox TF with pleiotropic functions during vertebrate
102 development (Beby and Lamonerie, 2013). In mouse and other animal models, OTX2 is required
103 for correct migration and inductive properties of the anterior visceral endoderm (Rhinn et al.,
104 1998), an extra-embryonic tissue required for establishing anterior-posterior identity in the
105 mammalian embryo. Subsequently, OTX2 by cell-autonomous and non-autonomous
106 mechanisms (Rhinn et al., 1999) controls the specification and patterning of the neuroectoderm
107 (Acampora et al., 1995) and later the formation of specific neuroectoderm derivatives (Beby and
108 Lamonerie, 2013). Gastrulation-stage mouse embryos deficient for OTX2 manifest with defects
109 in non-ectodermal tissues, including foregut and heart abnormalities (Ang et al., 1996; Jin et al.,
110 2001; Matsuo et al., 1995) suggesting OTX2 functions in germ layers beyond ectoderm.

111 By mining published and unpublished genomics datasets, we identified evidence for a
112 direct role of OTX2 in the formation and patterning of the mammalian DE and primary gut tube.
113 Systematic assessment of embryonic endoderm formation from mouse and human primed
114 pluripotent stem cells harboring “multipurpose” (degradation/immunoprecipitation/visualization)
115 degron alleles showed that stage-specific depletion of OTX2 resulted in abnormal DE with
116 impaired ability for anteriorization and foregut differentiation. Transcriptional functions of OTX2
117 in the DE include the activation of specific gut tube-associated downstream TFs, balanced
118 expression of WNT and FGF/ERK signaling components, and repression of non-endodermal
119 genes. Gene activation by OTX2 entails OTX2-dependent gain of chromatin accessibility at
120 distal enhancer elements harboring canonical binding motifs, some of which are primed for
121 activation by OTX2 binding in the epiblast. In contrast, OTX2-dependent gene repression
122 proceeds via binding to low-affinity sites and by indirect mechanisms. Our results suggest that
123 OTX2 is a central component of a transcriptional program for anteriorization during peri-
124 gastrulation phases of development that is conserved across germ layers and species.

125 **Results**126 ***Integrative analysis of in vivo and in vitro datasets identifies candidate regulators of germ***
127 ***layer specification***

128 We analyzed available genomics and phenotypic data to identify candidate transcriptional
129 regulators of germ layer specification among a comprehensive list of 1,682 murine TFs (Garippler
130 et al., 2022). We set as criteria **I**) strong upregulation – fold change (FC)>5 and adjusted p-value
131 (padj) <0.05 – during the transition of mESCs to epiblast-like stem cells (EpiLCs) which resemble
132 the early post-implantation epiblast (Hayashi et al., 2011) (**Table S1**), consistent with a role in
133 preparing for germ layer specification; **II**) sustained elevated expression throughout formation
134 and patterning of at least one germ layer in the mouse embryo based on single-cell RNA
135 sequencing (scRNA-seq) (Nowotschin et al., 2019; Pijuan-Sala et al., 2019) and **III**)
136 developmental organ phenotypes in KO mice in the Mouse Genome Database (Bult et al., 2019).
137 This approach resulted in the identification of a group of seven candidate TFs that met all criteria
138 (**Fig.S1A**). Among these candidates, *Otx2* – encoding an essential and highly conserved
139 homeobox TF (Ang et al., 1996; Matsuo et al., 1995) – demonstrated the most significant
140 upregulation during the transition from naïve to primed pluripotency (**Table S1**). While the
141 importance of OTX2 for development of the anterior visceral endoderm and anteriorization of the
142 neuroectoderm (NE) have been documented (Acampora et al., 1995; Hever et al., 2006;
143 Simeone, 1998), we also observed *Otx2* expression along the trajectory of early gut tube
144 development in the mouse embryo (post-implantation epiblast → anterior primitive streak →
145 definitive endoderm (DE) → anterior gut tube) (**Fig.1A,B**). *Otx2* levels in DE were comparable
146 to those in VE and NE (**Fig. S1B**), consistent with an unexplored role of this TF in the embryonic
147 endoderm.

148 To enable studies into developmental functions of OTX2, we used Cas9-facilitated gene
149 targeting to generate several mESC lines homozygous for a “multipurpose” degron allele. In
150 addition to a dTAG fusion (Nabet et al., 2018) for controlled protein degradation, this allele
151 contains an HA tag fusion to enable immunoprecipitation (IP) and immunofluorescence (IF)
152 independent of the availability of TF-specific antibodies, and a transcriptional reporter encoding
153 a nuclear-localized EGFP (**Fig.1C**). Flow cytometric analysis revealed a low level of *Otx2*
154 expression in mESCs, but significant upregulation in derivative EpiLCs and epiblast stem cells
155 (EpiSCs) (**Fig.S1C**), representing two successive stages of the post-implantation epiblast before

156 germ layer specification. This observation is consistent with previous results (Buecker et al.,
157 2014) and *Otx2* expression kinetics *in vivo* (Acampora et al., 2013). Treatment of OTX2-dTAG
158 EpiLCs with the inducer molecule dTAG-13 resulted in reproducible and highly efficient (>90%)
159 degradation of OTX2 within one hour (h) of culture (**Fig.1D**), documenting our ability to acutely
160 control OTX2 levels.

161

162 ***OTX2 depletion impairs DE formation from mouse pluripotent stem cells***

163 To explore the role of OTX2 during differentiation, we converted EpiLCs derived from OTX2-
164 dTAG mESCs into anterior primitive streak derivatives that emerge during gastrulation using
165 micropattern technology (Morgani et al., 2018) (**Fig.S1D**). Immunostaining revealed a
166 quantitative reduction in the number of cells expressing the DE marker SOX17 (Kanai-Azuma et
167 al., 2002; Morgani et al., 2018) after depletion of OTX2 at the onset of differentiation. In contrast,
168 FOXA2⁺SOX17⁻ putative axial mesoderm cells were still efficiently formed (**Fig.1E,F**). We also
169 observed a slight increase in the levels of the epiblast marker SOX2 with loss of OTX2
170 (**Fig.1E,F**). These observations demonstrate perturbed gastruloid formation without OTX2 and
171 suggest a previously unappreciated and specific role of this TF for DE development.

172 To further dissect the molecular function of OTX2 during DE development, we
173 implemented a recently published directed differentiation approach which efficiently converts
174 EpiSCs into primitive streak (PS) (via transient WNT activation) followed by DE (via BMP
175 inhibition and high levels of Activin A/Nodal signaling) (Medina-Cano et al., 2022) (**Fig.1G**). We
176 established and validated stable homozygous OTX2-dTAG EpiSC lines and differentiated them
177 towards DE, confirming expression of canonical protein markers OCT4 (EpiSC/PS), T(PS) and
178 SOX17 (DE) by the majority (>90%) of cells at the expected timepoints (**Fig.S1E**). *Otx2*
179 expression (measured by *Otx2*-EGFP or HA IF) was detected in >95% of cells at all stages and
180 gradually increased in intensity with highest levels attained in DE (**Fig.1H**), but OTX2 levels were
181 reduced to background after 1h of culture of PS or DE in presence of dTAG-13 (**Fig.S1F**). OTX2
182 depletion at the PS stage (i.e., concurrent with DE specification) (**Fig.1G**) resulted in reduced
183 differentiation into DE (CXCR4⁺PDGFRA⁻ cells), with a concordant increase in PDGFRA⁺
184 putative early mesodermal cells (Takenaga et al., 2007) (**Fig.S1G** and **Fig.1I**). In addition, we
185 observed reduced levels of the DE-associated TF SOX17 (**Fig.1J**). This effect was specific to
186 OTX2-dTAG cell lines treated with degrader, as dTAG-13 treatment did not affect SOX17

187 expression in parental (WT) cells (**Fig.S1H**) and DE differentiation was unaffected by DMSO
188 treatment (vehicle control) in OTX2-dTAG cells (**Fig.S1G**).

189 These findings suggest that OTX2 is important for differentiation towards DE and,
190 possibly, away from mesoderm. OTX2 works in a partially cell non-autonomous manner during
191 anterior neuroectoderm induction (Rhinn et al., 1999). However, analysis of DE established after
192 mixing different ratios of OTX2-dTAG and parental (WT) EpiSCs, revealed no evidence for
193 rescue of CXCR4 levels in OTX2-depleted cells by WT cells or reduced CXCR4 levels in WT
194 cells in presence of OTX2-depleted cells (**Fig.S1I**). These observations support the cell-
195 autonomous functions of OTX2 in driving DE-associated gene expression.
196

197 ***OTX2 loss affects specific developmental programs during DE specification and***
198 ***maintenance***

199 To characterize transcriptional consequences of OTX2 depletion during DE specification on a
200 genome-wide scale and at single cell resolution, we applied single cell RNA sequencing (scRNA-
201 seq) analysis (10X Genomics platform). For this, we used cells generated with the directed
202 differentiation paradigm described above. Multiplexed samples – EpiSCs, DE derived in
203 presence of DMSO (control DE) and DE after OTX2 depletion in PS when induced to become
204 DE (OTX2^{depl_PS} DE) – were subjected to standard processing and QC procedures including
205 elimination of background reads and low-quality cells (Fleming et al., 2022) and analyzed with
206 Scanpy (Wolf et al., 2018). Both control and OTX2 depleted DE clustered away from EpiSCs
207 and showed extinction of pluripotency-associated transcripts, absence of markers for visceral
208 (*Sox7*) and primitive (*Ttr*) endoderm, as well as high levels of a subset of DE-specific markers
209 such as *CD24a*, *Larp7* and *Hhex* (Moore et al., 2014; Pijuan-Sala et al., 2019; Wang et al., 2012)
210 (**Fig.S2A**). We also did not observe differences in cell cycle state based on expression of the
211 G2/M indicators *Aurka* and *Pik1* (Liu et al., 2022) (**Fig.S2A**).

212 Nevertheless, OTX2^{depl_PS} DE formed a distinct cluster on the UMAP projection (**Fig.2A**
213 and **Fig.S2B**), suggesting that OTX2 depletion redirects the developmental trajectory of DE
214 formation from the epiblast and results in a distinct transcriptional state. Accordingly, we
215 identified a total of 1,646 differentially expressed genes (DEGs) (RNA
216 score>1;logFC>1;padj<0.05) between control and OTX2^{depl_PS} DE (**Table S2**), similar fractions
217 of which were downregulated (44.9%) or upregulated (55.1%) (**Fig.2B**). Gene ontology analysis

218 of DEGs suggested dysregulation of WNT signaling, cell adhesion/migration and cell
219 differentiation in absence of OTX2 (**Fig.2C**). At the gene level, we observed downregulation of
220 DE-associated TFs (such as *Sox17* and *Hesx1*), antagonists of WNT signaling (*Dkk1*, *Shisa2*)
221 and cell migration/adhesion regulators (*Cdh1*, *Sema6d* and *Emb*) in OTX2^{depl_PS} DE (**Fig.2D** and
222 **Fig.S2C**). Upregulated genes included agonist and canonical targets of WNT and
223 FGF/regulators (*Cdh2*, *Sema3a*) (**Fig.2D** and **Fig.S2C**).

224 Of note, we also observed significant upregulation of several TFs (*Prdm6*, *Mixl1* and
225 *Tfap2c*) (**Fig.2D** and **Fig.S2C**) associated with other embryonic lineages emerging in early post-
226 gastrulation embryos, including mesoderm, neuroectoderm and primordial germ cells (PGCs)
227 (**Fig.S2D**). We also confirmed upregulation of mesoderm associated *Pdgfra* (**Fig.S2E**).
228 Importantly, ectopic lineage markers were co-expressed in OTX2^{depl_PS} DE at the single cell level
229 (**Fig.S2E**), suggesting that OTX2 loss does not result in the emergence of multiple distinct
230 lineages but rather to partial derepression of specific non-endodermal markers in the same cells.
231 Together, these observations demonstrate that loss of OTX2 during DE specification results in
232 the dysregulation of specific gene expression programs and a profound redirection of DE
233 identity. We confirmed dysregulation of major genes representing the affected programs (TFs,
234 WNT and FGF/signaling and cell adhesion/migration) upon OTX2 depletion at PS in an
235 independent cell line (**Fig.S2F**).

236 To compare molecular consequences when losing OTX2 before or after endodermal
237 identity has been established (Medina-Cano et al., 2022), we depleted OTX2 24h after initiation
238 of DE specification, followed by scRNA-seq analysis. This strategy resulted in a similar number
239 of DEGs (n=1,477) than depletion at PS (**Fig.S2G**) with overall concordant gene expression
240 changes triggered by OTX2 loss before and after DE specification (**Fig.2E**). For example,
241 hallmark molecular changes observed upon OTX2 loss at PS – such as dysregulated expression
242 of WNT/FGF signaling components and of cell adhesion/migration regulators as well as reduced
243 levels of DE markers – were also observed in OTX2^{depl_DE} DE (**Fig.2E**). However, elevated
244 expression of genes associated with nascent mesodermal lineages such as *Eomes*, *T*, *Prdm6*
245 and *Pdgfra* was more pronounced in OTX2^{depl_PS} DE (**Fig.2E**), suggesting that a repressive role
246 of OTX2 at these loci may no longer be required once DE has been specified.

247 Many of the shared gene expression changes induced by OTX2 depletion before or after
248 DE specification – such as the observed evidence for increased WNT and FGF/ERK signaling

249 (Loh et al., 2014; Pan et al., 2020) – are consistent with loss of anterior-posterior (AP) identity.
250 Indeed, evaluation of the relative expression levels of a panel of marker genes for different
251 endodermal lineages along the AP axis (Pijuan-Sala et al., 2019) revealed a pronounced deficit
252 in the expression of specific anterior markers in the absence of OTX2 (**Fig.2F**). Accordingly,
253 further differentiation of OTX2-depleted DE towards the foregut lineage (**Fig.2G**) revealed an
254 impairment to form clusters of SOX2⁺PDX1⁺ gastric progenitors (Medina-Cano et al., 2022).
255 Evidence for altered foregut development were observed independently of whether OTX2 was
256 depleted at the PS stage or after DE specification (**Fig.2H** and **Fig.S2H**). These molecular and
257 functional analyses document that OTX2 contributes to establishing and maintaining gene
258 expression programs required for successful anteriorization of the developing DE.
259

260 ***OTX2 drives locus-specific chromatin remodeling during DE specification***

261 Having established a requirement of OTX2 for proper specification and anterior patterning of
262 DE, we next sought to investigate the mechanisms of gene regulation by OTX2 during DE
263 specification. To identify potentially direct OTX2 targets in EpiSCs and DE, we conducted
264 CUT&RUN experiments with a validated antibody (Alexander et al., 2018; Seah et al., 2019)
265 against the HA epitope that is part of our multipurpose degron allele (**Fig.1C**). CUT&RUN
266 revealed 1,286 high-confidence OTX2 binding sites (see Methods section) that were unique to
267 undifferentiated EpiSCs (“EPI peaks”), 5,035 binding sites shared between EpiSCs and DE
268 (referred to as “primed DE peaks” hereafter) and 37,676 OTX2 bindings unique to DE 24h after
269 induction from PS (referred to “*de novo* DE peaks”) (**Fig.3A**). In contrast, HA CUT&RUN in
270 wildtype DE (i.e., not carrying the HA epitope) revealed only background signal (**Fig.S3A**),
271 supporting the specificity of OTX2 detection. The drastic increase in the number of OTX2 binding
272 sites – and the elevated strength of primed peaks from EpiSCs to DE (**Fig.S3B**) – coincides with
273 the marked transcriptional upregulation of *Otx2* during DE specification (see **Fig.1H**) and
274 indicates extensive reorganization of the OTX2 cistrome during this developmental transition.

275 EPI and *de novo* DE peaks both were most frequent at intronic and distal intergenic sites
276 (**Fig.S3C**) and enriched for genes associated with stage-specific developmental functions, such
277 as Activin receptor signaling and multilineage differentiation (EPI peaks) or cell migration and
278 primitive streak formation (DE peaks) (**Fig.3B**). For example, EpiSC-specific binding was evident
279 at *Pou5f1*, a pluripotency associated locus previously reported to be regulated by OTX2 (Di

280 Giovannantonio et al., 2021) (**Fig.S3D**), and occurred at sites enriched for binding motifs of
281 pluripotency-associated TFs (OCT4, SOX2, OCT6) (**Fig.3C**). In contrast, *de novo* peaks were
282 enriched for binding motifs of TFs with known functions in endoderm development (such as
283 GSC, FOXA1, GATA4) (**Fig.3C**). Primed DE peaks were frequently promoter proximal (**Fig.S3C**)
284 and enriched for genes associated with universal cellular processes such as protein quality
285 control and Rac signaling (**Fig.3B**) as well as for motifs of non-cell type specific TFs (**Fig.3C**),
286 possibly reflecting their position within promoters. These observations document that OTX2
287 occupies candidate regulatory elements of critical lineage-associated genes in a stage-specific
288 manner, likely in collaboration with other developmental TFs.

289 We observed well-defined OTX2 peaks at many DEG^{DOWN} and DEG^{UP}, representing the
290 major cellular programs transcriptionally dysregulated upon OTX2 depletion (**Figs.3D,E** and
291 **Table S3**). To systematically investigate the relationship between OTX2 binding and the
292 transcriptional responses triggered by its loss, we analyzed frequency, strength, genomic
293 positioning, and developmental dynamics of OTX2 peaks at genes affected by OTX2 depletion.
294 To reduce the impact of lowly expressed genes on this analysis, we focused on DEGs with an
295 RNA score>10, covering 448 DEG^{UP} and 393 DEG^{DOWN} (**Table S2**). As reference, we used 1,169
296 gene loci expressed in DE but unaffected (padj>0.9) by OTX2 depletion. In accordance with a
297 direct role of OTX2 in controlling DE transcription) we observed that >80% of DEG^{DOWN} and
298 >75% of DEG^{UP} but only slightly less than 50% of unaffected loci were bound at least once by
299 OTX2 at their promoters or distal regions(**Fig.S3E**). OTX2-bound DEGs on average also showed
300 a significantly higher number of OTX2 peaks than unaffected genes (**Fig.S3F**). In a clear
301 distinction, OTX2 peaks at DEG^{DOWN} were significantly stronger than peaks at DEG^{UP} and at
302 unaffected genes (**Fig.S3G** and **Fig.3D,E**). We also observed a pronounced enrichment of
303 DEG^{DOWN} but not of DEG^{UP} in vicinity of the strongest peaks (4th quartile; Q4) (**Fig.3F**). This
304 suggests that the locus-specific regulatory function of OTX2 (activator versus repressor) may in
305 part be determined by the affinity of its target cis regulatory elements, as has been proposed for
306 homeobox TFs in other developmental contexts (White et al., 2016).

307 Despite the overall low abundance of primed peaks (11.8%) among all DE-associated
308 peaks (**Fig.3A**), more than a quarter (26.3%) of DEG^{DOWN} showed evidence for OTX2 binding in
309 EpiSCs (**Fig.3G**) with almost all DE-associated loci that were already bound by OTX2 in EpiSCs
310 acquiring additional peaks upon differentiation (**Fig.S3H** and **Fig.3D,E**). Consistent with a

311 priming function of OTX2 before DE differentiation, genes with primed peaks were already
312 expressed at higher levels in EpiSCs before becoming further upregulated during DE
313 specification (**Fig.3H**). Both primed and *de novo* bound loci enriched for genes encoding
314 regulators of cell adhesion and migration (such as *Emb*, *Robo1* and *Sema6d*) and antagonists
315 of WNT signaling (*Dkk1* and *Shisa2*) (**Fig.3G**). In contrast, DEG^{DOWN} loci encoding TFs
316 regulating DE and derivative anterior lineages such as *Hesx1*, *Sox17* and *Isl1* were bound by
317 OTX2 in DE only (**Fig.3D,G** and **Table S3**). These observations are consistent with the notion
318 that OTX2 binding in the epiblast primes transcriptional programs broadly required for
319 gastrulation and germ layer formation. The full activation of OTX2-controlled DE-specific genes,
320 however, requires additional regulatory remodeling upon receipt of developmental signals.
321

322 ***OTX2 functions partially by controlling chromatin accessibility at development loci***

323 We next examined to what degree stage specific OTX2 binding impacts chromatin accessibility
324 during DE differentiation. When focusing on differentially accessible regions (DARs) between
325 EpiSCs and DE (Medina-Cano et al., 2022), we noticed that more than 40% of DE-specific DARs
326 (n=20,475) overlapped with OTX2 target sites (either primed or *de novo*) (**Fig.S4A**), while the
327 vast majority (~90%) of EpiSC DARs did not. To test experimentally whether OTX2 binding
328 actively contributes to chromatin opening during endoderm specification, we performed ATAC-
329 seq analysis of DE 24h after OTX2 depletion at the PS stage. This revealed 3,381 high-
330 confidence DARs ($\log_{10}FC > 1$; $padj < 0.05$) compared to DMSO-treated controls. Among DARs,
331 26.1% showed elevated and 73.9% reduced ATAC-seq signal (**Fig.4A** and **Fig.S4B**),
332 demonstrating that OTX2 favors the establishment or maintenance of accessible chromatin in
333 DE. The majority but not all chromatin changes induced by OTX2 depletion occurred at sites
334 normally undergoing accessibility changes during DE specification (**Fig.S4C**).

335 Supervised clustering of all lost or gained DARs upon dTAG-13 treatment in DE along
336 with their accessibility levels in wildtype EpiSC, generated four distinct ATAC-seq peak clusters
337 (C1-C4). C1 genomic sites (n=1,091) were accessible in EpiSCs and DE but lost accessibility in
338 DE upon OTX2 depletion, whereas C2 sites (n=1,508) normally gained accessibility in DE but
339 failed to do so in absence of OTX2 (**Fig.4B**). Both C1 and C2 DARs were enriched at promoter
340 distal regions (**Fig.S4D**) and showed strong, OTX2-dependent transcriptional upregulation of
341 associated genes during DE specification (**Fig.4C**). In total, 32.6% of DEG^{DOWN} were associated

342 with local loss of chromatin accessibility upon OTX2 depletion (**Fig.S4E**), including gene loci
343 encoding negative regulators of WNT signaling (*Dkk1*, *Sfrp5*), cell type-specific transcription
344 (*Hesx1*, *Isl1*) and cellular migration/adhesion (*Emb*, *Sema6d*) (**Fig.4D** and **Table S4**).
345 Importantly, most C1 and C2 DARs were bound by OTX2 (**Fig.4E**) with strongest binding at C1
346 (**Fig.S4F**). These observations support a direct role of OTX2 in controlling chromatin
347 accessibility and transcriptional output at these loci. The regulatory function of OTX2 at a subset
348 of C1 sites includes preoccupancy in EpiSCs (**Fig.4E**). Of note, while binding motifs of OTX2
349 and SOX factors were enriched at both C1 and C2 DARs (**Fig.4F and S4G**), TCF4, NR6A1 and
350 pluripotency factors NANOG and OCT4 were predominantly associated with C1 DARs only and
351 GATA factors with C2 DARs only (**Fig.4F and S4G**). These observations suggest that OTX2-
352 dependent chromatin opening during DE specification enables binding of additional, stage-
353 specific co-regulators.

354 As mentioned above, OTX2 depletion also resulted in gain of chromatin accessibility (C3
355 and C4 DARs). C3 sites (n=489) were pre-accessible in EpiSCs and failed to appropriately close
356 in DE upon OTX2 depletion, whereas C4 sites (n=393) were normally closed in both EpiSCs and
357 DE but aberrantly gained accessibility in DE in absence of OTX2 (**Fig.4B**). Concordantly, genes
358 associated with C3 and C4 peaks showed transcriptional upregulation upon OTX2 depletion
359 (**Fig.4C**). Strikingly, the majority of C3 and C4 DARs did not overlap with OTX2 binding sites
360 (**Fig.4E**), suggesting indirect activation of most of these loci downstream of OTX2 loss.
361 Moreover, even C3/C4 DARs bound by OTX2 were not enriched for the OTX2 consensus motifs
362 (**Fig.S4G**), supporting the notion that binding of OTX2 to loci it represses is mechanistically
363 distinct from OTX2 binding to loci this TF activates. C3/C4 DARs were enriched for a distinct set
364 of regulators than C1/C2 DARs, including the endomesodermal TFs EOMES and FOXA2 and
365 the WNT mediators TCF7L1/2 (**Fig.4F and S4G**). This observation suggests that OTX2 loss
366 increases levels and/or activity of these factors, resulting in ectopic chromatin activation.
367 Together, these observations show that OTX2 engages in both activating and repressive
368 functions during DE specification and exerts part of its activator function by maintaining pre-
369 existing and establishing new chromatin accessibility at distal gene regulatory elements that
370 control the expression of endoderm-associated genes.

371
372 **OTX2 is required for faithful specification of human DE**

373 Compared to most other TFs associated with endodermal differentiation, OTX2 has an unusual
374 high degree (99.7%) of amino acid sequence conservation between mouse and human
375 (Cunningham et al., 2022) (**Fig.S5A**). This suggests evolutionary pressure to preserve protein
376 function and establishes a unique opportunity to study shared and species-specific cis-regulatory
377 aspects of transcriptional control during endoderm specification. To determine the role of OTX2
378 during human DE development, we established homozygous human embryonic stem cell
379 (hESC) lines carrying the identical multipurpose degron cassette we employed in mouse
380 (**Fig.5A**). For this, we used MEL-1 and H9 hESCs, two well-characterized lines with established
381 DE potential (Chia et al., 2019; Jiang et al., 2013). In both parental backgrounds, the hOTX2-
382 dTAG allele allowed rapid (1h) and efficient (>90%) OTX2 depletion in hESC and derivative DE
383 (**Fig.5B**), using the degrader dTAG-v1 (Nabet et al., 2020) which we found more effective in
384 human cells than dTAG-13 (**Fig.S5B**).

385 We differentiated OTX2-dTAG hESCs towards DE with two slightly different protocols –
386 one using identical signaling manipulations to the one applied in mouse (“Protocol 1”) (Medina-
387 Cano et al., 2022), the other applying additional PI3K inhibition during PS specification (“Protocol
388 2”) (Loh et al., 2014) (**Fig.S5C**). In accordance with the developmental resemblance of human
389 pluripotent cells to the post-implantation epiblast, we observed widespread *OTX2* expression in
390 OTX2-dTAG hESCs (**Fig.S5D**), mirroring the situation in mouse EpiSCs and EpiLCs (**Fig.S1C**).
391 *OTX2* expression levels strongly increased during commitment to human DE (**Fig.S5E**), as we
392 also had observed in mouse (**Fig.1H**), suggesting similarities in the manner the *OTX2* locus is
393 controlled by external signaling cues in both species.

394 Differentiation of OTX2-dTAG hESCs towards endoderm in the absence of dTAG-v1
395 yielded predominantly cells co-expressing the DE markers CXCR4 and CD117 (**Fig.5C,D**),
396 demonstrating that the degron allele does not interfere with endodermal differentiation. In
397 contrast, depletion of OTX2 from the PS stage onwards resulted in significantly fewer
398 CXCR4⁺CD117⁺ cells (**Fig.5C,D**). Analysis by qPCR of select gene loci representing pathways
399 and processes that are affected by OTX2 depletion in mouse DE, revealed evidence for
400 dysregulation of similar developmental modules. Thus, we observed altered expression of
401 developmental TFs, including lower levels of the DE-associated TF *HESX1* and elevated levels
402 of “ectopic” TFs such as *MIXL1* and *TFAP2C* in human DE specified in the absence of OTX2
403 (**Fig.5E**). In contrast, SOX17 levels were not downregulated at RNA or protein level in human

404 DE upon OTX2 depletion (**Fig.5E** and **Fig.S5F**), suggesting differences in the regulation of this
405 locus between mouse and human DE (see **Fig.1J** and **Fig.2D**).

406 Expression changes of genes encoding WNT and FGF/ERK signaling components
407 changed in a manner consistent with activation of these two pathways in human DE in the
408 absence of OTX2 (**Fig.5E**), similar to what we had observed in mouse DE. While levels of the
409 transcriptional OTX2-EGFP reporter were only moderately affected by OTX2 depletion (**Fig.5F**),
410 fluorescence microscopy showed that EGFP⁺ human DE lacking OTX2 protein failed to form the
411 dense cell clusters that were abundant in endodermal cultures expressing this TF (**Fig.5G**). This
412 suggests a deficit in the ability of OTX2-deficient DE to self-organize that is reminiscent of the
413 observations made in mouse foregut (see **Fig.2H** and **S2H**). Together, these observations are
414 consistent with the notion that OTX2 is an important regulator of human gut tube specification
415 and suggest that specific developmental functions of this TF are conserved between mice and
416 humans (**Fig.5H**).

417

418 **Discussion**

419 To facilitate studying TF function during mammalian germ layer specification, we implemented
420 an experimental platform that combines efficient and scalable *in vitro* models of embryonic
421 lineage specification with genetic tools for controlled protein degradation. Taking this
422 generalizable approach, we have identified and characterized a previously unappreciated role
423 of OTX2 in DE specification and patterning. In contrast to other TFs regulating endoderm
424 development such as SOX17 (Kanai-Azuma et al., 2002) or the early endomesodermal
425 specification factor EOMES (Arnold et al., 2008) whose loss in KO mouse models results in
426 entire parts of the early gut tube missing, OTX2 depletion in our system does not result in a
427 complete loss of endoderm identity or the generation of non-viable cells. Rather, acute
428 degradation of OTX2 during or after DE formation leads to incorrect patterning with OTX2-
429 depleted DE characterized by dysregulation of WNT and FGF/ERK signaling, altered expression
430 of migratory and cell adhesion molecules, as well as ectopic expression of regulators of other
431 early embryonic lineages. These abnormalities prevent the faithful establishment of anterior
432 endoderm identity. Our results are in accordance with the mislocalization of endomesodermal
433 cells and impaired foregut formation in OTX2 KO mice (Acampora et al., 1995; Kimura et al.,
434 2000).

435 At the molecular level, OTX2 binds to distal gene regulatory elements at loci encoding
436 regulators of cellular signaling, cell adhesion, and gut tube development such as *Dkk1*, *Cdh1*,
437 *Hesx1*, and *Isl1*. At these loci, OTX2 is required to establish and maintain chromatin accessibility.
438 These observations establish OTX2 as a direct regulator of – and potential pioneer factor for –
439 a subset of candidate enhancers involved in DE specification and patterning. Of note, at several
440 genes encoding known regulators of gastrulation and/or gut tube development, OTX2 binding
441 precedes transcriptional upregulation. This suggests a priming function of OTX2 binding in the
442 epiblast, reminiscent of the pre-positioning reported for other TFs, such as OCT2, during
443 lymphocyte development (Doane et al., 2021). The changes in OTX2 genome binding we
444 observed between epiblast and endoderm continue the genome occupancy dynamics initiated
445 when this TF becomes activated upon exit from naïve pluripotency (Navarra et al., 2016; Yang
446 et al., 2014). While requiring further investigation, it is plausible that *de novo* OTX2 binding in
447 DE is driven partly by the availability of different co-factors (resulting in a shift away from sites
448 occupied by pluripotency-associated factors such as OCT4 and towards sites occupied by
449 endoderm regulators such as SOX2/SOX17 and GATA factors) and partly by the elevated OTX2
450 levels in DE (possibly resulting in occupation of low-affinity binding sites). The observation that
451 only comparatively few OTX2-bound genes are differentially expressed upon OTX2 loss might
452 suggest promiscuous binding or redundancy with another TF. On the other hand, not all OTX2-
453 regulated genes (i.e., bound by OTX2 and downregulated in dTAG conditions) lose chromatin
454 accessibility upon OTX2 depletion. This points to additional mechanisms beyond chromatin
455 opening that OTX2 may employ to drive gene expression, such as changes in enhancer activity
456 and/or chromatin looping (Uyehara and Apostolou, 2023).

457 We observed aberrant chromatin opening upon OTX2 depletion at only a subset of gene
458 loci upregulated in the absence of OTX2, suggesting that gene repression by this TF is primarily
459 mediated by a mechanism not affecting chromatin accessibility. Of note, studies in frogs have
460 suggested that OTX2 can directly exert both activating and repressive functions, depending on
461 the nature of cis-regulatory elements it binds to and the co-factors it engages with (Yasuoka et
462 al., 2014). In agreement with this, we observed weaker binding of OTX2 to gene loci it represses
463 and no enrichment of the OTX2 consensus motif at sites gaining chromatin accessibility in the
464 absence of this TF. We surmise that OTX2 achieves gene repression in DE by a variety of direct

465 and indirect mechanisms, including counteracting the expression and/or activity of TFs driving
466 alternative lineages and suppression of WNT signaling.

467 Our stage-specific deletion experiments demonstrate a requirement for OTX2 beyond DE
468 specification. In fact, most genes and developmental programs affected in DE upon OTX2 loss
469 before or after endoderm specification are shared. Intriguingly, high levels of *Otx2* expression
470 are maintained at least until the anterior foregut and possibly beyond in thyroid and thymus
471 progenitors (Nowotschin et al., 2019), raising the possibility that OTX2 functions throughout the
472 progressive anteriorization of the developing gut tube. The similar expression kinetics of
473 *Otx2/OTX2* during the early stages of mouse and human *in vitro* development, the enrichment
474 of the OTX2 motif at mesendodermal enhancers during hESC differentiation (Tang et al., 2022)
475 , and our limited analysis of gene expression changes at murine OTX2 target genes in OTX2-
476 depleted human DE, suggests at least partial conservation of OTX2 function during mammalian
477 evolution. Furthermore, the observation that some of the OTX2 targets we identified in DE are
478 shared with other lineages, including *Dkk1* in the anterior visceral endoderm (Kimura-Yoshida
479 et al., 2005) and *Hesx1* in the forebrain (Spieler et al., 2004), supports the existence of a shared
480 molecular blueprint of AP patterning that employs OTX2. The full repertoire of stage-specific
481 versus tissue-specific versus species-specific versus “universal” OTX2 target genes – and the
482 mechanisms of their regulation by OTX2 – remains to be determined.

483 Upon OTX2 depletion, we observed elevated expression of some signaling and
484 transcriptional regulators associated with the primitive streak and/or the early mesoderm
485 (*Pdgfra*, *Fgf8*, *Mixl1*, *Eomes*, *Prdm6*), the germline (*Tfap2c*) and, to a more limited degree, the
486 neuroectoderm (*Zic2*, *Zic5*). The de-repression of *Tfap2c/TFAP2C*, which encodes a TF required
487 for germline development (Kojima et al., 2021), is consistent with a germline-repressive function
488 of OTX2 in mice (Zhang et al., 2018) and humans (Tang et al., 2022). Based on these
489 observations, we speculate that OTX2 facilitates the timely establishment of an endodermal
490 identity in the anterior primitive streak by selectively targeting master regulators of alternative
491 embryonic cell types rather than broadly suppressing the gene expression programs of these
492 lineages. Of note, in an *in vitro* system of mouse PGC formation, OTX2 depletion favors
493 germline over mesoderm differentiation (Di Giovannantonio et al., 2021). This suggests stage-
494 specific functions of OTX2 in somatic lineage specification beyond neuroectoderm and DE, a
495 notion consistent with the expression pattern of *Otx2* in gastrulation-stage embryos (**Fig.1B**).

496 An ability of OTX2 to directly counteract posterior development has been suggested by
497 microinjection experiments in the frog (Pannese et al., 1995). While further experiments are
498 required to address such an OTX2 function during mammalian development, our scRNA-seq
499 analysis at the DE stage shows no evidence for the upregulation of hindgut regulators or
500 signature genes. This might suggest that OTX2 primarily acts to activate anterior DE loci or
501 reflects the fact that culture conditions employed here are not permissive for posterior gut tube
502 differentiation. The general notion of OTX2 being a gastrulation and germ layer regulator rather
503 than a pluripotency regulator is consistent with the survival of OTX2 KO mice until early
504 organogenesis (Ang et al., 1996) and the mild and delayed defects in mouse pluripotent stem
505 cell lines upon OTX2 deletion (Acampora et al., 2013; Kinoshita et al., 2020).

506 In summary, our studies provide insight into the transcriptional regulation of early gut tube
507 patterning by OTX2 and suggest similarities in the molecular control of anteriorization across
508 tissues and species. The integration of multipurpose degron alleles into efficient directed
509 differentiation regimens of pluripotent cells represents a tractable and readily generalizable
510 platform to dissect these similarities further and to study other developmental processes in
511 mammals.

512

513 **Acknowledgements**

514 We would like to thank Chaitanya Parikh and John Bugay for help with DNA preparations and
515 genotyping, Rachel Glenn, and Emily Corrigan for advice on mouse DE differentiation, Kaushiki
516 Chatterjee and Alejandra Laguillo-Diego for help with Western Blot analysis, and Miriam Gordillo
517 for advice on human DE differentiation. We are grateful to all members of the Stadtfeld and
518 Apostolou labs for their input on this project and feedback on this manuscript. L.E. was a New
519 York Stem Cell Foundation-Druckenmiller Fellow. This research was supported by the New York
520 Stem Cell Foundation. M.S. was supported by grants from the NIH (R01GM145864,
521 R03NS135564), the Simons Foundation, the Tri-Institutional Stem Cell Initiative (Tri-SCI), and
522 the Bohmfalk Charitable Trust. EA was funded by NIH (5R01GM138635 and 5RM1GM139738).

523

524 **Author contributions**

525 L.E. generated and characterized murine cell lines, conducted, and analyzed directed
526 differentiation experiments, prepared cells for genomics assays and assisted in micropattern

527 differentiation. D.M. conducted bioinformatics analyses and assisted with foregut differentiation
528 experiments. C.U. conducted CUT&RUN experiments and assisted in bioinformatics analyses.
529 C.S. conducted micropattern experiments. E.S. conducted ATAC-seq experiments. A.P.
530 assisted with bioinformatic analyses. S.M. assisted in characterizing mouse and human degron
531 cell lines. M.S. and E.G. generated human, validated, and differentiated human degron cell lines.
532 The manuscript was written by M.S. and edited by L.S., C.U., D.M., with input from all authors.
533 M.S. acquired funding. T.E., A.K.H., E.A. and T.V. advised on experimental design, provided
534 reagents, and supervised experiments.

535

536 **Declaration of interests**

537 The authors declare no competing interests

538

539 **Figure titles and legends**

540

541 **Figure 1. OTX2 depletion impairs DE development in murine models of germ layer**
542 **specification**

543 A. *Otx2* expression levels in gastrulation-stage (E6.5-8.5) mouse embryos (modified after
544 Pijuan-Sala et al., 2019). The red dotted line indicates the position of DE.

545 B. Tissue annotation of gastrulation-stage mouse embryos with tissues expressing *Otx2*
546 listed. Arrows indicate different developmental trajectories along which *Otx2* is expressed.

547 C. Design of the murine OTX2-dTAG allele. Coordinates indicate the position of the *Otx2*
548 STOP codon (mm10), which was replaced with a multipurpose cassette. Blue box
549 indicates a linker peptide.

550 D. HA Western blotting (WB) after treatment of OTX2-dTAG EpiLC or EpiLCs derived from
551 parental wildtype (WT) mESCs with dTAG-13 or DMSO for the indicated periods of time.
552 Asterisk indicates a non-specific band.

553 E. Representative IF images after staining anterior micropatterns formed in presence (top)
554 or absence (bottom) of OTX2 for marker proteins of indicated lineages.

555 F. Average marker intensity (+/- standard error of the mean) at different radial positions in
556 anterior micropatterns. N = colonies analyzed.

557 G. Protocol for directed differentiation of EpiSCs into DE, indicating compounds applied and
558 timing of dTAG-13 administration for experiments shown in **Figs. 1I,J.**

559 H. Quantification of Otx2-EGFP levels at indicated stages of directed differentiation. Dotted
560 line indicates level of background fluorescence measured in WT cells. (****)p<0.0001
561 with one-way ANOVA with Tukey's multiple comparison test.

562 I. Quantification by flow cytometry of CXCR4⁺PDGFRA⁻ (DE) and PDGFRA⁺CXCR4⁻
563 (mesoderm) cells following directed differentiation in control (DMSO) or OTX2-depleted
564 (dTAG-13) conditions. (***p<0.001 and (****)p<0.0001 with unpaired t-test. N=4 separate
565 cultures from each of two independent cell lines.

566 J. Quantification of IF imaging of SOX17 (an endodermal marker) in DE derived from two
567 independent OTX2-dTAG EpiSC lines cultured in absence or presence of dTAG-13.
568 (****)p<0.0001 with unpaired t-test. N=4 separate cultures per cell line.

569

570 **Figure 2. Transcriptional dysregulation in DE upon OTX2 depletion**

571 A. Force-directed layout graph of scRNA-seq analyses on WT EpiSCs, DE treated with
572 DMSO and DE treated with dTAG-13 at PS (OTX2^{depl_PS}) DE cells.

573 B. Volcano plot showing expression changes (logFC) and statistical significance (padj) in
574 OTX2^{depl_PS} DE with DEGs (logFC>1;padj<0.05) highlighted in blue (DEG^{DOWN}) and red
575 (DEG^{UP}), respectively. DEGs highlighted in the text or in other figure panels are
576 annotated.

577 C. Gene ontology (GO) analysis for DEG^{DOWN} and DEG^{UP} in OTX2^{depl_PS} DE using
578 ENRICHHR, listing top ranked GO terms for each gene category.

579 D. Normalized expression profiles of select DEG^{DOWN} (blue names) and DEG^{UP} (red names)
580 in OTX2^{depl_PS} DE that associated with indicated cellular programs.

581 E. Comparison of the fold-change effect (dTAG-13:DMSO) on expression of select DEGs
582 when OTX2 is depleted during (dTAG_PS; x-axis) or after (dTAG_DE; y-axis) DE
583 specification. Genes DEGs only upon OTX2 depletion at PS are highlighted in red, all
584 other genes are DEGs in both conditions.

585 F. Normalized expression levels of a panel of anterior-posterior gut tube markers (Pijuan-
586 Sala et al., 2019) OTX2^{depl_PS} DE, OTX2^{depl_DE} DE and in control DE treated with DMSO.

587 G. Protocol to differentiate DE into SOX2⁺PDX1⁺ gastric foregut progenitors.

588 H. Quantification of SOX2⁺PDX1⁺ foregut clusters formed after OTX2 depletion at either PS
589 or DE compared to cells differentiated in DMSO. (*)p<0.05 and (**)p<0.01 with one-way
590 ANOVA and Kruskal-Wallis multiple comparison test.

591

592 **Figure 3. Dynamics of OTX2 genome occupancy during DE specification**

593 A. Classification and number of OTX2 binding sites identified by CUT&RUN in EpiSCs and
594 DE.

595 B. GO analysis of genes in proximity of EPI, primed, and *de novo* OTX2 binding sites.

596 C. HOMER TF motif analysis at EPI, primed, and *de novo* OTX2 binding sites. The analysis
597 was restricted to TFs expressed in DE and/or EpiSCs.

598 D. IGV tracks of OTX2 genome occupancy at select DEG^{DOWN} loci with examples of genes
599 exhibiting primed (left two panels) or *de novo* (right two panels) OTX2 binding.

600 E. IGV tracks of OTX2 genome occupancy at select DEG^{UP} loci with examples of primed
601 (top panel) and *de novo* (bottom panel) OTX2 binding.

602 F. Percentage of DEG^{DOWN}, DEG^{UP} and gene loci unaffected by OTX2 depletion
603 (“unchanged”) with OTX2 peaks of increasing (Q1 to Q4) intensity.

604 G. Distribution of DEG^{DOWN} gene loci with evidence of primed (site bound both in EpiSCs
605 and DE) and *de novo* (site bound only in DE) OTX2 binding with example genes
606 highlighted. Note that all gene loci with primed peaks also harbor additional *de novo* peaks
607 but not vice versa.

608 H. Normalized expression levels of DEG^{DOWN} with either primed or *de novo* only OTX2
609 binding in EpiSCs, DE_DMSO and DE_dTAG. (****)p<0.0001 with two-sided unpaired
610 Wilcoxon test.

611

612 **Figure 4. OTX2-dependent remodeling of chromatin accessibility during DE specification**

613 A. Volcano plot showing ATAC-seq signal in DMSO-treated DE versus DE treated with
614 dTAG-13 at PS. Significantly different DARs (logFC>1;padj<0.05) are colored in blue
615 (DAR^{DOWN}) and red (DAR^{UP}).

616 B. Four categories of DARs (C1-C4) identified by supervised clustering of ATAC-seq signal
617 intensity in EpiSCs, control DE and OTX2-depleted DE.

618 C. Normalized expression levels of genes in vicinity of C1 to C4 DARs in indicated samples.
619 (***)p<0.001 and (****)p<0.0001 with two-sided unpaired Wilcoxon test.
620 D. Example of chromatin accessibility changes at DEG^{DOWN} loci representing major cellular
621 programs affected by OTX2.
622 E. Frequency and type of OTX2 binding at C1 to C4 DARs.
623 F. HOMER TF motif enrichment at C1-C4 DARs. Analysis was restricted to TFs expressed
624 in EpiSCs, DE, or both. Dotted lines indicate TFs exhibiting enrichment at similar DAR
625 categories.

626

627 **Figure 5. Impaired human DE formation upon OTX2 depletion**

628 A. Design of the human OTX2-dTAG allele. Coordinates indicate the position of the *Otx2*
629 STOP codon (in hg38) replaced with the multipurpose cassette. The blue box indicates a
630 linker peptide.
631 B. Anti-HA WB with OTX2-dTAG hESCs (n=3 lines) and parental cells after 1h of culture in
632 the presence of dTAG-v1 or DMSO. * = minor band indicating incomplete cleavage of
633 P2A fusion protein.
634 C. Representative flow cytometry plots showing CXCR4 and CD117 expression in human
635 DE derived from MEL-1 cells after culture in the presence of DMSO (top) or dTAG-v1
636 (bottom) from the PS stage onwards. Cells with a canonical DE cell surface phenotype
637 are highlighted.
638 D. Abundance of cells with the canonical DE phenotype (CXCR4⁺CD117⁺) in cultures
639 initiated with two independent OTX2-dTAG hESC lines and exposed to either DMSO or
640 dTAG-v1 in two different culture conditions (n=3 independent cultures). (***)p<0.001 or
641 (****)p<0.0001 with multiple T-tests and Bonferroni-Dunn correction.
642 E. Measurement by qPCR of effect of dTAG-v1 treatment on select human genes whose
643 mouse homologues are altered in their expression levels by OTX2 depletion in DE.
644 (*)p<0.05, (***)p<0.001 or (****)p<0.0001 with multiple T-tests and Bonferroni-Dunn
645 correction.
646 F. EGFP fluorescence levels in DE cultures established in either presence of DMSO or
647 dTAG-v1. Cultures established from parental non-transgenic (WT) human ESCs serve as
648 control for background fluorescence.

649 G. Representative low-magnification fluorescent live cell images of OTX2-EGFP⁺ human DE
650 derived in presence of DMSO (top) or dTAG-v1 (bottom). Images are of MEL-1 derived
651 cells using Protocol 1, but similar differences in cell clustering were observed with H9-
652 derived cells and with DE generated using media 2.

653 H. Schematic highlighting major functions of OTX2 during mouse and human DE
654 specification.

655

656 **Figure S1. OTX2 depletion impairs DE development in murine models of germ layer
657 specification**

658 A. *In silico* strategy to identify candidate transcriptional regulators of germ layer specification
659 from a recently assembled list of 1,682 TFs encoded in the mouse genome (Garippler et
660 al., 2022).

661 B. *Otx2* expression levels in DE and in tissues with known *Otx2* functions (visceral
662 endoderm, rostral neuroectoderm) present in gastrulation-stage mouse embryos (Pijuan-
663 Sala et al., 2019). Extra-embryonic endoderm (ExE endoderm) and PGCs are shown as
664 representative tissues not expressing *Otx2*.

665 C. Percentage Otx2-EGFP⁺ cells in cultures of mESCs, EpiLCs and EpiSCs as measured
666 by flow cytometry. (**) p<0.01 with two-way ANOVA with Tukey's multiple comparison
667 test (n=3 independent cultures).

668 D. Experimental strategy for the generation of anterior micropatterns (“gastruloids”) with
669 timing of dTAG-13 treatment indicated.

670 E. IF quantification of intensity of stage-specific marker proteins at indicated stages of
671 differentiation. (****) p<0.0001 with one-way ANOVA with Tukey's multiple comparison
672 test. N > 500 nuclei were analyzed for each marker and sample.

673 F. Quantification of OTX2 (via HA IF) in PS cultures after 1h of exposure to dTAG-13 or
674 DMSO. (****) p<0.0001 with one-way ANOVA with Tukey's multiple comparison test. N >
675 500 nuclei were analyzed for each marker and sample.

676 G. Representative flow cytometry plots showing CXCR4 (endoderm marker) and PDGFRA
677 (mesoderm marker) expression in DE established from OTX2-dTAG EpiSCs and EpiSCs
678 derived from parental wildtype (WT) mESCs in presence of DMSO (top panels) or dTAG-
679 13 (bottom panels).

680 H. IF quantification of intensity of SOX17 protein in DE established from WT EpiSCs cultured
681 in presence of DMSO or dTAG-13. Statistics with unpaired t-test.

682 I. Ratio of CXCR4 levels in presence of DMSO or dTAG-13 as measured by flow cytometry
683 on OTX2-dTAG (KI) and WT DE in mixed cultures of the indicated ratios. OTX2-dTAG
684 were distinguished from WT cells based on EGFP expression.

685

686 **Figure S2. Figure 2. Transcriptional dysregulation in DE upon OTX2 depletion**

687 A. Expression levels of select genes not affected by OTX2 depletion, including a subset of
688 DE markers (*CD24a*, *Hhex*, *Larp7*) as well as markers for visceral endoderm (*Sox7*),
689 primitive endoderm (*Ttr*), cell cycle progression (*Aurka*, *Plk1*) and primed pluripotency
690 (*Sox2*, *Nanog*, *Pou3f1*).

691 B. Abundance of cells assigned an “Epi”, “DE” or altered DE (“DE_alt”) identity in indicated
692 cultures based on scRNA-seq analysis.

693 C. Expression levels of select DEG^{DOWN} (blue) and DEG^{UP} (red) after OTX2 depletion at PS,
694 representing developmental TFs, signaling regulators and proteins involved in cellular
695 adhesion or migration.

696 D. Expression in gastrulation-stage embryos (from Pijuan-Sala et al., 2019) of select TFs
697 associated with indicated non-DE lineages that are upregulated in DE upon OTX2
698 depletion. The red outline indicates position of DE in the embryonic UMAP.

699 E. Correlation between expression levels of *Sox17* (DE marker) and levels of indicated non-
700 DE markers in DE cultures established in presence of DMSO (left panels) or dTAG-13
701 (right panels).

702 F. Validation by qPCR of the effect of OTX2 depletion on select DEG^{DOWN} (blue) and DEG^{UP}
703 (red) in two independent cell lines. (*) p<0.05, (**) p<0.01, (***) p<0.001 and (****)
704 p<0.0001 with multiple t-tests and Bonferroni-Dunn correction. N = 3 measurements.

705 G. Volcano plot showing expression changes in OTX2^{depl_DE} DE with DEGs
706 ($\log_{2}FC > 1$; $\text{padj} < 0.05$) in blue (DOWN) or red (RED), respectively.

707 H. Representative IF images after staining of gastral foregut cultures exposed to DMSO or
708 dTAG-13 at PS or DE with SOX2 and PDX1 antibodies.

709

710 **Figure S3. Dynamics of OTX2 genome occupancy during DE specification**

711 A. Tornado plot showing signal intensity at HA CUT&RUN peaks called in OTX2-dTAG
712 EpiSCs and DE as well as in corresponding genomic regions in WT (non-transgenic) DE.
713 B. Cell-type specific (EpiSCs and DE) HA CUT&RUN intensity at EPI, primed and *de novo*
714 OTX2 peaks. (****)p<0.0001 with paired Wilcoxon test.
715 C. Genomic distribution of EPI, primed and *de novo* HA CUT&RUN peaks.
716 D. IGV tracks showing cell type-specific OTX2 binding at the pluripotency-associated *Pou5f1*
717 locus, a known target of OTX2 in primed pluripotent cells.
718 E. Fraction of DEG^{DOWN}, DEG^{UP} and control genes unaffected by OTX2 depletion that have
719 an associated OTX2 peak in DE.
720 F. Average number of OTX2 peaks (in DE) at OTX2 bound DEG^{DOWN} (n=327), DEG^{UP}
721 (n=345) and unaffected gene loci (n=572). (****)p<0.0001 with Mann-Whitney test for
722 unpaired data, two side and confidence interval of 95%.
723 G. Intensity of HA CUT&RUN signal at promoter and non-promoter OTX2 peaks associated
724 with DEG^{DOWN} (n=360 for promoters; n=942 for non-promoters), DEG^{UP} (n=344 for
725 promoters; n=915 for non-promoters) and unaffected control genes (n=451 for promoters;
726 n=752 for non-promoters). (*)p<0.05, (**)p<0.01 and (****)p<0.0001 with Mann-Whitney
727 test for unpaired data, two side and confidence interval of 95%.
728 H. Overlap of OTX2-bound DEG^{DOWN} (top) and DEG^{UP} (down) gene loci with primed OTX2
729 peaks (green) and such loci with *de novo* OTX2 peaks (blue).

730

731 **Figure S4. OTX2-dependent remodeling of chromatin accessibility during DE**
732 **specification**

733 A. Percentage of genomic regions with differential chromatin accessibility between EpiSCs
734 (Medina-Cano et al., 2022) and DE that are bound by OTX2 in either, both or neither cell
735 type.
736 B. MA plot showing ATAC-seq signal change in DE derived in either presence of DMSO or
737 dTAG-13. Significantly different (logFC>1;padj<0.05) DARs are indicated in red (UP) or
738 blue (DOWN).
739 C. Fraction of regions that change their chromatin accessibility in DE upon OTX2 depletion
740 (DARs DMSO vs dTAG) that undergo accessibility changes during the transition from
741 EpiSCs to DE (green) or not (yellow).

742 D. Genomic distribution of genomic regions in DE that are affected in their chromatin
743 accessibility by OTX2 depletion at PS (C1 to C4).

744 E. Fraction of DEG^{DOWN}, DEG^{UP} and unaffected control genes with an associated C1-C4
745 DAR or no associated DAR.

746 F. Intensity of HA CUT&RUN signal at C1 to C4 DARs in EpiSCs (top) and DE (bottom).
747 Wilcoxon test was used for statistics (each group versus the ensemble of peaks per cell
748 type) with (****)p<0.0001.

749 G. Supervised clustering of TF motif enrichment at C1-C4 DARs, distinguishing between
750 DARs bound by OTX2 and DARs not bound by OTX2. Dotted lines indicate TFs exhibiting
751 enrichment at similar DAR categories.

752 H.

753

754

755 **Figure S5. Impaired human DE formation upon OTX2 depletion**

756 A. Select DE-associated TFs ranked by their degree of protein conservation between
757 mouse and human.

758 B. Anti-HA IF of OTX2-dTAG hESCs exposed to either DMSO, dTAG-v1 or dTAG-13 for 2h.
759 Parental hESCs cultured in DMSO are shown to represent background fluorescence
760 levels. Note residual retention of HA signal in presence of dTAG-13.

761 C. Outline of the two differentiation regimens for the generation of DE from hESCs employed
762 in this study. Differences in compounds used or concentrations applied are highlighted in
763 red.

764 D. Percentage of OTX2-EGFP⁺ cells in OTX2-dTAG hESCs and derivative DE.

765 E. OTX2-EGFP expression levels (as measured by flow cytometry) in hESCs and DE (derived
766 in two different media compositions) of indicated backgrounds. The grey dotted line
767 indicates background fluorescence levels measured in parental, non-transgenic hESCs.
768 (*** p<0.001 and (****) p<0.0001 with one-way ANOVA with Tukey's multiple comparison
769 test.

770 F. Representative IF images after staining human DE derived in either presence of dTAG-
771 v1 or DMSO with anti-SOX17 antibody or DAPI.

773 **Tables with titles and legends**

774 Table S1. Expression levels of TFs in EpiLCs and mESCs

775 Table S2. DEGs identified by scRNA-seq

776 Table S3. List of OTX2 peaks identified by HA CUT&RUN

777 Table S4. List of DARs identified by ATAC-seq

778 Table S5. List of DNA oligos used in this study

779

780

781

782 **Resource availability**

783 **Lead Contact**

784 Requests for resources and reagents should be directed to and will be fulfilled by the lead
785 contact, Matthias Stadtfeld (mas4011@med.cornell.edu).

786

787 **Materials availability**

788 Cell lines generated in this study are available upon request from the lead contact.

789

790 **Data and code availability**

791 CUT&RUN, scRNA-seq and ATAC-seq data have been deposited at Gene Expression Omnibus
792 (GEO) with accession codes: GSE254428, GSE254431 and GSE254590, respectively. The
793 deposited data will be publicly available as of the publication date.

794

795

796 **Experimental model and subject details**

797

798 **Mouse cell lines**

799 Parental mouse ESC lines used for gene targeting were KH2 (Beard et al., 2006) or 5.8 (Zhong
800 et al., 2023), both on a C57BL/6J x 129S1 F1 background. OTX2-dTAG mESCs were generated
801 using CRISPR/Cas9. Homology arms covering 778bp upstream and 680bp downstream of the
802 *Otx2* C-terminus were PCR-amplified from genomic DNA and cloned with the FKBP12^{F36V}-
803 2xHA-P2A-NLS-EGFP construct into pBluescript (Stratagene) using Gibson assembly. The

804 OTX2-FKBP12^{F36V}-2xHA-P2A-NLS-EGFP targeting vector was transfected into the
805 abovementioned ESC lines along with pX330-puro^R or -blasticidin^R vector harboring guide RNAs
806 targeting the *Otx2* C-terminus. 2 x 10⁵ ESCs were cultured overnight and transfected with 3 μ g
807 of each plasmid using TransIT-293 (Mirus Bio 2700). Cells were replated at low density onto
808 10cm dishes with the corresponding antibiotic selection for 24-72 hours. Individual clones were
809 screened by PCR followed by TOPO cloning (Invitrogen) and sequencing.

810

811 **Mouse ESC culture and epiblast conversion**

812 ESCs were cultured in KO DMEM (Gibco 10829018) supplemented with 15% FBS (Gemini
813 Benchmark), 2mM Glutamax (Gibco 35050079), 0.1mM nonessential amino acids (Gibco
814 11140076), 0.1mM 2-mercaptoethanol (Gibco 21985023), 1000U/ml leukemia inhibitory factor
815 (LIF; in house), and 100 μ g/ml penicillin/streptomycin (Gibco 15140163) and maintained on a
816 feeder layer of mitomycin C-treated mouse embryonic fibroblasts (MEFs) on gelatin-coated
817 plates. For ESC to EpiLC conversion, ESCs were lifted using collagenase IV (Thermo Fisher
818 17104019), centrifuged for 4min at 120g, and dissociated with Accutase (Thermo Fisher
819 00455556). 15,000 cells/cm² were seeded onto fibronectin (Millipore FC010; 16.7 μ g/ml)-coated
820 plates in N2B27 media with 12.5ng/ml heat stable bFGF (Thermo PHG0360) and 20ng/ml Activin
821 A (Peprotech 120-14P) (FA media) supplemented with 1% Knockout Serum Replacement
822 (Gibco 10828010). EpiLCs were harvested or converted to EpiSCs after 48hrs differentiation.
823 For EpiSC conversion EpiLCs were dissociated with TrypLE (Thermo Fisher 12605010) and
824 plated onto gelatin-coated plates with feeders at 15,000 cells/cm² in EpiSC media (FA
825 supplemented with 175nM NVP-TNKS656 (Selleck S7238).

826

827 **Mouse definitive endoderm specification and foregut conversion**

828 EpiSCs cultured between passages 2-7 were differentiated first to primitive streak/
829 endomesodermal progenitors (PS) and then to definitive endoderm (DE) as described (Medina-
830 Cano et al., 2022). Briefly, EpiSCs were seeded onto 96, 48, or 24well plates coated with
831 10 μ g/ml Laminin 521 (StemCell Technologies 77003) in plating media. Plating media (chemically
832 defined media, CDM) is 1:1 IMDM (Gibco 12440053) and DMEM/F12 with Glutamax (Gibco
833 10565018), 1% chemically defined lipid concentrate (Thermo Fisher 11905031),
834 monothioglycerol (Sigma M6145), Apotransferrin (R&D 3188AT), 0.7 μ g/ml insulin (Millipore

835 Sigma I0516), and polyvinyl alcohol (Sigma P8136) supplemented with 12.5ng/ml bFGF,
836 20ng/ml activin A, 175nM NVP, 1% KSR and 2 μ M thiazovivin (Millipore Sigma SML1045). PS
837 was induced 5-6 hours after seeding with CDM + 40ng/ml activin A and 3 μ M CHIR99021
838 (Biovision 16775). DE was induced 16 hours after PS with CDM + 100ng/ml activin A and 100nM
839 LDN193189 (Reprocell 04-0074). Cells were washed 1x in PBS -- between all media changes.
840 To convert DE to antral gastric progenitors (posterior foregut), DE cultured for 48 hours was
841 grown for an additional 48 hours in CDM with 100nM LDN193189 and 2% FBS. 2 μ M retinoic
842 acid was added, and cells cultured for 24 hours before fixation and staining. Cells were treated
843 with 500nM dTAG13 (Tocris 6605) in DMSO or vehicle control in culture media at the indicated
844 amounts of time.

845

846 **Micropatterns**

847 ESCs were converted to EpiLCs for 48hrs and seeded onto micropattern chips (CYTOO Arena
848 A) as described (Morgani and Hadjantonakis, 2021). Briefly, 2-6 \times 10⁶ EpiLCs were plated in
849 EpiLC media onto micropattern chips coated with 10 μ g/ml Laminin 521. Media was replaced
850 with FA after 2h and cells allowed to aggregate on micropatterns for 24hrs. 200 ng/ml Wnt3a
851 (R&D 5036-WNP) was added to induce anterior differentiation. Chips were fixed and stained
852 48hrs after Wnt3a addition.

853

854 **Human ESC culture and genetic engineering DE conversion**

855 Human MEL-1 and H9 ESCs were cultured on tissue culture plates coated with vitronectin (5
856 μ g/ml) in Essential 8 Flex media with supplements and normocin (50 μ g/ml) ("E8"). Cells were
857 passaged with home-made EDTA Dissociation Solution (0.5 mM EDTA and 35 mM NaCl in PBS)
858 during maintenance or with Accutase for freezing or when preparing single cell suspensions.
859 Cells were frozen in Stem Cell Banker. After thawing, Y-27632 was added at 10 μ M to the culture
860 media for 24 hours. A targeting vector for generation of the human OTX2-dTAG allele was built
861 by combining a 1252bp PCR amplicon (chr14:56,801,072-56,802,323 in hg38) generated from
862 MEL-1 genomic DNA with a FKBPV-2xHA-P2A-NLS-EGFP cassette, using Gibson assembly.
863 The resulting vector was introduced into MEL-1 and H9 hESCs together with the pX330 Cas9
864 vector expression a guide RNA (5'-GTACAGGTCTTCACAAAACC-3') targeting the *OTX2* STOP
865 codon using lipofection in mTeSR media mixed with CloneR solution (1:10). Transfected cells

were selected for 48h with G418 (500 µg/ml), using mTeSR:CloneR (1:10). After selection, cells were seeded at clonal density and grown in E8 supplemented with CloneR (1:10) for three days and another five days in E8 without CloneR when colonies with undifferentiated morphology and homogenous nuclear EGFP fluorescence were picked. Clonal lines were expanded and characterized by flow cytometry (intensity and homogeneity of EGFP fluorescence), genotyping PCR (using the primers 5'-GGCAGGGGAAATTGTGTGTT-3' and 5'-TCGTAAAGTTTCAGTGCAGCT-3' which localize on either side outside of the *OTX2* homology region included in the targeting vector), by Sanger sequencing of the PCR amplicon and by IF using antibodies against HA and OTX2. Confirmed homozygous lines were karyotyped before use in differentiation experiments.

876

877 **Human DE specification**

878 Single cell suspensions of hESCs were seeded in E8 supplemented with 10 µM Y-27632 onto
879 cell culture vessel that were coated with Laminin-521 at 4°C for 24h to achieve a seeding density
880 of 30-40%. The next day, cells were washed with prewarmed F12 based media and cultured for
881 24h in PS induction media. Cells were then washed with prewarmed F12 based media and
882 cultured for another 40h to 48h in DE induction media, with one media change after 24h of
883 culture. Two protocols slightly differing in their use of signaling modulators were used. Protocol
884 1 uses the same PS and DE induction media applied to mouse DE. Protocol 2 uses PS induction
885 media with 100 ng/ml Activin A, 2 µM CHIR99021 and 100 mM PIK90 (Selleckchem S1187) and
886 DE induction media with 250 nM LDN1931189 (see also Fig. S5C). Both protocols use identical
887 base media and overall experimental timing.

888

889 **Immunofluorescence**

890 For micropatterns, chips were washed 2x in PBS -/-, fixed in 4% PFA for 15min, and washed
891 again 2x in PBS -/- . Chips were stained as described [ref]. Primary antibodies used were rat anti-
892 SOX2 (), goat anti-SOX17 (), and rabbit anti-FOXA2 (Abcam), all at 1:300. Secondary antibodies
893 (Alexa Fluor, Life Technologies, and Jackson Immunoresearch) were used at 1:500.
894 Micropattern chips were mounted on microscope slides with Fluoromount G (Thermo Fisher
895 00495802) and imaged on an LSM880 confocal microscope (Zeiss). For EpiSCs, DE and
896 foregut, cells were washed and fixed in wells as above, blocked in PBS +/+ with 1% BSA, 0.1%

897 Triton-X-100, and 3% donkey serum (Sigma D9663) and stained in primary antibodies overnight.
898 Cells were washed 3x in PBS +/- with 0.1% Triton X-100 (PBS-T) and then incubated in
899 secondary antibodies for 1 hour. Cells were then again washed 3x in PBS-T. Hoechst33342
900 (Thermo Fisher H3570) was added to the last wash for 15 minutes for nuclear staining. Images
901 were taken on an EVOS Cell Imaging System (Thermo Fisher) or Leica DMi8 microscope.
902 Primary antibodies used were anti-SOX17 (R&D AF1924), anti-FOXA2 (Abcam 108422), anti-T
903 (R&D AF2085), anti-HA (Abcam 9110) anti-OCT4 (Santa Cruz 8628), anti-GFP (Aves
904 GFP1020), anti-SOX2 (Invitrogen 14981180), anti-PDX1 (Abcam 47308). For both
905 micropatterns and directed differentiation, primary antibodies were used at 1:300 except anti-
906 HA and anti-GFP (1:1000) and anti-PDX1 (1:100). Secondary antibodies (Alexa Fluor, Life
907 Technologies, and Jackson Immunoresearch) were used at 1:500.
908

909 **Flow cytometry**

910 Cells were washed with PBS -/-, dissociated with Accutase, resuspended in FACS buffer (80%
911 PBS -/-, 20% FBS, 0.1% 0.5M EDTA), and incubated with indicated antibodies for 15min at room
912 temperature in the dark. Cells were washed once in PBS -/-, resuspended in FACS buffer with
913 DAPI, and analyzed on a BD FACS Canto. Data were analyzed using FlowJo. CXCR4 antibody
914 conjugated to APC (eBioscience 17999182) and PDGFR α antibody conjugated to PE-Cy7
915 (eBioscience 25140180) were used at 1:200 dilution.
916

917 **RT-qPCR**

918 Total RNA was extracted using TRIzol (Life Technologies 15596018) and purified with the RNA
919 Clean and Concentrator kit (Zymo R1014). 1 μ g of RNA/sample was used for reverse
920 transcription using the iScript kit (BioRad 1708841). qPCR was performed on cDNA samples in
921 triplicate using PowerUp SYBR green PCR master mix (Thermo Fisher A25778) on an Applied
922 Biosystems QuantStudio3. Primers used are in **Table S5**.
923

924 **Western blotting**

925 Cells were washed with PBS -/- and harvested with Trypsin (Life Technologies 25200114).
926 Nuclear lysates were prepared using the NE-PER kit (Thermo Fisher 78835) according to the
927 manufacturer's instructions. Western blots were performed using the following antibodies: anti-

928 HA (Abcam 9110), anti-OTX2 (Abcam 21990), anti-histone H3 (Abcam 1791). Protein
929 concentration was measured using Bradford Reagent (BioRad 5000201) and samples were
930 boiled, resuspended in Laemmli Sample Buffer (BioRad), and run using BioRad PROTEAN
931 System or Invitrogen precast gels.

932

933 **scRNA-seq**

934 Cells at indicated stages were dissociated using Accutase to single-cell suspension in PBS-/-
935 with 0.04% BSA. Samples were labeled with Cell Multiplexing Oligos (10x Genomics Chromium
936 Next GEM Single Cell 3' Reagent Kit v3.1 Dual Index) and live cells sorted using DAPI on a BD
937 Influx Cell Sorter. Samples were then pooled for multiplexing in PBS-/- with 0.04% BSA
938 (targeting 10,000 cells/sample) and single-cell libraries generated according to the
939 manufacturer's instructions (10x Genomics Chromium Single Cell Gene Expression - Cell
940 Multiplexing). All cell sorts and deep sequencing were performed at the Weill Cornell Flow
941 Cytometry and Weill Cornell Genomics Resources Core Facilities respectively.

942

943 **CUT&RUN**

944 CUT&RUN on OTX2-HA was performed on 500,000 EpiSCs or DE cells, similar as previously
945 described (Skene et al., 2018). For DE, live cells were selected by DAPI sort on an Influx Cell
946 Sorter before performing CUT&RUN. BioMag Plus Concanavalin A beads (ConA beads,
947 PolySciences NC1358578) were washed twice in 100 μ l cold Bead Activation Buffer (20mM
948 HEPES pH7.5, 10mM KCl, 1mM CaCl₂, 1mM MnCl₂). 20 μ g of ConA beads per CUT&RUN
949 reaction were used. Sorted cells were washed twice in Wash Buffer (20mM HEPES pH7.5,
950 150mM NaCl, 0.5mM Spermidine (Acros AC132740050), ½ Protease Inhibitor tablet) and bound
951 to activated ConA beads in Wash Buffer for 10 minutes at room temperature. Samples were
952 incubated in PCR strip tubes with 1:100 anti-HA (CST C29F4 #3724) or anti-IgG (EpiCypher
953 130042) in Antibody Buffer (Wash Buffer with 2mM EDTA and 0.01% Digitonin (Millipore Sigma
954 300410)) overnight with gentle rocking at 4°C. Samples were washed twice in Digitonin Buffer
955 (Washer Buffer with 0.01% Digitonin) and ProteinA/G MNase (EpiCypher) was bound to samples
956 for 1 hour at 4°C. ProteinA/G MNase was diluted at 20x in 50 μ l Antibody Buffer according to
957 manufacturer's instructions. Samples were washed twice in Digitonin Buffer again and MNase
958 digestion was activated with 1 μ l 100mM CaCl₂ in 50 μ l Digitonin Buffer for 2 hours. To extract

959 bound chromatin fragments digestion was quenched using 33 μ l STOP Buffer (340mM NaCl,
960 20mM EDTA, 4mM EGTA, 50 μ g/ml RNase A, 50 μ g/ml glycogen, 0.015 ng/ μ l E. coli spike-in)
961 and samples incubated at 37°C for 20 minutes. Chromatin was separated from ConA beads by
962 centrifuging 5 minutes at 16,000g and saving supernatant. DNA was purified by adding 0.1%
963 SDS and 5 μ g Proteinase K for 10 min at 70°C, performing phenol-chloroform extraction, and
964 precipitation in 100% ethanol at -80°C overnight. Pellets were then washed in 100% ethanol and
965 resuspended in 12 μ l nuclease free water. CUT&RUN libraries were prepared using the ThruPLEX
966 Library Prep kit (Takara) according to the manufacturer's instructions. The number of cycles for
967 library PCR amplification was determined by running 10% of each library sample in an Applied
968 Biosystems qPCR machine with 0.25 μ l Eva Green dye (Biotium 31000) for 40 cycles and adding
969 cycles to each sample as described (Buenrostro et al., 2015). Libraries were size selected with
970 1.5x volume SPRI beads (Beckman Coulter B23317) and sequenced at the Weill Cornell
971 Genomics Resources Core Facility on an Illumina NovaSeq 6000 (PE-50, 30 million reads per
972 sample).

973

974 **ATAC-seq**

975 DE cultured with dTAG13 or DMSO vehicle for 24 hours was sorted for live cells on Influx as
976 described for CUT&RUN. ATAC-seq was performed on three technical replicates of 50,000 cells
977 each for DMSO or dTAG13-treated cultures as described (Murphy et al., 2023) using the Nextera
978 DNA library preparation kit (Illumina FC121103) and NEBNext High-Fidelity 2X PCR Master Mix
979 (NEB M0541). Libraries were sequenced on an Illumina NovaSeq 6000 (PE-50, 20 million reads
980 per sample).

981

982 **Data analysis**

983 **scRNA-seq analysis**

984 Fastq files were processed using CellRanger (10x genomics cloud). The raw h5 file was further
985 processed using CellBender to eliminate background reads, empty beads, and other artifacts
986 (Fleming et al., 2022). Scanpy (Wolf et al., 2018) was used for downstream analyses. Only cells
987 efficiently labeled with the demultiplexing primers were kept. Resulting cell clusters with high
988 percentage of mitochondrial reads or a relatively low number of reads were eliminated. Palantir
989 (Setty et al., 2019) was used for pseudo-time analyses. For differential expression analyses,

990 Wilcoxon testing was performed and only genes with $p\text{adj}<0.05$ and $\log_2 \text{fold-change}>1$ were
991 considered as differentially expressed genes (DEGs). The scores/ranking per gene given by the
992 `scipy.get.rank_genes_groups_df` function were used.

993

994 **CUT&RUN sequencing analysis**

995 CUT&RUN fastq files were processed as previously described (Uyehara et al., 2022) using a
996 custom snakemake (v6.6.1) pipeline (Molder et al., 2021). Briefly, reads were trimmed using
997 `bbmap` (v38.95) with parameters `ktrim=r ref=adapters rcomp=t tpe=t tbo=t hdist=1 mink=11`.
998 Trimmed reads were aligned to the mm10 reference genome using `Bowtie2` (v2.3.5.1) with
999 parameters `--local --very-sensitive-local --no-mixed --no-discordant --phred33 -I 5 -X 999`
1000 (Langmead and Salzberg, 2012). Reads with a MAPQ score less than 5 were removed with
1001 `samtools` (v1.14) (Li et al., 2009). PCR duplicates were removed with `Picard` (v2.26.10) using
1002 parameter `VALIDATION_STRINGENCY=LENIENT`. Fragments between 20 and 120bp were
1003 isolated using a custom `awk` script and used for downstream analyses as previously
1004 recommended (Skene and Henikoff, 2017). Bigwigs were generated from `bam` files using
1005 `bedtools` (v2.30) normalizing to sequencing depth using the formula: `(effective_genome_size /`
1006 `read_count * read_length)` with 1870000000 as the effective genome size (Quinlan and Hall,
1007 2010). `Bam` files were converted to `bed` files with `bedtools` (v2.30) with parameter `-bedpe`. `MACS`
1008 (v2.2.6) was used to call peaks on individual and merged replicates using parameters `-g`
1009 1870000000 `--nomodel --seed 123 --keep-dup all` (Zhang et al., 2008).

1010

1011 **ATAC-seq**

1012 The raw ATAC-seq reads were trimmed using `fastp` to remove low-quality bases from reads
1013 (`quality<20`) and adapter sequences. The trimmed reads were aligned using `Bowtie2` (Langmead
1014 and Salzberg, 2012) to UCSC genome assembly mm10. Duplicate reads were removed using
1015 `Sambamba`. Peaks were identified with `MACS2` (Gaspar, 2018) and those overlapping with
1016 satellite repeat regions were discarded. For further analyses, a union peak atlas was created
1017 from the `MACS2` files. Peak intensity for each sample was counted using `featureCounts` (Liao et
1018 al., 2014). `HOMER` (v4.11) (Heinz et al., 2010) was used for motif analyses. To associate peaks
1019 with nearby genes and genomic location, `ChipSeeker` (Yu et al., 2015) was used. To compare
1020 peaks from CUT&RUN and ATAC-seq experiments, `bedtools intersect` (Quinlan and Hall, 2010)

1021 was used with default parameters. The dataset published by (Medina-Cano et al., 2022) was
1022 used as a reference EpiSC dataset.

1023

1024 **Quantification and statistical analyses**

1025 Statistical analysis of flow cytometry and IF data was done in PRISM 9 (GraphPad), with specific
1026 tests and corrections applied indicated in the respective figure legends.

1027

1028 **Image analysis**

1029 Immunofluorescence images were analyzed using Fiji/ImageJ (Schindelin et al., 2012). For
1030 directed differentiations, fluorescence intensity was quantified using CellProfiler 4.2.1 (Carpenter
1031 et al., 2006). Cells were identified by DAPI staining using the IdentifyPrimaryObjects module and
1032 mean fluorescence intensity in each stained channel was measured using the
1033 MeasureObjectIntensity module. Statistical significance was calculated in PRISM 9 (GraphPad)
1034 using one-way ANOVA. For micropatterns, entire chips were imaged using a 5x objective and
1035 11x11 tiling. Individual colonies were detected based on DAPI, size and circularity thresholds
1036 using custom Fiji macros. The mean pixel intensity for each fluorescent channel for each colony
1037 as well as the mean and standard error across all colonies was calculated in MATLAB R2021a
1038 (MathWorks) and normalized by the maximum value from each channel using custom scripts
1039 (available upon request). For quantification of posterior foregut progenitors, SOX2⁺PDX1⁺ cell
1040 clusters on 24- or 48 well cell culture plates were imaged and counted at 10X magnification on
1041 a Leica DMi8 microscope. Cell clusters were quantified for 5 replicates per condition (dTAG-13
1042 added at PS or after 24 hours DE differentiation; and DMSO control). Cluster counts for each
1043 replicate were divided by the respective growth area (cm²) to normalize for plate well area over
1044 two independent experiments. Significance was calculated using the Kruskal-Wallis
1045 nonparametric test.

1046

1047

1048

1049

1050

1051

1052

References

1053 Abuhashem, A., Lee, A.S., Joyner, A.L., and Hadjantonakis, A.K. (2022). Rapid and efficient degradation
1054 of endogenous proteins in vivo identifies stage-specific roles of RNA Pol II pausing in mammalian
1055 development. *Dev Cell* 57, 1068-1080 e1066.

1056 Acampora, D., Di Giovannantonio, L.G., and Simeone, A. (2013). Otx2 is an intrinsic determinant of the
1057 embryonic stem cell state and is required for transition to a stable epiblast stem cell condition.
1058 *Development* 140, 43-55.

1059 Acampora, D., Mazan, S., Lallemand, Y., Avantaggiato, V., Maury, M., Simeone, A., and Brulet, P. (1995).
1060 Forebrain and midbrain regions are deleted in Otx2-/- mutants due to a defective anterior
1061 neuroectoderm specification during gastrulation. *Development* 121, 3279-3290.

1062 Alexander, T.B., Gu, Z., Iacobucci, I., Dickerson, K., Choi, J.K., Xu, B., Payne-Turner, D., Yoshihara, H., Loh,
1063 M.L., Horan, J., *et al.* (2018). The genetic basis and cell of origin of mixed phenotype acute leukaemia.
1064 *Nature* 562, 373-379.

1065 Ang, S.L., Jin, O., Rhinn, M., Daigle, N., Stevenson, L., and Rossant, J. (1996). A targeted mouse Otx2
1066 mutation leads to severe defects in gastrulation and formation of axial mesoderm and to deletion of
1067 rostral brain. *Development* 122, 243-252.

1068 Arnold, S.J., Hofmann, U.K., Bikoff, E.K., and Robertson, E.J. (2008). Pivotal roles for eomesodermin
1069 during axis formation, epithelium-to-mesenchyme transition and endoderm specification in the mouse.
1070 *Development* 135, 501-511.

1071 Bardot, E.S., and Hadjantonakis, A.K. (2020). Mouse gastrulation: Coordination of tissue patterning,
1072 specification and diversification of cell fate. *Mech Dev* 163, 103617.

1073 Beard, C., Hochedlinger, K., Plath, K., Wutz, A., and Jaenisch, R. (2006). Efficient method to generate
1074 single-copy transgenic mice by site-specific integration in embryonic stem cells. *Genesis* 44, 23-28.

1075 Beby, F., and Lamonerie, T. (2013). The homeobox gene Otx2 in development and disease. *Exp Eye Res*
1076 111, 9-16.

1077 Bernardo, A.S., Faial, T., Gardner, L., Niakan, K.K., Ortmann, D., Senner, C.E., Callery, E.M., Trotter, M.W.,
1078 Hemberger, M., Smith, J.C., *et al.* (2011). BRACHYURY and CDX2 mediate BMP-induced differentiation of
1079 human and mouse pluripotent stem cells into embryonic and extraembryonic lineages. *Cell Stem Cell* 9,
1080 144-155.

1081 Bisia, A.M., Costello, I., Xypolita, M.E., Harland, L.T.G., Kurbel, P.J., Bikoff, E.K., and Robertson, E.J.
1082 (2023). A degron-based approach to manipulate Eomes functions in the context of the developing
1083 mouse embryo. *Proc Natl Acad Sci U S A* 120, e2311946120.

1084 Buecker, C., Srinivasan, R., Wu, Z., Calo, E., Acampora, D., Faial, T., Simeone, A., Tan, M., Swigut, T., and
1085 Wysocka, J. (2014). Reorganization of enhancer patterns in transition from naive to primed
1086 pluripotency. *Cell Stem Cell* 14, 838-853.

1087 Buenrostro, J.D., Wu, B., Chang, H.Y., and Greenleaf, W.J. (2015). ATAC-seq: A Method for Assaying
1088 Chromatin Accessibility Genome-Wide. *Curr Protoc Mol Biol* 109, 21 29 21-21 29 29.

1089 Bult, C.J., Blake, J.A., Smith, C.L., Kadin, J.A., Richardson, J.E., and Mouse Genome Database, G. (2019).
1090 Mouse Genome Database (MGD) 2019. *Nucleic Acids Res* 47, D801-D806.

1091 Carpenter, A.E., Jones, T.R., Lamprecht, M.R., Clarke, C., Kang, I.H., Friman, O., Guertin, D.A., Chang,
1092 J.H., Lindquist, R.A., Moffat, J., *et al.* (2006). CellProfiler: image analysis software for identifying and
1093 quantifying cell phenotypes. *Genome Biol* 7, R100.

1094 Chia, C.Y., Madrigal, P., Denil, S., Martinez, I., Garcia-Bernardo, J., El-Khairi, R., Chhatriwala, M.,
1095 Shepherd, M.H., Hattersley, A.T., Dunn, N.R., *et al.* (2019). GATA6 Cooperates with EOMES/SMAD2/3 to
1096 Deploy the Gene Regulatory Network Governing Human Definitive Endoderm and Pancreas Formation.
1097 *Stem Cell Reports* 12, 57-70.

1098 Cui, G., Suo, S., Wang, R., Qian, Y., Han, J.J., Peng, G., Tam, P.P.L., and Jing, N. (2018). Mouse
1099 gastrulation: Attributes of transcription factor regulatory network for epiblast patterning. *Dev Growth
1100 Differ* 60, 463-472.

1101 Cunningham, F., Allen, J.E., Allen, J., Alvarez-Jarreta, J., Amode, M.R., Armean, I.M., Austine-Orimoloye,
1102 O., Azov, A.G., Barnes, I., Bennett, R., *et al.* (2022). Ensembl 2022. *Nucleic Acids Res* 50, D988-D995.

1103 Di Giovannantonio, L.G., Acampora, D., Omodei, D., Nigro, V., Barba, P., Barbieri, E., Chambers, I., and
1104 Simeone, A. (2021). Direct repression of Nanog and Oct4 by OTX2 modulates the contribution of
1105 epiblast-derived cells to germline and somatic lineage. *Development* 148.

1106 Doane, A.S., Chu, C.S., Di Giammartino, D.C., Rivas, M.A., Hellmuth, J.C., Jiang, Y., Yusufova, N., Alonso,
1107 A., Roeder, R.G., Apostolou, E., *et al.* (2021). OCT2 pre-positioning facilitates cell fate transition and
1108 chromatin architecture changes in humoral immunity. *Nat Immunol* 22, 1327-1340.

1109 Drukker, M., Tang, C., Ardehali, R., Rinkevich, Y., Seita, J., Lee, A.S., Mosley, A.R., Weissman, I.L., and
1110 Soen, Y. (2012). Isolation of primitive endoderm, mesoderm, vascular endothelial and trophoblast
1111 progenitors from human pluripotent stem cells. *Nat Biotechnol* 30, 531-542.

1112 Fleming, S.J., Chaffin, M.D., Arduini, A., Akkad, A.-D., Banks, E., Marioni, J.C., Philippakis, A.A., Ellinor,
1113 P.T., and Babadi, M. (2022). Unsupervised removal of systematic background noise from droplet-based
1114 single-cell experiments using <kbd>CellBender</kbd>. *bioRxiv*.

1115 Gaertner, B., Carrano, A.C., and Sander, M. (2019). Human stem cell models: lessons for pancreatic
1116 development and disease. *Genes Dev* 33, 1475-1490.

1117 Garipler, G., Lu, C., Morrissey, A., Lopez-Zepeda, L.S., Pei, Y., Vidal, S.E., Zen Petisco Fiore, A.P., Aydin, B.,
1118 Stadtfeld, M., Ohler, U., *et al.* (2022). The BTB transcription factors ZBTB11 and ZFP131 maintain
1119 pluripotency by repressing pro-differentiation genes. *Cell Rep* 38, 110524.

1120 Gaspar, J.M. (2018). Improved peak-calling with MACS2. *bioRxiv*, 496521.

1121 Hawkins, F.J., Suzuki, S., Beermann, M.L., Barilla, C., Wang, R., Villacorta-Martin, C., Berical, A., Jean,
1122 J.C., Le Suer, J., Matte, T., *et al.* (2021). Derivation of Airway Basal Stem Cells from Human Pluripotent
1123 Stem Cells. *Cell Stem Cell* 28, 79-95 e78.

1124 Hayashi, K., Ohta, H., Kurimoto, K., Aramaki, S., and Saitou, M. (2011). Reconstitution of the mouse
1125 germ cell specification pathway in culture by pluripotent stem cells. *Cell* 146, 519-532.

1126 Heinz, S., Benner, C., Spann, N., Bertolino, E., Lin, Y.C., Laslo, P., Cheng, J.X., Murre, C., Singh, H., and
1127 Glass, C.K. (2010). Simple combinations of lineage-determining transcription factors prime cis-
1128 regulatory elements required for macrophage and B cell identities. *Mol Cell* 38, 576-589.

1129 Hever, A.M., Williamson, K.A., and van Heyningen, V. (2006). Developmental malformations of the eye:
1130 the role of PAX6, SOX2 and OTX2. *Clin Genet* 69, 459-470.

1131 Jaeger, M.G., and Winter, G.E. (2021). Fast-acting chemical tools to delineate causality in transcriptional
1132 control. *Mol Cell* 81, 1617-1630.

1133 Jiang, W., Zhang, D., Bursac, N., and Zhang, Y. (2013). WNT3 is a biomarker capable of predicting the
1134 definitive endoderm differentiation potential of hESCs. *Stem Cell Reports* 1, 46-52.

1135 Jin, O., Harpal, K., Ang, S.L., and Rossant, J. (2001). Otx2 and HNF3beta genetically interact in anterior
1136 patterning. *Int J Dev Biol* 45, 357-365.

1137 Kanai-Azuma, M., Kanai, Y., Gad, J.M., Tajima, Y., Taya, C., Kurohmaru, M., Sanai, Y., Yonekawa, H.,
1138 Yazaki, K., Tam, P.P., *et al.* (2002). Depletion of definitive gut endoderm in Sox17-null mutant mice.
1139 *Development* 129, 2367-2379.

1140 Kimura, C., Yoshinaga, K., Tian, E., Suzuki, M., Aizawa, S., and Matsuo, I. (2000). Visceral endoderm
1141 mediates forebrain development by suppressing posteriorizing signals. *Dev Biol* 225, 304-321.

1142 Kimura-Yoshida, C., Nakano, H., Okamura, D., Nakao, K., Yonemura, S., Belo, J.A., Aizawa, S., Matsui, Y.,
1143 and Matsuo, I. (2005). Canonical Wnt signaling and its antagonist regulate anterior-posterior axis
1144 polarization by guiding cell migration in mouse visceral endoderm. *Dev Cell* 9, 639-650.

1145 Kinoshita, M., Barber, M., Mansfield, W., Cui, Y., Spindlow, D., Stirparo, G.G., Dietmann, S., Nichols, J.,
1146 and Smith, A. (2020). Capture of Mouse and Human Stem Cells with Features of Formative
1147 Pluripotency. *Cell Stem Cell*.

1148 Kojima, Y., Yamashiro, C., Murase, Y., Yabuta, Y., Okamoto, I., Iwatani, C., Tsuchiya, H., Nakaya, M.,
1149 Tsukiyama, T., Nakamura, T., *et al.* (2021). GATA transcription factors, SOX17 and TFAP2C, drive the
1150 human germ-cell specification program. *Life Sci Alliance* 4.

1151 Langmead, B., and Salzberg, S.L. (2012). Fast gapped-read alignment with Bowtie 2. *Nat Methods* 9,
1152 357-359.

1153 Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., Durbin, R.,
1154 and Genome Project Data Processing, S. (2009). The Sequence Alignment/Map format and SAMtools.
1155 *Bioinformatics* 25, 2078-2079.

1156 Liao, Y., Smyth, G.K., and Shi, W. (2014). featureCounts: an efficient general purpose program for
1157 assigning sequence reads to genomic features. *Bioinformatics* 30, 923-930.

1158 Liu, J., Yang, M., Zhao, W., and Zhou, X. (2022). CCPE: cell cycle pseudotime estimation for single cell
1159 RNA-seq data. *Nucleic Acids Res* 50, 704-716.

1160 Loh, K.M., Ang, L.T., Zhang, J., Kumar, V., Ang, J., Auyeong, J.Q., Lee, K.L., Choo, S.H., Lim, C.Y., Nichane,
1161 M., *et al.* (2014). Efficient endoderm induction from human pluripotent stem cells by logically directing
1162 signals controlling lineage bifurcations. *Cell Stem Cell* 14, 237-252.

1163 Matsuo, I., Kuratani, S., Kimura, C., Takeda, N., and Aizawa, S. (1995). Mouse Otx2 functions in the
1164 formation and patterning of rostral head. *Genes Dev* 9, 2646-2658.

1165 Medina-Cano, D., Corrigan, E.K., Glenn, R.A., Islam, M.T., Lin, Y., Kim, J., Cho, H., and Vierbuchen, T.
1166 (2022). Rapid and robust directed differentiation of mouse epiblast stem cells into definitive endoderm
1167 and forebrain organoids. *Development* 149.

1168 Molder, F., Jablonski, K.P., Letcher, B., Hall, M.B., Tomkins-Tinch, C.H., Sochat, V., Forster, J., Lee, S.,
1169 Twardziok, S.O., Kanitz, A., *et al.* (2021). Sustainable data analysis with Snakemake. *F1000Res* 10, 33.

1170 Moore, R., Tao, W., Smith, E.R., and Xu, X.X. (2014). The primitive endoderm segregates from the
1171 epiblast in beta1 integrin-deficient early mouse embryos. *Mol Cell Biol* 34, 560-572.

1172 Morgani, S.M., and Hadjantonakis, A.K. (2020). Signaling regulation during gastrulation: Insights from
1173 mouse embryos and in vitro systems. *Curr Top Dev Biol* 137, 391-431.

1174 Morgani, S.M., and Hadjantonakis, A.K. (2021). Spatially Organized Differentiation of Mouse Pluripotent
1175 Stem Cells on Micropatterned Surfaces. *Methods Mol Biol* 2214, 41-58.

1176 Morgani, S.M., Metzger, J.J., Nichols, J., Siggia, E.D., and Hadjantonakis, A.K. (2018). Micropattern
1177 differentiation of mouse pluripotent stem cells recapitulates embryo regionalized cell fate patterning.
1178 *Elife* 7.

1179 Muncie, J.M., Ayad, N.M.E., Lakins, J.N., Xue, X., Fu, J., and Weaver, V.M. (2020). Mechanical Tension
1180 Promotes Formation of Gastrulation-like Nodes and Patterns Mesoderm Specification in Human
1181 Embryonic Stem Cells. *Dev Cell* 55, 679-694 e611.

1182 Murphy, D., Salataj, E., Di Giammartino, D.C., Rodriguez-Hernaez, J., Kloetgen, A., Garg, V., Char, E.,
1183 Uyehara, C.M., Ee, L.S., Lee, U., *et al.* (2023). Systematic mapping and modeling of 3D enhancer-
1184 promoter interactions in early mouse embryonic lineages reveal regulatory principles that determine
1185 the levels and cell-type specificity of gene expression. *bioRxiv*.

1186 Nabet, B., Ferguson, F.M., Seong, B.K.A., Kuljanin, M., Leggett, A.L., Mohardt, M.L., Robichaud, A.,
1187 Conway, A.S., Buckley, D.L., Mancias, J.D., *et al.* (2020). Rapid and direct control of target protein levels
1188 with VHL-recruiting dTAG molecules. *Nat Commun* **11**, 4687.

1189 Nabet, B., Roberts, J.M., Buckley, D.L., Pault, J., Dastjerdi, S., Yang, A., Leggett, A.L., Erb, M.A., Lawlor,
1190 M.A., Souza, A., *et al.* (2018). The dTAG system for immediate and target-specific protein degradation.
1191 *Nat Chem Biol* **14**, 431-441.

1192 Navarra, A., Musto, A., Gargiulo, A., Petrosino, G., Pierantoni, G.M., Fusco, A., Russo, T., and Parisi, S.
1193 (2016). Hmga2 is necessary for Otx2-dependent exit of embryonic stem cells from the pluripotent
1194 ground state. *BMC Biol* **14**, 24.

1195 Nowotschin, S., Setty, M., Kuo, Y.Y., Liu, V., Garg, V., Sharma, R., Simon, C.S., Saiz, N., Gardner, R., Boutet,
1196 S.C., *et al.* (2019). The emergent landscape of the mouse gut endoderm at single-cell resolution. *Nature*
1197 **569**, 361-367.

1198 Pan, F.C., Evans, T., and Chen, S. (2020). Modeling endodermal organ development and diseases using
1199 human pluripotent stem cell-derived organoids. *J Mol Cell Biol* **12**, 580-592.

1200 Pannese, M., Polo, C., Andreazzoli, M., Vignali, R., Kablar, B., Barsacchi, G., and Boncinelli, E. (1995). The
1201 Xenopus homologue of Otx2 is a maternal homeobox gene that demarcates and specifies anterior body
1202 regions. *Development* **121**, 707-720.

1203 Pijuan-Sala, B., Griffiths, J.A., Guibentif, C., Hiscock, T.W., Jawaid, W., Calero-Nieto, F.J., Mulas, C., Ibarra-
1204 Soria, X., Tyser, R.C.V., Ho, D.L.L., *et al.* (2019). A single-cell molecular map of mouse gastrulation and
1205 early organogenesis. *Nature* **566**, 490-495.

1206 Prozzillo, Y., Fattorini, G., Santopietro, M.V., Suglia, L., Ruggiero, A., Ferreri, D., and Messina, G. (2020).
1207 Targeted Protein Degradation Tools: Overview and Future Perspectives. *Biology (Basel)* **9**.

1208 Qiu, C., Cao, J., Martin, B.K., Li, T., Welsh, I.C., Srivatsan, S., Huang, X., Calderon, D., Noble, W.S.,
1209 Disteche, C.M., *et al.* (2022). Systematic reconstruction of cellular trajectories across mouse
1210 embryogenesis. *Nat Genet* **54**, 328-341.

1211 Quinlan, A.R., and Hall, I.M. (2010). BEDTools: a flexible suite of utilities for comparing genomic
1212 features. *Bioinformatics* **26**, 841-842.

1213 Rhinn, M., Dierich, A., Le Meur, M., and Ang, S. (1999). Cell autonomous and non-cell autonomous
1214 functions of Otx2 in patterning the rostral brain. *Development* **126**, 4295-4304.

1215 Rhinn, M., Dierich, A., Shawlot, W., Behringer, R.R., Le Meur, M., and Ang, S.L. (1998). Sequential roles
1216 for Otx2 in visceral endoderm and neuroectoderm for forebrain and midbrain induction and
1217 specification. *Development* **125**, 845-856.

1218 Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C.,
1219 Saalfeld, S., Schmid, B., *et al.* (2012). Fiji: an open-source platform for biological-image analysis. *Nat
1220 Methods* **9**, 676-682.

1221 Seah, M.K.Y., Wang, Y., Goy, P.A., Loh, H.M., Peh, W.J., Low, D.H.P., Han, B.Y., Wong, E., Leong, E.L., Wolf,
1222 G., *et al.* (2019). The KRAB-zinc-finger protein ZFP708 mediates epigenetic repression at RMER19B
1223 retrotransposons. *Development* **146**.

1224 Setty, M., Kiseliovas, V., Levine, J., Gayoso, A., Mazutis, L., and Pe'er, D. (2019). Characterization of cell
1225 fate probabilities in single-cell data with Palantir. *Nat Biotechnol* **37**, 451-460.

1226 Simeone, A. (1998). Otx1 and Otx2 in the development and evolution of the mammalian brain. *EMBO J*
1227 **17**, 6790-6798.

1228 Skene, P.J., Henikoff, J.G., and Henikoff, S. (2018). Targeted in situ genome-wide profiling with high
1229 efficiency for low cell numbers. *Nat Protoc* **13**, 1006-1019.

1230 Skene, P.J., and Henikoff, S. (2017). An efficient targeted nuclease strategy for high-resolution mapping
1231 of DNA binding sites. *Elife* **6**.

1232 Spieler, D., Baumer, N., Stebler, J., Koprucker, M., Reichman-Fried, M., Teichmann, U., Raz, E., Kessel,
1233 M., and Wittler, L. (2004). Involvement of Pax6 and Otx2 in the forebrain-specific regulation of the
1234 vertebrate homeobox gene ANF/Hesx1. *Dev Biol* 269, 567-579.

1235 Takenaga, M., Fukumoto, M., and Hori, Y. (2007). Regulated Nodal signaling promotes differentiation of
1236 the definitive endoderm and mesoderm from ES cells. *J Cell Sci* 120, 2078-2090.

1237 Tam, P.P., and Behringer, R.R. (1997). Mouse gastrulation: the formation of a mammalian body plan.
1238 *Mech Dev* 68, 3-25.

1239 Tam, P.P., and Loebel, D.A. (2007). Gene function in mouse embryogenesis: get set for gastrulation. *Nat*
1240 *Rev Genet* 8, 368-381.

1241 Tang, W.W.C., Castillo-Venzor, A., Gruhn, W.H., Kobayashi, T., Penfold, C.A., Morgan, M.D., Sun, D., Irie,
1242 N., and Surani, M.A. (2022). Sequential enhancer state remodelling defines human germline
1243 competence and specification. *Nat Cell Biol* 24, 448-460.

1244 Tesar, P.J., Chenoweth, J.G., Brook, F.A., Davies, T.J., Evans, E.P., Mack, D.L., Gardner, R.L., and McKay,
1245 R.D. (2007). New cell lines from mouse epiblast share defining features with human embryonic stem
1246 cells. *Nature* 448, 196-199.

1247 Tyser, R.C.V., Mahammadov, E., Nakanoh, S., Vallier, L., Scialdone, A., and Srinivas, S. (2021). Single-cell
1248 transcriptomic characterization of a gastrulating human embryo. *Nature* 600, 285-289.

1249 Uyehara, C.M., and Apostolou, E. (2023). 3D enhancer-promoter interactions and multi-connected
1250 hubs: Organizational principles and functional roles. *Cell Rep*, 112068.

1251 Uyehara, C.M., Leatham-Jensen, M., and McKay, D.J. (2022). Opportunistic binding of EcR to open
1252 chromatin drives tissue-specific developmental responses. *Proc Natl Acad Sci U S A* 119, e2208935119.

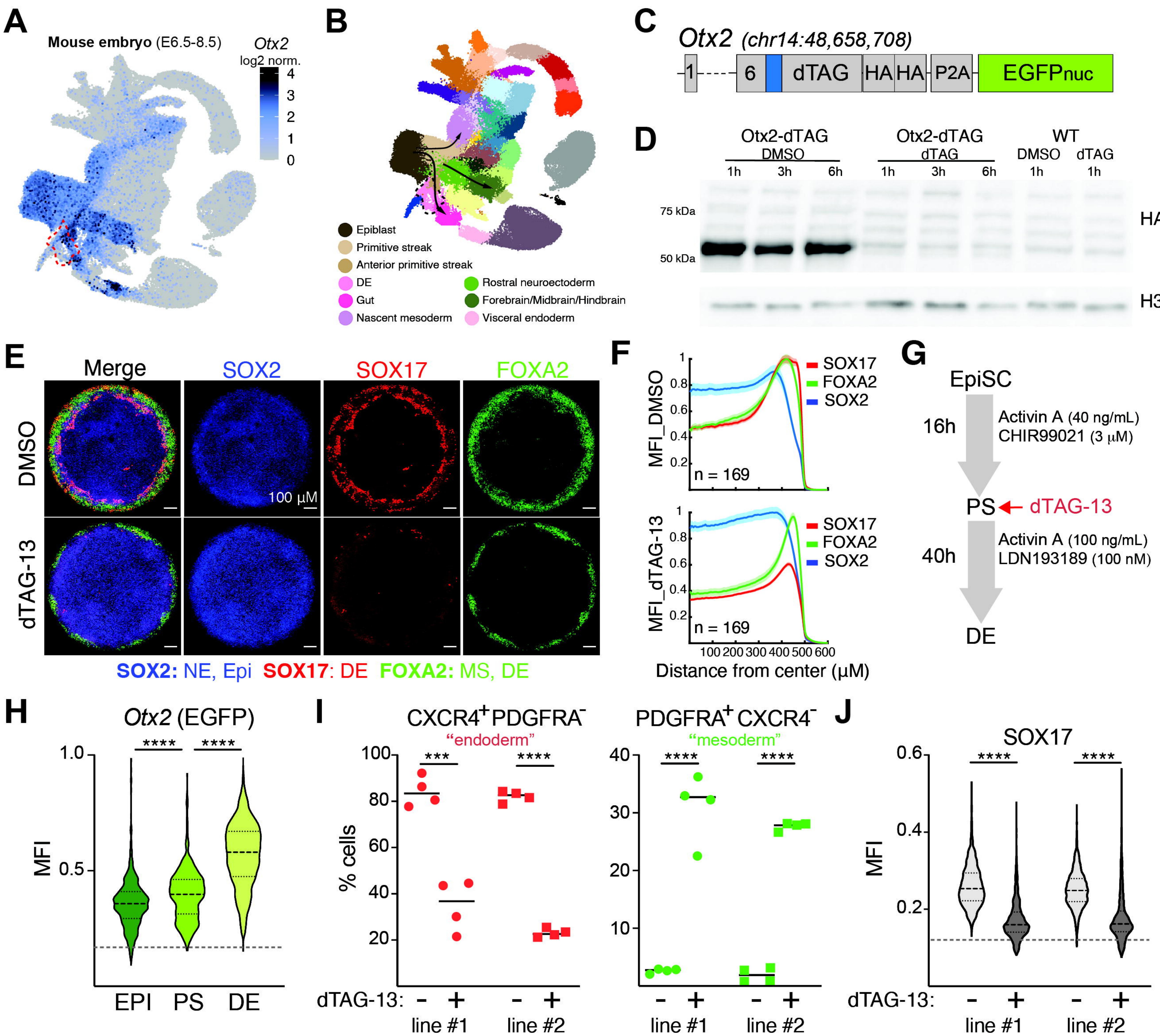
1253 Wang, P., McKnight, K.D., Wong, D.J., Rodriguez, R.T., Sugiyama, T., Gu, X., Ghodasara, A., Qu, K., Chang,
1254 H.Y., and Kim, S.K. (2012). A molecular signature for purified definitive endoderm guides differentiation
1255 and isolation of endoderm from mouse and human embryonic stem cells. *Stem Cells Dev* 21, 2273-
1256 2287.

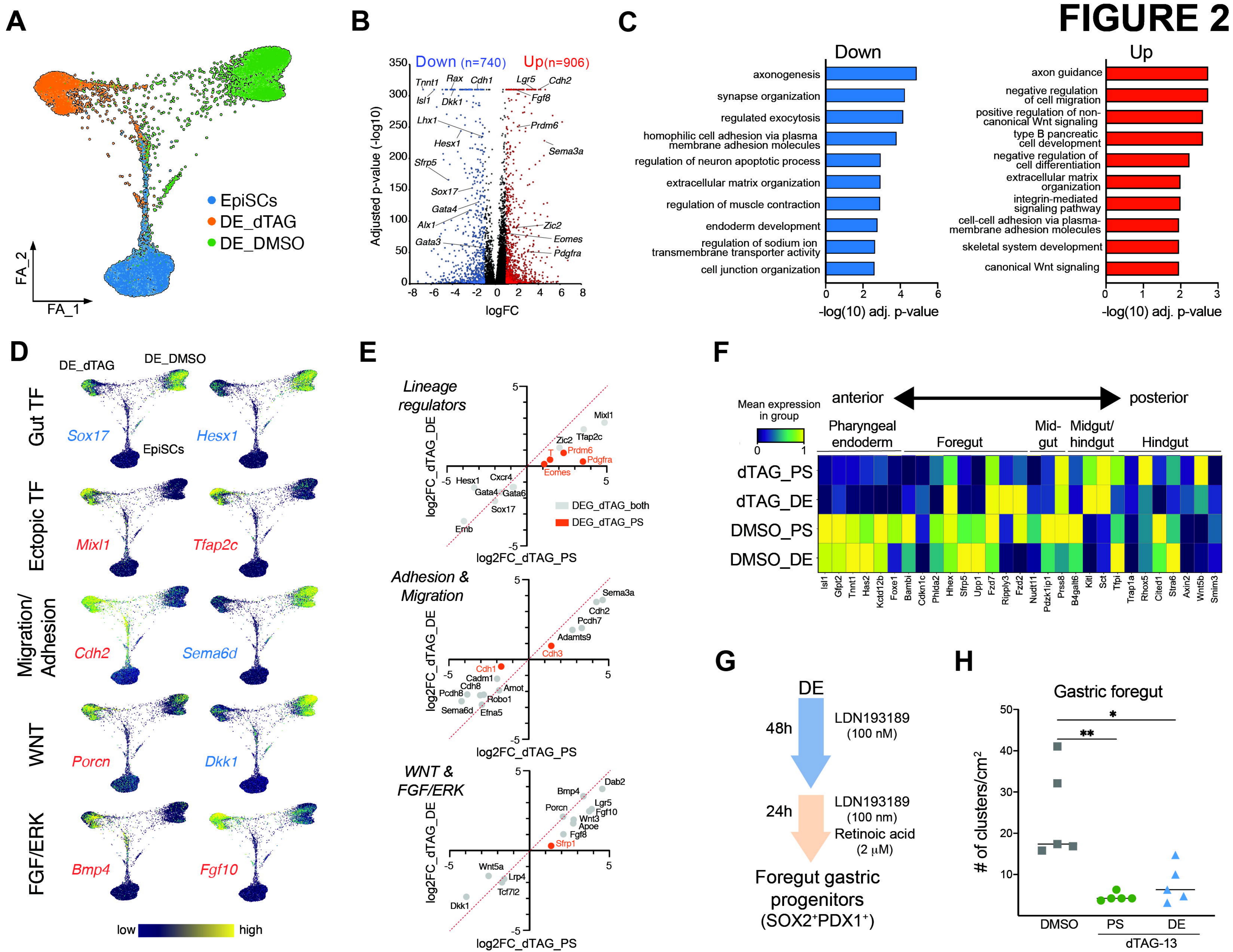
1257 White, M.A., Kwasnieski, J.C., Myers, C.A., Shen, S.Q., Corbo, J.C., and Cohen, B.A. (2016). A Simple
1258 Grammar Defines Activating and Repressing cis-Regulatory Elements in Photoreceptors. *Cell Rep* 17,
1259 1247-1254.

1260 Wolf, F.A., Angerer, P., and Theis, F.J. (2018). SCANPY: large-scale single-cell gene expression data
1261 analysis. *Genome Biol* 19, 15.

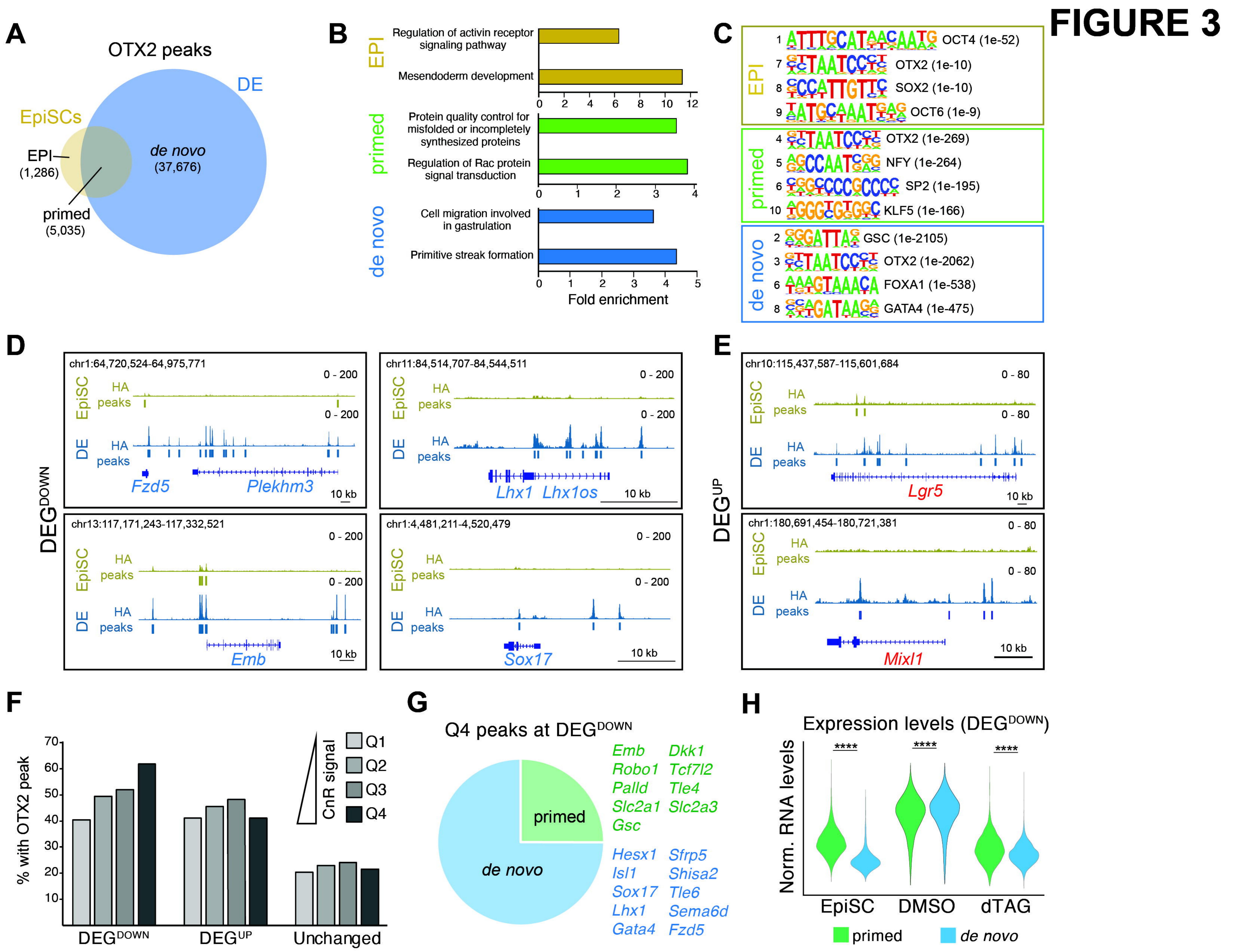
1262 Yang, S.H., Kalkan, T., Morissroe, C., Marks, H., Stunnenberg, H., Smith, A., and Sharrocks, A.D. (2014).
1263 Otx2 and Oct4 drive early enhancer activation during embryonic stem cell transition from naive
1264 pluripotency. *Cell Rep* 7, 1968-1981.

1265 Yasuoka, Y., Suzuki, Y., Takahashi, S., Someya, H., Sudou, N., Haramoto, Y., Cho, K.W., Asashima, M.,
1266 Sugano, S., and Taira, M. (2014). Occupancy of tissue-specific cis-regulatory modules by Otx2 and
1267 TLE/Groucho for embryonic head specification. *Nat Commun* 5, 4322.


1268 Yu, G., Wang, L.G., and He, Q.Y. (2015). ChIPseeker: an R/Bioconductor package for ChIP peak
1269 annotation, comparison and visualization. *Bioinformatics* 31, 2382-2383.


1270 Yu, P., Pan, G., Yu, J., and Thomson, J.A. (2011). FGF2 sustains NANOG and switches the outcome of
1271 BMP4-induced human embryonic stem cell differentiation. *Cell Stem Cell* 8, 326-334.

1272 Zeng, B., Liu, Z., Lu, Y., Zhong, S., Qin, S., Huang, L., Zeng, Y., Li, Z., Dong, H., Shi, Y., *et al.* (2023). The
1273 single-cell and spatial transcriptional landscape of human gastrulation and early brain development.
1274 *Cell Stem Cell* 30, 851-866 e857.


1275 Zhang, J., Zhang, M., Acampora, D., Vojtek, M., Yuan, D., Simeone, A., and Chambers, I. (2018). OTX2
1276 restricts entry to the mouse germline. *Nature* 562, 595-599.

1277 Zhang, Y., Liu, T., Meyer, C.A., Eeckhoute, J., Johnson, D.S., Bernstein, B.E., Nusbaum, C., Myers, R.M.,
1278 Brown, M., Li, W., *et al.* (2008). Model-based analysis of ChIP-Seq (MACS). *Genome Biol* 9, R137.
1279 Zhong, L., Gordillo, M., Wang, X., Qin, Y., Huang, Y., Soshnev, A., Kumar, R., Nanjangud, G., James, D.,
1280 David Allis, C., *et al.* (2023). Dual role of lipids for genome stability and pluripotency facilitates full
1281 potency of mouse embryonic stem cells. *Protein Cell* 14, 591-602.
1282

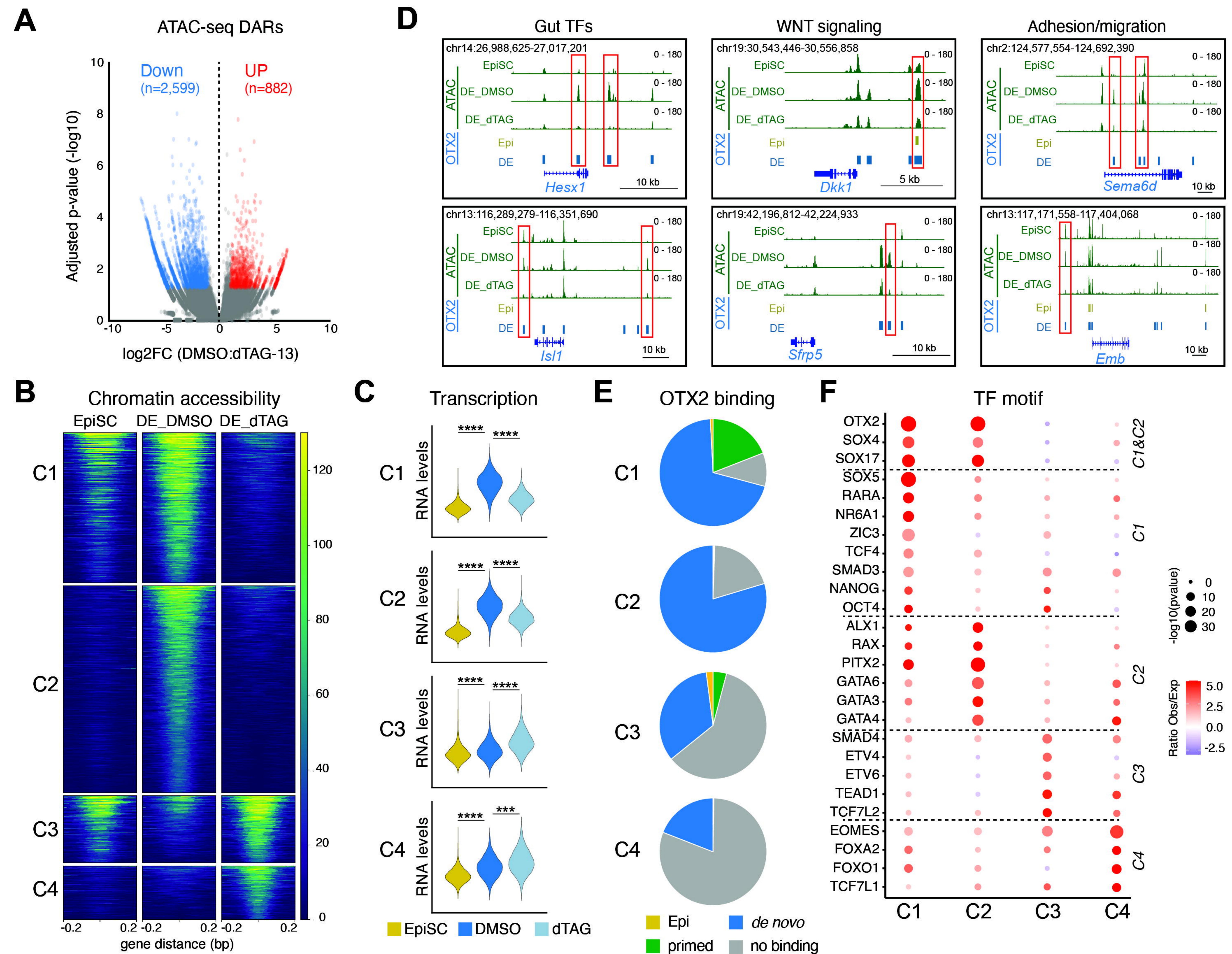
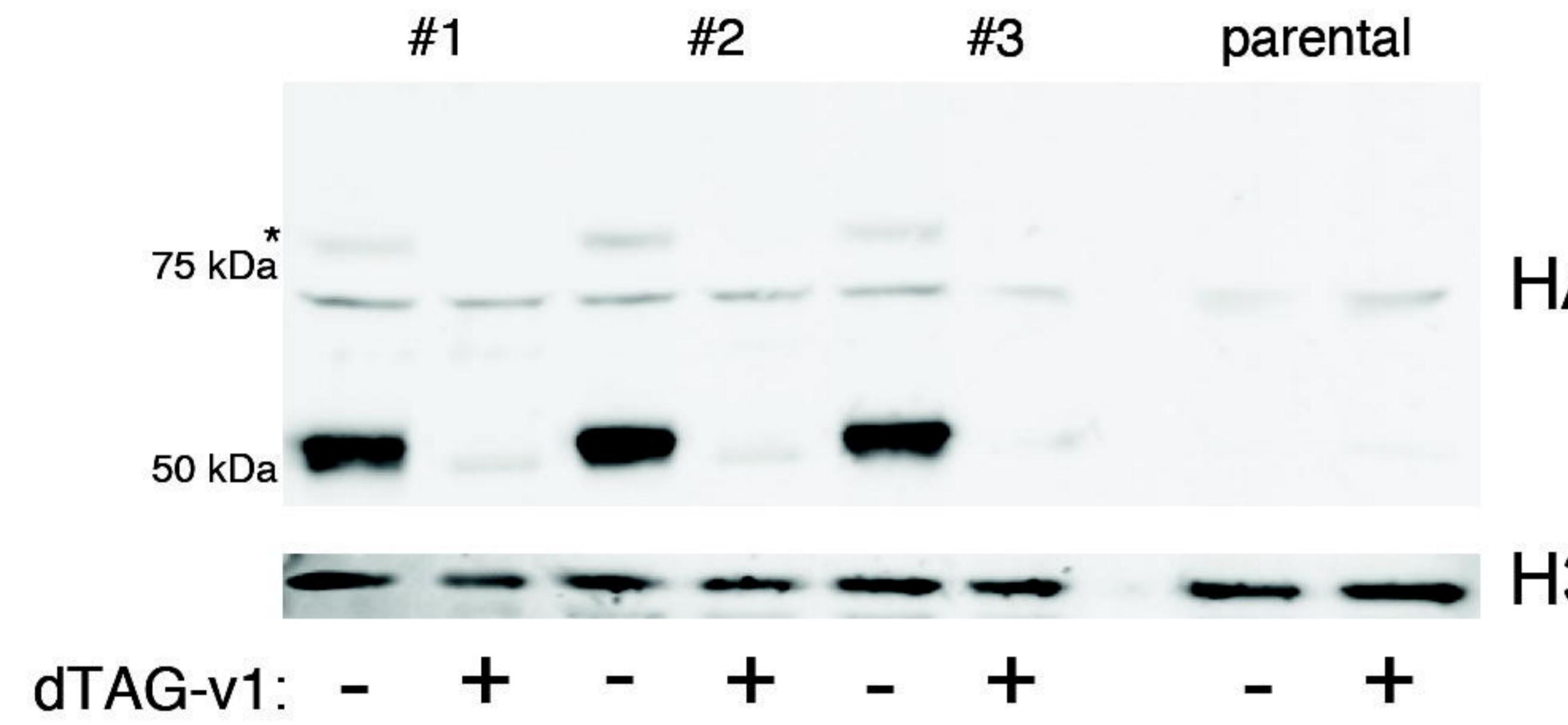
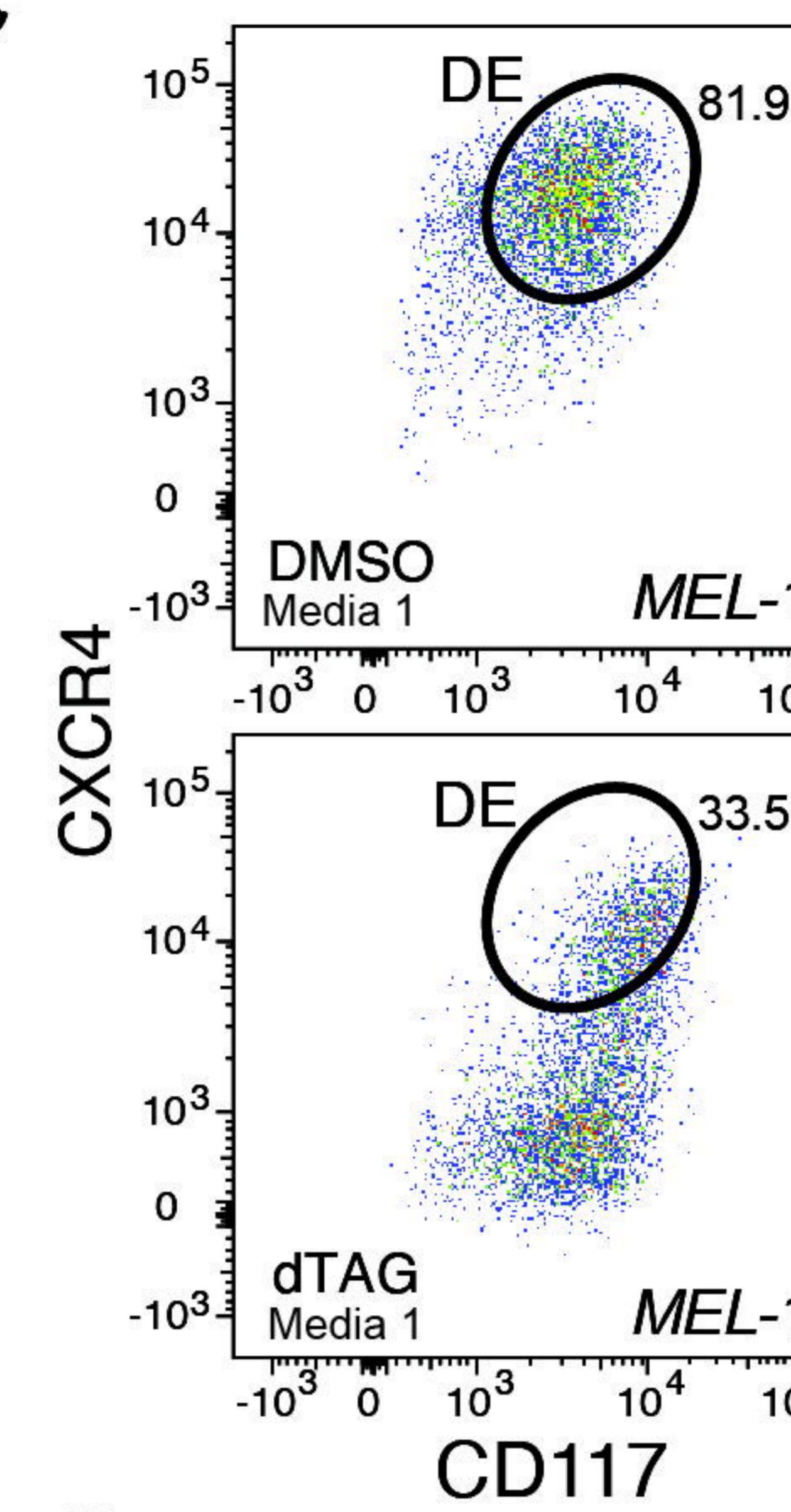
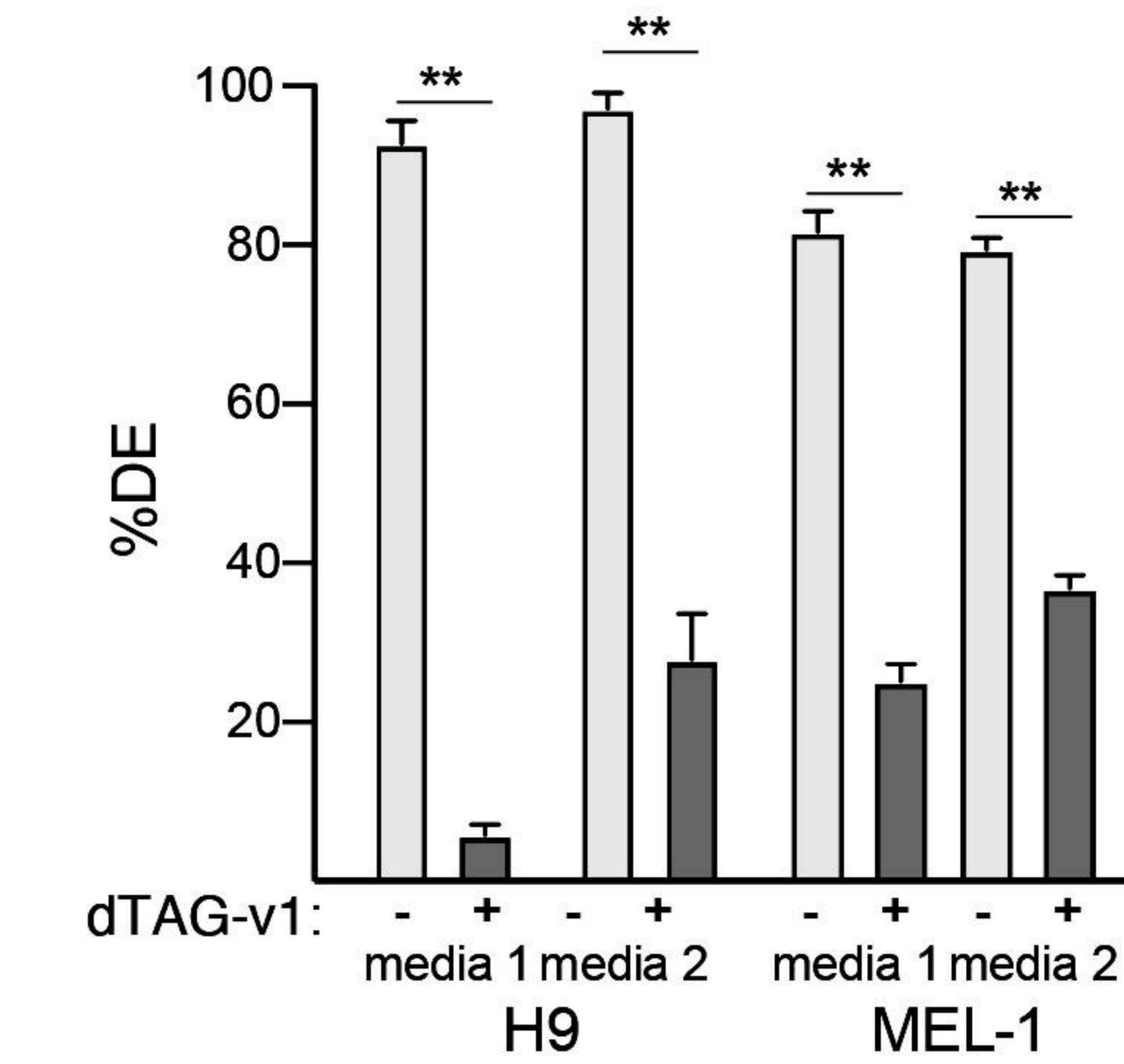
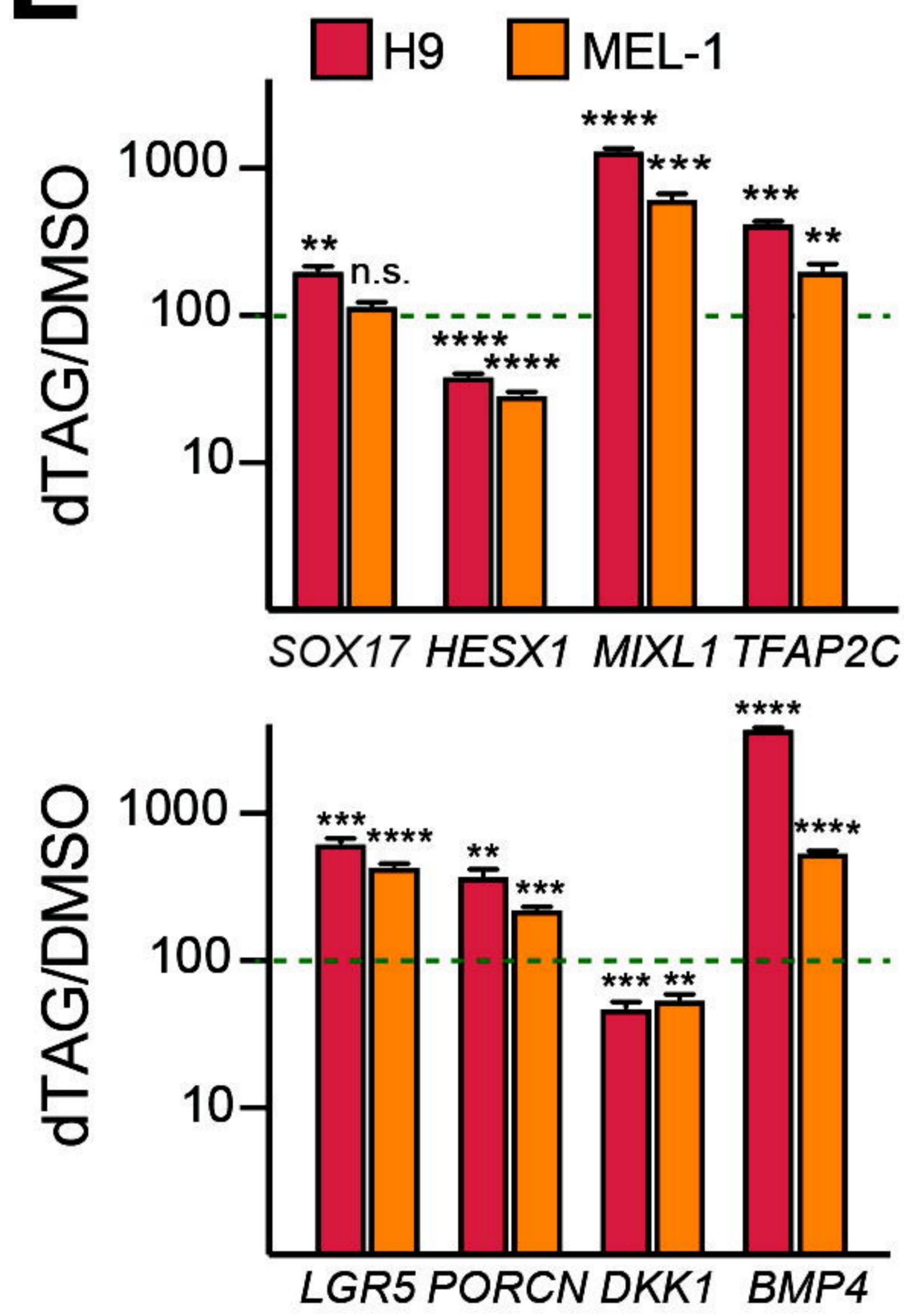
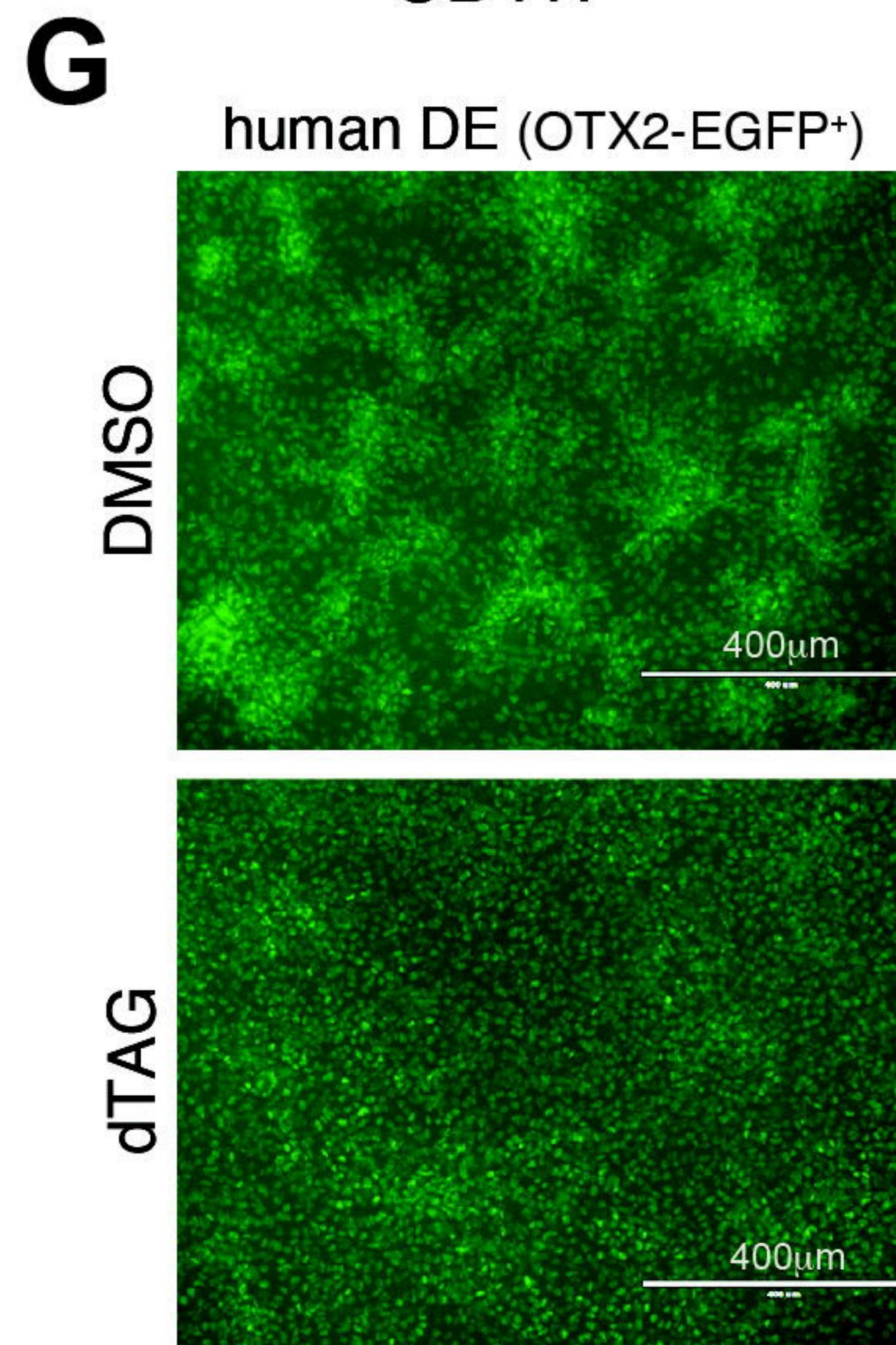
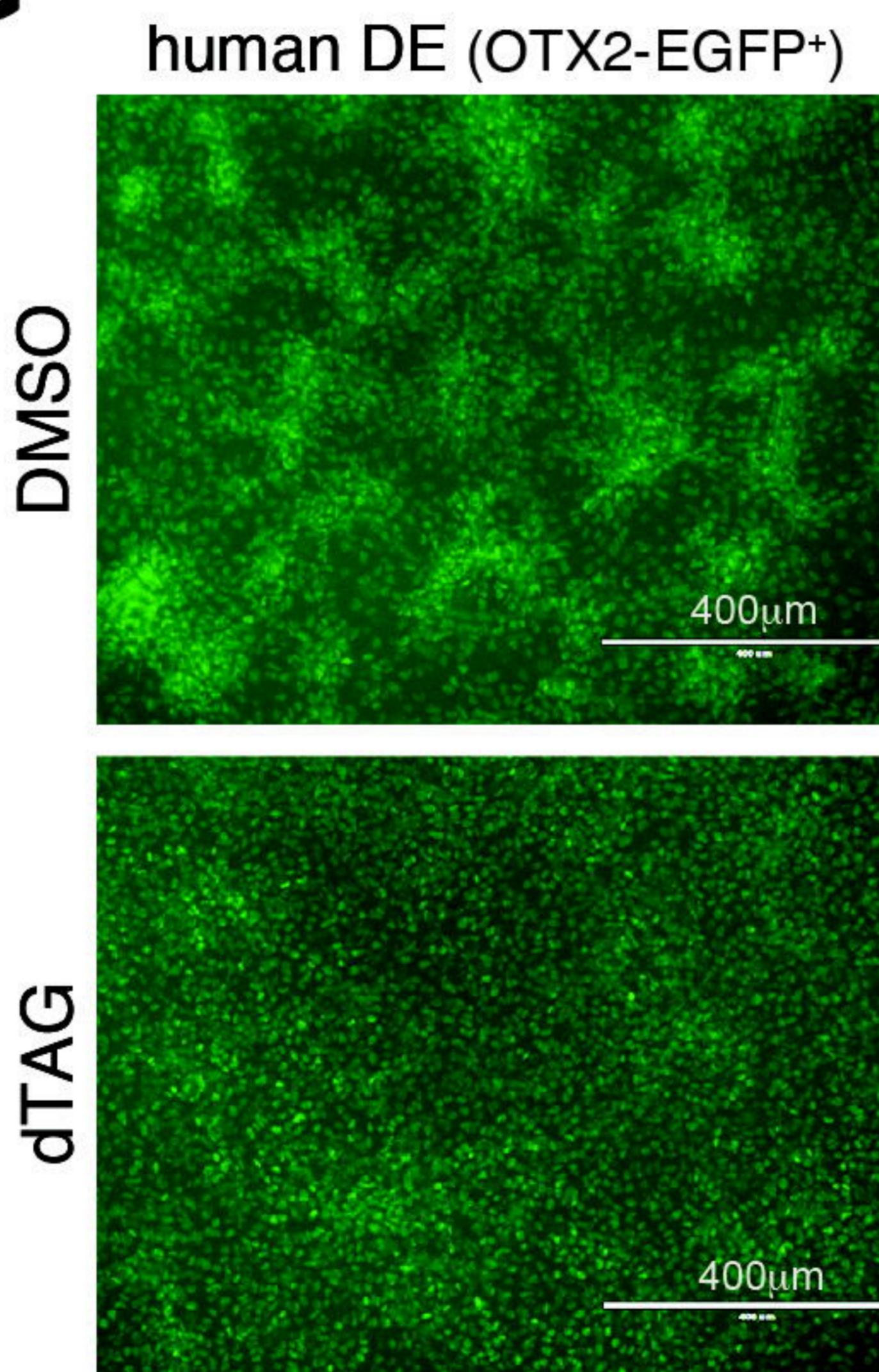
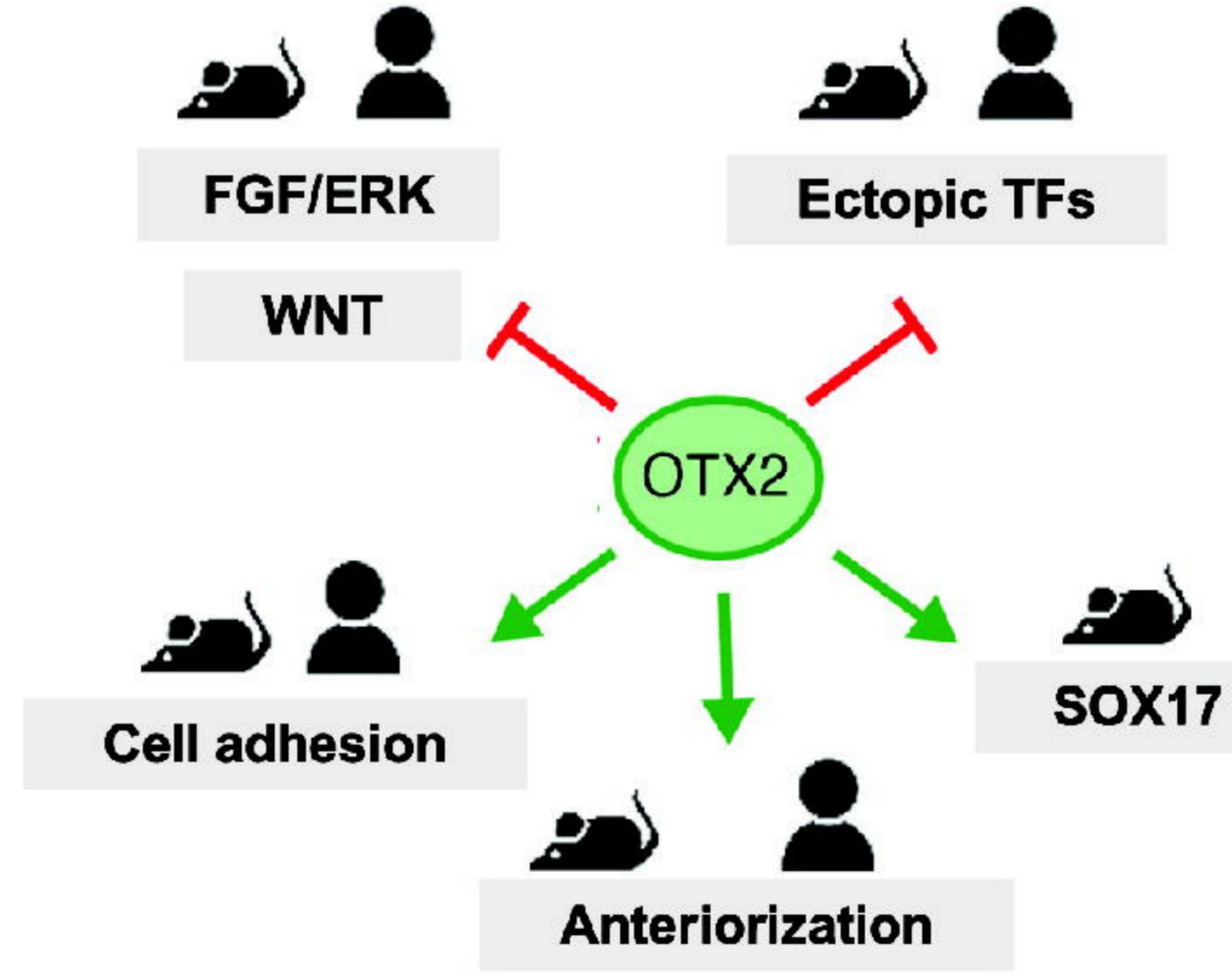
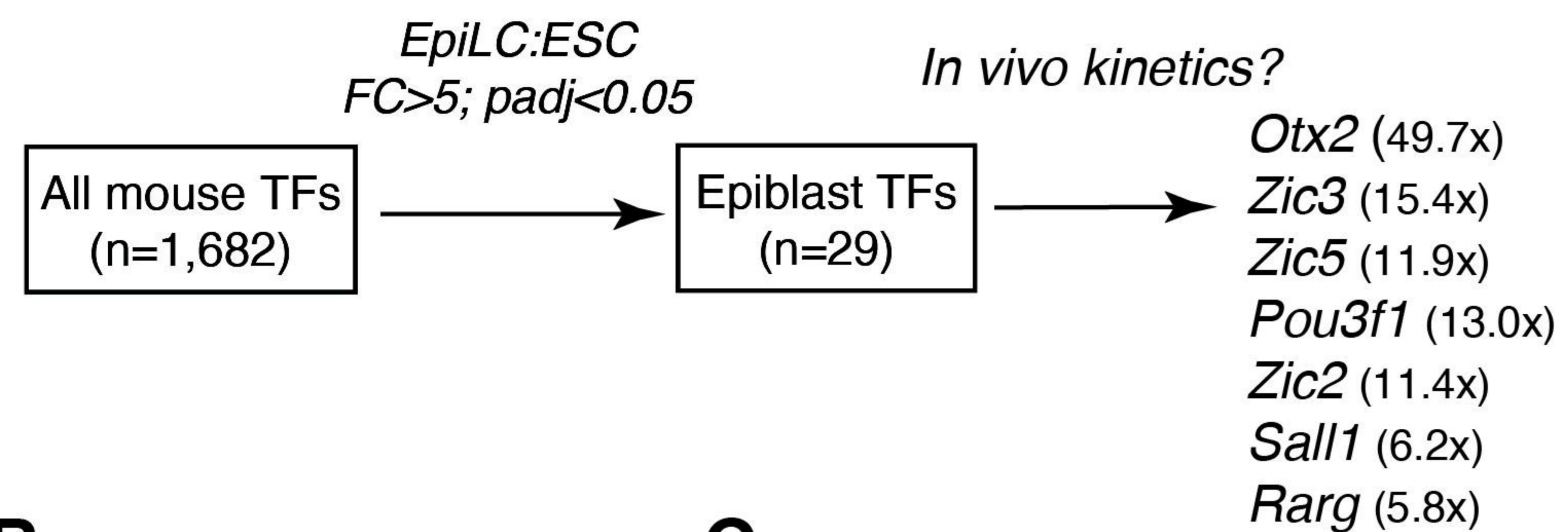
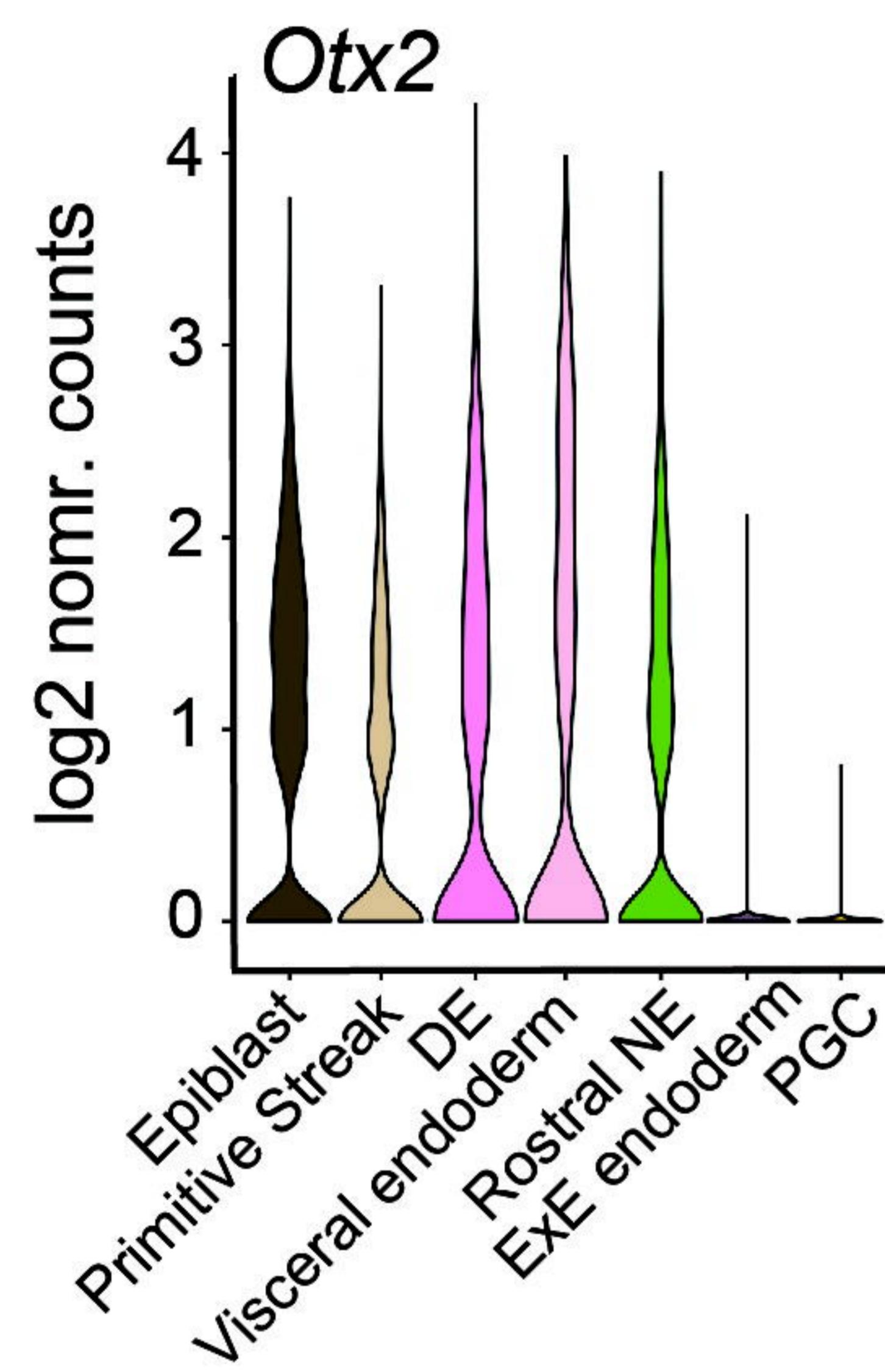
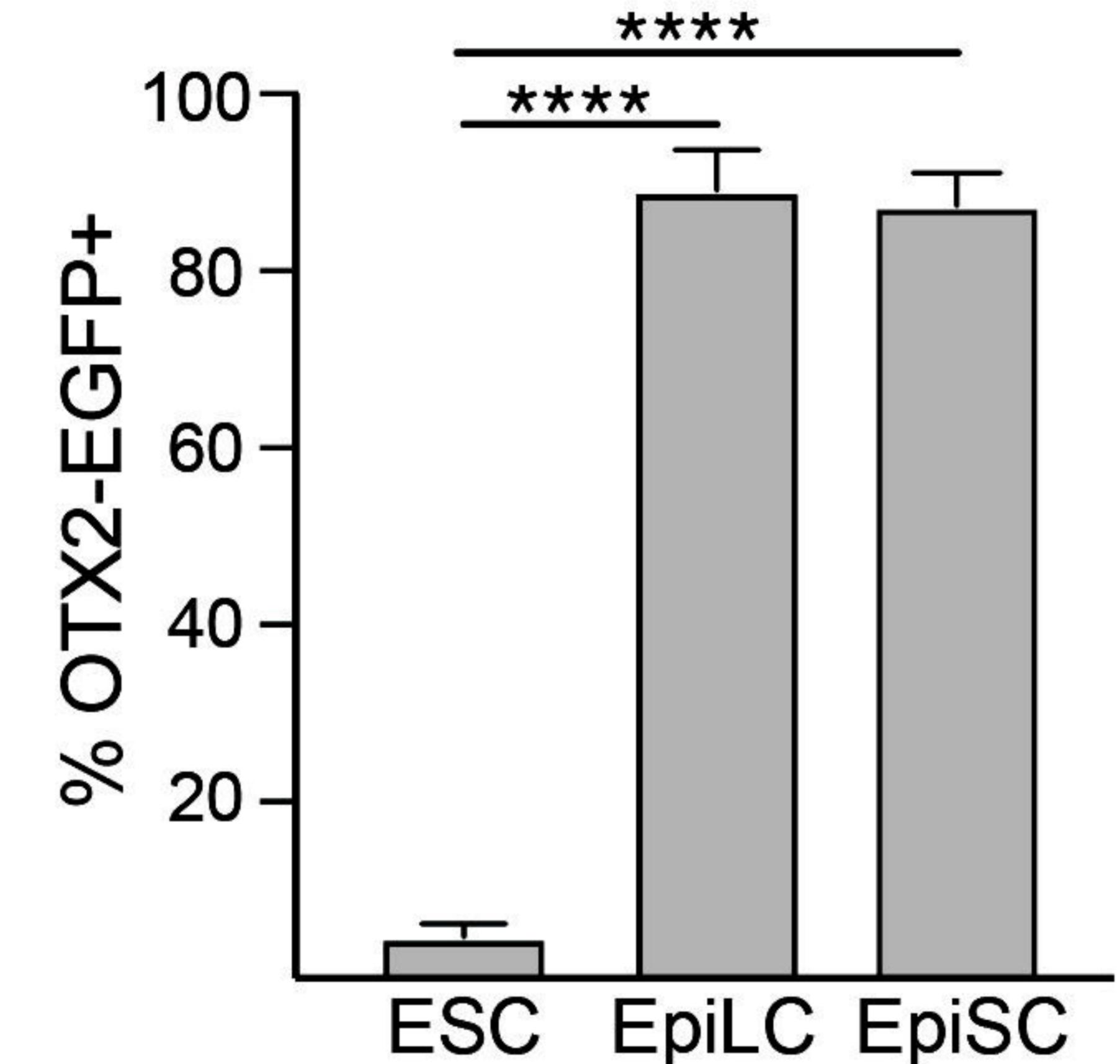
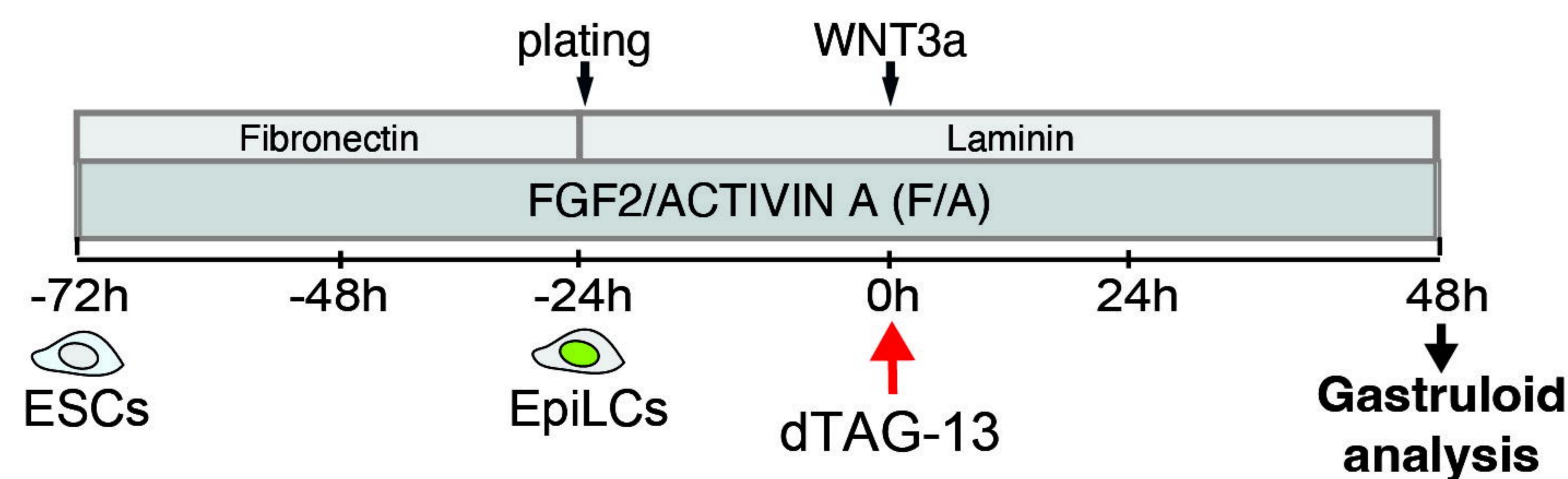
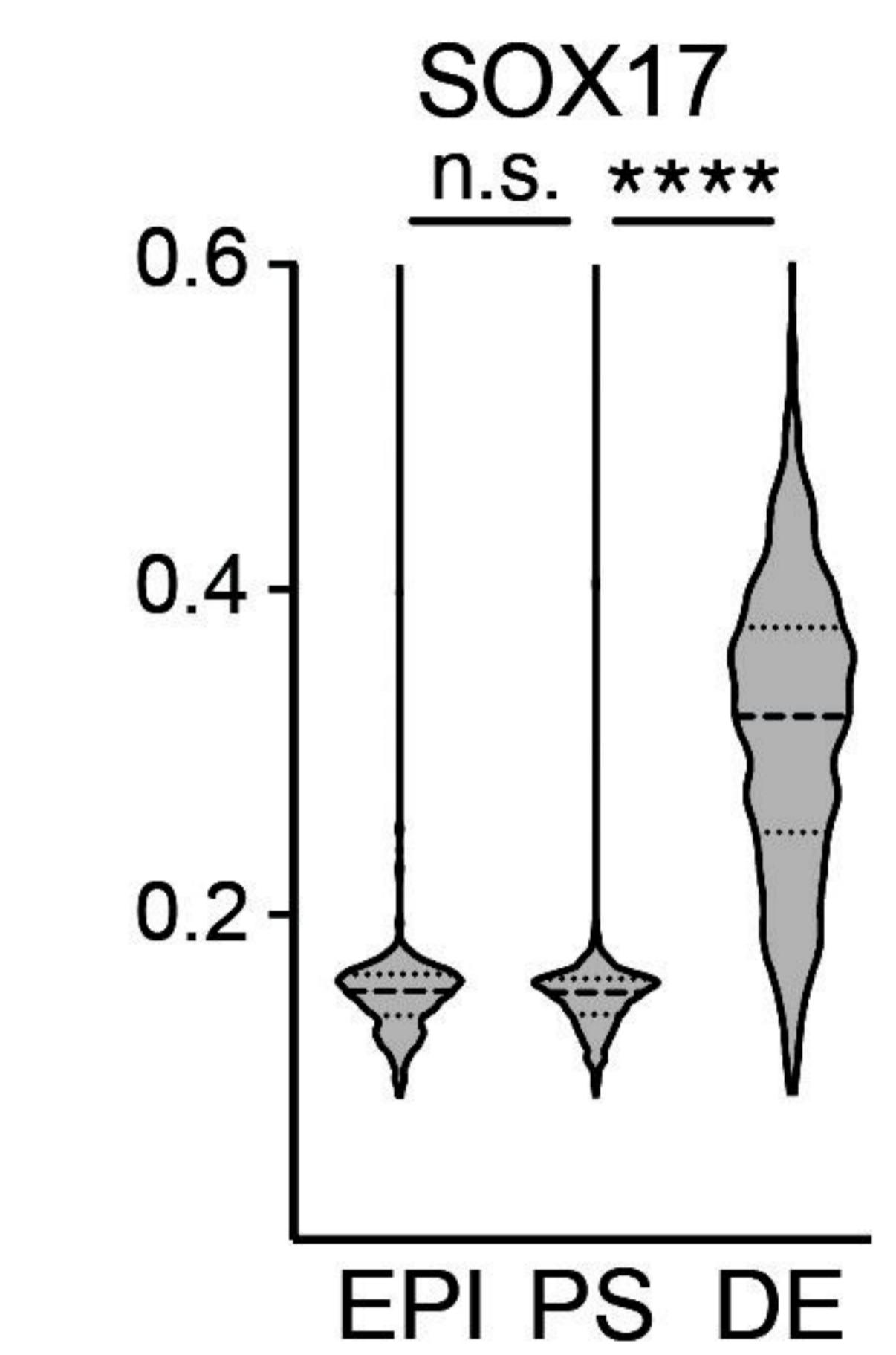
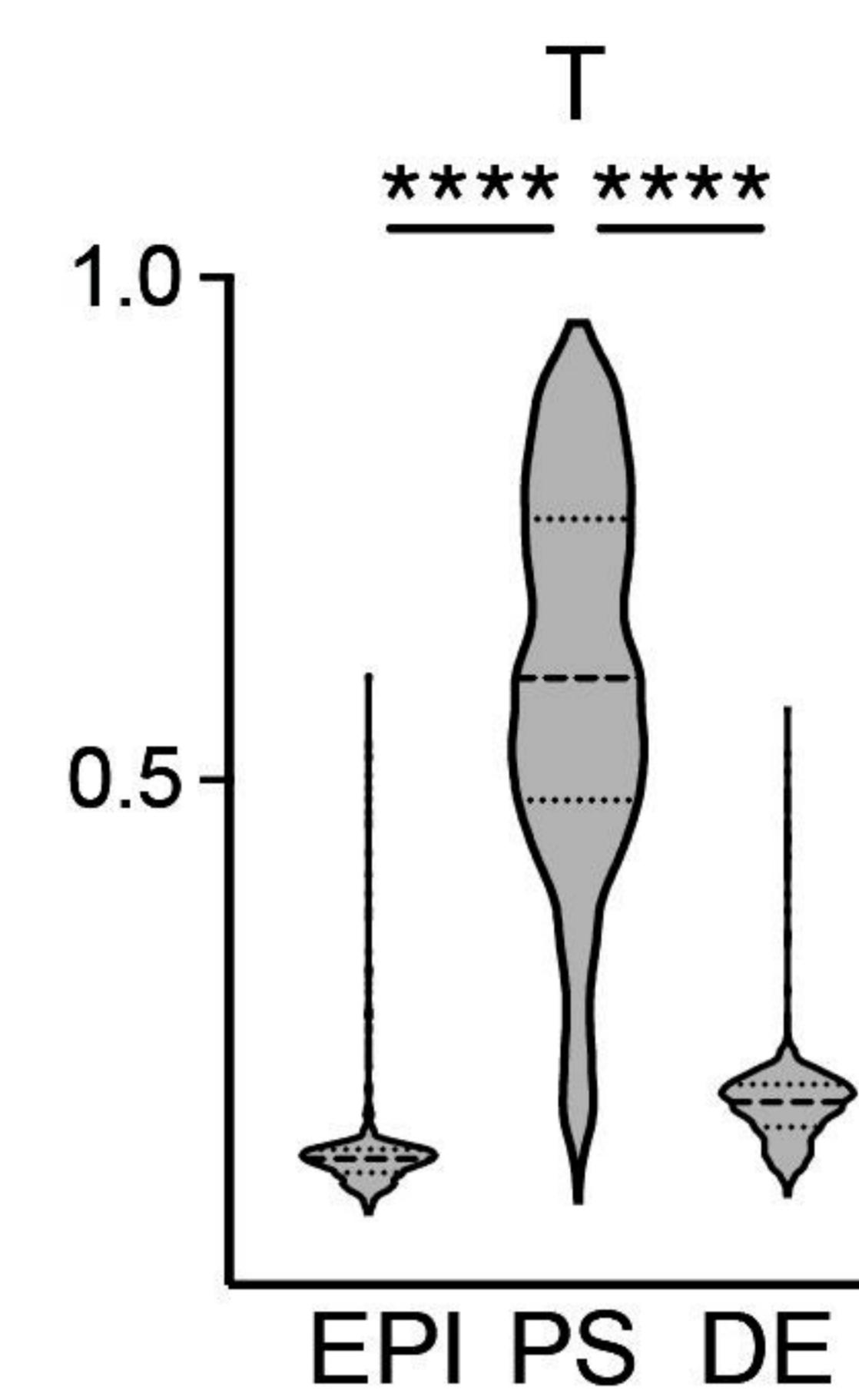
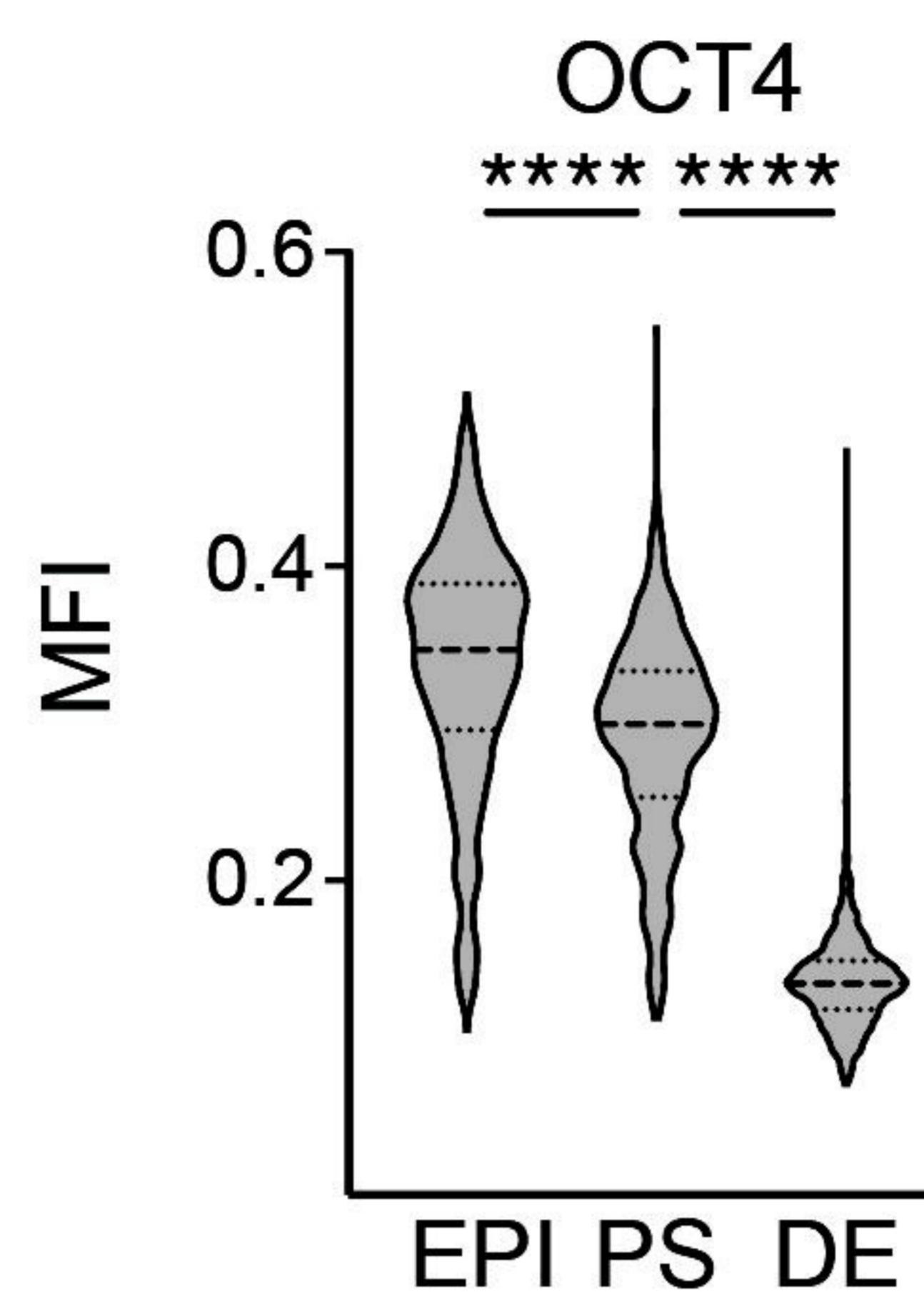
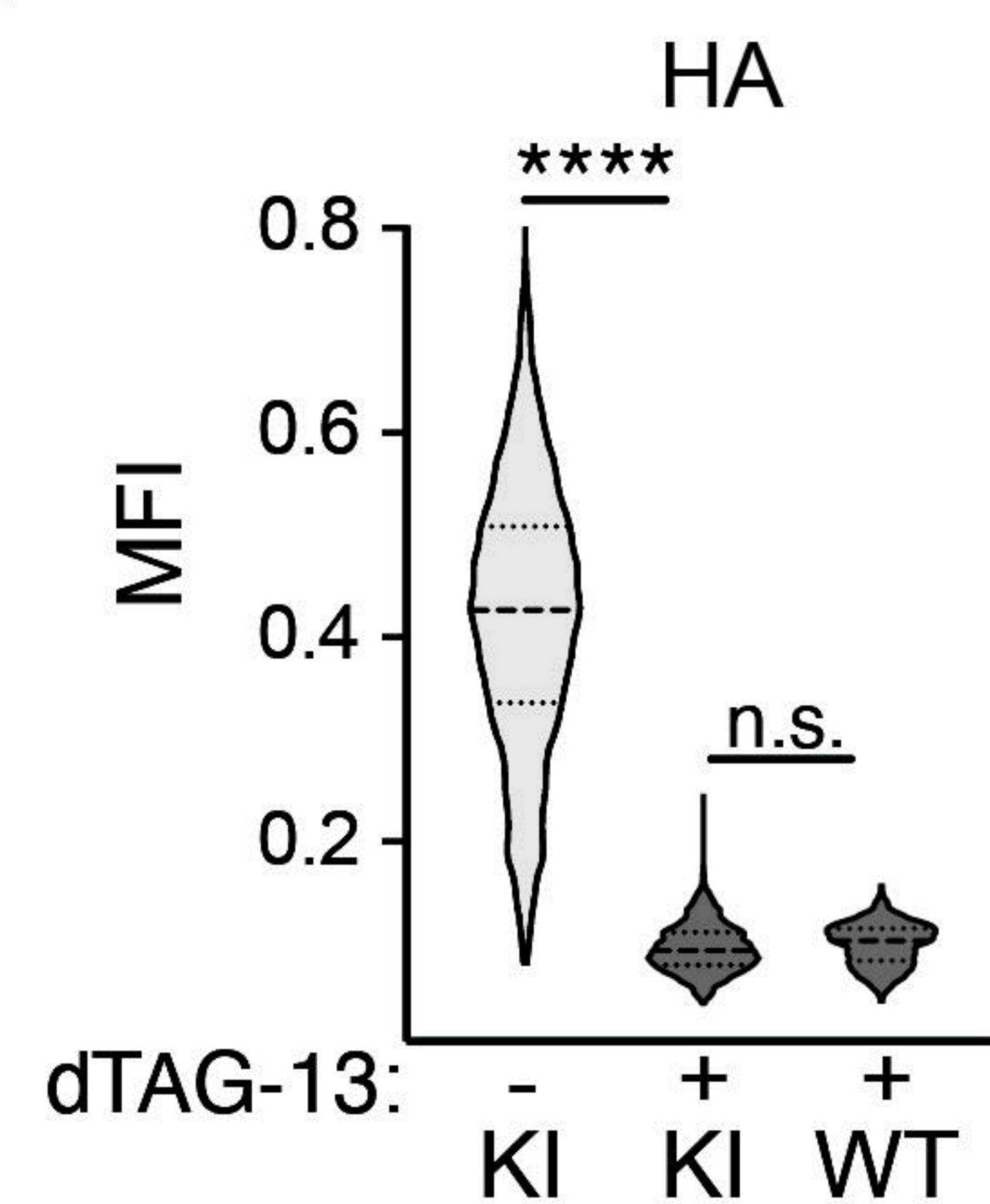
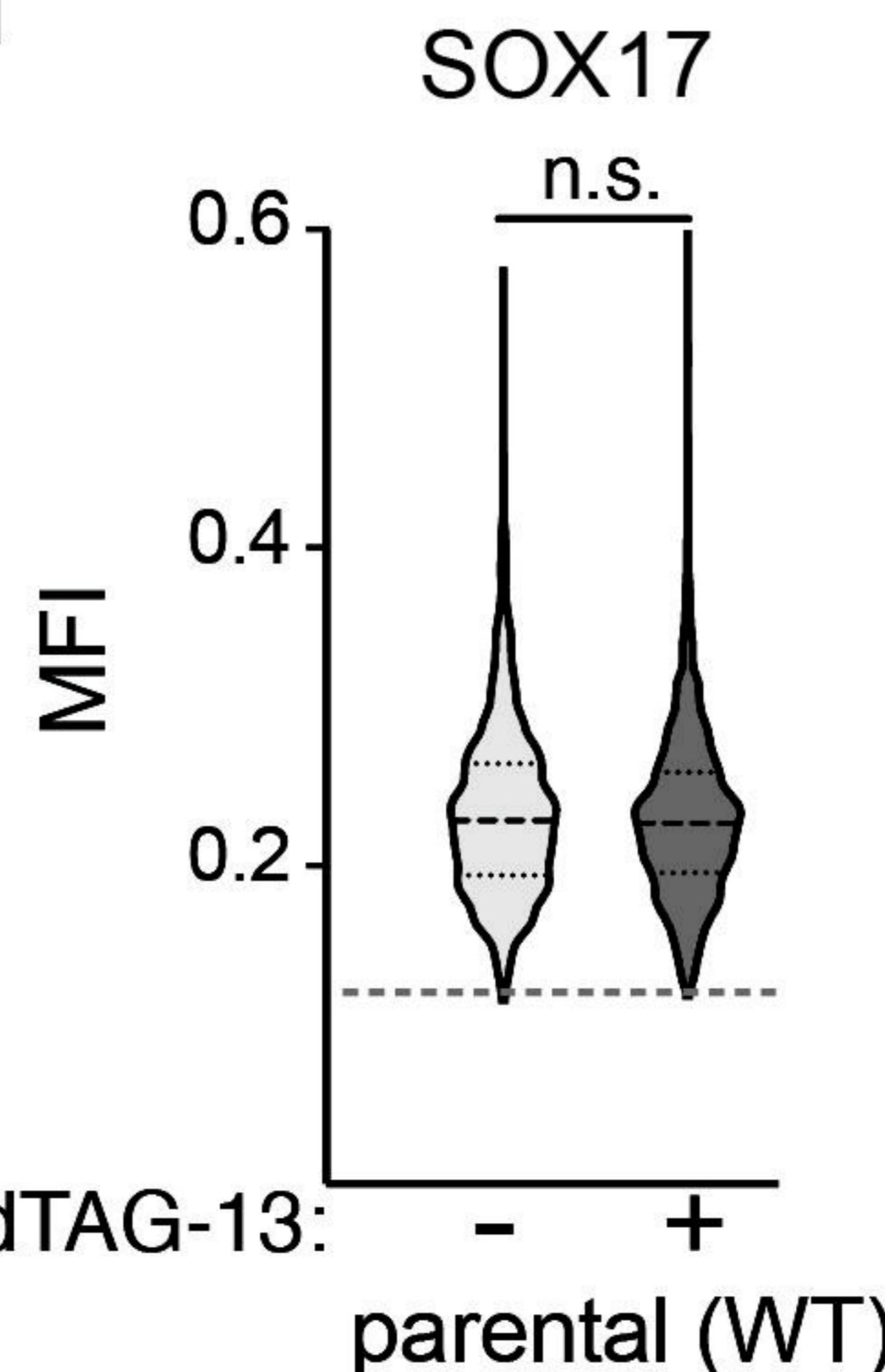
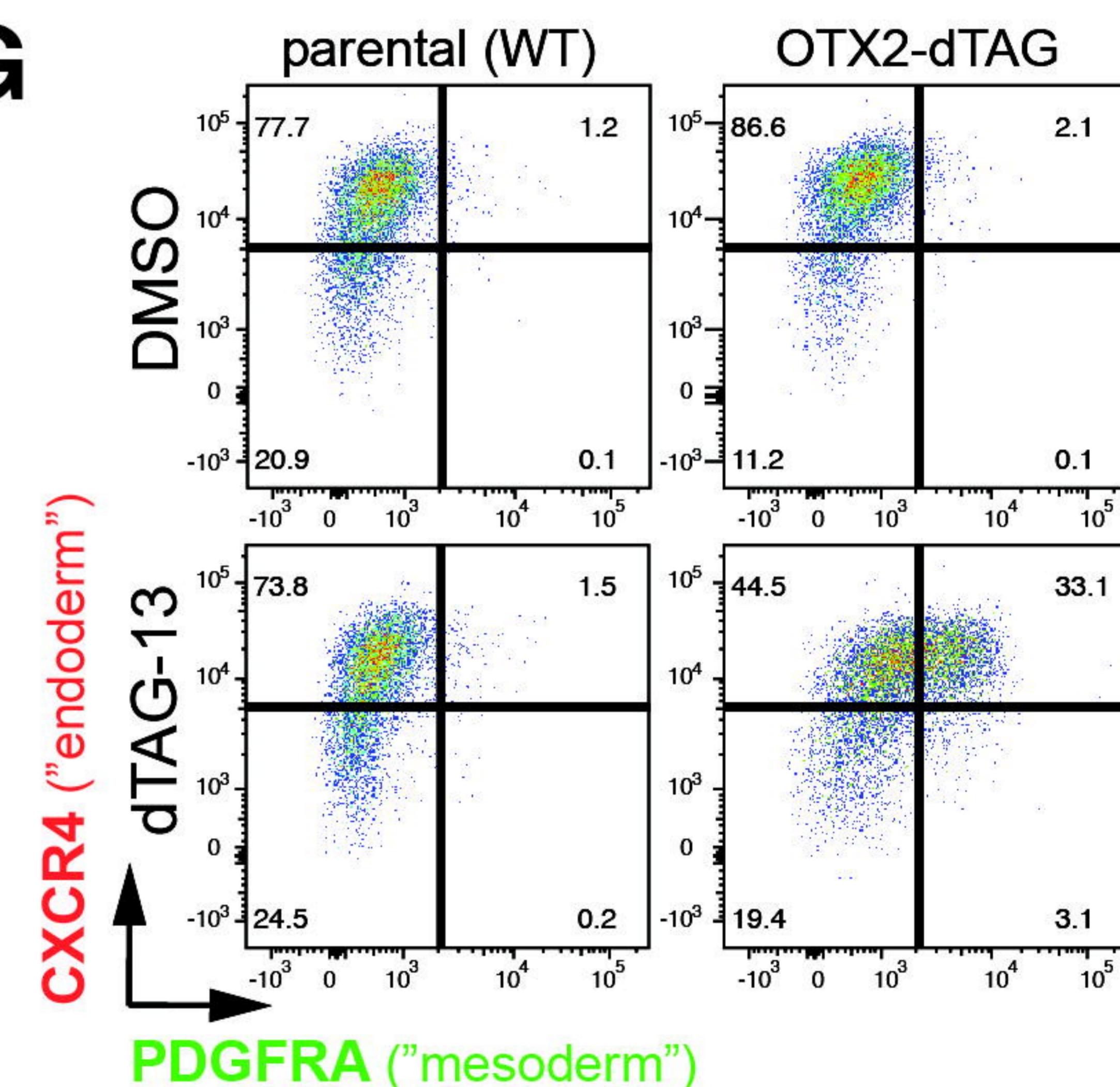
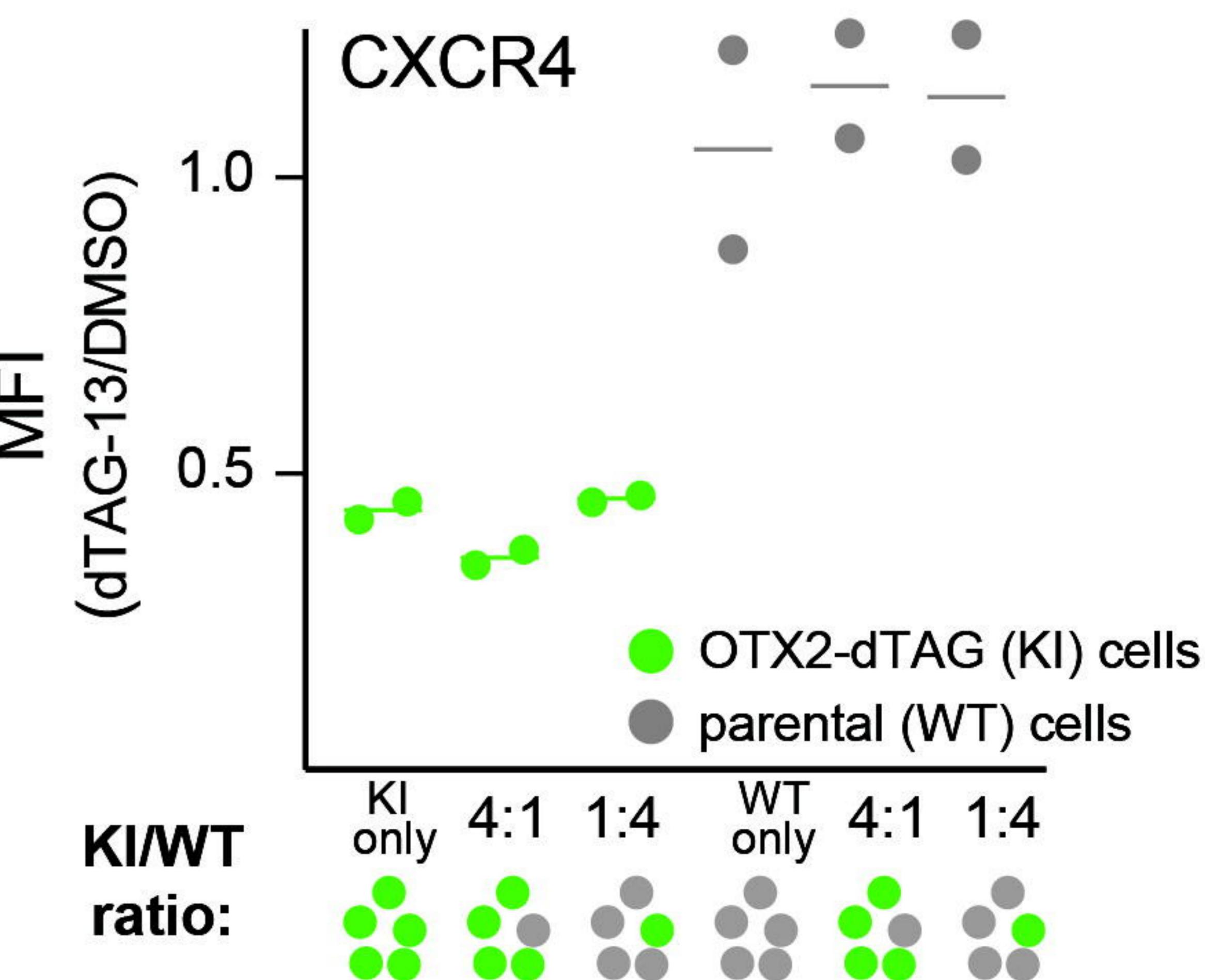

FIGURE 1

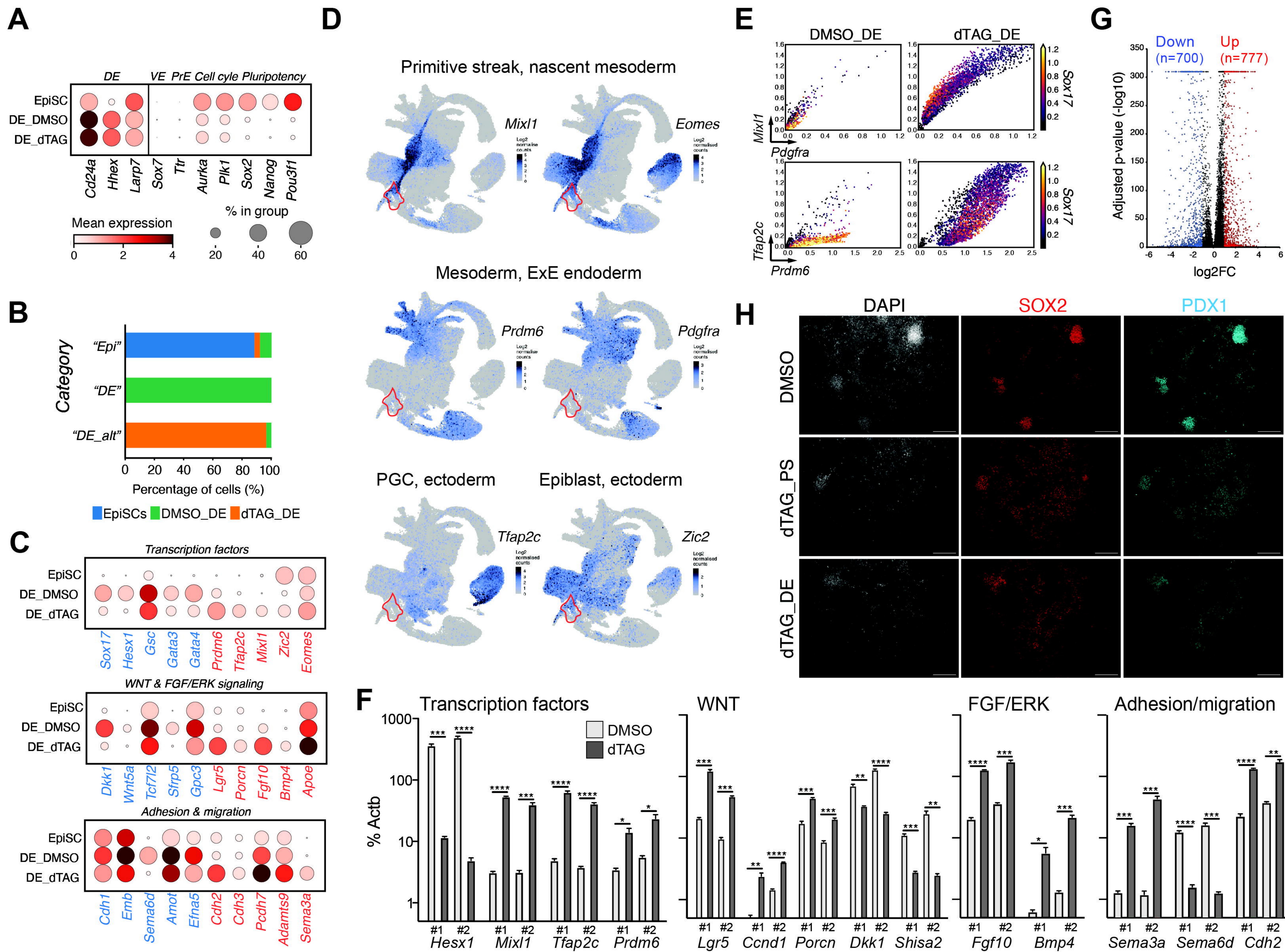
FIGURE 2

FIGURE 3








FIGURE 4












FIGURE 5

A


OTX2 (chr14:56,801,785)

B

C

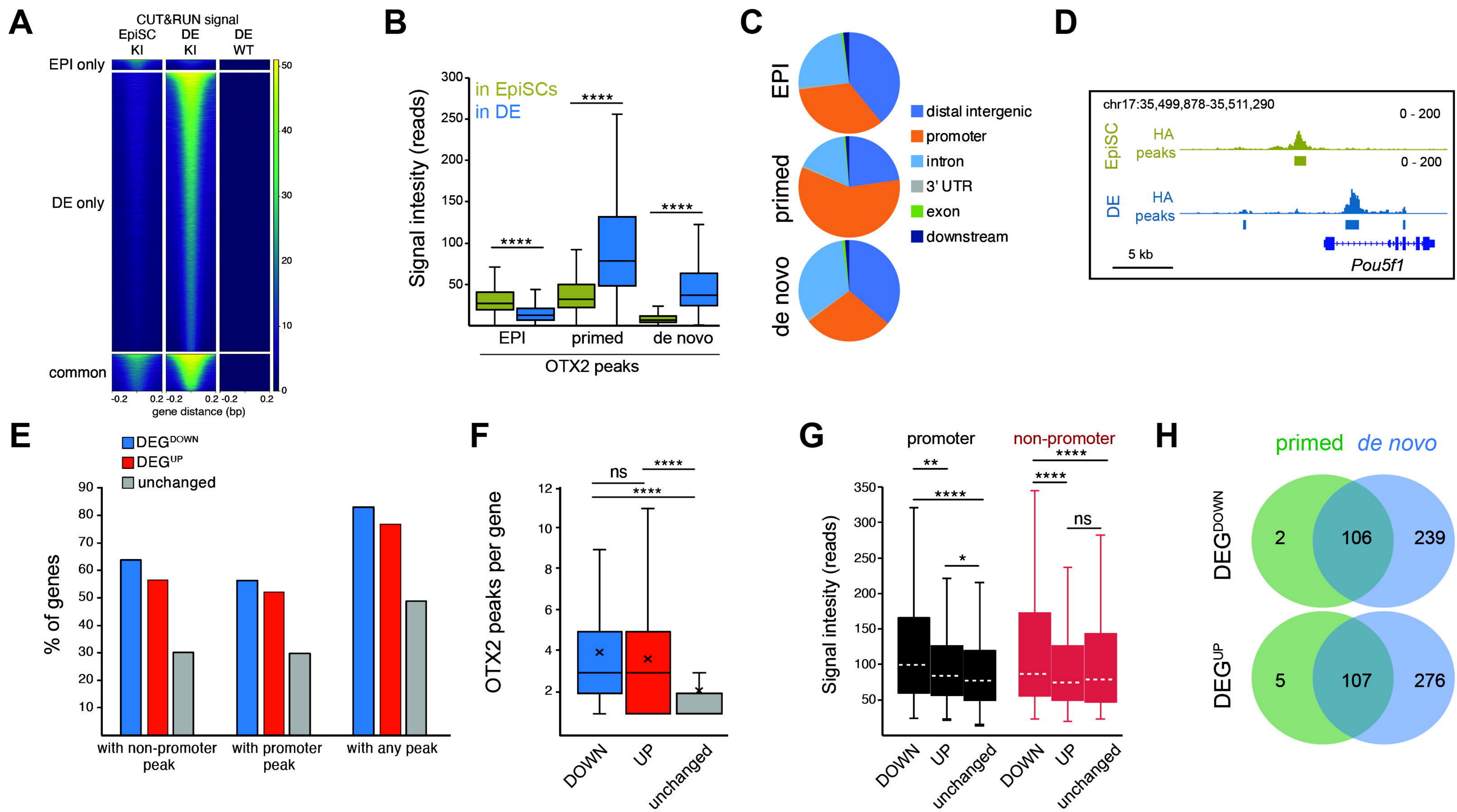
D

E

F

G

H


S FIGURE 1

A

B

C

D

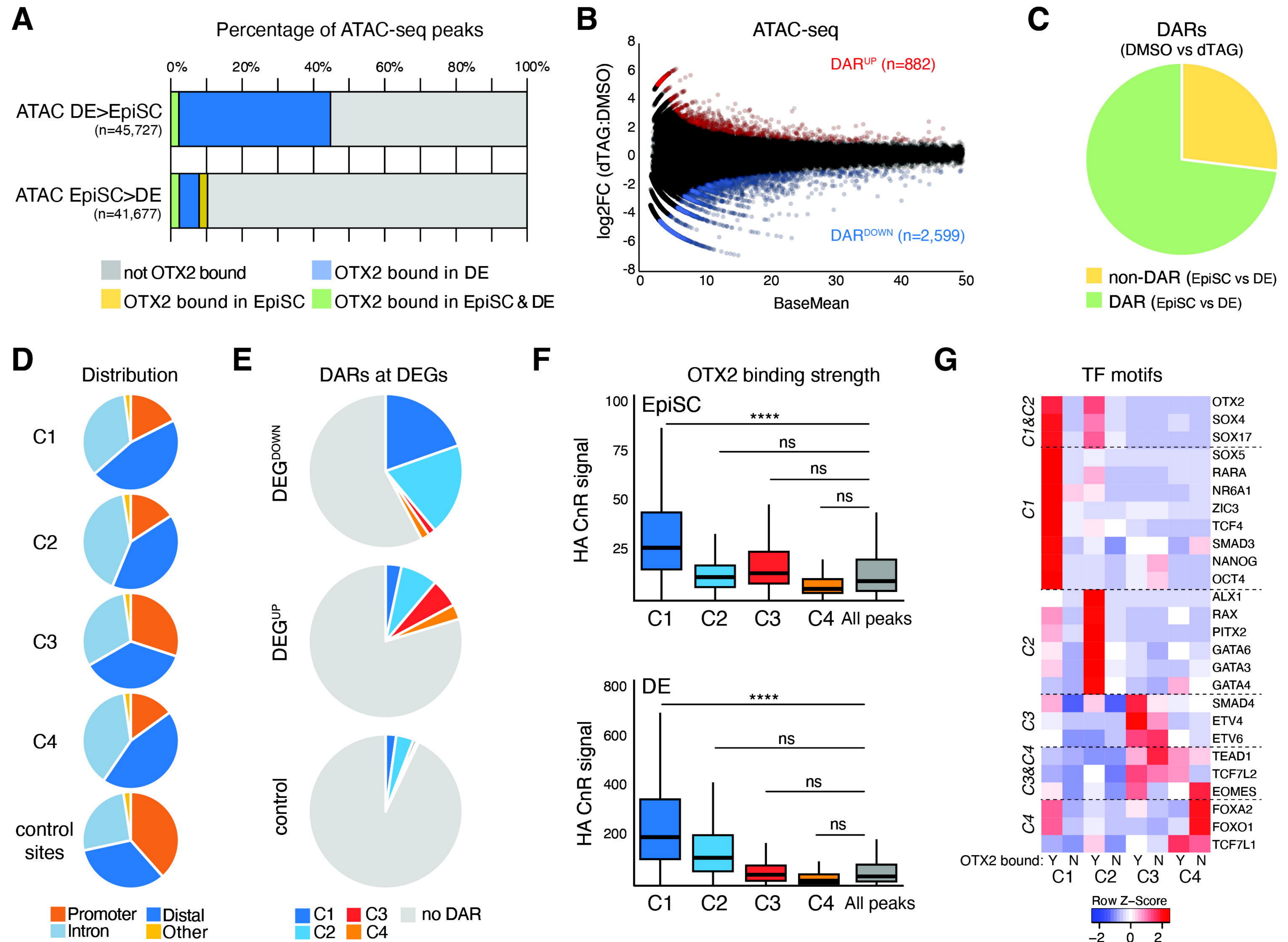
E

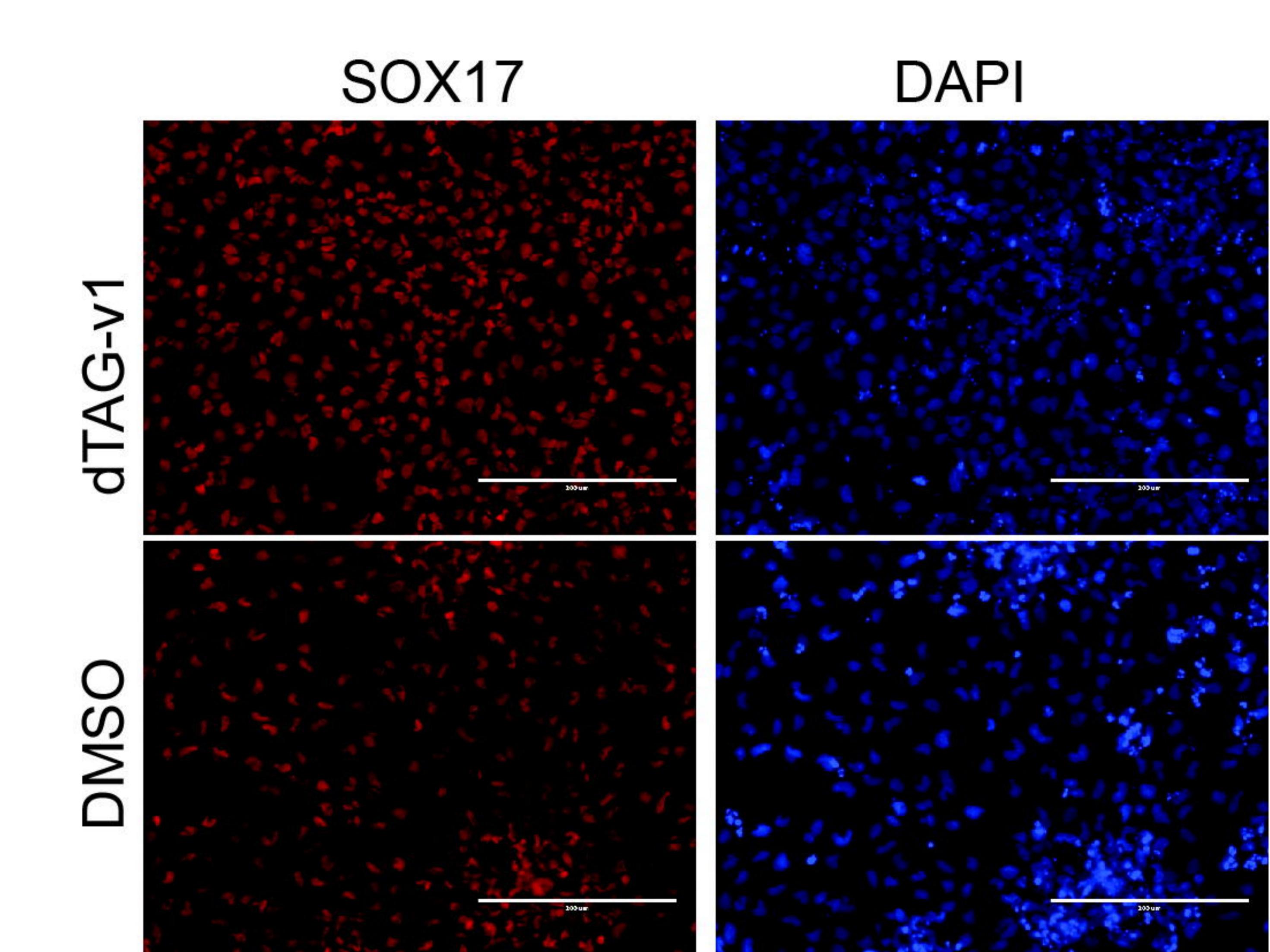
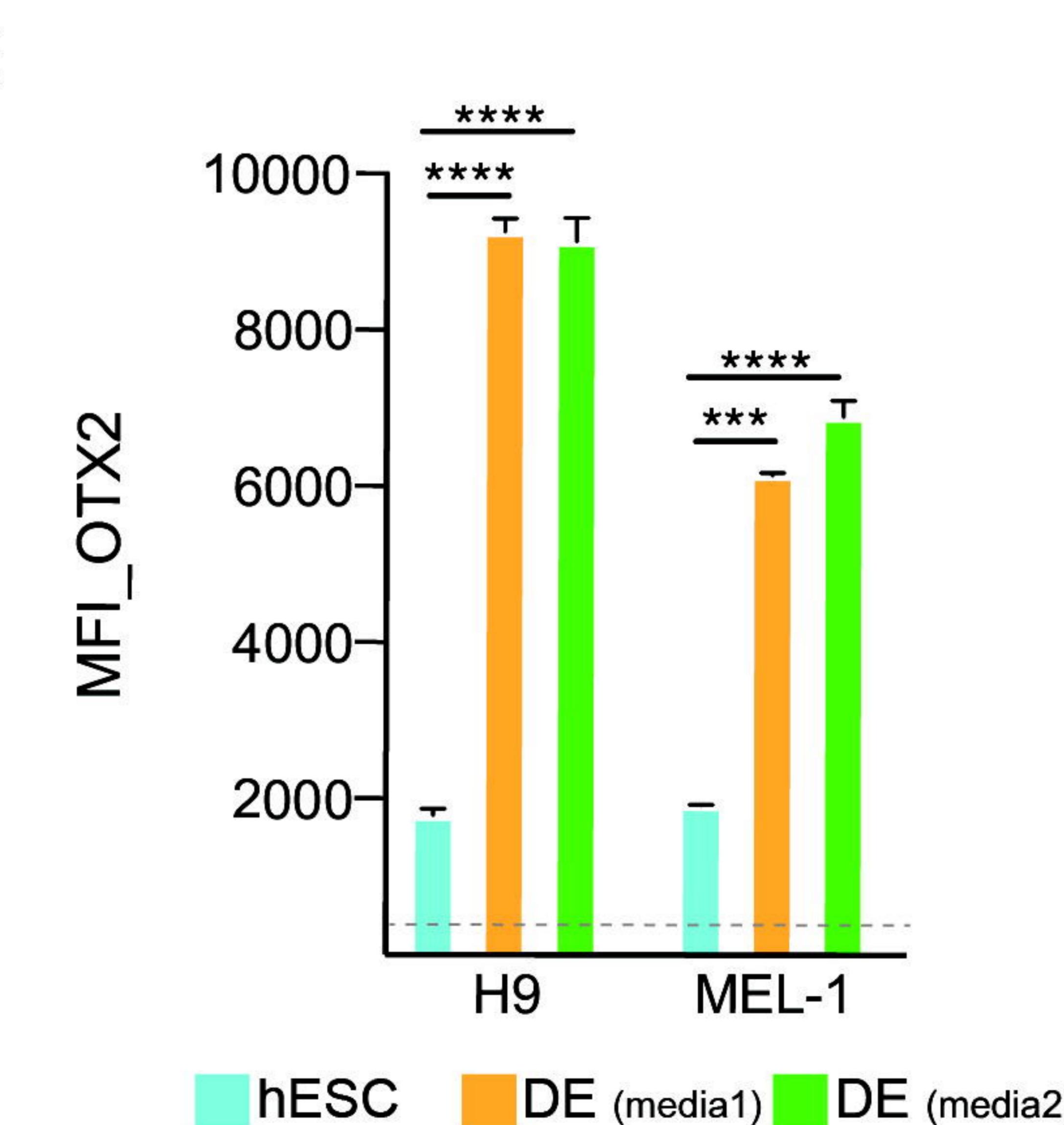
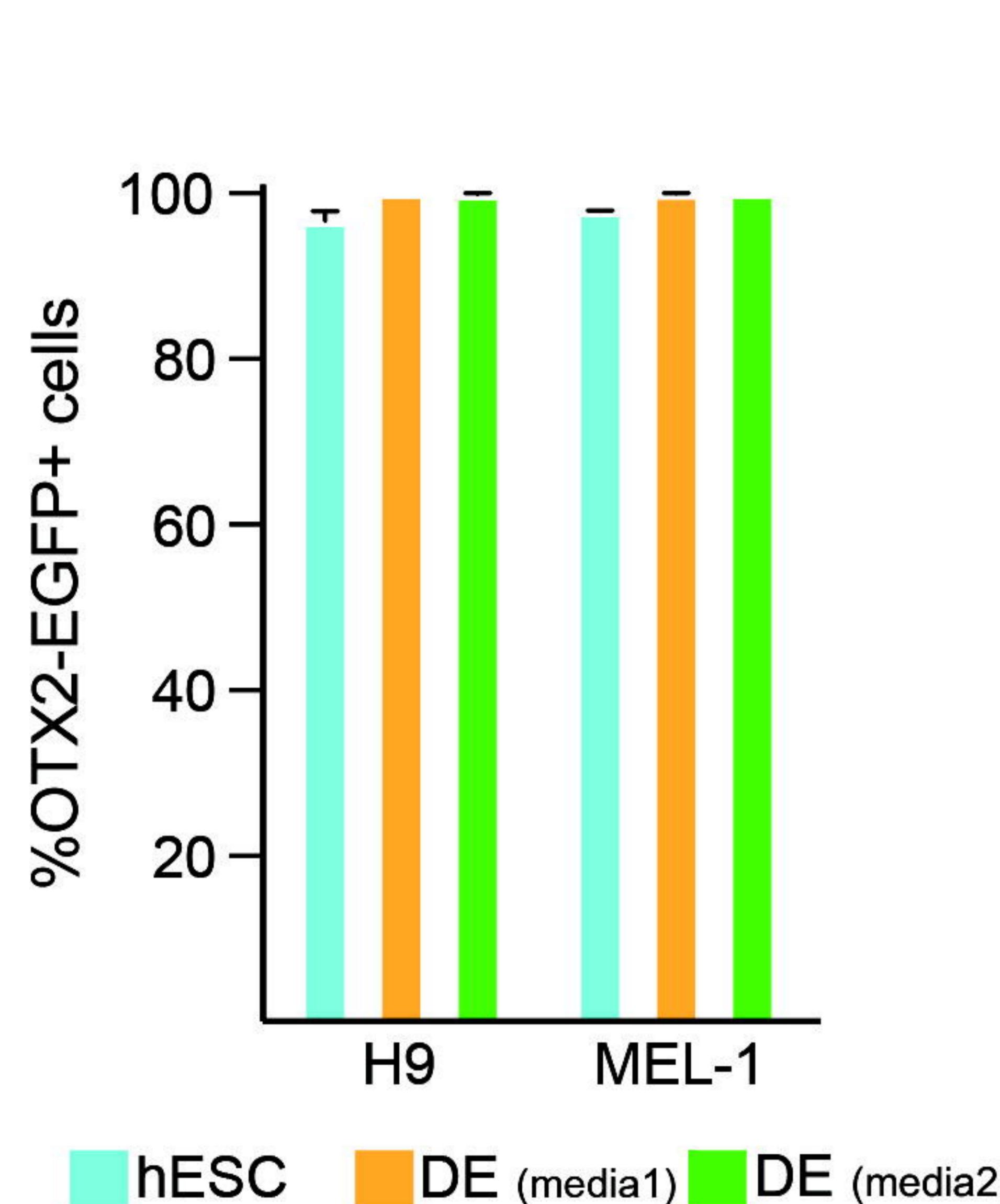
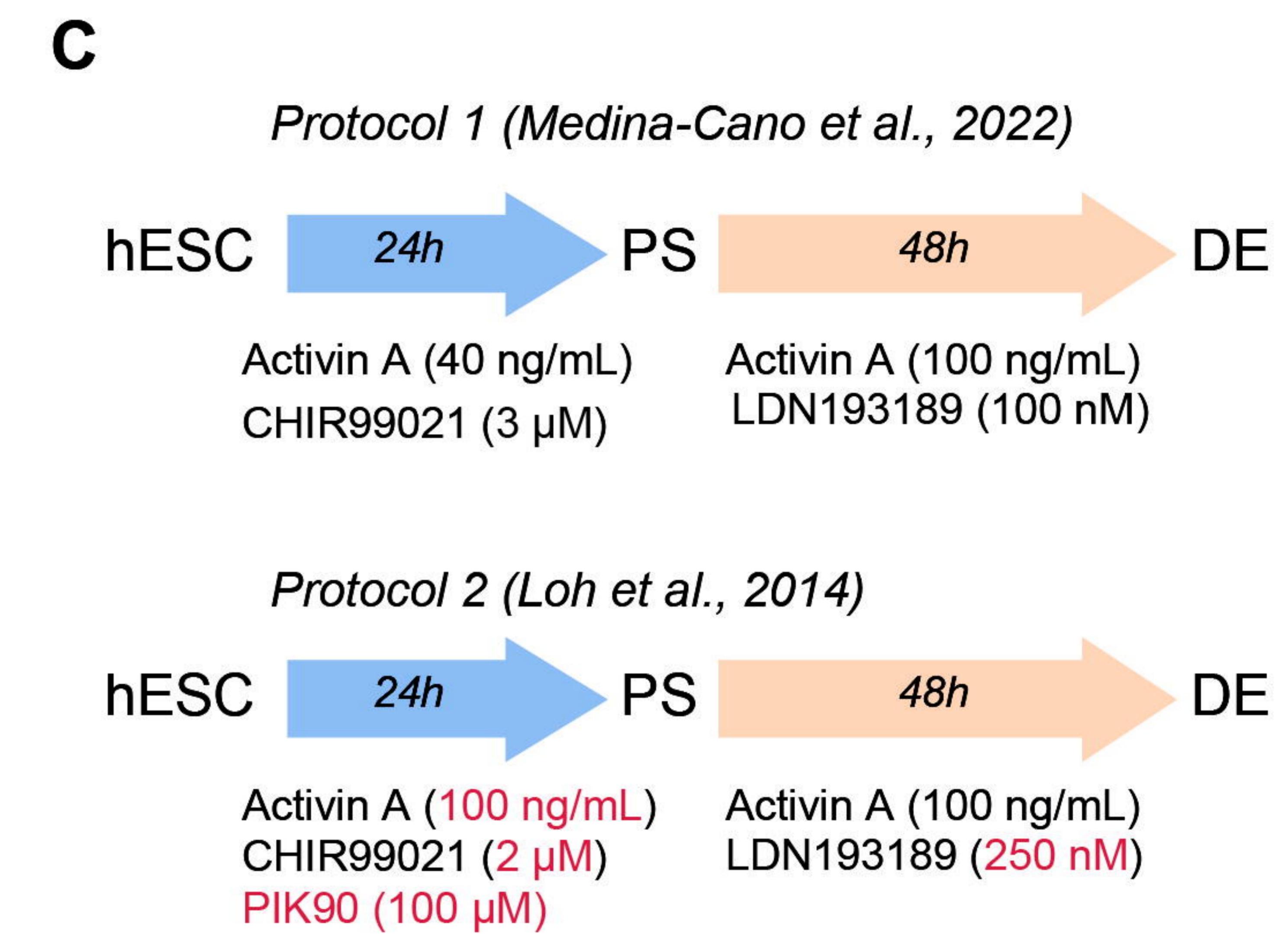
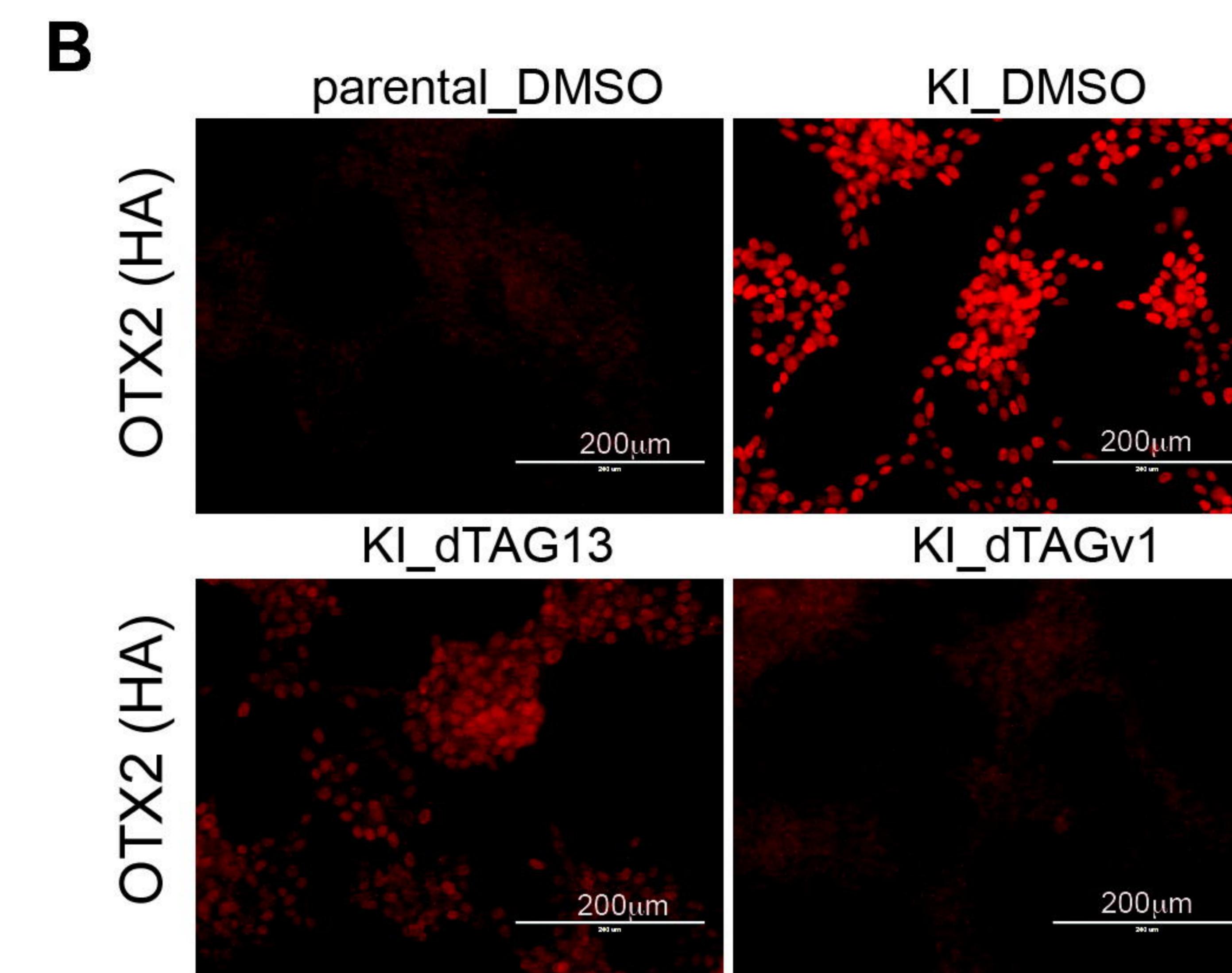
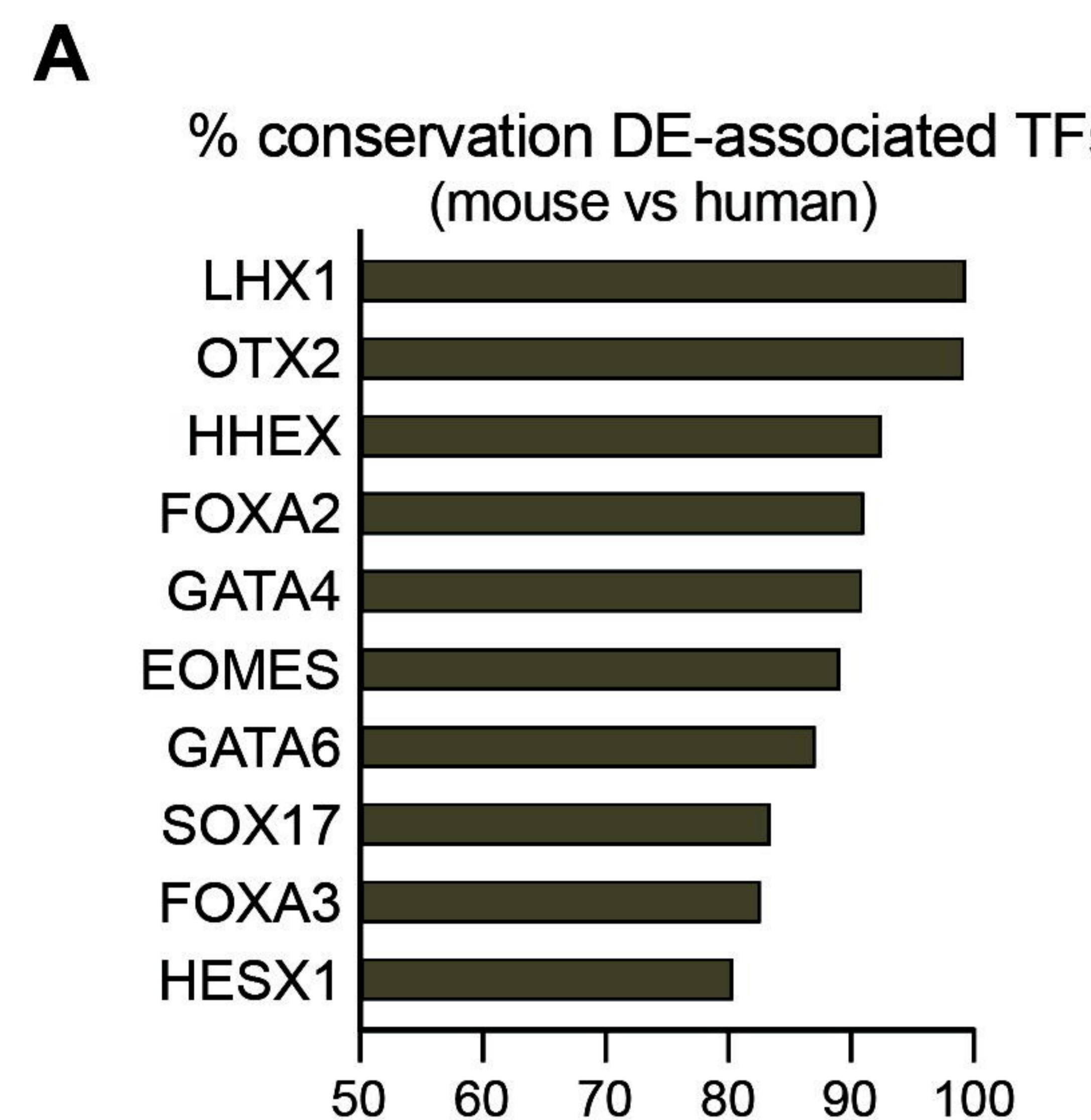
F

H

G

I


S FIGURE 2







S FIGURE 3

S₁ FIGURE 4

S FIGURE 5

