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Abstract Humans tend to repeat past actions due to rewarding outcomes. Recent
computational models propose that the probability of selecting a specific action is also, in part,
based on how often this action was selected before, independent of previous outcomes or
reward. However, these new models so far lack empirical support. Here, we present evidence of
a repetition bias using a novel sequential decision-making task and computational modeling to
reveal the influence of choice frequency on human value-based choices. Specifically, we find that
value-based decisions can be best explained by concurrent influence of both goal-directed
reward seeking and a repetition bias. We also show that participants differ substantially in their
repetition bias strength, and relate these measures to task performance. The new task enables a
novel way to measure the influence of choice repetition on decision-making. These findings can
serve as a basis for further experimental studies on the interplay between rewards and choice

history in human decision-making.

Introduction
Over a century ago, Thorndike (1911) proposed the law of effect, which states that actions that
lead to rewarding outcomes are more likely to be repeated. The law of effect gained widespread
recognition and is considered an important foundation for the development of early operant con-
ditioning (Skinner, 1963) and modern-day reinforcement learning (Sutton and Barto, 2018). What
is less known is that Thorndike additionally stated the /aw of exercise, also known as the law of use,
saying that humans tend to repeat previous actions regardless of reward (Thorndike, 1911).
Consider, for instance, the morning routine that many of us follow, e.g. we start with a cup of
tea or coffee, take a shower, have breakfast, brush our teeth, and get ready for work. Although

such action sequences may be learned only by goal-directed reward seeking (law of effect), such
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learning might also be based on Thorndike’s law of exercise. Indirect empirical evidence for the
law of exercise, i.e. a measurable repetition bias, stems from questionnaire studies on everyday
behavior (Ouellette and Wood, 1998; Hagger et al., 2002; Wood et al., 2002; Neal et al., 2006; Ver-
planken, 2006; McCloskey and Johnson, 2019), showing that participants reliably repeat behavior
in a context-dependent manner, for example a specific morning routine or the mode of transporta-
tion to work.

Experimental evidence, across disciplines, shows that repetition affects human decision making
and learning. It improves language learning (Lynch and Maclean, 2000), likely through increased
word-familiarity (Perea et al., 2016) and better learning of multiword expressions (Majuddin et al.,
2021). It also modulates learning of motor and cognitive skills (Huang et al., 2011; Magallon et al.,
2016; Reinkensmeyer et al., 2016; Wolpert et al., 2011; Spampinato and Celnik, 2021) and affects
memory retrieval, judgement (Scarborough et al., 1977; Hintzman, 1976) and working memory pro-
cesses (Oberauer et al., 2015), demonstrating its broad influence on cognitive functions. Effects
of repetition have also been studied under specific experimental conditions, suggesting their inde-
pendence from direct reward. Here, repetition significantly affects perceptual decision making by
accelerating response times for ambiguous stimuli (Akaishi et al., 20714). Similarly, repetition can
alter preferences in value-based decision-making processes (Nebe et al., 2024), suggesting that
the influence of repetition extends beyond the direct anticipation or receipt of reward, challeng-
ing standard views on the effect of reward on decision making and learning. Most importantly,
repetitions are seen as a key element of habit formation (Wood and Riinger, 2016; Watson et al.,
2022).

Over the last decade, the study of habitual vs. goal-directed responses have been enriched
through a broad range of studies using devaluation tasks, extinction tests or more complex cog-
nitive tasks, like the Wisconsin card-sorting task (Wilson and Niv, 2012) or the two-step task (Daw
et al., 2011). These studies helped broaden our understanding of whether an action is outcome-
oriented via a probabilistic map of the environment or rather driven by obtaining past reward in
the same situation, as for example might be the reason for an insensitivity to devaluation. For
instance, for the two-step task, behavior is described by using a mixture of model-based (MB) and
model-free (MF) reinforcement learning (RL). Here, the MB controller learns a probabilistic action-
outcome mapping, i.e. a more sophisticated goal-directed higher order cognitive process, while
the MF controller is governed by simpler stimulus-response associations (Daw et al., 2005, 2011).
This approach provided many insights on how humans learn and perform tasks (Daw et al., 2011;
Wunderlich et al., 2012; McDannald et al., 2012; Doll et al., 2015, 2016; Gldscher et al., 2010), and
also highlighted how impairments in model-based planning can be linked to psychiatric disease
(Gillan and Robbins, 2014; Gillan et al., 2016; Seow et al., 2021; Wyckmans et al., 2019; Voon et al.,
2015). However, it is still debated whether the reward-driven nature of model-free RL aligns with
the concept of habits, which is not related to immediate reward, but to mere repetition of actions
(Wood and Riinger, 2016; Watson et al., 2022). Two recent studies (Miller et al., 2019; Schwadbel
et al., 2021) proposed a different mechanism. In these studies, based on simulations, behavior
was explained by the interaction of two components. First, as usual, goal-directed behavior was

explained by a model-based planner. Second, the novel proposal was to model the effect of a
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repetition bias, following Thorndike's law of exercise, based on past choice counts alone, without
regard to outcome or reward. This perspective is also related to minimizing the complexity of an
action policy over time (Gershman, 2020).

Here, we followed this theoretical lead and assessed empirically, in human participants (n = 70),
the effect of such a repetition bias on behavior. We used a computational model to disambiguate
the effects due to repetition bias from effects due to goal-directed behavior driven by reward max-
imization. To capture both type of effects, we developed a novel Y-navigation task (Y-NAT) in which
participants perform sequences of movements in a 5x5 grid world to collect a trial-specific number
of points. The task was designed to fulfill the following three main objectives: First, trial-specific
points establish a clear goal that will prompt goal-directed behavior in participants. Second, the
combination of a relatively tight deadline and the requirement to plan four moves ahead (see Mate-
rials and Methods) challenges participants in their capacity to act in a purely goal-directed fashion.
Third, participants were informed about a so-called default action sequence (DAS), providing them
with a less complex go-to strategy, which induces repetition of the same sequence over trials. The
Y-NAT therefore enabled us to test (1) whether a repetition bias develops over time, (2) what its ef-
fects are on task behavior and (3) what the link is between individual differences in repetition bias
and overall task-performance. Data was analyzed using both standard behavioral analyses and
Bayesian model-based analyses. We used Bayesian model comparison to test several alternative

models, with or without repetition bias.

Results
We created a sequential decision-making task, the Y-navigation task (Y-NAT), to show the repetition
bias (see Materials and Methods). For this grid-world task, participants had to collect points with
four moves within a time limit of 6s and match a trial-specific goal sum of points as closely as
possible (see Figure 1). Participants were required to complete 16 blocks, each comprising 20
trials, resulting in a total of 320 trials.

In order to ensure the frequent repetition of at least one sequence of actions, a default action
sequence (DAS) was highlighted. Using the DAS resulted in the highest expected reward in less
than half of the trials (43.75%), with the lowest expected reward of the DAS being about half of the

maximum reward. Furthermore, in half of the blocks, a probabilistic bonus could be earned when

Start Response Phase Feedback
Move 1 Move 2 Move 3 Move 4

Goal: 40 Goal: 40 Goal: 40 Goal: 40 Goal: 40 Goal: 40

Points: 0 ....: Points: 31 ....: Points: 69 ....: Points: 99 ....: Points: 47 .‘..:
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Figure 1. lllustration of a single task trial. At trial start, the goal, the fields of the DAS and the mean points of the DAS were shown on the

screen for one second. During the subsequent response phase of up to six seconds, four moves had to be performed. During the feedback

phase of 4 seconds at the end of each trial the reward was communicated.
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Table 1. Descriptive statistics of performance measures for all trials and halves of the experiment

All Trials First Half Second Half t-Test
M SD M SD M SD t p d
p(DAS) 0.54 0.19 0.53 0.20 0.55 0.19 -1.62 .055 .10
Reward 80.69 5.99 79.58 6.66 81.80 596 -4.58 <.001 .35
RT (ms) 1677.09 398.72 1820.84 450.34 153560 390.85 8.76 <.001 .68
Time Outs 4.74 3.70 3.1 2.56 1.63 1.88 4.86 <.001 .66

Means over all participants of p(DAS), reward per trial, reaction times and the number of time outs,
separately for all trials, first and second half of the experiment. The one-sided #-tests tested for
significant differences between first and second half. For p(DAS) and reward we tested if the mean
of the first half is smaller than the mean of the second half. For RT and time outs, we tested if the
means of the first half are greater than the means of the second half. p(DAS): proportion of DAS
choices, reward: mean reward per trial, RT: reaction time, DAS: default action sequence, M: mean,

S D: standard deviation, t: t-statistic, p: p-value, d: Cohen's 4.

using the DAS.
In what follows we first present the results from standard behavioral analyses based on sum-

mary statistics and then move on to a model-based analysis.

Behavioral Analysis

Our first approach was to find evidence of a repetition bias using inference statistics. For our
task, we expected that a repetition bias manifests in the following ways: (1) an increase, over the
course of the experiment, in the usage of the most frequently used sequence of actions; (2) an
increase, over the course of the experiment, in the selection of the most frequently used sequence
of actions in trials where this sequence of actions did not have the highest expected reward; (3)
an increase, over the course of the experiment, to perform parts of the most frequently used
sequence of actions, and (4) a decrease, over the course of the experiment, in the number of
different sequences of actions being used.

We determined the proportion of trials in which the default action sequence (DAS) was exe-
cuted, p(DAS), for each participant. As expected, the DAS was used in more than half of the trials
(p(DAS) = .54,SD = .19), and 66 participants (94%) used the proposed DAS most frequently (see
Table 1). We found the expected difference in the proportion of DAS choices between the bonus
(p(DAS) = .57,5SD = .19) and the no bonus condition (p(DAS) = .52, SD = .19), p < .001,d = .26 (see
Appendix Table 1 for all descriptive statistics depending on the bonus condition).

We focused all subsequent analyses on the DAS because participants used the DAS more fre-
quently than expected when considering expected rewards, and the DAS was used most frequently
by nearly all of the participants. We conducted three statistical analyses to test for a repetition bias:
we tested for an increased usage of this sequence over time, an increased usage of this sequence

even when the sequence did not yield the highest expected reward over time, and an increased us-
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Figure 2. Default action sequence (DAS) choice behavior. (A) Mean proportional use of default action
sequence (DAS) over the two halves (early/late) and four segments of the experiment. (B) Mean proportional
use of default action sequence (DAS) depending on if the DAS was one of the sequences with the highest
expected reward (optimal), separated by halves and by the four segments. (C) Mean proportional use of
partial DAS use for non-DAS trials depending on halves and the four segments of the experiment. Black lines

represent means over all participants. Error bars represent standard errors (SE).

age of parts of the sequence, when the full sequence was not performed. Furthermore, we tested
for a decrease of behavioral variability as an indicator of a repetition bias. We describe the results

of these analyses in the following sections.

Increase of DAS usage

We assessed whether there was an increase in DAS usage throughout the experiment. We re-
peated the differences between the trial-specific goals and the expected points of the DAS across
halves and four segments (see Figure 8D), and consequently expected rewards for the DAS to be
repeated across the halves and the segments. The expected points for the DAS were communi-
cated at the beginning of each trial and participants were able to calculate the expected reward for
the DAS. Therefore, participants’ proportion of DAS choices should not change if they were guided
only by expected rewards. However, if a repetition bias influenced participants’ choices, the DAS
usage should have increased with time.

We compared the average proportion of DAS choices of all participants between the first and
second half of the experiment, and over the four segments (comprising four subsequent blocks,
see also Figure 8D in Materials and Methods). During the first half, over all participants, the DAS
was used in 53.3% (SD = 19.7%) of the trials, whereas in the second half the DAS was used in
55.2% (S D = 18.8) of the trials (see Figure 2A). A one-sided r-test for related samples based on the
individual differences of all participants only showed a non-significant difference, #(69) = —1.62, p =
.055,d = .10. Similarly, there was only a non-significant increase of DAS usage across the four

segments, repeated measures ANOVA with F(3,207) = 1.52,p = 21,5, = .003, see Figure 2A.

Increase in DAS usage in trials where DAS is not optimal
Although we did not find a significant increase in DAS usage over the course of the experiment,
a repetition bias for the DAS should increase the probability of selecting the DAS irrespective of

the expected reward of the DAS. We expected this because at the beginning of each block the DAS
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was an optimal choice (see Materials and Methods and Figure 8B) participants were incentivized
to use the DAS in the first trials of each block; this incentivized repetition of the DAS would bias
participants towards choosing the DAS even when it did not yield the highest expected reward.
However, the repetition bias could also decrease the probability to switch back to the DAS when
the DAS is optimal later during the block. These two opposing effects together could explain why
we found no significant overall increase in DAS usage.

To find this effect, we split up trials based on whether the DAS was one of the available se-
quences of actions with the highest expected reward, or not. We determined a use of DAS as
optimal if the absolute difference between the points obtained by the DAS and the goal was < 5
points, because the difference between two adjacent colors was 10 points (see Materials and Meth-
ods). We conducted a repeated measures ANOVA with the proportion of DAS choices as dependent
variable and the factors (1) halves of the experiment, and (2) DAS optimality. The main effect of
expected reward was significant, F(1,69) = 293.89,p < .OOl,né = 47. The main effect experimental
halves was not significant, F(1,69) = 3.88,p = .053,;1é = .003 (see Figure 2B). We repeated this anal-
ysis with four segments instead of halves of the experiment as a factor. Again, the main effect of
expected reward was significant, F(1,69) = 232.15, p < .001, né = .45 and the main effect of segment
was not significant, F(3,207) =2.36,p = .077, né =.008 (see Figure 2B).

Taken together, we did not find evidence for an increase in DAS use for trials where the DAS
was not one of the sequences of actions with the highest expected reward. Hence, the potential
repetition bias, established through the repeated use of the DAS in trials where the DAS is one of
the sequences of actions with the highest reward, did not lead to an increase of DAS use at trials

where the DAS did not have the highest expected reward.

Increase in DAS parts

As participants had to execute a sequence of four moves in each trial, a repetition bias may have ex-
pressed itself by an increase of the probability of repeating at least the first move(s) of a sequence
of actions. Due to the small trial-wise changes of the goals (see Figure 8B), a possible strategy for
participants would be to repeat the first move(s) of a sequence of actions but deviate from this
sequence after these initial move(s), depending on the goal points.

We categorized the used sequences of actions into three categories: a DAS trial (when the full
DAS was executed), a partial DAS trial (trial with a deviation from the DAS), or a DAS-independent
trial (a completely different sequence). Trials that were categorized as partial DAS trials were de-
fined by selecting at least the first move in accordance with the DAS, but not using the complete
DAS.

To test for an increase in repeating the first move(s) of the DAS or the complete DAS, we com-
pared the proportion of combined DAS and partial DAS trials to DAS independent trials, again with
factor halves or segments. A one-sided t-test for related samples revealed that the proportion of
combined DAS and partial DAS trials significantly increased from the first half of the experiment
to the second half, 1(69) = —6.46, p < .0001,d = .49 (see Figure 2C). Similarly, a repeated measures
ANOVA over segments showed a significant increase of combined DAS and partial DAS use over

time, F(3,207) = 19.53,p < .001,;1(2; =.006 (see Figure 2C).
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Figure 3. Decreasing behavioral variability of different sequences used. (A) Mean number of used
different sequences of actions over the two halves (early/late) and four segments of the experiment. Error
bars represent standard errors (SE). (B) Correlation between the difference of used sequences and the
difference of mean reward per trial between the first and the second half. Each point represents one
participant. The thick solid line represents linear regression model fitted to the data.

Decrease in behavioral variability

A repetition bias might also lead to a higher probability of repeating performed sequences of ac-
tions other than the DAS. This would lead to a lower number of different action sequences being
performed in later stages of the experiment. To test this, we analyzed the number of used dif-
ferent sequences of actions between the halves and the four segments of the experiment. The
mean number of used sequences of actions showed a small significant decrease from the first
(16.87, SD = 5.94) to the second half (15.30, SD = 5.58), #(69) = 3.53,p < .001,d = .27 (see Figure 3A).
A repeated measures ANOVA with segments as factor showed a significant effect, F(3,207) =
13.88,p < .001,5 = .039 (see Figure 3B). Here the number of used sequences decreased signifi-
cantly from the first to the second segment, but was stable throughout the following segments.

A decrease in behavioral variability could also reflect learning. Maybe participants selected
some sequences of actions with very low rewards once during the first half of the experiment, but
learned how to avoid selecting sequences with low rewards. To assess if this decrease in behav-
ioral variability was caused by learning to select rewarding sequences more easily, we calculated
the correlation between the difference of used sequences and the difference of mean reward per
trial between the first and the second half. A negative correlation would indicate that participants
who performed fewer sequences improved their ability to find rewarding sequences. This correla-
tion showed a significant relationship in the expected direction, r = —.38, p = .001 (see Figure 3C).
We interpret this as evidence that the decrease in behavioral variability was probably caused by
learning to select more rewarding sequences, over the course of the experiment.

In summary, we found only weak evidence for a repetition bias with summary statistics. Par-
ticipants used the DAS more frequently than expected, but we only found hints for a repetition
bias when also considering partial DAS choices or by analyzing the development of the number
of used sequences. Conducting a similar analysis on the second most used sequence of actions
or a Chi-square test of independence with all sequences of actions would not be meaningful: In

contrast to the DAS, the expected rewards for all other sequences of actions differed between the
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first and second half of the experiment due to the grid layout changes between blocks. Hence, a
sequence of actions that was frequently used during the first half of the experiment may generate
very low rewards in the second half. As the repetition bias only increases the probability to repeat
actions, we expect that action selection is mostly still guided by expected rewards, and participants
should prefer to switch to action sequences with higher rewards (de Wit et al., 2018; Watson and
De Wit, 2018). Therefore, to test for a repetition bias, the analysis should also take into account
expected rewards. For this reason, we next turn to a model-based analysis, in which we consider si-
multaneously the repetition of action sequences and the expected rewards as effects on observed

choices.

Model-Based Analysis

A potential issue with our analyses above is the limited focus on behavioural measures for one
specific sequence of actions, e.g. how many times the DAS was used in the first and second half of
the experiment, thereby not considering expected rewards and other action sequences.

To consider all sequences of actions, and expected reward and repetition bias simultaneously,
we used an adapted version of the prior-based control model (Schwaébel et al., 2021), which we call
here the 'expected value with proxy reward and repetition bias model’ (EVPRM). For the full model
specification and details, see Materials and Methods and Figure 9.

This model calculates the probability of selecting an action based on the balance of two compo-
nents: the probability to repeat actions, and expected rewards. Crucially, the influence of repeated
behavior is modeled by counting the number of times each action sequence has been used in the
pasty,. This component is weighted by a free model parameter a;,;, that determines the strength of
the repetition bias (see Expected value with proxy and repetition bias model (EVPRM)). Using this
model, the focus is not restricted to one sequence of actions and the repetition bias parameter
quantifies the influence of past behavior on action selection for all possible sequences of actions.

Moreover, the EVPRM incorporates the influence of expected rewards of all sequences of ac-
tions on action selection. Like past behavior, expected rewards are weighted by a free parameter g
that quantifies the individual precision on expected rewards. A high precision leads to pronounced
probabilities and a stronger influence of expected rewards on action selection, while a low preci-
sion leads to more uniformly distributed probabilities and lower influence of expected rewards on
action selection.

As the influence of expected reward and past behavior is modeled by two different parameters,
a;,i and B, we can disambiguate between effects on behavior by a low precision on expected re-
wards and effects on behavior driven by a strong repetition bias. Crucially, as we will show below
this makes it possible to explain behavior that is both influenced by the current expected rewards
and by past behavior.

To test whether a repetition bias is required at all to explain the behavioral data, we considered
three alternative models that do not include an explicit repetition term. First, we used the expected
value model (EVM), which posits that participants know the exact expected rewards and performed
actions to solely maximize the expected rewards. However, as explained in the Methods section,

this model would require infeasible computations made by participants as they perform the task.

8 of 33


https://doi.org/10.1101/2024.05.30.596605
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.30.596605; this version posted May 31, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

280

available under aCC-BY-NC-ND 4.0 International license.

Table 2. Results of model comparison

Model LooIC SE pLOOIC dLOOIC dSE BestFit
EVPRM 69,942.82 825.94 810.92 0.00 0.00 27
EVPBM 73,285.86 983.73 1,054.58 3,343.05 382.35 15
EVPM 74,301.96 1,018.95 772.52 4,359.14 421.93 28
EVM 162,308.58 1,355.02 371.92 92,365.76 1,319.67 0

EVPRM: expected value with proxy and repetition bias model; EVPBM: Expected value with proxy
and default bias model; EVPM: expected value with proxy model; EVM: expected value model;
LOOIC: leave-one-out information criterion (lower values indicate higher predictive accuracy); SE:
standard error of LOOIC; pLOOIC: effective number of parameters penalty; dLOOIC: LOOIC
difference relative to the model with highest predictive accuracy, i.e. lowest LOOIC value; dSE:
standard error of d LOOIC based on point-wise estimates; Best Fit: number of participants whose

behavior was best explained by the model.

Second, we used a model that is based on expected reward structure only. For this expected value
with proxy model (EVPM), the reward is known for those sequences that have been chosen before,
but for all others an approximated value R, is used, which we assume participants estimated based
on task instructions and training. Third, we considered the possibility that participants prefer the
DAS based on the initial training and instructions. To model this, we used an extension of the EVPM,
the expected value with proxy and default bias model (EVPBM), which has a constant bias in favor
of the DAS to account for the observed high probability of DAS choices in our data. For details on

the models, see Materials and Methods.

Model Comparison

We calculated the predictive accuracy of the four cognitive models (EVPRM, EVM, EVPM, EVPBM)
at the group level. We used the leave-one-out information criterion (LOOIC) (Vehtari et al., 2017)
that evaluates model fit but also penalizes for model complexity (see Materials and Methods for
details). Lower LOOIC values indicate a higher predictive accuracy, i.e., a lower difference between
model predictions and observed data. We found that the EVPRM, the model including learning
of repetition biases, showed the highest predictive accuracy (LOOIC = 69,942.82, SE = 825.94)
compared to the EVPBM (LOOIC = 73,285.86, SE = 983.73), the EVPM (LOOIC = 74,301.96, SE =
1,018.95), and the EVM (LOOIC = 162,308.58, SE = 1,355.02) (see Table 2. Because of its low
predictive accuracy we excluded the EVM from further analyses.

Following the guidelines from McElreath (2020) for interpreting LOOIC values, we found that
EVPRM described the data significantly better than the second-best model EVPBM: the standard
error of the LOOIC differences d SE between EVPRM and EVPBM was substantially smaller than
the difference in LOOIC between these models d LOOIC (see Table 2). To investigate how well the
models explained behavior at the participant level, we compared the LOOICs of the three remain-
ing candidate models for each participant individually.

First, we counted how many participants were fitted best by each of the three candidate models.
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Figure 4. Model comparison at participant level. Predictive accuracy indicated by LOOIC for each
participant and each model, with the three models for each participant aligned vertically. Participants are
grouped depending on which model showed the highest predictive accuracy.

This classification showed no clear pattern, as a considerable number of participants were equally
well explained by each of the models (see Table 2). Although EVPRM was the best model on the
group level, the behavior of only 27 out of 70 participants (ca. 39%) was described best by EVPRM.

As a next step, we looked at the individual LOOIC values of the three models (see Figure 4).
Here, most of the participants whose behavior was described best by EVPRM showed a difference
between the LOOICs of the candidate models, indicating that the EVPRM explained behavior better
than the alternative models. In contrast, the LOOICs of those participants whose behavior was best
described by the two alternative models did not show a clear difference in LOOICs. This indicates
that the three candidate models explained behavior equally well. As the participants fitted best by
EVPBM and EVPM had low repetition biases (see next section and Figure 5), the EVPRM and the
two alternative models are practically mathematically equivalent. We conclude that the EVPRM is
the best model for 27 of the participants and is as good as the other two models for the remaining
43 participants.

Next we assessed if participants best fitted by EVPRM are the participants with a strong repeti-
tion bias. To do this, we analyzed the distribution of the inferred parameter values of the EVPRM
and grouped participants based on the model that explained their behavior best (see Figure 5). As
expected, participants whose behavior was best explained by EVPRM showed the highest inferred
repetition bias strengths. Furthermore, participants whose behavior was best explained by EVPM
showed the highest inferred precision on expected rewards. The inferred parameter values of the
approximated reward did not differ between best model fits.

In what follows, we compare fitted model parameters with behavioral measures of perfor-
mance. Given that the EVPRM model has the best fit for 27 participants, and fits the remaining

participants as well as the other models, we limit our analyses to EVPRM fitted parameters.

Increase in DAS usage in participants fitted best with EVPRM
In our standard analyses above, we did not find a significant increase of DAS usage from the first to

the second half of the experiment over all participants. We repeated this analysis with only those
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Figure 5. Estimated parameter values of EVPRM partitioned by the model that explained participant
behavior best. Estimated value distribution for the three parameters of the EVPRM: (A) repetition bias A, (B)
precision on expected rewards g, and (C) approximated reward R,. Participants are partitioned according to
the model with the lowest LOOIC. Boxes represent the interquartile range (IQR). Horizontal lines inside
boxes represent medians. Whiskers represent the 1.5 IQR of the lower and upper quartile.

27 participants best fitted by the EVPRM. This group of participants showed a high repetition bias
(see Figure 5), and as a consequence, we expected a significant increase of using the DAS from the
first to the second half of the experiment for these participants. Indeed, the proportion of DAS
choices of these participants significantly increased from the first half (46.2%, SD = 24.9%) to the
second half (51.6%, S D = 26.1%) of the experiment, #(26) = —2.27,p = .02,d = .21.

Correlations between parameters of EVPRM
We analyzed the correlations between the parameter estimates between the three free model
parameters repetition bias h, precision on expected rewards g, and approximated reward R,.

As our model represents the influence of the repetition bias and expected rewards separately
we can investigate the correlation between these two parameters. We expected that participants
with a strong repetition bias h are potentially more guided by past behavior than by expected
rewards. Therefore, precision over expected rewards and repetition bias strength should show
a negative correlation. We found such a significant negative correlation between the precision
over expected rewards g and the repetition bias strength h, r = —.75,p < .001 (see Figure 6A). In
addition, we found a significant positive correlation between g and the approximated reward R,
r=.30,p = .01 (see Figure 6C).

One reason for a strong repetition bias might be a low approximated reward. Therefore, the
expectation of a low reward for unobserved sequences of actions could lead to stronger action
repetition if participants can find an alternative sequence with higher reward. Contrary to our pre-
diction, the approximated reward showed a positive correlation with the repetition bias strength,

but this correlation was not significant, r = .12, p = .30 (see Figure 6B).
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Figure 6. Participant-level correlations between estimated parameters of the EVPRM. (A) Correlation
between repetition bias strength h and precision over expected rewards g. (B) Correlation between repetition
bias strength 4 and approximated reward R,. (C) Correlation between precision over expected rewards § and
approximated reward R,,. Thick solid lines represent linear regression model fitted to the data. Thin solid
lines represent standard deviations of individual fitted parameter values (SD).

Correlations between model parameters of EVPRM with performance measures

As a further intuitive validation measure, we also tested for correlations between the model pa-
rameters and performance measures. We expected that participants with a higher approximated
reward R, would show a decreased reliance on the DAS, due to an expectation of higher rewards for
alternative sequences of action. These participants should deviate from the DAS more frequently.
Inferred values of R, correlated indeed negatively with the proportion of DAS choices p(DAS), but
this correlation was not significant, r = —.18, p = .14 (see Figure 7A).

Further, we expected that participants with higher precision over expected rewards g were likely
to earn more reward. This is because as g increases, participants would have a lower uncertainty
on the expected rewards. This increases the probability that participants select actions with higher
expected rewards. As expected, participants showed a positive significant correlation between g
and the mean reward per trial, r = .76, p < .001 (see Figure 7B).

Crucially, we expected that participants with higher repetition bias strength h» would receive
lower rewards because participants with a strong repetition bias tend to repeat past behavior
rather than to maximize expected rewards. We found this significant negative correlation between
the repetition bias strength and the mean reward obtained per trial, r = —.69,p < .001 (see Fig-
ure 7C). Accordingly, the achieved reward decreased with increasing repetition bias strength.

We also expected that participants with stronger repetition bias 2 show shorter reaction times
(RTs), as the repetition of past behavior should be executed faster than selecting yet unknown
sequences of actions. Contrary to our expectation h showed a significant positive correlation with
mean RTs, r = .37,p = .001. We speculate that participants with a strong repetition bias were
probably not as motivated as other participants and therefore slower in processing relevant stimuli
and/or executing the movements. In combination with the tight deadline of six seconds, these
participants probably relied more strongly on known sequences of actions. This speculation is
supported by the significant positive correlation between the number of time out trials and the

repetition bias. See Appendix Table 2 for all correlational analyses.
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Figure 7. Correlations between estimated parameters of expected value with proxy and repetition
bias model (EVPRM) and performance measures. (A) Correlation between free parameter of approximated
reward R, and the mean proportion of DAS choices p(DAS). (B) Correlation between model parameter of
precision over expected rewards p and mean reward per trial. (C) Correlation between model parameter
repetition bias strength 2 and mean reward per trial. Black solid lines represent linear regression model fitted
to the data.

Discussion

In this study, we have shown experimental evidence of a repetition bias that increases the proba-
bility of performing a sequence of actions as a function of how frequent this action sequence had
been used before, over the course of the experiment. To show this repetition bias, we introduced a
new grid-world task and employed a recently proposed computational model that describes action
selection as a balance between goal-directed and a repetition bias. We found that the repetition
bias was negatively related to task performance, suggesting an opposition between goal-directed
performance and repetition bias.

We developed the Y-navigation (Y-NAT) task where participants had to meet trial-specific goals
by collecting points. We gave participants information about a default action sequence (DAS) that
let them obtain the maximum expected reward in nearly half of all trials. With this manipulation
we ensured that participants repeat at least one sequence of actions frequently.

In our behavioral analyses, we found that nearly all of our participants used the DAS most fre-
quently. Interestingly, participants executed the DAS even when the DAS did not provide the high-
est reward. However, our subsequent standard analyses to test for a repetition-induced increase
in DAS usage only revealed non-significant trends, and the evidence remained inconclusive.

We complemented our analyses by a computational modeling approach to assess whether ex-
plicit modeling of repetition learning over the course of the experiment reveals a repetition bias.
Indeed, the repetition bias model explained participants’ behavior best.

With the proposed model-based approach we were able to rule out several alternative explana-
tions for the observed effects. First, we can exclude random responding, as all participants either
relied on expected rewards or showed a repetition bias. Second, we excluded behavioral repe-
tition as a fixed-choice strategy not influenced by past actions. For instance, one strategy could
be to always select the incentivized DAS. As the DAS was of high value during the initial few trials

of each block and always resulted in a reward, consistently repeating the DAS would classify as
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goal-directed behavior and would not be evidence for a repetition bias. We tested this alternative
using a model that replaced the repetition bias effect by a constant bias added to the expected re-
ward for the DAS, leading to constant higher choice probabilities for the DAS over the course of the
experiment. Using model comparison we ruled out this alternative. Further evidence against a con-
stant but not increasing influence of repetition is the finding of a general reduction in behavioral
variability over time.

The finding that the behavior of only a subgroup of participants was best explained by the
repetition bias model seems consistent with previous studies where only subsets of participants
were found to show habitual behaviour (Pool et al., 2022; Gera et al., 2023). One reason might be
a strong motivation to perform well in experimental tasks (Cerasoli et al., 2014). This motivation
probably prompts participants to use goal-directed behavior to collect reward. This effect might be
strengthened by our performance-based bonus payment, as incentives have been shown to modu-
late cognitive effort (Patzelt et al., 2019). This interpretation is also consistent with the finding that,
contrary to our prior expectation, participants with an increased repetition bias showed slower re-
action times. Slower reaction times are related to poorer performance and could be an indicator

of less motivation and thus less goal-directed behavior for participants with strong repetition bias.

Repetition bias and cost-benefit arbitration

In our task, the effect of the repetition bias can only be measured in combination with concurrent
goal-directed behavior. Specifically, according to the model, the first few decisions in a new task
context are mainly based on expected rewards. Concurrently, the effect of the repetition bias
ramps up and has, as we found, a measurable effect on action selection. While this is the concrete
mechanism in the present model (see also Schwébel et al. (2021)) the increasing influence of the
repetition bias could also be viewed as an efficient, dynamic cost-benefit arbitration.

Model-based planning is associated with cognitive costs (Shenhav et al., 2013; Kool et al., 2017),
and ithas been postulated that decision makers compute whether it is worth investing the cognitive
effort. It might be that the inferred repetition bias strength is just a measurable expression of such
a cost-benefit arbitration.

An alternative view is to turn this argument around and to postulate that the computation and
use of the repetition bias is the causal underlying mechanism, which is observed and eventually
interpreted as an apparent dynamic cost-benefit analysis. What speaks for this view is that the
repetition bias is simple to compute because the model just increases a task-specific counter by
1. In the brain, this would correspond to a simple strengthening of a context-action association.
Conversely, it has been shown that, in principle, cost-benefit arbitration leads to a computationally
involved recursive planning process (Shenhav et al., 2013). The question, which can be addressed
in future studies, is whether a simple repetition bias computation is enough to explain apparent

cost-benefit computations to generate behaviour.

Relation to other models and implications for habit learning
The idea of a repetition bias is well established in psychology (Thorndike, 1911). It is related to

stimulus-response (S-R) learning, as repetition facilitates the formation of S-R associations and re-
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cency effects in value-based decision-making tasks (Guthrie, 1952; Wood and Riinger, 2016; Watson
et al., 2022). The repetition bias is also consistent with previous proposals for the role of action
repetition in the development of habitual behavior (Thorndike, 1911; Miller et al., 2019; Schwo-
bel et al., 2021; Nebe et al., 2024). Similarly, behavioral repetition of action sequences has been
identified as a way to optimize the trade-off between maximizing reward and a reduction of policy
complexity (Gershman, 2020).

Importantly, the repetition learning mechanism is different from stimulus-response associa-
tions typically found in devaluation studies (e.g. Horstmann et al., 2015; Dickinson et al., 1983;
Hardwick et al., 2019), and different from a potential trade-off between model-free and model-
based reinforcement learning (RL) (Daw et al., 2011; Dolan and Dayan, 2013), because, in contrast
to model-free RL, the repetition bias is value-free (Miller et al., 2019) and does not directly depend
on past rewards.

The repetition bias is possibly a prerequisite for the development of habitual behavior (Wood
and Riinger, 2016; Miller et al., 2019; Schwébel et al., 2021; Nebe et al., 2024). This opens up
possibilities to use this mechanism and its predictions to investigate the formation of habits. Es-
pecially, concerning the lack of a unified methodology for measuring habits (Watson and De Wit,
2018; Watson et al., 2022), our task and the repetition bias could in principle be used to measure
the tendency towards habitual behavior during ‘only’ a few hundred trials without the need to im-
plement habitual learning with over thousands of trials (Hardwick et al., 2019; Luque et al., 2020;
Frélich et al., 2023) and sessions over two (Frélich et al., 2023) to four (Hardwick et al., 2019) days.

Indeed, many studies investigated the influence of repetition through habits. In these studies
habits are typically only measured indirectly, as a lack of goal-directed behavior during an extinc-
tion phase (Balleine and Dezfouli, 2019; Watson et al., 2022). However, a lack of goal-directed
behavior can alternatively emerge due to an inaccurate representation of action-outcome contin-
gencies during extinction, or random responding due to a lack of motivation (Watson et al., 2022).
Instead, here we measured repetitive behavior directly through a combination of task design and
a model-based approach, enabling us to measure positive characteristics of repetitive behavior.
Additionally, our task did not consist of separate training and extinction phases, and we provided
feedback after each trial. This approach avoids a potentially inaccurate representation of the ex-

pected rewards.

Conclusion

In conclusion, we introduced a novel sequential decision making task, where we demonstrated
the influence of both expected rewards and a repetition bias on decision making. Using compu-
tational modeling we provided empirical evidence for a repetition bias which is simply expressed
as a value-free increase of choice probability each time an action is performed. This repetition
bias mechanism may underlie habit formation and emphasizes the importance of considering

frequency-based mechanisms besides reward-driven mechanisms in future studies.
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Materials and Methods

Participants

Participants were recruited using the recruitment system of the faculty of psychology at the TUD
Dresden University of Technology. In this system, students and individuals from the general pop-
ulation interested in being participants in psychological studies can register. 74 participants com-
pleted the experiment. Four participant were excluded for lack of behavioral variability (they per-
formed the same sequence of actions in more than 90% of all trials). The remaining 70 participants
(50 female) had a mean age of 24.1 years (SD = 4.6). All participants confirmed that they did not
have dyschromatopsia.

Remuneration was a fixed amount of 10€ or class credit plus a performance-based bonus (M =
2.58€, SD = 0.19€). The bonus was determined as a linear function from each participant's rewards
acquired during the experiment, where a reward of 100 yielded 1ct. Participants were informed
about the maximum of the bonus, but not the exact calculation.

The study was approved by the Institutional Review Board of the TUD Dresden University of
Technology (protocol number EK 578122019) and conducted in accordance to ethical standards of
the Declaration of Helsinki. All participants were informed about the purpose and the procedure

of the study and gave written informed consent prior to the experiment.

Experimental task

Data collection was performed online. The task was built using lab.js (Henninger et al., 2021) and
hosted on the neurotests server of the TUD Dresden University of Technology, which is specifically
designed for hosting lab.js tasks.

Participants had to navigate a Pacman-like character across a 5-by-5 grid using their keyboard
(see Figure 8A) to collect points matching a pre-defined trial-specific goal. In every trial, participants
had to execute a sequence of four actions within a time limit of 6s. The action-set was restricted
to moves in three directions: diagonally to the upper left, diagonally to the upper right or directly
downwards. This specific choice of navigation, inspired by the work of Fermin et al. (2070), was
designed to restrict the available sequences of actions participants could take. Exiting the grid's
boundaries or revisiting a previously visited field was not possible. Any attempt to do so triggered
a red warning message, requiring the participant to redo the move.

Upon each action, the character visually moved to the designated field and thereby collected
the circle within that cell. Circles were colored to represent point values: Green circles represented
positive points ranging from 10 to 60 in increments of 10, while red circles represented negative
points ranging from —10 to —60. The shading of the color indicated the magnitude of points, with
darker shades representing higher positive or negative values (see Figure 8C). Additionally, a Gaus-
sian distributed noise (with u = 0, and ¢ = 1.3) was applied to the points earned from each move
and the resulting value was rounded to the nearest integer. After each move, the points from the
collected circle were displayed at the center of the grid, and the sum of points collected during
that particular trial was displayed at the top left corner (see Figure 7). The trial's total score was

calculated as the sum of points from the combined sequence of four actions.
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Figure 8. Experimental task. (A) Participants had to collect four colored circles by navigating a Pacman-style

character on a 5-by-5 grid. Each circle’s color indicated the number of points obtained when moving into the
corresponding field (see main text for details). The points obtained for the most recent collected circle were
displayed in the centre of the grid (here 38). The goal of the current trial was presented in the top-left corner.
Below this goal number, the current sum of points gathered up to the current move were displayed. Four
squares located at the bottom left indicated the current move number. In the example, the participant was
about to select its third move after having collected points from two circles. The default action sequence
(DAS) fields were highlighted with a gray background. (B) Graph of the four goal point trajectories used. Each
block consisted of 20 trials. The y-axis shows the absolute difference in points between the goal point per
trial, and the expected points one would obtain by using the DAS. The gray area represents trials where the
DAS was one of the available action sequences with the highest expected reward. (C) Visual representation of
points per color. (D) Order of goal trajectories within the experiment and mapping of blocks into halves and
segments.

Importantly, the main goal of the task was to match the trial's points—achieved from the se-
quence of four actions—as closely as possible with a predefined, trial-specific goal. Participants’
reward for each trial was then calculated based on the difference between the trial's total points

and the predefined goal. Smaller differences (in absolute value) led to higher rewards:
Reward, = max{0, 100 — 2 - |Goal, — Points,|}. )

The received reward was displayed as a green bar at the end of each trial in the feedback stage
(see Figure 1). If participants did not complete four moves within the time limit, no reward was
earned and a red warning message appeared at the feedback stage on the left side. The sum of
collected rewards defined the performance-based bonus payment.

Importantly, to ensure that participants repeat at least one sequence of actions frequently, we
introduced a default action sequence (DAS). This sequence was visually indicated by a grey back-
ground color of the four corresponding fields (see Figure 8A) and participants were given informa-
tion about the average number of points that could be collected with the DAS at the start of each

trial at the center of the grid (see the left-most panel of Figure 1). The fields, sequence of actions,
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and sum of collected points of the DAS were the same throughout the experiment. In the example
of Figure 1, the DAS comprised two downward moves first, followed by two consecutive up-right
movements.

The experiment was divided into 16 blocks consisting of 20 trials each. The distribution of points
remained constant within a block, but changed between blocks. The points of the four circles of the
DAS also differed across blocks but the sum of the points remained constant. The block sequence
of the distributions of points were the same for each participant.

Within a block, goal points changed over trials. We used four different trajectories of 20 goals
each (see Figure 8B). Goal trajectories differed by their maximum difference between the goal
points and the expected points of the DAS, and their trend of this difference throughout the block.
This difference ranged between 12 and 24 points. Note, that while the points that could be collected
with the DAS stayed the same, the goals changed between trials, and therefore the rewards for the
DAS varied.

We selected these four trajectories to represent different principled trajectories that would it
make difficult for participants to predict whether the DAS would remain optimal during the dura-
tion of a block. All four trajectories started out close to the expected points obtainable by the DAS.
Only later into the block goal points started to deviate from this initial value, or not. For exam-
ple, one goal trajectory was remaining close to points obtainable by the DAS while another one
increased only after half the block but then decreased again.

With this procedure we effectively proposed an optimal sequence of actions at the first few trials
of each block that was slowly devalued during subsequent trials. A repetition bias should manifest
by increased DAS choices over the course of the experiment for the same expected rewards and
should be detectable with summary statistics.

We subdivided the blocks into four segments of four blocks each (see Figure 8D). Within each
segment all four trajectories of goals were used once in a pseudo-random order so that no trajec-
tory was repeated in two consecutive blocks. This order of goal trajectories was the same for each
participant.

To promote the use of the DAS, we manipulated three features of the task. First, at least the first
two trials of each block had a trial-specific goal close to the points of the DAS (see Figure 8B). Overall,
in 43.75% of all trials, the absolute difference between the trial goals and the expected points of the
DAS was between zero and five points. Therefore, for these trials, due to the minimum difference
of ten points between circles of different color, the DAS was one of the available action sequences
with the highest expected reward. In the remaining trials, there was always at least one sequence
with a higher expected reward than the DAS.

Second, we only used a partial devaluation of the DAS: the lowest expected reward of the DAS
was still about half of the maximum reward. This follows from the reward calculation (see Equa-
tion 1) and the maximum difference between goals and the expected DAS points of 24 (see Fig-
ure 8B).

Third, using the DAS gave participants a probabilistic bonus reward of 20 during half of the
blocks. These bonus blocks were distributed pseudo-randomly throughout the experiment to en-

sure that the bonus was available always during two of the four presentations of each goal point
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sequence. This probabilistic bonus could be earned for each trial within a bonus block, but exclu-
sively when using the DAS. The probability of receiving the bonus was p = .25, although the precise
probability remained undisclosed to the participants. Participants were informed about upcom-
ing bonus blocks right before they started. In addition, during the trial start phase, bonus trials
were indicated by changing the color of DAS points from gray to blue. A blue bar next to the green
reward bar during the feedback stage indicated the receipt of the bonus.

The experiment started with an elaborate training phase to ensure that participants under-
stood the task. The first part involved an introduction to the navigation, which was followed by
familiarizing participants with the color coding of the circles. Then trial-specific goals and reward
calculation was introduced. This was followed by introducing the DAS, and finally the bonus factor
was explained. During this part of the training participants had to meet no deadline and could
spend as much time as they needed.

After this introductory phase, participants practiced two blocks as they would appear later in
the main experiment. One block was with probabilistic bonus and one without. The only difference
to the main experiment was an extended deadline of 10s.

Between blocks, participants had the opportunity to take a self-determined break. The exper-
iment, including training, had a total duration of approximately 60 minutes. The performance-
dependent bonus rewards were determined by adding the rewards of all trials in the main experi-
ment.

Data analysis was performed in Python using the packages NumPy, Pandas, ArviZ, Scipy’s Stats

module, and pingouin. Task code, data and analysis code are publicly available at GitHub.

Expected value with proxy and repetition bias model (EVPRM)

We made use of a previously published repetition-based learning model, the prior-based control
model (Schwabel et al., 2021), for model-based data analyses. This model describes a mechanism
for taking into account previous action sequences when making choices. The model counts how
many times each action sequence r has been chosen in the past. This contributes to the decision-
making process as a prior distribution over policies p(z) that represents the probability of selecting
an action regardless of expected reward or any other task contingency: the influence of the prior
over policies on action selection of a specific action increases depending on how many times this
action has been chosen before. The model is complemented by a component p(R | z) based on
expected rewards given the predicted outcomes of the performed actions (i.e. value-based). These
two components play the role of priors and likelihood, respectively, to turn decision-making into a
Bayesian inference process:

p(z | R) x p(R | 7) p(x), )

where p(z | R) represents the posterior distribution that is defined by the probability of choosing
policy = given the reward structure R; p(R | z) represents the expected reward R given policy ;
and p(r) is the prior over action sequences. The multiplication of the expected reward and the
prior over policies balances the influences of goal-directed planning and past behavior on action

selection. Intuitively, the goal-directed component p(R | r) represents the value-based part of
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making a decision, i.e. a participants simply selects the action that gives the highest expected
reward, while the prior over action sequences p(x) implements the repetition bias.

In our experimental task, the reward structure R, i.e. the expected reward for each action
sequence r, canin principle be calculated given the information available to participants: the points
for each one of the squares on the grid is shown on the screen, so participants could calculate the
points of every of the possible 36 sequence of actions = and determine the expected reward with
the exception of a noise term that is not influenced by =. However, as there is a deadline of six
seconds, the calculation becomes unfeasible. To account for this, we posit that participants rely
on prior beliefs or approximations they might have acquired in previous trials.

For the proposed EVPRM, we assumed a reward structure R that depends on past observations
made by the participant: for sequences that have been already observed during the current block,
the model uses the exact observed reward; for the unobserved sequences, it uses an approxi-
mated reward R, which we assumed participants approximate based on their experiences during
previous blocks and training. The approximated reward R, is a free parameter and indicates the
individual expected reward for all yet unobserved sequences of actions. As an exception, the DAS
was always assumed to be an observed sequence of actions because the points of the DAS were
communicated at the initial phase of each trial. Also the expected reward of the DAS included the
probabilistic bonus reward. With this, the reward structure in the EVPRM is as follows:

B

(R|n)= Re
D = Zﬁ”

nEA

R, ifze({x.,}

R = ,
R, otherwise

(4)

where 7 = {(a;,a5,a5.a,) | a; € {\.l../}}, With 7 = (a,,a,,a;,4,) represents a sequence of four
actions, and q; € {\, |, /'} represents the three movement directions, R,, is the expected reward of

the sequence of actions z, 3__, R, is the sum of expected rewards of all sequences of actions, with

e
Arepresenting all possible action sequences, g is a free parameter representing the precision over
expected rewards, R, is the expected reward for the sequence of actions z, R, is the approximated
reward for unobserved sequences of actions, #,., = {#,, %,, ..., #,} are the performed sequences of
actions up to trial . Note that we chose p(R | z) as a fraction to stay close to the Bayesian framework
in Schwobel et al. (2021) and to have a comparable equation to the prior below.

The free parameter g represents the precision over expected rewards: values of g > 1 leads to
more concentrated probabilities that favor the choice of the sequences of actions with the highest
expected rewards and values of g < 1 lead to more uniformly distributed probabilities, enabling
greater exploration of different choices.

The prior over action sequences p(x) was defined, as by Schwabel et al. (2021), by a counter y

for the number of times the respective sequence of actions has been used used in the past, and
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the initial count «;,; is a free parameter that was equal for each sequence of actions:

a

p(m) = S5 (5)
2
TEA
air, = jpie + y/r, (6)
i = Z Oir (7)
=1

1 if x, was used at ¢
6, = , (8)

0 otherwise

where a, is the repetition bias strength at trial 7, &, is the initial count, y, is the counter of how
many times the sequence of actions = was performed until trial 1, §,, is the Kronecker delta.

Following Schwdbel et al. (2021), the free parameter initial count «;,;; influences the strength of
the repetition bias. A low initial count, e.g. «;;; = 1, leads to a strong repetition bias. As a;,;; defines
the counter for all sequences of actions, the increase of y by 1, after a sequence of actions was
performed, leads to a substantial increase of the prior over policies for this sequence. In contrast,
a high initial count, e.g. a;,; = 100, leads to a weak increase of the prior over policies if a sequence
of actions is performed.

Finally, our model can make decisions at every trial by sampling from the categorical posterior
probability distribution over possible z, defined as: p(z | R, a,), which is the probability of sampling
each sequence of actions z, at each trial depending on the assumed reward structure R, and the

prior over policies a,:

p(x | R a,) < p(R | m)p(x) 9)
s

R, o
2R X

TEA TEA

p(x | Ra,) o (10)

By changing the free parameters, we can change the behavior of the agent: At one end, with
a high initial count «;,;, an agent will be minimally influenced by its past behavior and is nearly
completely goal directed. At the other end, with a low initial count «;,,, agent behavior is more
influenced by expected rewards and thus has a strong repetition bias of past action sequences. In
addition, a precision over expected rewards g close to 0 represents the case in which the agent
is uncertain about the learned reward structure and will tend to choose behavior based on the
repetition bias.

In Figure 9 we simulate an experimental session with our model, focusing on one action se-
= 1.1).

The used precision over expected rewards (f = 5) moderately pronounced the distribution of ex-

quence z, the DAS. In the simulations, the model has a high influence of past behavior (qa,,,
pected rewards. Based on the changing goals the expected reward p(R | z) for this action sequence
changes in a constant range from trial to trial throughout the experiment. But the prior over poli-
cies p(r) for this action sequence increases slowly over time, because this action sequence is per-
formed repeatedly. One can see that in trials where the expected reward is relatively high, the

resulting posterior p(z|R) is high as well. This means the resulting choice probability is driven by
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Figure 9. Simulation of task with EVPRM. Means for probability of selecting one specific sequence of
actions z, p(z | R) (blue line), the prior over policies for z, p(z) (orange line), and the expected reward for r,
p(R | ) (green line) over N = 100 simulations. While expected rewards are in a constant range throughout the
task, the prior over policies increases and accordingly the choice probability.

expected rewards, represented by the first term on the right-hand side of Equation 10. In addition,
as the prior is slowly increasing, there is a growing contribution of the repetition bias, given by the
second term of Equation 10. Hence, the repetition bias increases the choice probability but actions
are in principle still modulated by expected rewards. Effectively, in the example, the repetition bias
increases the choice frequency from roughly 0.3 in the first 50 trials to roughly 0.7 in the last 50
trials, when there is a relatively large expected reward.

Note that the original model by Schwabel et al. (2021) was formulated within a planning as
inference (Botvinick and Toussaint, 2012) and active inference (Friston et al., 2016, Schwabel et al.,
2018) framework to calculate the posterior distributions for action selection. We adapted the key
idea: the posterior probabilities are based on the product of a function over the expected rewards
and the prior over policies. Here, for our purposes, we simplified this model to derive a relatively
straightforward observation model so that we could use Bayesian inference for fitting the model's
free parameters to participant data. Furthermore, the model calculates probabilities based on past
and current observations and does not use any kind of future forward planning. It is therefore
related to RL models, which also calculate subjective values for the possible actions based on the
current expected rewards and the reward history (Dezfouli and Balleine, 2012; Daw et al., 2011,
Miller et al., 2019).
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Alternative models

The proposed EVPRM makes two assumptions: (1) the repetition bias influences action selection,
and (2) participants used an approximated reward for unobserved sequences of actions. To test
against alternative explanations, we formulated three alternative models. These models differ only
in their assumed reward structure R and as a critical distinction, they do not include the prior over

policies p(x). In what follows, we introduce the three alternative models.

Expected value with proxy and default bias model (EVPBM)
An alternative explanation for the repetition of the DAS would be a bias specifically for the DAS
but not a general repetition bias as formulated in the EVPRM. To implement this assumption, we
derived a new model variant that had an exclusive and constant bias for the DAS. In other words,
this model assumes that during training participants developed a bias for choosing the DAS but did
not have a slowly increasing repetition bias or a preference for repeating other action sequences.
Such a constant bias in favor of the DAS would also lead to an increase in DAS choices and be
interpreted as a repetition bias. The difference to the EVPRM is that a constant bias would be
independent from past behavior in the main experiment.

To model this bias, we added a constant term as a free model parameter to the expected reward
of the DAS:

. R
p(z | R) = (11)
2R
TEA
Rpps, + bpas  if 7 =DAS
R, =1R ifre (7., (12)

Tt

R, otherwise

where 7 is a sequence of four actions defined as above, R is the assumed reward structure, R, is
the expected reward for the sequence of actions x, g is the free model parameter representing
precision over expected rewards, R, the free model parameter of approximated rewards for yet
unobserved sequences of actions, #,., = {#,, 4,, ..., #,} are the performed sequences of actions up

to trial 7, and by, is the bias for zp,s.

Expected value with proxy model (EVPM)

A second alternative explanation of the choice data is that repetition does not influence action
selection at all. Therefore, contrary to the EVPRM, participants’ behavior is not affected by past
behavior, but determined by expected rewards only. To implement this assumption, we derived a

model variant by removing the prior over policies from the EVPRM to have a model that is solely
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dependent on the expected reward structure:

. R
p(@ | R) ZR (13)

nEA

R, ifre{r.}

N 7

= (14)

Ty ’
R, otherwise
where z is a sequence of actions defined as before, R is the assumed reward structure, #,., =
{#,,#,,..., 7} are the performed sequences of actions up to trial ¢,  is the precision over expected
rewards and a free model parameter, R, the expected reward for a sequence of actions =, and R,

the free model parameter of approximated reward for unobserved sequences.

Expected value model (EVM)

The EVPM relies on the approximated reward for unobserved sequences of actions R,. An alterna-
tive is that participants indeed were able to calculate expected rewards for all sequences of actions.
To implement this assumption we instantiated a model without the approximated reward param-
eter and to use expected reward R, instead. Therefore, contrary to the other candidate models,
this model performs actions selection independent from past behavior. We implemented this as:

B

Rl[
p(z | R) (15)

2R

€A

where z is a sequence of four actions defined as before, R, is the expected reward of the sequence

of actions =, and p is the free model parameter representing precision over expected rewards.

Model fitting
Parameter estimation was done in Python with PyMC (Salvatier et al., 2016, version 5.0.1) using
the No U-Turn Sampler (NUTS) (Hoffman and Gelman, 2014). We obtained 4,000 samples from
four chains of length 1,000 (1,000 warm-up samples).

We used the following weakly informative prior distributions for the free model parameters:
B ~T3,1), Ry ~T(55,.75), h = a# ~ Beta(3,3), and bp,s ~ I'(3,.1). We used the same priors for all

candidate models. The complete code can be found online at GitHub.

Model comparison

To ensure that parameter inference works well for a meaningful range of parameters, we per-
formed extensive parameter recovery studies for all four models (for details see Appendix Fig-
ure 1).

Model comparison was based on using leave-one-out cross-validation approximated by Pareto-
smoothed importance sampling (PSIS-LOO) (Vehtari et al., 2017). This information criterion calcu-
lates the pointwise out-of-sample predictive accuracy from a fitted Bayesian model. Crucially, it
penalizes models with more parameters. We calculated the expected log point-wise predictive

density (elpd) and the corresponding standard error (SE) on the deviance scale (—2elpd). Lower
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Figure 10. Estimated parameters of expected value with proxy and repetition bias model (EVPRM) Dots
represent posterior means of individual parameter estimates. Each plot represents one of the three free
parameters: (A) repetition bias h, (B) precision on expected rewards g and (C) approximated reward R,. Grey
patches represent kernel density estimates. The color of dots indicate standard deviations (SD).

values of PSIS-LOO indicate higher predictive accuracy. Calculation of PSIS-LOO scores was per-
formed with ArviZ (Kumar et al., 2019, version 0.7.0).

Parameter distributions of EVPRM

To better compare individual repetition bias strengths we used the inverse of the initial count a;;:
h= ﬁm (see Equation 6). h has a value range from 0 to 1, where values near 1 indicated a strong
repetition bias and values around 0 indicate a weak repetition bias.

Repetition bias strength varied from very low values between close to 0 and .2 to medium to
strong values between .5 and .9 (see Figure 10A). The inferred g values (the precision over expected
reward) spread between values very close to 0 and high values up to 16 (see Figure 10B). The approx-
imated reward R, for unobserved sequences of actions showed a broad range of values between

around 10 and around 70 (see Figure 10).

Posterior predictive checks for EVPRM

we conducted posterior predictive checks (Gelman et al., 2013) to assess if the fitted EVPRM can
replicate the behavior of the participants. We used the method from PyMC that simulates choices
of 1,000 agents for each participant based on the model and posterior. The parameters of the
agents were drawn from the posterior distributions.

We calculated the proportion of correctly predicted choices for each participant over all agents.
These proportions of correctly predicted choices showed a very wide range from 4.9% to 86.3%,
but all proportion were above the chance level of 2.7% (see Figure 11A). On the group level the
EVPRM predicted DAS choices better (74.9%) compared to non-DAS choices (19.1%, see Figure 11C).
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Posterior Predictive Checks for EVPRM
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Figure 11. Posterior predictive checks (PPC) for expected value with proxy and repetition bias model
(EVPRM). (A) Distribution of the proportion correctly predicted choices for each participant based on
simulated data with the inferred parameters from the EVPRM. Each white dot represents the proportion of
correctly predicted choices for one participant. The grey area represents a KDE of the distribution, and the
dotted lines inside the KDE represent the borders of the quartiles. (B) Correlations between proportion of
correctly predicted choices of each participant and their inferred parameters of the EVPRM and their
proportion of default action sequence (DAS) choices. Black solid lines represent linear regression model fitted
to the data. h: repetition bias, g: precision over expected rewards, R,: approximated reward, p(DAS):
proportion of DAS choices. (C) Proportions of correctly predicted DAS and non-DAS choices at the group-level.
Dotted line represents chance level. PMS: proportion matched choices.

We further calculated correlations between the proportions of matched choices and the posterior
means of the inferred parameters and the proportion of DAS choices p(DAS). Here EVPRM better
predicted choices of participants with weak repetition bias &, r = .55,p < .001, higher precision
over expected rewards B, r = .73, p < .001, and higher proportions of p(DAS), r = .84, p < .001 (see

Figure 11B). The correlation with the approximated reward R, was not significant, r = .12, p = .25.
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s Appendix

Appendix 0—table 1. Descriptive Statistics depending on bonus condition

All Trials Bonus No Bonus t-Test
M SD M SD M SD t p d
p(DAS) 0.57 0.15 0.57 0.19 0.52 0.19 -4.68 <.001 .26
Reward 81.52 5.00 81.34 6.63 80.04 592 -2.84 .003 .21
RT (ms) 1645.17 335.21 1691.79 405.11 1662.76 407.69 -1.56  .938 .07
Time Outs 4.70 3.63 2.60 2.49 2.14 191 -1.56 .938 .21

Depicted are means for all trials, trials with potential bonus for DAS, and trials without potential
bonus for DAS over all participants. The #-tests represent one-sided t-tests for related samples
that test for significant differences between bonus and no bonus trials. For p(DAS) and reward we
tested if the means of the first half are smaller than the means of the second half. For RT and time
outs we tested if the means of the first half are greater than the means of the second half. p(DAS):
proportion of DAS choices, reward: mean reward per trial, RT: reaction time, DAS: default action

sequence, M: mean, SD: standard deviation, 1: z-statistic, p: p-value, d: Cohen'’s d.
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Appendix 0—table 2. Correlations between inferred parameter values of EVPRM and performance measures

h p R, p(DAS) Reward RT Time outs
h -
B -0.75 -
R, 0.12 0.30 -
p(DAS) -0.22 037 -0.18 -
Reward -0.69 0.76 -0.11 0.67 -
RT 0.37 -0.44 0.25 -0.58 -0.70 -
Timeouts 0.32 -0.27 0.16 -0.40 -0.52 0.65 -

Depicted are correlation coefficients between inferred parameter values of EVPRM and perfor-

mance measures. As performance measures the means of each participant were used. Significant

correlations are bold (p < .05). g: precision over expected rewards, R,: approximated reward, A:

repetition bias, p(DAS): proportion of DAS choices, reward: mean reward per trial, RT: reaction

time, DAS: default action sequence, EVPRM: expected value with proxy and repetition bias model.
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Appendix 0—figure 1. Parameter recovery for all candidate models. Correlations of true and inferred parameter values for all free

parameters of the four candidate models: (A) expected value with proxy and repetition bias model (EVPRM), (B) expected value with proxy and
default bias model (EVPBM (C) expected value with proxy model (EVPM), (D) and expected value model (EVM). Black solid lines represent
correlation between true and inferred parameter values. Grey dashed lines represent true parameter values.
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