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Abstract Humans tend to repeat past actions due to rewarding outcomes. Recent10

computational models propose that the probability of selecting a specific action is also, in part,11

based on how often this action was selected before, independent of previous outcomes or12

reward. However, these new models so far lack empirical support. Here, we present evidence of13

a repetition bias using a novel sequential decision-making task and computational modeling to14

reveal the influence of choice frequency on human value-based choices. Specifically, we find that15

value-based decisions can be best explained by concurrent influence of both goal-directed16

reward seeking and a repetition bias. We also show that participants differ substantially in their17

repetition bias strength, and relate these measures to task performance. The new task enables a18

novel way to measure the influence of choice repetition on decision-making. These findings can19

serve as a basis for further experimental studies on the interplay between rewards and choice20

history in human decision-making.21

22

Introduction23

Over a century ago, Thorndike (1911) proposed the law of effect, which states that actions that24

lead to rewarding outcomes are more likely to be repeated. The law of effect gained widespread25

recognition and is considered an important foundation for the development of early operant con-26

ditioning (Skinner, 1963) and modern-day reinforcement learning (Sutton and Barto, 2018). What27

is less known is that Thorndike additionally stated the law of exercise, also known as the law of use,28

saying that humans tend to repeat previous actions regardless of reward (Thorndike, 1911).29

Consider, for instance, the morning routine that many of us follow, e.g. we start with a cup of30

tea or coffee, take a shower, have breakfast, brush our teeth, and get ready for work. Although31

such action sequences may be learned only by goal-directed reward seeking (law of effect), such32
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learning might also be based on Thorndike’s law of exercise. Indirect empirical evidence for the33

law of exercise, i.e. a measurable repetition bias, stems from questionnaire studies on everyday34

behavior (Ouellette and Wood, 1998; Hagger et al., 2002;Wood et al., 2002; Neal et al., 2006; Ver-35

planken, 2006; McCloskey and Johnson, 2019), showing that participants reliably repeat behavior36

in a context-dependentmanner, for example a specificmorning routine or themode of transporta-37

tion to work.38

Experimental evidence, across disciplines, shows that repetition affects humandecisionmaking39

and learning. It improves language learning (Lynch and Maclean, 2000), likely through increased40

word-familiarity (Perea et al., 2016) and better learning of multiword expressions (Majuddin et al.,41

2021). It also modulates learning of motor and cognitive skills (Huang et al., 2011;Magallon et al.,42

2016; Reinkensmeyer et al., 2016; Wolpert et al., 2011; Spampinato and Celnik, 2021) and affects43

memory retrieval, judgement (Scarborough et al., 1977;Hintzman, 1976) andworkingmemory pro-44

cesses (Oberauer et al., 2015), demonstrating its broad influence on cognitive functions. Effects45

of repetition have also been studied under specific experimental conditions, suggesting their inde-46

pendence from direct reward. Here, repetition significantly affects perceptual decision making by47

accelerating response times for ambiguous stimuli (Akaishi et al., 2014). Similarly, repetition can48

alter preferences in value-based decision-making processes (Nebe et al., 2024), suggesting that49

the influence of repetition extends beyond the direct anticipation or receipt of reward, challeng-50

ing standard views on the effect of reward on decision making and learning. Most importantly,51

repetitions are seen as a key element of habit formation (Wood and Rünger, 2016; Watson et al.,52

2022).53

Over the last decade, the study of habitual vs. goal-directed responses have been enriched54

through a broad range of studies using devaluation tasks, extinction tests or more complex cog-55

nitive tasks, like the Wisconsin card-sorting task (Wilson and Niv, 2012) or the two-step task (Daw56

et al., 2011). These studies helped broaden our understanding of whether an action is outcome-57

oriented via a probabilistic map of the environment or rather driven by obtaining past reward in58

the same situation, as for example might be the reason for an insensitivity to devaluation. For59

instance, for the two-step task, behavior is described by using a mixture of model-based (MB) and60

model-free (MF) reinforcement learning (RL). Here, the MB controller learns a probabilistic action-61

outcome mapping, i.e. a more sophisticated goal-directed higher order cognitive process, while62

the MF controller is governed by simpler stimulus-response associations (Daw et al., 2005, 2011).63

This approach provided many insights on how humans learn and perform tasks (Daw et al., 2011;64

Wunderlich et al., 2012;McDannald et al., 2012; Doll et al., 2015, 2016; Gläscher et al., 2010), and65

also highlighted how impairments in model-based planning can be linked to psychiatric disease66

(Gillan and Robbins, 2014; Gillan et al., 2016; Seow et al., 2021;Wyckmans et al., 2019; Voon et al.,67

2015). However, it is still debated whether the reward-driven nature of model-free RL aligns with68

the concept of habits, which is not related to immediate reward, but to mere repetition of actions69

(Wood and Rünger, 2016; Watson et al., 2022). Two recent studies (Miller et al., 2019; Schwöbel70

et al., 2021) proposed a different mechanism. In these studies, based on simulations, behavior71

was explained by the interaction of two components. First, as usual, goal-directed behavior was72

explained by a model-based planner. Second, the novel proposal was to model the effect of a73
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repetition bias, following Thorndike’s law of exercise, based on past choice counts alone, without74

regard to outcome or reward. This perspective is also related to minimizing the complexity of an75

action policy over time (Gershman, 2020).76

Here, we followed this theoretical lead and assessed empirically, in human participants (n = 70),77

the effect of such a repetition bias on behavior. We used a computational model to disambiguate78

the effects due to repetition bias from effects due to goal-directed behavior driven by reward max-79

imization. To capture both type of effects, we developed a novel Y-navigation task (Y-NAT) in which80

participants perform sequences of movements in a 5x5 grid world to collect a trial-specific number81

of points. The task was designed to fulfill the following three main objectives: First, trial-specific82

points establish a clear goal that will prompt goal-directed behavior in participants. Second, the83

combination of a relatively tight deadline and the requirement to plan fourmoves ahead (seeMate-84

rials and Methods) challenges participants in their capacity to act in a purely goal-directed fashion.85

Third, participants were informed about a so-called default action sequence (DAS), providing them86

with a less complex go-to strategy, which induces repetition of the same sequence over trials. The87

Y-NAT therefore enabled us to test (1) whether a repetition bias develops over time, (2) what its ef-88

fects are on task behavior and (3) what the link is between individual differences in repetition bias89

and overall task-performance. Data was analyzed using both standard behavioral analyses and90

Bayesian model-based analyses. We used Bayesian model comparison to test several alternative91

models, with or without repetition bias.92

Results93

We created a sequential decision-making task, the Y-navigation task (Y-NAT), to show the repetition94

bias (see Materials and Methods). For this grid-world task, participants had to collect points with95

four moves within a time limit of 6s and match a trial-specific goal sum of points as closely as96

possible (see Figure 1). Participants were required to complete 16 blocks, each comprising 2097

trials, resulting in a total of 320 trials.98

In order to ensure the frequent repetition of at least one sequence of actions, a default action99

sequence (DAS) was highlighted. Using the DAS resulted in the highest expected reward in less100

than half of the trials (43.75%), with the lowest expected reward of the DAS being about half of the101

maximum reward. Furthermore, in half of the blocks, a probabilistic bonus could be earned when102

Figure 1. Illustration of a single task trial. At trial start, the goal, the fields of the DAS and the mean points of the DAS were shown on the
screen for one second. During the subsequent response phase of up to six seconds, four moves had to be performed. During the feedback
phase of 4 seconds at the end of each trial the reward was communicated.
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Table 1. Descriptive statistics of performance measures for all trials and halves of the experiment

All Trials First Half Second Half t-Test
M SD M SD M SD t p d

p(DAS) 0.54 0.19 0.53 0.20 0.55 0.19 -1.62 .055 .10
Reward 80.69 5.99 79.58 6.66 81.80 5.96 -4.58 <.001 .35
RT (ms) 1677.09 398.72 1820.84 450.34 1535.60 390.85 8.76 <.001 .68
Time Outs 4.74 3.70 3.11 2.56 1.63 1.88 4.86 <.001 .66

Means over all participants of p(DAS), reward per trial, reaction times and the number of time outs,
separately for all trials, first and second half of the experiment. The one-sided t-tests tested for
significant differences between first and second half. For p(DAS) and reward we tested if the mean
of the first half is smaller than the mean of the second half. For RT and time outs, we tested if the
means of the first half are greater than the means of the second half. p(DAS): proportion of DAS
choices, reward: mean reward per trial, RT: reaction time, DAS: default action sequence,M : mean,
SD: standard deviation, t: t-statistic, p: p-value, d: Cohen’s d.

using the DAS.103

In what follows we first present the results from standard behavioral analyses based on sum-104

mary statistics and then move on to a model-based analysis.105

Behavioral Analysis106

Our first approach was to find evidence of a repetition bias using inference statistics. For our107

task, we expected that a repetition bias manifests in the following ways: (1) an increase, over the108

course of the experiment, in the usage of the most frequently used sequence of actions; (2) an109

increase, over the course of the experiment, in the selection of themost frequently used sequence110

of actions in trials where this sequence of actions did not have the highest expected reward; (3)111

an increase, over the course of the experiment, to perform parts of the most frequently used112

sequence of actions, and (4) a decrease, over the course of the experiment, in the number of113

different sequences of actions being used.114

We determined the proportion of trials in which the default action sequence (DAS) was exe-115

cuted, p(DAS), for each participant. As expected, the DAS was used in more than half of the trials116

(p(DAS) = .54, SD = .19), and 66 participants (94%) used the proposed DAS most frequently (see117

Table 1). We found the expected difference in the proportion of DAS choices between the bonus118

(p(DAS) = .57, SD = .19) and the no bonus condition (p(DAS) = .52, SD = .19), p < .001, d = .26 (see119

Appendix Table 1 for all descriptive statistics depending on the bonus condition).120

We focused all subsequent analyses on the DAS because participants used the DAS more fre-121

quently than expectedwhen considering expected rewards, and the DASwas usedmost frequently122

by nearly all of the participants. We conducted three statistical analyses to test for a repetition bias:123

we tested for an increased usage of this sequence over time, an increased usage of this sequence124

even when the sequence did not yield the highest expected reward over time, and an increased us-125
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Figure 2. Default action sequence (DAS) choice behavior. (A)Mean proportional use of default action
sequence (DAS) over the two halves (early/late) and four segments of the experiment. (B)Mean proportional
use of default action sequence (DAS) depending on if the DAS was one of the sequences with the highest
expected reward (optimal), separated by halves and by the four segments. (C)Mean proportional use of
partial DAS use for non-DAS trials depending on halves and the four segments of the experiment. Black lines
represent means over all participants. Error bars represent standard errors (SE).

age of parts of the sequence, when the full sequence was not performed. Furthermore, we tested126

for a decrease of behavioral variability as an indicator of a repetition bias. We describe the results127

of these analyses in the following sections.128

Increase of DAS usage129

We assessed whether there was an increase in DAS usage throughout the experiment. We re-130

peated the differences between the trial-specific goals and the expected points of the DAS across131

halves and four segments (see Figure 8D), and consequently expected rewards for the DAS to be132

repeated across the halves and the segments. The expected points for the DAS were communi-133

cated at the beginning of each trial and participants were able to calculate the expected reward for134

the DAS. Therefore, participants’ proportion of DAS choices should not change if they were guided135

only by expected rewards. However, if a repetition bias influenced participants’ choices, the DAS136

usage should have increased with time.137

We compared the average proportion of DAS choices of all participants between the first and138

second half of the experiment, and over the four segments (comprising four subsequent blocks,139

see also Figure 8D in Materials and Methods). During the first half, over all participants, the DAS140

was used in 53.3% (SD = 19.7%) of the trials, whereas in the second half the DAS was used in141

55.2% (SD = 18.8) of the trials (see Figure 2A). A one-sided t-test for related samples based on the142

individual differences of all participants only showed a non-significant difference, t(69) = −1.62, p =143

.055, d = .10. Similarly, there was only a non-significant increase of DAS usage across the four144

segments, repeated measures ANOVA with F (3, 207) = 1.52, p = .21, �2G = .003, see Figure 2A.145

Increase in DAS usage in trials where DAS is not optimal146

Although we did not find a significant increase in DAS usage over the course of the experiment,147

a repetition bias for the DAS should increase the probability of selecting the DAS irrespective of148

the expected reward of the DAS. We expected this because at the beginning of each block the DAS149
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was an optimal choice (see Materials and Methods and Figure 8B) participants were incentivized150

to use the DAS in the first trials of each block; this incentivized repetition of the DAS would bias151

participants towards choosing the DAS even when it did not yield the highest expected reward.152

However, the repetition bias could also decrease the probability to switch back to the DAS when153

the DAS is optimal later during the block. These two opposing effects together could explain why154

we found no significant overall increase in DAS usage.155

To find this effect, we split up trials based on whether the DAS was one of the available se-156

quences of actions with the highest expected reward, or not. We determined a use of DAS as157

optimal if the absolute difference between the points obtained by the DAS and the goal was ≤ 5158

points, because the difference between two adjacent colors was 10 points (seeMaterials andMeth-159

ods). We conducted a repeatedmeasures ANOVAwith the proportion of DAS choices as dependent160

variable and the factors (1) halves of the experiment, and (2) DAS optimality. The main effect of161

expected reward was significant, F (1, 69) = 293.89, p < .001, �2G = .47. The main effect experimental162

halves was not significant, F (1, 69) = 3.88, p = .053, �2G = .003 (see Figure 2B). We repeated this anal-163

ysis with four segments instead of halves of the experiment as a factor. Again, the main effect of164

expected reward was significant, F (1, 69) = 232.15, p < .001, �2G = .45 and the main effect of segment165

was not significant, F (3, 207) = 2.36, p = .077, �2G = .008 (see Figure 2B).166

Taken together, we did not find evidence for an increase in DAS use for trials where the DAS167

was not one of the sequences of actions with the highest expected reward. Hence, the potential168

repetition bias, established through the repeated use of the DAS in trials where the DAS is one of169

the sequences of actions with the highest reward, did not lead to an increase of DAS use at trials170

where the DAS did not have the highest expected reward.171

Increase in DAS parts172

As participants had to execute a sequence of fourmoves in each trial, a repetition biasmay have ex-173

pressed itself by an increase of the probability of repeating at least the first move(s) of a sequence174

of actions. Due to the small trial-wise changes of the goals (see Figure 8B), a possible strategy for175

participants would be to repeat the first move(s) of a sequence of actions but deviate from this176

sequence after these initial move(s), depending on the goal points.177

We categorized the used sequences of actions into three categories: a DAS trial (when the full178

DAS was executed), a partial DAS trial (trial with a deviation from the DAS), or a DAS-independent179

trial (a completely different sequence). Trials that were categorized as partial DAS trials were de-180

fined by selecting at least the first move in accordance with the DAS, but not using the complete181

DAS.182

To test for an increase in repeating the first move(s) of the DAS or the complete DAS, we com-183

pared the proportion of combined DAS and partial DAS trials to DAS independent trials, again with184

factor halves or segments. A one-sided t-test for related samples revealed that the proportion of185

combined DAS and partial DAS trials significantly increased from the first half of the experiment186

to the second half, t(69) = −6.46, p < .0001, d = .49 (see Figure 2C). Similarly, a repeated measures187

ANOVA over segments showed a significant increase of combined DAS and partial DAS use over188

time, F (3, 207) = 19.53, p < .001, �2G = .006 (see Figure 2C).189
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Figure 3. Decreasing behavioral variability of different sequences used. (A)Mean number of used
different sequences of actions over the two halves (early/late) and four segments of the experiment. Error
bars represent standard errors (SE). (B) Correlation between the difference of used sequences and the
difference of mean reward per trial between the first and the second half. Each point represents one
participant. The thick solid line represents linear regression model fitted to the data.

Decrease in behavioral variability190

A repetition bias might also lead to a higher probability of repeating performed sequences of ac-191

tions other than the DAS. This would lead to a lower number of different action sequences being192

performed in later stages of the experiment. To test this, we analyzed the number of used dif-193

ferent sequences of actions between the halves and the four segments of the experiment. The194

mean number of used sequences of actions showed a small significant decrease from the first195

(16.87, SD = 5.94) to the second half (15.30, SD = 5.58), t(69) = 3.53, p < .001, d = .27 (see Figure 3A).196

A repeated measures ANOVA with segments as factor showed a significant effect, F (3, 207) =197

13.88, p < .001, �2G = .039 (see Figure 3B). Here the number of used sequences decreased signifi-198

cantly from the first to the second segment, but was stable throughout the following segments.199

A decrease in behavioral variability could also reflect learning. Maybe participants selected200

some sequences of actions with very low rewards once during the first half of the experiment, but201

learned how to avoid selecting sequences with low rewards. To assess if this decrease in behav-202

ioral variability was caused by learning to select rewarding sequences more easily, we calculated203

the correlation between the difference of used sequences and the difference of mean reward per204

trial between the first and the second half. A negative correlation would indicate that participants205

who performed fewer sequences improved their ability to find rewarding sequences. This correla-206

tion showed a significant relationship in the expected direction, r = −.38, p = .001 (see Figure 3C).207

We interpret this as evidence that the decrease in behavioral variability was probably caused by208

learning to select more rewarding sequences, over the course of the experiment.209

In summary, we found only weak evidence for a repetition bias with summary statistics. Par-210

ticipants used the DAS more frequently than expected, but we only found hints for a repetition211

bias when also considering partial DAS choices or by analyzing the development of the number212

of used sequences. Conducting a similar analysis on the second most used sequence of actions213

or a Chi-square test of independence with all sequences of actions would not be meaningful: In214

contrast to the DAS, the expected rewards for all other sequences of actions differed between the215
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first and second half of the experiment due to the grid layout changes between blocks. Hence, a216

sequence of actions that was frequently used during the first half of the experiment may generate217

very low rewards in the second half. As the repetition bias only increases the probability to repeat218

actions, we expect that action selection is mostly still guided by expected rewards, and participants219

should prefer to switch to action sequences with higher rewards (de Wit et al., 2018; Watson and220

De Wit, 2018). Therefore, to test for a repetition bias, the analysis should also take into account221

expected rewards. For this reason, we next turn to amodel-based analysis, in which we consider si-222

multaneously the repetition of action sequences and the expected rewards as effects on observed223

choices.224

Model-Based Analysis225

A potential issue with our analyses above is the limited focus on behavioural measures for one226

specific sequence of actions, e.g. howmany times the DAS was used in the first and second half of227

the experiment, thereby not considering expected rewards and other action sequences.228

To consider all sequences of actions, and expected reward and repetition bias simultaneously,229

we used an adapted version of the prior-based control model (Schwöbel et al., 2021), which we call230

here the ’expected value with proxy reward and repetition bias model’ (EVPRM). For the full model231

specification and details, see Materials and Methods and Figure 9.232

This model calculates the probability of selecting an action based on the balance of two compo-233

nents: the probability to repeat actions, and expected rewards. Crucially, the influence of repeated234

behavior is modeled by counting the number of times each action sequence has been used in the235

past 
� . This component is weighted by a freemodel parameter �init that determines the strength of236

the repetition bias (see Expected value with proxy and repetition bias model (EVPRM)). Using this237

model, the focus is not restricted to one sequence of actions and the repetition bias parameter238

quantifies the influence of past behavior on action selection for all possible sequences of actions.239

Moreover, the EVPRM incorporates the influence of expected rewards of all sequences of ac-240

tions on action selection. Like past behavior, expected rewards are weighted by a free parameter �241

that quantifies the individual precision on expected rewards. A high precision leads to pronounced242

probabilities and a stronger influence of expected rewards on action selection, while a low preci-243

sion leads to more uniformly distributed probabilities and lower influence of expected rewards on244

action selection.245

As the influence of expected reward and past behavior is modeled by two different parameters,246

�init and �, we can disambiguate between effects on behavior by a low precision on expected re-247

wards and effects on behavior driven by a strong repetition bias. Crucially, as we will show below248

this makes it possible to explain behavior that is both influenced by the current expected rewards249

and by past behavior.250

To test whether a repetition bias is required at all to explain the behavioral data, we considered251

three alternativemodels that do not include an explicit repetition term. First, we used the expected252

valuemodel (EVM), which posits that participants know the exact expected rewards and performed253

actions to solely maximize the expected rewards. However, as explained in the Methods section,254

this model would require infeasible computations made by participants as they perform the task.255
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Table 2. Results of model comparison

Model LOOIC SE pLOOIC dLOOIC dSE Best Fit
EVPRM 69,942.82 825.94 810.92 0.00 0.00 27
EVPBM 73,285.86 983.73 1,054.58 3,343.05 382.35 15
EVPM 74,301.96 1,018.95 772.52 4,359.14 421.93 28
EVM 162,308.58 1,355.02 371.92 92,365.76 1,319.67 0

EVPRM: expected value with proxy and repetition bias model; EVPBM: Expected value with proxy
and default bias model; EVPM: expected value with proxy model; EVM: expected value model;
LOOIC : leave-one-out information criterion (lower values indicate higher predictive accuracy); SE:
standard error of LOOIC ; pLOOIC : effective number of parameters penalty; dLOOIC : LOOIC
difference relative to the model with highest predictive accuracy, i.e. lowest LOOIC value; dSE:
standard error of dLOOIC based on point-wise estimates; Best Fit: number of participants whose
behavior was best explained by the model.

Second, we used a model that is based on expected reward structure only. For this expected value256

with proxy model (EVPM), the reward is known for those sequences that have been chosen before,257

but for all others an approximated valueR0 is used, whichwe assume participants estimated based258

on task instructions and training. Third, we considered the possibility that participants prefer the259

DAS based on the initial training and instructions. Tomodel this, we used an extension of the EVPM,260

the expected value with proxy and default bias model (EVPBM), which has a constant bias in favor261

of the DAS to account for the observed high probability of DAS choices in our data. For details on262

the models, see Materials and Methods.263

Model Comparison264

We calculated the predictive accuracy of the four cognitive models (EVPRM, EVM, EVPM, EVPBM)265

at the group level. We used the leave-one-out information criterion (LOOIC) (Vehtari et al., 2017)266

that evaluates model fit but also penalizes for model complexity (see Materials and Methods for267

details). Lower LOOIC values indicate a higher predictive accuracy, i.e., a lower difference between268

model predictions and observed data. We found that the EVPRM, the model including learning269

of repetition biases, showed the highest predictive accuracy (LOOIC = 69, 942.82, SE = 825.94)270

compared to the EVPBM (LOOIC = 73, 285.86, SE = 983.73), the EVPM (LOOIC = 74, 301.96, SE =271

1, 018.95), and the EVM (LOOIC = 162, 308.58, SE = 1, 355.02) (see Table 2. Because of its low272

predictive accuracy we excluded the EVM from further analyses.273

Following the guidelines from McElreath (2020) for interpreting LOOIC values, we found that274

EVPRM described the data significantly better than the second-best model EVPBM: the standard275

error of the LOOIC differences dSE between EVPRM and EVPBM was substantially smaller than276

the difference in LOOIC between these models dLOOIC (see Table 2). To investigate how well the277

models explained behavior at the participant level, we compared the LOOICs of the three remain-278

ing candidate models for each participant individually.279

First, we counted howmany participants were fitted best by each of the three candidatemodels.280
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Figure 4. Model comparison at participant level. Predictive accuracy indicated by LOOIC for each
participant and each model, with the three models for each participant aligned vertically. Participants are
grouped depending on which model showed the highest predictive accuracy.

This classification showed no clear pattern, as a considerable number of participants were equally281

well explained by each of the models (see Table 2). Although EVPRM was the best model on the282

group level, the behavior of only 27 out of 70 participants (ca. 39%) was described best by EVPRM.283

As a next step, we looked at the individual LOOIC values of the three models (see Figure 4).284

Here, most of the participants whose behavior was described best by EVPRM showed a difference285

between the LOOICs of the candidatemodels, indicating that the EVPRM explained behavior better286

than the alternativemodels. In contrast, the LOOICs of those participants whose behavior was best287

described by the two alternative models did not show a clear difference in LOOICs. This indicates288

that the three candidate models explained behavior equally well. As the participants fitted best by289

EVPBM and EVPM had low repetition biases (see next section and Figure 5), the EVPRM and the290

two alternative models are practically mathematically equivalent. We conclude that the EVPRM is291

the best model for 27 of the participants and is as good as the other two models for the remaining292

43 participants.293

Next we assessed if participants best fitted by EVPRM are the participants with a strong repeti-294

tion bias. To do this, we analyzed the distribution of the inferred parameter values of the EVPRM295

and grouped participants based on the model that explained their behavior best (see Figure 5). As296

expected, participants whose behavior was best explained by EVPRM showed the highest inferred297

repetition bias strengths. Furthermore, participants whose behavior was best explained by EVPM298

showed the highest inferred precision on expected rewards. The inferred parameter values of the299

approximated reward did not differ between best model fits.300

In what follows, we compare fitted model parameters with behavioral measures of perfor-301

mance. Given that the EVPRM model has the best fit for 27 participants, and fits the remaining302

participants as well as the other models, we limit our analyses to EVPRM fitted parameters.303

Increase in DAS usage in participants fitted best with EVPRM304

In our standard analyses above, we did not find a significant increase of DAS usage from the first to305

the second half of the experiment over all participants. We repeated this analysis with only those306
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Figure 5. Estimated parameter values of EVPRM partitioned by the model that explained participant
behavior best. Estimated value distribution for the three parameters of the EVPRM: (A) repetition bias ℎ, (B)
precision on expected rewards �, and (C) approximated reward R0. Participants are partitioned according to
the model with the lowest LOOIC . Boxes represent the interquartile range (IQR). Horizontal lines inside
boxes represent medians. Whiskers represent the 1.5 IQR of the lower and upper quartile.

27 participants best fitted by the EVPRM. This group of participants showed a high repetition bias307

(see Figure 5), and as a consequence, we expected a significant increase of using the DAS from the308

first to the second half of the experiment for these participants. Indeed, the proportion of DAS309

choices of these participants significantly increased from the first half (46.2%, SD = 24.9%) to the310

second half (51.6%, SD = 26.1%) of the experiment, t(26) = −2.27, p = .02, d = .21.311

Correlations between parameters of EVPRM312

We analyzed the correlations between the parameter estimates between the three free model313

parameters repetition bias ℎ, precision on expected rewards �, and approximated reward R0.314

As our model represents the influence of the repetition bias and expected rewards separately315

we can investigate the correlation between these two parameters. We expected that participants316

with a strong repetition bias ℎ are potentially more guided by past behavior than by expected317

rewards. Therefore, precision over expected rewards and repetition bias strength should show318

a negative correlation. We found such a significant negative correlation between the precision319

over expected rewards � and the repetition bias strength ℎ, r = −.75, p < .001 (see Figure 6A). In320

addition, we found a significant positive correlation between � and the approximated reward R0,321

r = .30, p = .01 (see Figure 6C).322

One reason for a strong repetition bias might be a low approximated reward. Therefore, the323

expectation of a low reward for unobserved sequences of actions could lead to stronger action324

repetition if participants can find an alternative sequence with higher reward. Contrary to our pre-325

diction, the approximated reward showed a positive correlation with the repetition bias strength,326

but this correlation was not significant, r = .12, p = .30 (see Figure 6B).327
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Figure 6. Participant-level correlations between estimated parameters of the EVPRM. (A) Correlation
between repetition bias strength ℎ and precision over expected rewards �. (B) Correlation between repetition
bias strength ℎ and approximated reward R0. (C) Correlation between precision over expected rewards � and
approximated reward R0. Thick solid lines represent linear regression model fitted to the data. Thin solid
lines represent standard deviations of individual fitted parameter values (SD).

Correlations between model parameters of EVPRM with performance measures328

As a further intuitive validation measure, we also tested for correlations between the model pa-329

rameters and performance measures. We expected that participants with a higher approximated330

rewardR0would showadecreased reliance on theDAS, due to an expectation of higher rewards for331

alternative sequences of action. These participants should deviate from the DAS more frequently.332

Inferred values of R0 correlated indeed negatively with the proportion of DAS choices p(DAS), but333

this correlation was not significant, r = −.18, p = .14 (see Figure 7A).334

Further, we expected that participantswith higher precision over expected rewards � were likely335

to earn more reward. This is because as � increases, participants would have a lower uncertainty336

on the expected rewards. This increases the probability that participants select actions with higher337

expected rewards. As expected, participants showed a positive significant correlation between �338

and the mean reward per trial, r = .76, p < .001 (see Figure 7B).339

Crucially, we expected that participants with higher repetition bias strength ℎ would receive340

lower rewards because participants with a strong repetition bias tend to repeat past behavior341

rather than tomaximize expected rewards. We found this significant negative correlation between342

the repetition bias strength and the mean reward obtained per trial, r = −.69, p < .001 (see Fig-343

ure 7C). Accordingly, the achieved reward decreased with increasing repetition bias strength.344

We also expected that participants with stronger repetition bias ℎ show shorter reaction times345

(RTs), as the repetition of past behavior should be executed faster than selecting yet unknown346

sequences of actions. Contrary to our expectation ℎ showed a significant positive correlation with347

mean RTs, r = .37, p = .001. We speculate that participants with a strong repetition bias were348

probably not asmotivated as other participants and therefore slower in processing relevant stimuli349

and/or executing the movements. In combination with the tight deadline of six seconds, these350

participants probably relied more strongly on known sequences of actions. This speculation is351

supported by the significant positive correlation between the number of time out trials and the352

repetition bias. See Appendix Table 2 for all correlational analyses.353

12 of 33

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 31, 2024. ; https://doi.org/10.1101/2024.05.30.596605doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.30.596605
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 7. Correlations between estimated parameters of expected value with proxy and repetition
bias model (EVPRM) and performance measures. (A) Correlation between free parameter of approximated
reward R0 and the mean proportion of DAS choices p(DAS). (B) Correlation between model parameter of
precision over expected rewards � and mean reward per trial. (C) Correlation between model parameter
repetition bias strength ℎ and mean reward per trial. Black solid lines represent linear regression model fitted
to the data.

Discussion354

In this study, we have shown experimental evidence of a repetition bias that increases the proba-355

bility of performing a sequence of actions as a function of how frequent this action sequence had356

been used before, over the course of the experiment. To show this repetition bias, we introduced a357

new grid-world task and employed a recently proposed computational model that describes action358

selection as a balance between goal-directed and a repetition bias. We found that the repetition359

bias was negatively related to task performance, suggesting an opposition between goal-directed360

performance and repetition bias.361

We developed the Y-navigation (Y-NAT) task where participants had to meet trial-specific goals362

by collecting points. We gave participants information about a default action sequence (DAS) that363

let them obtain the maximum expected reward in nearly half of all trials. With this manipulation364

we ensured that participants repeat at least one sequence of actions frequently.365

In our behavioral analyses, we found that nearly all of our participants used the DAS most fre-366

quently. Interestingly, participants executed the DAS even when the DAS did not provide the high-367

est reward. However, our subsequent standard analyses to test for a repetition-induced increase368

in DAS usage only revealed non-significant trends, and the evidence remained inconclusive.369

We complemented our analyses by a computational modeling approach to assess whether ex-370

plicit modeling of repetition learning over the course of the experiment reveals a repetition bias.371

Indeed, the repetition bias model explained participants’ behavior best.372

With the proposedmodel-based approach we were able to rule out several alternative explana-373

tions for the observed effects. First, we can exclude random responding, as all participants either374

relied on expected rewards or showed a repetition bias. Second, we excluded behavioral repe-375

tition as a fixed-choice strategy not influenced by past actions. For instance, one strategy could376

be to always select the incentivized DAS. As the DAS was of high value during the initial few trials377

of each block and always resulted in a reward, consistently repeating the DAS would classify as378
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goal-directed behavior and would not be evidence for a repetition bias. We tested this alternative379

using a model that replaced the repetition bias effect by a constant bias added to the expected re-380

ward for the DAS, leading to constant higher choice probabilities for the DAS over the course of the381

experiment. Usingmodel comparisonwe ruled out this alternative. Further evidence against a con-382

stant but not increasing influence of repetition is the finding of a general reduction in behavioral383

variability over time.384

The finding that the behavior of only a subgroup of participants was best explained by the385

repetition bias model seems consistent with previous studies where only subsets of participants386

were found to show habitual behaviour (Pool et al., 2022; Gera et al., 2023). One reason might be387

a strong motivation to perform well in experimental tasks (Cerasoli et al., 2014). This motivation388

probably prompts participants to use goal-directed behavior to collect reward. This effectmight be389

strengthened by our performance-based bonus payment, as incentives have been shown tomodu-390

late cognitive effort (Patzelt et al., 2019). This interpretation is also consistent with the finding that,391

contrary to our prior expectation, participants with an increased repetition bias showed slower re-392

action times. Slower reaction times are related to poorer performance and could be an indicator393

of less motivation and thus less goal-directed behavior for participants with strong repetition bias.394

Repetition bias and cost-benefit arbitration395

In our task, the effect of the repetition bias can only be measured in combination with concurrent396

goal-directed behavior. Specifically, according to the model, the first few decisions in a new task397

context are mainly based on expected rewards. Concurrently, the effect of the repetition bias398

ramps up and has, as we found, a measurable effect on action selection. While this is the concrete399

mechanism in the present model (see also Schwöbel et al. (2021)) the increasing influence of the400

repetition bias could also be viewed as an efficient, dynamic cost-benefit arbitration.401

Model-based planning is associated with cognitive costs (Shenhav et al., 2013; Kool et al., 2017),402

and it has beenpostulated that decisionmakers computewhether it isworth investing the cognitive403

effort. It might be that the inferred repetition bias strength is just a measurable expression of such404

a cost-benefit arbitration.405

An alternative view is to turn this argument around and to postulate that the computation and406

use of the repetition bias is the causal underlying mechanism, which is observed and eventually407

interpreted as an apparent dynamic cost-benefit analysis. What speaks for this view is that the408

repetition bias is simple to compute because the model just increases a task-specific counter by409

1. In the brain, this would correspond to a simple strengthening of a context-action association.410

Conversely, it has been shown that, in principle, cost-benefit arbitration leads to a computationally411

involved recursive planning process (Shenhav et al., 2013). The question, which can be addressed412

in future studies, is whether a simple repetition bias computation is enough to explain apparent413

cost-benefit computations to generate behaviour.414

Relation to other models and implications for habit learning415

The idea of a repetition bias is well established in psychology (Thorndike, 1911). It is related to416

stimulus-response (S-R) learning, as repetition facilitates the formation of S-R associations and re-417
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cency effects in value-based decision-making tasks (Guthrie, 1952;Wood and Rünger, 2016;Watson418

et al., 2022). The repetition bias is also consistent with previous proposals for the role of action419

repetition in the development of habitual behavior (Thorndike, 1911; Miller et al., 2019; Schwö-420

bel et al., 2021; Nebe et al., 2024). Similarly, behavioral repetition of action sequences has been421

identified as a way to optimize the trade-off between maximizing reward and a reduction of policy422

complexity (Gershman, 2020).423

Importantly, the repetition learning mechanism is different from stimulus-response associa-424

tions typically found in devaluation studies (e.g. Horstmann et al., 2015; Dickinson et al., 1983;425

Hardwick et al., 2019), and different from a potential trade-off between model-free and model-426

based reinforcement learning (RL) (Daw et al., 2011; Dolan and Dayan, 2013), because, in contrast427

to model-free RL, the repetition bias is value-free (Miller et al., 2019) and does not directly depend428

on past rewards.429

The repetition bias is possibly a prerequisite for the development of habitual behavior (Wood430

and Rünger, 2016; Miller et al., 2019; Schwöbel et al., 2021; Nebe et al., 2024). This opens up431

possibilities to use this mechanism and its predictions to investigate the formation of habits. Es-432

pecially, concerning the lack of a unified methodology for measuring habits (Watson and De Wit,433

2018; Watson et al., 2022), our task and the repetition bias could in principle be used to measure434

the tendency towards habitual behavior during ’only’ a few hundred trials without the need to im-435

plement habitual learning with over thousands of trials (Hardwick et al., 2019; Luque et al., 2020;436

Frölich et al., 2023) and sessions over two (Frölich et al., 2023) to four (Hardwick et al., 2019) days.437

Indeed, many studies investigated the influence of repetition through habits. In these studies438

habits are typically only measured indirectly, as a lack of goal-directed behavior during an extinc-439

tion phase (Balleine and Dezfouli, 2019; Watson et al., 2022). However, a lack of goal-directed440

behavior can alternatively emerge due to an inaccurate representation of action-outcome contin-441

gencies during extinction, or random responding due to a lack of motivation (Watson et al., 2022).442

Instead, here we measured repetitive behavior directly through a combination of task design and443

a model-based approach, enabling us to measure positive characteristics of repetitive behavior.444

Additionally, our task did not consist of separate training and extinction phases, and we provided445

feedback after each trial. This approach avoids a potentially inaccurate representation of the ex-446

pected rewards.447

Conclusion448

In conclusion, we introduced a novel sequential decision making task, where we demonstrated449

the influence of both expected rewards and a repetition bias on decision making. Using compu-450

tational modeling we provided empirical evidence for a repetition bias which is simply expressed451

as a value-free increase of choice probability each time an action is performed. This repetition452

bias mechanism may underlie habit formation and emphasizes the importance of considering453

frequency-based mechanisms besides reward-driven mechanisms in future studies.454
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Materials and Methods455

Participants456

Participants were recruited using the recruitment system of the faculty of psychology at the TUD457

Dresden University of Technology. In this system, students and individuals from the general pop-458

ulation interested in being participants in psychological studies can register. 74 participants com-459

pleted the experiment. Four participant were excluded for lack of behavioral variability (they per-460

formed the same sequence of actions inmore than 90% of all trials). The remaining 70 participants461

(50 female) had a mean age of 24.1 years (SD = 4.6). All participants confirmed that they did not462

have dyschromatopsia.463

Remuneration was a fixed amount of 10€ or class credit plus a performance-based bonus (M =464

2.58€, SD = 0.19€). The bonus was determined as a linear function from each participant’s rewards465

acquired during the experiment, where a reward of 100 yielded 1ct. Participants were informed466

about the maximum of the bonus, but not the exact calculation.467

The study was approved by the Institutional Review Board of the TUD Dresden University of468

Technology (protocol number EK 578122019) and conducted in accordance to ethical standards of469

the Declaration of Helsinki. All participants were informed about the purpose and the procedure470

of the study and gave written informed consent prior to the experiment.471

Experimental task472

Data collection was performed online. The task was built using lab.js (Henninger et al., 2021) and473

hosted on the neurotests server of the TUD Dresden University of Technology, which is specifically474

designed for hosting lab.js tasks.475

Participants had to navigate a Pacman-like character across a 5-by-5 grid using their keyboard476

(see Figure 8A) to collect pointsmatching a pre-defined trial-specific goal. In every trial, participants477

had to execute a sequence of four actions within a time limit of 6s. The action-set was restricted478

to moves in three directions: diagonally to the upper left, diagonally to the upper right or directly479

downwards. This specific choice of navigation, inspired by the work of Fermin et al. (2010), was480

designed to restrict the available sequences of actions participants could take. Exiting the grid’s481

boundaries or revisiting a previously visited field was not possible. Any attempt to do so triggered482

a red warning message, requiring the participant to redo the move.483

Upon each action, the character visually moved to the designated field and thereby collected484

the circle within that cell. Circles were colored to represent point values: Green circles represented485

positive points ranging from 10 to 60 in increments of 10, while red circles represented negative486

points ranging from −10 to −60. The shading of the color indicated the magnitude of points, with487

darker shades representing higher positive or negative values (see Figure 8C). Additionally, a Gaus-488

sian distributed noise (with � = 0, and � = 1.3) was applied to the points earned from each move489

and the resulting value was rounded to the nearest integer. After each move, the points from the490

collected circle were displayed at the center of the grid, and the sum of points collected during491

that particular trial was displayed at the top left corner (see Figure 1). The trial’s total score was492

calculated as the sum of points from the combined sequence of four actions.493
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Figure 8. Experimental task. (A) Participants had to collect four colored circles by navigating a Pacman-style
character on a 5-by-5 grid. Each circle’s color indicated the number of points obtained when moving into the
corresponding field (see main text for details). The points obtained for the most recent collected circle were
displayed in the centre of the grid (here 38). The goal of the current trial was presented in the top-left corner.
Below this goal number, the current sum of points gathered up to the current move were displayed. Four
squares located at the bottom left indicated the current move number. In the example, the participant was
about to select its third move after having collected points from two circles. The default action sequence
(DAS) fields were highlighted with a gray background. (B) Graph of the four goal point trajectories used. Each
block consisted of 20 trials. The y-axis shows the absolute difference in points between the goal point per
trial, and the expected points one would obtain by using the DAS. The gray area represents trials where the
DAS was one of the available action sequences with the highest expected reward. (C) Visual representation of
points per color. (D) Order of goal trajectories within the experiment and mapping of blocks into halves and
segments.

Importantly, the main goal of the task was to match the trial’s points—achieved from the se-494

quence of four actions—as closely as possible with a predefined, trial-specific goal. Participants’495

reward for each trial was then calculated based on the difference between the trial’s total points496

and the predefined goal. Smaller differences (in absolute value) led to higher rewards:497

Rewardt = max{0, 100 − 2 ⋅ |Goalt − Pointst|}. (1)
The received reward was displayed as a green bar at the end of each trial in the feedback stage498

(see Figure 1). If participants did not complete four moves within the time limit, no reward was499

earned and a red warning message appeared at the feedback stage on the left side. The sum of500

collected rewards defined the performance-based bonus payment.501

Importantly, to ensure that participants repeat at least one sequence of actions frequently, we502

introduced a default action sequence (DAS). This sequence was visually indicated by a grey back-503

ground color of the four corresponding fields (see Figure 8A) and participants were given informa-504

tion about the average number of points that could be collected with the DAS at the start of each505

trial at the center of the grid (see the left-most panel of Figure 1). The fields, sequence of actions,506
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and sum of collected points of the DAS were the same throughout the experiment. In the example507

of Figure 1, the DAS comprised two downward moves first, followed by two consecutive up-right508

movements.509

The experimentwas divided into 16 blocks consisting of 20 trials each. The distribution of points510

remained constant within a block, but changed between blocks. The points of the four circles of the511

DAS also differed across blocks but the sum of the points remained constant. The block sequence512

of the distributions of points were the same for each participant.513

Within a block, goal points changed over trials. We used four different trajectories of 20 goals514

each (see Figure 8B). Goal trajectories differed by their maximum difference between the goal515

points and the expected points of the DAS, and their trend of this difference throughout the block.516

This difference rangedbetween 12 and24points. Note, thatwhile the points that could be collected517

with the DAS stayed the same, the goals changed between trials, and therefore the rewards for the518

DAS varied.519

We selected these four trajectories to represent different principled trajectories that would it520

make difficult for participants to predict whether the DAS would remain optimal during the dura-521

tion of a block. All four trajectories started out close to the expected points obtainable by the DAS.522

Only later into the block goal points started to deviate from this initial value, or not. For exam-523

ple, one goal trajectory was remaining close to points obtainable by the DAS while another one524

increased only after half the block but then decreased again.525

With this procedurewe effectively proposed anoptimal sequence of actions at the first few trials526

of each block that was slowly devalued during subsequent trials. A repetition bias should manifest527

by increased DAS choices over the course of the experiment for the same expected rewards and528

should be detectable with summary statistics.529

We subdivided the blocks into four segments of four blocks each (see Figure 8D). Within each530

segment all four trajectories of goals were used once in a pseudo-random order so that no trajec-531

tory was repeated in two consecutive blocks. This order of goal trajectories was the same for each532

participant.533

To promote the use of the DAS, wemanipulated three features of the task. First, at least the first534

two trials of each block had a trial-specific goal close to the points of theDAS (see Figure 8B). Overall,535

in 43.75% of all trials, the absolute difference between the trial goals and the expected points of the536

DAS was between zero and five points. Therefore, for these trials, due to the minimum difference537

of ten points between circles of different color, the DAS was one of the available action sequences538

with the highest expected reward. In the remaining trials, there was always at least one sequence539

with a higher expected reward than the DAS.540

Second, we only used a partial devaluation of the DAS: the lowest expected reward of the DAS541

was still about half of the maximum reward. This follows from the reward calculation (see Equa-542

tion 1) and the maximum difference between goals and the expected DAS points of 24 (see Fig-543

ure 8B).544

Third, using the DAS gave participants a probabilistic bonus reward of 20 during half of the545

blocks. These bonus blocks were distributed pseudo-randomly throughout the experiment to en-546

sure that the bonus was available always during two of the four presentations of each goal point547
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sequence. This probabilistic bonus could be earned for each trial within a bonus block, but exclu-548

sively when using the DAS. The probability of receiving the bonus was p = .25, although the precise549

probability remained undisclosed to the participants. Participants were informed about upcom-550

ing bonus blocks right before they started. In addition, during the trial start phase, bonus trials551

were indicated by changing the color of DAS points from gray to blue. A blue bar next to the green552

reward bar during the feedback stage indicated the receipt of the bonus.553

The experiment started with an elaborate training phase to ensure that participants under-554

stood the task. The first part involved an introduction to the navigation, which was followed by555

familiarizing participants with the color coding of the circles. Then trial-specific goals and reward556

calculation was introduced. This was followed by introducing the DAS, and finally the bonus factor557

was explained. During this part of the training participants had to meet no deadline and could558

spend as much time as they needed.559

After this introductory phase, participants practiced two blocks as they would appear later in560

themain experiment. One block was with probabilistic bonus and onewithout. The only difference561

to the main experiment was an extended deadline of 10s.562

Between blocks, participants had the opportunity to take a self-determined break. The exper-563

iment, including training, had a total duration of approximately 60 minutes. The performance-564

dependent bonus rewards were determined by adding the rewards of all trials in the main experi-565

ment.566

Data analysis was performed in Python using the packages NumPy, Pandas, ArviZ, Scipy’s Stats567

module, and pingouin. Task code, data and analysis code are publicly available at GitHub.568

Expected value with proxy and repetition bias model (EVPRM)569

We made use of a previously published repetition-based learning model, the prior-based control570

model (Schwöbel et al., 2021), for model-based data analyses. This model describes a mechanism571

for taking into account previous action sequences when making choices. The model counts how572

many times each action sequence � has been chosen in the past. This contributes to the decision-573

making process as a prior distribution over policies p(�) that represents the probability of selecting574

an action regardless of expected reward or any other task contingency: the influence of the prior575

over policies on action selection of a specific action increases depending on how many times this576

action has been chosen before. The model is complemented by a component p(R̂ ∣ �) based on577

expected rewards given the predicted outcomes of the performed actions (i.e. value-based). These578

two components play the role of priors and likelihood, respectively, to turn decision-making into a579

Bayesian inference process:580

p(� ∣ R̂) ∝ p(R̂ ∣ �) p(�), (2)
where p(� ∣ R̂) represents the posterior distribution that is defined by the probability of choosing581

policy � given the reward structure R̂; p(R̂ ∣ �) represents the expected reward R̂ given policy �;582

and p(�) is the prior over action sequences. The multiplication of the expected reward and the583

prior over policies balances the influences of goal-directed planning and past behavior on action584

selection. Intuitively, the goal-directed component p(R̂ ∣ �) represents the value-based part of585
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making a decision, i.e. a participants simply selects the action that gives the highest expected586

reward, while the prior over action sequences p(�) implements the repetition bias.587

In our experimental task, the reward structure R̂, i.e. the expected reward for each action588

sequence �, can in principle be calculated given the information available to participants: the points589

for each one of the squares on the grid is shown on the screen, so participants could calculate the590

points of every of the possible 36 sequence of actions � and determine the expected reward with591

the exception of a noise term that is not influenced by �. However, as there is a deadline of six592

seconds, the calculation becomes unfeasible. To account for this, we posit that participants rely593

on prior beliefs or approximations they might have acquired in previous trials.594

For the proposed EVPRM, we assumed a reward structure R̂ that depends on past observations
made by the participant: for sequences that have been already observed during the current block,
the model uses the exact observed reward; for the unobserved sequences, it uses an approxi-
mated reward R0, which we assumed participants approximate based on their experiences during
previous blocks and training. The approximated reward R0 is a free parameter and indicates the
individual expected reward for all yet unobserved sequences of actions. As an exception, the DAS
was always assumed to be an observed sequence of actions because the points of the DAS were
communicated at the initial phase of each trial. Also the expected reward of the DAS included the
probabilistic bonus reward. With this, the reward structure in the EVPRM is as follows:

p(R̂ ∣ �) =

⎛

⎜

⎜

⎜

⎝

R̂�
∑

�∈�
R̂�

⎞

⎟

⎟

⎟

⎠

�

(3)

R̂�t =

⎧

⎪

⎨

⎪

⎩

R�t if � ∈ {�̃1∶t}
R0 otherwise , (4)

where � =
{

(a1, a2, a3, a4) ∣ ai ∈ {↖, ↓,↗}
}, with � = (a1, a2, a3, a4) represents a sequence of four595

actions, and ai ∈ {↖, ↓,↗} represents the threemovement directions, R̂� is the expected reward of596

the sequence of actions �,∑�∈� R̂� is the sum of expected rewards of all sequences of actions, with597

� representing all possible action sequences, � is a free parameter representing the precision over598

expected rewards,R� is the expected reward for the sequence of actions �,R0 is the approximated599

reward for unobserved sequences of actions, �̃1∶t = {�̃1, �̃2,… , �̃t} are the performed sequences of600

actions up to trial t. Note thatwe chose p(R̂ ∣ �) as a fraction to stay close to the Bayesian framework601

in Schwöbel et al. (2021) and to have a comparable equation to the prior below.602

The free parameter � represents the precision over expected rewards: values of � > 1 leads to603

more concentrated probabilities that favor the choice of the sequences of actions with the highest604

expected rewards and values of � < 1 lead to more uniformly distributed probabilities, enabling605

greater exploration of different choices.606

The prior over action sequences p(�) was defined, as by Schwöbel et al. (2021), by a counter 

for the number of times the respective sequence of actions has been used used in the past, and
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the initial count �init is a free parameter that was equal for each sequence of actions:
p(�) =

��
∑

�∈�
��

(5)

��t = �init + 
�t (6)
(
1∶t)i =

t
∑

�=1
�i� (7)

�i� =

⎧

⎪

⎨

⎪

⎩

1 if �i was used at t
0 otherwise , (8)

where ��t is the repetition bias strength at trial t, �init is the initial count, 
�t is the counter of how607

many times the sequence of actions � was performed until trial t, �i� is the Kronecker delta.608

Following Schwöbel et al. (2021), the free parameter initial count �init influences the strength of609

the repetition bias. A low initial count, e.g. �init = 1, leads to a strong repetition bias. As �init defines610

the counter for all sequences of actions, the increase of 
 by 1, after a sequence of actions was611

performed, leads to a substantial increase of the prior over policies for this sequence. In contrast,612

a high initial count, e.g. �init = 100, leads to a weak increase of the prior over policies if a sequence613

of actions is performed.614

Finally, our model can make decisions at every trial by sampling from the categorical posterior
probability distribution over possible �, defined as: p(� ∣ R̂, ��), which is the probability of sampling
each sequence of actions �, at each trial depending on the assumed reward structure R̂, and the
prior over policies �� :

p(� ∣ R̂, ��) ∝ p(R̂ ∣ �)p(�) (9)

p(� ∣ R̂, ��) ∝

⎛

⎜

⎜

⎜

⎝

R̂�
∑

�∈�
R̂�

⎞

⎟

⎟

⎟

⎠

�

⋅
��

∑

�∈�
��

(10)

By changing the free parameters, we can change the behavior of the agent: At one end, with615

a high initial count �init, an agent will be minimally influenced by its past behavior and is nearly616

completely goal directed. At the other end, with a low initial count �init, agent behavior is more617

influenced by expected rewards and thus has a strong repetition bias of past action sequences. In618

addition, a precision over expected rewards � close to 0 represents the case in which the agent619

is uncertain about the learned reward structure and will tend to choose behavior based on the620

repetition bias.621

In Figure 9 we simulate an experimental session with our model, focusing on one action se-622

quence �, the DAS. In the simulations, the model has a high influence of past behavior (�init = 1.1).623

The used precision over expected rewards (� = 5) moderately pronounced the distribution of ex-624

pected rewards. Based on the changing goals the expected reward p(R̂ ∣ �) for this action sequence625

changes in a constant range from trial to trial throughout the experiment. But the prior over poli-626

cies p(�) for this action sequence increases slowly over time, because this action sequence is per-627

formed repeatedly. One can see that in trials where the expected reward is relatively high, the628

resulting posterior p(�|R̂) is high as well. This means the resulting choice probability is driven by629
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Figure 9. Simulation of task with EVPRM.Means for probability of selecting one specific sequence of
actions �, p(� ∣ R̂) (blue line), the prior over policies for �, p(�) (orange line), and the expected reward for �,
p(R̂ ∣ �) (green line) over N = 100 simulations. While expected rewards are in a constant range throughout the
task, the prior over policies increases and accordingly the choice probability.

expected rewards, represented by the first term on the right-hand side of Equation 10. In addition,630

as the prior is slowly increasing, there is a growing contribution of the repetition bias, given by the631

second term of Equation 10. Hence, the repetition bias increases the choice probability but actions632

are in principle still modulated by expected rewards. Effectively, in the example, the repetition bias633

increases the choice frequency from roughly 0.3 in the first 50 trials to roughly 0.7 in the last 50634

trials, when there is a relatively large expected reward.635

Note that the original model by Schwöbel et al. (2021) was formulated within a planning as636

inference (Botvinick and Toussaint, 2012) and active inference (Friston et al., 2016; Schwöbel et al.,637

2018) framework to calculate the posterior distributions for action selection. We adapted the key638

idea: the posterior probabilities are based on the product of a function over the expected rewards639

and the prior over policies. Here, for our purposes, we simplified this model to derive a relatively640

straightforward observation model so that we could use Bayesian inference for fitting the model’s641

free parameters to participant data. Furthermore, themodel calculates probabilities based on past642

and current observations and does not use any kind of future forward planning. It is therefore643

related to RL models, which also calculate subjective values for the possible actions based on the644

current expected rewards and the reward history (Dezfouli and Balleine, 2012; Daw et al., 2011;645

Miller et al., 2019).646
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Alternative models647

The proposed EVPRM makes two assumptions: (1) the repetition bias influences action selection,648

and (2) participants used an approximated reward for unobserved sequences of actions. To test649

against alternative explanations, we formulated three alternativemodels. Thesemodels differ only650

in their assumed reward structure R̂ and as a critical distinction, they do not include the prior over651

policies p(�). In what follows, we introduce the three alternative models.652

Expected value with proxy and default bias model (EVPBM)653

An alternative explanation for the repetition of the DAS would be a bias specifically for the DAS654

but not a general repetition bias as formulated in the EVPRM. To implement this assumption, we655

derived a new model variant that had an exclusive and constant bias for the DAS. In other words,656

thismodel assumes that during training participants developed a bias for choosing the DAS but did657

not have a slowly increasing repetition bias or a preference for repeating other action sequences.658

Such a constant bias in favor of the DAS would also lead to an increase in DAS choices and be659

interpreted as a repetition bias. The difference to the EVPRM is that a constant bias would be660

independent from past behavior in the main experiment.661

Tomodel this bias, we added a constant termas a freemodel parameter to the expected reward
of the DAS:

p(� ∣ R̂) ∝

⎛

⎜

⎜

⎜

⎝

R̂�
∑

�∈�
R̂�

⎞

⎟

⎟

⎟

⎠

�

(11)

R̂�t =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

RDASt + bDAS if � = DAS
R�t if � ∈ {�̃1∶t}
R0 otherwise

, (12)

where � is a sequence of four actions defined as above, R̂ is the assumed reward structure, R̂� is662

the expected reward for the sequence of actions �, � is the free model parameter representing663

precision over expected rewards, R0 the free model parameter of approximated rewards for yet664

unobserved sequences of actions, �̃1∶t = {�̃1, �̃2,… , �̃t} are the performed sequences of actions up665

to trial t, and bDAS is the bias for �DAS.666

Expected value with proxy model (EVPM)667

A second alternative explanation of the choice data is that repetition does not influence action
selection at all. Therefore, contrary to the EVPRM, participants’ behavior is not affected by past
behavior, but determined by expected rewards only. To implement this assumption, we derived a
model variant by removing the prior over policies from the EVPRM to have a model that is solely
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dependent on the expected reward structure:

p(� ∣ R̂) ∝

⎛

⎜

⎜

⎜

⎝

R̂�
∑

�∈�
R̂�

⎞

⎟

⎟

⎟

⎠

�

(13)

R̂�t =

⎧

⎪

⎨

⎪

⎩

R�t if � ∈ {�̃1∶t}
R0 otherwise , (14)

where � is a sequence of actions defined as before, R̃ is the assumed reward structure, �̃1∶t =668

{�̃1, �̃2,… , �̃t} are the performed sequences of actions up to trial t, � is the precision over expected669

rewards and a free model parameter, R� the expected reward for a sequence of actions �, and R0670

the free model parameter of approximated reward for unobserved sequences.671

Expected value model (EVM)672

The EVPM relies on the approximated reward for unobserved sequences of actions R0. An alterna-673

tive is that participants indeedwere able to calculate expected rewards for all sequences of actions.674

To implement this assumption we instantiated a model without the approximated reward param-675

eter and to use expected reward R� instead. Therefore, contrary to the other candidate models,676

this model performs actions selection independent from past behavior. We implemented this as:677

p(� ∣ R) ∝

⎛

⎜

⎜

⎜

⎝

R�
∑

�∈�
R�

⎞

⎟

⎟

⎟

⎠

�

, (15)

where � is a sequence of four actions defined as before,R� is the expected reward of the sequence678

of actions �, and � is the free model parameter representing precision over expected rewards.679

Model fitting680

Parameter estimation was done in Python with PyMC (Salvatier et al., 2016, version 5.0.1) using681

the No U-Turn Sampler (NUTS) (Hoffman and Gelman, 2014). We obtained 4,000 samples from682

four chains of length 1,000 (1,000 warm-up samples).683

We used the following weakly informative prior distributions for the free model parameters:684

� ∼ Γ(3, 1), R0 ∼ Γ(55, .75), ℎ = 1
�init ∼ Beta(3, 3), and bDAS ∼ Γ(3, .1). We used the same priors for all685

candidate models. The complete code can be found online at GitHub.686

Model comparison687

To ensure that parameter inference works well for a meaningful range of parameters, we per-688

formed extensive parameter recovery studies for all four models (for details see Appendix Fig-689

ure 1).690

Model comparison was based on using leave-one-out cross-validation approximated by Pareto-691

smoothed importance sampling (PSIS-LOO) (Vehtari et al., 2017). This information criterion calcu-692

lates the pointwise out-of-sample predictive accuracy from a fitted Bayesian model. Crucially, it693

penalizes models with more parameters. We calculated the expected log point-wise predictive694

density (elpd) and the corresponding standard error (SE) on the deviance scale (−2elpd). Lower695
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Figure 10. Estimated parameters of expected value with proxy and repetition bias model (EVPRM) Dots
represent posterior means of individual parameter estimates. Each plot represents one of the three free
parameters: (A) repetition bias ℎ, (B) precision on expected rewards � and (C) approximated reward R0. Grey
patches represent kernel density estimates. The color of dots indicate standard deviations (SD).

values of PSIS-LOO indicate higher predictive accuracy. Calculation of PSIS-LOO scores was per-696

formed with ArviZ (Kumar et al., 2019, version 0.7.0).697

Parameter distributions of EVPRM698

To better compare individual repetition bias strengths we used the inverse of the initial count �init:699

ℎ = 1
�init (see Equation 6). ℎ has a value range from 0 to 1, where values near 1 indicated a strong700

repetition bias and values around 0 indicate a weak repetition bias.701

Repetition bias strength varied from very low values between close to 0 and .2 to medium to702

strong values between .5 and .9 (see Figure 10A). The inferred � values (the precision over expected703

reward) spreadbetween values very close to 0 andhigh values up to 16 (see Figure 10B). The approx-704

imated reward R0 for unobserved sequences of actions showed a broad range of values between705

around 10 and around 70 (see Figure 10).706

Posterior predictive checks for EVPRM707

we conducted posterior predictive checks (Gelman et al., 2013) to assess if the fitted EVPRM can708

replicate the behavior of the participants. We used the method from PyMC that simulates choices709

of 1,000 agents for each participant based on the model and posterior. The parameters of the710

agents were drawn from the posterior distributions.711

We calculated the proportion of correctly predicted choices for each participant over all agents.712

These proportions of correctly predicted choices showed a very wide range from 4.9% to 86.3%,713

but all proportion were above the chance level of 2.7% (see Figure 11A). On the group level the714

EVPRM predicted DAS choices better (74.9%) compared to non-DAS choices (19.1%, see Figure 11C).715
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Figure 11. Posterior predictive checks (PPC) for expected value with proxy and repetition bias model
(EVPRM). (A) Distribution of the proportion correctly predicted choices for each participant based on
simulated data with the inferred parameters from the EVPRM. Each white dot represents the proportion of
correctly predicted choices for one participant. The grey area represents a KDE of the distribution, and the
dotted lines inside the KDE represent the borders of the quartiles. (B) Correlations between proportion of
correctly predicted choices of each participant and their inferred parameters of the EVPRM and their
proportion of default action sequence (DAS) choices. Black solid lines represent linear regression model fitted
to the data. ℎ: repetition bias, �: precision over expected rewards, R0: approximated reward, p(DAS):
proportion of DAS choices. (C) Proportions of correctly predicted DAS and non-DAS choices at the group-level.
Dotted line represents chance level. PMS: proportion matched choices.

We further calculated correlations between the proportions of matched choices and the posterior716

means of the inferred parameters and the proportion of DAS choices p(DAS). Here EVPRM better717

predicted choices of participants with weak repetition bias ℎ, r = .55, p < .001, higher precision718

over expected rewards �, r = .73, p < .001, and higher proportions of p(DAS), r = .84, p < .001 (see719

Figure 11B). The correlation with the approximated reward R0 was not significant, r = .12, p = .25.720
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Appendix867

Appendix 0—table 1. Descriptive Statistics depending on bonus condition

All Trials Bonus No Bonus t-Test
M SD M SD M SD t p d

p(DAS) 0.57 0.15 0.57 0.19 0.52 0.19 -4.68 <.001 .26
Reward 81.52 5.00 81.34 6.63 80.04 5.92 -2.84 .003 .21
RT (ms) 1645.17 335.21 1691.79 405.11 1662.76 407.69 -1.56 .938 .07
Time Outs 4.70 3.63 2.60 2.49 2.14 1.91 -1.56 .938 .21

Depicted are means for all trials, trials with potential bonus for DAS, and trials without potential
bonus for DAS over all participants. The t-tests represent one-sided t-tests for related samples
that test for significant differences between bonus and no bonus trials. For p(DAS) and reward we
tested if the means of the first half are smaller than the means of the second half. For RT and time
outs we tested if the means of the first half are greater than the means of the second half. p(DAS):
proportion of DAS choices, reward: mean reward per trial, RT: reaction time, DAS: default action
sequence,M : mean, SD: standard deviation, t: t-statistic, p: p-value, d: Cohen’s d.
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Appendix 0—table 2. Correlations between inferred parameter values of EVPRM and performance measures

ℎ � R0 p(DAS) Reward RT Time outs
ℎ -
� -0.75 -
R0 0.12 0.30 -
p(DAS) -0.22 0.37 -0.18 -
Reward -0.69 0.76 -0.11 0.67 -
RT 0.37 -0.44 0.25 -0.58 -0.70 -
Time outs 0.32 -0.27 0.16 -0.40 -0.52 0.65 -

Depicted are correlation coefficients between inferred parameter values of EVPRM and perfor-
mance measures. As performance measures the means of each participant were used. Significant
correlations are bold (p < .05). �: precision over expected rewards, R0: approximated reward, ℎ:
repetition bias, p(DAS): proportion of DAS choices, reward: mean reward per trial, RT: reaction
time, DAS: default action sequence, EVPRM: expected value with proxy and repetition bias model.
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Appendix 0—figure 1. Parameter recovery for all candidate models. Correlations of true and inferred parameter values for all free
parameters of the four candidate models: (A) expected value with proxy and repetition bias model (EVPRM), (B) expected value with proxy and
default bias model (EVPBM (C) expected value with proxy model (EVPM), (D) and expected value model (EVM). Black solid lines represent
correlation between true and inferred parameter values. Grey dashed lines represent true parameter values.
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