

1 Cognitive Computational Model

2 Reveals Repetition Bias in a

3 Sequential Decision-Making Task

4 **Eric Legler^{1*}, Darío Cuevas Rivera^{1,2}, Sarah Schwöbel¹, Ben J. Wagner¹, Stefan
5 Kiebel^{1,2}**

*For correspondence:

eric.legler@tu-dresden.de (EL)

6 ¹Chair of Cognitive Computational Neuroscience, Faculty of Psychology, TUD Dresden
7 University of Technology, Germany; ²Centre for Tactile Internet with
8 Human-in-the-Loop (CETI), TUD Dresden University of Technology, Germany

9

10 **Abstract** Humans tend to repeat past actions due to rewarding outcomes. Recent
11 computational models propose that the probability of selecting a specific action is also, in part,
12 based on how often this action was selected before, independent of previous outcomes or
13 reward. However, these new models so far lack empirical support. Here, we present evidence of
14 a repetition bias using a novel sequential decision-making task and computational modeling to
15 reveal the influence of choice frequency on human value-based choices. Specifically, we find that
16 value-based decisions can be best explained by concurrent influence of both goal-directed
17 reward seeking and a repetition bias. We also show that participants differ substantially in their
18 repetition bias strength, and relate these measures to task performance. The new task enables a
19 novel way to measure the influence of choice repetition on decision-making. These findings can
20 serve as a basis for further experimental studies on the interplay between rewards and choice
21 history in human decision-making.

22

23 **Introduction**

24 Over a century ago, *Thorndike (1911)* proposed the *law of effect*, which states that actions that
25 lead to rewarding outcomes are more likely to be repeated. The law of effect gained widespread
26 recognition and is considered an important foundation for the development of early operant con-
27 ditioning (*Skinner, 1963*) and modern-day reinforcement learning (*Sutton and Barto, 2018*). What
28 is less known is that Thorndike additionally stated the *law of exercise*, also known as the *law of use*,
29 saying that humans tend to repeat previous actions regardless of reward (*Thorndike, 1911*).

30 Consider, for instance, the morning routine that many of us follow, e.g. we start with a cup of
31 tea or coffee, take a shower, have breakfast, brush our teeth, and get ready for work. Although
32 such action sequences may be learned only by goal-directed reward seeking (law of effect), such

33 learning might also be based on Thorndike's law of exercise. Indirect empirical evidence for the
34 law of exercise, i.e. a measurable repetition bias, stems from questionnaire studies on everyday
35 behavior (*Ouellette and Wood, 1998; Hagger et al., 2002; Wood et al., 2002; Neal et al., 2006; Ver-*
36 *planken, 2006; McCloskey and Johnson, 2019*), showing that participants reliably repeat behavior
37 in a context-dependent manner, for example a specific morning routine or the mode of transporta-
38 tion to work.

39 Experimental evidence, across disciplines, shows that repetition affects human decision making
40 and learning. It improves language learning (*Lynch and Maclean, 2000*), likely through increased
41 word-familiarity (*Perea et al., 2016*) and better learning of multiword expressions (*Majuddin et al.,*
42 *2021*). It also modulates learning of motor and cognitive skills (*Huang et al., 2011; Magallon et al.,*
43 *2016; Reinkensmeyer et al., 2016; Wolpert et al., 2011; Spampinato and Celnik, 2021*) and affects
44 memory retrieval, judgement (*Scarborough et al., 1977; Hintzman, 1976*) and working memory pro-
45 cesses (*Oberauer et al., 2015*), demonstrating its broad influence on cognitive functions. Effects
46 of repetition have also been studied under specific experimental conditions, suggesting their inde-
47 pendence from direct reward. Here, repetition significantly affects perceptual decision making by
48 accelerating response times for ambiguous stimuli (*Akaishi et al., 2014*). Similarly, repetition can
49 alter preferences in value-based decision-making processes (*Nebe et al., 2024*), suggesting that
50 the influence of repetition extends beyond the direct anticipation or receipt of reward, challeng-
51 ing standard views on the effect of reward on decision making and learning. Most importantly,
52 repetitions are seen as a key element of habit formation (*Wood and Rünger, 2016; Watson et al.,*
53 *2022*).

54 Over the last decade, the study of habitual vs. goal-directed responses have been enriched
55 through a broad range of studies using devaluation tasks, extinction tests or more complex cog-
56 nitive tasks, like the Wisconsin card-sorting task (*Wilson and Niv, 2012*) or the two-step task (*Daw*
57 *et al., 2011*). These studies helped broaden our understanding of whether an action is outcome-
58 oriented via a probabilistic map of the environment or rather driven by obtaining past reward in
59 the same situation, as for example might be the reason for an insensitivity to devaluation. For
60 instance, for the two-step task, behavior is described by using a mixture of model-based (MB) and
61 model-free (MF) reinforcement learning (RL). Here, the MB controller learns a probabilistic action-
62 outcome mapping, i.e. a more sophisticated goal-directed higher order cognitive process, while
63 the MF controller is governed by simpler stimulus-response associations (*Daw et al., 2005, 2011*).
64 This approach provided many insights on how humans learn and perform tasks (*Daw et al., 2011;*
65 *Wunderlich et al., 2012; McDannald et al., 2012; Doll et al., 2015, 2016; Gläscher et al., 2010*), and
66 also highlighted how impairments in model-based planning can be linked to psychiatric disease
67 (*Gillan and Robbins, 2014; Gillan et al., 2016; Seow et al., 2021; Wyckmans et al., 2019; Voon et al.,*
68 *2015*). However, it is still debated whether the reward-driven nature of model-free RL aligns with
69 the concept of habits, which is not related to immediate reward, but to mere repetition of actions
70 (*Wood and Rünger, 2016; Watson et al., 2022*). Two recent studies (*Miller et al., 2019; Schwöbel*
71 *et al., 2021*) proposed a different mechanism. In these studies, based on simulations, behavior
72 was explained by the interaction of two components. First, as usual, goal-directed behavior was
73 explained by a model-based planner. Second, the novel proposal was to model the effect of a

74 repetition bias, following Thorndike's law of exercise, based on past choice counts alone, without
75 regard to outcome or reward. This perspective is also related to minimizing the complexity of an
76 action policy over time (*Gershman, 2020*).

77 Here, we followed this theoretical lead and assessed empirically, in human participants ($n = 70$),
78 the effect of such a repetition bias on behavior. We used a computational model to disambiguate
79 the effects due to repetition bias from effects due to goal-directed behavior driven by reward max-
80 imization. To capture both type of effects, we developed a novel Y-navigation task (Y-NAT) in which
81 participants perform sequences of movements in a 5x5 grid world to collect a trial-specific number
82 of points. The task was designed to fulfill the following three main objectives: First, trial-specific
83 points establish a clear goal that will prompt goal-directed behavior in participants. Second, the
84 combination of a relatively tight deadline and the requirement to plan four moves ahead (see Mate-
85 rials and Methods) challenges participants in their capacity to act in a purely goal-directed fashion.
86 Third, participants were informed about a so-called default action sequence (DAS), providing them
87 with a less complex go-to strategy, which induces repetition of the same sequence over trials. The
88 Y-NAT therefore enabled us to test (1) whether a repetition bias develops over time, (2) what its ef-
89 fects are on task behavior and (3) what the link is between individual differences in repetition bias
90 and overall task-performance. Data was analyzed using both standard behavioral analyses and
91 Bayesian model-based analyses. We used Bayesian model comparison to test several alternative
92 models, with or without repetition bias.

93 Results

94 We created a sequential decision-making task, the Y-navigation task (Y-NAT), to show the repetition
95 bias (see Materials and Methods). For this grid-world task, participants had to collect points with
96 four moves within a time limit of 6s and match a trial-specific goal sum of points as closely as
97 possible (see *Figure 1*). Participants were required to complete 16 blocks, each comprising 20
98 trials, resulting in a total of 320 trials.

99 In order to ensure the frequent repetition of at least one sequence of actions, a default action
100 sequence (DAS) was highlighted. Using the DAS resulted in the highest expected reward in less
101 than half of the trials (43.75%), with the lowest expected reward of the DAS being about half of the
102 maximum reward. Furthermore, in half of the blocks, a probabilistic bonus could be earned when

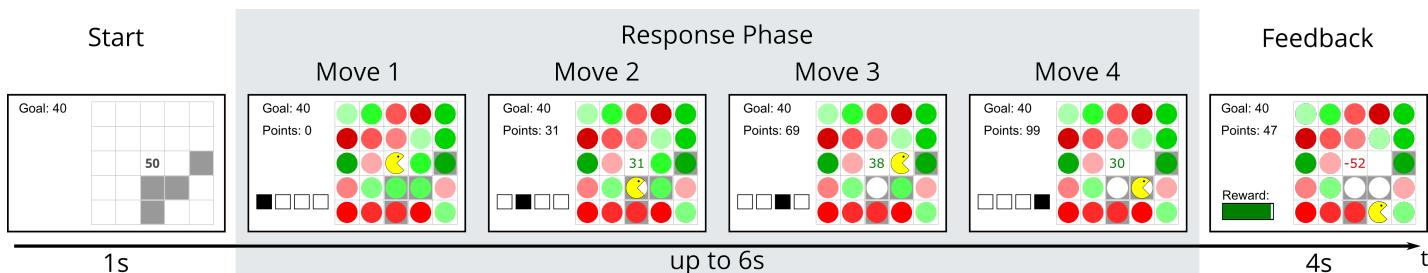


Figure 1. Illustration of a single task trial. At trial start, the goal, the fields of the DAS and the mean points of the DAS were shown on the screen for one second. During the subsequent response phase of up to six seconds, four moves had to be performed. During the feedback phase of 4 seconds at the end of each trial the reward was communicated.

Table 1. Descriptive statistics of performance measures for all trials and halves of the experiment

	All Trials		First Half		Second Half		t-Test		
	<i>M</i>	<i>SD</i>	<i>M</i>	<i>SD</i>	<i>M</i>	<i>SD</i>	<i>t</i>	<i>p</i>	<i>d</i>
<i>p</i> (DAS)	0.54	0.19	0.53	0.20	0.55	0.19	-1.62	.055	.10
Reward	80.69	5.99	79.58	6.66	81.80	5.96	-4.58	<.001	.35
RT (ms)	1677.09	398.72	1820.84	450.34	1535.60	390.85	8.76	<.001	.68
Time Outs	4.74	3.70	3.11	2.56	1.63	1.88	4.86	<.001	.66

Means over all participants of *p*(DAS), reward per trial, reaction times and the number of time outs, separately for all trials, first and second half of the experiment. The one-sided *t*-tests tested for significant differences between first and second half. For *p*(DAS) and reward we tested if the mean of the first half is smaller than the mean of the second half. For RT and time outs, we tested if the means of the first half are greater than the means of the second half. *p*(DAS): proportion of DAS choices, reward: mean reward per trial, RT: reaction time, DAS: default action sequence, *M*: mean, *SD*: standard deviation, *t*: *t*-statistic, *p*: *p*-value, *d*: Cohen's *d*.

103 using the DAS.

104 In what follows we first present the results from standard behavioral analyses based on sum-
105 mary statistics and then move on to a model-based analysis.

106 Behavioral Analysis

107 Our first approach was to find evidence of a repetition bias using inference statistics. For our
108 task, we expected that a repetition bias manifests in the following ways: (1) an increase, over the
109 course of the experiment, in the usage of the most frequently used sequence of actions; (2) an
110 increase, over the course of the experiment, in the selection of the most frequently used sequence
111 of actions in trials where this sequence of actions did not have the highest expected reward; (3)
112 an increase, over the course of the experiment, to perform parts of the most frequently used
113 sequence of actions, and (4) a decrease, over the course of the experiment, in the number of
114 different sequences of actions being used.

115 We determined the proportion of trials in which the default action sequence (DAS) was exe-
116 cuted, *p*(DAS), for each participant. As expected, the DAS was used in more than half of the trials
117 (*p*(DAS) = .54, *SD* = .19), and 66 participants (94%) used the proposed DAS most frequently (see
118 **Table 1**). We found the expected difference in the proportion of DAS choices between the bonus
119 (*p*(DAS) = .57, *SD* = .19) and the no bonus condition (*p*(DAS) = .52, *SD* = .19), *p* < .001, *d* = .26 (see
120 Appendix **Table 1** for all descriptive statistics depending on the bonus condition).

121 We focused all subsequent analyses on the DAS because participants used the DAS more fre-
122 quently than expected when considering expected rewards, and the DAS was used most frequently
123 by nearly all of the participants. We conducted three statistical analyses to test for a repetition bias:
124 we tested for an increased usage of this sequence over time, an increased usage of this sequence
125 even when the sequence did not yield the highest expected reward over time, and an increased us-

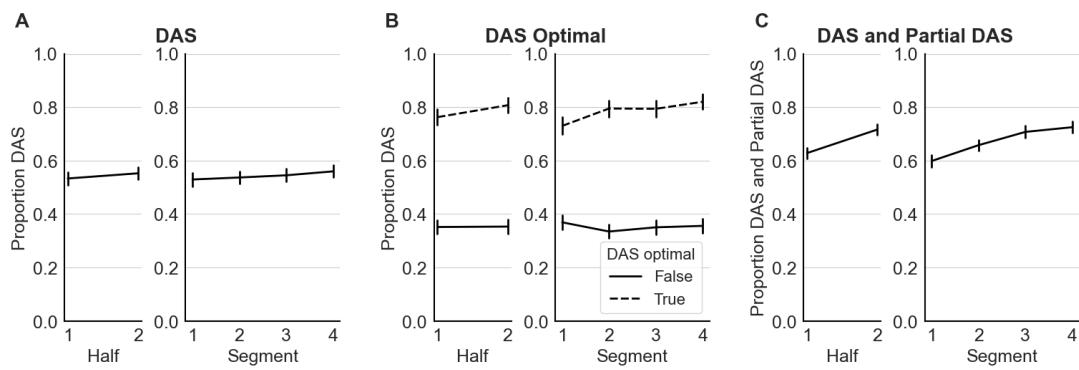


Figure 2. Default action sequence (DAS) choice behavior. **(A)** Mean proportional use of default action sequence (DAS) over the two halves (early/late) and four segments of the experiment. **(B)** Mean proportional use of default action sequence (DAS) depending on if the DAS was one of the sequences with the highest expected reward (optimal), separated by halves and by the four segments. **(C)** Mean proportional use of partial DAS use for non-DAS trials depending on halves and the four segments of the experiment. Black lines represent means over all participants. Error bars represent standard errors (SE).

126 age of parts of the sequence, when the full sequence was not performed. Furthermore, we tested
127 for a decrease of behavioral variability as an indicator of a repetition bias. We describe the results
128 of these analyses in the following sections.

129 Increase of DAS usage

130 We assessed whether there was an increase in DAS usage throughout the experiment. We re-
131 peated the differences between the trial-specific goals and the expected points of the DAS across
132 halves and four segments (see *Figure 8D*), and consequently expected rewards for the DAS to be
133 repeated across the halves and the segments. The expected points for the DAS were communi-
134 cated at the beginning of each trial and participants were able to calculate the expected reward for
135 the DAS. Therefore, participants' proportion of DAS choices should not change if they were guided
136 only by expected rewards. However, if a repetition bias influenced participants' choices, the DAS
137 usage should have increased with time.

138 We compared the average proportion of DAS choices of all participants between the first and
139 second half of the experiment, and over the four segments (comprising four subsequent blocks,
140 see also *Figure 8D* in Materials and Methods). During the first half, over all participants, the DAS
141 was used in 53.3% ($SD = 19.7\%$) of the trials, whereas in the second half the DAS was used in
142 55.2% ($SD = 18.8$) of the trials (see *Figure 2A*). A one-sided t -test for related samples based on the
143 individual differences of all participants only showed a non-significant difference, $t(69) = -1.62$, $p =$
144 .055, $d = .10$. Similarly, there was only a non-significant increase of DAS usage across the four
145 segments, repeated measures ANOVA with $F(3, 207) = 1.52$, $p = .21$, $\eta^2_G = .003$, see *Figure 2A*.

146 Increase in DAS usage in trials where DAS is not optimal

147 Although we did not find a significant increase in DAS usage over the course of the experiment,
148 a repetition bias for the DAS should increase the probability of selecting the DAS irrespective of
149 the expected reward of the DAS. We expected this because at the beginning of each block the DAS

150 was an optimal choice (see Materials and Methods and **Figure 8B**) participants were incentivized
151 to use the DAS in the first trials of each block; this incentivized repetition of the DAS would bias
152 participants towards choosing the DAS even when it did not yield the highest expected reward.
153 However, the repetition bias could also decrease the probability to switch back to the DAS when
154 the DAS is optimal later during the block. These two opposing effects together could explain why
155 we found no significant overall increase in DAS usage.

156 To find this effect, we split up trials based on whether the DAS was one of the available se-
157 quences of actions with the highest expected reward, or not. We determined a use of DAS as
158 optimal if the absolute difference between the points obtained by the DAS and the goal was ≤ 5
159 points, because the difference between two adjacent colors was 10 points (see Materials and Meth-
160 ods). We conducted a repeated measures ANOVA with the proportion of DAS choices as dependent
161 variable and the factors (1) halves of the experiment, and (2) DAS optimality. The main effect of
162 expected reward was significant, $F(1, 69) = 293.89, p < .001, \eta^2_G = .47$. The main effect experimental
163 halves was not significant, $F(1, 69) = 3.88, p = .053, \eta^2_G = .003$ (see **Figure 2B**). We repeated this anal-
164 ysis with four segments instead of halves of the experiment as a factor. Again, the main effect of
165 expected reward was significant, $F(1, 69) = 232.15, p < .001, \eta^2_G = .45$ and the main effect of segment
166 was not significant, $F(3, 207) = 2.36, p = .077, \eta^2_G = .008$ (see **Figure 2B**).

167 Taken together, we did not find evidence for an increase in DAS use for trials where the DAS
168 was not one of the sequences of actions with the highest expected reward. Hence, the potential
169 repetition bias, established through the repeated use of the DAS in trials where the DAS is one of
170 the sequences of actions with the highest reward, did not lead to an increase of DAS use at trials
171 where the DAS did not have the highest expected reward.

172 Increase in DAS parts

173 As participants had to execute a sequence of four moves in each trial, a repetition bias may have ex-
174 pressed itself by an increase of the probability of repeating at least the first move(s) of a sequence
175 of actions. Due to the small trial-wise changes of the goals (see **Figure 8B**), a possible strategy for
176 participants would be to repeat the first move(s) of a sequence of actions but deviate from this
177 sequence after these initial move(s), depending on the goal points.

178 We categorized the used sequences of actions into three categories: a DAS trial (when the full
179 DAS was executed), a partial DAS trial (trial with a deviation from the DAS), or a DAS-independent
180 trial (a completely different sequence). Trials that were categorized as partial DAS trials were de-
181 fined by selecting at least the first move in accordance with the DAS, but not using the complete
182 DAS.

183 To test for an increase in repeating the first move(s) of the DAS or the complete DAS, we com-
184 pared the proportion of combined DAS and partial DAS trials to DAS independent trials, again with
185 factor halves or segments. A one-sided *t*-test for related samples revealed that the proportion of
186 combined DAS and partial DAS trials significantly increased from the first half of the experiment
187 to the second half, $t(69) = -6.46, p < .0001, d = .49$ (see **Figure 2C**). Similarly, a repeated measures
188 ANOVA over segments showed a significant increase of combined DAS and partial DAS use over
189 time, $F(3, 207) = 19.53, p < .001, \eta^2_G = .006$ (see **Figure 2C**).

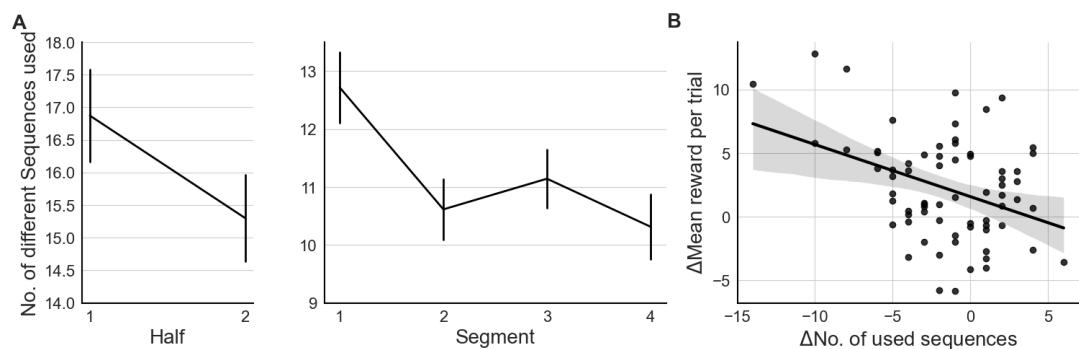


Figure 3. Decreasing behavioral variability of different sequences used. (A) Mean number of used different sequences of actions over the two halves (early/late) and four segments of the experiment. Error bars represent standard errors (SE). (B) Correlation between the difference of used sequences and the difference of mean reward per trial between the first and the second half. Each point represents one participant. The thick solid line represents linear regression model fitted to the data.

190 Decrease in behavioral variability

191 A repetition bias might also lead to a higher probability of repeating performed sequences of ac-
192 tions other than the DAS. This would lead to a lower number of different action sequences being
193 performed in later stages of the experiment. To test this, we analyzed the number of used dif-
194 ferent sequences of actions between the halves and the four segments of the experiment. The
195 mean number of used sequences of actions showed a small significant decrease from the first
196 (16.87, $SD = 5.94$) to the second half (15.30, $SD = 5.58$), $t(69) = 3.53, p < .001, d = .27$ (see **Figure 3A**).
197 A repeated measures ANOVA with segments as factor showed a significant effect, $F(3, 207) =$
198 13.88, $p < .001, \eta^2_G = .039$ (see **Figure 3B**). Here the number of used sequences decreased signifi-
199 cantly from the first to the second segment, but was stable throughout the following segments.

200 A decrease in behavioral variability could also reflect learning. Maybe participants selected
201 some sequences of actions with very low rewards once during the first half of the experiment, but
202 learned how to avoid selecting sequences with low rewards. To assess if this decrease in behav-
203 ioral variability was caused by learning to select rewarding sequences more easily, we calculated
204 the correlation between the difference of used sequences and the difference of mean reward per
205 trial between the first and the second half. A negative correlation would indicate that participants
206 who performed fewer sequences improved their ability to find rewarding sequences. This corre-
207 lation showed a significant relationship in the expected direction, $r = -.38, p = .001$ (see **Figure 3C**).
208 We interpret this as evidence that the decrease in behavioral variability was probably caused by
209 learning to select more rewarding sequences, over the course of the experiment.

210 In summary, we found only weak evidence for a repetition bias with summary statistics. Par-
211 ticipants used the DAS more frequently than expected, but we only found hints for a repetition
212 bias when also considering partial DAS choices or by analyzing the development of the number
213 of used sequences. Conducting a similar analysis on the second most used sequence of actions
214 or a Chi-square test of independence with all sequences of actions would not be meaningful: In
215 contrast to the DAS, the expected rewards for all other sequences of actions differed between the

216 first and second half of the experiment due to the grid layout changes between blocks. Hence, a
217 sequence of actions that was frequently used during the first half of the experiment may generate
218 very low rewards in the second half. As the repetition bias only increases the probability to repeat
219 actions, we expect that action selection is mostly still guided by expected rewards, and participants
220 should prefer to switch to action sequences with higher rewards (*de Wit et al., 2018; Watson and*
221 *De Wit, 2018*). Therefore, to test for a repetition bias, the analysis should also take into account
222 expected rewards. For this reason, we next turn to a model-based analysis, in which we consider si-
223 multaneously the repetition of action sequences and the expected rewards as effects on observed
224 choices.

225 **Model-Based Analysis**

226 A potential issue with our analyses above is the limited focus on behavioural measures for one
227 specific sequence of actions, e.g. how many times the DAS was used in the first and second half of
228 the experiment, thereby not considering expected rewards and other action sequences.

229 To consider all sequences of actions, and expected reward and repetition bias simultaneously,
230 we used an adapted version of the prior-based control model (*Schwöbel et al., 2021*), which we call
231 here the 'expected value with proxy reward and repetition bias model' (EVPRM). For the full model
232 specification and details, see Materials and Methods and *Figure 9*.

233 This model calculates the probability of selecting an action based on the balance of two compo-
234 nents: the probability to repeat actions, and expected rewards. Crucially, the influence of repeated
235 behavior is modeled by counting the number of times each action sequence has been used in the
236 past γ_π . This component is weighted by a free model parameter α_{init} that determines the strength of
237 the repetition bias (see *Expected value with proxy and repetition bias model (EVPRM)*). Using this
238 model, the focus is not restricted to one sequence of actions and the repetition bias parameter
239 quantifies the influence of past behavior on action selection for all possible sequences of actions.

240 Moreover, the EVPRM incorporates the influence of expected rewards of all sequences of ac-
241 tions on action selection. Like past behavior, expected rewards are weighted by a free parameter β
242 that quantifies the individual precision on expected rewards. A high precision leads to pronounced
243 probabilities and a stronger influence of expected rewards on action selection, while a low preci-
244 sion leads to more uniformly distributed probabilities and lower influence of expected rewards on
245 action selection.

246 As the influence of expected reward and past behavior is modeled by two different parameters,
247 α_{init} and β , we can disambiguate between effects on behavior by a low precision on expected re-
248 wards and effects on behavior driven by a strong repetition bias. Crucially, as we will show below
249 this makes it possible to explain behavior that is both influenced by the current expected rewards
250 and by past behavior.

251 To test whether a repetition bias is required at all to explain the behavioral data, we considered
252 three alternative models that do not include an explicit repetition term. First, we used the expected
253 value model (EVM), which posits that participants know the exact expected rewards and performed
254 actions to solely maximize the expected rewards. However, as explained in the Methods section,
255 this model would require infeasible computations made by participants as they perform the task.

Table 2. Results of model comparison

Model	<i>LOOIC</i>	<i>SE</i>	<i>pLOOIC</i>	<i>dLOOIC</i>	<i>dSE</i>	Best Fit
EVPRM	69,942.82	825.94	810.92	0.00	0.00	27
EVPBM	73,285.86	983.73	1,054.58	3,343.05	382.35	15
EVPM	74,301.96	1,018.95	772.52	4,359.14	421.93	28
EVM	162,308.58	1,355.02	371.92	92,365.76	1,319.67	0

EVPRM: expected value with proxy and repetition bias model; EVPBM: Expected value with proxy and default bias model; EVPM: expected value with proxy model; EVM: expected value model; *LOOIC*: leave-one-out information criterion (lower values indicate higher predictive accuracy); *SE*: standard error of *LOOIC*; *pLOOIC*: effective number of parameters penalty; *dLOOIC*: *LOOIC* difference relative to the model with highest predictive accuracy, i.e. lowest *LOOIC* value; *dSE*: standard error of *dLOOIC* based on point-wise estimates; Best Fit: number of participants whose behavior was best explained by the model.

256 Second, we used a model that is based on expected reward structure only. For this expected value
257 with proxy model (EVPM), the reward is known for those sequences that have been chosen before,
258 but for all others an approximated value R_0 is used, which we assume participants estimated based
259 on task instructions and training. Third, we considered the possibility that participants prefer the
260 DAS based on the initial training and instructions. To model this, we used an extension of the EVPM,
261 the expected value with proxy and default bias model (EVPBM), which has a constant bias in favor
262 of the DAS to account for the observed high probability of DAS choices in our data. For details on
263 the models, see Materials and Methods.

264 Model Comparison

265 We calculated the predictive accuracy of the four cognitive models (EVPRM, EVM, EVPM, EVPBM)
266 at the group level. We used the leave-one-out information criterion (LOOIC) (Vehrtari et al., 2017)
267 that evaluates model fit but also penalizes for model complexity (see Materials and Methods for
268 details). Lower LOOIC values indicate a higher predictive accuracy, i.e., a lower difference between
269 model predictions and observed data. We found that the EVPRM, the model including learning
270 of repetition biases, showed the highest predictive accuracy (*LOOIC* = 69,942.82, *SE* = 825.94)
271 compared to the EVPBM (*LOOIC* = 73,285.86, *SE* = 983.73), the EVPM (*LOOIC* = 74,301.96, *SE* =
272 1,018.95), and the EVM (*LOOIC* = 162,308.58, *SE* = 1,355.02) (see Table 2. Because of its low
273 predictive accuracy we excluded the EVM from further analyses.

274 Following the guidelines from McElreath (2020) for interpreting LOOIC values, we found that
275 EVPRM described the data significantly better than the second-best model EVPBM: the standard
276 error of the LOOIC differences *dSE* between EVPRM and EVPBM was substantially smaller than
277 the difference in LOOIC between these models *dLOOIC* (see Table 2). To investigate how well the
278 models explained behavior at the participant level, we compared the LOOICs of the three remaining
279 candidate models for each participant individually.

280 First, we counted how many participants were fitted best by each of the three candidate models.

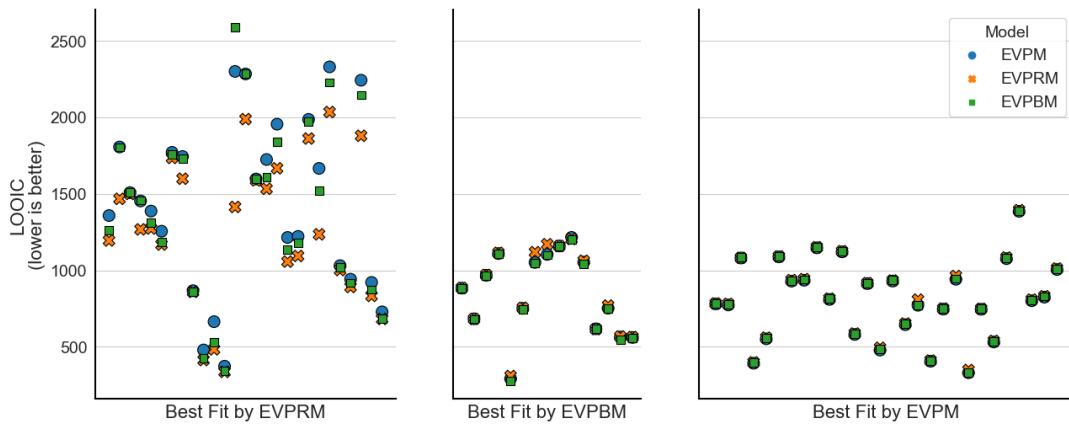


Figure 4. Model comparison at participant level. Predictive accuracy indicated by *LOOIC* for each participant and each model, with the three models for each participant aligned vertically. Participants are grouped depending on which model showed the highest predictive accuracy.

281 This classification showed no clear pattern, as a considerable number of participants were equally
282 well explained by each of the models (see *Table 2*). Although EVPRM was the best model on the
283 group level, the behavior of only 27 out of 70 participants (ca. 39%) was described best by EVPRM.

284 As a next step, we looked at the individual LOOIC values of the three models (see *Figure 4*).
285 Here, most of the participants whose behavior was described best by EVPRM showed a difference
286 between the LOOICs of the candidate models, indicating that the EVPRM explained behavior better
287 than the alternative models. In contrast, the LOOICs of those participants whose behavior was best
288 described by the two alternative models did not show a clear difference in LOOICs. This indicates
289 that the three candidate models explained behavior equally well. As the participants fitted best by
290 EVPBM and EVPM had low repetition biases (see next section and *Figure 5*), the EVPRM and the
291 two alternative models are practically mathematically equivalent. We conclude that the EVPRM is
292 the best model for 27 of the participants and is as good as the other two models for the remaining
293 43 participants.

294 Next we assessed if participants best fitted by EVPRM are the participants with a strong repeti-
295 tion bias. To do this, we analyzed the distribution of the inferred parameter values of the EVPRM
296 and grouped participants based on the model that explained their behavior best (see *Figure 5*). As
297 expected, participants whose behavior was best explained by EVPRM showed the highest inferred
298 repetition bias strengths. Furthermore, participants whose behavior was best explained by EVPM
299 showed the highest inferred precision on expected rewards. The inferred parameter values of the
300 approximated reward did not differ between best model fits.

301 In what follows, we compare fitted model parameters with behavioral measures of perfor-
302 mance. Given that the EVPRM model has the best fit for 27 participants, and fits the remaining
303 participants as well as the other models, we limit our analyses to EVPRM fitted parameters.

304 Increase in DAS usage in participants fitted best with EVPRM

305 In our standard analyses above, we did not find a significant increase of DAS usage from the first to
306 the second half of the experiment over all participants. We repeated this analysis with only those

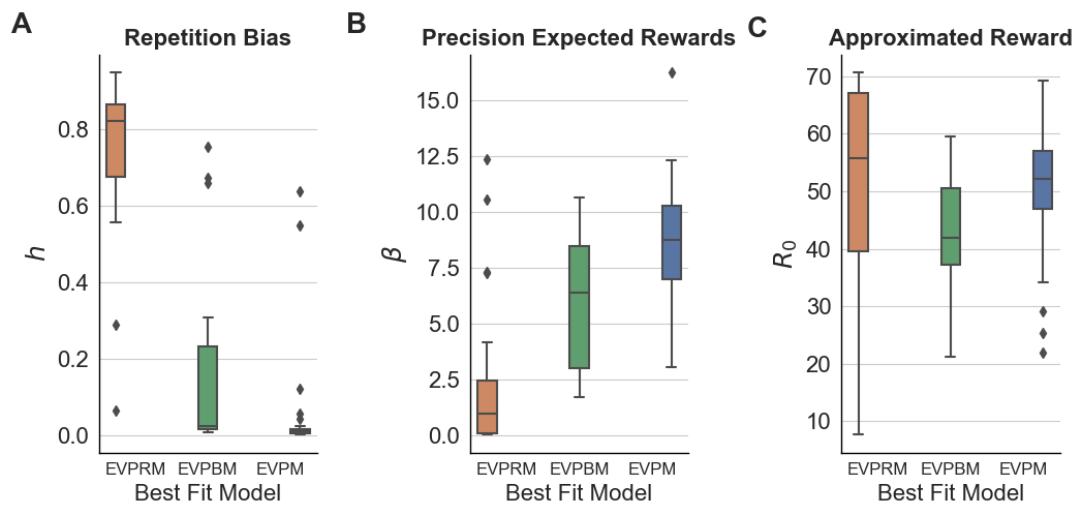


Figure 5. Estimated parameter values of EVPRM partitioned by the model that explained participant behavior best. Estimated value distribution for the three parameters of the EVPRM: (A) repetition bias h , (B) precision on expected rewards β , and (C) approximated reward R_0 . Participants are partitioned according to the model with the lowest $LOOIC$. Boxes represent the interquartile range (IQR). Horizontal lines inside boxes represent medians. Whiskers represent the 1.5 IQR of the lower and upper quartile.

307 27 participants best fitted by the EVPRM. This group of participants showed a high repetition bias
308 (see [Figure 5](#)), and as a consequence, we expected a significant increase of using the DAS from the
309 first to the second half of the experiment for these participants. Indeed, the proportion of DAS
310 choices of these participants significantly increased from the first half (46.2%, $SD = 24.9\%$) to the
311 second half (51.6%, $SD = 26.1\%$) of the experiment, $t(26) = -2.27, p = .02, d = .21$.

312 Correlations between parameters of EVPRM

313 We analyzed the correlations between the parameter estimates between the three free model
314 parameters repetition bias h , precision on expected rewards β , and approximated reward R_0 .

315 As our model represents the influence of the repetition bias and expected rewards separately
316 we can investigate the correlation between these two parameters. We expected that participants
317 with a strong repetition bias h are potentially more guided by past behavior than by expected
318 rewards. Therefore, precision over expected rewards and repetition bias strength should show
319 a negative correlation. We found such a significant negative correlation between the precision
320 over expected rewards β and the repetition bias strength h , $r = -.75, p < .001$ (see [Figure 6A](#)). In
321 addition, we found a significant positive correlation between β and the approximated reward R_0 ,
322 $r = .30, p = .01$ (see [Figure 6C](#)).

323 One reason for a strong repetition bias might be a low approximated reward. Therefore, the
324 expectation of a low reward for unobserved sequences of actions could lead to stronger action
325 repetition if participants can find an alternative sequence with higher reward. Contrary to our pre-
326 diction, the approximated reward showed a positive correlation with the repetition bias strength,
327 but this correlation was not significant, $r = .12, p = .30$ (see [Figure 6B](#)).

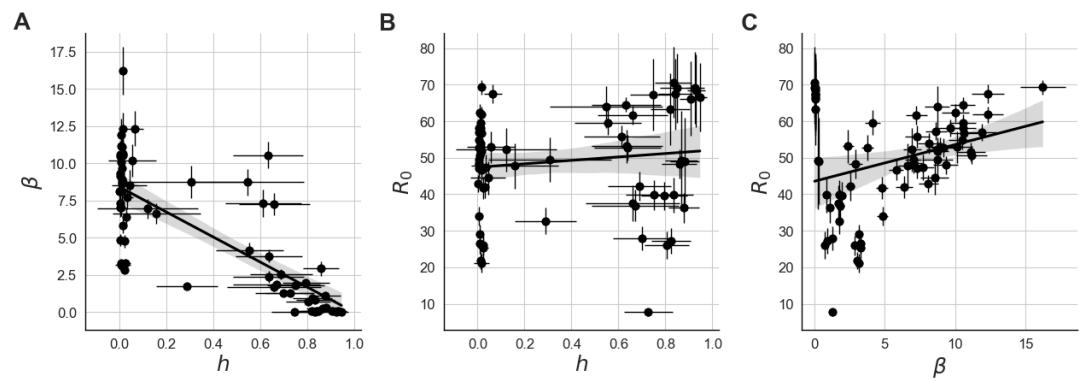


Figure 6. Participant-level correlations between estimated parameters of the EVPRM. **(A)** Correlation between repetition bias strength h and precision over expected rewards β . **(B)** Correlation between repetition bias strength h and approximated reward R_0 . **(C)** Correlation between precision over expected rewards β and approximated reward R_0 . Thick solid lines represent linear regression model fitted to the data. Thin solid lines represent standard deviations of individual fitted parameter values (SD).

328 Correlations between model parameters of EVPRM with performance measures
329 As a further intuitive validation measure, we also tested for correlations between the model pa-
330 rameters and performance measures. We expected that participants with a higher approximated
331 reward R_0 would show a decreased reliance on the DAS, due to an expectation of higher rewards for
332 alternative sequences of action. These participants should deviate from the DAS more frequently.
333 Inferred values of R_0 correlated indeed negatively with the proportion of DAS choices $p(\text{DAS})$, but
334 this correlation was not significant, $r = -.18, p = .14$ (see *Figure 7A*).

335 Further, we expected that participants with higher precision over expected rewards β were likely
336 to earn more reward. This is because as β increases, participants would have a lower uncertainty
337 on the expected rewards. This increases the probability that participants select actions with higher
338 expected rewards. As expected, participants showed a positive significant correlation between β
339 and the mean reward per trial, $r = .76, p < .001$ (see *Figure 7B*).

340 Crucially, we expected that participants with higher repetition bias strength h would receive
341 lower rewards because participants with a strong repetition bias tend to repeat past behavior
342 rather than to maximize expected rewards. We found this significant negative correlation between
343 the repetition bias strength and the mean reward obtained per trial, $r = -.69, p < .001$ (see *Fig-*
344 *ure 7C*). Accordingly, the achieved reward decreased with increasing repetition bias strength.

345 We also expected that participants with stronger repetition bias h show shorter reaction times
346 (RTs), as the repetition of past behavior should be executed faster than selecting yet unknown
347 sequences of actions. Contrary to our expectation h showed a significant positive correlation with
348 mean RTs, $r = .37, p = .001$. We speculate that participants with a strong repetition bias were
349 probably not as motivated as other participants and therefore slower in processing relevant stimuli
350 and/or executing the movements. In combination with the tight deadline of six seconds, these
351 participants probably relied more strongly on known sequences of actions. This speculation is
352 supported by the significant positive correlation between the number of time out trials and the
353 repetition bias. See Appendix *Table 2* for all correlational analyses.

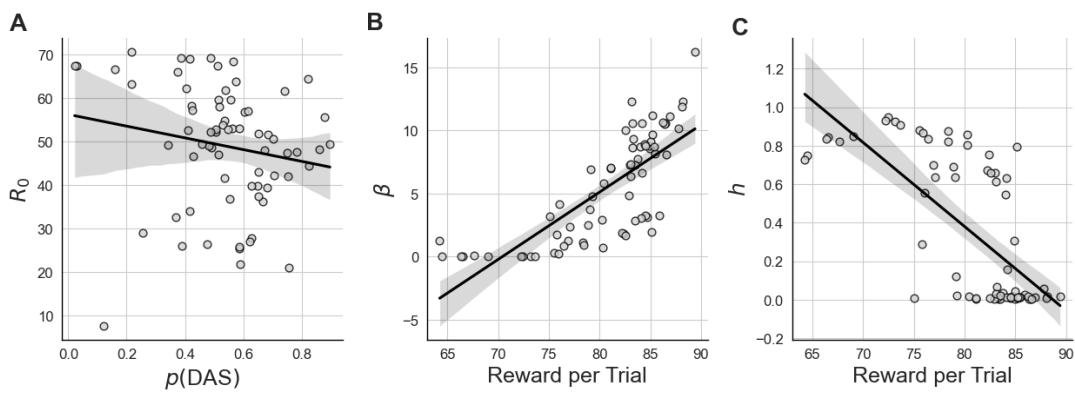


Figure 7. Correlations between estimated parameters of expected value with proxy and repetition bias model (EVPRM) and performance measures. (A) Correlation between free parameter of approximated reward R_0 and the mean proportion of DAS choices $p(\text{DAS})$. **(B)** Correlation between model parameter of precision over expected rewards β and mean reward per trial. **(C)** Correlation between model parameter repetition bias strength h and mean reward per trial. Black solid lines represent linear regression model fitted to the data.

354 Discussion

355 In this study, we have shown experimental evidence of a repetition bias that increases the probability of performing a sequence of actions as a function of how frequent this action sequence had been used before, over the course of the experiment. To show this repetition bias, we introduced a new grid-world task and employed a recently proposed computational model that describes action selection as a balance between goal-directed and a repetition bias. We found that the repetition bias was negatively related to task performance, suggesting an opposition between goal-directed performance and repetition bias.

362 We developed the Y-navigation (Y-NAT) task where participants had to meet trial-specific goals by collecting points. We gave participants information about a default action sequence (DAS) that let them obtain the maximum expected reward in nearly half of all trials. With this manipulation we ensured that participants repeat at least one sequence of actions frequently.

366 In our behavioral analyses, we found that nearly all of our participants used the DAS most frequently. Interestingly, participants executed the DAS even when the DAS did not provide the highest reward. However, our subsequent standard analyses to test for a repetition-induced increase in DAS usage only revealed non-significant trends, and the evidence remained inconclusive.

370 We complemented our analyses by a computational modeling approach to assess whether explicit modeling of repetition learning over the course of the experiment reveals a repetition bias. 372 Indeed, the repetition bias model explained participants' behavior best.

373 With the proposed model-based approach we were able to rule out several alternative explanations for the observed effects. First, we can exclude random responding, as all participants either 374 relied on expected rewards or showed a repetition bias. Second, we excluded behavioral repetition as a fixed-choice strategy not influenced by past actions. For instance, one strategy could 376 be to always select the incentivized DAS. As the DAS was of high value during the initial few trials 377 of each block and always resulted in a reward, consistently repeating the DAS would classify as 378

379 goal-directed behavior and would not be evidence for a repetition bias. We tested this alternative
380 using a model that replaced the repetition bias effect by a constant bias added to the expected re-
381 ward for the DAS, leading to constant higher choice probabilities for the DAS over the course of the
382 experiment. Using model comparison we ruled out this alternative. Further evidence against a con-
383 stant but not increasing influence of repetition is the finding of a general reduction in behavioral
384 variability over time.

385 The finding that the behavior of only a subgroup of participants was best explained by the
386 repetition bias model seems consistent with previous studies where only subsets of participants
387 were found to show habitual behaviour (*Pool et al., 2022; Gera et al., 2023*). One reason might be
388 a strong motivation to perform well in experimental tasks (*Cerasoli et al., 2014*). This motivation
389 probably prompts participants to use goal-directed behavior to collect reward. This effect might be
390 strengthened by our performance-based bonus payment, as incentives have been shown to modu-
391 late cognitive effort (*Patzelt et al., 2019*). This interpretation is also consistent with the finding that,
392 contrary to our prior expectation, participants with an increased repetition bias showed slower re-
393 action times. Slower reaction times are related to poorer performance and could be an indicator
394 of less motivation and thus less goal-directed behavior for participants with strong repetition bias.

395 Repetition bias and cost-benefit arbitration

396 In our task, the effect of the repetition bias can only be measured in combination with concurrent
397 goal-directed behavior. Specifically, according to the model, the first few decisions in a new task
398 context are mainly based on expected rewards. Concurrently, the effect of the repetition bias
399 ramps up and has, as we found, a measurable effect on action selection. While this is the concrete
400 mechanism in the present model (see also *Schwöbel et al. (2021)*) the increasing influence of the
401 repetition bias could also be viewed as an efficient, dynamic cost-benefit arbitration.

402 Model-based planning is associated with cognitive costs (*Shenhav et al., 2013; Kool et al., 2017*),
403 and it has been postulated that decision makers compute whether it is worth investing the cognitive
404 effort. It might be that the inferred repetition bias strength is just a measurable expression of such
405 a cost-benefit arbitration.

406 An alternative view is to turn this argument around and to postulate that the computation and
407 use of the repetition bias is the causal underlying mechanism, which is observed and eventually
408 interpreted as an apparent dynamic cost-benefit analysis. What speaks for this view is that the
409 repetition bias is simple to compute because the model just increases a task-specific counter by
410 1. In the brain, this would correspond to a simple strengthening of a context-action association.
411 Conversely, it has been shown that, in principle, cost-benefit arbitration leads to a computationally
412 involved recursive planning process (*Shenhav et al., 2013*). The question, which can be addressed
413 in future studies, is whether a simple repetition bias computation is enough to explain apparent
414 cost-benefit computations to generate behaviour.

415 Relation to other models and implications for habit learning

416 The idea of a repetition bias is well established in psychology (*Thorndike, 1911*). It is related to
417 stimulus-response (S-R) learning, as repetition facilitates the formation of S-R associations and re-

418 cency effects in value-based decision-making tasks (*Guthrie, 1952; Wood and Rünger, 2016; Watson*
419 *et al., 2022*). The repetition bias is also consistent with previous proposals for the role of action
420 repetition in the development of habitual behavior (*Thorndike, 1911; Miller et al., 2019; Schwöbel*
421 *et al., 2021; Nebe et al., 2024*). Similarly, behavioral repetition of action sequences has been
422 identified as a way to optimize the trade-off between maximizing reward and a reduction of policy
423 complexity (*Gershman, 2020*).

424 Importantly, the repetition learning mechanism is different from stimulus-response associa-
425 tions typically found in devaluation studies (e.g. *Horstmann et al., 2015; Dickinson et al., 1983;*
426 *Hardwick et al., 2019*), and different from a potential trade-off between model-free and model-
427 based reinforcement learning (RL) (*Daw et al., 2011; Dolan and Dayan, 2013*), because, in contrast
428 to model-free RL, the repetition bias is value-free (*Miller et al., 2019*) and does not directly depend
429 on past rewards.

430 The repetition bias is possibly a prerequisite for the development of habitual behavior (*Wood*
431 *and Rünger, 2016; Miller et al., 2019; Schwöbel et al., 2021; Nebe et al., 2024*). This opens up
432 possibilities to use this mechanism and its predictions to investigate the formation of habits. Es-
433 pecially, concerning the lack of a unified methodology for measuring habits (*Watson and De Wit,*
434 *2018; Watson et al., 2022*), our task and the repetition bias could in principle be used to measure
435 the tendency towards habitual behavior during 'only' a few hundred trials without the need to im-
436 plement habitual learning with over thousands of trials (*Hardwick et al., 2019; Luque et al., 2020;*
437 *Frölich et al., 2023*) and sessions over two (*Frölich et al., 2023*) to four (*Hardwick et al., 2019*) days.

438 Indeed, many studies investigated the influence of repetition through habits. In these studies
439 habits are typically only measured indirectly, as a lack of goal-directed behavior during an extinc-
440 tion phase (*Balleine and Dezfouli, 2019; Watson et al., 2022*). However, a lack of goal-directed
441 behavior can alternatively emerge due to an inaccurate representation of action-outcome contin-
442 gencies during extinction, or random responding due to a lack of motivation (*Watson et al., 2022*).
443 Instead, here we measured repetitive behavior directly through a combination of task design and
444 a model-based approach, enabling us to measure positive characteristics of repetitive behavior.
445 Additionally, our task did not consist of separate training and extinction phases, and we provided
446 feedback after each trial. This approach avoids a potentially inaccurate representation of the ex-
447 pected rewards.

448 Conclusion

449 In conclusion, we introduced a novel sequential decision making task, where we demonstrated
450 the influence of both expected rewards and a repetition bias on decision making. Using compu-
451 tational modeling we provided empirical evidence for a repetition bias which is simply expressed
452 as a value-free increase of choice probability each time an action is performed. This repetition
453 bias mechanism may underlie habit formation and emphasizes the importance of considering
454 frequency-based mechanisms besides reward-driven mechanisms in future studies.

455 Materials and Methods

456 Participants

457 Participants were recruited using the recruitment system of the faculty of psychology at the TUD
458 Dresden University of Technology. In this system, students and individuals from the general pop-
459 ulation interested in being participants in psychological studies can register. 74 participants com-
460 pleted the experiment. Four participant were excluded for lack of behavioral variability (they per-
461 formed the same sequence of actions in more than 90% of all trials). The remaining 70 participants
462 (50 female) had a mean age of 24.1 years ($SD = 4.6$). All participants confirmed that they did not
463 have dyschromatopsia.

464 Remuneration was a fixed amount of 10€ or class credit plus a performance-based bonus ($M =$
465 2.58€, $SD = 0.19$ €). The bonus was determined as a linear function from each participant's rewards
466 acquired during the experiment, where a reward of 100 yielded 1ct. Participants were informed
467 about the maximum of the bonus, but not the exact calculation.

468 The study was approved by the Institutional Review Board of the TUD Dresden University of
469 Technology (protocol number EK 578122019) and conducted in accordance to ethical standards of
470 the Declaration of Helsinki. All participants were informed about the purpose and the procedure
471 of the study and gave written informed consent prior to the experiment.

472 Experimental task

473 Data collection was performed online. The task was built using lab.js (*Henninger et al., 2021*) and
474 hosted on the [neurotests server](#) of the TUD Dresden University of Technology, which is specifically
475 designed for hosting lab.js tasks.

476 Participants had to navigate a Pacman-like character across a 5-by-5 grid using their keyboard
477 (see *Figure 8A*) to collect points matching a pre-defined trial-specific goal. In every trial, participants
478 had to execute a sequence of four actions within a time limit of 6s. The action-set was restricted
479 to moves in three directions: diagonally to the upper left, diagonally to the upper right or directly
480 downwards. This specific choice of navigation, inspired by the work of *Fermin et al. (2010)*, was
481 designed to restrict the available sequences of actions participants could take. Exiting the grid's
482 boundaries or revisiting a previously visited field was not possible. Any attempt to do so triggered
483 a red warning message, requiring the participant to redo the move.

484 Upon each action, the character visually moved to the designated field and thereby collected
485 the circle within that cell. Circles were colored to represent point values: Green circles represented
486 positive points ranging from 10 to 60 in increments of 10, while red circles represented negative
487 points ranging from -10 to -60. The shading of the color indicated the magnitude of points, with
488 darker shades representing higher positive or negative values (see *Figure 8C*). Additionally, a Gaus-
489 sian distributed noise (with $\mu = 0$, and $\sigma = 1.3$) was applied to the points earned from each move
490 and the resulting value was rounded to the nearest integer. After each move, the points from the
491 collected circle were displayed at the center of the grid, and the sum of points collected during
492 that particular trial was displayed at the top left corner (see *Figure 1*). The trial's total score was
493 calculated as the sum of points from the combined sequence of four actions.

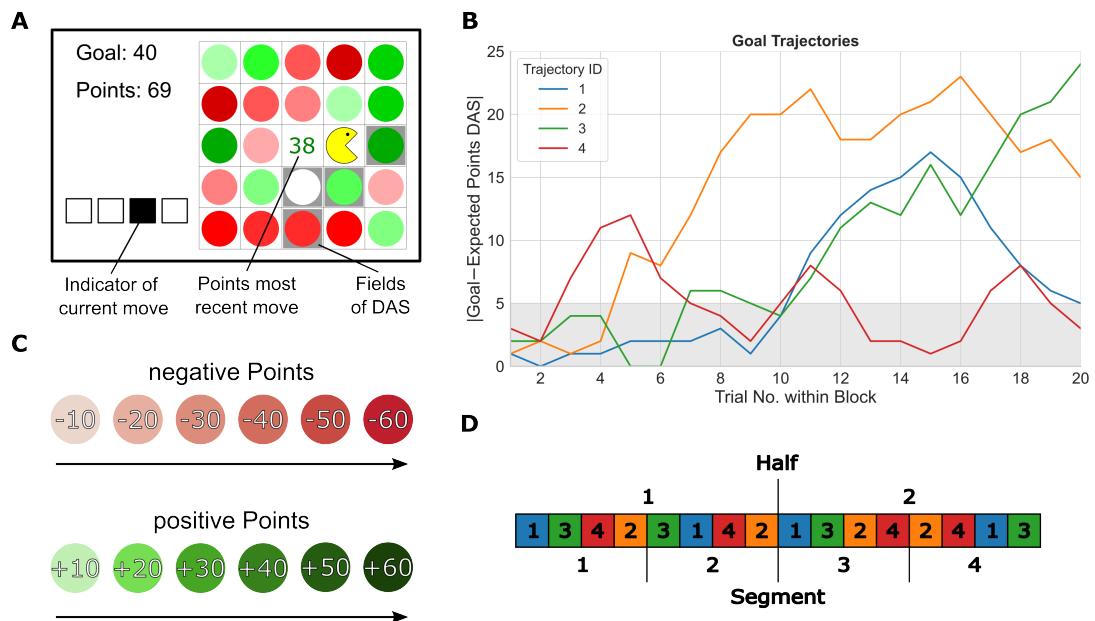


Figure 8. Experimental task. **(A)** Participants had to collect four colored circles by navigating a Pacman-style character on a 5-by-5 grid. Each circle's color indicated the number of points obtained when moving into the corresponding field (see main text for details). The points obtained for the most recent collected circle were displayed in the centre of the grid (here 38). The goal of the current trial was presented in the top-left corner. Below this goal number, the current sum of points gathered up to the current move were displayed. Four squares located at the bottom left indicated the current move number. In the example, the participant was about to select its third move after having collected points from two circles. The default action sequence (DAS) fields were highlighted with a gray background. **(B)** Graph of the four goal point trajectories used. Each block consisted of 20 trials. The y-axis shows the absolute difference in points between the goal point per trial, and the expected points one would obtain by using the DAS. The gray area represents trials where the DAS was one of the available action sequences with the highest expected reward. **(C)** Visual representation of points per color. **(D)** Order of goal trajectories within the experiment and mapping of blocks into halves and segments.

494 Importantly, the main goal of the task was to match the trial's points—achieved from the se-
 495 quence of four actions—as closely as possible with a predefined, trial-specific goal. Participants'
 496 reward for each trial was then calculated based on the difference between the trial's total points
 497 and the predefined goal. Smaller differences (in absolute value) led to higher rewards:

$$\text{Reward}_t = \max\{0, 100 - 2 \cdot |\text{Goal}_t - \text{Points}_t|\}. \quad (1)$$

498 The received reward was displayed as a green bar at the end of each trial in the feedback stage
 499 (see *Figure 1*). If participants did not complete four moves within the time limit, no reward was
 500 earned and a red warning message appeared at the feedback stage on the left side. The sum of
 501 collected rewards defined the performance-based bonus payment.

502 Importantly, to ensure that participants repeat at least one sequence of actions frequently, we
 503 introduced a default action sequence (DAS). This sequence was visually indicated by a grey back-
 504 ground color of the four corresponding fields (see *Figure 8A*) and participants were given informa-
 505 tion about the average number of points that could be collected with the DAS at the start of each
 506 trial at the center of the grid (see the left-most panel of *Figure 1*). The fields, sequence of actions,

507 and sum of collected points of the DAS were the same throughout the experiment. In the example
508 of **Figure 1**, the DAS comprised two downward moves first, followed by two consecutive up-right
509 movements.

510 The experiment was divided into 16 blocks consisting of 20 trials each. The distribution of points
511 remained constant within a block, but changed between blocks. The points of the four circles of the
512 DAS also differed across blocks but the sum of the points remained constant. The block sequence
513 of the distributions of points were the same for each participant.

514 Within a block, goal points changed over trials. We used four different trajectories of 20 goals
515 each (see **Figure 8B**). Goal trajectories differed by their maximum difference between the goal
516 points and the expected points of the DAS, and their trend of this difference throughout the block.
517 This difference ranged between 12 and 24 points. Note, that while the points that could be collected
518 with the DAS stayed the same, the goals changed between trials, and therefore the rewards for the
519 DAS varied.

520 We selected these four trajectories to represent different principled trajectories that would it
521 make difficult for participants to predict whether the DAS would remain optimal during the dura-
522 tion of a block. All four trajectories started out close to the expected points obtainable by the DAS.
523 Only later into the block goal points started to deviate from this initial value, or not. For exam-
524 ple, one goal trajectory was remaining close to points obtainable by the DAS while another one
525 increased only after half the block but then decreased again.

526 With this procedure we effectively proposed an optimal sequence of actions at the first few trials
527 of each block that was slowly devalued during subsequent trials. A repetition bias should manifest
528 by increased DAS choices over the course of the experiment for the same expected rewards and
529 should be detectable with summary statistics.

530 We subdivided the blocks into four segments of four blocks each (see **Figure 8D**). Within each
531 segment all four trajectories of goals were used once in a pseudo-random order so that no trajec-
532 tory was repeated in two consecutive blocks. This order of goal trajectories was the same for each
533 participant.

534 To promote the use of the DAS, we manipulated three features of the task. First, at least the first
535 two trials of each block had a trial-specific goal close to the points of the DAS (see **Figure 8B**). Overall,
536 in 43.75% of all trials, the absolute difference between the trial goals and the expected points of the
537 DAS was between zero and five points. Therefore, for these trials, due to the minimum difference
538 of ten points between circles of different color, the DAS was one of the available action sequences
539 with the highest expected reward. In the remaining trials, there was always at least one sequence
540 with a higher expected reward than the DAS.

541 Second, we only used a partial devaluation of the DAS: the lowest expected reward of the DAS
542 was still about half of the maximum reward. This follows from the reward calculation (see **Equa-**
543 **tion 1**) and the maximum difference between goals and the expected DAS points of 24 (see **Fig-**
544 **ure 8B**).

545 Third, using the DAS gave participants a probabilistic bonus reward of 20 during half of the
546 blocks. These bonus blocks were distributed pseudo-randomly throughout the experiment to en-
547 sure that the bonus was available always during two of the four presentations of each goal point

548 sequence. This probabilistic bonus could be earned for each trial within a bonus block, but exclusively when using the DAS. The probability of receiving the bonus was $p = .25$, although the precise 549 probability remained undisclosed to the participants. Participants were informed about upcoming 550 551 bonus blocks right before they started. In addition, during the trial start phase, bonus trials 552 were indicated by changing the color of DAS points from gray to blue. A blue bar next to the green 553 reward bar during the feedback stage indicated the receipt of the bonus.

554 The experiment started with an elaborate training phase to ensure that participants understood 555 the task. The first part involved an introduction to the navigation, which was followed by 556 familiarizing participants with the color coding of the circles. Then trial-specific goals and reward 557 calculation was introduced. This was followed by introducing the DAS, and finally the bonus factor 558 was explained. During this part of the training participants had to meet no deadline and could 559 spend as much time as they needed.

560 After this introductory phase, participants practiced two blocks as they would appear later in 561 the main experiment. One block was with probabilistic bonus and one without. The only difference 562 to the main experiment was an extended deadline of 10s.

563 Between blocks, participants had the opportunity to take a self-determined break. The experiment, 564 including training, had a total duration of approximately 60 minutes. The performance- 565 dependent bonus rewards were determined by adding the rewards of all trials in the main exper- 566 iment.

567 Data analysis was performed in Python using the packages NumPy, Pandas, ArviZ, Scipy's Stats 568 module, and pingouin. Task code, data and analysis code are publicly available at [GitHub](https://github.com/...).

569 **Expected value with proxy and repetition bias model (EVPRM)**

570 We made use of a previously published repetition-based learning model, the prior-based control 571 model (*Schwöbel et al., 2021*), for model-based data analyses. This model describes a mechanism 572 for taking into account previous action sequences when making choices. The model counts how 573 many times each action sequence π has been chosen in the past. This contributes to the decision- 574 making process as a prior distribution over policies $p(\pi)$ that represents the probability of selecting 575 an action regardless of expected reward or any other task contingency: the influence of the prior 576 over policies on action selection of a specific action increases depending on how many times this 577 action has been chosen before. The model is complemented by a component $p(\hat{R} | \pi)$ based on 578 expected rewards given the predicted outcomes of the performed actions (i.e. value-based). These 579 two components play the role of priors and likelihood, respectively, to turn decision-making into a 580 Bayesian inference process:

$$p(\pi | \hat{R}) \propto p(\hat{R} | \pi) p(\pi), \quad (2)$$

581 where $p(\pi | \hat{R})$ represents the posterior distribution that is defined by the probability of choosing 582 policy π given the reward structure \hat{R} ; $p(\hat{R} | \pi)$ represents the expected reward \hat{R} given policy π ; 583 and $p(\pi)$ is the prior over action sequences. The multiplication of the expected reward and the 584 prior over policies balances the influences of goal-directed planning and past behavior on action 585 selection. Intuitively, the goal-directed component $p(\hat{R} | \pi)$ represents the value-based part of

586 making a decision, i.e. a participants simply selects the action that gives the highest expected
587 reward, while the prior over action sequences $p(\pi)$ implements the repetition bias.

588 In our experimental task, the reward structure \hat{R} , i.e. the expected reward for each action
589 sequence π , can in principle be calculated given the information available to participants: the points
590 for each one of the squares on the grid is shown on the screen, so participants could calculate the
591 points of every of the possible 36 sequence of actions π and determine the expected reward with
592 the exception of a noise term that is not influenced by π . However, as there is a deadline of six
593 seconds, the calculation becomes unfeasible. To account for this, we posit that participants rely
594 on prior beliefs or approximations they might have acquired in previous trials.

For the proposed EVPRM, we assumed a reward structure \hat{R} that depends on past observations made by the participant: for sequences that have been already observed during the current block, the model uses the exact observed reward; for the unobserved sequences, it uses an approximated reward R_0 , which we assumed participants approximate based on their experiences during previous blocks and training. The approximated reward R_0 is a free parameter and indicates the individual expected reward for all yet unobserved sequences of actions. As an exception, the DAS was always assumed to be an observed sequence of actions because the points of the DAS were communicated at the initial phase of each trial. Also the expected reward of the DAS included the probabilistic bonus reward. With this, the reward structure in the EVPRM is as follows:

$$p(\hat{R} | \pi) = \left(\frac{\hat{R}_\pi}{\sum_{\pi \in \lambda} \hat{R}_\pi} \right)^\beta \quad (3)$$

$$\hat{R}_{\pi_t} = \begin{cases} R_{\pi_t} & \text{if } \pi \in \{\tilde{\pi}_{1:t}\} \\ R_0 & \text{otherwise} \end{cases}, \quad (4)$$

595 where $\pi = \{(a_1, a_2, a_3, a_4) \mid a_i \in \{\nwarrow, \downarrow, \nearrow\}\}$, with $\pi = (a_1, a_2, a_3, a_4)$ represents a sequence of four
596 actions, and $a_i \in \{\nwarrow, \downarrow, \nearrow\}$ represents the three movement directions, \hat{R}_π is the expected reward of
597 the sequence of actions π , $\sum_{\pi \in \lambda} \hat{R}_\pi$ is the sum of expected rewards of all sequences of actions, with
598 λ representing all possible action sequences, β is a free parameter representing the precision over
599 expected rewards, R_π is the expected reward for the sequence of actions π , R_0 is the approximated
600 reward for unobserved sequences of actions, $\tilde{\pi}_{1:t} = \{\tilde{\pi}_1, \tilde{\pi}_2, \dots, \tilde{\pi}_t\}$ are the performed sequences of
601 actions up to trial t . Note that we chose $p(\hat{R} | \pi)$ as a fraction to stay close to the Bayesian framework
602 in **Schwöbel et al. (2021)** and to have a comparable equation to the prior below.

603 The free parameter β represents the precision over expected rewards: values of $\beta > 1$ leads to
604 more concentrated probabilities that favor the choice of the sequences of actions with the highest
605 expected rewards and values of $\beta < 1$ lead to more uniformly distributed probabilities, enabling
606 greater exploration of different choices.

607 The prior over action sequences $p(\pi)$ was defined, as by **Schwöbel et al. (2021)**, by a counter γ
608 for the number of times the respective sequence of actions has been used in the past, and

the initial count α_{init} is a free parameter that was equal for each sequence of actions:

$$p(\pi) = \frac{\alpha_\pi}{\sum_{\pi \in \lambda} \alpha_\pi} \quad (5)$$

$$\alpha_{\pi_t} = \alpha_{\text{init}} + \gamma_{\pi_t} \quad (6)$$

$$(\gamma_{1:t})_i = \sum_{\tau=1}^t \delta_{i\tau} \quad (7)$$

$$\delta_{i\tau} = \begin{cases} 1 & \text{if } \pi_i \text{ was used at } t \\ 0 & \text{otherwise} \end{cases}, \quad (8)$$

607 where α_{π_t} is the repetition bias strength at trial t , α_{init} is the initial count, γ_{π_t} is the counter of how
608 many times the sequence of actions π was performed until trial t , $\delta_{i\tau}$ is the Kronecker delta.

609 Following **Schwöbel et al. (2021)**, the free parameter initial count α_{init} influences the strength of
610 the repetition bias. A low initial count, e.g. $\alpha_{\text{init}} = 1$, leads to a strong repetition bias. As α_{init} defines
611 the counter for all sequences of actions, the increase of γ by 1, after a sequence of actions was
612 performed, leads to a substantial increase of the prior over policies for this sequence. In contrast,
613 a high initial count, e.g. $\alpha_{\text{init}} = 100$, leads to a weak increase of the prior over policies if a sequence
614 of actions is performed.

Finally, our model can make decisions at every trial by sampling from the categorical posterior probability distribution over possible π , defined as: $p(\pi | \hat{R}, \alpha_\pi)$, which is the probability of sampling each sequence of actions π , at each trial depending on the assumed reward structure \hat{R} , and the prior over policies α_π :

$$p(\pi | \hat{R}, \alpha_\pi) \propto p(\hat{R} | \pi) p(\pi) \quad (9)$$

$$p(\pi | \hat{R}, \alpha_\pi) \propto \left(\frac{\hat{R}_\pi}{\sum_{\pi \in \lambda} \hat{R}_\pi} \right)^\beta \cdot \frac{\alpha_\pi}{\sum_{\pi \in \lambda} \alpha_\pi} \quad (10)$$

615 By changing the free parameters, we can change the behavior of the agent: At one end, with
616 a high initial count α_{init} , an agent will be minimally influenced by its past behavior and is nearly
617 completely goal directed. At the other end, with a low initial count α_{init} , agent behavior is more
618 influenced by expected rewards and thus has a strong repetition bias of past action sequences. In
619 addition, a precision over expected rewards β close to 0 represents the case in which the agent
620 is uncertain about the learned reward structure and will tend to choose behavior based on the
621 repetition bias.

622 In **Figure 9** we simulate an experimental session with our model, focusing on one action se-
623 quence π , the DAS. In the simulations, the model has a high influence of past behavior ($\alpha_{\text{init}} = 1.1$).
624 The used precision over expected rewards ($\beta = 5$) moderately pronounced the distribution of ex-
625 pected rewards. Based on the changing goals the expected reward $p(\hat{R} | \pi)$ for this action sequence
626 changes in a constant range from trial to trial throughout the experiment. But the prior over poli-
627 cies $p(\pi)$ for this action sequence increases slowly over time, because this action sequence is per-
628 formed repeatedly. One can see that in trials where the expected reward is relatively high, the
629 resulting posterior $p(\pi | \hat{R})$ is high as well. This means the resulting choice probability is driven by

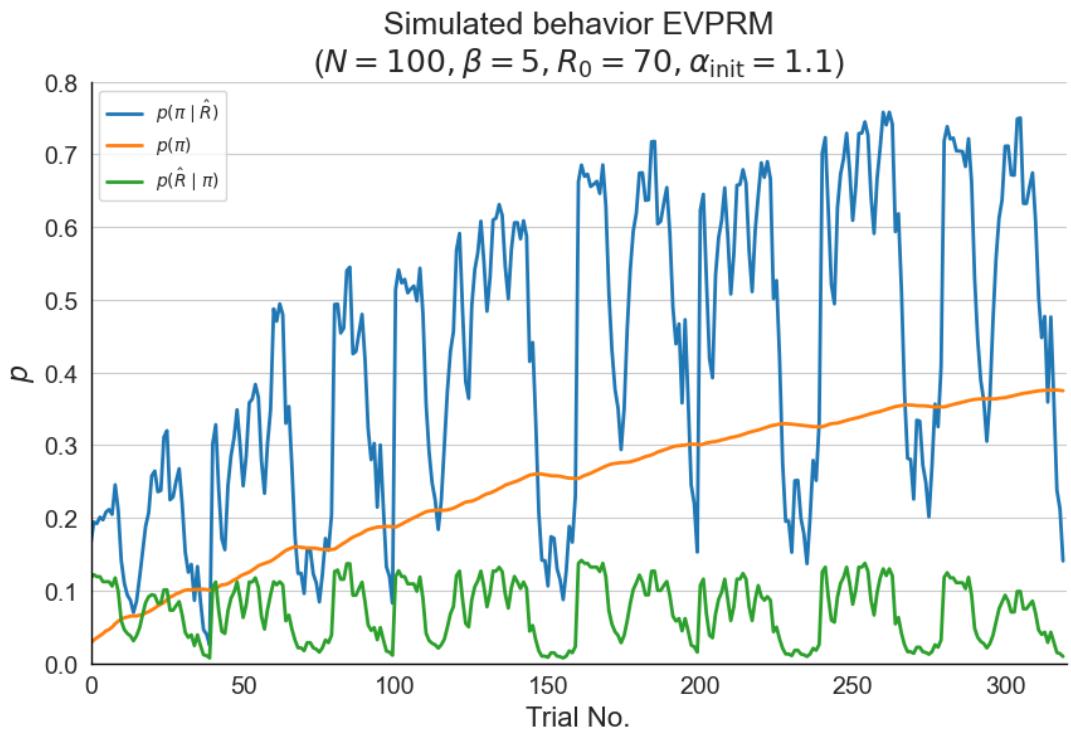


Figure 9. Simulation of task with EVPRM. Means for probability of selecting one specific sequence of actions π , $p(\pi | \hat{R})$ (blue line), the prior over policies for π , $p(\pi)$ (orange line), and the expected reward for π , $p(\hat{R} | \pi)$ (green line) over $N = 100$ simulations. While expected rewards are in a constant range throughout the task, the prior over policies increases and accordingly the choice probability.

630 expected rewards, represented by the first term on the right-hand side of [Equation 10](#). In addition,
 631 as the prior is slowly increasing, there is a growing contribution of the repetition bias, given by the
 632 second term of [Equation 10](#). Hence, the repetition bias increases the choice probability but actions
 633 are in principle still modulated by expected rewards. Effectively, in the example, the repetition bias
 634 increases the choice frequency from roughly 0.3 in the first 50 trials to roughly 0.7 in the last 50
 635 trials, when there is a relatively large expected reward.

636 Note that the original model by [Schwöbel et al. \(2021\)](#) was formulated within a planning as
 637 inference ([Botvinick and Toussaint, 2012](#)) and active inference ([Friston et al., 2016; Schwöbel et al.,](#)
 638 [2018](#)) framework to calculate the posterior distributions for action selection. We adapted the key
 639 idea: the posterior probabilities are based on the product of a function over the expected rewards
 640 and the prior over policies. Here, for our purposes, we simplified this model to derive a relatively
 641 straightforward observation model so that we could use Bayesian inference for fitting the model's
 642 free parameters to participant data. Furthermore, the model calculates probabilities based on past
 643 and current observations and does not use any kind of future forward planning. It is therefore
 644 related to RL models, which also calculate subjective values for the possible actions based on the
 645 current expected rewards and the reward history ([Dezfouli and Balleine, 2012; Daw et al., 2011;](#)
 646 [Miller et al., 2019](#)).

647 **Alternative models**

648 The proposed EVPRM makes two assumptions: (1) the repetition bias influences action selection,
649 and (2) participants used an approximated reward for unobserved sequences of actions. To test
650 against alternative explanations, we formulated three alternative models. These models differ only
651 in their assumed reward structure \hat{R} and as a critical distinction, they do not include the prior over
652 policies $p(\pi)$. In what follows, we introduce the three alternative models.

653 **Expected value with proxy and default bias model (EVPM)**

654 An alternative explanation for the repetition of the DAS would be a bias specifically for the DAS
655 but not a general repetition bias as formulated in the EVPRM. To implement this assumption, we
656 derived a new model variant that had an exclusive and constant bias for the DAS. In other words,
657 this model assumes that during training participants developed a bias for choosing the DAS but did
658 not have a slowly increasing repetition bias or a preference for repeating other action sequences.
659 Such a constant bias in favor of the DAS would also lead to an increase in DAS choices and be
660 interpreted as a repetition bias. The difference to the EVPRM is that a constant bias would be
661 independent from past behavior in the main experiment.

To model this bias, we added a constant term as a free model parameter to the expected reward
of the DAS:

$$p(\pi | \hat{R}) \propto \left(\frac{\hat{R}_\pi}{\sum_{\pi \in \lambda} \hat{R}_\pi} \right)^\beta \quad (11)$$

$$\hat{R}_{\pi_t} = \begin{cases} R_{DAS_t} + b_{DAS} & \text{if } \pi = DAS \\ R_{\pi_t} & \text{if } \pi \in \{\tilde{\pi}_{1:t}\} \\ R_0 & \text{otherwise} \end{cases} \quad (12)$$

662 where π is a sequence of four actions defined as above, \hat{R} is the assumed reward structure, \hat{R}_π is
663 the expected reward for the sequence of actions π , β is the free model parameter representing
664 precision over expected rewards, R_0 the free model parameter of approximated rewards for yet
665 unobserved sequences of actions, $\tilde{\pi}_{1:t} = \{\tilde{\pi}_1, \tilde{\pi}_2, \dots, \tilde{\pi}_t\}$ are the performed sequences of actions up
666 to trial t , and b_{DAS} is the bias for π_{DAS} .

667 **Expected value with proxy model (EVPM)**

A second alternative explanation of the choice data is that repetition does not influence action
selection at all. Therefore, contrary to the EVPRM, participants' behavior is not affected by past
behavior, but determined by expected rewards only. To implement this assumption, we derived a
model variant by removing the prior over policies from the EVPRM to have a model that is solely

dependent on the expected reward structure:

$$p(\pi | \hat{R}) \propto \left(\frac{\hat{R}_\pi}{\sum_{\pi \in \lambda} \hat{R}_\pi} \right)^\beta \quad (13)$$

$$\hat{R}_{\pi_t} = \begin{cases} R_{\pi_t} & \text{if } \pi \in \{\tilde{\pi}_{1:t}\} \\ R_0 & \text{otherwise} \end{cases}, \quad (14)$$

668 where π is a sequence of actions defined as before, \tilde{R} is the assumed reward structure, $\tilde{\pi}_{1:t} =$
 669 $\{\tilde{\pi}_1, \tilde{\pi}_2, \dots, \tilde{\pi}_t\}$ are the performed sequences of actions up to trial t , β is the precision over expected
 670 rewards and a free model parameter, R_π the expected reward for a sequence of actions π , and R_0
 671 the free model parameter of approximated reward for unobserved sequences.

672 Expected value model (EVM)

673 The EVPM relies on the approximated reward for unobserved sequences of actions R_0 . An alterna-
 674 tive is that participants indeed were able to calculate expected rewards for all sequences of actions.
 675 To implement this assumption we instantiated a model without the approximated reward param-
 676 eter and to use expected reward R_π instead. Therefore, contrary to the other candidate models,
 677 this model performs actions selection independent from past behavior. We implemented this as:

$$p(\pi | R) \propto \left(\frac{R_\pi}{\sum_{\pi \in \lambda} R_\pi} \right)^\beta, \quad (15)$$

678 where π is a sequence of four actions defined as before, R_π is the expected reward of the sequence
 679 of actions π , and β is the free model parameter representing precision over expected rewards.

680 Model fitting

681 Parameter estimation was done in Python with PyMC (*Salvatier et al., 2016*, version 5.0.1) using
 682 the No U-Turn Sampler (NUTS) (*Hoffman and Gelman, 2014*). We obtained 4,000 samples from
 683 four chains of length 1,000 (1,000 warm-up samples).

684 We used the following weakly informative prior distributions for the free model parameters:
 685 $\beta \sim \Gamma(3, 1)$, $R_0 \sim \Gamma(55, .75)$, $h = \frac{1}{\alpha_{\text{init}}} \sim \text{Beta}(3, 3)$, and $b_{\text{DAS}} \sim \Gamma(3, .1)$. We used the same priors for all
 686 candidate models. The complete code can be found online at [GitHub](#).

687 Model comparison

688 To ensure that parameter inference works well for a meaningful range of parameters, we per-
 689 formed extensive parameter recovery studies for all four models (for details see Appendix *Fig-
 690 ure 1*).

691 Model comparison was based on using leave-one-out cross-validation approximated by Pareto-
 692 smoothed importance sampling (PSIS-LOO) (*Vehtari et al., 2017*). This information criterion calcu-
 693 lates the pointwise out-of-sample predictive accuracy from a fitted Bayesian model. Crucially, it
 694 penalizes models with more parameters. We calculated the expected log point-wise predictive
 695 density (elpd) and the corresponding standard error (SE) on the deviance scale (-2elpd). Lower

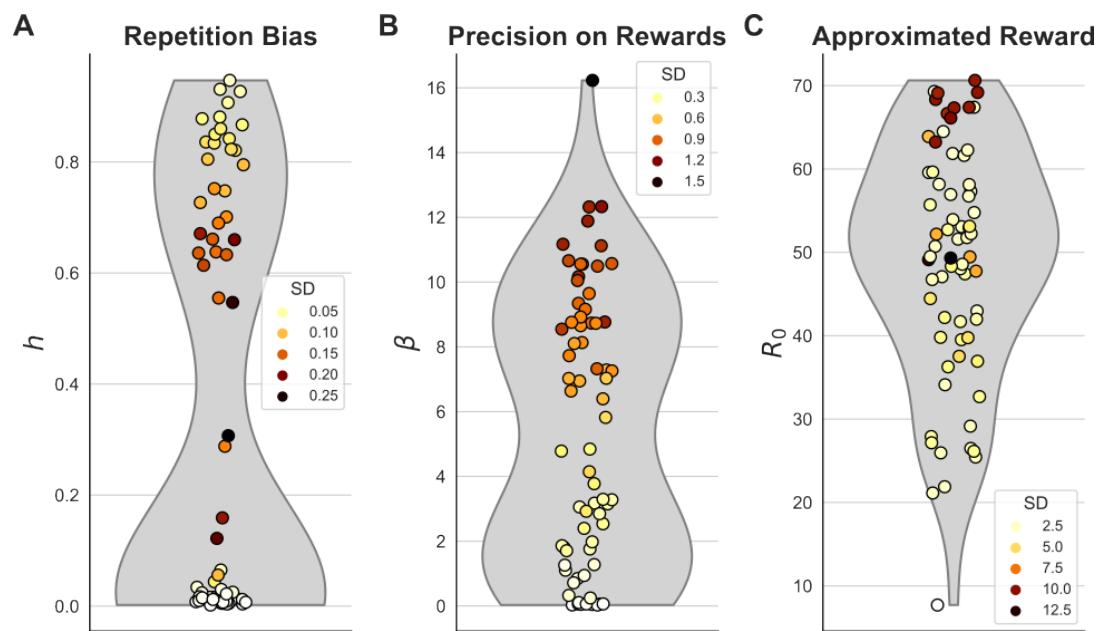


Figure 10. Estimated parameters of expected value with proxy and repetition bias model (EVPRM) Dots represent posterior means of individual parameter estimates. Each plot represents one of the three free parameters: **(A)** repetition bias h , **(B)** precision on expected rewards β and **(C)** approximated reward R_0 . Grey patches represent kernel density estimates. The color of dots indicate standard deviations (SD).

696 values of PSIS-LOO indicate higher predictive accuracy. Calculation of PSIS-LOO scores was per-
 697 formed with ArviZ (Kumar et al., 2019, version 0.7.0).

698 Parameter distributions of EVPRM

699 To better compare individual repetition bias strengths we used the inverse of the initial count α_{init} :
 700 $h = \frac{1}{\alpha_{\text{init}}}$ (see **Equation 6**). h has a value range from 0 to 1, where values near 1 indicated a strong
 701 repetition bias and values around 0 indicate a weak repetition bias.

702 Repetition bias strength varied from very low values between close to 0 and .2 to medium to
 703 strong values between .5 and .9 (see **Figure 10A**). The inferred β values (the precision over expected
 704 reward) spread between values very close to 0 and high values up to 16 (see **Figure 10B**). The approx-
 705 imated reward R_0 for unobserved sequences of actions showed a broad range of values between
 706 around 10 and around 70 (see **Figure 10**).

707 Posterior predictive checks for EVPRM

708 we conducted posterior predictive checks (Gelman et al., 2013) to assess if the fitted EVPRM can
 709 replicate the behavior of the participants. We used the method from PyMC that simulates choices
 710 of 1,000 agents for each participant based on the model and posterior. The parameters of the
 711 agents were drawn from the posterior distributions.

712 We calculated the proportion of correctly predicted choices for each participant over all agents.
 713 These proportions of correctly predicted choices showed a very wide range from 4.9% to 86.3%,
 714 but all proportion were above the chance level of 2.7% (see **Figure 11A**). On the group level the
 715 EVPRM predicted DAS choices better (74.9%) compared to non-DAS choices (19.1%, see **Figure 11C**).

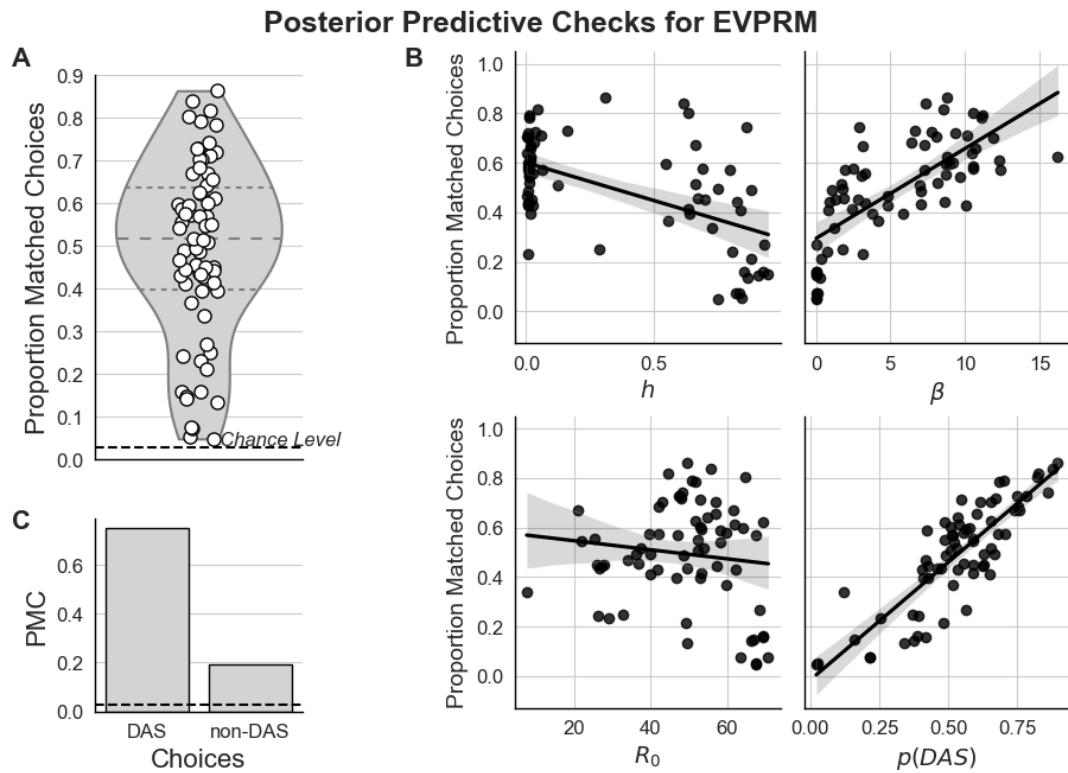


Figure 11. Posterior predictive checks (PPC) for expected value with proxy and repetition bias model (EVPRM). **(A)** Distribution of the proportion correctly predicted choices for each participant based on simulated data with the inferred parameters from the EVPRM. Each white dot represents the proportion of correctly predicted choices for one participant. The grey area represents a KDE of the distribution, and the dotted lines inside the KDE represent the borders of the quartiles. **(B)** Correlations between proportion of correctly predicted choices of each participant and their inferred parameters of the EVPRM and their proportion of default action sequence (DAS) choices. Black solid lines represent linear regression model fitted to the data. h : repetition bias, β : precision over expected rewards, R_0 : approximated reward, $p(\text{DAS})$: proportion of DAS choices. **(C)** Proportions of correctly predicted DAS and non-DAS choices at the group-level. Dotted line represents chance level. PMS: proportion matched choices.

716 We further calculated correlations between the proportions of matched choices and the posterior
 717 means of the inferred parameters and the proportion of DAS choices $p(\text{DAS})$. Here EVPRM better
 718 predicted choices of participants with weak repetition bias h , $r = .55, p < .001$, higher precision
 719 over expected rewards β , $r = .73, p < .001$, and higher proportions of $p(\text{DAS})$, $r = .84, p < .001$ (see
 720 **Figure 11B**). The correlation with the approximated reward R_0 was not significant, $r = .12, p = .25$.

721 Funding

722 This work was funded by the German Research Foundation (DFG, Deutsche Forschungsgemein-
 723 schaft), SFB 940—Project number 178833530, and TRR 265—Project number 402170461 and as
 724 part of Germany's Excellence Strategy—EXC 2050/1—Project number 390696704—Cluster of Ex-
 725 cellence, Centre for Tactile Internet with Human-in-the-Loop (CeTI) of TUD Dresden University of
 726 Technology.

727 References

728 Akaishi, R., Umeda, K., Nagase, A., and Sakai, K. (2014). Autonomous mechanism of internal choice estimate
729 underlies decision inertia. *Neuron*, 81(1):195–206.

730 Balleine, B. W. and Dezfouli, A. (2019). Hierarchical action control: Adaptive collaboration between actions and
731 habits. *Frontiers in Psychology*, 10:2735.

732 Botvinick, M. and Toussaint, M. (2012). Planning as inference. *Trends in cognitive sciences*, 16(10):485–488.

733 Cerasoli, C. P., Nicklin, J. M., and Ford, M. T. (2014). Intrinsic motivation and extrinsic incentives jointly predict
734 performance: a 40-year meta-analysis. *Psychological bulletin*, 140(4):980–1008.

735 Daw, N. D., Gershman, S. J., Seymour, B., Dayan, P., and Dolan, R. J. (2011). Model-based influences on humans'
736 choices and striatal prediction errors. *Neuron*, 69(6):1204–1215.

737 Daw, N. D., Niv, Y., and Dayan, P. (2005). Uncertainty-based competition between prefrontal and dorsolateral
738 striatal systems for behavioral control. *Nature neuroscience*, 8(12):1704–1711.

739 de Wit, S., Kindt, M., Knot, S. L., Verhoeven, A. A., Robbins, T. W., Gasull-Camos, J., Evans, M., Mirza, H., and Gillan,
740 C. M. (2018). Shifting the balance between goals and habits: Five failures in experimental habit induction.
741 *Journal of Experimental Psychology: General*, 147(7):1043.

742 Dezfouli, A. and Balleine, B. W. (2012). Habits, action sequences and reinforcement learning. *European Journal
743 of Neuroscience*, 35(7):1036–1051.

744 Dickinson, A., Nicholas, D., and Adams, C. D. (1983). The effect of the instrumental training contingency on
745 susceptibility to reinforcer devaluation. *The Quarterly Journal of Experimental Psychology*, 35(1):35–51.

746 Dolan, R. J. and Dayan, P. (2013). Goals and habits in the brain. *Neuron*, 80(2):312–325.

747 Doll, B. B., Bath, K. G., Daw, N. D., and Frank, M. J. (2016). Variability in dopamine genes dissociates model-based
748 and model-free reinforcement learning. *Journal of Neuroscience*, 36(4):1211–1222.

749 Doll, B. B., Duncan, K. D., Simon, D. A., Shohamy, D., and Daw, N. D. (2015). Model-based choices involve
750 prospective neural activity. *Nature neuroscience*, 18(5):767–772.

751 Fermin, A., Yoshida, T., Ito, M., Yoshimoto, J., and Doya, K. (2010). Evidence for model-based action planning in
752 a sequential finger movement task. *Journal of motor behavior*, 42(6):371–379.

753 Friston, K., FitzGerald, T., Rigoli, F., Schwartenbeck, P., Pezzulo, G., et al. (2016). Active inference and learning.
754 *Neuroscience & Biobehavioral Reviews*, 68:862–879.

755 Frölich, S., Esmeyer, M., Endrass, T., Smolka, M. N., and Kiebel, S. J. (2023). Interaction between habits as action
756 sequences and goal-directed behavior under time pressure. *Frontiers in Neuroscience*, 16:996957.

757 Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., and Rubin, D. B. (2013). *Bayesian Data Analysis*.
758 CRC press.

759 Gera, R., Or, M. B., Tavor, I., Roll, D., Cockburn, J., Barak, S., Tricomi, E., O'Doherty, J. P., and Schonberg, T. (2023).
760 Characterizing habit learning in the human brain at the individual and group levels: A multi-modal mri study.
761 *NeuroImage*, 272:120002.

762 Gershman, S. J. (2020). Origin of perseveration in the trade-off between reward and complexity. *Cognition*,
763 204:104394.

764 Gillan, C. M., Kosinski, M., Whelan, R., Phelps, E. A., and Daw, N. D. (2016). Characterizing a psychiatric symptom
765 dimension related to deficits in goal-directed control. *elife*, 5:e11305.

766 Gillan, C. M. and Robbins, T. W. (2014). Goal-directed learning and obsessive-compulsive disorder. *Philosophical
767 Transactions of the Royal Society B: Biological Sciences*, 369(1655):20130475.

768 Gläscher, J., Daw, N., Dayan, P., and O'Doherty, J. P. (2010). States versus rewards: dissociable neural prediction
769 error signals underlying model-based and model-free reinforcement learning. *Neuron*, 66(4):585–595.

770 Guthrie, E. (1952). *The psychology of learning*. Rev. Harper Row.

771 Hagger, M., Chatzisarantis, N., and Biddle, S. (2002). A meta-analytic review of the theories of reasoned action
772 and planned behavior in physical activity: Predictive validity and the contribution of additional variables.
773 *Journal of sport & exercise psychology*, 24:3–32.

774 Hardwick, R. M., Forrence, A. D., Krakauer, J. W., and Haith, A. M. (2019). Time-dependent competition between
775 goal-directed and habitual response preparation. *Nature human behaviour*, 3(12):1252–1262.

776 Henninger, F., Shevchenko, Y., Mertens, U. K., Kieslich, P. J., and Hilbig, B. E. (2021). lab.js: A free, open, online
777 study builder. *Behavior Research Methods*, pages 1–18.

778 Hintzman, D. L. (1976). Repetition and memory. *Psychology of learning and motivation*, 10:47–91.

779 Hoffman, M. D. and Gelman, A. (2014). The no-u-turn sampler: adaptively setting path lengths in hamiltonian
780 monte carlo. *J. Mach. Learn. Res.*, 15(1):1593–1623.

781 Horstmann, A., Dietrich, A., Mathar, D., Pössel, M., Villringer, A., and Neumann, J. (2015). Slave to habit? obesity
782 is associated with decreased behavioural sensitivity to reward devaluation. *Appetite*, 87:175–183.

783 Huang, V. S., Haith, A., Mazzoni, P., and Krakauer, J. W. (2011). Rethinking motor learning and savings in
784 adaptation paradigms: model-free memory for successful actions combines with internal models. *Neuron*,
785 70(4):787–801.

786 Kool, W., Gershman, S. J., and Cushman, F. A. (2017). Cost-benefit arbitration between multiple reinforcement-
787 learning systems. *Psychological science*, 28(9):1321–1333.

788 Kumar, R., Carroll, C., Hartikainen, A., and Martin, O. (2019). Arviz a unified library for exploratory analysis of
789 bayesian models in python. *Journal of Open Source Software*, 4(33):1143.

790 Luque, D., Molinero, S., Watson, P., López, F. J., and Le Pelley, M. E. (2020). Measuring habit formation through
791 goal-directed response switching. *Journal of Experimental Psychology: General*, 149(8):1449.

792 Lynch, T. and Maclean, J. (2000). Exploring the benefits of task repetition and recycling for classroom language
793 learning. *Language Teaching Research*, 4(3):221–250.

794 Magallon, S., Narbona, J., and Crespo-Eguílaz, N. (2016). Acquisition of motor and cognitive skills through repe-
795 tition in typically developing children. *PLoS one*, 11(7):e0158684.

796 Majuddin, E., Siyanova-Chanturia, A., and Boers, F. (2021). Incidental acquisition of multiword expressions
797 through audiovisual materials: The role of repetition and typographic enhancement. *Studies in Second Lan-
798 guage Acquisition*, 43(5):985–1008.

799 McCloskey, K. and Johnson, B. T. (2019). Habits, quick and easy: Perceived complexity moderates the associa-
800 tions of contextual stability and rewards with behavioral automaticity. *Frontiers in psychology*, 10:1556.

801 McDannald, M. A., Takahashi, Y. K., Lopatina, N., Pietras, B. W., Jones, J. L., and Schoenbaum, G. (2012). Model-
802 based learning and the contribution of the orbitofrontal cortex to the model-free world. *European Journal of
803 Neuroscience*, 35(7):991–996.

804 McElreath, R. (2020). *Statistical Rethinking: A Bayesian Course with Examples in R and STAN*. Chapman and
805 Hall/CRC.

806 Miller, K. J., Shenhav, A., and Ludvig, E. A. (2019). Habits without values. *Psychological review*, 126(2):292–311.

807 Neal, D. T., Wood, W., and Quinn, J. M. (2006). Habits—a repeat performance. *Current directions in psychological
808 science*, 15(4):198–202.

809 Nebe, S., Kretzschmar, A., Brandt, M. C., and Tobler, P. N. (2024). Characterizing human habits in the lab.
810 *Collabra: Psychology*, 10(1).

811 Oberauer, K., Jones, T., and Lewandowsky, S. (2015). The hebb repetition effect in simple and complex memory
812 span. *Memory & cognition*, 43:852–865.

813 Ouellette, J. A. and Wood, W. (1998). Habit and intention in everyday life: The multiple processes by which past
814 behavior predicts future behavior. *Psychological bulletin*, 124(1):54–74.

815 Patzelt, E. H., Kool, W., Millner, A. J., and Gershman, S. J. (2019). Incentives boost model-based control across a
816 range of severity on several psychiatric constructs. *Biological psychiatry*, 85(5):425–433.

817 Perea, M., Marcet, A., Vergara-Martínez, M., and Gomez, P. (2016). On the dissociation of word/nonword repe-
818 tition effects in lexical decision: An evidence accumulation account. *Frontiers in psychology*, 7:215.

819 Pool, E. R., Gera, R., Fransen, A., Perez, O. D., Cremer, A., Aleksic, M., Tanwisuth, S., Quail, S., Ceceli, A. O.,
820 Manfredi, D. A., et al. (2022). Determining the effects of training duration on the behavioral expression of
821 habitual control in humans: a multilaboratory investigation. *Learning & Memory*, 29(1):16–28.

822 Reinkensmeyer, D. J., Burdet, E., Casadio, M., Krakauer, J. W., Kwakkel, G., Lang, C. E., Swinnen, S. P., Ward, N. S.,
823 and Schweighofer, N. (2016). Computational neurorehabilitation: modeling plasticity and learning to predict
824 recovery. *Journal of neuroengineering and rehabilitation*, 13(1):1–25.

825 Salvatier, J., Wiecki, T. V., and Fonnesbeck, C. (2016). Probabilistic programming in python using pymc3. *Peer/
826 Computer Science*, 2:e55.

827 Scarborough, D. L., Cortese, C., and Scarborough, H. S. (1977). Frequency and repetition effects in lexical mem-
828 ory. *Journal of Experimental Psychology: Human perception and performance*, 3(1):1–17.

829 Schwöbel, S., Kiebel, S., and Marković, D. (2018). Active inference, belief propagation, and the bethe approxi-
830 mation. *Neural computation*, 30(9):2530–2567.

831 Schwöbel, S., Marković, D., Smolka, M. N., and Kiebel, S. J. (2021). Balancing control: a bayesian interpretation
832 of habitual and goal-directed behavior. *Journal of mathematical psychology*, 100:102472.

833 Seow, T. X., Benoit, E., Dempsey, C., Jennings, M., Maxwell, A., O'Connell, R., and Gillan, C. M. (2021). Model-
834 based planning deficits in compulsivity are linked to faulty neural representations of task structure. *Journal
835 of Neuroscience*, 41(30):6539–6550.

836 Shenhav, A., Botvinick, M. M., and Cohen, J. D. (2013). The expected value of control: an integrative theory of
837 anterior cingulate cortex function. *Neuron*, 79(2):217–240.

838 Skinner, B. F. (1963). Operant behavior. *American psychologist*, 18(8):503–515.

839 Spampinato, D. and Celnik, P. (2021). Multiple motor learning processes in humans: defining their neurophys-
840 iological bases. *The Neuroscientist*, 27(3):246–267.

841 Sutton, R. S. and Barto, A. G. (2018). *Reinforcement learning: An introduction*. MIT press.

842 Thorndike, E. L. (1911). *Animal intelligence; experimental studies. On cover: the animal behavior series*. The Macmillan company, New York.

844 Vehtari, A., Gelman, A., and Gabry, J. (2017). Practical bayesian model evaluation using leave-one-out cross-validation and waic. *Statistics and computing*, 27(5):1413–1432.

846 Verplanken, B. (2006). Beyond frequency: Habit as mental construct. *British Journal of Social Psychology*, 45(3):639–656.

848 Voon, V., Derbyshire, K., Rück, C., Irvine, M. A., Worbe, Y., Enander, J., Schreiber, L. R., Gillan, C., Fineberg, N. A., Sahakian, B. J., et al. (2015). Disorders of compulsivity: a common bias towards learning habits. *Molecular psychiatry*, 20(3):345–352.

851 Watson, P. and De Wit, S. (2018). Current limits of experimental research into habits and future directions. *Current opinion in behavioral sciences*, 20:33–39.

853 Watson, P., O'Callaghan, C., Perkes, I., Bradfield, L., and Turner, K. (2022). Making habits measurable beyond what they are not: A focus on associative dual-process models. *Neuroscience & Biobehavioral Reviews*, page 104869.

856 Wilson, R. C. and Niv, Y. (2012). Inferring relevance in a changing world. *Frontiers in human neuroscience*, 5:189.

857 Wolpert, D. M., Diedrichsen, J., and Flanagan, J. R. (2011). Principles of sensorimotor learning. *Nature reviews neuroscience*, 12(12):739–751.

859 Wood, W., Quinn, J. M., and Kashy, D. A. (2002). Habits in everyday life: thought, emotion, and action. *Journal of personality and social psychology*, 83(6):1281.

861 Wood, W. and Rünger, D. (2016). Psychology of habit. *Annual review of psychology*, 67:289–314.

862 Wunderlich, K., Smittenaar, P., and Dolan, R. J. (2012). Dopamine enhances model-based over model-free choice behavior. *Neuron*, 75(3):418–424.

864 Wyckmans, F., Otto, A. R., Sebold, M., Daw, N., Bechara, A., Saeremans, M., Kornreich, C., Chatard, A., Jafari, N., and Noël, X. (2019). Reduced model-based decision-making in gambling disorder. *Scientific reports*, 9(1):19625.

867 **Appendix**

Appendix 0—table 1. Descriptive Statistics depending on bonus condition

	All Trials		Bonus		No Bonus		<i>t</i> -Test		
	<i>M</i>	<i>SD</i>	<i>M</i>	<i>SD</i>	<i>M</i>	<i>SD</i>	<i>t</i>	<i>p</i>	<i>d</i>
<i>p</i> (DAS)	0.57	0.15	0.57	0.19	0.52	0.19	-4.68	<.001	.26
Reward	81.52	5.00	81.34	6.63	80.04	5.92	-2.84	.003	.21
RT (ms)	1645.17	335.21	1691.79	405.11	1662.76	407.69	-1.56	.938	.07
Time Outs	4.70	3.63	2.60	2.49	2.14	1.91	-1.56	.938	.21

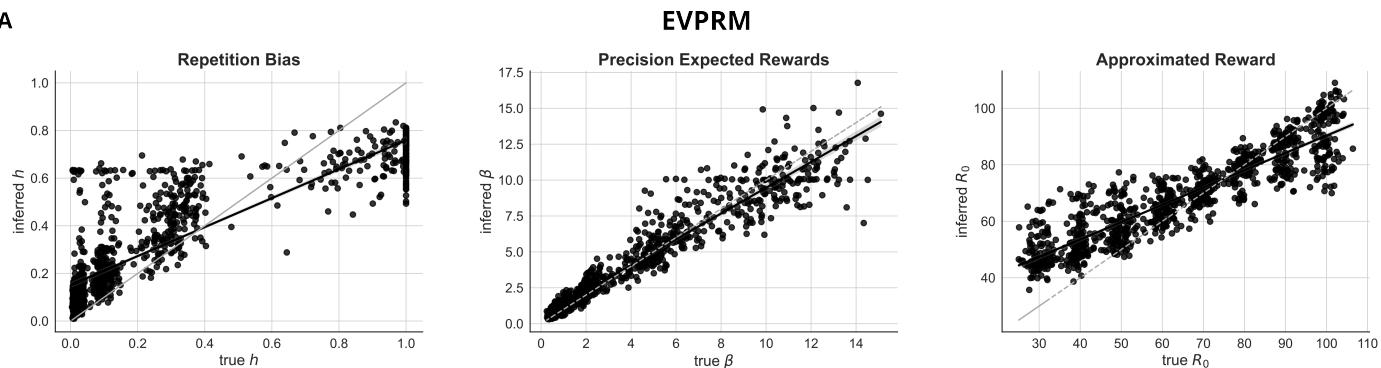
Depicted are means for all trials, trials with potential bonus for DAS, and trials without potential bonus for DAS over all participants. The *t*-tests represent one-sided *t*-tests for related samples that test for significant differences between bonus and no bonus trials. For *p*(DAS) and reward we tested if the means of the first half are smaller than the means of the second half. For RT and time outs we tested if the means of the first half are greater than the means of the second half. *p*(DAS): proportion of DAS choices, reward: mean reward per trial, RT: reaction time, DAS: default action sequence, *M*: mean, *SD*: standard deviation, *t*: *t*-statistic, *p*: *p*-value, *d*: Cohen's *d*.

Appendix 0—table 2. Correlations between inferred parameter values of EVPRM and performance measures

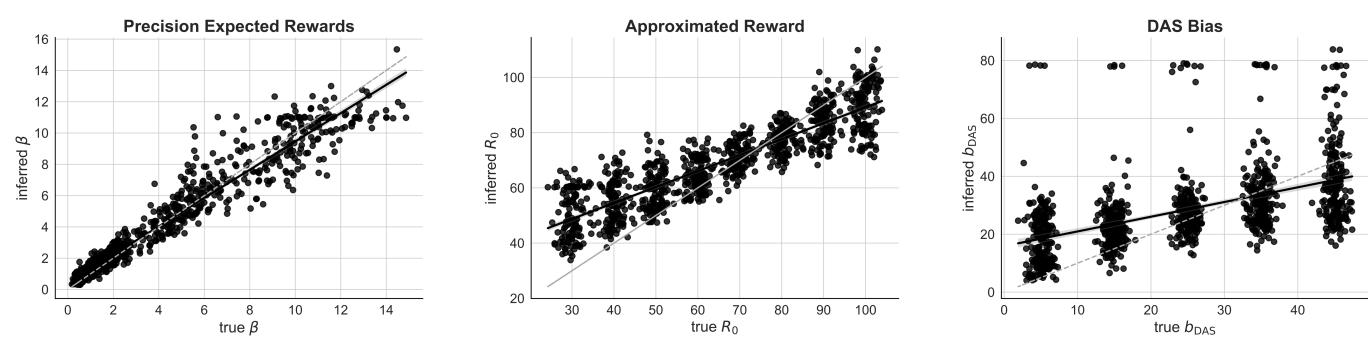
	<i>h</i>	β	R_0	<i>p</i> (DAS)	Reward	RT	Time outs
<i>h</i>	-						
β	-0.75	-					
R_0	0.12	0.30	-				
<i>p</i> (DAS)	-0.22	0.37	-0.18	-			
Reward	-0.69	0.76	-0.11	0.67	-		
RT	0.37	-0.44	0.25	-0.58	-0.70	-	
Time outs	0.32	-0.27	0.16	-0.40	-0.52	0.65	-

Depicted are correlation coefficients between inferred parameter values of EVPRM and performance measures. As performance measures the means of each participant were used. Significant correlations are bold ($p < .05$). β : precision over expected rewards, R_0 : approximated reward, *h*: repetition bias, *p*(DAS): proportion of DAS choices, reward: mean reward per trial, RT: reaction time, DAS: default action sequence, EVPRM: expected value with proxy and repetition bias model.

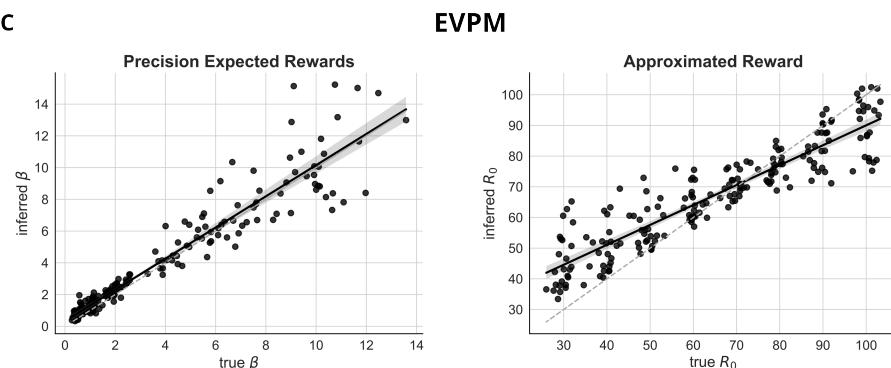
A



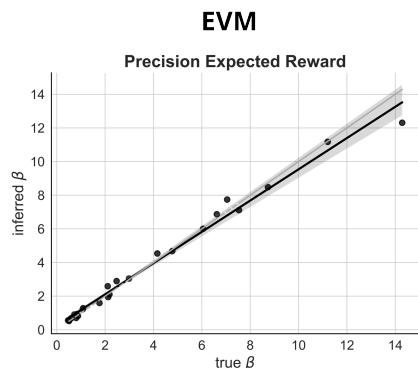
B



C



D



Appendix 0—figure 1. Parameter recovery for all candidate models. Correlations of true and inferred parameter values for all free parameters of the four candidate models: (A) expected value with proxy and repetition bias model (EVPRM), (B) expected value with proxy and default bias model (EVPBM) (C) expected value with proxy model (EVPM), (D) and expected value model (EVM). Black solid lines represent correlation between true and inferred parameter values. Grey dashed lines represent true parameter values.