

1 **Linear β -1,2-glucans trigger immune hallmarks and disease resistance in**
2 **plants**

3

4

5 María Fuertes-Rabanal^{1,2}, Asier Largo-Gosens^{1,2}, Alicia Fischer³, Kristina S. Munzert³, Cristian
6 Carrasco-López⁴, Andrea Sánchez-Vallet⁴, Timo Engelsdorf³ and Hugo Mélida^{1,2,*}

7

8 ¹Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Universidad de León,
9 León, Spain

10 ²Instituto de Biología Molecular, Genómica y Proteómica (INBIOMIC), Universidad de León, León,
11 Spain.

12 ³Department of Biology, Molecular Plant Physiology, Philipps-Universität Marburg, Marburg,
13 Germany

14 ⁴Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) -
15 Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de
16 Montegancedo UPM, Pozuelo de Alarcón (Madrid), Spain

17

18 María Fuertes-Rabanal: mfuerr@unileon.es

19 Asier Largo-Gosens: alargs@unileon.es

20 Alicia Fischer: alicia.fischer@uni-marburg.de

21 Kristina S. Munzert: kristina.munzert@uni-marburg.de

22 Cristian Carrasco-López: cristian.carrasco@upm.es

23 Andrea Sánchez-Vallet: andrea.sanchezv@upm.es

24 Timo Engelsdorf: timo.engelsdorf@uni-marburg.de

25 *Author for correspondence: Hugo Mélida (hmelm@unileon.es)

26 **Abstract**

27

28 Immune responses in plants are triggered by molecular patterns or elicitors, recognized by plant
29 pattern recognition receptors (PRRs). Such molecular patterns arise from host-pathogen interactions
30 and the response cascade activated after their perception is known as pattern-triggered immunity
31 (PTI). Glucans have emerged as key players in PTI, but certain glucans' ability to stimulate defensive
32 responses in plants remains understudied. This work focused on identifying novel glucan
33 oligosaccharides acting as molecular patterns. The ability of various microorganism-derived glucans to
34 prompt PTI responses was tested, revealing that specific microbial-derived glucans, such as short
35 linear β -1,2-glucans, trigger this response in plants by increasing reactive oxygen species (ROS)
36 production, MAP kinase phosphorylation, and differential expression of defence-related genes in
37 *Arabidopsis thaliana*. Pretreatments with β -1,2-glucan trisaccharide (B2G3) improved *Arabidopsis*
38 defence against bacterial and fungal infections in a hypersusceptible genotype. The knowledge
39 generated was then transferred to the monocotyledonous model species maize and wheat, confirming
40 that these plants also respond to β -1,2-glucans, with increased ROS production and improved
41 protection against fungal infections following B2G3 pretreatments. In summary, as with other β -
42 glucans, plants perceive β -1,2-glucans as warning signals and stimulate defence responses against
43 phytopathogens.

44

45

46 **Keywords:** *Arabidopsis*, β -1,2-glucan, cell wall, disease resistance, glucan, glycan triggered
47 immunity, maize, pattern triggered immunity, plant immunity, wheat.

48

49 **Highlights**

50 We describe a new group of glycans present in the extracellular matrices of some plant-interacting
51 microorganisms that are sensed by host surveillance systems and enhance the plant's natural resistance
52 to disease.

53

54

55 **Introduction**

56

57 The plant immune system is a complex network that operates in all plant cells, unlike mammals
58 that have specialized immune cells (DeFalco and Zipfel, 2021). Plants have evolved a multifaceted
59 immune system that involves different layers of stimulus perception and defence mechanisms (Yuan et
60 al., 2021). One of the essential layers of defence in the plant-pathogen interaction is the plant cell wall,
61 which acts as a physical barrier and can be remodelled as a defensive response (Bacete et al., 2018;
62 Molina et al., 2021). Another critical layer of plant immunity is based on the perception of conserved
63 associated molecules by plant pattern-recognition receptors (PRRs). These molecular patterns can be
64 microbe-associated molecular patterns (MAMPs), which are conserved molecules present in microbes,
65 or damage-associated molecular patterns (DAMPs), which are plant degradation products derived
66 from the infection (Cheung et al., 2020). PRRs are primarily located on the surface of the plasma
67 membrane and upon recognition of DAMPs/MAMPs, trigger a cascade of responses known as pattern-
68 triggered immunity (PTI), which may be sufficient to repel pathogen attack and tissue infection. Upon
69 the perception of DAMPs or MAMPs, intracellular increases in Ca^{2+} and H_2O_2 bursts occur, which
70 activate downstream signalling networks regulated by plant mitogen-activated protein kinases
71 (MAPKs) and calcium-dependent protein kinases (CDPKs) (Bigeard et al., 2015). These MAPK- and
72 CDPK-dependent signaling networks play specific roles in controlling the activities and synthesis of a
73 diverse array of transcription factors, enzymes, hormones, peptides, and antimicrobial compounds, all
74 of which contribute to plant resistance to pathogens (Tena et al., 2011). Furthermore, after recovering
75 from biotic stresses plants can acquire higher levels of resistance due to the long-lasting defence
76 responses, known as immune priming, which can persist for hours or days after pathogen detection,
77 enabling plants to defend themselves and neighbouring plants against pathogens (Cooper and Ton,
78 2022).

79 The field of plant immunity has historically focused on peptide-triggered immunity. However,
80 recent advances have led to the discovery of numerous glycans derived from plants, from extracellular
81 polysaccharides of bacteria or from pathogen cell wall that induce plant immunity (Willmann et al.,
82 2011; Liu et al., 2012; Benedetti et al., 2015; Jiang et al., 2016; Souza et al., 2017; Claverie et al.,
83 2018; Mélida et al., 2018, 2020; Rebaque et al., 2021; Zarattini et al. 2021; Yuan et al., 2022;
84 Fernández-Calvo et al., 2024). Among the whole spectrum of cell wall polymers present across various
85 organisms, glucans stand out as one of the most vital types. These polymers are characterized by a
86 glucose backbone, with variations in branching patterns, with linear glucans being the most prevalent
87 (Synytsya and Novak, 2014). The specific glucose carbons engaged in the polymerization process play
88 a pivotal role in shaping the biochemical properties of glucans. This specificity allows for the
89 differentiation of a diverse array of structures such as β -1,4-glucans responsible for cellulose
90 formation, β -1,6-glucans characteristic of fungi and some algae and β -1,3-glucans or β -1,3/1,4-glucans
91 present in plants, algae and fungi (Burton and Fincher, 2009; Schulze et al., 2016; Souza et al., 2017;

92 Mélida et al., 2018; Ruiz-Herrera and Ortiz-Castellanos, 2019). The high glucans diversity of both
93 plants and their microbial pathogens, leads to a large variety of glucoligands with potential affinity for
94 plant receptors. Nevertheless, recent evidence suggests that filamentous microbes, such as fungi or
95 oomycetes, have evolved towards evasion of glycan-triggered immunity, highlighting the importance
96 of understanding the intricacies of the plant immune system (Irieda et al., 2019; Chandrasekar et al.,
97 2022). Besides, there are still different glucans, such as those linked by α -1,3 or β -1,2 bonds contained
98 in the extracellular matrixes of some bacteria and fungi, which far from having the capacity to trigger
99 PTI have been proposed to act as plant or mammal immunosuppressants, a phenomenon barely
100 described in this scientific field (Rigano et al., 2007; Rappleye and Goldman, 2008; Fujikawa et al.,
101 2012).

102 This revelation underscores the complexity of plant-pathogen interactions and highlights the
103 importance of understanding glycan-triggered immunity modulation in plant defence mechanisms.
104 Moreover, the emergence of immune priming using glycans from various sources has demonstrated
105 efficacy in enhancing protection across different pathosystems, showcasing the potential of glycan-
106 based technologies in plant defence (Klarzynski et al., 2000; Aziz et al., 2007; Gravino et al., 2015;
107 Claverie et al., 2018; Rebaque et al., 2023). This concept has spurred the development of crop
108 protection technologies focused on enhancing the natural resistance mechanisms of the plants to
109 combat plant pathogens, promoting sustainable agricultural practices and reducing environmental
110 impact (Conrath et al., 2015). Notably, the utilization of β -1,3-glucans and chitin as plant immunity
111 inducers has been successful, leading to the development and commercialization of products already
112 being applied to the fields.

113 Therefore, the aim of this work was to investigate the ability of plant cell defence systems to
114 perceive glucans that have not been studied so far, such as β -1,2-glucans, and their ability to protect
115 plants by immune priming. To this end, we investigated the ability of *Arabidopsis thaliana*
116 (Arabidopsis) to induce immunity and to protect against microbial infections upon treatment with β -
117 1,2 glucans. Finally, with the purpose of testing whether β -1,2-glucans could be used to protect crops,
118 we analysed their efficacy in inducing H_2O_2 production and in pathogen-protection assays in
119 monocots.

120

121 **Material and Methods**

122

123 *Plant material and growth conditions*

124 The *Arabidopsis* ecotype used in this study was Columbia-0 (Col-0). Seedlings used for reactive
125 Oxygen Species (ROS), MAPK phosphorylation and gene expression assays were grown in 24-well
126 plates (approximately 10 seedlings per well) for 8-12 days under long day conditions (16 hours light/8
127 hours dark) at 26°C/24°C in liquid half-concentrated Murashige and Skoog (MS) medium. For bacteria
128 and *Botrytis cinerea* protection analyses, *Arabidopsis* plants were grown in a soil-vermiculite (5:1)

129 mixture in a growth chamber under 12 hours of light/12 hours of darkness at 23°C/21°C with a
130 humidity of 70% for 4 weeks. For *Colletotrichum higginsianum*, Col-0 and the hypersensitive mutant
131 *pgm* were grown in a soil-clay (4:1; Fruhstorfer soil type P, Hawita, Germany:Liadrain clay, Liapor,
132 Germany) mixture in CLF (Wertingen, Germany) GroBank growth chambers with 12 hours of light/12
133 hours of darkness at 22°C/20°C for 2 weeks and subsequently transferred into long day conditions (16
134 hours of light/8 hours of dark; 22°C/20°C) for another 2 weeks. The photon flux density was kept at
135 110 $\mu\text{mol m}^{-2} \text{s}^{-1}$ and the plants were fertilized 7 days prior to infection with Wuxal Super fertilizer
136 (Aglukon, Germany).

137 Maize (*Zea mays* cv Mikado) seeds were soaked with tap water for 4 hours and germinated in
138 germination trays for two days at 28°C. Seedlings were transferred to square pots with P-type soil
139 (Fruhstorfer, Hawita, Germany) and grown under 14 hours light/10 hours darkness at 28°C/20°C and
140 400 $\mu\text{mol m}^{-2} \text{s}^{-1}$ photon flux density for 14 days in Percival (Perry, USA) PGC-105 growth chambers.
141 Maize plants were fertilized every two days with Hoagland solution.

142 Wheat plants (*Triticum aestivum* cv Titlis) were grown in square pots (11x11x12 cm) with soil
143 under long day conditions at 18°C (light) and 15°C (dark) with a humidity of 60%. Seven-day-old
144 plants were fertilized with 2 litres of fertilizer solution per 15 pots (5 ml/L, COMPO Universal Liquid
145 Fertilizer, Germany).

146

147 *Plant pathogenic bacteria and fungi growth conditions*

148 *Pseudomonas syringae* pv. *tomato* (DC3000) was kindly provided by Dr. Rubén Alcazar from
149 *Universidad de Barcelona* (Spain). DC3000 was grown in King's Basal medium (KB; 2% (w/v)
150 protease peptone, 0.15% (w/v) MgSO_4 , 0.15% (w/v) KH_2PO_4 , and 1.5% (v/v) glycerol) with 25 $\mu\text{g/mL}$
151 of rifampicin and incubated at 28°C for three days before infection assay.

152 *Botrytis cinerea* was kindly provided by Víctor Flors from *Universitat Jaume I* (Spain). *B.*
153 *cinerea* was grown in potato dextrose agar (PDA) medium at 25°C in dark until the formation of the
154 conidiophores. Spores were collected by washing PDA plates with autoclaved tap water, filtered
155 through two layers of sterile gauze and counted using a Thoma chamber. Spores were diluted to 7×10^6
156 spores/mL and stored as glycerol stocks. Later, for infection experiments these spores were
157 centrifugated at 3,000 g for 5 minutes and resuspended in Potato-Dextrose Broth (PDB) medium.
158 Then, spores were counted in a Thoma chamber and were diluted with more PDB to achieve a
159 concentration of 1×10^6 spores/mL.

160 *Colletotrichum higginsianum* MAFF305635 was grown in oatmeal agar medium (OMA, 5%
161 (w/v) grinded organic oatmeal and 1.2% (w/v) agar) for 7 days at 22°C under long day conditions to
162 promote the conidia development. Conidia were collected by washing plates with sterile distilled water
163 and spores were counted in a Neubauer chamber. Spores were diluted to 2×10^6 spores/mL for infection
164 experiments with distilled water.

165 *Colletotrichum graminicola* (Ces.) Wils., CgM2 isolate was grown on OMA medium (5% (w/v)
166 oat bran and 1.2% (w/v) agar) for 14 days at 26°C under long day conditions to allow conidia
167 formation. Spores were collected by washing plates with sterile distilled water and spores were
168 counted in a Neubauer chamber and diluted to 2x10⁴ spores/mL.

169 *Zymoseptoria tritici* (Swiss strain ST99CH_3D7) spores were incubated in 50 mL of Yeast
170 Peptone Dextrose (YPD; 1% (w/v) yeast extract, 2% (w/v) peptone and 1% (w/v) dextrose,
171 supplemented with 50 µg/mL Kanamycin) for 6 days at 18°C and rotary shaking at 120 rpm. Spores
172 were filtered through sterile gauze, pelleted by centrifugation at 3,273 g for 15 minutes and
173 resuspended into 15-25 mL of sterile water. Spore concentration was calculated using a KOVA
174 Glasstic counting chamber (Hycor Biomedical, Inc., California) and adjusted to 1x10⁷ spores/mL.

175

176 *Carbohydrates used in the experiments*

177 The oligosaccharides α-1,3-glucan trisaccharide -A3G3- (α-1,3-(glucose)₃), hexaacetyl-
178 chitohexaose Chi6 (β-1,4-(N-acetylglucosamine)₆), MLG43 (β-1,3, β-1,4-(glucose)₃), β-1,2-glucan
179 trisaccharide B2G3 (β-1,2-(glucose)₃), β-1,2-glucan hexasaccharide B2G6 (β-1,2-(glucose)₆), β-1,2-
180 glucan polysaccharide (β-1,2-(glucose)_n) were acquired from Megazyme (Wicklow, Ireland).

181

182 *Reactive oxygen species production analysis*

183 Eight-day-old *Arabidopsis* seedlings grown on liquid ½ MS medium were used for this
184 experiment. One seedling per well was placed in a white 96-well plate, then they incubated overnight
185 with 150 µL of distilled water at room temperature. The day after, distilled water was replaced by 100
186 µL of 10 mM luminol (#120-04891; FUJIFILM Wako Pure Chemical Corporation) and 1 mg/mL of
187 horseradish peroxidase (#P6782; Sigma) and incubated for two hours. Subsequently, seedlings were
188 treated with water (mock) and the oligosaccharides described above in order to quantify the production
189 of H₂O₂ using the luminol assay and a Varioskan Lux microplate reader (Thermo Scientific). For dose-
190 response assays, different concentrations of B2G3 (from 0.01 µM to 1mM) were used.

191 In case of maize, 4-week-old plants at the V3 stage (with 5 or 6 developed leaves) were used,
192 following a protocol similar to that used in *Arabidopsis*.

193 Eight disks (12.6 mm²) from second leaves of 2-week old wheat plants were incubated with 100
194 µL of 15 µg/mL Peroxidase from horseradish (Sigma-Aldrich, P6782) and 150 nM luminol L-012 for
195 16 h in the dark at 15 °C. Thereafter, 50 µL of 300 or 1200 µM B2G3, 3 µM flg22 or distilled water
196 (mock) were added, and luminescence was measured using Varioskan Lux microplate reader.

197 In all the cases, from the data obtained in the ROS accumulation analysis, the total areas under the
198 curves were integrated using the SkanIt software (Thermo Scientific).

199

200 *Immunoblot analysis of MAPK activation*

201 Twelve-day-old *Arabidopsis* seedlings grown on liquid ½ MS medium in 24-well plates were
202 treated with water (mock), MLG43, B2G3 and B2G6 for 0, 5, 15, 30 and 60 minutes. Subsequently,
203 seedlings were frozen in liquid nitrogen and homogenized by pestles. Protein extraction was
204 performed with 50 µL of extraction buffer (25 mM Tris-HCl pH 7.8, 75 mM NaCl, 15 mM Egtaic
205 acid (EGTA), 10 mM magnesium chloride, 15 mM sodium β-glycerophosphate pentahydrate, 15 mM
206 bis(4-nitrophenyl) phosphate, 1 mM 1,4-dithiothreitol, 1 mM sodium fluoride, 0.5 mM sodium
207 orthovanadate, 0.5 mM phenylmethylsulfonyl fluoride, 0.1% (v/v) Tween 20 and protease inhibitor
208 cocktail (#P9599; Sigma). Total proteins were quantified by Bradford reagent (Bio-Rad). Equal
209 amounts of proteins were separated by SDS-PAGE and then transferred onto nitrocellulose
210 membranes which were blocked with Protein-Free Blocking Buffer (PFBS; Thermo Scientific) for 2
211 hours at room temperature in agitation. The membranes were incubated overnight in agitation at 4°C
212 with Phospho-p44/42 MAPK (Erk1/2) (Thr202/Tyr204) (#4370; Cell Signaling Technology) in a
213 dilution 1:1000 with PFBS. Afterwards, membranes were washed three times with Tris-Buffered
214 Saline that contains also 0.1% (v/v) Tween 20 and then incubated with horseradish-peroxidase-goat
215 anti-rabbit polyclonal secondary antibody (#10035943; Fisher) diluted 1:250 with PFBS. Finally, the
216 membranes were developed using ECL Western Blotting Substrate (Thermo Scientific). Additionally,
217 the membranes were stained with Ponceau S solution to evaluate equal loading (Thermo Scientific).

218

219 *Gene expression analyses*

220 Twelve-day-old *Arabidopsis* seedlings grown on liquid ½ MS medium in 24-well plates were
221 treated with water (mock), Chi6, MLG43, B2G3 and B2G6 for 0 and 30 minutes. Total RNA was
222 extracted using the RNeasy Plant Mini Kit (Qiagen) following the protocol of the manufacturer. RT-
223 PCR was carried out using the High-Capacity RNA-to-cDNA Kit (Applied biosystems). Reactions for
224 the quantitative PCR were made using 2X PowerUp SYBR Green Master Mix (Applied Biosystem)
225 using the cycling mode described in the Quick Reference of the SYBR Green Mix. The quantitative
226 PCR was performed in Step One Plus real-time PCR system (Applied Biosystem). We used specific
227 primers (Supplementary Table S1) for the amplification of the immune-related genes *CYP81F2*
228 (*At5g57220*) and *WRKY53* (*At4g23810*). The expression of each gene was normalized to *UBC21*
229 (*At5g25760*) levels.

230

231 *Arabidopsis protection assays*

232 For *Arabidopsis* protection experiments against DC3000, plants were grown in a soil vermiculite
233 (5:1) mixture in 1 L glass culture vessels jars (PhytoTech Labs) (3 plants/vessel) formerly sterilized by
234 autoclaving and in the growth conditions described previously. Four-week-old *Arabidopsis* plants
235 were sprayed with 1 mL per plant of water (mock) or B2G3 solution (500 µM), both treatments
236 containing 0.05% (v/v) of Tween 24 (Croda) as adjuvant. The infection with DC3000 was carried out
237 48 hours after pretreatments. Plants were sprayed with 2 mL of the bacterium suspension (with an

238 optical density of 0.1 at 600 nm) that contained Silwet L-77 (PhytoTech Labs) as a surfactant. Plants
239 were maintained at high humidity for 3 hours by using a cover sprayed with water. In order to
240 calculate the Colony Forming Units (CFUs), two leaf discs were collected from each plant at 0 (3
241 hours) and 3 days post-infection (dpi) and were homogenized with a pestle for recovering the bacteria
242 that had penetrated the tissue. CFU-per-foliar-area were determined after plating serial 1:10 dilutions
243 of each recovered leaf-extract on KB plates with rifampicin (25 µg/mL) incubated at 28°C. Pictures of
244 the DC3000 infection symptoms were also obtained throughout the experiment.

245 For *B. cinerea* inoculations, Arabidopsis plants were grown in pots (one plant/pot) for 4 weeks in
246 the same conditions as described before. Each plant was sprayed with 0.5 mL water (mock) or B2G3
247 (500 µM), both supplemented with 0.05% (v/v) Tween 24 (Croda) and infection with *B. cinerea* was
248 performed 48 hours after the treatment. *B. cinerea* spores were obtained as explained previously.
249 Fungal infection was performed by placing four 5-µL drops, containing approximately 5,000 spores,
250 per leaf in at least three leaves per Arabidopsis plant. Plants were maintained at high humidity by
251 using a cover sprayed with water. After 24 hours of *B. cinerea* inoculation, nine leaves from different
252 plants were cut, weighed, frozen under liquid nitrogen and stored at -80 °C for *B. cinerea* genomic
253 DNA quantification. *B. cinerea* quantitation on infected leaves was performed by quantitative PCR by
254 extracting fungal genomic DNA using NZY Plant/Fungal gDNA Isolation Kit (Nzytech, Lisboa,
255 Portugal). Quantitative PCRs were performed as described above in QuantStudio1 equipment (Thermo
256 Fisher Scientific), using the *B. cinerea*-specific primers (Supplementary Table S1) for amplification of
257 β -Tubulin gene (BcTUB). In QuantStudio 1 the fungal genomic DNA quantification was quantified in
258 relation to the fresh weight (mg) of infected Arabidopsis leaves. After another 24 hours, the remaining
259 leaves were photographed and the lesion area was analysed using ImageJ (Schneider et al., 2012).

260 The ability of B2G3 to protect against *C. higginsianum* was evaluated in Arabidopsis Col-0 plants
261 and in the starch-deficient hypersusceptible plastidic phosphoglucomutase (*pgm*) mutant (Engelsdorf
262 et al., 2013). Plants were grown in pots with a soil:clay (4:1) mixture for 4 weeks according to the
263 growth conditions mentioned before. Plants were sprayed with 0.5 mL per plant of distilled water
264 (mock) or 1 mM B2G3 both supplemented with 0.05% (v/v) Tween 24 (Croda) and were maintained
265 in high humidity by using a cover sprayed with water. *C. higginsianum* was inoculated 48 hours after
266 the treatments. *C. higginsianum* conidia solution containing 2×10^6 conidia/mL and 1 mM B2G3 in
267 distilled water was used to perform this infection assay, while mock treatments contained 1 mM B2G3
268 in distilled water. To obtain a homogeneous *C. higginsianum* inoculation, 1 mL of conidia suspension
269 were evenly sprayed on the leaf surface and plants were maintained at high humidity by using a cover
270 that was sprayed with water to support the fungal infection. Leaf discs were collected at 3.5 dpi to
271 quantify *C. higginsianum* genomic DNA, frozen in liquid nitrogen and stored at -80 °C. Leaf discs
272 were homogenized using metal beads in a Retsch mixer mill with a frequency of 20 Hz for 1 minute.
273 The extraction of fungal genomic DNA was performed using NucleoSpin® Plant II Kit (Macherey-
274 Nagel, Duren, Germany) following the instructions of the manufacturer. *C. higginsianum* genomic

275 DNA quantitation was performed by quantitative PCR using Biozym Blue S'Green qPCR Kit
276 (Biozym Scientific, Germany) in a CFX RT-PCR detection system (Bio-Rad, USA) and specific
277 primers for ChTrpC gene (Supplementary Table S1). The relative quantity of fungal DNA was
278 normalized to leaf area (cm²).

279

280 *Monocot protection assays*

281 Maize protection assays were performed against the pathogen *C. graminicola*. Maize plants were
282 grown for 14 days, and fully expanded fourth leaves were treated with 0.5 mL per plant of water
283 (mock) and 1 mM of MLG43 or B2G3. All solutions were supplemented with 0.02% (v/v) Tween 20
284 as a surfactant. After 48 hours, treated leaves were immersed for 24 hours in 40 mL of conidia solution
285 which contained 2x10⁴ conidia/mL before the conidia solution was removed. The progression of the
286 infection was evaluated by the quantification of *C. graminicola* genomic DNA by quantitative PCR.
287 Maize leaf discs sampled at 4 dpi were homogenized using metal beads in a Retsch mixer mill and
288 fungal genomic DNA was extracted with NucleoSpin® Plant II Kit (Macherey-Nagel, Dueren,
289 Germany) as explained before. *C. graminicola* genomic DNA was quantified by quantitative PCR
290 using Biozym Blue S'Green qPCR Kit (Biozym Scientific, Germany) in a CFX RT-PCR detection
291 system (Bio-Rad, USA) and specific primers for the *histone 3* (CgH3) gene (Supplementary Table S1).
292 The relative quantity of *C. graminicola* genomic DNA was normalized to leaf area (cm²).

293 Wheat plants were grown for 2 weeks and whole plants were sprayed with 0.80 mL per plant of
294 water (mock) or 500 µM B2G3, both solutions supplemented with 0.1% (v/v) Tween 20. After 24
295 hours, plants were sprayed with 12.5 mL of *Z. tritici* strain ST99CH_3D7 spore suspension which
296 contained 1x10⁷ spores/mL and 0.1% (v/v) Tween 20. Pots were enclosed with a plastic bag for 72
297 hours to ensure high humidity. The percentage of leaf area covered by lesions and the number of
298 pycnidia per cm² of leaf were assessed 12 dpi. Sixteen second leaves per treatment were mounted on
299 paper sheets, scanned using a CanoScan LiDE 400 scanner, and analysed with ImageJ (Schneider et
300 al., 2012) and an automated image analysis method (Stewart et al. 2016).

301

302 *Data analysis and software*

303 For dose-response analyses, total relative luminescence units (RLU) were obtained by calculating
304 the integral under the kinetic curve in each case. The estimated effective dose (ED) was calculated
305 using the total RLU and an “R” script using the package drc v3.0 as described by Ritz et al. (2015). R
306 software (v4.2.2, R Development Core Team, 2008; <https://www.r-project.org/>) was used for
307 calculating the ED and drawing the figure.

308 For statistical analysis, Student's t-test was used to determine whether or not a set of data was
309 significantly different compared to the mock, n.s. means non-significant differences (p>0.05) and
310 asterisks indicate significant differences (*p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001). The results were
311 analysed using SPSS statistical software (version 29.0.2.0).

312

313 **Results**

314

315 *β-1,2-glucan oligosaccharides trigger H₂O₂ production in Arabidopsis plants in a dose-dependent*
316 *manner.*

317 One of the first PTI responses in plants is the quick production of ROS (mainly H₂O₂) upon the
318 recognition of a molecular pattern. Therefore, the luminol-based assay to quantify ROS production
319 after treatment with peptides or oligosaccharides has been extensively used to identify novel plant
320 defence elicitors. The treatment of Arabidopsis seedlings with 100 μM α-1,3-glucan trisaccharide
321 (A3G3) had no effect on ROS production, which, to our knowledge, had not been demonstrated
322 before. However, β-1,2-glucan oligosaccharide treatments (100 μM B2G3-trisaccharide and B2G6-
323 hexasaccharide; Supplementary Fig. S1) triggered the production of ROS following a kinetics similar
324 to that of previously described plant defence elicitors such as MLG43 and Chitohexaose (Chi6) (Fig.
325 1A). In fact, the quantification of the total amount of RLU showed a significant increase in ROS
326 production in Chi6, MLG43, B2G3 and B2G6 oligosaccharides in comparison with A3G3- and water-
327 treated plants (mock) (Fig. 1B). In contrast, treatment with a β-1,2-glucan polysaccharide led to a
328 slight, but non-significant, increase in ROS production at the concentrations tested (0.1 to 0.5 mg/mL)
329 (Fig. 1A and B and Supplementary Fig. S2).

330 To characterize the kinetics of β-1,2-glucan oligosaccharide perception, we treated Arabidopsis
331 seedlings with different concentrations of B2G3 ranging from 0.01 μM to 1 mM. Results indicated
332 that ROS production is dependent on B2G3 concentration, and this oligosaccharide is effective at the
333 micromolar range (from 1 μM to 250 μM B2G3) (Fig. 1C and D). The calculation of the estimated
334 effective dose (EED, 50% of total signal) was 64.83 μM, which is similar to EED values for other
335 glycan-based immune elicitors such as MLG43, Chi6 and β-1,3-glucan hexasaccharide (Mélida et al.,
336 2018; Rebaque et al., 2021) (Fig. 1D).

337

338 *B2G3 and B2G6 activate other PTI hallmarks.*

339 To confirm that β-1,2-glucan oligosaccharides effectively trigger PTI responses, we evaluated the
340 phosphorylation of MAPKs (MAPK3, MAPK6 and MAPK4/11) by western-blot using an anti-p44/42
341 antibody which specifically recognizes the phosphorylated forms of these MAPKs. As previously
342 described, MLG43 (100 μM), used as positive control, induced MAPK3 and MAPK6 phosphorylation
343 after 5 minutes of treatment, but MAPK4/11 phosphorylation was not observed (Fig. 2A and B;
344 Rebaque et al., 2021). Interestingly, 100 μM B2G3 and B2G6 showed a peak of MAPK
345 phosphorylation at 15 minutes after treatment (Fig. 2A and B). B2G3 treatment showed the
346 phosphorylation of all MAPKs (MAPK3, MAPK6 and MAPK4/11), whereas B2G6 only induced the
347 phosphorylation of MAPK6, but not of MAPK3 and MAPK4/11.

348 In addition, we also evaluated the expression of two PTI reporter genes, *CYP81F2* and *WRKY53*,
349 after 30 minutes of treatment with oligosaccharides. *CYP81F2* (*CYTOCHROME P450, FAMILY 81*)
350 encodes a cytochrome P450 monooxygenase involved in the biosynthesis of indole glucosinolates,
351 while *WRKY53* (*WRKY DNA-BINDING PROTEIN 53*) is involved in basal resistance against *P.*
352 *syringae* (Murray et al., 2007; Pfalz et al., 2009). As expected, Chi6 and MLG43 treatments strongly
353 induced the expression of both PTI reporter genes (Fig. 2C and D). Similarly, β -1,2-glucan
354 oligosaccharides, B2G3 and B2G6, also led to a significant increase in the expression of both PTI
355 reporter genes (Fig. 2C and D). Taken together, both β -1,2-glucan oligosaccharides triggered all PTI
356 responses evaluated, but B2G3 caused the phosphorylation of all MAPKs. For this reason, this
357 oligosaccharide was selected for further experiments.

358 *B2G3 treatment reduces Arabidopsis disease symptoms caused by different pathogens.*

359 It has been extensively described that linear or cyclic β -1,2-glucan polymers (with a degree of
360 polymerization from 6 to 40 glucoses) are deposited in the periplasmic space of certain groups of
361 Gram-negative plant-colonizing bacteria as osmoregulated periplasmic glucans (OPGs) and play
362 multiple roles in the bacterial lifestyle (Bohin, 2000; Wanke et al., 2021). Considering this and that β -
363 1,2-glucan oligosaccharides are capable of triggering PTI responses, we wondered if B2G3
364 pretreatment would protect plants after the inoculation of pathogenic bacteria such as *Pseudomonas*
365 *syringae* pv. *tomato* (DC3000). Bacterial inoculation produced the appearance of chlorotic lesions on
366 rosette leaves of mock-pretreated *Arabidopsis* plants at 3, 5 and 7 dpi, while the pretreatment with
367 B2G3 strongly reduced those symptoms (Fig. 3A). These results are in accordance with the significant
368 reduction of DC3000 growth at 3 dpi in B2G3 pretreated plants in comparison with mock-pretreated
369 plants (Fig. 3B). In conclusion, B2G3 is effective in the activation of PTI responses that protect
370 against *P. syringae* in *Arabidopsis*.

371 The occurrence of β -1,2-glucans has been previously described in fungal and oomycete cell walls
372 (Mitchell and Sabar, 1966; Ruiz-Herrera and Ortiz-Castellanos, 2019). Therefore, we decided to test if
373 β -1,2-glucan oligosaccharides protect *Arabidopsis* plants against fungal diseases. To achieve this, we
374 treated *Arabidopsis* plants with B2G3 prior to inoculation of two fungal pathogens, the necrotrophic
375 *Botrytis cinerea* and the hemibiotrophic *Colletotrichum higginsianum*. B2G3 treatment did not reduce
376 the necrotic lesion area of *B. cinerea* at 2 dpi after droplet inoculation on *Arabidopsis* leaves (Fig. 3C
377 and D). Quantification of the genomic DNA of *B. cinerea* in infected leaves after 24 hours of infection
378 also showed that the pretreatment with B2G3 had no effect on the growth of this fungus (Fig. 3E). For
379 *C. higginsianum* infection experiments, we pretreated *Arabidopsis* plants with B2G3 and performed a
380 second B2G3 treatment at the time of infection. Nevertheless, the amount of the *C. higginsianum*
381 genomic DNA in infected wild type leaves was similar to mock-treated plants at 3.5 dpi (Fig. 3F). To
382 investigate if B2G3 treatment can protect hypersusceptible *Arabidopsis* plants, we performed the same
383 treatments on the starch-deficient *pgm* mutants, which are hypersusceptible to this fungal infection due

384 to reduced carbohydrate availability and reduced penetration resistance (Engelsdorf et al., 2013, 2017).
385 Treatment of *pgm* plants with B2G3 caused a significant reduction in fungal genomic DNA at 3.5 dpi,
386 indicating that plants with impaired basal resistance can be protected by B2G3 application (Fig. 3F).
387 These results would classify B2G3 as a new elicitor able to trigger PTI responses in *Arabidopsis*,
388 which led to protection against certain pathogens.

389

390 *B2G3 trigger PTI immune responses and confers defence against pathogens in monocot plants.*

391 We further evaluated the potential of B2G3 in triggering PTI in plants other than *Arabidopsis*. In
392 order to evaluate if β -1,2-glucans trigger an immune response in maize plants, we first determined the
393 production of H_2O_2 in maize leaf discs after treatment with these glycans. Treatment with B2G3 and
394 B2G6 (100 μ M) significantly triggered ROS production in maize discs in a similar way as Chi6 (100
395 μ M) (Fig. 4A). Total RLU quantification showed a significant increase in ROS production after Chi6,
396 B2G3 and B2G6 treatment in comparison with mock-treated plants (Fig. 4B). As observed in
397 *Arabidopsis* seedlings, A3G3 treatment did not trigger ROS production (Fig. 4A and B). To assess
398 whether the PTI defence responses triggered by B2G3 protected maize plants against diseases, we
399 pretreated maize plants with MLG43 and B2G3 prior to inoculation with the hemibiotrophic fungal
400 pathogen *Colletotrichum graminicola*. Pretreatment of maize plants with MLG43 or B2G3 reduced
401 fungal growth, as evidenced by a significant reduction in the amount of *C. graminicola* genomic DNA
402 at 4 dpi and a reduction of fungal development during the pathogenesis (Fig. 4C, Supplementary Fig.
403 S3), demonstrating that B2G3 protects maize plants against this fungal pathogen.

404 We also explored the effect of β -1,2-glucan trisaccharide treatment on wheat plants. As
405 previously observed for *Arabidopsis* and maize, B2G3 induced a significant increase in H_2O_2
406 production, which confirmed that B2G3 was perceived by wheat PRRs (Fig. 4D and E). We further
407 investigated whether B2G3 protects wheat against pathogen diseases by infecting B2G3-pretreated
408 wheat plants with *Zymoseptoria tritici*, a latent fungal necrotroph (Sánchez-Vallet et al., 2015). B2G3
409 pretreatment significantly reduced symptom development produced by *Z. tritici*, as shown by the
410 restricted lesion area and the significant reduction in pycnidia density in B2G3-pre-treated plants (Fig.
411 4F and Supplementary Fig. S4). Thus, our results demonstrated that B2G3 triggered the immune
412 system in crops such as maize and wheat and protect them against fungal diseases.

413

414 **Discussion**

415

416 Although glucans were the first group of plant elicitors proposed as such in the 1970s thanks to
417 pioneering works by several groups (Ayers et al., 1976a,b; Anderson, 1978), it is only recently, with
418 the resurgence of research into glycan-triggered plant immunity, that a better understanding of their
419 ability to induce such defensive responses has begun to emerge (Molina et al., 2024). In fact, there

420 have been several groups in the current century that have made significant advances in the field.
421 Klarzynski et al. (2000) discovered that linear unsubstituted β -1,3-glucan oligosaccharides extracted
422 from algae cell walls trigger immune responses in tobacco (*Nicotiana tabacum*), that protected from
423 soft rot pathogen *Erwinia carotovora*. Similarly, celldextrins, water-soluble β -1,4-glucan
424 oligosaccharides derived from cellulose, induced immune responses in grapevine (*Vitis vinifera*) cells
425 and reduced *B. cinerea* infection symptoms when applied to leaves prior fungal inoculation (Aziz et
426 al., 2007). Despite these advances, it was even proposed that the slow progress in the study of glucan-
427 triggered immunity was due to the insensitivity of the *Arabidopsis* ecotype Col-0 to glucans (Fesel and
428 Zuccaro, 2016). However, numerous studies published over the last decade have shown that
429 *Arabidopsis* is a good system to study glucan-triggered immunity (Souza et al., 2017; Claverie et al.,
430 Johnson et al., 2018; Mélida et al., 2018; Locci et al., 2019; Wanke et al., 2020; Rebaque et al.,
431 2021, 2023; Zarattini et al., 2021; Tseng et al., 2022; Martín-Dacal et al., 2023). The studies of two
432 research groups confirmed the data published by Aziz et al., (2007) a decade earlier on the ability of β -
433 1,4-glucans to induce PTI responses in plants (Souza et al., 2017; Johnson et al., 2018). In fact, this is
434 the only group of β -glucans for which a *bona-fide* interaction with a PRR receptor has been
435 demonstrated to date (Martín-Dacal et al., 2023). Shortly afterwards it was also confirmed that β -1,3-
436 glucans induced defensive responses in *Arabidopsis* and barley (*Hordeum vulgare*), and it was
437 proposed that these responses were dependent on the CERK1 coreceptor in the case of the
438 hexasaccharide in *Arabidopsis* (Mélida et al., 2018; Wanke et al., 2020). Subsequently, a group of
439 glucans containing both β -1,3 and β -1,4 linkages, also known as mixed-linked glucans (Burton and
440 Fincher, 2009), were proposed as a very promising group of plant immunostimulants, inducing potent
441 defence responses at low doses (Barghahn et al., 2021; Rebaque et al., 2021; Yang et al., 2021).
442 Furthermore, β -1,6-glucans have also recently been shown to induce phosphorylation of MAPKs in
443 *Arabidopsis*, although their protective capacity against diseases has not been investigated yet (Chabe
444 et al., 2022; Fernández-Calvo et al., 2024). Thus, glucans have positioned themselves as a core group
445 regulating glycan-triggered immunity in plants. The fact that glucans-based elicitors have been
446 evolutionarily selected as such makes sense, given that these carbohydrates are present in the
447 extracellular matrices of all microorganisms that interact with plants (Mélida et al., 2013; Bontemps-
448 Gallo and Lacroix, 2015; Ruiz-Herrera and Ortiz-Castellanos, 2019; Yugueros et al., 2024). However,
449 there are two groups of glucans that have hardly been studied in the field of plant immunity, β -1,2-
450 and α -1,3-glucans, which are also present in these extracellular matrices (Bohin, 2000; Bontemps-
451 Gallo and Lacroix, 2015; Ruiz-Herrera and Ortiz-Castellanos, 2019).

452 Linear α -1,3-glucans are one of the major components of fungal cell walls, however, their
453 occurrence is specific of Dikarya subkingdom, being absent in lower fungal phyla (Yoshimi et al.,
454 2017; Ruiz-Herrera and Ortiz-Castellanos, 2019). Although the deposition of this polysaccharide close
455 to cell membranes has been described, it is frequently exposed in the most extracellular layer of fungal

456 walls, acting as an aggregation factor during hyphae and conidia development (Yoshimi et al., 2017;
457 Sugawara et al., 2003). As an exposed glucan on mammal pathogenic fungal cell walls, research has
458 demonstrated their role as virulence factors acting as immunosuppressors by blocking the recognition
459 of immunogenic β -1,3-glucans by dectin-1 receptor (Beauvais et al., 2013; Rappleye et al., 2004,
460 2007). Indeed, there are no reports describing their role as elicitors of animal defence responses
461 (Yoshimi et al., 2017; Ruiz-Herrera and Ortiz-Castellanos, 2019). Although there is low information
462 about the role of α -1,3-glucans in plant defence responses, it has been proposed that these glucans
463 cover the surface of the cell wall of the rice fungal pathogen *Magnaporthe oryzae* and are essential for
464 the infection by protecting the hyphae from host recognition (Fujikawa et al., 2009, 2012). However,
465 the ability of α -1,3-glucan oligosaccharides to trigger plant immune responses has not been reported
466 yet. Here, we demonstrate that, at least, the α -1,3-glucan trisaccharide (A3G3) is not able to trigger the
467 production of ROS after treatment of *Arabidopsis* seedlings and maize plants, suggesting that this
468 glucan derivative did not trigger plant defence responses.

469 The occurrence of β -1,2-glucans has been proposed in the cell walls of the green microalgae
470 *Chlorella pyrenoidosa* (Suárez et al., 2008) and in plant-interacting organisms such as fungi and
471 oomycetes (Mitchel and Sabar, 1966; Ruiz-Herrera and Ortiz-Castellanos, 2019). However, glucans
472 with this particular β -1,2-linkage are one of the main components of OPGs that are deposited in the
473 periplasmic space of Gram-negative symbiotic and pathogenic proteobacteria (Bohin, 2000;
474 Bontemps-Gallo & Lacroix, 2015; Rigano et al., 2007). They are composed of linear or cyclic β -1,2-
475 glucans with different degree of polymerization and diverse β - and α -linked glucose substitutions
476 depending on the group of proteobacteria considered (Bohin, 2000; Bontemps-Gallo and Lacroix,
477 2015). These polymers play multiple roles during bacteria development such as motility, cell division,
478 sensitivity to antibiotics and biofilm formation, and they are essential for maintaining full virulence in
479 animal and plant pathogenic bacteria by indirectly controlling virulence-gene expression (Bohin, 2000;
480 Bontemps-Gallo et al., 2013; Bontemps-Gallo and Lacroix, 2015). Contrarily to A3G3, β -1,2-glucan
481 trisaccharide (B2G3) and hexasaccharide (B2G6) successfully triggered several PTI hallmarks in
482 *Arabidopsis* at low concentrations, such as ROS production, the phosphorylation of defence-related
483 MAPKs (MAPK3, MAPK6 and MAPK4/11) and the overexpression of PTI-related genes. The effect
484 on PTI hallmarks of B2G3 and B2G6 is quite similar to glycan-based defence elicitors MLG43 and
485 Chi6 (Mélida et al., 2018; Rebaque et al., 2021; Shi et al., 2019), confirming their role as plant
486 immunostimulants. Moreover, we determined the dose-dependence of B2G3 in *Arabidopsis* seedlings
487 in order to trigger PTI responses and showed that this oligosaccharide is active at micromolar range,
488 which is a similar dose as that of other glucan oligosaccharides such as xyloglucan and β -1,3-, β -1,4-
489 and β -1,3/1,4-linked-glucans (Klarzynski et al., 2000; Aziz et al., 2007; Claverie et al., 2018; Mélida
490 et al., 2018; Rebaque et al., 2021). In addition, one of the most interesting results that we found is that
491 this PTI induction resulted in increased resistance to *P. syringae*. However, a different scenario was

492 found for fungal pathogens, as B2G3 was not successful in the protection of *Arabidopsis* wild type
493 plants against the fungi tested. In this case, we challenged *Arabidopsis* B2G3-pretreated plants with *B.*
494 *cinerea* and *C. higginsianum*, which are characterised by necrotrophic and hemibiotrophic infection
495 styles against *Arabidopsis* under laboratory conditions (Engelsdorf et al., 2013; Zarattini et al., 2021).
496 In this context, it has been shown that fungi have developed mechanisms to hide elicitor molecules
497 derived from their cell wall by combining them with lectins or other types of effectors (Wawra et al.,
498 2016, 2019; Irieda et al., 2019; Sánchez-Vallet et al., 2020). Nevertheless, we could observe
499 significant protection by this trisaccharide when we challenged hypersusceptible plants with *C.*
500 *higginsianum*. These results open the door to investigate the molecular mechanisms controlling β -1,2-
501 glucan-mediated fungal disease tolerance in *Arabidopsis*.

502 As they represent important components of symbiotic and pathogenic bacteria, β -1,2-glucans are
503 good candidates for immunomodulation of defence responses in host plants, but to date there is only
504 one report that demonstrate the ability of cyclic β -1,2-glucans from *Xanthomonas campestris* pv
505 *campestris* to suppress systemically plant immune responses in *Arabidopsis* and *Nicotiana*
506 *benthamiana* (Rigano et al., 2007). At first sight, these results seemed contradictory to the results
507 reported here, but it has been demonstrated that the immunomodulatory effect of glycan oligomers is
508 dependent on their structure, being especially important the DP and the presence/absence of different
509 substitutions Klarzynski et al., 2000; Mélida et al., 2018; Voxeur et al., 2019; Chandrasekar et al.,
510 2022). This is the case for non-branched β -1,3-glucans oligomers whose DP determine the ability of
511 triggering PTI responses and the substitution with β -1,6-linked glucoses depleted their
512 immunostimulatory activity (Klarzynski et al., 2000; Mélida et al., 2018). However, a recent work
513 highlights that a β -1,3/1,6-glucan decasaccharide naturally obtained after the action of a barley β -1,3-
514 endoglucanase, is not able to activate immune defences, but scavenge ROS, enhancing pathogen
515 colonization (Chandrasekar et al., 2022). Another interesting mechanism of activation/inactivation of
516 glucan-eliciting capacity is that mediated by the berberine bridge enzyme-like oxidases of β -1,4- and
517 β -1,3/1,4-linked β -glucans (Locci et al., 2019; Costantini et al., 2024). These enzymes, through simple
518 oxidation, deactivate the immunostimulatory capacity of these glucans, which has been proposed as a
519 homeostatic control mechanism to prevent the hyperaccumulation of elicitors. As the above examples
520 illustrate, there is fine control in the mechanisms of glycan-mediated immunostimulation by both host
521 and pathogen. It is therefore possible that β -1,2-glucans have the dual ability to suppress or stimulate
522 plant defences, depending on the form in which they are presented to the plants. Therefore, enzymatic
523 cleavage of cyclic glucans of *X. campestris* (15 β -1,2-linkages and one α -1,6-linkage) could lead to
524 immune active β -1,2-glucan oligomers, a hypothesis that is reinforced by the description of bacterial
525 and fungal β -1,2-endoglucanases that generate B2G3 and B2G6 as products (Abe et al., 2017; Tanaka
526 et al., 2019).

527 Furthermore, our results obtained in *Arabidopsis* are reinforced by those generated with two
528 monocotyledonous species, maize and wheat. We demonstrated that β -1,2-glucan oligosaccharides
529 treatment caused ROS accumulation in maize and wheat similar to glycan oligosaccharides derived
530 from chitin and mixed-linked glucans or the peptide MAMP flg22. These results indicate that both
531 plants have the machinery of perception of these β -1,2-glucan oligomers. Interestingly, the activation
532 of plant PTI responses led to enhanced disease resistance to *C. graminicola* (maize) and *Z. tritici*
533 (wheat). In fact, to date there are hardly any studies on glycan-induced immunity in this group of plant
534 species. On the other hand, taking into account that the few studies that exist indicate that there are
535 certain differences between the mechanisms of glycan perception by PRRs between monocots and
536 dicots (Liu et al., 2016; Wanke et al., 2020; Yang et al., 2021), it will be interesting to continue to
537 deepen our knowledge of the mechanisms involved in the perception of this new group of elicitors
538 described in this work.

539 In summary, our results demonstrate that short β -1,2-glucan oligosaccharides led to the activation
540 of PTI responses that enhanced disease resistance to bacterial and fungal pathogens in
541 phylogenetically distant plants. Therefore, this work supports the plant immunostimulatory capacity of
542 a previously uncharacterized group of β -glucans and opens the way to future research into the
543 molecular mechanisms controlling β -glucan recognition, as well as the development of plant disease
544 control methods based on β -glucan application.

545

546 **Supplementary data**

547

548 Table S1. Primers (Forward (Fw) and Reverse (Rv)) used for gene expression analyses.

549 Fig. S1. Structural scheme of the β -1,2-oligosaccharides studied.

550 Fig. S2. β -1,2-glucan trigger reactive oxygen species (ROS) production in *Arabidopsis* seedlings.

551 Fig. S3. Maize leaf pretreatment with MLG43 and B2G3 delays the development of *Colletotrichum*
552 *graminicola*.

553 Fig. S4. Treatment of wheat plants with B2G3 enhance protection against *Zymoseptoria tritici*.

554

555

556 **Author contribution**

557

558 HM: conceptualization; MFR, ALG, AF, KM and CCL: investigation; ALG, ASV, TE and HM:
559 supervision; MFR, ALG and HM: writing – original draft preparation; MFR, ALG, AF, KM, CCL,
560 ASV and HM: writing - review & editing.

561

562 **Conflict of interest**

563

564 The authors have no conflict of interest to declare

565

566 **Funding statement**

567

568 This work was supported by grants PID2020-120364GA-
569 I00/MCIN/AEI/10.13039/501100011033 and TED2021-131392A-
570 I00/AEI/10.13039/501100011033/Unión Europea NextGenerationEU/PRTR from Spanish Ministry of
571 Science, Innovation and Universities to HM. Work was also financed by RYC2018-025530-I,
572 CEX2020-000999-S (2022-2025) and PLEC2021-007930 financed by
573 MICIU/AEI/10.13039/501100011033 and European Union NextGenerationEU/ PRTR to ASV. MFR
574 was contracted by the PhD training programme (grant PRE2021-097051) funded by MCIN/AEI/
575 10.13039/501100011033. ALG was recipient of a María Zambrano postdoctoral fellowship/ European
576 Union NextGenerationEU/PRTR. CCL was financially supported by the 'Severo Ochoa (SO)
577 Programme for Centres of Excellence in R&D' (grant CEX2020-000999-S (2022-2025)) from the
578 Agencia Estatal de Investigación of Spain.

579

580 **Data availability**

581

582 Data will be made available on request.

583

584 **References**

585

Abe K, Nakajima M, Yamashita T, et al. 2017. Biochemical and structural analyses of a bacterial endo- β -1,2-glucanase reveal a new glycoside hydrolase family. *The Journal of Biological Chemistry* 292, 7487.

Anderson AJ. 1978. Physiology and biochemistry isolation from three species of *Colletotrichum* of glucan-containing polysaccharides that elicit browning and phytoalexin production in bean. *Phytopathology* 68, 189-194

Ayers AR, Ebel J, Finelli F, Berger N, Albersheim P, City Y. 1976a. Host-pathogen interactions: IX. Quantitative assays of elicitor activity and characterization of the elicitor present in the extracellular medium of cultures of *Phytophthora megasperma* var. *sojae*. *Plant Physiology* 57, 751-759.

Ayers AR, Valent B, Ebel J, Albersheim P, City Y, Fellowship DF. 1976b. Host-pathogen interactions: XI. Composition and structure of wall-released elicitor fractions. *Plant Physiology* 57, 766-774.

Aziz A, Gauthier A, Bézier A, Poinsot B, Joubert JM, Pugin A, Heyraud A, Baillieul F. 2007. Elicitor and resistance-inducing activities of β -1,4 celldextrins in grapevine, comparison with β -1,3 glucans and α -1,4 oligogalacturonides. *Journal of Experimental Botany* 58, 1463-1472.

Bacete L, Mélida H, Miedes E, Molina A. 2018. Plant cell wall-mediated immunity: cell wall changes trigger disease resistance responses. *The Plant Journal* 93, 614–636.

Barghahn S, Arnal G, Jain N, Petutschnig E, Brumer H, Lipka V. 2021. Mixed linkage β -1,3/1,4-glucan oligosaccharides induce defense responses in *Hordeum vulgare* and *Arabidopsis thaliana*. *Frontiers in Plant Science* 12, 682439.

Beauvais A, Bozza S, Kniemeyer O, et al. 2013. Deletion of the α -(1,3)-glucan synthase genes induces a restructuring of the conidial cell wall responsible for the avirulence of *Aspergillus fumigatus*. *PLoS Pathogens* 9, e1003716.

Benedetti M, Pontiggia D, Raggi S, Cheng Z, Scaloni F, Ferrari S, Ausubel FM, Cervone F, De Lorenzo G. 2015. Plant immunity triggered by engineered in vivo release of oligogalacturonides, damage-associated molecular patterns. *Proceedings of the National Academy of Sciences* 112, 5533–5538.

Bigeard J, Colcombet J, Hirt H. 2015. Signaling mechanisms in pattern-triggered immunity (PTI). *Molecular Plant* 8, 521–539.

Bohin J-P. 2000. Osmoregulated periplasmic glucans in Proteobacteria. *FEMS Microbiology Letters* 186, 11–19.

Bontemps-Gallo S, Madec E, Dondeyne J, Delrue B, Robbe-Masselot C, Vidal O, Prouvost AF, Boussemart G, Bohin JP, Lacroix JM. 2013. Concentration of osmoregulated periplasmic glucans (OPGs) modulates the activation level of the RcsCD RcsB phosphorelay in the phytopathogen bacteria *Dickeya dadantii*. *Environmental Microbiology* 15, 881–894.

Bontemps-Gallo S, Lacroix JM. 2015. New insights into the biological role of the osmoregulated periplasmic glucans in pathogenic and symbiotic bacteria. *Environmental Microbiology Reports* 7, 690–697.

Burton RA, Fincher GB. 2009. (1,3;1,4)- β -D-glucans in cell walls of the Poaceae, lower plants, and fungi: A tale of two linkages. *Molecular Plant* 2, 873–882.

Chandrasekar B, Wanke A, Wawra S, et al. 2022. Fungi hijack a ubiquitous plant apoplastic endoglucanase to release a ROS scavenging β -glucan decasaccharide to subvert immune responses. *The Plant Cell* 34, 2765–2784.

Chabe MA, Trattnig N, Lee DH, Belkhadir Y, Pfrentz F. 2022. Synthesis of fungal cell wall oligosaccharides and their ability to trigger plant immune responses. *European Journal of Organic Chemistry* 2022, e202200313.

Cheung AY, Qu LJ, Russinova E, Zhao Y, Zipfel C. 2020. Update on receptors and signaling. *Plant Physiology* 182, 1527–1530.

Claverie J, Balacey S, Lemaître-Guillier C, et al. 2018. The cell wall-derived xyloglucan is a new DAMP triggering plant immunity in *Vitis vinifera* and *Arabidopsis thaliana*. *Frontiers in Plant Science* 9, 1725.

Conrath U, Beckers GJM, Langenbach CJG, Jaskiewicz MR. 2015. Priming for enhanced defense. *Annual review of phytopathology* 53, 97–119.

Cooper A, Ton J. 2022. Immune priming in plants: from the onset to transgenerational maintenance. *Essays in Biochemistry* 66, 635.

Costantini S, Benedetti M, Pontiggia D, Giovannoni M, Cervone F, Mattei B, De Lorenzo G. 2024. Berberine bridge enzyme-like oxidases of cellobextrins and mixed-linked β -glucans control seed coat formation. *Plant Physiology* 194, 296–313.

DeFalco TA, Zipfel C. 2021. Molecular mechanisms of early plant pattern-triggered immune signaling. *Molecular Cell* 81, 3449–3467.

Engelsdorf T, Horst RJ, Pröls R, Pröschel M, Dietz F, Hückelhoven R, Voll LM. 2013. Reduced carbohydrate availability enhances the susceptibility of *Arabidopsis* toward *Colletotrichum higginsianum*. *Plant Physiology* 162, 225.

Engelsdorf T, Will C, Hofmann J, et al. 2017. Cell wall composition and penetration resistance against the fungal pathogen *Colletotrichum higginsianum* are affected by impaired starch turnover in *Arabidopsis* mutants. *Journal of Experimental Botany* 68, 701–713.

Fernández-Calvo P, López G, Martín-Dacal M, Aitouguinane M, Carrasco-López C, González-Bodí S, Bacete L, Mélida H, Sánchez-Vallet A, Molina A. 2024. Leucine rich repeat-malectin receptor kinases IGP1/CORK1, IGP3 and IGP4 are required for *arabidopsis* immune responses triggered by β -1,4-D-Xylo-oligosaccharides from plant cell walls. *Cell surface*, 11, 100124.

Fesel PH, Zuccaro A. 2016. β -glucan: Crucial component of the fungal cell wall and elusive MAMP in plants. *Fungal Genetics and Biology* 90, 53–60.

Fujikawa T, Kuga Y, Yano S, Yoshimi A, Tachiki T, Abe K, Nishimura M. 2009. Dynamics of cell wall components of *Magnaporthe grisea* during infectious structure development. *Molecular Microbiology* 73, 553–570.

Fujikawa T, Sakaguchi A, Nishizawa Y, Kouzai Y, Minami E, Yano S, Koga H, Meshi T, Nishimura M. 2012. Surface α -1,3-glucan facilitates fungal stealth infection by interfering with innate immunity in Plants. *PLoS Pathogens* 8, e1002882.

Gravino M, Savatin DV, MacOne A, De Lorenzo G. 2015. Ethylene production in *Botrytis cinerea*- and oligogalacturonide-induced immunity requires calcium-dependent protein kinases. *The Plant Journal* 84, 1073–1086.

Irieda H, Inoue Y, Mori M, et al. 2019. Conserved fungal effector suppresses PAMP-triggered immunity by targeting plant immune kinases. *Proceedings of the National Academy of Sciences* 116, 496–505.

Jiang CH, Fan ZH, Xie P, Guo JH. 2016. *Bacillus cereus* AR156 extracellular polysaccharides served as a novel micro-associated molecular pattern to induced systemic immunity to PST DC3000 in *Arabidopsis*. *Frontiers in Microbiology* 7, 190098.

Johnson JM, Thürich J, Petutschnig EK, et al. 2018. A poly(A) ribonuclease controls the cellotriose-based interaction between *Piriformospora indica* and its host *Arabidopsis*. *Plant Physiology* 176, 2496–2514.

Klarzynski O, Plesse B, Joubert JM, Yvin JC, Kopp M, Kloareg B, Fritig B. 2000. Linear β -1,3 glucans are elicitors of defense responses in tobacco. *Plant Physiology* 124, 1027.

Liu T, Liu Z, Song C, et al. 2012. Chitin-induced dimerization activates a plant immune receptor. *Science* 336, 1160–1164.

Liu S, Wang J, Han Z, Gong X, Zhang H, Chai J. 2016. Molecular mechanism for fungal cell wall recognition by rice chitin receptor OsCEBiP. *Structure* 24, 1192–1200.

Locci F, Benedetti M, Pontiggia D, Citterico M, Caprari C, Mattei B, Cervone F, De Lorenzo G. 2019. An *Arabidopsis* berberine bridge enzyme-like protein specifically oxidizes cellulose oligomers and plays a role in immunity. *The Plant Journal* 98, 540–554.

Martín-Dacal M, Fernández-Calvo P, Jiménez-Sandoval P, et al. 2023. *Arabidopsis* immune responses triggered by cellulose- and mixed-linked glucan-derived oligosaccharides require a group of leucine-rich repeat malectin receptor kinases. *The Plant Journal* 113, 833–850.

Mélida H, Sandoval-Sierra J V., Diéguez-Uribeondo J, Bulone V. 2013. Analyses of extracellular carbohydrates in oomycetes unveil the existence of three different cell wall types. *Eukaryotic Cell* 12, 194–203.

Mélida H, Sopeña-Torres S, Bacete L, Garrido-Arandia M, Jordá L, López G, Muñoz-Barrios A, Pacios LF, Molina A. 2018. Non-branched β -1,3-glucan oligosaccharides trigger immune responses in *Arabidopsis*. *The Plant Journal* 93, 34–49.

Mélida H, Bacete L, Ruprecht C, Rebaque D, del Hierro I, López G, Brunner F, Pfrengle F, Molina A. 2020. Arabinoxylan-oligosaccharides act as damage associated molecular patterns in plants regulating disease resistance. *Frontiers in Plant Science* 11, 557476.

Mitchell R, Sabar N. 1966. Autolytic enzymes in fungal cell walls. *Microbiology* 42, 39–42.

Molina A, Jordá L, Torres MÁ, Martín-Dacal M, Berlanga DJ, Fernández-Calvo P, Gómez-Rubio E, Martín-Santamaría S. 2024. Plant cell wall-mediated disease resistance: Current understanding and future perspectives. *Molecular Plant*, 2024.

Molina A, Miedes E, Bacete L, et al. 2021. *Arabidopsis* cell wall composition determines disease resistance specificity and fitness. *Proceedings of the National Academy of Sciences* 118, e2010243118.

Murray SL, Ingle RA, Petersen LN, Denby KJ. 2007. Basal resistance against *Pseudomonas syringae* in *Arabidopsis* involves WRKY53 and a protein with homology to a nematode resistance protein. *Molecular Plant-Microbe Interactions* 20, 1431–1438.

Pfalz M, Vogel H, Kroymann J. 2009. The gene controlling the indole glucosinolate modifier1 quantitative trait locus alters indole glucosinolate structures and aphid resistance in *Arabidopsis*. *The Plant Cell* 21, 985–999.

Rappleye CA, Engle JT, Goldman WE. 2004. RNA interference in *Histoplasma capsulatum* demonstrates a role for α -(1,3)-glucan in virulence. *Molecular Microbiology* 53, 153–165.

Rappleye CA, Eissenberg LG, Goldman WE. 2007. *Histoplasma capsulatum* α -(1,3)-glucan blocks innate immune recognition by the β -glucan receptor. *Proceedings of the National Academy of Sciences* 104, 1366–1370.

Rappleye CA, Goldman WE. 2008. Fungal stealth technology. *Trends in immunology* 29, 18–24.

Rebaque D, del Hierro I, López G, et al. 2021. Cell wall-derived mixed-linked β -1,3/1,4-glucans trigger immune responses and disease resistance in plants. *The Plant Journal* 106, 601–615.

Rebaque D, López G, Sanz Y, Vilaplana F, Brunner F, Mélida H, Molina A. 2023. Subcritical water extraction of *Equisetum arvense* biomass withdraws cell wall fractions that trigger plant immune responses and disease resistance. *Plant Molecular Biology* 113, 401–414.

Rigano LA, Payette C, Brouillard G, et al. 2007. Bacterial cyclic β -(1,2)-glucan acts in systemic suppression of plant immune responses. *The Plant Cell* 19, 2077–2089.

Ritz C, Baty F, Streibig JC, Gerhard D. 2015. Dose-response analysis using R. *PLoS ONE* 10.

Ruiz-Herrera J, Ortiz-Castellanos L. 2019. Cell wall glucans of fungi. A review. *The Cell Surface* 5, 100022.

Sánchez-Vallet A, McDonald MC, Solomon PS, McDonald BA. 2015. Is *Zymoseptoria tritici* a hemibiotroph? *Fungal Genetics and Biology* 79, 29–32.

Sánchez-Vallet A, Tian H, Rodriguez-Moreno L, et al. 2020. A secreted LysM effector protects fungal hyphae through chitin-dependent homodimer polymerization. *PLoS pathogens* 16.

Schneider CA, Rasband WS, Eliceiri KW. 2012. NIH Image to ImageJ: 25 years of Image Analysis. *Nature methods* 9, 671–675.

Schulze C, Wetzel M, Reinhardt J, Schmidt M, Felten L, Mundt S. 2016. Screening of microalgae for primary metabolites including β -glucans and the influence of nitrate starvation and irradiance on β -glucan production. *Journal of Applied Phycology* 28, 2719–2725.

Shi Q, George J, Krystel J, Zhang S, Lapointe SL, Stelinski LL, Stover E. 2019. Hexaacetyl-chitohexaose, a chitin-derived oligosaccharide, transiently activates citrus defenses and alters the feeding behavior of Asian citrus psyllid. *Horticulture research* 6.

Souza C de A, Li S, Lin AZ, Boutrot F, Grossmann G, Zipfel C, Somerville SC. 2017. Cellulose-derived oligomers act as damage-associated molecular patterns and trigger defense-like responses. *Plant Physiology* 173, 2383–2398.

Stewart EL, Hagerty CH, Mikaberidze A, Mundt CC, Zhong Z, McDonald BA. 2016. An improved method for measuring quantitative resistance to the wheat pathogen *Zymoseptoria tritici* using high-throughput automated image analysis. *Phytopathology* 106, 782–788.

Suárez ER, Bugden SM, Kai FB, Kralovec JA, Noseda MD, Barrow CJ, Grindley TB. 2008. First isolation and structural determination of cyclic β -(1→2)-glucans from an alga, *Chlorella pyrenoidosa*. *Carbohydrate Research* 343, 2623–2633.

Sugawara T, Sato M, Takagi T, Kamasaki T, Ohno N, Osumi M. 2003. In situ localization of cell wall α -1,3-glucan in the fission yeast *Schizosaccharomyces pombe*. *Journal of Electron Microscopy* 52, 237–242.

Synytsya A, Novak M. 2014. Structural analysis of glucans. *Annals of Translational Medicine* 2, 17.

Tanaka N, Nakajima M, Narukawa-Nara M, et al. 2019. Identification, characterization, and structural analyses of a fungal endo- β -1,2-glucanase reveal a new glycoside hydrolase family. *Journal of Biological Chemistry* 294, 7942–7965.

Tena G, Boudsocq M, Sheen J. 2011. Protein kinase signaling networks in plant innate immunity. *Current Opinion in Plant Biology* 14, 519–529.

Tseng YH, Scholz SS, Fliegmann J, Krüger T, Gandhi A, Furch ACU, Kniemeyer O, Brakhage AA, Oelmüller R. 2022. CORK1, A LRR-malectin receptor kinase, is required for cellooligomer-induced responses in *Arabidopsis thaliana*. *Cells* 11, 2960.

Voxeur A, Habrylo O, Guénin S, et al. 2019. Oligogalacturonide production upon *Arabidopsis thaliana*-*Botrytis cinerea* interaction. *Proceedings of the National Academy of Sciences* 116, 19743–19752.

Wanke A, Rovenich H, Schwanke F, Velte S, Becker S, Hehemann JH, Wawra S, Zuccaro A. 2020. Plant species-specific recognition of long and short β -1,3-linked glucans is mediated by different receptor systems. *The Plant Journal* 102, 1142–1156.

Wanke A, Malisic M, Wawra S, Zuccaro A. 2021. Unraveling the sugar code: the role of microbial extracellular glycans in plant–microbe interactions. *Journal of Experimental Botany* 72, 15–35.

Wawra S, Fesel P, Widmer H, et al. 2016. The fungal-specific β -glucan-binding lectin FGB1 alters cell-wall composition and suppresses glucan-triggered immunity in plants. *Nature communications* 7, 13188.

Wawra S, Fesel P, Widmer H, Neumann U, Lahrmann U, Becker S, Hehemann JH, Langen G, Zuccaro A. 2019. FGB1 and WSC3 are in planta-induced β -glucan-binding fungal lectins with different functions. *New Phytologist* 222, 1493–1506.

Willmann R, Lajunen HM, Erbs G, et al. 2011. *Arabidopsis* lysin-motif proteins LYM1 LYM3 CERK1 mediate bacterial peptidoglycan sensing and immunity to bacterial infection. *Proceedings of the National Academy of Sciences* 108, 19824–19829.

Yang C, Liu R, Pang J, Ren B, Zhou H, Wang G, Wang E, Liu J. 2021. Poaceae-specific cell wall-derived oligosaccharides activate plant immunity via OsCERK1 during *Magnaporthe oryzae* infection in rice. *Nature Communications* 12, 2178.

Yoshimi A, Miyazawa K, Abe K. 2017. Function and Biosynthesis of cell wall α -1,3-glucan in fungi. *Journal of Fungi* 3, 63.

Yuan M, Jiang Z, Bi G, Nomura K, Liu M, Wang Y, Cai B, Zhou JM, He SY, Xin XF. 2021. Pattern-recognition receptors are required for NLR-mediated plant immunity. *Nature* 592, 105-109

Yugueros SI, Peláez J, Stajich JE, Fuertes-Rabanal M, Sánchez-Vallet A, Largo-Gosens A, Mélida H. 2024. Study of fungal cell wall evolution through its monosaccharide composition: An insight into fungal species interacting with plants. *The Cell Surface*, 100127.

Zarattini M, Corso M, Kadowaki MA, et al. 2021. LPMO-oxidized cellulose oligosaccharides evoke immunity in *Arabidopsis* conferring resistance towards necrotrophic fungus *B. cinerea*. *Communications biology* 4, 727.

Figure legends

586 **Fig. 1.** β -1,2-glucan (B2G3 and B2G6) oligosaccharides trigger reactive oxygen species (ROS)
587 production in *Arabidopsis* seedlings. (A) ROS production in *Arabidopsis* (Col-0) seedling using
588 luminol reaction measured as relative luminescence units (RLU) over time using β -1,2-glucan
589 oligosaccharides (trimer, B2G3 and hexamer, B2G6 at a concentration of 100 μ M), β -1,2-glucan
590 polysaccharide (0.1 to 0.5 mg/mL), Hexaacetyl-Chitohexaose (Chi6, 100 μ M), β -D-cellobiosyl-(1,3)-
591 β -D-glucose (MLG43, 100 μ M), α -1,3-glucan trisaccharide (A3G3, 100 μ M) and water (mock), which
592 was the negative control. (B) Total production of ROS measured as total RLU over 120 minutes after
593 the treatment with oligosaccharides. Statistically non-significant (n.s.) and significant differences
594 according to Student's t-test (* $p \leq 0.05$, *** $p \leq 0.001$) compared to the mock are shown. (C) ROS
595 production using different concentrations of B2G3 (from 0.01 μ M to 1 mM). Data represent mean \pm
596 standard error (n=8) from one experiment out of three performed that produced similar results. (D)
597 Dose-response curve in *Arabidopsis* seedlings. Total response measured as total RLU over 120
598 minutes after elicitation with different concentrations of B2G3 (from 0.01 μ M to 1 mM). The arrow
599 indicates the estimated effective dose (EED; 50% of total signal), 64.83 μ M in this case.
600

601 **Fig. 2.** Pattern-triggered immunity hallmark activation by B2G3 and B2G6 in *Arabidopsis*. Mitogen-
602 activated protein kinases (MAPK) phosphorylation in seedlings determined by Western Blot using
603 Phospho-p44/42 MAPK antibody for phosphorylated MAPK moieties at different time points (5, 15,
604 30 and 60 minutes) after treatment with (A) B2G3 (100 μ M) and (B) B2G6 (100 μ M). NT means non-
605 treated sample, which was the negative control, and MLG43 (100 μ M), was used as positive control.
606 Arrowheads indicate the position of phosphorylated MPK6 (top), MPK3 (middle) and MPK4/11
607 (bottom). Ponceau S red-stained membranes show equal protein loading. Quantitative RT-PCR
608 analysis of the relative expression levels of immune-related genes (C) *CYP81F2* and (D) *WRKY53*
609 normalized to the expression of *UBC21* gene at 30 minutes in treated and non-treated *Arabidopsis*
610 seedlings (n = 6). NT and distilled water (mock) were used as negative controls and Chi6 and MLG43
611 were used as positive controls. All treatments were performed at 100 μ M. Data are presented as box
612 plots, with the centre line showing the median, the box limits showing the 25th and 75th percentiles,
613 and the whiskers showing the full range of data. All the data displayed belong to one of the three
614 independent experiments carried out, which gave similar results. Statistically significant differences
615 according to Student's t-test (** $p \leq 0.001$) compared to the mock are shown.
616

617 **Fig. 3.** Treatment of *Arabidopsis* plants with B2G3 enhance protection against phytopathogenic
618 bacteria. (A) Plants of *Arabidopsis* (Col-0) pretreated with distilled water (mock) or B2G3 (500 μ M
619 and 0.5 mL per plant) and inoculated with *Pseudomonas syringae* pv. *tomato* (DC3000). Control
620 refers to non-inoculated plants. Pictures were taken from 0 to 7 days post-infection (dpi) and

621 representative images are displayed. (B) Colony forming units (CFU) of DC3000 per leaf area (cm²) at
622 0 and 3 dpi (n=10-13). (C) Disease symptoms produced by *Botrytis cinerea* at 2 dpi in Arabidopsis
623 leaves. These plants were non-pretreated or pretreated with distilled water (mock) or B2G3 (500 µM
624 and 0.5 mL per plant). (D) Lesion area (mm²) caused by *B. cinerea* infection at 2 dpi in Arabidopsis
625 plants (n=26-29, from 15 different plants). (E) Quantification of *B. cinerea* genomic DNA in
626 inoculated Arabidopsis leaves at 1 dpi by quantitative PCR using specific primers for the *B. cinerea* β -
627 *Tubulin* (BcTub) gene. The genomic DNA quantification is expressed as relative quantity (RQ) to
628 Arabidopsis leaves weight (mg) (n=3). Quantification of *Colletotrichum higginsianum* genomic DNA
629 in Arabidopsis (F) Col-0 and (G) the *C. higginsianum*-hypersusceptible mutant *pgm* after treatment
630 with distilled water (mock) and B2G3 (1 mM and 500 µL per plant). Genomic DNA was quantified at
631 3.5 dpi by quantitative PCR using specific primers for *C. higginsianum* *TrpC* amplification and data is
632 represented as RQ of genomic DNA per leaf area (cm²) (n=9-10). Statistically non-significant (n.s.)
633 and significant differences according to Student's t-test (*p ≤ 0.05, **p ≤ 0.01) compared to the mock
634 are shown.

635

636 **Fig. 4.** B2G3 induces an immune response in maize and wheat and protects against fungal diseases.
637 (A) Reactive oxygen species (ROS) production in maize plants using luminol reaction measured as
638 relative luminescence units (RLU) over time after treatment with A3G3, Chi6, B2G3 and B2G6 (all of
639 them at 100 µM). Distilled water (mock) was used as negative control. Data represent mean ± standard
640 error (n=8). (B) Total ROS production in maize plants measured as total RLU over 120 minutes after
641 treatment with the oligosaccharides. (C) Quantification of *Colletotrichum graminicola* genomic DNA
642 per maize leaf area (cm²). Genomic DNA was quantified at 4 dpi by quantitative PCR using *C.*
643 *graminicola* specific primers for histone 3 (CgH3) (n=4-5). The experiment was performed in plants
644 treated with distilled water (mock), MLG43 (1 mM and 0.5 mL per plant) (positive control) and B2G3
645 (1 mM and 0.5 mL per plant). (D) ROS production in wheat plants using luminol reaction measured as
646 RLU over time after treatment with flg22 (1 µM) and two concentrations of B2G3 (100 and 400 µM).
647 Distilled water (mock) was used as negative control. Data represent mean ± standard error (n=8). (E)
648 Total ROS production in wheat plants measured as total RLU along 60 minutes after treatment with
649 flg22 (1 µM) and B2G3 (100 and 400 µM). (F) Lesion area (%) caused by *Zymoseptoria tritici*
650 infection in wheat plants after treatment with distilled water (mock) and B2G3 (500 µM and 0.78 mL
651 per plant) (n=16) at 12 dpi. Statistically non-significant (n.s.) and significant differences according to
652 Student's t-test (*p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001) compared to the mock are indicated.

653

654

655

656

657

658

659 **Supplementary data**

660

661 **Table S1.** Primers (Forward (Fw) and Reverse (Rv)) used for gene expression analyses.

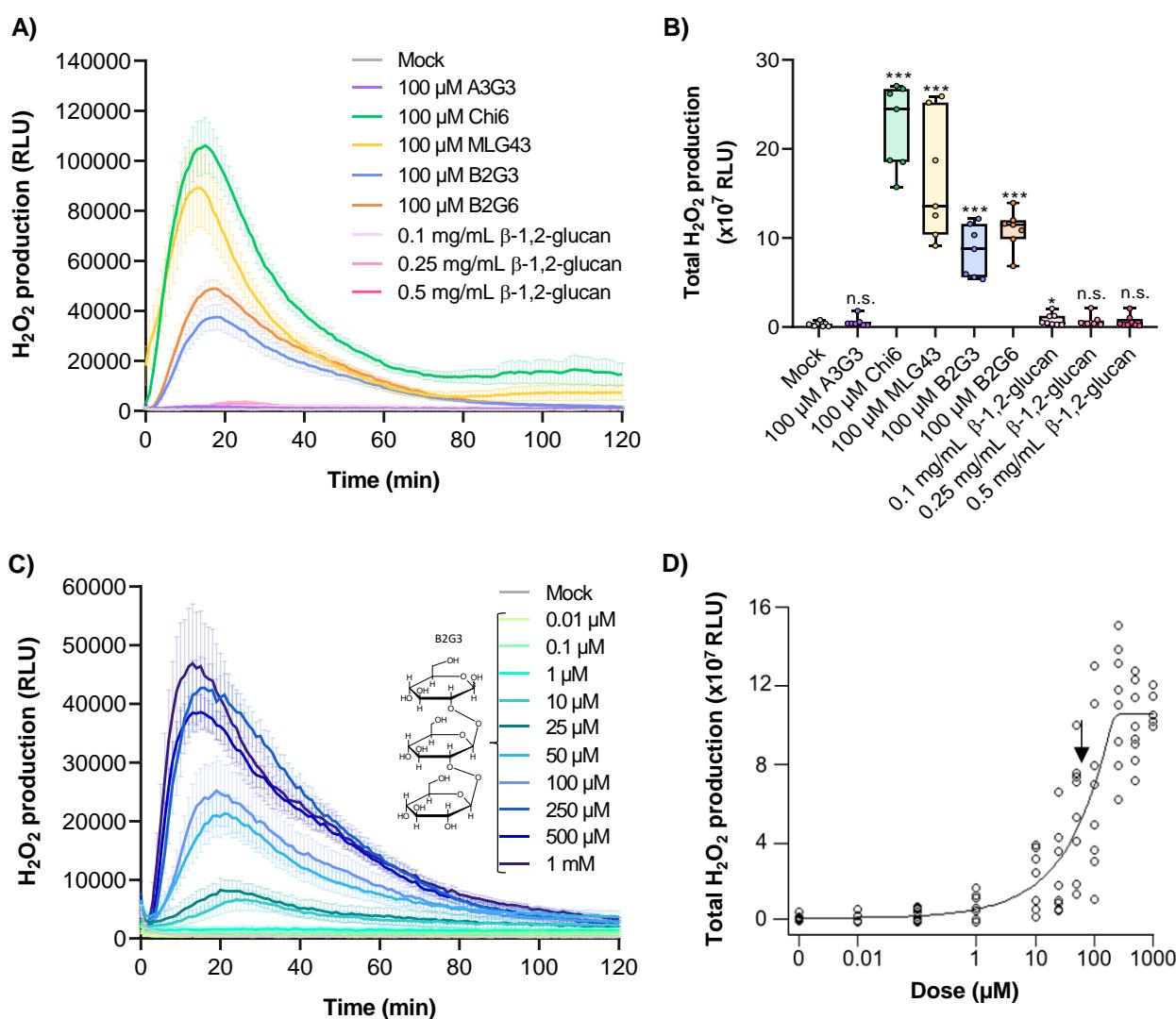
Primer name	Sequence (5'-3')
At <i>UBC21</i> -Fw	GCTCTTATCAAAGGACCTTCGG
At <i>UBC21</i> -Rv	CGAACTTGAGGAGGTTGCAAAG
At <i>CYP81F2</i> -Fw	TATTGTCCGCATGGTCACAGG
At <i>CYP81F2</i> -Rv	CCACTGTTGTCATTGATGTCCG
At <i>WRKY53</i> -Fw	CACCAAGAGTCAAACCAGGCCATT
At <i>WRKY53</i> -Rv	CTTTACCACATCATCAAGGCCATCGG
Bc <i>TUB</i> -Fw	CCGTCATGTCCGGTGTACAC
Bc <i>TUB</i> -Rv	CGACCGTTACGGAAATCGGAA
Cg <i>H3</i> -Fw	CGAGATCCGTCGCTACCAGA
Cg <i>H3</i> -Rv	GGAGGTCGGACTTGAAGTCCT
Ch <i>TrpC</i> -Fw	AGGTTCAGACTGCCGAAGAG
Ch <i>TrpC</i> -Rv	TCAGCCTGCTTGTGTGTT

662

663 **Fig. S1.** Structural scheme of the β -1,2-oligosaccharides studied. (A) B2G3 and (B) B2G6.

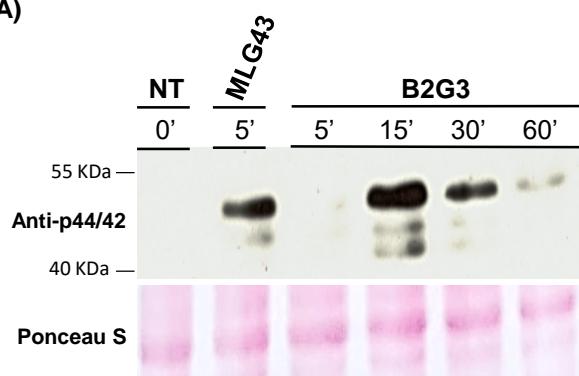
664

665 **Fig. S2.** β -1,2-glucan trigger reactive oxygen species (ROS) production in *Arabidopsis* seedlings. ROS
666 production in *Arabidopsis* (Col-0) seedling using luminol reaction measured as relative luminescence
667 units (RLU) over time using a mixture of β -1,2-glucan oligosaccharides and water (mock).


668

669 **Fig. S3.** Maize leaf pretreatment with MLG43 and B2G3 delays the development of *Colletotrichum*
670 *graminicola*. (A) Representation of the main structures of *C. graminicola* during pathogenesis of
671 maize leaves at 2.5 dpi. Fungal structures were stained with acid fuchsin and photographed under the
672 microscope. S: ungerminated spores; A: formation of melanized appressoria; PH: development of
673 primary hyphae; SH: development of secondary hyphae. Bar: 20 mm. (B) Proportion of fungal
674 structures on maize leaves after oligosaccharide pretreatment. The quantification was performed by
675 counting more than 200 fungal structures of five biological replicates and indicates to most advanced
676 infection structure per infection event (n=5). Data represent mean \pm standard error.

677


678 **Fig. S4.** Treatment of wheat plants with B2G3 enhance protection against *Zymoseptoria tritici*.
679 Quantification of *Z. tritici* pycnidia per leaf area (cm^2) after treatment of wheat plants with distilled

680 water (mock) and B2G3 (500 μ M and 0.78 mL per plant) (n=16) at 12 dpi. Statistically significant
681 differences according to Student's t-test (** $p \leq 0.001$) compared to the mock are indicated.

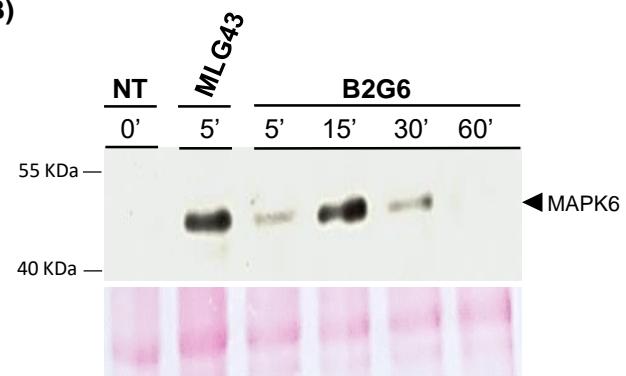
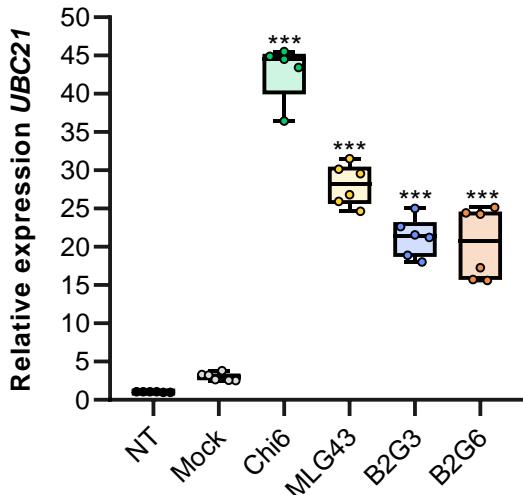
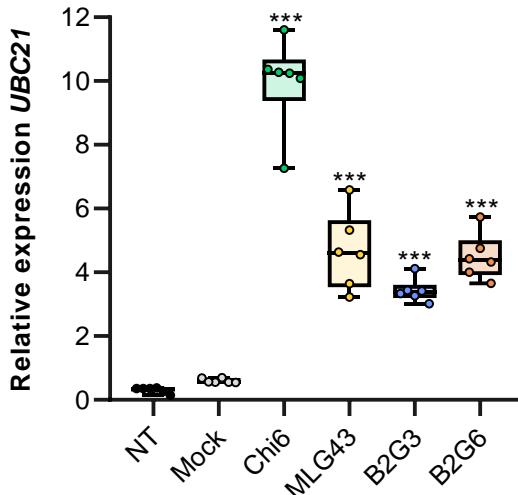


Fig. 1. β -1,2-glucan (B2G3 and B2G6) oligosaccharides trigger reactive oxygen species (ROS) production in *Arabidopsis* seedlings. (A) ROS production in *Arabidopsis* (Col-0) seedling using luminol reaction measured as relative luminescence units (RLU) over time using β -1,2-glucan oligosaccharides (trimer, B2G3 and hexamer, B2G6 at a concentration of 100 μM), β -1,2-glucan polysaccharide (0.1 to 0.5 mg/mL), Hexaacetyl-Chitohexaose (Chi6, 100 μM), β -D-cellobiosyl-(1,3)- β -D-glucose (MLG43, 100 μM), α -1,3-glucan trisaccharide (A3G3, 100 μM) and water (mock), which was the negative control. (B) Total production of ROS measured as total RLU over 120 minutes after the treatment with oligosaccharides. Statistically non-significant (n.s.) and significant differences according to Student's t-test (*p \leq 0.05, ***p \leq 0.001) compared to the mock are shown. (C) ROS production using different concentrations of B2G3 (from 0.01 μM to 1 mM). Data represent mean \pm standard error (n=8) from one experiment out of three performed that produced similar results. (D) Dose-response curve in *Arabidopsis* seedlings. Total response measured as total RLU along 120 minutes after elicitation with different concentrations of B2G3 (from 0.01 μM to 1 mM). The arrow indicates the estimated effective dose (EED; 50% of total signal), 64.83 μM in this case.

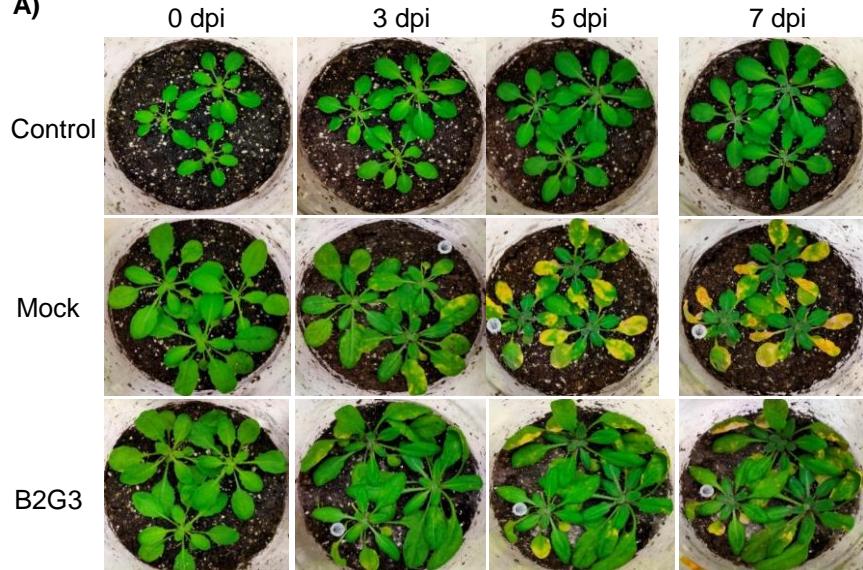
A)



B)


C)

CYP81F2 30 min


D)

WRKY53 30 min

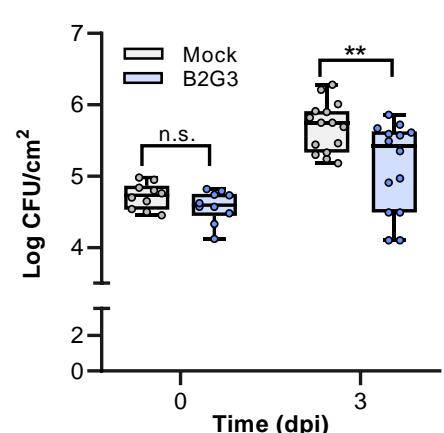
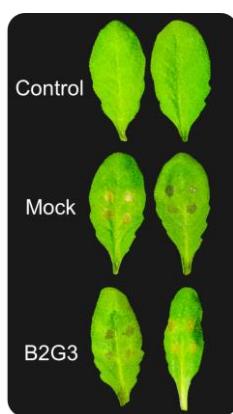
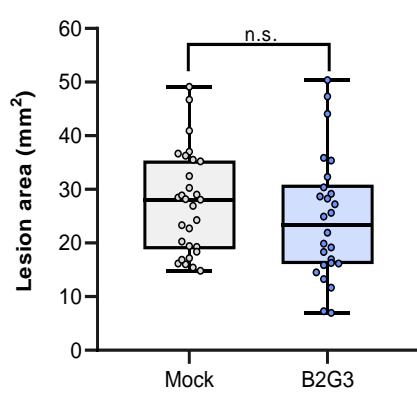
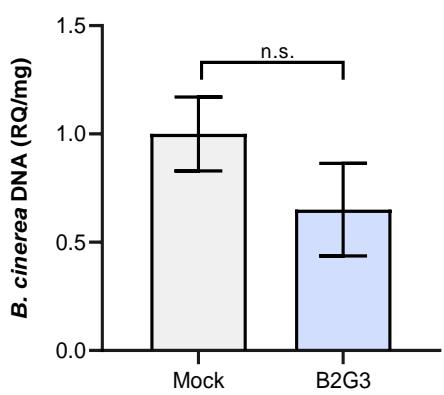


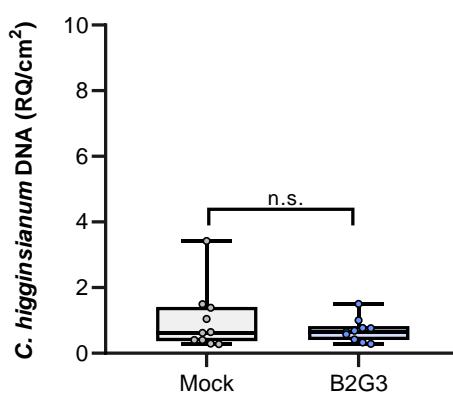
Fig. 2. Pattern-triggered immunity hallmark activation by B2G3 and B2G6 in *Arabidopsis*. Mitogen-activated protein kinases (MAPK) phosphorylation in seedlings determined by Western Blot using Phospho-p44/42 MAPK antibody for phosphorylated MAPK moieties at different time points (5, 15, 30 and 60 minutes) after treatment with (A) B2G3 (100 μM) and (B) B2G6 (100 μM). NT means non-treated sample, which was the negative control, and MLG43 (100 μM), was used as positive control. Arrowheads indicate the position of phosphorylated MPK6 (top), MPK3 (middle) and MPK4/11 (bottom). Ponceau S red-stained membranes show equal protein loading. Quantitative RT-PCR analysis of the relative expression levels of immune-related genes (C) *CYP81F2* and (D) *WRKY53* normalized to the expression of *UBC21* gene at 30 minutes in treated and non-treated *Arabidopsis* seedlings (n = 6). NT and distilled water (mock) were used as negative controls and Chi6 and MLG43 were used as positive controls. All treatments were performed at 100 μM. Data are presented as box plots, with the centre line showing the median, the box limits showing the 25th and 75th percentiles, and the whiskers showing the full range of data. All the data displayed belong to one of the three independent experiments carried out, which gave similar results. Statistically significant differences according to Student's t-test (***p ≤ 0.001) compared to the mock are shown.


A)

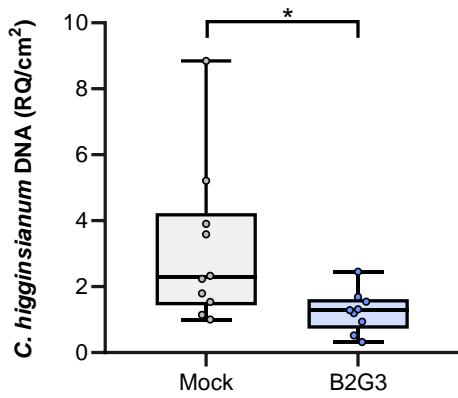

B)


C)

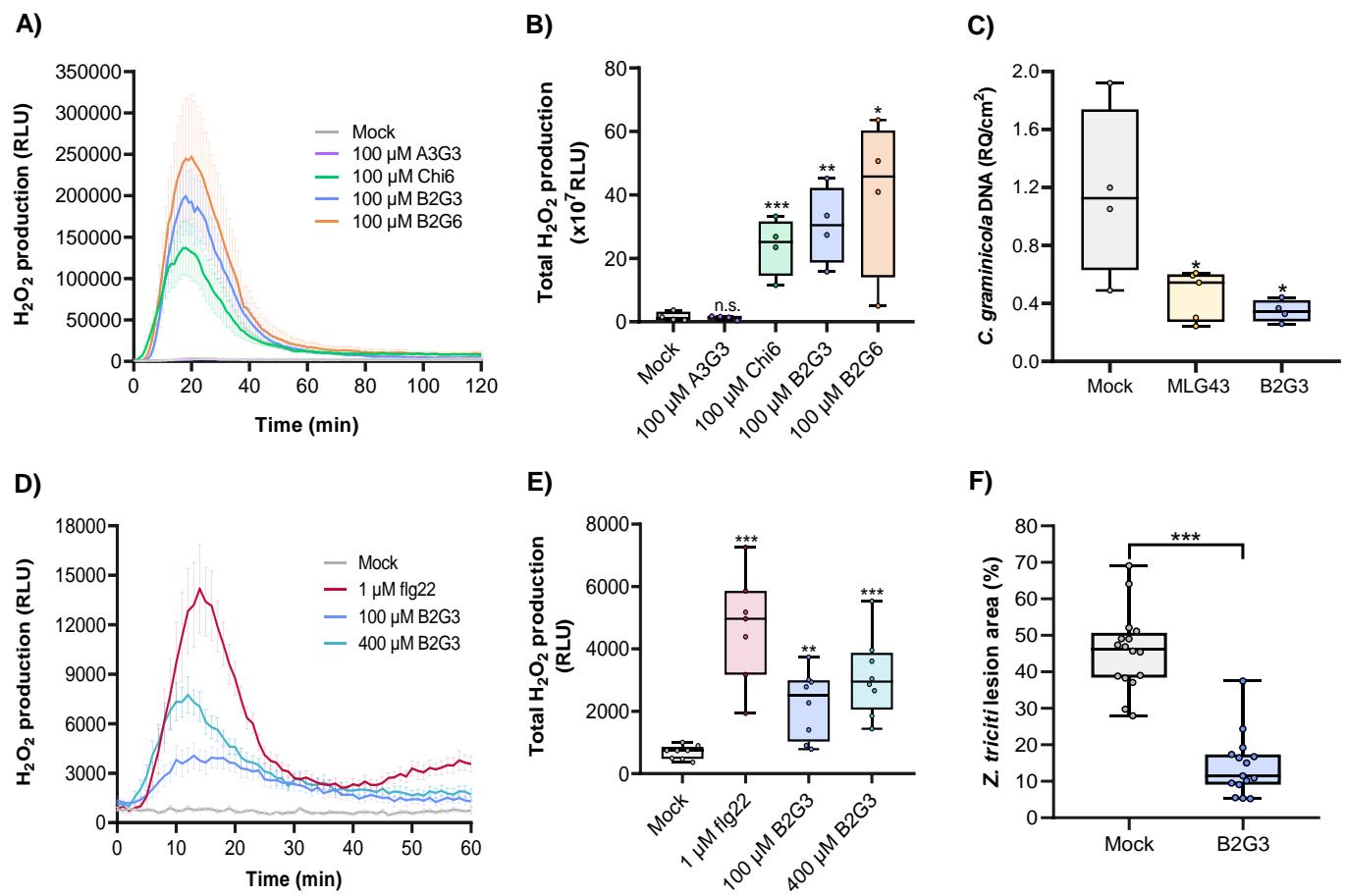
D)



E)



F)


Col-0

G)

Fig. 3. Treatment of Arabidopsis plants with B2G3 enhance protection against phytopathogenic bacteria. (A) Plants of Arabidopsis (Col-0) pretreated with distilled water (mock) or B2G3 (500 μ M and 0.5 mL per plant) and inoculated with *Pseudomonas syringae* pv. *tomato* (DC3000). Control refers to non-inoculated plants. Pictures were taken from 0 to 7 days post-infection (dpi) and representative images are displayed. (B) Colony forming units (CFU) of DC3000 per leaf area (cm^2) at 0 and 3 dpi (n=10-13). (C) Disease symptoms produced by *Botrytis cinerea* at 2 dpi in Arabidopsis leaves. These plants were non-pretreated or pretreated with distilled water (mock) or B2G3 (500 μ M and 0.5 mL per plant). (D) Lesion area (mm^2) caused by *B. cinerea* infection at 2 dpi in Arabidopsis plants (n=26-29, from 15 different plants). (E) Quantification of *B. cinerea* genomic DNA in inoculated Arabidopsis leaves at 1 dpi by quantitative PCR using specific primers for the *B. cinerea* β -Tubulin (*BcTub*) gene. The genomic DNA quantification is expressed as relative quantity (RQ) to Arabidopsis leaves weight (mg) (n=3). Quantification of *Colletotrichum higginsianum* genomic DNA in Arabidopsis (F) Col-0 and (G) the *C. higginsianum*-hypersusceptible mutant *pgm* after treatment with distilled water (mock) and B2G3 (1 mM and 500 μ L per plant). Genomic DNA was quantified at 3.5 dpi by quantitative PCR using specific primers for *C. higginsianum* *TrpC* amplification and data is represented as RQ of genomic DNA per leaf area (cm^2) (n=9-10). Statistically non-significant (n.s.) and significant differences according to Student's t-test (*p \leq 0.05, **p \leq 0.01) compared to the mock are shown.

Fig. 4. B2G3 induces an immune response in maize and wheat and protects against fungal diseases. (A) Reactive oxygen species (ROS) production in maize plants using luminol reaction measured as relative luminescence units (RLU) over time after treatment with A3G3, Chi6, B2G3 and B2G6 (all of them at 100 μM). Distilled water (mock) was used as negative control. Data represent mean \pm standard error (n=8). (B) Total ROS production in maize plants measured as total RLU over 120 minutes after treatment with the oligosaccharides. (C) Quantification of *Colletotrichum graminicola* genomic DNA per maize leaf area (cm²). Genomic DNA was quantified at 4 dpi by quantitative PCR using *C. graminicola* specific primers for histone 3 (CgH3) (n=4-5). The experiment was performed in plants treated with distilled water (mock), MLG43 (1 mM and 0.5 mL per plant) (positive control) and B2G3 (1 mM and 0.5 mL per plant). (D) ROS production in wheat plants using luminol reaction measured as RLU over time after treatment with flg22 (1 μM) and two concentrations of B2G3 (100 and 400 μM). Distilled water (mock) was used as negative control. Data represent mean \pm standard error (n=8). (E) Total ROS production in wheat plants measured as total RLU over 60 minutes after treatment with flg22 (1 μM) and B2G3 (100 and 400 μM). (F) Lesion area (%) caused by *Zymoseptoria tritici* infection in wheat plants after treatment with distilled water (mock) and B2G3 (500 μM and 0.78 mL per plant) (n=16) at 12 dpi. Statistically non-significant (n.s.) and significant differences according to Student's t-test (*p \leq 0.05, **p \leq 0.01, ***p \leq 0.001) compared to the mock are indicated.