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ABSTRACT  27 

Human noroviruses (HuNoVs) are the leading cause of acute gastroenteritis worldwide. Currently, 28 

there are no targeted antivirals for the treatment of HuNoV infection. Histo-blood group antigens 29 

(HBGAs) on the intestinal epithelium are cellular attachment factors for HuNoVs; molecules that 30 

block the binding of HuNoVs to HBGAs thus have the potential to be developed as antivirals. 31 

Human milk oligosaccharides (HMOs) are glycans in human milk with structures analogous to 32 

HBGAs. HMOs have been shown to act as decoy receptors to prevent the attachment of multiple 33 

enteric pathogens to host cells. Previous X-ray crystallography studies have demonstrated the 34 

binding of HMO 2’-fucosyllactose (2’FL) in the same pocket as HBGAs for some HuNoV strains. 35 

We evaluated the effect of 2’FL on the replication of a globally dominant GII.4 Sydney [P16] 36 

HuNoV strain using human intestinal enteroids (HIEs) from adults and children. A significant 37 

reduction in GII.4 Sydney [P16] replication was seen in duodenal and jejunal HIEs from multiple 38 

adult donors, all segments of the small intestine from an adult organ donor and in two pediatric 39 

duodenal HIEs. However, 2’FL did not inhibit HuNoV replication in two infant jejunal HIEs that had 40 

significantly lower expression of α1-2-fucosylated glycans. 2’FL can be synthesized in large scale, 41 

and safety and tolerance have been assessed previously. Our data suggest that 2’FL has the 42 

potential to be developed as a therapeutic for HuNoV gastroenteritis.  43 
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IMPORTANCE 53 

Human noroviruses infect the gastrointestinal tract and are a leading cause of acute 54 

gastroenteritis worldwide. Common symptoms of norovirus include diarrhea, vomiting and 55 

stomach cramps. Virus shedding and symptoms are prolonged and debilitating in 56 

immunocompromised patients. Currently, there are no approved vaccines or targeted antivirals 57 

for treating human norovirus infection. Human intestinal enteroids derived from intestinal stem 58 

cells allow the successful replication of norovirus in the laboratory and can be used as a 59 

physiologically relevant model system to evaluate antivirals. We discovered that 2’fucosyllactose 60 

(2’FL), an oligosaccharide naturally occurring in human milk, inhibits norovirus replication in HIEs 61 

from multiple donors and thus has the potential to be developed as a therapeutic for human 62 

norovirus. These findings have high translational potential since 2’FL from several manufacturers 63 

have GRAS (generally recognized as safe) status and can be synthesized on a large scale for 64 

immediate application.  65 

 66 
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INTRODUCTION 79 

Human noroviruses (HuNoVs) are a leading cause of acute gastroenteritis across all age groups 80 

(1). There are an estimated 677 million HuNoV infections worldwide and over 200,000 HuNoV-81 

associated deaths each year, with the latter mainly reported in low- and middle-income countries 82 

(2, 3). HuNoV outbreaks have been reported in hospitals, long-term care facilities, cruise ships, 83 

planes and restaurants (4). Each year, HuNoV infections can result in more than $4 billion and 84 

$60 billion in direct health and societal care costs respectively (5). Currently, there are no targeted 85 

antivirals or licensed vaccines for HuNoVs. 86 

 87 

Host cellular factors involved in virus attachment and entry are potential targets for antiviral 88 

development. Histo-blood group antigens (HBGAs) are cellular attachment factors for HuNoVs 89 

(6). These complex carbohydrates are present on red blood cells, mucosal epithelial cells, and 90 

biological fluids (7). Human milk contains a group of structurally diverse unconjugated glycans, 91 

with some structures analogous to HBGAs (8). These sugars, called human milk oligosaccharides 92 

(HMOs), comprise 5-15g/L of mature human milk and are the third most abundant component of 93 

human milk after lactose and lipids (9, 10). More than 150 HMO structures have been identified 94 

(11). In addition to serving as prebiotics for bacteria in the infant gut, other functions of HMOs 95 

include modulating epithelial and immune cell responses and acting as decoy receptors to reduce 96 

the attachment of pathogenic microbes to cell surface receptors (12). As such, HMOs have been 97 

shown to prevent pathogen adhesion to host epithelia for multiple enteric bacteria such as 98 

Campylobacter jejuni, Clostridioides difficile and Escherichia coli O157 as well as viruses such as 99 

rotavirus, coxsackievirus class A type 9 and SARS-CoV-2 (13-18).  100 

 101 

Previous X-ray crystallography studies with three HuNoV genotypes (GI.1, GII.10 and GII.17) 102 

have shown that 2-fucosyllactose (2’FL), an α-1,2-fucosylated HMO, binds to the protruding 103 

domain of the HuNoV capsid protein VP1 in a similar pocket as HBGAs (19-21). 2’FL has also 104 
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been found to block the binding of HuNoV virus-like particles (VLPs) to porcine gastric mucin 105 

(PGM) and saliva that contains HBGAs (19, 21).  These data suggest that 2’FL can potentially act 106 

as a decoy receptor for HuNoVs. We previously standardized a pipeline to evaluate antivirals 107 

against HuNoVs in human intestinal enteroids (HIEs) (23). In the present study, we used this 108 

pipeline to evaluate the effect of 2’FL on the replication of GII.4 Sydney [P16] HuNoV and 109 

demonstrate significant reduction in HIEs from multiple donors and intestinal segments.  110 

 111 

RESULTS 112 

2’FL SIGNIFICANTLY REDUCES GII.4 VLP BINDING TO PGM 113 

We first carried out dose-response assays using different concentrations of 2’FL (1.25 mg/ml, 2.5 114 

mg/ml, 5 mg/ml, 10 mg/ml and 20 mg/ml) to determine if the HMO used in the present study can 115 

reduce the binding of GII.4 Sydney 2012 VLPs to PGM. There was a dose-dependent reduction 116 

in VLP binding to PGM, with a significant reduction at 20 mg/ml 2’FL (Figure 1), suggesting that 117 

2’FL can act as a decoy to block HuNoV replication.  118 
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 122 

HUMAN NOROVIRUS TISSUE CULTURE INFECTIOUS DOSE DIFFERS PER HIE LINE 123 

We demonstrated previously that the number of genome equivalents (GE) per 50% tissue culture 124 

infectious dose (TCID50) of HuNoV strains differ in each HIE line (23). Since we planned to 125 

Figure 1: 20 mg/ml 2’FL significantly reduces GII.4 Sydney 2012 VLP binding to PGM. Dose-
response studies testing 1.25 mg/ml, 2.5 mg/ml, 5 mg/ml, 10 mg/ml and 20 mg/ml of 2’FL with 2.5 
ug/ml VLPs. All comparisons were made to the condition where 2’FL was not present (0 mg/ml). Data 
represented are from n=3 independent experiments with averages from 3 technical replicates per 
experiment. The P-values were calculated using Student’s t-test. *P ≤ 0.05. 
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examine the effect of 2’FL in inhibiting HuNoV replication using HIE lines from different ages and 126 

intestinal segments, we determined the GE/TCID50 of the GII.4 Sydney [P16] HuNoV isolate in 127 

each line to standardize the amount of virus used across HIE lines. The average GE/TCID50 from 128 

two independent experiments are reported in Table 1, with adult duodenal HIEs requiring the 129 

highest number of GE/TCID50. For the duodenum and jejunum where HIEs from adults and 130 

children were available, the GE/TCID50 was lower in HIE lines from children. For HIEs derived 131 

from different intestinal segments of the same donor, the highest GE/TCID50 was seen in the 132 

duodenal HIE D2004 while the ileal line I2004 had lower GE/TCID50 values, almost similar to that 133 

of infant jejunal lines (J1005 and J1006). Taken together, these data indicate segment- and age-134 

specific differences in GE/TCID50 and the need to standardize inoculum used in infectivity assays 135 

to allow for comparisons between HIE lines.   136 

 137 
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 150 

HIE Segment Age GE/ TCID50 ± SD 

D109 Duodenal 44 years 4.35 ± 0.28 

D2004 Duodenal 25 years 4.54 ± 0.17 

J2 Jejunal 52 years 4.05 ± 0.00 

J11 Jejunal 52 years  4.06 ± 0.15 

J2004 Jejunal 25 years 4.30 ± 0.03 

I2004 Ileal 25 years 3.76 ± 0.06 

4D Duodenal 2 years 4.23 ± 0.23 

8D Duodenal 5 years 3.84 ± 0.21 

J1005 Jejunal  10 weeks 3.78 ± 0.25 

J1006 Jejunal 12 weeks 3.63 ± 0.06 

Table 1: Summary of genome equivalents (GE) per 50% tissue culture infectious dose (TCID50). 

List of HIE lines, segment of origin and age of donors are shown. GE/TCID50 values are shown as log10 

values ± standard deviation (SD) from n=2 independent experiments.  
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2’FL SIGNIFICANTLY REDUCES GII.4 HUMAN NOROVIRUS REPLICATION IN ADULT 151 

DUODENAL HIE LINES 152 

We first carried out dose-response assays to determine if 2’FL inhibited GII.4 Sydney [P16] 153 

HuNoV binding and replication in HIEs. Although significant inhibition of VLP binding to PGM was 154 

seen only with 20 mg/ml of 2’FL, we tested two additional concentrations (5 mg/ml and 10 mg/ml) 155 

to determine if lower doses could be effective in infectivity studies. HIE lines were infected with 156 

100 TCID50 of GII.4 Sydney [P16] HuNoV based on their respective GE/TCID50 (Table 1). In the 157 

absence of 2’FL, GII.4 Sydney [P16] HuNoV showed ~1log10 increase in GE/well at 24 hours post 158 

infection (hpi) compared to 1 hpi for D109 (Figure 2A) and D2004 (Figure 2B) HIE lines. Similar 159 

to the VLP studies, only 20 mg/ml of 2’FL significantly inhibited GII.4 Sydney [P16] HuNoV 160 

replication as measured at 24 hpi. In evaluating the effect of 2’FL on GII.4 Sydney [P16] HuNoV 161 

binding at 1 hpi, 20 mg/ml 2’FL significantly reduced binding in D2004 but not D109 HIE. None of 162 

the 2’FL concentrations tested were cytotoxic to HIEs as measured by the lactase dehydrogenase 163 

assay.  164 
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 170 

Figure 2: 20 mg/ml 2’FL significantly reduces GII.4 Sydney [P16] HuNoV replication in adult 
duodenal HIE lines. Dose response assays were carried out in adult duodenal HIE lines (A) D109 and 
(B) D2004 using 5 mg/ml, 10 mg/ml and 20 mg/ml of 2’FL. GE/well were determined by RT-qPCR at 1 
hour post infection (hpi) and 24 hpi. Numbers above the bars indicate log10 fold change comparing 
GE/well at 24 hpi to 1 hpi. Cytotoxicity (measured by lactase dehydrogenase assay) is represented in 
percentage below each graph. Data represented are means ± standard deviation (SD) from n=2 
independent experiments with 2 technical replicates per experiment. The P-values were calculated 
using ANOVA, Sidak’s Multiple Comparisons Test. *P ≤ 0.05, ***P ≤ 0.001, ****P ≤ 0.0001. 
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2’FL SIGNIFICANTLY REDUCES GII.4 HUMAN NOROVIRUS REPLICATION IN ADULT 171 

JEJUNAL HIE LINES 172 

To evaluate if the reduction in GII.4 Sydney [P16] replication with 2’FL could be seen in other 173 

intestinal segments, we next tested 2’FL in two adult jejunal HIE lines J2 and J11. Of note, we 174 

performed this and subsequent experiments only with 20 mg/ml of 2’FL since PGM-VLP assays 175 

and infectivity studies showed significant results only at the highest concentration. Both in J2 and 176 

J11 (Figure 3), GII.4 Sydney [P16] HuNoV showed ~1.5log10 increase at 24 hpi compared to 1 hpi 177 

at baseline (0 mg/ml). 20 mg/ml of 2’FL showed a significant reduction in GII.4 Sydney [P16] 178 

HuNoV replication for both lines. When comparing HuNoV replication at 24 hpi, there was a 179 

0.4log10 decrease in J2 and 0.7log10 decrease in J11. Similar to the duodenal HIEs, 20 mg/ml of 180 

2’FL also showed a significant decrease in GII.4 Sydney [P16] binding for one jejunal HIE line 181 

(J2) but not the other. The 20 mg/ml of the HMO was not cytotoxic in either J2 or J11 HIEs.  182 
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 188 

Figure 3: 2’FL significantly reduces GII.4 Sydney [P16] HuNoV replication in adult jejunal HIE 
lines. 20 mg/ml of 2’FL was tested in two adult jejunal HIEs J2 and J11. GE/well were determined 
by RT-qPCR at 1 hpi and 24 hpi. Numbers above the bars indicate log10 fold change comparing 
GE/well at 24 hpi to 1 hpi. Cytotoxicity is represented in percentage below each graph. Data 
represented are means ± standard deviation (SD) from n=2 independent experiments with 2 
technical replicates per experiment. The P-values were calculated using ANOVA, Sidak’s Multiple 
Comparisons Test. *P ≤ 0.05, ***P ≤ 0.001. 
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2’FL SIGNIFICANTLY REDUCES GII.4 HUMAN NOROVIRUS REPLICATION IN ALL 189 

INTESTINAL SEGMENTS OF THE SAME DONOR 190 

The data shown above indicates 20 mg/ml 2’FL significantly inhibits GII.4 Sydney [P16] HuNoV 191 

replication in duodenal and jejunal HIEs. However, the magnitude of replication and inhibition 192 

varied between the different HIE lines. Since all the HIEs tested thus far were derived from 193 

different adult donors, it is possible that some of these differences could be attributed to variability 194 

between donors. We therefore wanted to evaluate the effect of 2’FL in intestinal segments from 195 

the same donor. 20 mg/ml of 2’FL was tested in a duodenal (D2004), jejunal (J2004) and ileal 196 

(I2004) segments from a single donor. Replication was highest in the ileum as measured by fold 197 

increases in GE/well from 1 hpi to 24 hpi, followed by jejunum and then duodenum (Figure 4). 20 198 

mg/ml 2’FL significantly decreased both binding and replication of GII.4 Sydney [P16] HuNoV in 199 

all segments, with complete inhibition seen in the D2004 line. 2’FL was not cytotoxic in any of the 200 

segments.  201 
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 206 

Figure 4: 2’FL significantly reduces GII.4 Sydney [P16] HuNoV binding and replication in all 
segments from the same adult donor. Studies testing 20 mg/ml of 2’FL in duodenal (D2004), 
jejunal (J2004) and ileal (I2004) from an adult donor line. GE/well were determined by RT-qPCR at 
1 hpi and 24 hpi. Numbers above the bars indicate log10 fold change comparing GE/well at 24 hpi to 
1 hpi. Cytotoxicity is represented in percentage below each graph. Data represented are means ± 
standard deviation (SD) from n=2 independent experiments with 2 technical replicates per 
experiment. The P-values were calculated using ANOVA, Sidak’s Multiple Comparisons Test. *P ≤ 
0.05, **P ≤ 0.01, ****P ≤ 0.0001. 
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2’FL SIGNIFICANTLY REDUCES GII.4 HUMAN NOROVIRUS REPLICATION IN PEDIATRIC 207 

DUODENAL BUT NOT INFANT JEJUNAL HIE LINES 208 

As 2’FL significantly reduced HuNoV replication in adult lines, we next wanted to determine if 209 

similar outcomes would be observed in pediatric and infant HIE lines. Infectivity studies were 210 

carried out in two pediatric duodenal lines (4D and 8D, Figure 5A) and two infant jejunal lines 211 

(J1005 and J1006, Figure 5B). Similar to adult HIEs, higher replication in the absence of 2’FL was 212 

seen in infant jejunal HIEs (1.8log10) compared to pediatric duodenal HIEs (1.2log10). 20 mg/ml 213 

2’FL reduced HuNoV replication, but not binding, in the two pediatric duodenal HIE lines. 214 

Surprisingly, when 20 mg/ml 2’FL was tested in two infant jejunal HIE lines (J1005 and J1006), 215 

no reduction of HuNoV binding or replication was observed (Figure 5B), suggesting that 2’FL is 216 

not acting as a decoy to block virus replication in these lines. 20 mg/ml 2’FL was not cytotoxic in 217 

both pediatric duodenal and infant jejunal lines.  218 
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 225 

Figure 5: 2’FL significantly reduces GII.4 Sydney [P16] HuNoV replication in pediatric duodenal 
but not infant jejunal HIE lines. 20 mg/ml of 2’FL was tested in (A) two pediatric duodenal HIEs (4D 
and 8D) and (B) two infant jejunal HIEs (J1005 and J1006). GEs per well were determined by RT-
qPCR at 1 hpi and 24 hpi. Numbers above the bars indicate log10 fold change comparing GEs at 24 
hpi to 1 hpi. Cytotoxicity is represented in percentage below each graph. Data represented are means 
± standard deviation (SD) from n=2 independent experiments with 2 technical replicates per 
experiment. The P-values were calculated using ANOVA, Sidak’s Multiple Comparisons Test. **P ≤ 
0.01, ***P ≤ 0.001. 
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INFANT JEJUNAL LINES EXPRESS LOWER LEVEL OF α1-2-FUCOSYLATED HBGAS 226 

As 20 mg/ml 2’FL didn’t inhibit GII.4 Sydney [P16] replication at 24 hpi in the infant jejunal lines 227 

but inhibited replication in the adult jejunal HIE lines tested, we wanted to evaluate if there was 228 

lower expression of fucosylated HBGAs in the infant lines. We compared the expression of α1-2-229 

fucosylated glycans between the adult jejunal lines (J2 and J11) and infant jejunal lines (J1005 230 

and J1006) by staining the HIEs with Ulex europaeus Agglutinin-1 (UEA-1, Figure 6A) (24). 231 

Significantly lower fluorescent intensity was observed in the infant jejunal lines compared to the 232 

adult jejunal lines (Figure 6B), suggesting the possibility of additional binding factors in the infant 233 

HIE lines other than α1-2-fucosylated HBGAs. There is no significant difference in fluorescent 234 

intensity between the two adult jejunal lines or the between the two infant jejunal lines (Figure 235 

6B). The fluorescent intensities significantly correlate with levels of virus binding at 1hpi and with 236 

GE/TCID50 (Pearson r = 0.96 and 0.98, p<0.05, respectively). 237 

 238 

A                                                                                          B 239 

                         

J2 J11 J1005 J1006

0

20

40

60

80

100

HIE line

M
e

a
n

 F
lu

o
re

s
c

e
n

t 
In

te
n

s
it

y

ns

✱✱✱

✱✱✱

✱✱

✱✱✱

ns

                                                                    240 

 241 

 242 

 243 

 244 

 245 

Figure 6: Level of HBGA expression is lower in infant jejunal HIE lines as compared to adult 
jejunal HIE lines. (A) Infant jejunal lines (J1005 and J1006) and adult jejunal lines (J2 and J11) 
stained with Ulex europaeus Agglutinin-1 (UEA-1) were imaged using confocal microscopy. Two 
representative images are shown per HIE line. (B) Fluorescence intensity was measured for each line 
using FIJI/Image J. Two-four fields per well were analyzed. Mean fluorescence data from 5 identical 
regions of interest (ROIs) per 2-4 fields were averaged. The P-values were calculated using ANOVA, 
Holm-Sidak’s Multiple Comparisons Test. **P ≤ 0.01, ***P ≤ 0.001. N=2 independent experiments.  
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DISCUSSION 246 

HMOs are known to act as decoy receptors for multiple enteric pathogens (25, 26). Previous 247 

studies have demonstrated that milk from secretor mothers, who produce α1-2-fucosylated 248 

HMOs, could block the binding of prototype Norwalk virus (GI.1) VLPs to intestinal tissues, H type 249 

I HBGA and saliva (27-29). Subsequent studies showed that 2’FL could block the binding of GI.1, 250 

GII.10 and GII.17 VLPs to PGM and saliva samples from multiple donors (19, 21). X-ray 251 

crystallography studies revealed that 2’FL binding occurred at the HBGA binding pockets 252 

suggesting that 2’FL can act as a decoy receptor for multiple HuNoV strains. However, data on 253 

2’FL interactions with the globally dominant GII.4 genotype have been more variable. Two 254 

previous studies using VLPs from VA387 GII.4 strain suggested weak binding to 2’FL and the 255 

need for higher molecular weight glycoconjugates for inhibiting carbohydrate ligand interactions 256 

(30, 31). 2'FL at concentrations as high as 24 mg/ml did not inhibit GII.P16-GII.4 replication in 257 

zebrafish larvae although inhibition of binding to A-type saliva was seen (22). By contrast, 258 

structural studies suggest that the protruding domain of the GII.4 Sydney capsid protein binds 259 

2’FL and HBGAs in the same pocket (20). In this study, we evaluated the effect of 2’FL on the 260 

infectivity of a recently circulating GII.4 Sydney [P16] HuNoV strain in HIEs. These 261 

nontransformed cultures serve as a physiologically relevant model system of the small intestinal 262 

epithelium and retain intestinal segment specificity as well as donor phenotypic characteristics. 263 

We discovered that 2’FL inhibits GII.4 Sydney [P16] HuNoV replication in multiple adult HIE lines 264 

without cytotoxicity (summarized in Table 2) and thus has the potential to be developed as a 265 

therapeutic for HuNoV gastroenteritis.  266 

 267 

 268 

 269 
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 285 

The concentration of 2’FL that inhibits GII.4 Sydney [P16] replication in HIEs is consistent with 286 

biochemical studies with GI.1, GII.17 and GII.10 VLPs where the IC50 was calculated to be 287 

between 5–20 g/L (21). While these concentrations are substantially higher than average 288 

concentrations in human milk, the safety profile of higher concentrations of 2’FL have been 289 

evaluated previously. A preclinical study in rats showed that oral administration of 2’FL up to 5000 290 

mg per kilogram of body weight per day for over 90 days was not associated with any adverse 291 

effects based on clinical observations and histopathology, body weight gain and food consumption 292 

(32). A randomized, double-blind, placebo-controlled, oral supplementation study of 2’FL in 100 293 

healthy adults showed that up to 20 g/day for about 12 days was safe and well tolerated (33). 294 

Microbiome composition analysis using 16S rRNA sequencing showed that HMO 295 

HIE Segment Age Average fold increase 
in the absence of 

2’FL  

Average fold 
increase with 
20 mg/ml 2’FL 
(% reduction) 

D109 Duodenal 44 years 1.15  0.34 (70.4%) 

D2004 Duodenal 25 years 0.82  0.105 (100%) 

J2 Jejunal 52 years 1.68  1.28 (23.8%) 

J11 Jejunal 52 years 1.57  0.84 (45.6%) 

J2004 Jejunal 25 years 1.15  0.25 (78.3%) 

I2004 Ileal 25 years 1.68  0.77 (54.2%) 

4D Duodenal 2 years 1.18  0.82 (30.5%) 

8D Duodenal 5 years 1.17  0.45 (61.5%) 

J1005 Jejunal 10 weeks 1.61  1.67 (0%) 

J1006 Jejunal 12 weeks 1.94  1.95 (0%) 

Table 2: Summary of the effect of 2’FL on GII.4 Sydney [P16] HuNoV replication.  List of HIE 
lines, segment of origin and their respective age are shown.

 
Average log10 fold increase in the 

absence of 2’FL and with 20 mg/ml 2’FL (percentage reduction) is shown. 
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supplementation resulted in changes in the gut microbiota with increases in relative abundance 296 

of Actinobacteria and Bifidobacterium, and a reduction in relative abundance of Firmicutes and 297 

Proteobacteria. Chemical, chemo-enzymatic and enzymatic strategies to produce 2’FL have been 298 

described and include strategies for kilogram scale synthesis (34). Multiple 2’FL manufacturers, 299 

including the one for the 2’FL used in this study, have received “no questions” letters from the US 300 

Food and Drug Administration (FDA) regarding the generally recognized as safe (GRAS) notices 301 

for use of their HMO (35). Also, the European Food Safety Authority (EFSA) has published 302 

positive assessment opinions for use of 2’FL in food supplements. Infant formula supplemented 303 

with 2’FL is well-tolerated in healthy-term infants and supports age-appropriate growth (36-38). 304 

Additional health benefits of 2’FL have been described in various studies. Unbiased metabolomic 305 

analyses and short chain fatty acid production was evaluated in bioreactors seeded with fecal 306 

samples from 6 adults and 6 children (6 year old) that were supplemented with 0.5 – 1 g per day 307 

equivalent of 2’FL; these studies demonstrated significant increases in acetate and propionate 308 

production as well as aromatic lactic acids are linked to immune function (39). 2’FL was also 309 

associated with significant reduction in FITC-Dextran permeability in Caco2 cells and upregulation 310 

of tight junction proteins like Claudin-5 in colon-on-chip models under microfluidic conditions (40). 311 

Taken together, these data provide a promising outlook to regulatory pathways for clinical testing 312 

of 2’FL as an inhibitor for HuNoVs.   313 

 314 

A critical observation in our study was that the inhibition of HuNoV replication varied by donor, 315 

intestinal segment, and age. The relative contribution of each of these factors remains to be 316 

elucidated. However, the availability of HIEs from all segments of the small intestine from a single 317 

donor allowed us to confirm that 2’FL can inhibit GII.4 Sydney [P16] replication across multiple 318 

segments. While the level of inhibition varied, with complete inhibition in duodenal HIEs to 319 

approximately 50% inhibition in ileal HIEs, it is to be noted that the magnitude of replication also 320 

varied, with the highest replication seen in ileal HIEs despite using 100 TCID50 of virus in all lines. 321 
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The complete lack of inhibition in infant jejunal HIEs is particularly striking. We previously 322 

demonstrated significant transcriptional, morphological, and functional differences between the 323 

adult and infant jejunal HIEs used in this study (41). Of relevance to HMOs, the expression of 324 

lactase (β-galactosidase) was significantly higher in infant HIEs. However, previous studies have 325 

postulated that despite significant lactase presence, the upper small intestine of piglets and 326 

infants do not cleave HMOs (42). We evaluated differences in HBGA expression between infant 327 

and adult jejunal HIEs. The significantly lower expression of α1-2-fucosylated glycans on infant 328 

jejunal HIEs in comparison to adult lines suggests the possibility of additional cellular attachment 329 

factors on infant lines which allow viral infection and replication to occur despite the decoy activity 330 

of 2’FL.  331 

 332 

Future studies can be performed to address some limitations of this work. First, additional 333 

mechanistic studies are required to determine if 2’FL only has decoy receptor activity or if host 334 

responses contribute to the antiviral effects. Second, while some lines show complete inhibition 335 

of GII.4 Sydney [P16] replication, the range of effects is large. Longer chain fucosylated HMOs 336 

like lacto-N-fucopentaose (LNFP) I or combinations of 2’FL with the other HMOs such as 3-337 

fucosyllactose (3FL) can be tested as additional approaches to determine if consistent reduction 338 

in replication can be achieved across donors and segments. A recent structural study with 339 

nanobodies also demonstrated increased potency when used in combination with 2’FL (43). Such 340 

combination strategies could also be evaluated in future studies for effects on virus replication. 341 

Third, to evaluate the broad applicability of 2’FL or modified glycoconjugates, the effect on 342 

replication of additional HuNoV strains and in additional HIE lines in each age category/segment 343 

needs to be evaluated. Finally, assessment of 2’FL effects in HIEs from infants, toddlers and older 344 

children will allow us to determine whether there are developmentally regulated differences 345 

between receptor/co-receptor expression for HuNoVs.       346 

 347 
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We recently standardized a pipeline for evaluation of antivirals against HuNoVs using HIEs (23). 348 

We previously applied this pipeline to evaluate nitazoxanide, an anti-parasitic drug that is 349 

anecdotally used for the treatment of chronic HuNoV infections in immunocompromised patients. 350 

The present study demonstrates the utility of this pipeline to preclinically evaluate compounds 351 

based on known biology of HuNoVs. The study establishes the potential for 2’FL to be developed 352 

as a therapeutic for adults based on inhibition of virus replication. This is significant because 353 

previous studies have focused primarily on structural interactions and carbohydrate ligand 354 

blocking and did not demonstrate functional activity. Despite the high burden of disease, there are 355 

currently no approved antivirals or therapeutics for treating HuNoV infections, and a 2’FL-based 356 

therapeutic could have prophylactic applications in settings of high risk for outbreaks such as 357 

cruise ships or in treatment for acute or chronic infections. 358 

 359 

MATERIALS AND METHODS 360 

VLPS, VIRUS, AND 2’FL 361 

GII.4 Sydney 2012 VLPs were used for the initial screening assay to evaluate whether 2’FL blocks 362 

the binding to PGM. VLPs were produced in a baculovirus system using open reading frame 2 363 

(ORF2) + ORF3+ untranslated region (UTR) sequences (44). A GII.4 Sydney [P16] strain (isolate 364 

BCM 16-16, stock titer 4.26x10^6 GE/ul) was used for all infectivity experiments. 2’fucosyllactose, 365 

produced in bioengineered microbes, was generously provided in-kind by Jennewein GmbH, 366 

Germany, which was later acquired by Chr Hansen, Denmark, now part of Novonesis. 367 

 368 

HUMAN INTESTINAL ENTEROIDS 369 

HIE lines from different intestinal segments and donors of different ages were used in this study. 370 

These include two adult duodenal lines (D109, D2004), three adult jejunal lines (J2, J11, J2004) 371 

and one adult ileal line (I2004). Of the adult lines, D2004, J2004 and I2004 were obtained from a 372 

single donor (45). In addition to HIE lines from adults, two pediatric duodenal lines (4D, 8D) and 373 
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two infant jejunal (J1005, J1006) were included in this study. The ages of the HIE donors are listed 374 

in Table 1.  375 

 376 

HBGA BLOCKING ASSAYS 377 

A 96-well polystyrene flat-bottom plate (Greiner Bio-One, 655001) was coated with 3 ug/ml PGM 378 

diluted in 0.01 M phosphate buffer saline (PBS) overnight at 4°C on a rocking platform. Following 379 

incubation, 1% non-fat dry milk (NFDM) in 100 mM sodium phosphate buffer (PB), pH 6.1 was 380 

added to the PGM-coated plate and incubated for 2 hours at room temperature protected from 381 

light. Meanwhile, two-fold dilutions of 2’FL ranging from 1.25 mg/ml to 20 mg/ml were incubated 382 

with 2.5 ug/ml GII.4 Sydney 2012 VLPs in a tissue-culture treated round bottom plate (Corning, 383 

3799) at 4°C on a rocking platform for an hour. As the positive control, 2.5 ug/ml of GII.4 Sydney 384 

2012 VLPs were diluted with PB buffer. Following incubation, the PGM coated plate was washed 385 

5 times with cold PB buffer. The 2’FL-VLP solutions were transferred to the PGM coated plate 386 

and incubated at 4°C for 2 hours protected from light. Following incubation, the plate was washed 387 

5 times with cold PB buffer. An in-house guinea pig anti-GII.4 Sydney primary antibody (1:3000) 388 

was added to the wells. The plate was incubated at 4°C for 1 hour protected from light. The plate 389 

was washed 5 times with cold PB buffer, and goat anti-guinea pig secondary antibody conjugated 390 

with HRP (1:5000, Sigma, A7289) was added to the wells. The plate was incubated at 4°C for 1 391 

hour protected from light. After washing, TMB (3,3’,5,5’-Tetramethylbenzidine) substrate (KPL, 392 

5120-0047), was added to all the wells for 10 minutes protected from light. 1M phosphoric acid 393 

was used as the stop solution and the absorbance was measured at 450nM using a microplate 394 

reader (Spectramax). The VLP binding assays were performed three times, with three technical 395 

replicate wells for each condition in an experiment. 396 

 397 

 398 

 399 
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HUMAN NOROVIRUS INFECTIVITY  400 

Three-dimensional (3D) HIE cultures were obtained from the Gastrointestinal Experimental Model 401 

Systems Core (GEMS) of the Texas Medical Center Digestive Diseases Center (TMC DDC) and 402 

plated as monolayers on 96-well plates as described previously using commercially available  403 

Intesticult™ Organoid Growth Medium (OGM) proliferation and differentiation media (46, 47). The 404 

GE/TCID50 was determined for each HIE line as described previously so that a standard dose of 405 

virus could be used across different HIE lines (23). 2’FL was diluted in OGM differentiation media 406 

with 500 μM sodium glycochenodeoxycholate (GCDCA; Sigma, G0759) and was added to 5-day 407 

differentiated HIE monolayers on a 96-well plate (Corning, 3595) with 100 TCID50 of virus. 100 408 

TCID50 virus in the absence of 2’FL was used to determine baseline infectivity in the absence of 409 

treatment. Following incubation at 37°C for 1 hour, the HIE monolayers were washed 3 times with 410 

complete media without growth factors (CMGF-) and OGM differentiation media with 500 μM 411 

GCDCA was added to all the wells. The samples were incubated for a further 23 hours at 37°C. 412 

Total RNA was extracted using a KingFisher Flex machine (ThermoFisher) and MagMax-96 viral 413 

RNA isolated kit (Applied Biosystems) as described previously (47). RT-qPCR (Applied 414 

Biosystems) was carried out for the extracted RNA samples and viral replication was quantitated 415 

relative to a standard curve. GE/ul measured at 1 hpi and 24 hpi were used to estimate input virus 416 

and replication, respectively. The TCID50 assays were carried out twice for each line. Each 417 

infectivity experiment was performed twice with two technical replicate wells for each condition 418 

within an experiment. RT-qPCR assays were carried out using three technical replicates for each 419 

HIE well.  420 

 421 

CYTOTOXICITY ASSESSMENT 422 

Cytotoxicity assays were carried out in tandem with the viral infectivity assays using the 423 

CytoTox 96® Non-Radioactive Cytotoxicity Assay (Promega, G1780). The assay was carried out 424 

according to the manufacturer’s instructions with some modifications wherein supernatants were 425 
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diluted in media to achieve optical density (OD) values in the linear range of the assay (48). OD 426 

values were taken using a microplate reader at 490nM (Spectramax) and percent cytotoxicity was 427 

calculated for each sample.  428 

 429 

UEA-1 STAINING   430 

5-day differentiated HIE monolayers plated on tissue culture treated slides (Ibidi, 80826) were 431 

fixed with 4% paraformaldehyde (Electron Microscopy Sciences, 15710-S) for 25 minutes at room 432 

temperature. The cells were incubated overnight at 4°C with Rhodamine-conjugated UEA-1 433 

(Vector Laboratories, RL-1062-2) diluted 1:200 in 5% bovine serum albumin (BSA) in 0.01 M PBS 434 

+ 0.1% triton (24). The cells were washed with 0.01 M PBS + 0.1% triton 3 times (10-minute 435 

incubations) and nuclei were stained with NucBlue Fixed Cell Stain ReadyProbes reagent 436 

(Invitrogen, R37606) diluted in 0.01 M PBS for 5 minutes. Orthogonal sections of the cells were 437 

imaged using a ZEISS confocal microscope (Laser Scanning Microscope LSM 980) using ZEISS 438 

ZEN 3.5 (blue edition) software. The images were further processed and analyzed using 439 

ImageJ2/FIJI. For quantifying fluorescence intensity, two to four fields per well were analyzed. 440 

Mean fluorescence data from 5 identical regions of interest (ROIs) per field were collected. The 441 

experiments were performed twice with two technical replicate wells in each experiment for each 442 

HIE line. 443 

 444 

STATISTICAL ANALYSIS 445 

GraphPad Prism 9.5.1 was used for all statistical analyses. For the PGM-VLP assays, Student’s 446 

T-test was used to compare the 2’FL concentrations to the control. For the infectivity assays, 447 

comparison between 1 hpi and 24 hpi groups in the presence and absence of 2’FL was performed 448 

using a two-way ANOVA and Sidak’s post-hoc multiple comparisons analyses. For comparing 449 

fluorescent intensities of UEA-1 staining in the immunofluorescence assays between the different 450 
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lines, a one-way ANOVA was performed using Holm-Sidak’s multiple comparisons test for post-451 

hoc analyses. Error bars denote standard deviation (SD) for all graphs. 452 

 453 
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