

2'-Fucosyllactose Inhibits Human Norovirus Replication in Human Intestinal Enteroids

Ketki Patil^a, B. Vijayalakshmi Ayyar^a, Frederick H. Neill^a, Lars Bode^b, Mary K. Estes^{a,c}, Robert L. Atmar^{a,c} and Sasirekha Ramani^{a,†}

^aDepartment of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas

^bDepartment of Pediatrics, Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence (MOMI CORE), and the Human Milk Institute (HMI), University of California San Diego, La Jolla, CA

^cDepartment of Medicine, Baylor College of Medicine, Houston, Texas

Abstract word count: 226

13

Manuscript word count: 4067

15

Running title: 2'FL inhibits human norovirus replication

17

#Corresponding author

19

Department of Molecular

21

Houston, TX 77030

22

Email: ramani@bcm.edu

24

Phone: +1 (713) 709

2

27 **ABSTRACT**

28 Human noroviruses (HuNoVs) are the leading cause of acute gastroenteritis worldwide. Currently,
29 there are no targeted antivirals for the treatment of HuNoV infection. Histo-blood group antigens
30 (HBGAs) on the intestinal epithelium are cellular attachment factors for HuNoVs; molecules that
31 block the binding of HuNoVs to HBGAs thus have the potential to be developed as antivirals.
32 Human milk oligosaccharides (HMOs) are glycans in human milk with structures analogous to
33 HBGAs. HMOs have been shown to act as decoy receptors to prevent the attachment of multiple
34 enteric pathogens to host cells. Previous X-ray crystallography studies have demonstrated the
35 binding of HMO 2'-fucosyllactose (2'FL) in the same pocket as HBGAs for some HuNoV strains.
36 We evaluated the effect of 2'FL on the replication of a globally dominant GII.4 Sydney [P16]
37 HuNoV strain using human intestinal enteroids (HIEs) from adults and children. A significant
38 reduction in GII.4 Sydney [P16] replication was seen in duodenal and jejunal HIEs from multiple
39 adult donors, all segments of the small intestine from an adult organ donor and in two pediatric
40 duodenal HIEs. However, 2'FL did not inhibit HuNoV replication in two infant jejunal HIEs that had
41 significantly lower expression of α 1-2-fucosylated glycans. 2'FL can be synthesized in large scale,
42 and safety and tolerance have been assessed previously. Our data suggest that 2'FL has the
43 potential to be developed as a therapeutic for HuNoV gastroenteritis.

44

45 **Keywords: Norovirus, Human Milk Oligosaccharide, 2'-Fucosyllactose, Enteroids,**
46 **Antiviral, Therapeutic**

47

48

49

50

51

52

53 **IMPORTANCE**

54 Human noroviruses infect the gastrointestinal tract and are a leading cause of acute
55 gastroenteritis worldwide. Common symptoms of norovirus include diarrhea, vomiting and
56 stomach cramps. Virus shedding and symptoms are prolonged and debilitating in
57 immunocompromised patients. Currently, there are no approved vaccines or targeted antivirals
58 for treating human norovirus infection. Human intestinal enteroids derived from intestinal stem
59 cells allow the successful replication of norovirus in the laboratory and can be used as a
60 physiologically relevant model system to evaluate antivirals. We discovered that 2'fucosyllactose
61 (2'FL), an oligosaccharide naturally occurring in human milk, inhibits norovirus replication in HIEs
62 from multiple donors and thus has the potential to be developed as a therapeutic for human
63 norovirus. These findings have high translational potential since 2'FL from several manufacturers
64 have GRAS (generally recognized as safe) status and can be synthesized on a large scale for
65 immediate application.

66

67

68

69

70

71

72

73

74

75

76

77

78

79 **INTRODUCTION**

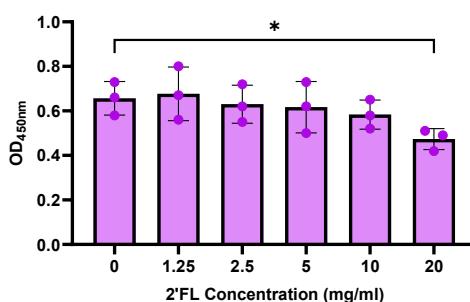
80 Human noroviruses (HuNoVs) are a leading cause of acute gastroenteritis across all age groups
81 (1). There are an estimated 677 million HuNoV infections worldwide and over 200,000 HuNoV-
82 associated deaths each year, with the latter mainly reported in low- and middle-income countries
83 (2, 3). HuNoV outbreaks have been reported in hospitals, long-term care facilities, cruise ships,
84 planes and restaurants (4). Each year, HuNoV infections can result in more than \$4 billion and
85 \$60 billion in direct health and societal care costs respectively (5). Currently, there are no targeted
86 antivirals or licensed vaccines for HuNoVs.

87

88 Host cellular factors involved in virus attachment and entry are potential targets for antiviral
89 development. Histo-blood group antigens (HBGAs) are cellular attachment factors for HuNoVs
90 (6). These complex carbohydrates are present on red blood cells, mucosal epithelial cells, and
91 biological fluids (7). Human milk contains a group of structurally diverse unconjugated glycans,
92 with some structures analogous to HBGAs (8). These sugars, called human milk oligosaccharides
93 (HMOs), comprise 5-15g/L of mature human milk and are the third most abundant component of
94 human milk after lactose and lipids (9, 10). More than 150 HMO structures have been identified
95 (11). In addition to serving as prebiotics for bacteria in the infant gut, other functions of HMOs
96 include modulating epithelial and immune cell responses and acting as decoy receptors to reduce
97 the attachment of pathogenic microbes to cell surface receptors (12). As such, HMOs have been
98 shown to prevent pathogen adhesion to host epithelia for multiple enteric bacteria such as
99 *Campylobacter jejuni*, *Clostridioides difficile* and *Escherichia coli* O157 as well as viruses such as
100 rotavirus, coxsackievirus class A type 9 and SARS-CoV-2 (13-18).

101

102 Previous X-ray crystallography studies with three HuNoV genotypes (GI.1, GII.10 and GII.17)
103 have shown that 2-fucosyllactose (2'FL), an α -1,2-fucosylated HMO, binds to the protruding
104 domain of the HuNoV capsid protein VP1 in a similar pocket as HBGAs (19-21). 2'FL has also


105 been found to block the binding of HuNoV virus-like particles (VLPs) to porcine gastric mucin
106 (PGM) and saliva that contains HBGAs (19, 21). These data suggest that 2'FL can potentially act
107 as a decoy receptor for HuNoVs. We previously standardized a pipeline to evaluate antivirals
108 against HuNoVs in human intestinal enteroids (HIEs) (23). In the present study, we used this
109 pipeline to evaluate the effect of 2'FL on the replication of GII.4 Sydney [P16] HuNoV and
110 demonstrate significant reduction in HIEs from multiple donors and intestinal segments.

111

112 **RESULTS**

113 **2'FL SIGNIFICANTLY REDUCES GII.4 VLP BINDING TO PGM**

114 We first carried out dose-response assays using different concentrations of 2'FL (1.25 mg/ml, 2.5
115 mg/ml, 5 mg/ml, 10 mg/ml and 20 mg/ml) to determine if the HMO used in the present study can
116 reduce the binding of GII.4 Sydney 2012 VLPs to PGM. There was a dose-dependent reduction
117 in VLP binding to PGM, with a significant reduction at 20 mg/ml 2'FL (Figure 1), suggesting that
118 2'FL can act as a decoy to block HuNoV replication.

119

120 **Figure 1: 20 mg/ml 2'FL significantly reduces GII.4 Sydney 2012 VLP binding to PGM.** Dose-
121 response studies testing 1.25 mg/ml, 2.5 mg/ml, 5 mg/ml, 10 mg/ml and 20 mg/ml of 2'FL with 2.5
ug/ml VLPs. All comparisons were made to the condition where 2'FL was not present (0 mg/ml). Data
121 represented are from n=3 independent experiments with averages from 3 technical replicates per
experiment. The P-values were calculated using Student's t-test. *P ≤ 0.05.

122

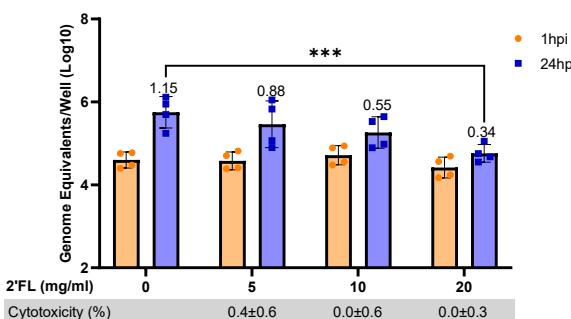
123 **HUMAN NOROVIRUS TISSUE CULTURE INFECTIOUS DOSE DIFFERS PER HIE LINE**

124 We demonstrated previously that the number of genome equivalents (GE) per 50% tissue culture
125 infectious dose (TCID₅₀) of HuNoV strains differ in each HIE line (23). Since we planned to

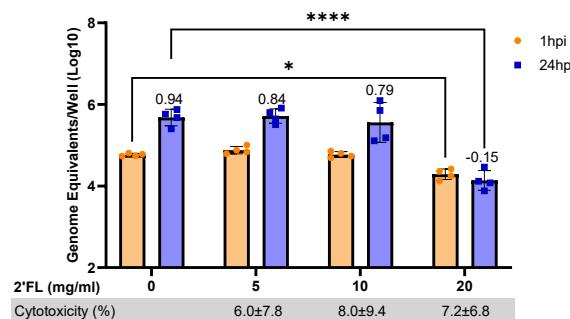
126 examine the effect of 2'FL in inhibiting HuNoV replication using HIE lines from different ages and
127 intestinal segments, we determined the GE/TCID₅₀ of the GII.4 Sydney [P16] HuNoV isolate in
128 each line to standardize the amount of virus used across HIE lines. The average GE/TCID₅₀ from
129 two independent experiments are reported in Table 1, with adult duodenal HIEs requiring the
130 highest number of GE/TCID₅₀. For the duodenum and jejunum where HIEs from adults and
131 children were available, the GE/TCID₅₀ was lower in HIE lines from children. For HIEs derived
132 from different intestinal segments of the same donor, the highest GE/TCID₅₀ was seen in the
133 duodenal HIE D2004 while the ileal line I2004 had lower GE/TCID₅₀ values, almost similar to that
134 of infant jejunal lines (J1005 and J1006). Taken together, these data indicate segment- and age-
135 specific differences in GE/TCID₅₀ and the need to standardize inoculum used in infectivity assays
136 to allow for comparisons between HIE lines.

HIE	Segment	Age	GE/ TCID ₅₀ ± SD
D109	Duodenal	44 years	4.35 ± 0.28
D2004	Duodenal	25 years	4.54 ± 0.17
J2	Jejunal	52 years	4.05 ± 0.00
J11	Jejunal	52 years	4.06 ± 0.15
J2004	Jejunal	25 years	4.30 ± 0.03
I2004	Ileal	25 years	3.76 ± 0.06
4D	Duodenal	2 years	4.23 ± 0.23
8D	Duodenal	5 years	3.84 ± 0.21
J1005	Jejunal	10 weeks	3.78 ± 0.25
J1006	Jejunal	12 weeks	3.63 ± 0.06

149 **Table 1: Summary of genome equivalents (GE) per 50% tissue culture infectious dose (TCID₅₀).**


150 List of HIE lines, segment of origin and age of donors are shown. GE/TCID₅₀ values are shown as log₁₀ values ± standard deviation (SD) from n=2 independent experiments.

151 **2'FL SIGNIFICANTLY REDUCES GII.4 HUMAN NOROVIRUS REPLICATION IN ADULT**

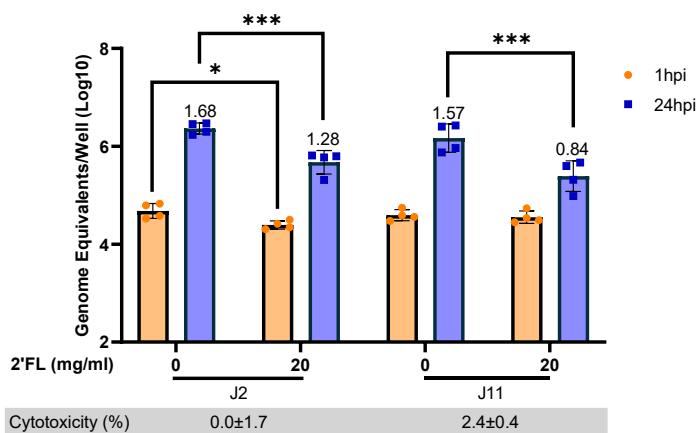

152 **DUODENAL HIE LINES**

153 We first carried out dose-response assays to determine if 2'FL inhibited GII.4 Sydney [P16]
154 HuNoV binding and replication in HIEs. Although significant inhibition of VLP binding to PGM was
155 seen only with 20 mg/ml of 2'FL, we tested two additional concentrations (5 mg/ml and 10 mg/ml)
156 to determine if lower doses could be effective in infectivity studies. HIE lines were infected with
157 100 TCID₅₀ of GII.4 Sydney [P16] HuNoV based on their respective GE/TCID₅₀ (Table 1). In the
158 absence of 2'FL, GII.4 Sydney [P16] HuNoV showed ~1log₁₀ increase in GE/well at 24 hours post
159 infection (hpi) compared to 1 hpi for D109 (Figure 2A) and D2004 (Figure 2B) HIE lines. Similar
160 to the VLP studies, only 20 mg/ml of 2'FL significantly inhibited GII.4 Sydney [P16] HuNoV
161 replication as measured at 24 hpi. In evaluating the effect of 2'FL on GII.4 Sydney [P16] HuNoV
162 binding at 1 hpi, 20 mg/ml 2'FL significantly reduced binding in D2004 but not D109 HIE. None of
163 the 2'FL concentrations tested were cytotoxic to HIEs as measured by the lactase dehydrogenase
164 assay.

A

B

165

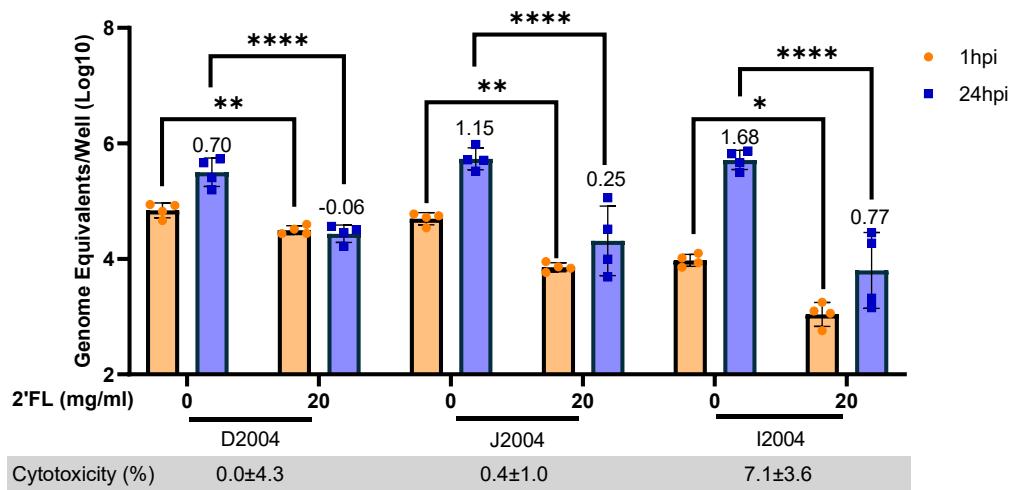

Figure 2: 20 mg/ml 2'FL significantly reduces GII.4 Sydney [P16] HuNoV replication in adult duodenal HIE lines. Dose response assays were carried out in adult duodenal HIE lines (A) D109 and (B) D2004 using 5 mg/ml, 10 mg/ml and 20 mg/ml of 2'FL. GE/well were determined by RT-qPCR at 1 hour post infection (hpi) and 24 hpi. Numbers above the bars indicate log₁₀ fold change comparing GE/well at 24 hpi to 1 hpi. Cytotoxicity (measured by lactase dehydrogenase assay) is represented in percentage below each graph. Data represented are means ± standard deviation (SD) from n=2 independent experiments with 2 technical replicates per experiment. The P-values were calculated using ANOVA, Sidak's Multiple Comparisons Test. *P ≤ 0.05, ***P ≤ 0.001, ****P ≤ 0.0001.

169

170

171 **2'FL SIGNIFICANTLY REDUCES GII.4 HUMAN NOROVIRUS REPLICATION IN ADULT
172 JEJUNAL HIE LINES**

173 To evaluate if the reduction in GII.4 Sydney [P16] replication with 2'FL could be seen in other
174 intestinal segments, we next tested 2'FL in two adult jejunal HIE lines J2 and J11. Of note, we
175 performed this and subsequent experiments only with 20 mg/ml of 2'FL since PGM-VLP assays
176 and infectivity studies showed significant results only at the highest concentration. Both in J2 and
177 J11 (Figure 3), GII.4 Sydney [P16] HuNoV showed $\sim 1.5 \log_{10}$ increase at 24 hpi compared to 1 hpi
178 at baseline (0 mg/ml). 20 mg/ml of 2'FL showed a significant reduction in GII.4 Sydney [P16]
179 HuNoV replication for both lines. When comparing HuNoV replication at 24 hpi, there was a
180 $0.4 \log_{10}$ decrease in J2 and $0.7 \log_{10}$ decrease in J11. Similar to the duodenal HIEs, 20 mg/ml of
181 2'FL also showed a significant decrease in GII.4 Sydney [P16] binding for one jejunal HIE line
182 (J2) but not the other. The 20 mg/ml of the HMO was not cytotoxic in either J2 or J11 HIEs.

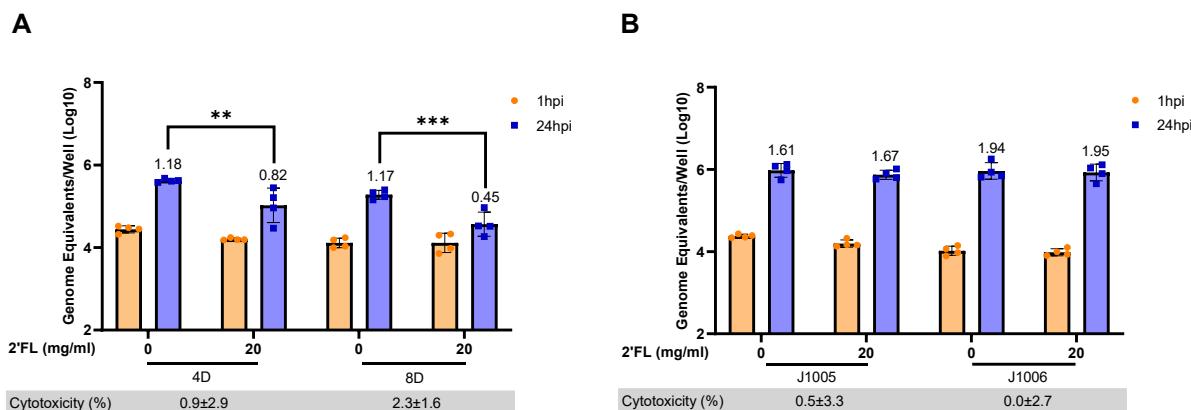


183 **Figure 3: 2'FL significantly reduces GII.4 Sydney [P16] HuNoV replication in adult jejunal HIE
184 lines.** 20 mg/ml of 2'FL was tested in two adult jejunal HIEs J2 and J11. GE/well were determined
185 by RT-qPCR at 1 hpi and 24 hpi. Numbers above the bars indicate \log_{10} fold change comparing
186 GE/well at 24 hpi to 1 hpi. Cytotoxicity is represented in percentage below each graph. Data
187 represented are means \pm standard deviation (SD) from n=2 independent experiments with 2
188 technical replicates per experiment. The P-values were calculated using ANOVA, Sidak's Multiple
Comparisons Test. *P ≤ 0.05 , ***P ≤ 0.001 .

189 **2'FL SIGNIFICANTLY REDUCES GII.4 HUMAN NOROVIRUS REPLICATION IN ALL
190 INTESTINAL SEGMENTS OF THE SAME DONOR**

191 The data shown above indicates 20 mg/ml 2'FL significantly inhibits GII.4 Sydney [P16] HuNoV
192 replication in duodenal and jejunal HIEs. However, the magnitude of replication and inhibition
193 varied between the different HIE lines. Since all the HIEs tested thus far were derived from
194 different adult donors, it is possible that some of these differences could be attributed to variability
195 between donors. We therefore wanted to evaluate the effect of 2'FL in intestinal segments from
196 the same donor. 20 mg/ml of 2'FL was tested in a duodenal (D2004), jejunal (J2004) and ileal
197 (I2004) segments from a single donor. Replication was highest in the ileum as measured by fold
198 increases in GE/well from 1 hpi to 24 hpi, followed by jejunum and then duodenum (Figure 4). 20
199 mg/ml 2'FL significantly decreased both binding and replication of GII.4 Sydney [P16] HuNoV in
200 all segments, with complete inhibition seen in the D2004 line. 2'FL was not cytotoxic in any of the
201 segments.

202

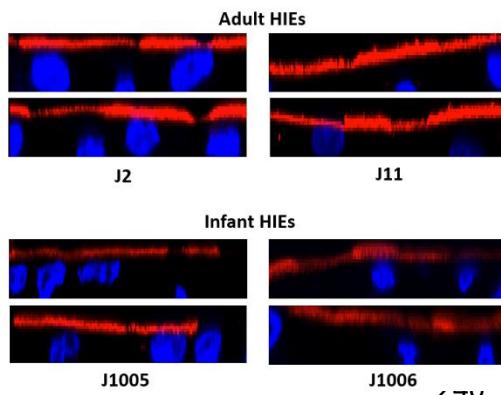


203

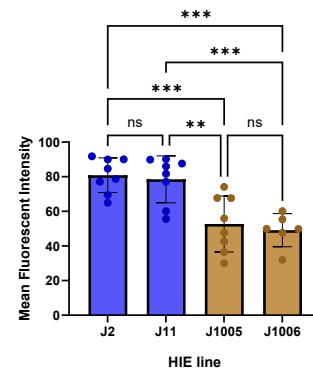
204 **Figure 4: 2'FL significantly reduces GII.4 Sydney [P16] HuNoV binding and replication in all
205 segments from the same adult donor.** Studies testing 20 mg/ml of 2'FL in duodenal (D2004),
206 jejunal (J2004) and ileal (I2004) from an adult donor line. GE/well were determined by RT-qPCR at
1 hpi and 24 hpi. Numbers above the bars indicate \log_{10} fold change comparing GE/well at 24 hpi to
1 hpi. Cytotoxicity is represented in percentage below each graph. Data represented are means \pm
standard deviation (SD) from $n=2$ independent experiments with 2 technical replicates per
experiment. The P-values were calculated using ANOVA, Sidak's Multiple Comparisons Test. * $P \leq$
 0.05 , ** $P \leq 0.01$, *** $P \leq 0.001$.

207 **2'FL SIGNIFICANTLY REDUCES GII.4 HUMAN NOROVIRUS REPLICATION IN PEDIATRIC
208 DUODENAL BUT NOT INFANT JEJUNAL HIE LINES**

209 As 2'FL significantly reduced HuNoV replication in adult lines, we next wanted to determine if
210 similar outcomes would be observed in pediatric and infant HIE lines. Infectivity studies were
211 carried out in two pediatric duodenal lines (4D and 8D, Figure 5A) and two infant jejunal lines
212 (J1005 and J1006, Figure 5B). Similar to adult HIEs, higher replication in the absence of 2'FL was
213 seen in infant jejunal HIEs ($1.8\log_{10}$) compared to pediatric duodenal HIEs ($1.2\log_{10}$). 20 mg/ml
214 2'FL reduced HuNoV replication, but not binding, in the two pediatric duodenal HIE lines.
215 Surprisingly, when 20 mg/ml 2'FL was tested in two infant jejunal HIE lines (J1005 and J1006),
216 no reduction of HuNoV binding or replication was observed (Figure 5B), suggesting that 2'FL is
217 not acting as a decoy to block virus replication in these lines. 20 mg/ml 2'FL was not cytotoxic in
218 both pediatric duodenal and infant jejunal lines.


219
220 **Figure 5: 2'FL significantly reduces GII.4 Sydney [P16] HuNoV replication in pediatric duodenal
221 but not infant jejunal HIE lines.** 20 mg/ml of 2'FL was tested in (A) two pediatric duodenal HIEs (4D
222 and 8D) and (B) two infant jejunal HIEs (J1005 and J1006). GEs per well were determined by RT-
223 qPCR at 1 hpi and 24 hpi. Numbers above the bars indicate \log_{10} fold change comparing GE at 24
224 hpi to 1 hpi. Cytotoxicity is represented in percentage below each graph. Data represented are means
225 ± standard deviation (SD) from $n=2$ independent experiments with 2 technical replicates per
experiment. The P-values were calculated using ANOVA, Sidak's Multiple Comparisons Test. ** $P \leq$
 0.01 , *** $P \leq 0.001$.

226 **INFANT JEJUNAL LINES EXPRESS LOWER LEVEL OF α 1-2-FUCOSYLATED HBGAS**


227 As 20 mg/ml 2'FL didn't inhibit GII.4 Sydney [P16] replication at 24 hpi in the infant jejunal lines
228 but inhibited replication in the adult jejunal HIE lines tested, we wanted to evaluate if there was
229 lower expression of fucosylated HBGAs in the infant lines. We compared the expression of α 1-2-
230 fucosylated glycans between the adult jejunal lines (J2 and J11) and infant jejunal lines (J1005
231 and J1006) by staining the HIEs with *Ulex europaeus* Agglutinin-1 (UEA-1, Figure 6A) (24).
232 Significantly lower fluorescent intensity was observed in the infant jejunal lines compared to the
233 adult jejunal lines (Figure 6B), suggesting the possibility of additional binding factors in the infant
234 HIE lines other than α 1-2-fucosylated HBGAs. There is no significant difference in fluorescent
235 intensity between the two adult jejunal lines or the between the two infant jejunal lines (Figure
236 6B). The fluorescent intensities significantly correlate with levels of virus binding at 1hpi and with
237 GE/TCID₅₀ (Pearson r = 0.96 and 0.98, p<0.05, respectively).

238

239 **A**

B

241 **Figure 6: Level of HBGA expression is lower in infant jejunal HIE lines as compared to adult**
242 **jejunal HIE lines.** (A) Infant jejunal lines (J1005 and J1006) and adult jejunal lines (J2 and J11)
243 stained with *Ulex europaeus* Agglutinin-1 (UEA-1) were imaged using confocal microscopy. Two
244 representative images are shown per HIE line. (B) Fluorescence intensity was measured for each line
using FIJI/Image J. Two-four fields per well were analyzed. Mean fluorescence data from 5 identical
regions of interest (ROIs) per 2-4 fields were averaged. The P-values were calculated using ANOVA,
Holm-Sidak's Multiple Comparisons Test. **P ≤ 0.01, ***P ≤ 0.001. N=2 independent experiments.

245

246 **DISCUSSION**

247 HMOs are known to act as decoy receptors for multiple enteric pathogens (25, 26). Previous
248 studies have demonstrated that milk from secretor mothers, who produce α 1-2-fucosylated
249 HMOs, could block the binding of prototype Norwalk virus (GI.1) VLPs to intestinal tissues, H type
250 I HBGA and saliva (27-29). Subsequent studies showed that 2'FL could block the binding of GI.1,
251 GII.10 and GII.17 VLPs to PGM and saliva samples from multiple donors (19, 21). X-ray
252 crystallography studies revealed that 2'FL binding occurred at the HBGA binding pockets
253 suggesting that 2'FL can act as a decoy receptor for multiple HuNoV strains. However, data on
254 2'FL interactions with the globally dominant GII.4 genotype have been more variable. Two
255 previous studies using VLPs from VA387 GII.4 strain suggested weak binding to 2'FL and the
256 need for higher molecular weight glycoconjugates for inhibiting carbohydrate ligand interactions
257 (30, 31). 2'FL at concentrations as high as 24 mg/ml did not inhibit GII.P16-GII.4 replication in
258 zebrafish larvae although inhibition of binding to A-type saliva was seen (22). By contrast,
259 structural studies suggest that the protruding domain of the GII.4 Sydney capsid protein binds
260 2'FL and HBGAs in the same pocket (20). In this study, we evaluated the effect of 2'FL on the
261 infectivity of a recently circulating GII.4 Sydney [P16] HuNoV strain in HIEs. These
262 nontransformed cultures serve as a physiologically relevant model system of the small intestinal
263 epithelium and retain intestinal segment specificity as well as donor phenotypic characteristics.
264 We discovered that 2'FL inhibits GII.4 Sydney [P16] HuNoV replication in multiple adult HIE lines
265 without cytotoxicity (summarized in Table 2) and thus has the potential to be developed as a
266 therapeutic for HuNoV gastroenteritis.

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

HIE	Segment	Age	Average fold increase in the absence of 2'FL	Average fold increase with 20 mg/ml 2'FL (% reduction)
D109	Duodenal	44 years	1.15	0.34 (70.4%)
D2004	Duodenal	25 years	0.82	0.105 (100%)
J2	Jejunal	52 years	1.68	1.28 (23.8%)
J11	Jejunal	52 years	1.57	0.84 (45.6%)
J2004	Jejunal	25 years	1.15	0.25 (78.3%)
I2004	Ileal	25 years	1.68	0.77 (54.2%)
4D	Duodenal	2 years	1.18	0.82 (30.5%)
8D	Duodenal	5 years	1.17	0.45 (61.5%)
J1005	Jejunal	10 weeks	1.61	1.67 (0%)
J1006	Jejunal	12 weeks	1.94	1.95 (0%)

283 **Table 2: Summary of the effect of 2'FL on GII.4 Sydney [P16] HuNoV replication.** List of HIE
284 lines, segment of origin and their respective age are shown. Average \log_{10} fold increase in the
285 absence of 2'FL and with 20 mg/ml 2'FL (percentage reduction) is shown.

286

287 The concentration of 2'FL that inhibits GII.4 Sydney [P16] replication in HIEs is consistent with
288 biochemical studies with GII.1, GII.17 and GII.10 VLPs where the IC_{50} was calculated to be
289 between 5–20 g/L (21). While these concentrations are substantially higher than average
290 concentrations in human milk, the safety profile of higher concentrations of 2'FL have been
291 evaluated previously. A preclinical study in rats showed that oral administration of 2'FL up to 5000
292 mg per kilogram of body weight per day for over 90 days was not associated with any adverse
293 effects based on clinical observations and histopathology, body weight gain and food consumption
294 (32). A randomized, double-blind, placebo-controlled, oral supplementation study of 2'FL in 100
295 healthy adults showed that up to 20 g/day for about 12 days was safe and well tolerated (33).
Microbiome composition analysis using 16S rRNA sequencing showed that HMO

296 supplementation resulted in changes in the gut microbiota with increases in relative abundance
297 of Actinobacteria and *Bifidobacterium*, and a reduction in relative abundance of Firmicutes and
298 Proteobacteria. Chemical, chemo-enzymatic and enzymatic strategies to produce 2'FL have been
299 described and include strategies for kilogram scale synthesis (34). Multiple 2'FL manufacturers,
300 including the one for the 2'FL used in this study, have received “no questions” letters from the US
301 Food and Drug Administration (FDA) regarding the generally recognized as safe (GRAS) notices
302 for use of their HMO (35). Also, the European Food Safety Authority (EFSA) has published
303 positive assessment opinions for use of 2'FL in food supplements. Infant formula supplemented
304 with 2'FL is well-tolerated in healthy-term infants and supports age-appropriate growth (36-38).
305 Additional health benefits of 2'FL have been described in various studies. Unbiased metabolomic
306 analyses and short chain fatty acid production was evaluated in bioreactors seeded with fecal
307 samples from 6 adults and 6 children (6 year old) that were supplemented with 0.5 – 1 g per day
308 equivalent of 2'FL; these studies demonstrated significant increases in acetate and propionate
309 production as well as aromatic lactic acids are linked to immune function (39). 2'FL was also
310 associated with significant reduction in FITC-Dextran permeability in Caco2 cells and upregulation
311 of tight junction proteins like Claudin-5 in colon-on-chip models under microfluidic conditions (40).
312 Taken together, these data provide a promising outlook to regulatory pathways for clinical testing
313 of 2'FL as an inhibitor for HuNoVs.

314

315 A critical observation in our study was that the inhibition of HuNoV replication varied by donor,
316 intestinal segment, and age. The relative contribution of each of these factors remains to be
317 elucidated. However, the availability of HIEs from all segments of the small intestine from a single
318 donor allowed us to confirm that 2'FL can inhibit GII.4 Sydney [P16] replication across multiple
319 segments. While the level of inhibition varied, with complete inhibition in duodenal HIEs to
320 approximately 50% inhibition in ileal HIEs, it is to be noted that the magnitude of replication also
321 varied, with the highest replication seen in ileal HIEs despite using 100 TCID₅₀ of virus in all lines.

322 The complete lack of inhibition in infant jejunal HIEs is particularly striking. We previously
323 demonstrated significant transcriptional, morphological, and functional differences between the
324 adult and infant jejunal HIEs used in this study (41). Of relevance to HMOs, the expression of
325 lactase (β -galactosidase) was significantly higher in infant HIEs. However, previous studies have
326 postulated that despite significant lactase presence, the upper small intestine of piglets and
327 infants do not cleave HMOs (42). We evaluated differences in HBGA expression between infant
328 and adult jejunal HIEs. The significantly lower expression of α 1-2-fucosylated glycans on infant
329 jejunal HIEs in comparison to adult lines suggests the possibility of additional cellular attachment
330 factors on infant lines which allow viral infection and replication to occur despite the decoy activity
331 of 2'FL.

332
333 Future studies can be performed to address some limitations of this work. First, additional
334 mechanistic studies are required to determine if 2'FL only has decoy receptor activity or if host
335 responses contribute to the antiviral effects. Second, while some lines show complete inhibition
336 of GII.4 Sydney [P16] replication, the range of effects is large. Longer chain fucosylated HMOs
337 like lacto-N-fucopentaose (LNFP) I or combinations of 2'FL with the other HMOs such as 3-
338 fucosyllactose (3FL) can be tested as additional approaches to determine if consistent reduction
339 in replication can be achieved across donors and segments. A recent structural study with
340 nanobodies also demonstrated increased potency when used in combination with 2'FL (43). Such
341 combination strategies could also be evaluated in future studies for effects on virus replication.
342 Third, to evaluate the broad applicability of 2'FL or modified glycoconjugates, the effect on
343 replication of additional HuNoV strains and in additional HIE lines in each age category/segment
344 needs to be evaluated. Finally, assessment of 2'FL effects in HIEs from infants, toddlers and older
345 children will allow us to determine whether there are developmentally regulated differences
346 between receptor/co-receptor expression for HuNoVs.

347

348 We recently standardized a pipeline for evaluation of antivirals against HuNoVs using HIEs (23).
349 We previously applied this pipeline to evaluate nitazoxanide, an anti-parasitic drug that is
350 anecdotally used for the treatment of chronic HuNoV infections in immunocompromised patients.
351 The present study demonstrates the utility of this pipeline to preclinically evaluate compounds
352 based on known biology of HuNoVs. The study establishes the potential for 2'FL to be developed
353 as a therapeutic for adults based on inhibition of virus replication. This is significant because
354 previous studies have focused primarily on structural interactions and carbohydrate ligand
355 blocking and did not demonstrate functional activity. Despite the high burden of disease, there are
356 currently no approved antivirals or therapeutics for treating HuNoV infections, and a 2'FL-based
357 therapeutic could have prophylactic applications in settings of high risk for outbreaks such as
358 cruise ships or in treatment for acute or chronic infections.

359

360 **MATERIALS AND METHODS**

361 **VLPS, VIRUS, AND 2'FL**

362 GII.4 Sydney 2012 VLPs were used for the initial screening assay to evaluate whether 2'FL blocks
363 the binding to PGM. VLPs were produced in a baculovirus system using open reading frame 2
364 (ORF2) + ORF3+ untranslated region (UTR) sequences (44). A GII.4 Sydney [P16] strain (isolate
365 BCM 16-16, stock titer 4.26×10^6 GE/ml) was used for all infectivity experiments. 2'fucosyllactose,
366 produced in bioengineered microbes, was generously provided in-kind by Jennewein GmbH,
367 Germany, which was later acquired by Chr Hansen, Denmark, now part of Novonesis.

368

369 **HUMAN INTESTINAL ENTEROIDS**

370 HIE lines from different intestinal segments and donors of different ages were used in this study.
371 These include two adult duodenal lines (D109, D2004), three adult jejunal lines (J2, J11, J2004)
372 and one adult ileal line (I2004). Of the adult lines, D2004, J2004 and I2004 were obtained from a
373 single donor (45). In addition to HIE lines from adults, two pediatric duodenal lines (4D, 8D) and

374 two infant jejunal (J1005, J1006) were included in this study. The ages of the HIE donors are listed
375 in Table 1.

376

377 **HBGA BLOCKING ASSAYS**

378 A 96-well polystyrene flat-bottom plate (Greiner Bio-One, 655001) was coated with 3 ug/ml PGM
379 diluted in 0.01 M phosphate buffer saline (PBS) overnight at 4°C on a rocking platform. Following
380 incubation, 1% non-fat dry milk (NFDM) in 100 mM sodium phosphate buffer (PB), pH 6.1 was
381 added to the PGM-coated plate and incubated for 2 hours at room temperature protected from
382 light. Meanwhile, two-fold dilutions of 2'FL ranging from 1.25 mg/ml to 20 mg/ml were incubated
383 with 2.5 ug/ml GII.4 Sydney 2012 VLPs in a tissue-culture treated round bottom plate (Corning,
384 3799) at 4°C on a rocking platform for an hour. As the positive control, 2.5 ug/ml of GII.4 Sydney
385 2012 VLPs were diluted with PB buffer. Following incubation, the PGM coated plate was washed
386 5 times with cold PB buffer. The 2'FL-VLP solutions were transferred to the PGM coated plate
387 and incubated at 4°C for 2 hours protected from light. Following incubation, the plate was washed
388 5 times with cold PB buffer. An in-house guinea pig anti-GII.4 Sydney primary antibody (1:3000)
389 was added to the wells. The plate was incubated at 4°C for 1 hour protected from light. The plate
390 was washed 5 times with cold PB buffer, and goat anti-guinea pig secondary antibody conjugated
391 with HRP (1:5000, Sigma, A7289) was added to the wells. The plate was incubated at 4°C for 1
392 hour protected from light. After washing, TMB (3,3',5,5'-Tetramethylbenzidine) substrate (KPL,
393 5120-0047), was added to all the wells for 10 minutes protected from light. 1M phosphoric acid
394 was used as the stop solution and the absorbance was measured at 450nM using a microplate
395 reader (Spectramax). The VLP binding assays were performed three times, with three technical
396 replicate wells for each condition in an experiment.

397

398

399

400 **HUMAN NOROVIRUS INFECTIVITY**

401 Three-dimensional (3D) HIE cultures were obtained from the Gastrointestinal Experimental Model
402 Systems Core (GEMS) of the Texas Medical Center Digestive Diseases Center (TMC DDC) and
403 plated as monolayers on 96-well plates as described previously using commercially available
404 Intesticul™ Organoid Growth Medium (OGM) proliferation and differentiation media (46, 47). The
405 GE/TCID₅₀ was determined for each HIE line as described previously so that a standard dose of
406 virus could be used across different HIE lines (23). 2'FL was diluted in OGM differentiation media
407 with 500 µM sodium glycochenodeoxycholate (GCDCA; Sigma, G0759) and was added to 5-day
408 differentiated HIE monolayers on a 96-well plate (Corning, 3595) with 100 TCID₅₀ of virus. 100
409 TCID₅₀ virus in the absence of 2'FL was used to determine baseline infectivity in the absence of
410 treatment. Following incubation at 37°C for 1 hour, the HIE monolayers were washed 3 times with
411 complete media without growth factors (CMGF-) and OGM differentiation media with 500 µM
412 GCDCA was added to all the wells. The samples were incubated for a further 23 hours at 37°C.
413 Total RNA was extracted using a KingFisher Flex machine (ThermoFisher) and MagMax-96 viral
414 RNA isolated kit (Applied Biosystems) as described previously (47). RT-qPCR (Applied
415 Biosystems) was carried out for the extracted RNA samples and viral replication was quantitated
416 relative to a standard curve. GE/ul measured at 1 hpi and 24 hpi were used to estimate input virus
417 and replication, respectively. The TCID₅₀ assays were carried out twice for each line. Each
418 infectivity experiment was performed twice with two technical replicate wells for each condition
419 within an experiment. RT-qPCR assays were carried out using three technical replicates for each
420 HIE well.

421

422 **CYTOTOXICITY ASSESSMENT**

423 Cytotoxicity assays were carried out in tandem with the viral infectivity assays using the
424 CytoTox 96® Non-Radioactive Cytotoxicity Assay (Promega, G1780). The assay was carried out
425 according to the manufacturer's instructions with some modifications wherein supernatants were

426 diluted in media to achieve optical density (OD) values in the linear range of the assay (48). OD
427 values were taken using a microplate reader at 490nM (Spectramax) and percent cytotoxicity was
428 calculated for each sample.

429

430 **UEA-1 STAINING**

431 5-day differentiated HIE monolayers plated on tissue culture treated slides (Ibidi, 80826) were
432 fixed with 4% paraformaldehyde (Electron Microscopy Sciences, 15710-S) for 25 minutes at room
433 temperature. The cells were incubated overnight at 4°C with Rhodamine-conjugated UEA-1
434 (Vector Laboratories, RL-1062-2) diluted 1:200 in 5% bovine serum albumin (BSA) in 0.01 M PBS
435 + 0.1% triton (24). The cells were washed with 0.01 M PBS + 0.1% triton 3 times (10-minute
436 incubations) and nuclei were stained with NucBlue Fixed Cell Stain ReadyProbes reagent
437 (Invitrogen, R37606) diluted in 0.01 M PBS for 5 minutes. Orthogonal sections of the cells were
438 imaged using a ZEISS confocal microscope (Laser Scanning Microscope LSM 980) using ZEISS
439 ZEN 3.5 (blue edition) software. The images were further processed and analyzed using
440 ImageJ2/FIJI. For quantifying fluorescence intensity, two to four fields per well were analyzed.
441 Mean fluorescence data from 5 identical regions of interest (ROIs) per field were collected. The
442 experiments were performed twice with two technical replicate wells in each experiment for each
443 HIE line.

444

445 **STATISTICAL ANALYSIS**

446 GraphPad Prism 9.5.1 was used for all statistical analyses. For the PGM-VLP assays, Student's
447 T-test was used to compare the 2'FL concentrations to the control. For the infectivity assays,
448 comparison between 1 hpi and 24 hpi groups in the presence and absence of 2'FL was performed
449 using a two-way ANOVA and Sidak's post-hoc multiple comparisons analyses. For comparing
450 fluorescent intensities of UEA-1 staining in the immunofluorescence assays between the different

451 lines, a one-way ANOVA was performed using Holm-Sidak's multiple comparisons test for post-
452 hoc analyses. Error bars denote standard deviation (SD) for all graphs.

453

454 **ACKNOWLEDGMENTS**

455 We thank Dr. Mark Donowitz (Johns Hopkins University Medical School) for providing the two
456 pediatric duodenal HIE lines. We thank Xei-Li Zeng, Yi-Ting Shen, and Aaya Boussattach from
457 the Texas Medical Center Digestive Diseases Center (TMC DDC) Gastrointestinal Experimental
458 Model Systems (GEMS) core (supported by the NIH P30 DK056338 grant) for assistance with
459 the maintenance and plating of human intestinal enteroids. This work was supported by a
460 Pilot/Feasibility grant from TMC DDC (SR) and by the Public Health Service grant P01 AI
461 057788 (M.K.E and R.L.A.). The purchase of the Zeiss Laser Scanning Microscope LSM 980
462 with Airyscan 2 used for microscopy studies was supported by the S10 OD028480 grant.

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477 **REFERENCES**

478 1. Ahmed SM, Hall AJ, Robinson AE, Verhoef L, Premkumar P, Parashar UD, Koopmans
479 M, Lopman BA. 2014. Global prevalence of norovirus in cases of gastroenteritis: a
480 systematic review and meta-analysis. *Lancet Infect Dis* 14:725-730.

481 2. Pires SM, Fischer-Walker CL, Lanata CF, Devleesschauwer B, Hall AJ, Kirk MD, Duarte
482 AS, Black RE, Angulo FJ. 2015. Aetiology-Specific Estimates of the Global and Regional
483 Incidence and Mortality of Diarrhoeal Diseases Commonly Transmitted through Food.
484 *PLoS One* 10:e0142927.

485 3. Lopman BA, Steele D, Kirkwood CD, Parashar UD. 2016. The Vast and Varied Global
486 Burden of Norovirus: Prospects for Prevention and Control. *PLoS Med* 13:e1001999.

487 4. Gaythorpe KAM, Trotter CL, Lopman B, Steele M, Conlan AJK. 2018. Norovirus
488 transmission dynamics: a modelling review. *Epidemiol Infect* 146:147-158.

489 5. Bartsch SM, Lopman BA, Ozawa S, Hall AJ, Lee BY. 2016. Global Economic Burden of
490 Norovirus Gastroenteritis. *PLoS One* 11:e0151219.

491 6. Atmar RL, Ramani S, Estes MK. 2018. Human noroviruses: recent advances in a 50-
492 year history. *Curr Opin Infect Dis* 31:422-432.

493 7. Huang P, Farkas T, Zhong W, Tan M, Thornton S, Morrow AL, Jiang X. 2005. Norovirus
494 and histo-blood group antigens: demonstration of a wide spectrum of strain specificities
495 and classification of two major binding groups among multiple binding patterns. *J Virol*
496 79:6714-22.

497 8. Taube S, Mallagaray A, Peters T. 2018. Norovirus, glycans and attachment. *Curr Opin*
498 *Virol* 31:33-42.

499 9. Cheng YJ, Yeung CY. 2021. Recent advance in infant nutrition: Human milk
500 oligosaccharides. *Pediatr Neonatol* 62:347-353.

501 10. Berger PK, Ong ML, Bode L, Belfort MB. 2023. Human Milk Oligosaccharides and Infant
502 Neurodevelopment: A Narrative Review. *Nutrients* 15.

503 11. Plows JF, Berger PK, Jones RB, Alderete TL, Yonemitsu C, Najera JA, Khwajazada S,
504 Bode L, Goran MI. 2021. Longitudinal Changes in Human Milk Oligosaccharides (HMOs)
505 Over the Course of 24 Months of Lactation. *J Nutr* 151:876-882.

506 12. Bode L. 2012. Human milk oligosaccharides: every baby needs a sugar mama.
507 *Glycobiology* 22:1147-62.

508 13. Yu ZT, Nanthakumar NN, Newburg DS. 2016. The Human Milk Oligosaccharide 2'-
509 Fucosyllactose Quenches *Campylobacter jejuni*-Induced Inflammation in Human
510 Epithelial Cells HEp-2 and HT-29 and in Mouse Intestinal Mucosa. *J Nutr* 146:1980-
511 1990.

512 14. Wiese M, Schuren FHJ, Smits WK, Kuijper EJ, Ouwens A, Heerikhuisen M, Vigsnaes L,
513 van den Broek TJ, de Boer P, Montijn RC, van der Vossen J. 2022. 2'-Fucosyllactose
514 inhibits proliferation of *Clostridioides difficile* ATCC 43599 in the CDi-screen, an in vitro
515 model simulating *Clostridioides difficile* infection. *Front Cell Infect Microbiol* 12:991150.

516 15. Wang Y, Zou Y, Wang J, Ma H, Zhang B, Wang S. 2020. The Protective Effects of 2'-
517 Fucosyllactose against *E. Coli* O157 Infection Are Mediated by the Regulation of Gut
518 Microbiota and the Inhibition of Pathogen Adhesion. *Nutrients* 12.

519 16. Laucirica DR, Triantis V, Schoemaker R, Estes MK, Ramani S. 2017. Milk
520 Oligosaccharides Inhibit Human Rotavirus Infectivity in MA104 Cells. *J Nutr* 147:1709-
521 1714.

522 17. Lou F, Hu R, Chen Y, Li M, An X, Song L, Tong Y, Fan H. 2022. 2'-Fucosyllactose Inhibits
523 Coxsackievirus Class A Type 9 Infection by Blocking Virus Attachment and
524 Internalisation. *Int J Mol Sci* 23.

525 18. Yu W, Li Y, Liu D, Wang Y, Li J, Du Y, Gao GF, Li Z, Xu Y, Wei J. 2023. Evaluation and
526 Mechanistic Investigation of Human Milk Oligosaccharide against SARS-CoV-2. *J Agric
527 Food Chem* 71:16102-16113.

528 19. Weichert S, Koromyslova A, Singh BK, Hansman S, Jennewein S, Schroten H,
529 Hansman GS. 2016. Structural Basis for Norovirus Inhibition by Human Milk
530 Oligosaccharides. *J Virol* 90:4843-4848.

531 20. Schroten H, Hanisch FG, Hansman GS. 2016. Human Norovirus Interactions with Histo-
532 Blood Group Antigens and Human Milk Oligosaccharides. *J Virol* 90:5855-5859.

533 21. Koromyslova A, Tripathi S, Morozov V, Schroten H, Hansman GS. 2017. Human
534 norovirus inhibition by a human milk oligosaccharide. *Virology* 508:81-89.

535 22. Tan MTH, Li Y, Eshaghi Gorji M, Gong Z, Li D. 2021. Fucoidan But Not 2'-Fucosyllactose
536 Inhibits Human Norovirus Replication in Zebrafish Larvae. *Viruses* 13.

537 23. Lewis MA, Cortes-Penfield NW, Ettayebi K, Patil K, Kaur G, Neill FH, Atmar RL, Ramani
538 S, Estes MK. 2023. Standardization of an antiviral pipeline for human norovirus in
539 human intestinal enteroids demonstrates nitazoxanide has no to weak antiviral activity.
540 *Antimicrob Agents Chemother* 67:e0063623.

541 24. Haga K, Ettayebi K, Tenge VR, Karandikar UC, Lewis MA, Lin SC, Neill FH, Ayyar BV,
542 Zeng XL, Larson G, Ramani S, Atmar RL, Estes MK. 2020. Genetic Manipulation of
543 Human Intestinal Enteroids Demonstrates the Necessity of a Functional
544 Fucosyltransferase 2 Gene for Secretor-Dependent Human Norovirus Infection. *mBio*
545 11.

546 25. Moore RE, Xu LL, Townsend SD. 2021. Prospecting Human Milk Oligosaccharides as a
547 Defense Against Viral Infections. *ACS Infect Dis* 7:254-263.

548 26. Triantis V, Bode L, van Neerven RJJ. 2018. Immunological Effects of Human Milk
549 Oligosaccharides. *Front Pediatr* 6:190.

550 27. Ruvoen-Clouet N, Mas E, Marionneau S, Guillou P, Lombardo D, Le Pendu J. 2006.
551 Bile-salt-stimulated lipase and mucins from milk of 'secretor' mothers inhibit the binding
552 of Norwalk virus capsids to their carbohydrate ligands. *Biochem J* 393:627-34.

553 28. Jiang X, Huang P, Zhong W, Tan M, Farkas T, Morrow AL, Newburg DS, Ruiz-Palacios
554 GM, Pickering LK. 2004. Human milk contains elements that block binding of
555 noroviruses to human histo-blood group antigens in saliva. *J Infect Dis* 190:1850-9.

556 29. Marionneau S, Ruvoen N, Le Moullac-Vaidye B, Clement M, Cailleau-Thomas A, Ruiz-
557 Palacos G, Huang P, Jiang X, Le Pendu J. 2002. Norwalk virus binds to histo-blood
558 group antigens present on gastroduodenal epithelial cells of secretor individuals.
559 *Gastroenterology* 122:1967-77.

560 30. Huang P, Morrow AL, Jiang X. 2009. The carbohydrate moiety and high molecular weight
561 carrier of histo-blood group antigens are both required for norovirus-receptor recognition.
562 *Glycoconj J* 26:1085-96.

563 31. Shang J, Piskarev VE, Xia M, Huang P, Jiang X, Likhoshsterstov LM, Novikova OS,
564 Newburg DS, Ratner DM. 2013. Identifying human milk glycans that inhibit norovirus
565 binding using surface plasmon resonance. *Glycobiology* 23:1491-8.

566 32. Coulet M, Phothirath P, Allais L, Schilter B. 2014. Pre-clinical safety evaluation of the
567 synthetic human milk, nature-identical, oligosaccharide 2'-O-Fucosyllactose (2'FL).
568 *Regul Toxicol Pharmacol* 68:59-69.

569 33. Elison E, Vigsnaes LK, Rindom Krosgaard L, Rasmussen J, Sorensen N, McConnell B,
570 Hennet T, Sommer MO, Bytzer P. 2016. Oral supplementation of healthy adults with 2'-
571 O-fucosyllactose and lacto-N-neotetraose is well tolerated and shifts the intestinal
572 microbiota. *Br J Nutr* 116:1356-1368.

573 34. Agoston K, Hederos MJ, Bajza I, Dekany G. 2019. Kilogram scale chemical synthesis of
574 2'-fucosyllactose. *Carbohydr Res* 476:71-77.

575 35. Zhu Y, Wan L, Li W, Ni D, Zhang W, Yan X, Mu W. 2022. Recent advances on 2'-
576 fucosyllactose: physiological properties, applications, and production approaches. *Crit
577 Rev Food Sci Nutr* 62:2083-2092.

578 36. Marriage BJ, Buck RH, Goehring KC, Oliver JS, Williams JA. 2015. Infants Fed a Lower
579 Calorie Formula With 2'FL Show Growth and 2'FL Uptake Like Breast-Fed Infants. *J
580 Pediatr Gastroenterol Nutr* 61:649-58.

581 37. Lasekan J, Choe Y, Dvoretskiy S, Devitt A, Zhang S, Mackey A, Wulf K, Buck R, Steele
582 C, Johnson M, Baggs G. 2022. Growth and Gastrointestinal Tolerance in Healthy Term
583 Infants Fed Milk-Based Infant Formula Supplemented with Five Human Milk
584 Oligosaccharides (HMOs): A Randomized Multicenter Trial. *Nutrients* 14.

585 38. Puccio G, Alliet P, Cajozzo C, Janssens E, Corsello G, Sprenger N, Wernimont S, Egli D,
586 Gosoniu L, Steenhout P. 2017. Effects of Infant Formula With Human Milk
587 Oligosaccharides on Growth and Morbidity: A Randomized Multicenter Trial. *J Pediatr
588 Gastroenterol Nutr* 64:624-631.

589 39. Bajic D, Wiens F, Wintergerst E, Deyaert S, Baudot A, Van den Abbeele P. 2023. HMOs
590 Exert Marked Bifidogenic Effects on Children's Gut Microbiota Ex Vivo, Due to Age-
591 Related Bifidobacterium Species Composition. *Nutrients* 15.

592 40. Suligoj T, Vigsnaes LK, Abbeele PVD, Apostolou A, Karalis K, Savva GM, McConnell B,
593 Juge N. 2020. Effects of Human Milk Oligosaccharides on the Adult Gut Microbiota and
594 Barrier Function. *Nutrients* 12.

595 41. Adeniyi-Ipadeola GO, Hankins JD, Kambal A, Zeng XL, Patil K, Poplaski V, Bomidi C,
596 Nguyen-Phuc H, Grimm SL, Coarfa C, Stossi F, Crawford SE, Blutt SE, Speer AL, Estes
597 MK, Ramani S. 2024. Infant and Adult Human Intestinal Enteroids are Morphologically
598 and Functionally Distinct. *In press*.

599 42. Engfer MB, Stahl B, Finke B, Sawatzki G, Daniel H. 2000. Human milk oligosaccharides
600 are resistant to enzymatic hydrolysis in the upper gastrointestinal tract. *Am J Clin Nutr*
601 71:1589-96.

602 43. Ruoff K, Kilic T, Devant J, Koromyslova A, Ringel A, Hempelmann A, Geiss C, Graf J,
603 Haas M, Roggenbach I, Hansman G. 2019. Structural Basis of Nanobodies Targeting the
604 Prototype Norovirus. *J Virol* 93.

605 44. Ayyar BV, Ettayebi K, Salmen W, Karandikar UC, Neill FH, Tenge VR, Crawford SE,
606 Bieberich E, Prasad BVV, Atmar RL, Estes MK. 2023. CLIC and membrane wound repair
607 pathways enable pandemic norovirus entry and infection. *Nat Commun* 14:1148.

608 45. Ettayebi K, Kaur G, Patil K, Dave J, Ayyar BV, Tenge VR, Neill FH, Zeng XL, Speer AL,
609 Dirienzi S, Britton RA, Blutt SE, Crawford SE, Ramani S, Atmar RL, Estes MK.
610 Advancements in Human Norovirus Cultivation in Human Intestinal Enteroids. *bioRxiv*
611 2024.05.24.595764.

612 46. Tenge V, Vijayalakshmi Ayyar B, Ettayebi K, Crawford SE, Shen YT, Neill FH, Atmar RL,
613 Estes MK. 2024. Bile acid-sensitive human norovirus strains are susceptible to
614 sphingosine-1-phosphate receptor 2 inhibition. *In press*.

615 47. Ettayebi K, Tenge VR, Cortes-Penfield NW, Crawford SE, Neill FH, Zeng XL, Yu X, Ayyar
616 BV, Burrin D, Ramani S, Atmar RL, Estes MK. 2021. New Insights and Enhanced Human
617 Norovirus Cultivation in Human Intestinal Enteroids. *mSphere* 6.

618 48. Lewis MA PK, Ettayebi K, Estes MK, Atmar RL, Ramani S. Divergent responses of
619 human intestinal organoid monolayers using commercial in vitro cytotoxicity assays. *In
620 press*.

621