

1 **Loss of SPNS1, a lysosomal transporter, in the nervous system causes**
2 **dysmyelination and white matter dysplasia**

3

4 **Yoshinobu Ichimura^{1,2}#, Yuki Sugiura^{2,3}#, Yoshinori Katsuragi^{3,4}#, Yu-Shin Sou⁴, Takefumi**

5 **Uemura⁵, Naoki Tamura⁵, Satoko Komatsu-Hirota¹, Takashi Ueno⁵, Masato Koike⁴,**

6 **Satoshi Waguri⁵, Masaaki Komatsu^{1,6,*}**

7

8 ¹Department of Physiology, ⁴Department of Cell Biology and Neuroscience, ⁵Laboratory of

9 Proteomics and Biomolecular Science, Biomedical Research Core Facilities, ⁶Autophagy

10 Research Center, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan

11 ²Center for Cancer Immunotherapy and Immunobiology, Kyoto University, Kyoto, Japan

12 ³Department of Nursing, Niigata College of Nursing, Joetsu, Japan

13 ⁵Department of Anatomy and Histology, Fukushima Medical University School of Medicine,

14 Fukushima, Japan

15

16 [#]These authors contributed equally to this study.

17 *Correspondence should be addressed to Masaaki Komatsu (e-mail:

18 mkomatsu@juntendo.ac.jp).

19

20 Running title: Physiological significance of lysosomal transporter, SPNS1

21

22 **Abstract**

23 **Protein spinster homolog 1 (SPNS1) is a lysosomal transporter of lysophospholipids and**
24 **sphingosine, which has recently been identified to be mutated in patients with**
25 **neurodegeneration. However, its physiological role, especially in the nervous system,**
26 **remains largely unknown. In this study, we generated, for the first time, nervous**
27 **system-specific *Spns1* knockout mice, *Spns1*^{fl/fl};nestin-Cre, and found that the mutant**
28 **mice develop neurological symptoms, such as epilepsy, and growth retardation, and die by**
29 **5 weeks of age. The mutant mice exhibited dysmyelination and oligodendrocyte shedding,**
30 **while maintaining the neurons. Mutant mouse brains showed accumulation of**
31 **lysophospholipids, predominantly in regions, such as the olfactory bulb and hippocampus.**
32 **Furthermore, whereas sphingosine accumulated in the mutant mouse brain, the levels of**
33 **ceramide and sphingoglycolipids, which are the main myelin components, were decreased.**
34 **Our findings imply that abnormal sphingosine metabolism causes dysmyelination and**
35 **white matter dysplasia in brain-specific *Spns1*-knockout mice, and indicate a possible role**
36 **of SPNS1 mutation in the pathogenesis of congenital cerebral white matter dysplasia in**
37 **humans.**

38

39 **Keywords:** SPNS1; lysosome; lysosomal transporter; lysoglycerophospholipid; sphingosine

40

41

42 **Introduction**

43 Lysosomes, which are acidic organelles responsible for the degradation and recycling of various
44 macromolecules taken up through endocytosis, phagocytosis, or autophagy, play a crucial role
45 in cellular metabolism (Ballabio & Bonifacino, 2020; Perera & Zoncu, 2016). Proteins,
46 polysaccharides, lipids, and nucleic acids are the substrates targeted for recycling in lysosomes.
47 Lysosomes contain approximately 60 hydrolytic enzymes, including proteases, lipases, and
48 nucleases (Bonam, Wang, & Muller, 2019). These hydrolytic enzymes are activated at an acidic
49 pH of approximately 4.5, which is maintained via the activity of vacuolar H⁺-ATPase
50 (v-ATPase), an ATP-driven proton pump located in the lysosomal membrane (Vasanthakumar
51 & Rubinstein, 2020). Catabolites generated by lysosomal degradation are released into the
52 cytosol through lysosomal transporters. These catabolites are subsequently used as new
53 substrates in anabolic processes (Rudnik & Damme, 2021). Although several transporters for
54 the export of amino acids, nucleosides, sugars, ions, and other moieties have been identified
55 (Boswell-Casteel & Hays, 2017; Hu, Zhou, Cai, & Xu, 2022; Mayer et al., 2016; Meng,
56 Heybrock, Nucleai, & Saftig, 2020; van Veen et al., 2020; Wyant et al., 2017), lysosomal lipid
57 transport remains poorly understood.

58 Sphingomyelin, ceramide, glycosphingolipids, and glycerophospholipids are recycled
59 within lysosomes through the endocytosis pathway (Ogretmen, 2018). In this process,
60 sphingolipids are enzymatically hydrolyzed into sphingosine, and glycerophospholipids, such as
61 phosphatidylcholine (PC) and phosphatidylethanolamine (PE), are converted into
62 lysophosphatidylcholine (LPC), lysophosphatidylethanolamine (LPE), and fatty acids (Thelen
63 & Zoncu, 2017) . Subsequently, sphingosine and lysoglycerophospholipids are released from
64 the lysosomes. Several recent reports have revealed that protein spinster homolog 1 (SPNS1)
65 transports LPCs from lysosomes in a proton gradient-dependent manner and re-esterifies them
66 into PC in the cytosol, indicating that the phospholipid salvage pathway from the lysosomes to
67 the cytosol is dependent on SPNS1 (Ha et al., 2024; He et al., 2022; Scharenberg et al., 2023) .

68 Physiologically, efflux of LPC by SPNS1 is required for cell survival under choline-limited
69 conditions (Scharenberg et al., 2023). SPNS1 is also required for the release of sphingosine
70 from lysosomes (Ha et al., 2024). Deletion of *Spns1* in the mouse liver results in lysosomal
71 dysfunction accompanied by the accumulation of LPC and LPE in the lysosomes (He et al.,
72 2022). *Spns1* systemic knockout mice become embryonically lethal between E12.5 and E13.5,
73 and mice lacking *Spns1* postnatally show lipid accumulation in the lysosomes (Ha et al., 2024).
74 Thus, there is growing evidence for the importance of SPNS1 in lysosomal homeostasis and for
75 the association of SPNS1 abnormalities with lysosomal storage diseases (LSDs). Most LSDs
76 follow a progressive neurodegenerative clinical course although symptoms in other organ
77 systems are frequently encountered. However, the role of SPNS1 in central nervous system
78 remains unclear.

79 In this study, we explored the role of SPNS1 in the central nervous system. We
80 generated nervous system-specific *Spns1* knockout mice, *Spns1*^{fl/fl};nestin-*Cre* and found that
81 these mice exhibited white matter dysplasia in the brain due to the loss of oligodendrocytes
82 during the lactation period, resulting in death within 5 weeks of birth and severe growth
83 retardation and epilepsy. Although the levels of LPC, LPE, lysophosphatidylinositol (LPI), and
84 lysophosphatidylglycerol (LPG) were higher in mutant brains, those of galactosylceramide and
85 sulfatide decreased compared with the levels in age-matched control brains, and fluctuations in
86 their levels differed according to the acyl groups and brain regions. Swollen and dysfunctional
87 lysosomes accumulated in SPNS1-deficient cells and tissues. Our data indicate that SPNS1 is
88 indispensable for the metabolic pathway of specific lysophospholipids, whose loss makes
89 oligodendrocytes vulnerable, and that SPNS1 is required for lysosomal function and integrity.

90

91 **Results**

92 **Deletion of *SPNS1* results in loss of lysosomal integrity**

93 To assess lysosomal integrity in the absence of *SPNS1*, we generated *SPNS1*-knockout HeLa
94 cells (Fig. S1A). Immunofluorescence analysis using an antibody against LAMP-1, a
95 lysosomal-associated membrane protein, showed that the number and size of lysosomes
96 increased following the loss of *SPNS1* (Fig. 1A). Electron microscopy (EM) also showed the
97 accumulation of enlarged lysosomes containing electron-dense structures in *SPNS1*^{-/-} HeLa cells
98 (Fig. 1B). The number of lysosomes was reduced following *SPNS1*-FLAG expression (Fig. 1A
99 and B). Galectin-3, a beta-galactoside-binding lectin, which is a marker for lysosomal
100 membrane rupture, was not detected in the lysosomes of either wild-type or *SPNS1*^{-/-} HeLa cells
101 under normal culture conditions (Fig. S1B). These results indicated that the loss of *SPNS1* is
102 accompanied by persistent lysosomal dysfunction without membrane damage.

103 To investigate the role of *Spns1* in maintaining lysosomal integrity *in vivo*, we
104 generated hepatocyte specific *Spns1*-knockout mice, *Spns1*^{fl/fl};albumin-*Cre*. Consistent with
105 previous reports (Ha et al., 2024; He et al., 2022), the mutant mice exhibited mild liver injury,
106 including slight but significant liver enlargement (Fig. S2A), and leakage of hepatic enzymes,
107 which was observed continuously from 3 to 18 months of age. (Fig. S2B). Hematoxylin and
108 eosin staining revealed slightly enlarged hepatocytes with mildly pale cytoplasm in the liver of
109 3-months-old *Spns1*-knockout mice. However, no significant abnormalities were observed in
110 the tissue architecture (Fig. S2C). Immunostaining with the LAMP-1 antibody showed the
111 accumulation of LAMP1-positive lysosomes in *Spns1*-knockout hepatocytes (Fig. 1C). Similar
112 to *SPNS1*-deficient HeLa cells, hepatocytes from mutant mice contained many lysosome-like
113 structures with undigested materials (Fig. 1D), suggesting impaired lysosomal digestion. The
114 level of mature cathepsin B in lysosomal fractions of the liver from *Spns1*-knockout mice was
115 much lower than that in the fractions from control mice liver (Fig. 1E), and the activities of both
116 cathepsin B+L and cathepsin B in the liver from mutant mice were lower than those in the

117 control (Fig. 1F). Taken together, these results indicate that SPNS1 is indispensable for
118 lysosomal integrity.

119

120 **Loss of *Spns1* in the nervous system causes growth retardation and death in infancy**

121 By crossbreeding *Spns1*^{fl/fl} mice with transgenic mice expressing Cre recombinase under the
122 control of nestin promoter (nestin-*Cre*), we generated nervous system-specific *Spns1*-deficient
123 mice, *Spns1*^{fl/fl};nestin-*Cre*. Nestin promoter-driven Cre recombinase is expressed in the
124 central and peripheral nervous systems, as well as in the precursors of neurons and glial cells.
125 The *Spns1* levels in the brain of *Spns1*^{fl/fl};nestin-*Cre* mice at postnatal day 12 (P12) were
126 lower than that in age-matched brain of control mice (Fig. 2A). Mutant mice were born at
127 Mendelian frequency and grew normally until 2 weeks of age; however, they showed obvious
128 growth retardation (Fig. 2B) and often had epileptic seizures (Supplementary Movie).
129 *Spns1*^{fl/fl};nestin-*Cre* mice showed decreased survival at 3 weeks of age, and all the mutant
130 mice died by 5 weeks of age (Fig. 2C).

131

132 **Loss of *Spns1* in the nervous system causes dysmyelination due to the loss of
133 oligodendrocytes**

134 Next, we investigated the morphology of the brain in *Spns1*^{fl/fl};nestin-*Cre* mice.
135 *Spns1*-deficient brain appeared smaller than control brain (Fig. 3A). Moreover, in the
136 midsagittal section of brain from *Spns1*^{fl/fl};nestin-*Cre* mice, the white matter regions,
137 especially the corpus callosum (Fig. 3A, arrowheads) and cerebellar medulla (Fig. 3A, arrows),
138 were more transparent than those in the control brain (Fig. 3A). Hematoxylin and eosin (HE)
139 staining revealed thinning of the corpus callosum in *Spns1*^{fl/fl};nestin-*Cre* mice (Fig. 3B),
140 which suggested that the loss of *Spns1* causes dysmyelination. Therefore, we performed
141 immunofluorescence microscopy using an antibody against myelin basic protein (MBP), a
142 major component of the myelin sheath. As shown in Fig. 3C, MBP signal intensity in the corpus

143 callosum of *Spns1*^{fl/fl};nestin-*Cre* mice was almost completely lost. Consistent with this result,
144 immunoblot analysis using the MBP antibody revealed that the amount of MBP in the brain of
145 *Spns1*^{fl/fl};nestin-*Cre* mice was significantly lower than that in the control brain (Fig. 3D).
146 Electron microscopy also showed fewer myelinated fibers in the corpus callosum of
147 *Spns1*^{fl/fl};nestin-*Cre* mice compared with that in control mice (Fig. 3E). Given that
148 oligodendrocytes are responsible for the formation of myelin sheath, these results suggest that
149 *Spin1* is involved in the differentiation and/or maturation of oligodendrocytes. To determine
150 which developmental stages were affected, the number of oligodendrocytes was estimated
151 during the lactation period by immunostaining with an antibody against OLIG2, a marker for
152 immature and mature oligodendrocytes. At P0, the number of OLIG2-positive cells in the
153 corpus callosum of *Spns1*^{fl/fl};nestin-*Cre* mice was comparable to that in control mice (Fig.
154 3F), suggesting that *Spns1* is not involved in the differentiation of oligodendrocytes. However,
155 at P18, the number was significantly lower than that in control mice (Fig. 3F). Although the
156 decrease in the number of oligodendrocytes in *Spns1*-deficient mice was dramatic, we barely
157 observed any abnormal tissue architecture or neuronal cell death in the mutant brain (Fig. S3A
158 and B). We concluded that the loss of *Spns1* in the nervous system causes dysmyelination
159 during the lactation period, which results in growth retardation and death in infancy.

160

161 **Accumulation of diverse lysophospholipid molecular species in different regions of the**
162 **brain of *Spns1*-deficient mice**

163 Comprehensive lipidomic analysis was used to investigate the effect of *Spns1* deficiency on the
164 brain lipidome. An overview of the lipidome obtained using the hierarchical cluster analysis
165 (HCA) revealed a massive accumulation of lysophospholipids, including LPCs, LPEs, and LPIs,
166 in the brain of *Spns1*^{fl/fl};nestin-*Cre* mice (Fig. 4A). Volcano plot analysis also highlighted that
167 loss of *Spns1* in the mouse brain resulted in the accumulation of lysophospholipids (Fig. 4B).
168 We found that the levels of a wide variety of fatty acid-binding molecular species of several

169 Lysophospholipid molecular classes (LPCs, LPEs, and LPIs) were increased in the brain of
170 *Spns1*^{fl/fl};nestin-*Cre* mice (Fig. 4C). Focusing on the major molecular species in each class,
171 we observed that the accumulation was regardless of whether the fatty acids were saturated,
172 monounsaturated, or polyunsaturated (Fig. 4C). Furthermore, imaging of LPCs showed that
173 molecular species containing different fatty acids accumulated in different regions of the brain
174 (Fig. 4D). Although all molecular species accumulated in parts of the olfactory bulb,
175 arachidonoyl LPC, for example, showed significant accumulation in the cell layer of the
176 hippocampus (Fig. 4D, arrow).

177

178 **Accumulation of sphingosine and decrease in myelin glycolipid levels in the brain of**
179 ***Spns1*-deficient mice**

180 Besides lysophospholipids, accumulation of sphingosines and a corresponding decrease in the
181 levels of ceramides, sphingomyelins, and sulfatides, which are synthesized from sphingosine,
182 were observed in the brain of *Spns1*^{fl/fl};nestin-*Cre* mice (Fig. 5A). Because these
183 sphingolipids constitute the myelin sheath formed by oligodendrocytes, we assessed the
184 decrease in the levels of sphingolipids in the oligodendrocyte region (white matter) using
185 imaging mass spectrometry. In the brain of *Spns1*^{fl/fl};nestin-*Cre* mice, a dramatic depletion of
186 sphingolipids was noted in the white matter (Fig. 5B). Interestingly, sphingolipid depletion was
187 more pronounced in the cerebral white matter than in the midbrain or hindbrain.

188 In contrast, the hydrophilic brain metabolome showed abnormalities in the pathway
189 responsible for glycosylation in *Spns1*^{fl/fl};nestin-*Cre* mice. As illustrated in Fig. 5C, an
190 enrichment analysis overlooking the shift in the soluble metabolome showed that changes were
191 enriched in the amino sugar metabolism pathway, which adds glycans to sphingolipids. In
192 particular, the levels of sialic acid and sialic acid nucleotides in the brain of
193 *Spns1*^{fl/fl};nestin-*Cre* mice were significantly lower than those in *Spns1*^{fl/fl} mice (Fig. 5D).
194 We then examined the localization of gangliosides, sialic acid-containing sphingolipids, using

195 imaging mass spectrometry and observed a decrease in GM1 in the cerebrum, especially in the
196 hippocampus (arrowheads in Fig. 5E).

197

198 **Discussion**

199 *Spns1* is a lysophospholipid transporter. However, because systemic *Spns1*-knockout mice are
200 embryonically lethal (Ha et al., 2024), the role of *Spns1* in the nervous system, particularly in
201 the postnatal nervous system, is unknown. In this study, for the first time, we generated
202 *Spns1*^{fl/fl};nestin-Cre mice, knocked out for *Spns1* in the nervous system. These mice showed
203 neurological symptoms, such as epilepsy, and severe growth retardation and were dead within 5
204 weeks of birth (Figs. 2 and 3). Consistent with the results of lipidomic analysis of
205 *Spns1*-deficient cultured cells, systemic *Spns1*-knockout embryos, and liver-specific
206 *Spns1*-deficient mice (Ha et al., 2024; He et al., 2022; Scharenberg et al., 2023), our lipidomic
207 analysis of the brain of nervous system-specific *Spns1*-knockout mice revealed accumulation of
208 lysophospholipids, including LPCs, LPEs, and LPIs (Fig. 4). Using imaging MS, we found that
209 lysophospholipids did not accumulate throughout the brain, but were abundant in limited
210 regions, such as the olfactory bulb and hippocampus (Fig. 4). However, the effect of lysosomal
211 accumulation of lysophospholipids in neurons may be limited because no neuronal cell death
212 was detected in the regions of accumulation (Supplemental Fig. S3).

213 *Spns1* also serves as a lysosomal transporter of sphingosines (Ha et al., 2024). Indeed,
214 the brain of *Spns1*-knockout mice showed marked accumulation not only of lysophospholipids
215 but also of sphingosine (Fig. 5). Moreover, the level of ceramide produced from sphingosine
216 was decreased, as did the level of sphingoglycolipid synthesized from ceramide (Fig. 5).
217 Sphingolipids are major components of the myelin sheath, and imaging MS revealed that they
218 were prominent in the white matter of the corpus callosum and cerebellum in control mice,
219 whereas no sphingolipid signals were obtained in the brain of mutant mice (Fig. 5). Considering
220 that the mutant mice exhibited white matter dysplasia of the cerebrum and cerebellum (Fig. 3),

221 it is likely that oligodendrocyte shedding occurred because of decreased sphingoglycolipid
222 levels in these mice. Therefore, it is plausible that the defective transport of sphingosine, rather
223 than of lysophospholipids, from lysosomes to the cytoplasm, followed by impairment of
224 sphingoglycolipid biogenesis, is the primary cause underlying the dysmyelination phenotype of
225 *Spns1*^{fl/fl};nestin-*Cre* mice.

226 In addition to the abnormalities in sphingoglycolipid metabolism, oligodendrocyte
227 shedding, but not neuron shedding, was evident in *Spns1*^{fl/fl};nestin-*Cre* mice. Why does
228 oligodendrocyte-specific shedding occur? During infancy, when large amounts of myelin
229 proteins are synthesized, oligodendrocytes are subjected to ER stress (Clayton & Popko, 2016).
230 Consistent with previous reports (Ha et al., 2024; He et al., 2022; Scharenberg et al., 2023), our
231 analyses of *SPNS1*-deficient cultured cells and liver-specific *Spns1*-knockout mice showed
232 lysosomal dysfunction (Fig. 1). In mutant oligodendrocytes, lysosomal dysfunction is
233 superimposed on ER stress, which may be responsible for oligodendrocyte degeneration.

234 *Sialin*-deficient mice, which are incapable of transporting sialic acid from lysosomes,
235 exhibit cytoplasmic sialic acid deficiency and insufficient ceramide synthesis that results in
236 reduced sphingolipid levels and demyelination due to the loss of oligodendrocytes (Jhelum et al.,
237 2020; Prolo, Vogel, & Reimer, 2009; Hu, 2023 #47; Traka, Podojil, McCarthy, Miller, & Popko,
238 2016) These mice are phenocopies of brain-specific *Spns1* knockout mice. Salla disease, a free
239 sialic acid accumulation disorder, is an autosomal recessive genetic disorder caused by
240 mutations in the SLC17A5 gene that encodes sialin. It is a neurodegenerative disease that
241 results from the accumulation of free sialic acid within lysosomes (Ferreira & Gahl, 2017). Salla
242 disease is usually asymptomatic at birth but develops in infancy. Developmental delay and
243 growth retardation are present from early childhood, and approximately one-third of patients are
244 able to walk independently. This condition is followed by a slow progression of ataxia,
245 spasticity, athetosis, and degeneration of cognitive and motor functions into adulthood. Epilepsy
246 may complicate the disease, and the absence of seizures is frequent. T2-weighted image shows

247 extensive hyperintense white matter (hypomyelinating pattern), hypoplasia of the corpus
248 callosum, and atrophy of the cerebellum, suggesting abnormal myelination of the cerebrum
249 (Gupta et al., 2023). Notably, only approximately two-thirds of patients clinically diagnosed
250 with congenital cerebral white matter dysplasia, including those diagnosed with Salla disease,
251 have causative gene mutations, which indicates that other unidentified disease-causing genes
252 might be involved. Recently, a homozygous hypomorphic variant of *SPNS1* was identified in
253 three patients with developmental delay, neurological symptoms, intellectual disability, and
254 cerebellar hypoplasia (Ha et al., 2024). Our data suggest that *SPNS1* is a causative gene for
255 congenital cerebral white matter dysplasia and that the pathogenesis of Salla disease and *SPNS1*
256 mutations in humans is due to abnormal sphingosine metabolism.

257 Limitations of this study are that it is unclear whether the shedding of *Spns1*-deficient
258 oligodendrocytes *in vivo* is truly caused by a combination of ER and lysosomal stresses, and
259 that the *SPNS1* mutation has not been proven to be the causative gene for Salla disease.

260

261 **Materials and methods**

262 **Cell culture**

263 HeLa cells (ATCC CCL2) were grown in Dulbecco's modified Eagle medium (DMEM)
264 supplemented with 10% fetal bovine serum, 2 mM L-glutamine, 5 U/mL penicillin, and 50
265 µg/mL streptomycin. *SPNS1* (5'-gacgacgggccagtgcctgg-3') guide RNA was designed using the
266 CRISPR Design tool (<http://crispr.mit.edu/>) and subcloned into
267 pX330-U6-Chimeric_BB-CBh-hSpCas9 (Addgene #42230), a human codon-optimized SpCas9
268 and chimeric guide RNA expression plasmid. To generate *SPNS1* knockout HeLa cells, the cells
269 were transfected with the aforementioned pX330 vectors together with pEGFP-C1 (#6084-1,
270 Clontech Laboratories, Mountain View, CA, USA) and cultured for 2 d. Green fluorescent
271 protein (GFP)-positive cells were sorted and expanded. Ablation of *SPNS1* was confirmed using
272 a heteroduplex mobility assay, followed by immunoblot analysis with an SPNS1 antibody.

273 HeLa cells were authenticated using the STR profile. All the cell lines were tested for
274 mycoplasma contamination.

275

276 **Mice**

277 *Spns1*^{fl/fl} mice were generated on a C57BL/6 × CBA background. Two *loxP* sites flanking
278 exons 1 and 2 of *Spns1* were introduced and a neomycin-resistance cassette (neo) flanked by
279 *FRT* sites was inserted between exon 2 and the second *loxP* site to prepare the targeting vector.
280 The linearized targeting construct was electroporated into TT2 embryonic stem cells to obtain
281 the recombinant Neo allele. Germline transmission of the Neo allele was confirmed using PCR
282 and Southern blot analyses. Mice with the floxed *Spns1* allele were generated by mating mice
283 with the Neo allele with *FLPe* transgenic mice. The resulting *Spns1*^{fl/fl} mice were crossed
284 with nestin-*Cre* and albumin-*Cre* mice to generate nervous system- and hepatocyte-specific
285 *Spns1* knockout mice, respectively. The mice were housed in specific pathogen-free facilities.
286 The experimental protocols were approved by the Ethics Review Committee for Animal
287 Experimentation of Juntendo University (2024240, 2024241; approved March 18, 2024).

288

289 **Immunoblot analysis**

290 Mouse brain and liver were homogenized in 0.25 M sucrose, 10 mM
291 2-[4-(2-hydroxyethyl)-1-piperazinyl]ethanesulfonic acid (HEPES) (pH 7.4), and 1 mM
292 dithiothreitol (DTT). HeLa cells were lysed in ice-cold TNE buffer (50 mM Tris-HCl [pH 7.5],
293 150 mM NaCl, and 1 mM EDTA) containing 1% NP40, 1% Triton X-100, and protease
294 inhibitors. The lysates were centrifuged at 20,000 × g for 10 min at 4°C, and the resulting
295 supernatants were used as samples for immunoblot analysis. Samples were subjected to
296 SDS-PAGE and transferred onto a polyvinylidene difluoride membrane (IPVH00010; Merck
297 Millipore, Burlington, MA, USA). Antibodies against SPNS1 (HPA041995; Human Protein
298 Atlas, Bromma, Sweden; 1:500), MBP (MCA409S; Bio-Rad, Hercules, CA, USA; 1:500),

299 TFEB (4240; Cell Signaling Technology, Danvers, MA, USA; 1:500), Cathepsin B (219361;
300 Calbiochem, San Diego, CA, USA; 1:500), and ACTIN (A1978; Sigma-Aldrich, Burlington,
301 MO, USA; 1:2000) were purchased from the indicated suppliers. The blots were incubated with
302 a horseradish peroxidase-conjugated goat anti-mouse IgG (H+L) antibody (115-035-166,
303 Jackson ImmunoResearch Laboratories, Inc. West Grove, PA, USA; 1:10000) or goat
304 anti-rabbit IgG (H+L) (111-035-144, Jackson ImmunoResearch Laboratories, Inc.; 1:10000),
305 and visualized using chemiluminescence. Band density was measured using the Multi Gauge
306 V3.2 software (FUJIFILM Wako Pure Chemical Corporation, Osaka, Japan).

307

308 **Immunofluorescence analysis**

309 HeLa cells cultured on coverslips were washed with phosphate-buffered saline (PBS), fixed
310 with 4% paraformaldehyde (PFA) for 15 min at 24°C, permeabilized with 0.1% digitonin in
311 PBS for 5 min, and blocked with TNB blocking buffer (50 mM Tris-HCl [pH 7.5], 150 mM
312 NaCl, and 0.5% TSA blocking reagent [FP102, PerkinElmer, MA, USA]) for 30 min. The cells
313 were then incubated with primary antibodies in the blocking buffer for 1 h, washed with PBS,
314 and incubated with secondary antibodies for 1 h. Antibodies against TFEB (4240, Cell
315 Signaling Technology 1:200), LAMP-1 (AF4800, R&D Systems, Minneapolis, MN, USA;
316 1:200), and GALECTIN-3 (sc-23938, Santa Cruz Biotechnology Inc.; 1:200) were used as
317 primary antibodies. Goat anti-mouse IgG (H + L) Highly Cross-Adsorbed Secondary Antibody,
318 Alexa Fluor 647 (A21236, Thermo Fisher Scientific) and goat anti-rabbit IgG (H + L)
319 Cross-Adsorbed Secondary Antibody, Alexa Fluor 488 (A11008, Thermo Fisher Scientific)
320 were used as secondary antibodies. The cells were imaged using an FV3000 confocal
321 laser-scanning microscope with FV31S-SW (version: 2.4.1.198) (Olympus, Tokyo, Japan) and a
322 UPlanXApo ×60 NA 1.42 oil objective lens. The contrast and brightness of the images were
323 adjusted using Photoshop 2021v25.0 (Adobe, San Jose, CA, USA). The number and size of
324 LAMP-1-positive punctae in each cell and the mean fluorescence intensity of TFEB-positive

325 punctae were quantified using a Benchtop High-Content Analysis System (CQ1; Yokogawa
326 Electric Corp., Tokyo, Japan) and the CellPathfinder software (Yokogawa Electric Corp.).

327

328 **Measurement of cathepsin activity**

329 Lysosome fractions were prepared from the liver of *Spns1*^{fl/fl} and *Spns1*^{fl/fl};albumin-*Cre*
330 mice in accordance with a previously published method with minor modifications (Ueno, Munoz,
331 & Kominami, 1991). Briefly, the liver was excised and mashed through a stainless-steel mesh.
332 The mashed tissue was suspended in four volumes of ice-cold 5 mM
333 N-tris(hydroxymethyl)methyl-2-aminoethanesulfonic acid (TES) (pH 7.5) containing 0.3 M
334 sucrose (TES buffer) and homogenized using a Dounce homogenizer on ice. The homogenate
335 was centrifuged at 700 $\times g$ for 5 min at 4°C, and the postnuclear supernatant was carefully
336 collected. The pellet was suspended with 5 mL of TES buffer, and the homogenate was
337 re-centrifuged at 700 $\times g$ for 5 min at 4°C. The resulting supernatant was combined with the
338 postnuclear supernatant and centrifuged at 12,000 $\times g$ for 5 min at 4°C. The pelleted
339 mitochondrial-lysosomal fraction was suspended in 500 μ L of TES buffer. This suspension was
340 loaded onto 25 mL of 57% Percoll containing TES buffer and centrifuged at 50,000 $\times g$ for 45
341 min. After centrifugation, 4 mL fractions were collected from the bottom of the tube, diluted
342 with 40 mL of TES buffer, and centrifuged at 10,000 $\times g$ for 20 min at 4°C. The resulting pellet
343 was suspended in 700 μ L of TES buffer. The cathepsin activity of the lysosomal fraction was
344 measured fluorometrically by hydrolysis of z-Phe-Arg-MCA (Peptide Institute, 3095-v) to
345 quantify cathepsin B and L, and that of z-Arg-Arg-MCA (Peptide Institute, 3123-v) to quantify
346 cathepsin B activity. Briefly, the lysosomal fraction was suspended in TES buffer and incubated
347 with the substrates at 37°C for 10 min. The reaction was stopped by the addition of 5% SDS and
348 0.1 M Tris-HCl (pH 9.0), and the fluorescence emission was measured at 470 nm after
349 excitation at 370 nm.

350

351 **Histological analyses**

352 The mouse brain was fixed by perfusion with 4% PFA–4% sucrose in 0.1 M phosphate buffer
353 (PB) (pH 7.4) and embedded in paraffin. Three micrometer-thick paraffin sections were
354 prepared and processed for HE staining or immunohistochemical fluorescence microscopy. For
355 immunostaining, antigen retrieval was performed for 20 min at 98°C using a microwave
356 processor (MI-77; AZUMAYA, Tokyo, Japan) in 1% immunosaver (Nissin EM, Tokyo, Japan).
357 The sections were blocked and incubated for 2 days at 4°C with the following primary
358 antibodies: mouse anti-MBP (sc-66064, Santa Cruz Biotechnology Inc.), goat anti-OLIG2
359 (Bio-Techne, MN, USA), rabbit anti-SPNS1 (HPA041995, Sigma-Aldrich, MO, USA), and
360 anti-rat Lamp1 (sc-19992, Santa Cruz Biotechnology Inc., sc-19992). The sections were further
361 incubated with Alexa Fluor 594- or Alexa Fluor 488-conjugated donkey anti-mouse IgG,
362 donkey anti-goat IgG, and/or donkey anti-rat IgG (Jackson ImmunoResearch Laboratories).
363 Immunofluorescence images were obtained with a laser scanning confocal microscope
364 (FV1000; Olympus) equipped with a 20× (UPlanSApo 20×, NA 0.75) or a 60× (PlanApo N 60×,
365 NA 1.42 oil) objective lens, or a microscope (BX51, Olympus, Japan) equipped with a cooled
366 CCD camera system (DP-71, Olympus) and a 4× (UPlanSApo 4×, NA 0.16) or a 10×
367 (UPlanSApo 10×, NA 0.40) objective lens. After image acquisition, the contrast and brightness
368 were adjusted using Photoshop CS6 (Adobe).

369

370 **Electron microscopy (EM)**

371 For conventional EM, mouse brain was fixed by perfusion with 2% PFA–2% glutaraldehyde in
372 0.1 M PB, pH 7.4, and portions of the corpus callosum were excised. HeLa cells were fixed
373 using the same fixative. They were further processed in accordance with the reduced-osmium
374 method and embedded in Epon812. Ultrathin sections were prepared, stained with uranyl
375 acetate and lead citrate, and observed under an electron microscope (JEM1400EX, JEOL).

376

377 **Lipidome analysis**

378 Freshly excised brain tissue was immediately snap-frozen and preserved at -80°C until further
379 processing. For total lipid extraction (Alshehry, 2015), the brain tissue was homogenized in
380 1000 μL of a 1:1 (v/v) 1-butanol/methanol solution containing 5 mM ammonium formate with a
381 manual homogenizer (Finger Masher, AM79330, Sarstedt, Tokyo, Japan). After
382 homogenization for a few minutes, the homogenate was centrifuged at $16,000 \times g$ for 10 min at
383 20°C and the supernatant was collected and transferred into a 200 μL LC-MS vial.
384 For lipidome analysis, an Orbitrap-based MS (Q-Exactive Focus, Thermo Fisher Scientific, San
385 Jose, CA, USA) coupled to an HPLC system (Ultimate3000, Thermo Fisher Scientific) was
386 used. The chromatographic and mass spectrometric parameters were adapted from a previously
387 described method (Ruzicka, 2014). Elution was performed on a Thermo Scientific Accucore
388 C18 column (2.1 \times 150 mm, 2.6 μm). The mobile phase consisted of phase A (10 mM
389 ammonium formate in 50% acetonitrile (v/v) and 0.1% formic acid (v/v)) and phase B (2 mM
390 ammonium formate in a mixture of acetonitrile:isopropyl alcohol:water at a ratio of 10:88:2
391 (v/v/v) with 0.02% formic acid). The elution gradient (phase A:phase B) was set as follows:
392 65:35 at 0 min, 40:60 from 0 to 4 min, 15:85 from 4 to 12 min, 0:100 from 12 to 21 min,
393 maintained at 0:100 from 21 to 24 min, changed to 65:35 at 24.1 min, and finally 100:0 from
394 24.1 to 28 min. The flow rate was 0.4 mL/min and the column temperature was maintained at
395 35°C .
396 The Q-Exactive Focus Mass Spectrometer was operated in positive and negative ESI modes. A
397 full mass scan (m/z 250–1100), followed by data-dependent MS/MS, was performed at
398 resolutions of 70,000 and 17,500. The automatic gain control target was set at 1×10^6 ions, and
399 maximum ion injection time was 100 ms. Source ionization parameters were as follows: spray
400 voltage, 3 kV; transfer tube temperature, 285°C ; S-Lens level, 45; heater temperature, 370°C ;
401 sheath gas, 60; and auxilliary gas, 20. Acquired data were analyzed using the LipidSearch

402 software (Mitsui Knowledge Industry, Tokyo, Japan) with the following parameters: precursor
403 mass tolerance, 3 ppm; product mass tolerance, 7 ppm; and m-score threshold, 3.

404

405 **Extraction of metabolites from the brain tissue for metabolomic analysis**

406 For detailed metabolomic analysis, metabolites from the brain tissue were extracted using a
407 previously described method with slight modifications (Maeda *et al.*, 2023). Frozen tissue
408 samples were homogenized in 500 μ L of ice-cold methanol containing methionine sulfone
409 (L-Met) and 2-morpholinoethanesulfonic acid (MES) as internal standards for cationic and
410 anionic metabolites, respectively, using a Finger Masher manual homogenizer (AM79330;
411 Sarstedt, Tokyo, Japan). The homogenate was then mixed with half the sample volume of
412 ultrapure water (LC/MS grade, sourced from Wako) and 0.4-times the original volume of
413 chloroform (Nacalai Tesque, Kyoto, Japan). The mixture was centrifuged at 15,000 $\times g$ for 90
414 min at 4°C. After centrifugation, the aqueous layer was collected and filtered through an
415 ultrafiltration tube (UltraFree MC-PLHCC; Human Metabolome Technologies, Yamagata,
416 Japan). The filtered aqueous extract was evaporated under a stream of nitrogen using a heating
417 block (DTU-28N; TAITEC, Koshigaya City, Japan). Finally, the concentrated sample was
418 reconstituted in 50 μ L of ultrapure water for further analysis using ion chromatography-high
419 resolution mass spectrometry (IC-HR-MS).

420

421 **Metabolome analysis using IC-HR-MS**

422 For metabolite detection, we used an Orbitrap-type MS (Q-Exactive focus; Thermo Fisher
423 Scientific) coupled with a high-performance IC system (ICS-5000+, Thermo Fisher Scientific).
424 The IC unit was equipped with an anion electrolytic suppressor (Dionex AERS 500; Thermo
425 Fisher Scientific) that converted the potassium hydroxide gradient to pure water prior to the
426 introduction of sample into the MS system. Metabolite separation was performed using a
427 Dionex IonPac AS11-HC column with 4 μ m particle size (Thermo Fisher Scientific). The flow

428 rate for IC was set at 0.25 mL/min, and it was supplemented post-column with a 0.18 mL/min
429 makeup flow of methanol. The potassium hydroxide gradient for IC was adjusted as follows:
430 start at 1 mM, increased to 100 mM over 40 min, maintained at 100 mM for the next 10 min,
431 and then returned to 1 mM over the final 10 min. The column temperature was maintained at
432 30°C. The mass spectrometer was operated in ESI-positive and ESI-negative modes for all
433 measurements, and a full mass scan from m/z 70 to 900 was conducted at a resolution of 70,000.
434 The automatic gain control was set at a target of 3×10^6 ions, with a maximum ion injection
435 time of 100 ms. The optimized ionization parameters were as follows: spray voltage, 3 kV;
436 transfer temperature, 320°C; S-Lens level, 50; heater temperature, 300°C; sheath gas flow, 36;
437 and auxiliary gas flow, 10.

438

439 **Multivariate statistical analysis**

440 To evaluate the differences in the serum metabolome between the experimental groups and
441 identify significant metabolite contributors, HCA and volcano plot analysis were performed
442 using Metaboanalyst (v4.0), an online tool for multivariate statistical analyses. For
443 normalization, the samples were subjected to median adjustment to uniformly correct for
444 systematic differences across the samples. Autoscaling was applied to standardize the
445 comparisons of variables, without performing data transformation.

446

447 **Sample preparation for imaging mass spectrometry (IMS)**

448 For IMS, the brain tissue was embedded in super cryoembedding medium (SCEM; SECTION
449 LAB, Hiroshima, Japan) and subsequently stored at -80°C. Tissue blocks containing SCEM
450 were sectioned at -16°C into 8-micrometer slices using a CM 3050 cryostat (Leica, Wetzlar,
451 Germany). The slices were then transferred onto indium tin oxide-coated glass slides
452 (Matsunami Glass Industries, Osaka, Japan) for subsequent processing. The sections were
453 manually coated with a matrix solution of 2,5-dihydroxy benzoic acid (50 mg/mL in 80%

454 ethanol) and 9-aminoacridine (10 mg/mL in 80% ethanol) for positive and negative ion
455 detection, respectively, using an art brush (Procon Boy FWA Platinum; Mr. Hobby, Tokyo,
456 Japan). The matrix was sprayed onto the slides from a distance of approximately 15 cm,
457 applying approximately 1 mL of the solution per slide. To ensure consistent conditions for
458 analyte extraction and cocrystallization, the matrix was simultaneously applied across multiple
459 slides. Optical images of the sections were captured using a scanner and analyzed using
460 matrix-assisted laser desorption/ionization (MALDI)-MS imaging.

461

462 **IMS**

463 MALDI imaging was performed using a Bruker timsTOF fleX MS (Bruker Daltonics, Bremen,
464 Germany) operating in the quadrupole time-of-flight (qTOF) mode. The setup parameters
465 included detection in positive and negative ion modes, a pixel resolution set at 80 μm , 200 laser
466 pulses per pixel at a frequency of 10 kHz, and the laser power adjusted to 50%. The data
467 collection focused on an m/z range of 100–650. The obtained raw mass spectra were processed
468 and visualized using the SCiLS Lab software (v. 2019, Bruker Daltonics), enabling the
469 production of detailed MS images. The signals within the specified m/z range were normalized
470 to the total ion current to mitigate variations in ionization efficiency across different pixels.
471 Metabolite identities were verified through accurate mass measurements and by comparison
472 with reference standards MALDI-MS.

473

474 **Statistical analysis**

475 Statistical analyses were performed using the unpaired *t*-test (Welch's *t*-test), Šidák's multiple
476 comparison test after one-way ANOVA. GraphPad PRISM 10 (GraphPad Software) was used
477 for statistical analyses. All tests were two-sided, and *P*-values <0.05 were considered
478 statistically significant.

479

480 **Acknowledgements**

481 Funding statement: This work was supported by JSPS KAKENHI Grant Numbers JP19H05706,
482 JP21H004771, 23K20044, 24H00060 (to M.K.), 23K06324 (to Y-s.S.), 23K06415 (to Y.I.),
483 17K07380 (to Y.K.), JP20H03415 (to S.W.), JP23H02660 (to S.W.); AMED Grant Number
484 JP22gm1410004h0003 (to M.K.); the Takeda Science Foundation (to M.K.); the Uehara
485 Memorial Foundation (to M.K.); and by the Kobayashi Foundation (to M.K.). This work was
486 also supported by JSPS KAKENHI Grant Number JP22H04926, Grant-in-Aid for
487 Transformative Research Areas — Platforms for Advanced Technologies and Research
488 Resources “Advanced Bioimaging Support.” We thank H. Morishita, J. Sakamaki, and K.
489 Tabata for critically reading this manuscript. We also thank A. Yabashi and K. Kanno for their
490 help with the morphological analyses. We would like to thank Editage (www.editage.jp) for
491 English language editing.

492

493 Conflicts of Interest: We declare that we have no competing financial interests.

494 Author Contributions: M.K. designed and directed the study. Y.I., Y.K., and Y-s.S. performed
495 the biochemical experiments. Y.S. performed the lipidome and mass spectrometry imaging.
496 Y-s.S., T.U., N.T., and M. Koike, S.W. performed the EM and histological analyses. S.K-H.
497 generated KO cell lines. All the authors discussed the results and commented on the manuscript.

498 Data availability: All data required to evaluate the conclusions of this study are presented in the
499 paper and/or Supplementary Materials.

500

501 **References**

502 Alshehry, Z. H. (2015). An efficient single phase method for the extraction of plasma lipids.
503 *Metabolites*, 5. doi:10.3390/metabo5020389

504 Ballabio, A., & Bonifacino, J. S. (2020). Lysosomes as dynamic regulators of cell and
505 organismal homeostasis. *Nat Rev Mol Cell Biol*, 21(2), 101-118.
506 doi:10.1038/s41580-019-0185-4

507 Bonam, S. R., Wang, F., & Muller, S. (2019). Lysosomes as a therapeutic target. *Nat Rev Drug
508 Discov*, 18(12), 923-948. doi:10.1038/s41573-019-0036-1

509 Boswell-Casteel, R. C., & Hays, F. A. (2017). Equilibrative nucleoside transporters-A review.
510 *Nucleosides Nucleotides Nucleic Acids*, 36(1), 7-30.
511 doi:10.1080/15257770.2016.1210805

512 Clayton, B. L. L., & Popko, B. (2016). Endoplasmic reticulum stress and the unfolded protein
513 response in disorders of myelinating glia. *Brain Res*, 1648(Pt B), 594-602.
514 doi:10.1016/j.brainres.2016.03.046

515 Ferreira, C. R., & Gahl, W. A. (2017). Lysosomal storage diseases. *Transl Sci Rare Dis*, 2(1-2),
516 1-71. doi:10.3233/TRD-160005

517 Gupta, J., Reddy, N., Mankad, K., Kabra, U., Bhandari, A., Bagarhatta, M., & Gupta, A. (2023).
518 Teaching NeuroImage: A New Imaging Finding in a Boy With Salla Disease Caused by
519 a Pathogenic Variant in the SLC17A5 Gene. *Neurology*, 101(14), 631-632.
520 doi:10.1212/WNL.0000000000207546

521 Ha, H. T., Liu, S., Nguyen, X. T., Vo, L. K., Leong, N. C., Nguyen, D. T., . . . Nguyen, L. N.
522 (2024). Lack of SPNS1 results in accumulation of lysolipids and lysosomal storage
523 disease in mouse models. *JCI Insight*, 9(8). doi:10.1172/jci.insight.175462

524 He, M., Kuk, A. C. Y., Ding, M., Chin, C. F., Galam, D. L. A., Nah, J. M., . . . Silver, D. L.
525 (2022). Spns1 is a lysophospholipid transporter mediating lysosomal phospholipid
526 salvage. *Proc Natl Acad Sci U S A*, 119(40), e2210353119.
527 doi:10.1073/pnas.2210353119

528 Hu, M., Zhou, N., Cai, W., & Xu, H. (2022). Lysosomal solute and water transport. *J Cell Biol*,
529 221(11). doi:10.1083/jcb.202109133

530 Jhelum, P., Santos-Nogueira, E., Teo, W., Haumont, A., Lenoel, I., Stys, P. K., & David, S.
531 (2020). Ferroptosis Mediates Cuprizone-Induced Loss of Oligodendrocytes and
532 Demyelination. *J Neurosci*, 40(48), 9327-9341.
533 doi:10.1523/JNEUROSCI.1749-20.2020

534 Maeda, R., Seki, N., Uwamino, Y., Wakui, M., Nakagama, Y., Kido, Y., . . . Sugiura, Y. (2023).
535 Amino acid catabolite markers for early prognostication of pneumonia in patients with
536 COVID-19. *Nat Commun*, 14(1), 8469. doi:10.1038/s41467-023-44266-z

537 Mayer, A. L., Higgins, C. B., Heitmeier, M. R., Kraft, T. E., Qian, X., Crowley, J. R., . . .
538 DeBosch, B. J. (2016). SLC2A8 (GLUT8) is a mammalian trehalose transporter
539 required for trehalose-induced autophagy. *Sci Rep*, 6, 38586. doi:10.1038/srep38586

540 Meng, Y., Heybrock, S., Nucleai, D., & Saftig, P. (2020). Cholesterol Handling in Lysosomes
541 and Beyond. *Trends Cell Biol*, 30(6), 452-466. doi:10.1016/j.tcb.2020.02.007

542 Ogretmen, B. (2018). Sphingolipid metabolism in cancer signalling and therapy. *Nat Rev
543 Cancer*, 18(1), 33-50. doi:10.1038/nrc.2017.96

544 Perera, R. M., & Zoncu, R. (2016). The Lysosome as a Regulatory Hub. *Annu Rev Cell Dev
545 Biol*, 32, 223-253. doi:10.1146/annurev-cellbio-111315-125125

546 Prolo, L. M., Vogel, H., & Reimer, R. J. (2009). The lysosomal sialic acid transporter sialin is
547 required for normal CNS myelination. *J Neurosci*, 29(49), 15355-15365.
548 doi:10.1523/JNEUROSCI.3005-09.2009

549 Rudnik, S., & Damme, M. (2021). The lysosomal membrane-export of metabolites and beyond.
550 *FEBS J*, 288(14), 4168-4182. doi:10.1111/febs.15602

551 Ruzicka, J., Mchale, K. & Peake, D. A. . (2014). Data acquisition parameters optimization of
552 quadrupole orbitrap for global lipidomics on LC-MS/MS time frame. .

553 Scharenberg, S. G., Dong, W., Ghoochani, A., Nyame, K., Levin-Konigsberg, R., Krishnan, A.
554 R., . . . Abu-Remaileh, M. (2023). An SPNS1-dependent lysosomal lipid transport

555 pathway that enables cell survival under choline limitation. *Sci Adv*, 9(16), eadf8966.
556 doi:10.1126/sciadv.adf8966

557 Thelen, A. M., & Zoncu, R. (2017). Emerging Roles for the Lysosome in Lipid Metabolism.
558 *Trends Cell Biol*, 27(11), 833-850. doi:10.1016/j.tcb.2017.07.006

559 Traka, M., Podojil, J. R., McCarthy, D. P., Miller, S. D., & Popko, B. (2016). Oligodendrocyte
560 death results in immune-mediated CNS demyelination. *Nat Neurosci*, 19(1), 65-74.
561 doi:10.1038/nn.4193

562 Ueno, T., Muno, D., & Kominami, E. (1991). Membrane Markers of Endoplasmic-Reticulum
563 Preserved in Autophagic Vacuolar Membranes Isolated from Leupeptin-Administered
564 Rat-Liver. *Journal of Biological Chemistry*, 266(28), 18995-18999. Retrieved from
565 <Go to ISI>://WOS:A1991GJ47200089

566 van Veen, S., Martin, S., Van den Haute, C., Benoy, V., Lyons, J., Vanhoutte, R., . . .
567 Vangheluwe, P. (2020). ATP13A2 deficiency disrupts lysosomal polyamine export.
568 *Nature*, 578(7795), 419-424. doi:10.1038/s41586-020-1968-7

569 Vasanthakumar, T., & Rubinstein, J. L. (2020). Structure and Roles of V-type ATPases. *Trends
570 Biochem Sci*, 45(4), 295-307. doi:10.1016/j.tibs.2019.12.007

571 Wyant, G. A., Abu-Remaileh, M., Wolfson, R. L., Chen, W. W., Freinkman, E., Danai, L.
572 V., . . . Sabatini, D. M. (2017). mTORC1 Activator SLC38A9 Is Required to Efflux
573 Essential Amino Acids from Lysosomes and Use Protein as a Nutrient. *Cell*, 171(3),
574 642-654 e612. doi:10.1016/j.cell.2017.09.046

575

576

577 **Figure legends**

578 **Figure 1. Impairment of lysosomal integrity by the loss of SPNS1.**

579 (A) Immunofluorescence analysis. Parental, *SPNS1*^{-/-} HeLa cells and *SPNS1*^{-/-} HeLa cells
580 expressing SPNS1-FLAG were immunostained with the LAMP-1 antibody. The left scatter plot
581 shows the results of quantitative analysis of the size of LAMP-1-positive structures per cell in
582 parental (WT) (n = 34401), *SPNS1*^{-/-} HeLa (n = 40011), and *SPNS1*^{-/-} HeLa expressing
583 SPNS1-FL (n = 34812). The right scatter plot shows the number of LAMP-1-positive structures
584 per area (μm^2) in WT (n = 663), *SPNS1*^{-/-} HeLa (n = 740), and *SPNS1*^{-/-} HeLa expressing
585 SPNS1-FL (n = 463). Blue indicates nuclei stained with Hoechst 33342. Each dot corresponds
586 to individual data points, and the horizontal line indicates the mean. Statistical analysis was
587 performed using the Šidák's test after one-way ANOVA. Scale bars, 20 μm (main panels), 2 μm
588 (inset panels). (B) Electron micrographs of cells indicated in (A). Boxed regions are enlarged
589 and shown below. The number of lysosomes per area (μm^2) of WT (n = 11), *SPNS1*^{-/-} HeLa (n =
590 11), and *SPNS1*^{-/-} HeLa expressing SPNS1-FL (n = 11) were quantified using the Image J
591 software and presented in scatter plots. Each dot corresponds to individual data points, and the
592 horizontal line indicates the mean. Statistical analysis was performed using the Šidák's test after
593 one-way ANOVA. Arrowheads indicate lysosomes. Bars, top panels: 5 μm , bottom panels: 500
594 nm. (C) Immunofluorescence microscopy. Liver sections from *Spns1*^{fl/fl} and
595 *Spns1*^{fl/fl};albumin-*Cre* mice at 3 months were stained with SPNS1 (green) and LAMP-1 (red)
596 antibodies, and nuclei was stained with Hoechst 33342 (blue) as indicated. Boxed regions are
597 enlarged and shown in the insets. Bar, 20 μm . (D) Electron micrographs of mouse liver sections,
598 as indicated. Boxed regions are enlarged and shown on the right. Arrows indicate lysosome-like
599 structures with undigested materials. Bars, 10 μm (left) and 1 μm (right). (E) Immunoblot
600 analysis. Homogenates and lysosomal fractions prepared from the liver of *Spns1*^{fl/fl} (n = 5)
601 and *Spns1*^{fl/fl};albumin-*Cre* mice (n = 3) at 6 weeks of age were subjected to SDS-PAGE
602 followed by immunoblotting with Cathepsin B and Actin antibodies. Scatter plots show the

603 results of densitometric analysis of the intensity of the Cathepsin B band relative to that of the
604 Actin band. Each dot corresponds to individual data points, and the horizontal line represents
605 the mean. Statistical analysis was performed using the Welch's *t*-test. (F) Cathepsin activity.
606 The activity of Cathepsin B + L and that of Cathepsin B in lysosomal fractions shown in (E)
607 was measured. Each dot corresponds to individual data points, and the horizontal line represents
608 the mean. Statistical analysis was performed using the Welch's *t*-test.

609

610 **Figure 2. Growth and mortality of *Spns1*^{fl/fl};nestin-Cre mice.**

611 (A) Immunoblot analysis. Brain homogenates prepared from the indicated genotype mice were
612 subjected to immunoblot analysis with the SPNS1 antibody and Ponceau-S staining of the gel
613 after electrophoresis. Data shown are representative of three separate experiments. (B) Growth
614 curve of *Spns1*^{fl/fl} ($n = 43$ at 2 weeks of age, $n = 41$ at 3 weeks of age, $n = 65$ at 4 weeks of
615 age, and $n = 5$ at 5 weeks of age) and *Spns1*^{fl/fl};nestin-Cre ($n = 17$ at 2 weeks of age, $n = 18$ at
616 3 weeks of age, $n = 22$ at 4 weeks of age, and $n = 27$ at 5 weeks of age) mice. Data are means \pm
617 s.e.m. Statistical analysis was performed using the Welch's *t*-test. (C) Kaplan–Meier analysis of
618 of *Spns1*^{fl/fl} ($n = 15$) and *Spns1*^{fl/fl};nestin-Cre ($n = 22$) mice.

619

620 **Figure 3. Dysmyelination due to the lack of oligodendrocytes in *Spns1*^{fl/fl};nestin-Cre
621 mice.**

622 (A) Gross anatomy of whole brain (left) and sagittal sections (right) of brain from *Spns1*^{fl/fl}
623 and *Spns1*^{fl/fl};nestin-Cre mice at P26. Arrowheads indicate corpus callosum and arrows
624 indicate cerebellar medulla. Bar, 1 cm. (B) Hematoxylin and eosin staining of the corpus
625 callosum (CC) of brains from *Spns1*^{fl/fl} and *Spns1*^{fl/fl};nestin-Cre mice at P24. Bars, 1 mm
626 (left) and 100 μ m (right). (C) Immunofluorescence images of sagittal sections of the brain from
627 *Spns1*^{fl/fl} and *Spns1*^{fl/fl};nestin-Cre mice at P26, stained with the MBP antibody (red) and
628 Hoechst 33342 (blue). CC: corpus callosum; Cx: cerebral cortex; hip: hippocampus. Bar, 100

629 μ m. (D) Immunoblot analysis. Homogenates of the brain tissue from *Spns1*^{fl/fl},
630 *Spns1*^{fl/+};nestin-Cre and *Spns1*^{fl/fl};nestin-Cre mice at P12 were subjected to SDS-PAGE
631 followed by immunoblotting with MBP and Ponceau-S staining of the gel. Scatter plots show
632 the results of densitometric analysis of the MBP band relative to the whole protein content
633 estimated using Ponceau-S staining ($n = 3$ each group). The dots represent individual data
634 points, and the horizontal lines indicate the means. Statistical analysis was performed using the
635 Šidák's test after one-way ANOVA. (E) Electron micrographs of the corpus callosum (CC) of
636 *Spns1*^{fl/fl} and *Spns1*^{fl/fl};nestin-Cre mice at P14. Bar, 2 μ m. (F) Immunofluorescence images
637 of the sagittal sections of the brain from *Spns1*^{fl/fl} and *Spns1*^{fl/fl};nestin-Cre mice at P0 (left)
638 and P18 (right) stained with the OLIG2 antibody and Hoechst 33342. CC; corpus callosum.
639 Bars, 100 μ m. Scatter plots show the results of quantitative analysis of the number of
640 OLIG2-positive cells. *Spns1*^{fl/fl} ($n = 4$ at P0 and 1, $n = 3$ at P14 and 18, and
641 *Spns1*^{fl/fl};nestin-Cre mice ($n = 3$ at P0 and 1, $n = 3$ at P14 and 18). The dots correspond to
642 individual data points, and the horizontal lines represent the means. Statistical analysis was
643 performed using the Welch's *t*-test.

644

645 **Figure 4. Quantification and visualization of lysophospholipids in *Spns1*^{fl/fl};nestin-Cre**
646 **mice.**

647 (A) Lipidome analysis of the brain of *Spns1*^{fl/fl} or *Spns1*^{fl/+} ($n = 10$), *Spns1*^{fl/+};nestin-Cre (n
648 = 4), and *Spns1*^{fl/fl};nestin-Cre ($n = 3$) mice at P14 was overviewed using hierarchical cluster
649 analysis, which led to the identification of a cluster of accumulation of metabolites, including
650 lysophosphatidylcholine (LPC), lysophosphatidylethanolamine (LPE), and
651 lysophosphatidylinositol (LPI), in the brain of *Spns1*^{fl/fl};nestin-Cre mice. (B) Lipidome of the
652 brain of *Spns1*^{fl/fl} or *Spns1*^{fl/+} ($n = 10$) and *Spns1*^{fl/fl};nestin-Cre ($n = 3$) mice at P14 was
653 compared using the volcano plot analysis; among the molecular species with significant
654 accumulation in *Spns1*-deficient brain, lysophospholipids were annotated. (C) Results of

655 quantitative analysis of lysophospholipids, LPC, LPI, and LPE in the mouse brain described in
656 (A); PUFA-containing LPs are highlighted with red dashed lines. The dots correspond to
657 individual data points, and the horizontal lines represent the means. (D) Imaging mass
658 spectrometry to visualize the pattern of lysophospholipid accumulation in sagittal sections of the
659 brain of *Spns1*^{fl/fl} and *Spns1*^{fl/fl};nestin-*Cre* mice at P14. Arrows indicate hippocampus. Bars,
660 3 mm.

661

662 **Figure 5. *Spns1*-deficient brain shows accumulation of sphingosine and decrease in myelin
663 glycolipids.**

664 (A) Quantification of sphingosine and major sphingoglycolipids in the brain of *Spns1*^{fl/fl} (*n* =
665 10), *Spns1*^{fl/+};nestin-*Cre* (*n* = 4), and *Spns1*^{fl/fl};nestin-*Cre* (*n* = 3) mice at P14. The dots
666 correspond to individual data points, and the horizontal lines represent the means. A schematic
667 illustration of sphingosine metabolic pathway. Sphingosine (Sph) are synthesized de novo
668 synthesis in the Endoplasmic Reticulum (ER) or salvage pathway of the lysosome. Cer:
669 ceramide; SM: sphingomyeline; S1P: sphingosine-1-phosphate; CoA: palmitoyl coenzyme A.
670 (B) Imaging mass spectrometry to visualize the localization pattern of major sphingoglycolipid
671 molecular species in the sagittal section of the brain of *Spns1*^{fl/fl} and *Spns1*^{fl/fl};nestin-*Cre*
672 mice at P14. Bars, 3 mm. (C) Results of the enrichment analysis of the dataset obtained from
673 the water-soluble metabolome analysis of the brain comparing the brain of *Spns1*^{fl/fl} and
674 *Sns1*^{fl/fl};nestin-*Cre* mice at P14. (D) Quantification results of a sialic acid (N-acetyl
675 neuraminic acid) and a corresponding sialic acid nucleotide (CMP-N-acetyl neuraminic acid) in
676 the brain of *Spns1*^{fl/fl} (*n* = 12) and *Spns1*^{fl/fl};nestin-*Cre* (*n* = 6) mice at P14. The dots
677 correspond to individual data points, and the horizontal lines represent the means. (E) Imaging
678 mass spectrometry to visualize the localization pattern of gangliosides in the sagittal sections of
679 the brain of *Spns1*^{fl/fl} and *Spns1*^{fl/fl};nestin-*Cre* mice at P14. Arrowheads indicate
680 hippocampus. Bar, 3 mm.

681

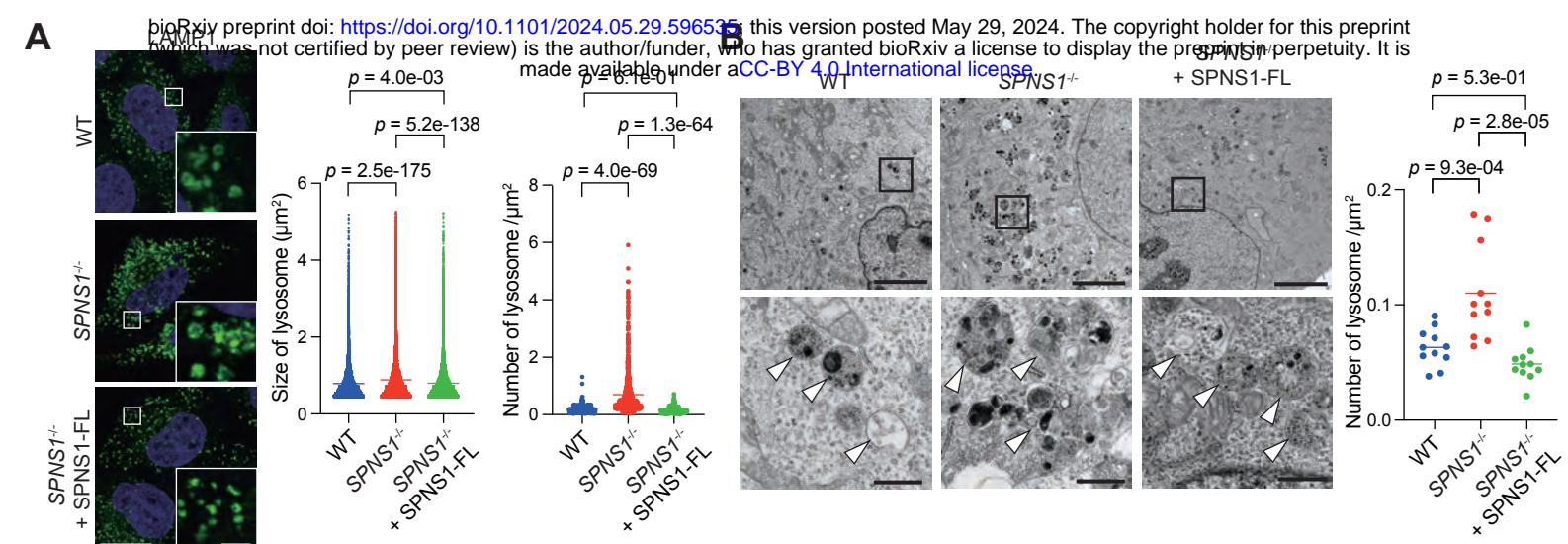
682 **Figure S1. Lysosomal membrane integrity of *SPNS1*-knockout HeLa cells.**

683 (A) Generation of *SPNS1*-knockout HeLa cells. Parental and *SPNS1*-deficient HeLa cells were
684 lysed, and then subjected to SDS-PAGE followed by immunoblot analysis with the *SPNS1*
685 antibody. Data are representative of three separate experiments. (B) Immunofluorescence
686 analysis. Parental (WT), *SPNS1*^{-/-} HeLa cells and *SPNS1*^{-/-} HeLa cells expressing *SPNS1*-FLAG
687 were immunostained with GALECTIN-3 and LAMP-1 antibodies under normal and L-leucyl-
688 L-leucine methyl ester (LLOMe)-treated conditions. LLOMe is a lysosomotropic agent that
689 severely damages and permeabilizes the lysosomal membrane. Lysosomes in both control and
690 *SPNS1*-knockout HeLa cells were positive for GALECTIN-3 upon LLOMe treatment. Blue
691 indicated nuclei stained with Hoechst 33342. Bars, 20 μ m and 2 μ m.

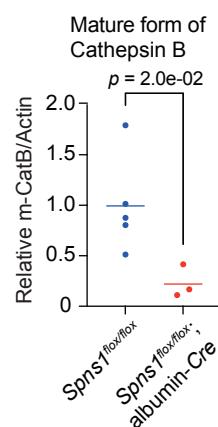
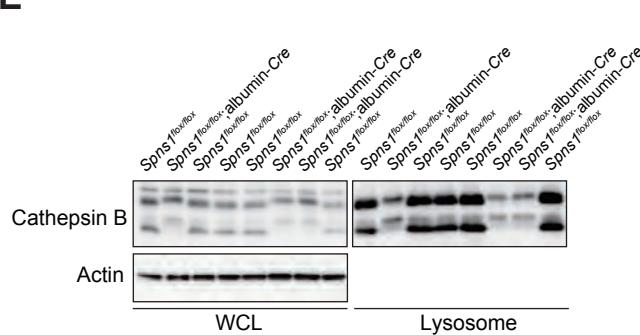
692

693 **Figure S2. Phenotype of hepatocyte-specific *Spns1*-knockout mice.**

694 (A) Liver weight (% per body weight) in *Spns1*^{fl/fl} (3-month-old, $n = 4$; 9-month-old, $n = 16$;
695 12-month-old, $n = 14$; 18-month-old, $n = 10$) and *Spns1*^{fl/fl};albumin-*Cre* (3-month-old, $n = 3$;
696 9-month-old, $n = 4$; 12-month-old, $n = 17$; 18-month-old, $n = 7$) mice. The dots correspond to
697 individual data points, and the horizontal lines represent the means. Statistical analysis was
698 performed using the Šidák's test after one-way ANOVA. (B) Liver function tests in mice
699 described in (A). The serum levels of aspartate aminotransferase (AST), alanine
700 aminotransferase (ALT), and alkaline phosphatase (ALP) were measured. IU/L, international
701 units/liter. The dots represent individual data points, and the horizontal lines indicate the means.
702 Statistical analysis was performed using the Šidák's test after one-way ANOVA. (C)
703 Hematoxylin and eosin staining of liver paraffin sections from 3-month-old *Spns1*^{fl/fl} and
704 *Spns1*^{fl/fl};albumin-*Cre* mice. Boxed regions are enlarged and shown in insets. C: central vein;
705 P: portal vein. Bars: 50 μ m and 20 μ m (inset).


706

707 **Figure S3. Few abnormalities in *Spns1*-deficient neurons.**



708 Hematoxylin and eosin staining of the olfactory bulb (**A**) and hippocampal formation (**B**) from
709 2-week-old *Spns1*^{fl/fl} and *Spns1*^{fl/fl};nestin-*Cre* mice. The boxed regions are enlarged and
710 shown below, as indicated. M, mitral cell layer; DG, dentate gyrus. Bar, 200 μ m (low
711 magnification) and 20 μ m (high magnification).

712

713

E

F

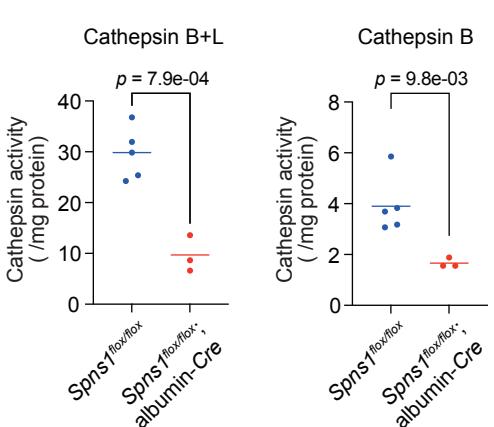


Figure 1

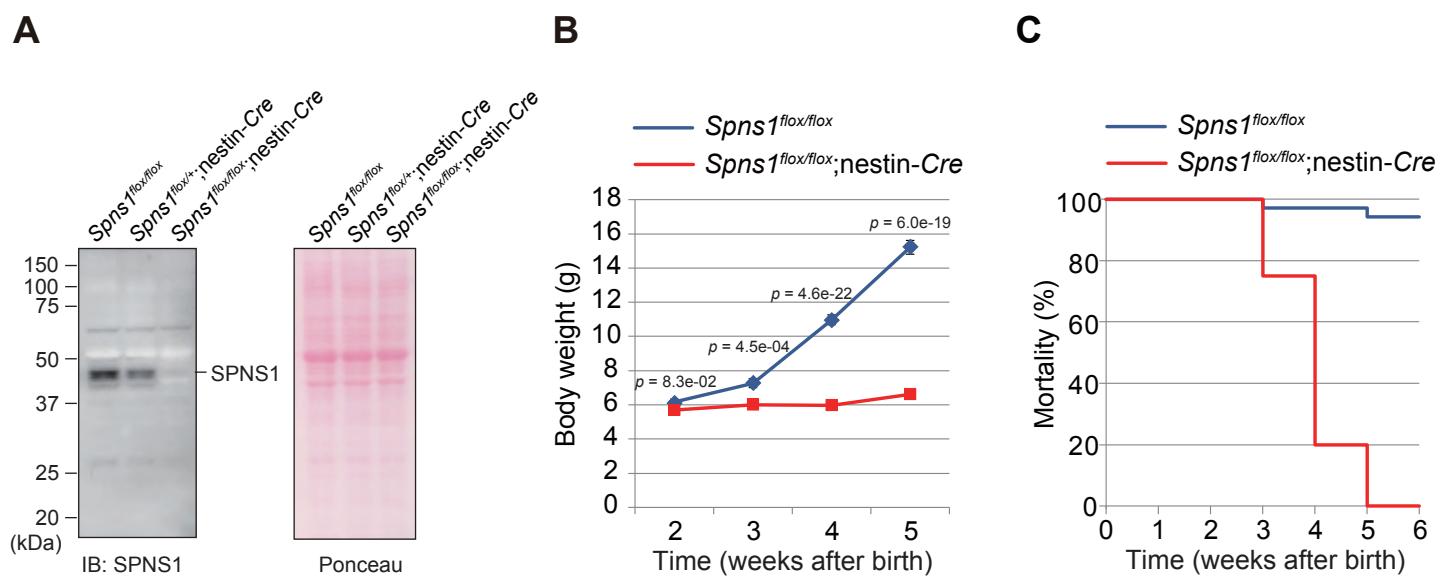
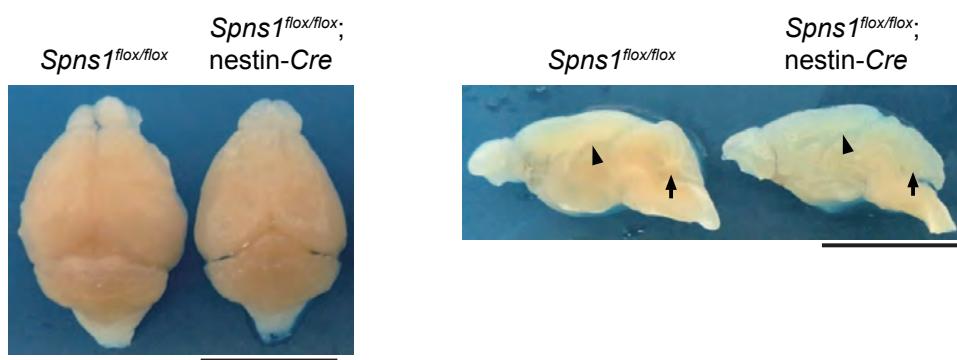
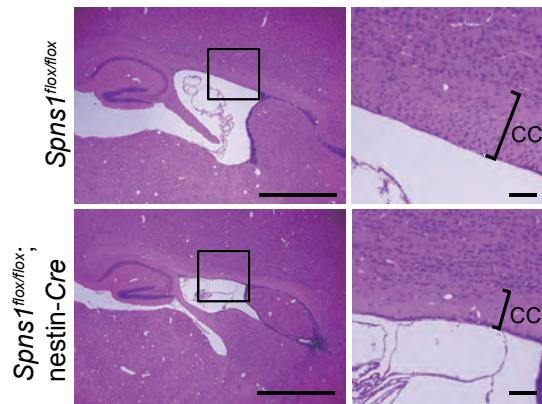
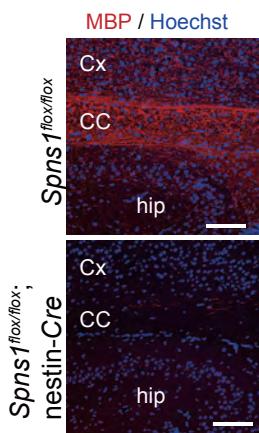
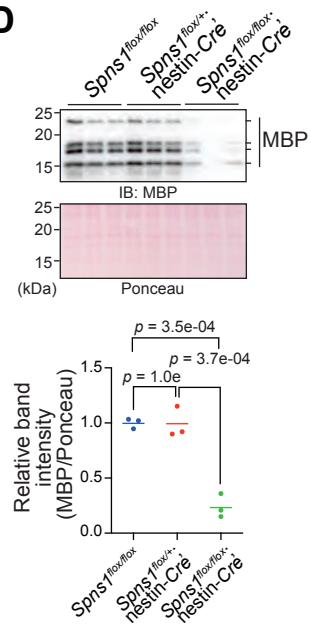
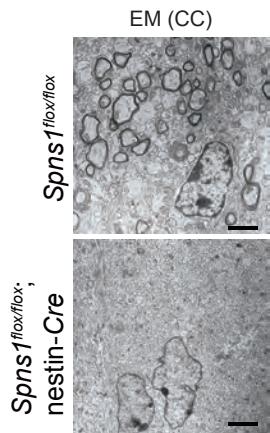




Figure 2


A


B


C

D

E

F

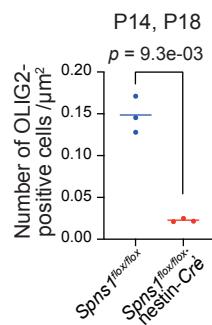
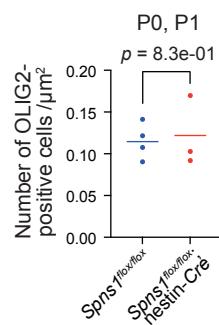
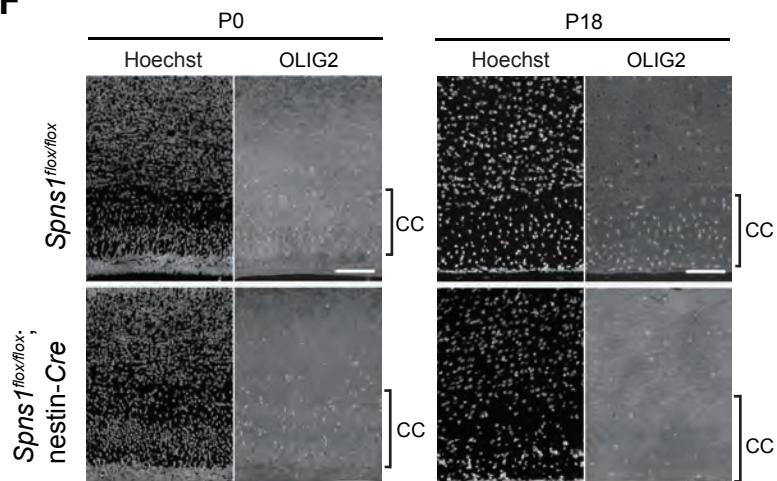
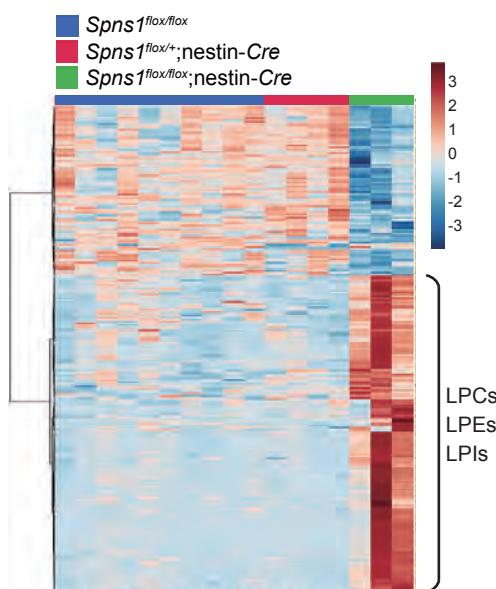
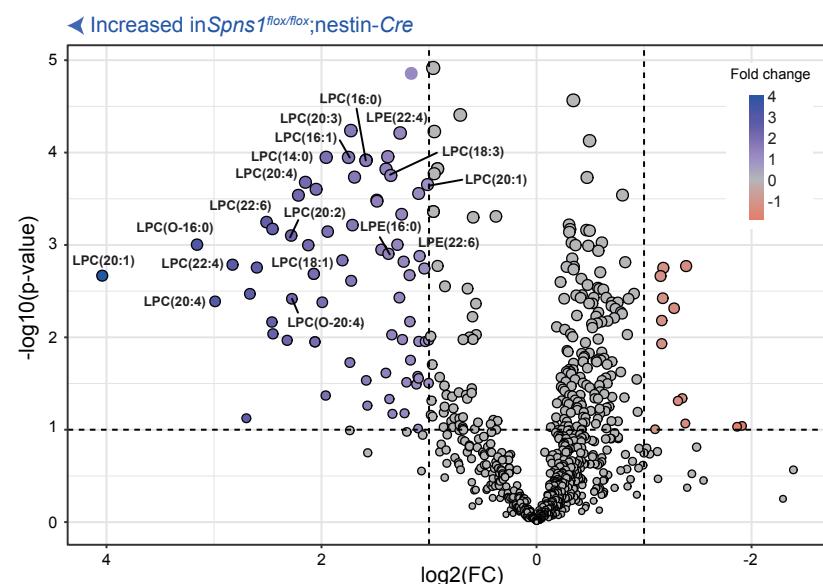
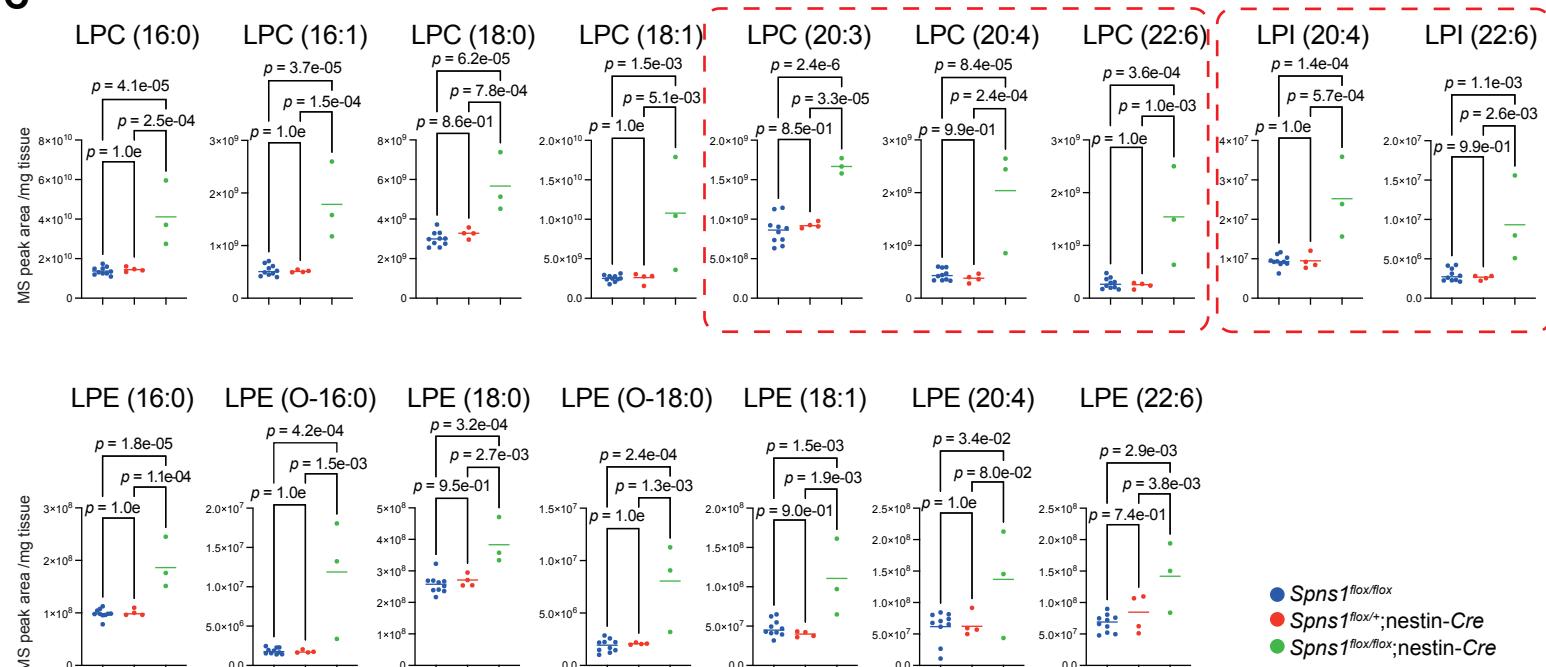






Figure 3


A

B

C

D

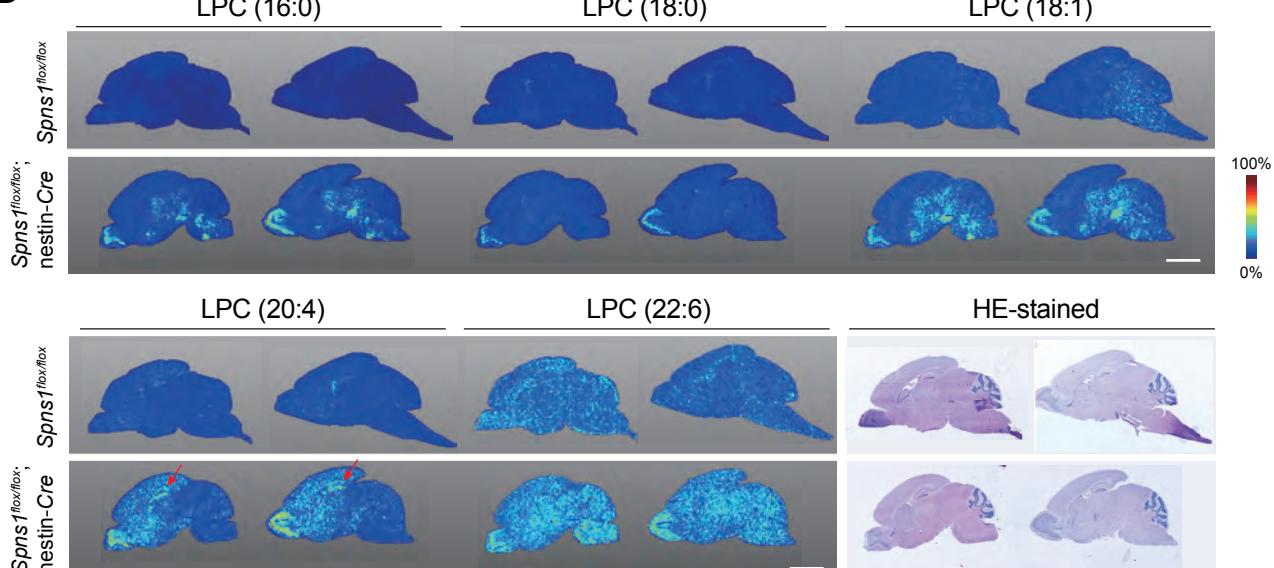
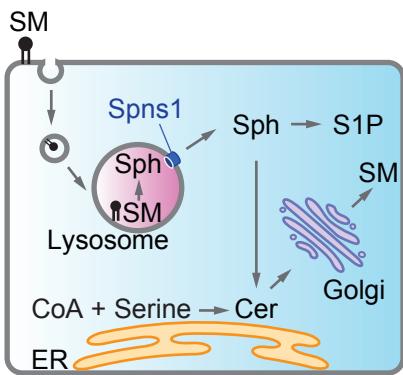
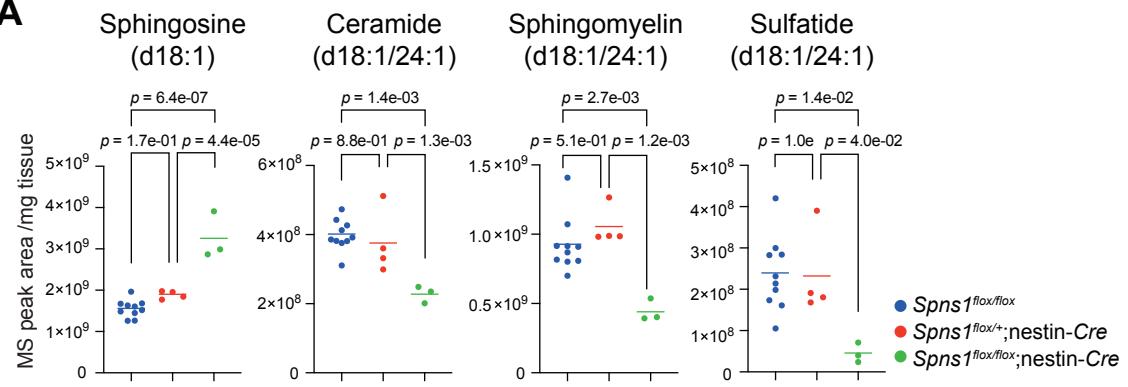
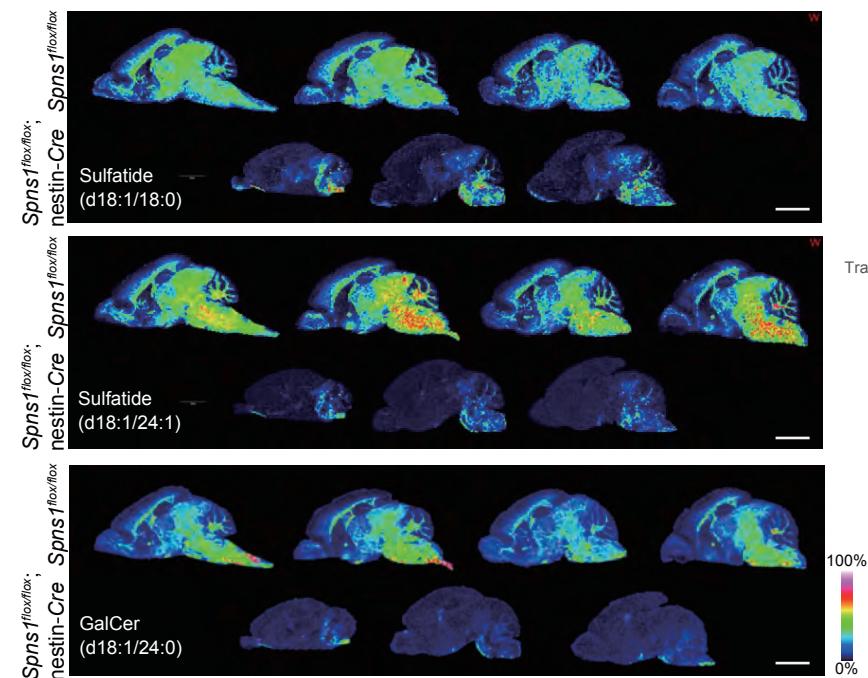
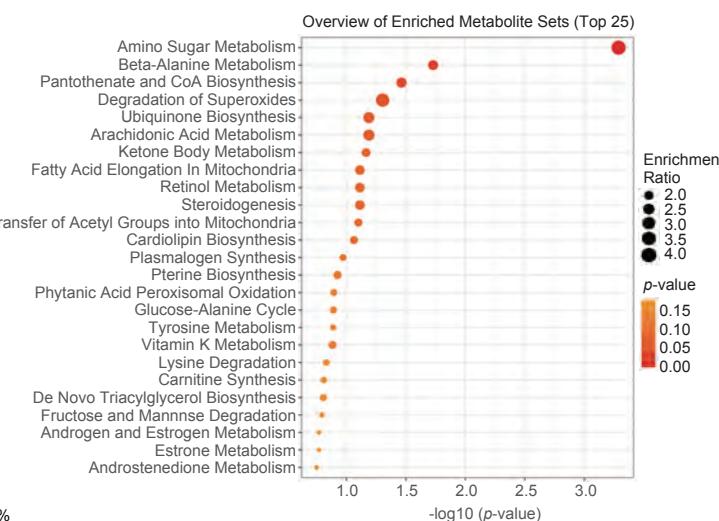
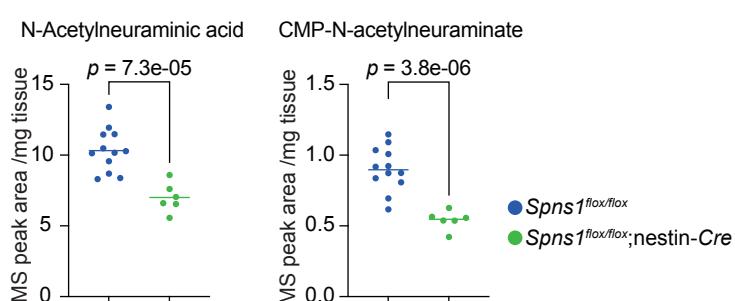





Figure 4


A


B

C

D

E

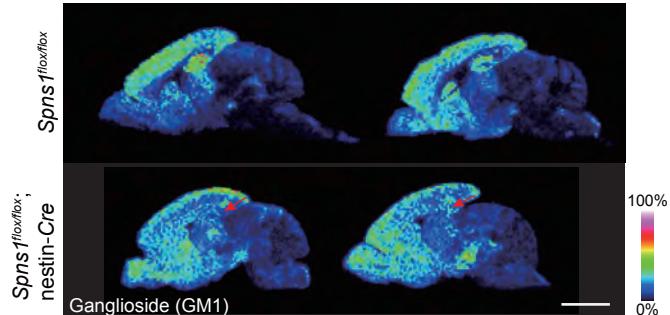


Figure 5