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Abstract

Different animal behavioral phenotypes maintained and selectively bred over multiple generations
may be underscored by dissimilar gut microbial community compositions or not have any
significant dissimilarity in community composition. Operating within the microbiota-gut-brain axis
framework, we anticipated differences in gut microbiome profiles between zebrafish (Danio rerio)
selectively bred to display the bold and shy personality types. This would highlight gut microbe-
mediated effects on host behavior. To this end, we amplified and sequenced a fragment of the 16S
rRNA gene from the guts of bold and shy zebrafish individuals (n=10) via Miseq. We uncovered no
significant difference in within-group microbial diversity nor between-group microbial community
composition of the two behavioral phenotypes. Interestingly, though not statistically different, we
determined that the gut microbial community of the bold phenotype was dominated by
Burkholderiaceae, Micropepsaceae, and Propionibacteriaceae. In contrast, the shy phenotype was
dominated by Beijerinckaceae, Pirelullacaeae, Rhizobiales_Incertis_Sedis, and Rubinishaeraceae.
The absence of any significant difference in gut microbiota profiles between the two phenotypes
would suggest that in this species, there might exist a stable “core” gut microbiome, regardless of
behavioral phenotypes, and or possibly, a limited role for the gut microbiota in modulating this
selected-for host behavior. This is the first study to characterize the gut microbial community of
distinct innate behavioral phenotypes of the zebrafish (that are not considered dysbiotic states)
and not rely on antibiotic or probiotic treatments to induce changes in behavior. Such studies are
crucial to our understanding of the modulating impacts of the gut microbiome on normative animal

behavior.
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Introduction

There is arecent increase in studies detailing the composition of the animal gut microbiota
and their influence on host behavior mediated via metabolic and biochemical linkages (Mohanta et
al., 2020). Most of these studies are mainly correlative and speculative regarding these functions,
with a few empirically determined ones. In essence, the gut microbiota is linked to modulating a
variety of responses ranging from the animal immune system, growth, health, and behavior in many
animals (De Palma et al., 2015; Davidson et al., 2018; Nagpal and Cryan, 2021; Shoji et al., 2023).
This modulating effect is proposed to proceed via the vagus nerve and is mediated by microbe-
derived metabolites (such as histamine, catecholamine regulators, and serotonin). These act as
chemical transmitters between the gut and the brain, stimulating endocrine receptors and
ultimately impacting mood and behavior (Sandhu et al., 2017; Soares et al., 2019; Mohanta et al.,
2020; Williams et al., 2020; Nagpal and Cryan, 2021), in a complex and complicated cascade
collectively referred to as the microbiota-gut-brain axis (MGB axis). In many animal taxa, studies
demonstrate that gut microbiota is linked to exploratory behavior, neophobia, sociality, stress, and
anxiety-related behaviors (Hoban et al., 2016; Burokas et al., 2017; Davidson et al., 2018; Nagpal
and Cryan, 2021). However, these studies show that there is still a lot to be uncovered regarding

the influence of the microbiota on the MGB axis.

Significant work with vertebrates detailing the influence of the microbiota on the MGB axis
usually involves correlations between various non-typical behaviors, such as depression- and
anxiety-like behaviors, and the presence of or absence of bacteria, which are then interpreted as
suggestive of an effect of the gut microbiota (Nagpal and Cryan, 2021). For example, several

correlative studies using fecal microbiota transplant (FMT) studies have found depression-like
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behaviors in recipient antibiotic-treated mice (Leclercq et al., 2020), recipient germ-free mice
(Zheng et al., 2016), recipient naive mice getting FMT from vulnerable (meek) mice compared to
resilient (strong) mice (Pearson-Leary et al., 2020), and in mice deficient in segmented filamentous
bacteria (SFB), but reversed when gavaged with SFB noncolonized feces exhibited antidepressant
behaviors(Medina-Rodriguez et al., 2020). Overall, it is difficult to assess the actual impacts of gut
microbial manipulations on behavioral responses in animal models. This is due to the reliance on
the emergence of “atypical” relative to “typical” behavioral responses in treated and controlled

animal subjects as the best indicator of such microbial impacts.

Having well-characterized behavioral and physiological phenotypes observed and
determined from selectively bred lines gives a unique opportunity to investigate the extent to which
behaviors are influenced by associated gut microbiota. However, such studies are limited. Glover
et al. (2021) uncovered no significant differences in fecal microbiota composition (with and
without antibiotic treatment) nor an associated change in underlying behavior in low novelty
responder (LR) and high novelty responder (HR) rats selectively bred to exhibit timid non-
exploratory and bold and exploratory behaviors, respectively. Similarly, Suhr et al. (2023) did not
detect significant differences in two distinct genetic Rainbow trout lines. In contrast, significant
differences in caecal microbiomes were determined between selectively bred resilient (high litter
size) and non-resilient (low litter size) rabbit lines (Casto-Rebollo et al., 2023) and dogs from well-
established aggressive, phobic, or standard lines (Mondo et al., 2020). However, some evidence
indicates that this can depend on whether a particular animal exists in social groups or is solitary
(Pfau et al., 2023). We argue in this work that investigating the gut-brain axis and its impacts more

definitively on animal behavior broadly requires the use of selectively bred lines with already
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established behavioral phenotypes (empirically underscored by differing neurophysiological

mechanisms) rather than the use of “atypical” behaviors following treatment conditions.

Second to the mouse as a model system for studying the vertebrate MGB dynamic is the
zebrafish, Danio rerio (Fetcho et al., 2008). Most work on the MGB in zebrafish has focused on
loosely defined behavioral responses (if at all), the correlations between these in the presence of
added bacteria (so-called probiotic bacteria) or the absence of bacteria (usually via antibiotic
treatment) between control and treatment groups. These have ranged from decreased shoaling
behavioral displays (Borrelli et al., 2016), reduced appetite (Falcinelli et al., 2016) to decreased
“anxiety-like” (Davis et al., 2016) and reduced bottom-dwelling behavior (Valcarce et al., 2020),
and no observed differences in “anxiety-like” behaviors (Schneider et al., 2016) between adult
zebra fish fed the probiotic Lactobacillus relative to controls. Ironically, clearance or reduction of
gut microbial diversity via antibiotic treatment also impacts the same zebrafish behavior displays
and adds to the MGB phenomena. For instance, exposure to low concentrations of the antibiotic -
dike-tone increased individual exploratory behavior and group shoaling behavior but induced
anxiety-like behaviors in individuals and decreased shoaling behavior at higher concentrations
(Wanget al., 2016). Finally, emerging studies are utilizing gnotobiotic zebrafish larvae to elucidate
neurobehavioral development. However, the observed inconsistencies (host strain used, days
post-infection, husbandry condition, etc.) in the results using GF larvae emerging from these
systems pose a significant challenge (Nagpal and Cryan, 2021). Thus, overall, the presence or
absence of bacteria in zebrafish (because of treatment with probiotics or antibiotics) and the
subsequent deviations after that from a “typical” behavioral state poses limitations on justification

for associated gut microbial effects in the MGB paradigm. In contrast, given their utility as
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114  vertebrate models in models in the MGB paradigm, studies characterizing the underlying gut
115  microbiota of selectively bred lines of zebrafish with already established behavioral phenotypes

116  may offer new insights into this phenomenon.

117 To this end, we believe that animals selectively bred to display distinct and correlated

118  suites of behavioral and physiological responses across contexts and time (i.e. personality types,
119  stress coping styles) represent an ideal context in which to examine the MGB dynamics and

120  whether these different phenotypes are underscored by different gut microbiota. Two common

121 animal personality types across taxa are the bold and shy personality types. Individuals with a bold
122  personality type are characterized by having higher exploratory and aggressive activity, and lower
123  neophobic and glucocorticoid stress responses compared to individuals with shy personality types
124  (Sihetal,, 2004; @verli et al., 2007; Koolhaas et al., 2010). In zebrafish, identification of bold and
125  shy personality types have ranged from behavioral screenings of wild and lab populations to

126  artificial selection (Baker et al., 2017). Wong et al., (2012) described the production of two

127  selectively bred lines of zebrafish from wild caught animals, where the lines show differences in
128  behavior consistent with the shy (HSB) or bold (LSB) personality types across 6 different behavioral
129  assays. The differences in exploratory and stress-related behaviors between the lines are

130  consistent across both contexts and time (Wong et al., 2012; Baker et al., 2018; Johnson et al.,

131 2020). These two phenotypes are underscored by distinct morphology (Kern et al., 2016), basal
132  neurotranscriptomic states (Wong and Godwin, 2015; Wong et al., 2015c), neuromolecular

133  responses to drugs (Wong et al., 2013; Goodman and Wong, 2020), cortisol release rates in

134  response to an acute stressor (Wong et al., 2019), and contextual fear learning and memory

135  performances (Baker and Wong, 2019a). The behavioral differences between zebrafish personality
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136  types have also been observed in other strains of zebrafish (Bellot et al., 2022; Rajput et al., 2022;

137  dos Santos et al., 2023).

138 To examine whether the cataloged differences between the selectively bred bold (HSB) and
139  shy(LSB) lines of zebrafish are further underscored by different gut microbiota, we sequenced and
140  characterized the associated gut microbiota of both males and females from each line. We predict
141  thatthe gut microbiota are essential modulators of host behaviors within the MGB context and that
142  the different phenotypes (shy and bold) would be underscored by distinct gut microbiome profiles
143  (a-diversity and B-diversity). If, on the other hand, zebrafish have a stable and core microbiome
144  assembled through dispersal and host-selective processes (Roeselers et al., 2011), one

145  anticipates no differences in either a-diversity or B-diversity between phenotypes, suggestive of
146  limited gut microbial control or regulation of these personality types within the MGB paradigm in

147  this species.

148 Materials and Methods

149  Animal subjects

150 We used zebrafish from the HSB and LSB selectively bred lines (Wong et al., 2012) that

151 show behavioral, neuroendocrine, and neuromolecular responses consistent with the shy and bold
152  personality types, respectively. As such for simplicity, we will refer to the lines as shy and bold

153  zebrafish. Fish were housed in mixed-sex tanks (40L) on a recirculating system with solid and

154  biological filtration. Fish experienced a 14:10 L/D cycle with a water temperature of 26°C. All fish
155  were fed twice daily with Tetramin Tropical Flakes (Tetra, Blacksburg, VA, USA). Bold (2 females and

156 8 males, n=10) and shy fish (3 females and 7 males, n=10) were randomly captured from their
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home tanks, quickly decapitated, and bodies stored at -20C until tissue processing. Allfish were
between 2-3 years old and had undergone 12-14 generations of selective breeding. All procedures

were approved under UNO IACUC 17-070-09-FC.

DNA extraction and microbiome sequencing

The entire digestive tract of individuals was dissected out following surface sterilization and
under sterile conditions. Briefly, fish were washed for 1 minute in a 1:10 diluted detergent solution
to kill any bacteria on the surface and rinsed twice for 1 minute each in nanopore water. Following
manufacturer protocol, DNA was extracted from the dissected gut using the QIAGEN DNeasy
PowerSoil Pro Kits (QIAGEN, Valencia, CA, USA) from the dissected gut. Extracted DNA was
sequenced at the University of Nebraska Medical Center Genomics Core Facility, following high-
throughput paired-end Illumina MiSeq library preparation. Briefly, a PCR reaction was performed
on samples generating a single amplicon spanning the V4 (515-F) and V5 (907-R) variable region
(Keskitalo et al., 2017). Library validation and DNA quantification were carried out using the Agilent
BioAnalyzer 2100 DNA 1000 chip (Agilent), and Qubit 3.0 (Qubit™, Thermofisher), respectively.
Pooled libraries were loaded into the Illumina MiSeq at 10 pM and spiked with 25% PhiX (a
bacteriophage) for MiSeq run quality as an internal control (Mukherjee et al., 2015) to generate
300 bp paired ends with the 600-cycle kit (version 3). The raw reads were deposited into the

Sequence Read Archive database (BioProject Number: PRINA1070623).

Data processing and statistical analyses

The R package DADA2 (version 1.26.0) was used to process fastq primer-trimmed MiSeq

paired-end reads obtained from the sequencing center, phix sequences were removed, and
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forward and reverse reads were truncated to 290 and 280 base pairs, respectively, with median
scores above 30. A naive Bayes taxonomy classifier was employed to classify each amplicon
sequence variant (ASVs) against the SILVA 138.1 reference database and used to construct the
taxonomy table (Wasimuddin,2020). The ASV count and taxonomy files were combined to generate
a standard ASV table, filtered for sequences identified as chloroplasts, mitochondria, unassigned
at the kingdom level, and eukaryotes. Further analyses were carried out in QIIME v.1.8 (Caporaso et

al., 2010; Kuczynski et al., 2012; Bolyen et al., 2018).

The ASV table was summarized at the family level, and all subsequent analyses were
carried out using this table. Before analyses, two samples with low reads from each group were
removed, and the remaining samples were rarefied to 110 reads per sample and replicated 100
times to capture diversity (Weiss et al., 2017; McKnight et al., 2019; Cameron et al., 2021). To
investigate bacterial diversity, we calculated the chaol (Huang and Zhang, 2013), Simpson’s index
(Simpson, 1949), and Shannon’s evenness (Shannon C.E, 1957) indices in QIIME. Significant
differences among categorical groupings were determined using the non-parametric Wilcoxon
testsin JMP Pro 15 (S.A.S., Cary, NC, USA). For compositional diversity, we generated the Bray-
Curtis dissimilarity distance matrix (Bray and Curtis, 1957) using the rarefied table. This was then
used to calculate non-metric multidimensional scales (NMDS)(Rabinowitz, 1975) to visualize
differences in microbiome composition between behavioral phenotypes. Subsequently,
differences among behavioral phenotypes were examined using permutational multivariate
analysis of variance (PERMANOVA) (Anderson, 2017) with the Bray-Curtis distance matrix as input.
Significant differences in the abundance of ASVs between behavioral phenotypes were examined

using the group_significance command in QIIME at P < 0.05. To assess different potential
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metabolic /function gene profiles between the two phenotypes, we used FAPROTAX for annotation
prediction(Louca et al., 2016). Significant differences in the abundance of annotated functional
predicted profiles between behavioral phenotypes were examined using the group_significance

command in QIIME at P < 0.05.

Results

Quality processing (denoising, filtering, removal of phix, merging of reads, and removal of
chimeras) retained 20.1% of reads (709,722 out of 3,531,286). ASV determination yielded a 1064
ASV across 20 samples. Subsequent curation of the ASV table resulted in a final filtered table of
706 ASV across 18 samples (two dropped due to low number of reads) (Num samples: 18, Num
observations: 706, Total count: 65,201, with a distribution of Min: 113.000, Max: 14,907.000,

Median: 1,601.500, Mean: 3,622.278, Std. dev.: 4,571.296).

An examination of unique bacterial taxa present in the gut microbiome (a-diversity) did not
uncover any significant differences across the four indices examined between the bold and shy
behavioral phenotypes (observed ASVs, T-test statistic: 34, P-value: 0.83), (Chao1, T-test statistic:
24.5, P-value: 0.45), (Shannon’s evenness , T-test statistic: 40, P-value: 0.41), and (Simpson’s
index, , T-test statistic: 31, P-value: 0.35)(Fig. 1). We uncovered no significant sex-specific
differences across behavioral phenotypes (observed ASVs, T-test statistic: 18.5, P-value: 0.95),
(Chaol, T-test statistic: 22, P-value: 0.78), (Shannon’s evenness, T-test statistic: 18, P-value: 0.90),

and (Simpson’s index, T-test statistic: 18, P-value: 0.90).

Similarly, examination of the community composition of the gut microbiomes (B-diversity)

between the two behavioral phenotypes did not yield any significant differences (PERMANOVA; F-
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value =0.75; R?=0.0448; P-value=0.56) (Fig 2A). A dendrogram examining microbiome community
compositions between the two did not reveal any cluster associated with behavioral phenotypes
(Fig. 2B). However, no sex specific differences in microbial community composition were
uncovered between the behavioral phenotypes (PERMANOVA; F-value = 0.90; R?= 0.0600; P-value=

0.403).

Overall, core microbiome analyses revealed the presence and abundance of ~ 16 bacterial
families shared between the two behavioral phenotypes (Fig. 3A). These are bacterial taxa in both
behavioral phenotypes. These 16 bacterial families are distributed across six phyla, namely,
Actinomycetota (families Myobacteriacceae and Streptomycetoceae), Bacillota or Firmicutes
(family Streptococcaceae), Bacteroidota (family Chitiniphagaceae), Fusobacteriota (family
Fusobacteriaceae), Planctomycota (family Pirellulaceae and Gemmataceae), and
Pseudomonadota (families Alcaligenaceae, Aeromonadaceae, Enterobacteriaceae,
Pseudomonadaceae, Rhodocbacteriaceae, Rhizobiales, Rhizobiaceae, and Sphingomonadaceae).
An analysis of bacterial families differentially abundant between shy and bold behavioral
phenotypes (group_significance) yielded eight bacterial families at the P-value = 0.05 (Fig. 3B)
(Table S1). These bacteria taxa may either be absent or present in significantly lower relative
abundance in one group or the other and differ fundamentally from members of the “core”
microbiota. Bacterial taxa differentially abundant in the shy zebrafish are the Pseudomonadota
(Proteobacteria) (families Beijerinckiaceae and Rhizobiales_Incertae_sedis) and Planctomycetota
(families Pirellulaceae and Rubinisphaeraceae). In contrast, the bacterial taxa Pseudomonadota
(families Burkholderiaceae, Micropepsaceae, and Rhodonobacteraceae) and Actinomycetota

(family Propionibacteraceae) are differentially abundant in the bold zebrafish. (Fig. 3B). Functional
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annotation based on the partial 16SrRNA gene did not yield any significant difference between the
two behavioral phenotypes, which may underlie the cataloged behavioral differences (Figure S1

and Table S2).

Discussions

We characterized the gut microbiota of individuals from two distinct selectively bred lines
of zebrafish that differ consistently in their exploratory behaviors and physiological responses (bold
and shy personality types). Different animal behavioral phenotypes maintained and selectively
bred over multiple generations may be underscored by dissimilar gut microbial community
compositions. Operating within the MGB framework, we anticipated differences in gut microbiome
profiles between the two distinct behavioral phenotypes. This would be underscored by different a-
diversity and B-diversity measures between both phenotypes, thus highlighting microbe-mediated
effects on host behavior. Alternatively, different animal behavioral phenotypes maintained and
selectively bred over multiple generations may not differ significantly in community compaosition,
suggestive perhaps of the existence of a stable “core” gut microbiome and, thus, a limited role for
the gut microbiota in modulating host behavior within the MGB paradigm. The absence of
significant differences in the number of unique ASVs (a-diversity) and community composition
following the characterization of the gut microbiota in adult shy and bold zebrafish was unexpected
in this study. Previous studies using less defined and characterized zebrafish behavioral responses
have uncovered significant differences in gut microbiome composition between treatment and
control adult zebrafish. In these studies, animals selectively fed with a probiotic or an antibiotic
exhibited altered gut microbiome profiles, and these were associated with a behavior change. For

example, significant increases in Firmicutes were reported in adult zebrafish fed the probiotic
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265  Lactobacillus rhamnosus, resulting in decreased shoaling behavior (Borrelli et al., 2016) and

266  reduced appetite (Falcinelli et al., 2016) relative to controls. However, the observed increase in
267  Firmicutes in the mentioned studies is unsurprising as Lactobacillus fed to the treatment zebrafish
268 isinthe phylum Bacillota (formerly Firmicutes). Furthermore, although no such increases in

269  Firmicutes were observed in zebrafish fed the probiotic, Lactobacillus plantarum, there were,

270  however, limited increases in the abundances of several bacterial taxa between treatment (with
271 reduced anxiety-like behaviors) and control individuals (Davis et al., 2016). In contrast, we used
272  animals with inherently different behavioral phenotypes in this study. Thus, we uncovered no

273  comparable enrichment of Firmicutes in this study, which is in contrast with studies that have

274  found Firmicutes to be one of the dominant members of the adult zebrafish gut microbiome

275  (Kanther and Rawls, 2010; Roeselers et al., 2011; Stephens et al., 2016; Murdoch and Rawls,

276  2019). Itis unclear if this may be related to the two behavioral phenotypes used in this study. As far
277  as we know, this is the only study we are aware of to characterize the in situ gut microbial

278  community composition of any bold and shy zebrafish phenotypes (Bellot et al., 2022; Rajput et al.,
279  2022)in general or of the particular genetic background from the shy and bold personality type

280 lines (Wongetal., 2012).

281 In this study, the lack of dissimilarity between the two zebrafish behavioral phenotypes is
282  supported by other zebrafish intestinal microbiota characterization studies but without a

283  behavioral phenotype context. For example, no differences in microbiome composition were

284  determined between wild-caught and laboratory-maintained zebrafish colonies (from multiple
285 locations)(Roeselers et al., 2011), nor between co-housed wild-type and immune-deficient myd88

286  knockouts zebrafish (Burns et al., 2017). The emerging takeaway from both studies is that the
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zebrafish gut microbiome might be underscored by dispersal-related microbial traits, which results
in a higher within-host microbial diversity but reduced overall between-host diversity (Burns et al.,
2017). The reported reduced B-diversity from across these studies, ostensibly, might be indicative
of a host-dependent screening or selective process that selects for a “core” associated gut
microbiome despite limited variation across several laboratory-maintained zebrafish populations
in multiple labs (Roeselers et al., 2011). However, the presence of a stable core gut microbiota in
this species, irrespective of different behavioral phenotypes, does not suggest the absence of a
modulating effect of the gut microbiota on host behavior within an MGB context. This is because
the underlying premise of this study that different behavioral phenotypes would be underscored by
different gut microbiota is well supported by previous studies in mice (McGaughey et al., 2019;
Agranyoni et al., 2021) and by the various ways gut microbiota are postulated to modulate host

behaviors.

Itis important to note that it is uncertain if this study's shy or bold behavioral phenotypes
represent a dysbiotic state. While many studies compare regular to dysbiotic individuals in
examining the correlations between behavior (disease state) and gut microbiota, in this study, we
are not constrained to nor limited in this way, as both phenotypes can be considered “normal” and
healthy. Given the well-characterized behavioral, morphological, physiological, and
neurobiological differences between the shy and bold zebrafish phenotypes used in this study
(Wong et al., 2012, 2019; Wong and Godwin, 2015; Kern et al., 2016; Baker et al., 2018; Baker and
Wong, 2019b, 2021; Johnson et al., 2020), and despite the lack of any significant differences in
potential metabolic functional profiles between the phenotypes (Fig.S1 and Table S2), it is possible

that the microbiome could still be modulating the host behavior even without an underlying
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309 difference in community composition. This is true for social animals (primate and non-primates)
310 thatvary significantly in terms of within-group individual behaviors (Archie and Tung, 2015;
311 Pasquaretta et al., 2018) but tend to have a more homogenized within-group gut microbiota (Lax et

312 al.,2014; Moeller et al., 2016; Raulo et al., 2021).

313 Gut microbes modulate animal behavior within the MGB context by producing metabolites
314  (ortheir precursors) that function as chemical communication signals between the gut and the
315 nervous and endocrine systems (Schretter, 2020). Short-chain fatty acids (SCFAs) produced by a
316  plethora of fermentative gut-associated bacteria in animals (Silva et al., 2020), as well as other
317  microbe-produced neurotransmitters, are known to influence behaviors (Homer et al., 2023).

318 Dopamine, acetylcholine, serotonin, and gamma-aminobutyric acids (GABA) are some examples of
319 neurotransmitters demonstrated to be synthesized both by the neurons and by some gut bacteria
320 (Wongetal., 2015a; Silva et al., 2020; Homer et al., 2023). Members of the phylum

321  Actinomycetota, particularly Bifidobacterium, produce GABA, which influences behaviors.

322  Similarly, Propionibacteriaceae (phylum Actinomycetota), which was abundant in Bold zebrafish in
323  this study, produces propionate, an essential SCFA (Turgay et al., 2022) that may be involved in
324  modulating this behavioral phenotype in bold relative to shy zebrafish. However, several members
325  of other bacterial phyla determined to be differently abundant in this study (Pseudomonadota,

326  Planctomycetota, and Actinomycetota) in both shy and bold zebrafish are known SCFA-producing
327 taxa(Deleuetal., 2021; Frolova et al., 2022), making it challenging to assign differences between
328 thesetwo zebrafish lines to bacterial taxonomy and abundance. The possibility remains, however,
329 thatthe differentially abundant taxa (even in the absence of significant dissimilarity between the

330 two phenotypes) may be mediating processes related to observed differences in physiological
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331 markers, such as cortisol (Wong et al., 2019), memory (Baker and Wong, 2019), and

332  neurotranscriptomic expressions (Wong et al., 2015) between these two lines.

333 In conclusion, the results of our study suggest that behaviorally distinct and cataloged

334  zebrafish phenotypes are not underscored by statistically significant differences in gut microbiome
335  diversity and composition. This starkly contrasts with studies utilizing disruption or

336  supplementation approaches to modulating the gut microbiome and examining the impact of

337 these treatments on animal behaviors. In these studies, the “response” behaviors are not always
338 aswell characterized as the intrinsic behavioral phenotypes in this study. The implications of the
339 resultsin this study for gut microbe-mediated behavioral responses within the MGB paradigm are
340 unclear. However, as a first step, utilizing well-characterized and cataloged behaviors in gut

341 microbiome disruption or supplementation studies in the MGB context might be a more rigorous
342  experimental approach to yield empirical data supporting the mediator effects of gut microbiota on

343 animal behavior.
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628
629  Figure legends.

630  Figure 1. Non-significant alpha diversity estimates A) observed_ASVs, B) Chao1l, C) Shannon’s
631 evenness, and D) Simpson’s Index, between the gut microbiomes of bold (proactive) and shy

632  (reactive) zebrafish behavioral phenotypes.

633  Figure 2. Examination of gut microbiome community composition of bold and shy zebrafish
634  behavioral phenotypes displayed as A) an NMDS plot and B) as a dendrogram showing the

635 absence of behavior-based clustering. (PERMANOVA; F-value =0.75; R?=0.0448; P-value=0.56).

636  Figure 3. A) The 16 bacterial families and their relative abundances comprising the core gut
637  microbiome of the bold and shy zebrafish behavioral phenotypes, and B) the eight differentially
638 abundant bacterial families that vary in abundance between the bold and shy zebrafish behavioral

639  phenotypes.
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