

1 **Brachiopod genome unveils the evolution of the BMP–Chordin**
2 **network in bilaterian body patterning**

3
4 Thomas D. Lewin¹, Keisuke Shimizu², Isabel Jiah-Yih Liao¹, Mu-En Chen¹,
5 Kazuyoshi Endo³, Noriyuki Satoh⁴, Peter W. H. Holland⁵, Yue Him Wong^{6*}, Yi-Jyun
6 Luo^{1*}

7
8 ¹Biodiversity Research Center, Academia Sinica, Taipei, Taiwan.

9 ²Research Institute for Global Change, Japan Agency for Marine Science and Technology,
10 Kanagawa, Japan.

11 ³Department of Earth and Planetary Science, Graduate School of Sciences, The University
12 of Tokyo, Tokyo, Japan.

13 ⁴Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University,
14 Okinawa, Japan.

15 ⁵Department of Biology, University of Oxford, Oxford, UK.

16 ⁶Institute for Advanced Study, Shenzhen University, Shenzhen, China.

17 *Corresponding authors: Yue Him Wong (timwong@szu.edu.cn), Yi-Jyun Luo
18 (yjluo@gate.sinica.edu.tw)

19

20 **Abstract**

21 Bone morphogenetic protein (BMP) signalling is crucial in regulating dorsal–ventral patterning
22 and cell fate determination during early development in bilaterians. Interactions between BMP
23 ligands and their main antagonist, Chordin, establish BMP gradients, subdivide embryos into
24 distinct territories and organise body plans. However, the molecular control and evolutionary
25 origins of dorsal–ventral patterning within spiralian, one of the three major bilaterian groups,
26 have been obscured by their unique embryonic development. Here we present the
27 chromosome-level genome of a spiralian with deuterostome-like development, the brachiopod
28 *Lingula anatina*, and apply functional transcriptomics to study dorsal–ventral patterning under
29 the control of BMP signalling. We uncover the presence of a dorsal–ventral BMP signalling
30 gradient in the *L. anatina* gastrula with *bmp2/4* and *chordin* expressed at its dorsal and ventral
31 sides, respectively. Using small-molecule drugs, exogenous recombinant BMP proteins and
32 RNA sequencing, we show that a high level of BMP pathway activation inhibits the expression
33 of neural genes during gastrula and larval stages. We also show that BMP signalling splits the
34 developing larval shell field into two valves. The discovery of a BMP-mediated dorsal–ventral

35 patterning system in a spiralian, similar to those observed in deuterostomes and non-spiralian
36 protostomes, suggests deep conservation of this mechanism across all three major bilaterian
37 clades. This is further supported by striking similarities in the gene sets regulated by BMP
38 signalling in brachiopods and the vertebrate model *Xenopus*. We argue that the spiralian
39 ancestor retained the basal bilaterian mechanism of dorsal–ventral patterning, although
40 downstream components of the BMP–Chordin network have undergone dynamic evolutionary
41 changes.

42

43 **Introduction**

44 The integration of bone morphogenetic protein (BMP) signalling into the patterning of the
45 dorsal–ventral axis is a cornerstone of bilaterian embryonic development. The common
46 ancestor of bilaterians likely established this axis through an interplay between *Bmp2/4*
47 signalling molecules and their antagonists, such as Chordin^{1–3}. In chordates, this interaction
48 creates a BMP gradient, dividing the ectoderm into two distinct domains, a dorsal neural
49 domain (low BMP) and a ventral epidermal domain (high BMP), in a process known as neural
50 induction^{4,5}. In the classical vertebrate model *Xenopus*, this gradient is regulated by the
51 Spemann-Mangold organiser, a signalling centre that produces a cocktail of BMP antagonists,
52 including Chordin^{4,6,7}, Noggin^{8,9} and Admp¹⁰. In the fruit fly *Drosophila*, the BMP gradient is
53 completely inverted, with dorsal Dpp/BMP and ventral Sog/Chordin, but neural domain
54 formation is still induced at the low BMP end of the gradient^{11–14}. This reversed pattern is
55 considered to be the bilaterian ancestral state and is shared by protostomes and basal
56 deuterostomes^{15–17}. Aside from the dorsal–ventral axis inversion in chordates^{16,18}, the
57 ancestral BMP-mediated patterning mechanism remains highly conserved across diverse
58 members of two of the three main groups of bilaterians: deuterostomes and ecdysozoans^{19,20}.

59 Within Spiralia, a diverse group of protostomes including brachiopods, molluscs,
60 annelids, and platyhelminths that constitutes the third major bilaterian clade, there appears to
61 be no consistent role for BMP signalling in dorsal–ventral axis patterning²¹. As a sister group
62 to Ecdysozoa, Spiralia displays diverse body patterning systems, including alternative BMP
63 paralogues²², region-specific BMP signalling^{23–25}, and even complete absence of BMP
64 signalling²⁶. For instance, perturbations to BMP signalling in the annelid *Capitella teleta* did
65 not affect dorsal–ventral axis formation or central nervous system development but resulted
66 in abnormal left–right asymmetries^{24,27}. In the mollusc *Crepidula fornicata*, BMP signal
67 perturbations affected neural and epidermal cell fates in the head region but not the trunk²³.
68 In another annelid, *Chaetopterus pergamentaceus*, Activin/Nodal signalling but not BMP
69 signalling is the key specifier of the dorsal–ventral axis^{26,28}. Indeed, the key BMP antagonist

70 Chordin has been lost many times independently within annelids²⁹ and other spiralian like
71 platyhelminths³⁰. In some species, such as the molluscs *Lottia goshimai* and *Ilyanassa*
72 *obsoleta*, BMP signals involved in dorsal–ventral patterning are present but have a positive
73 effect on neurogenesis^{31,32}, opposite to that in ecdysozoans and deuterostomes. In light of
74 these experiments, the ancestral function of the BMP signalling pathway in spiralian
75 development remains unclear²⁷. This highlights a major gap in understanding the evolution of
76 the BMP–Chordin axis, particularly as spiralian embryos' unique spiral cleavage^{33,34}
77 complicates direct comparisons with other bilaterians at gastrulation, the key stage for dorsal–
78 ventral patterning.

79 Brachiopods, especially those from lesser-studied benthic macrofauna in intertidal
80 zones, have the potential to become invaluable models in studying BMP–Chordin axis
81 evolution. Unlike typical spiralian, lingulid brachiopods exhibit radial embryonic cleavage³⁵,
82 possibly reflecting a reversion to the ancestral state, allowing direct gastrula stage
83 comparisons with other deuterostome embryos. Previous studies have indicated that
84 brachiopods such as *Novocrania anomala* and *Terebratalia transversa* may use a BMP–
85 Chordin network for dorsal–ventral patterning that is similar to that of ecdysozoans and
86 deuterostomes³⁶. As a result, this group of brachiopods makes ideal subjects for
87 comprehensive studies of the BMP–Chordin axis and for dissecting evolutionary scenarios
88 between spiralian and other bilaterians.

89 Here we present the first chromosome-level genome of a brachiopod, *Lingula anatina*.
90 We then incorporate this assembly into an updated phylogeny of lophotrochozoans and use
91 comparative genomics to characterise BMP pathway component evolution in bilaterians. We
92 further investigate dorsal–ventral patterning during *L. anatina* embryonic development. We
93 find that BMP signalling is initially activated at the animal pole and subsequently at the dorsal
94 side of the gastrula, suggesting deep conservation of the BMP gradient in spiralian despite
95 their unique development. Using small-molecule drugs and recombinant proteins together with
96 functional transcriptomics, we demonstrate that BMP signalling inhibits neuronal gene
97 expression at both gastrula and larval stages. Our findings highlight the conserved aspects of
98 the BMP–Chordin axis in brachiopods, reflecting similarities in body patterning with both
99 protostomes and deuterostomes. This suggests that the spiralian ancestor employed a
100 patterning mechanism similar to those found in these groups.


101

102 **Results**

103 **Chromosome-level assembly of the brachiopod genome**

104 To explore the functions of BMP signalling in the brachiopod *L. anatina*, we first sequenced
105 its genome to chromosome level using PacBio HiFi (405-fold coverage) and Hi-C (171 million
106 paired reads) technologies (Extended Data Fig. 1a–c and Supplementary Tables 1 and 2).
107 The resulting assembly is 329.3 Mb in length with a 36.5% GC content and consists of 31.7%
108 repetitive elements (Supplementary Fig. 1 and Supplementary Tables 3 and 4). There have
109 been recent expansions of repeats, particularly long terminal repeat elements, in the genome
110 of *L. anatina* and other Lophophorata members (Extended Data Fig. 2a,b). The assembly has
111 a scaffold N50 of 30.1 Mb, a substantial improvement over the previous scaffold-level genome
112 with a scaffold N50 of 0.5 Mb³⁷, and is comparable in quality to other high-quality spiralian
113 genomes^{29,38–40} (Fig. 1a and Supplementary Table 5).

114

115

116 **Fig. 1 | Brachiopod genome supports the Lophophorata hypothesis and reveals BMP**
117 **signalling pathway evolution.** **a**, Assembly quality comparison across selected spiralian
118 genomes. The *L. anatina* assembly presented in this study (denoted with an asterisk)
119 comprises ten chromosome-scale scaffolds. Horizontal dashed line at 10 Mb distinguishes
120 scaffold-level genomes from chromosome-level genomes. **b**, Maximum likelihood
121 phylogenetic inference of relationships between spiralian using the LG+F+R5 substitution
122 model with 1,000 bootstrap replications. Phylogenetic tree was inferred from 109 single-copy
123 orthologous genes with high topological robustness (average bootstrap support > 85%).
124 Open circles denote 100% bootstrap support. Species in bold have chromosome-level
125 assemblies. Species with shaded silhouettes are included in further synteny analysis. The
126 traditional Lophophorata clade, highlighted in blue, comprises Brachiopoda, Phoronida and
127 Bryozoa. **c**, Heatmap showing BMP signalling pathway gene repertoires in bilaterians.
128 Vertical dashed lines separate the three main bilaterian clades: spiralian, ecdysozoans and
129 deuterostomes. Lophophorata is shaded in blue. **d**, Chromosome-scale gene linkage
130 observed between amphioxus, scallops and brachiopods. Horizontal bars denote
131 chromosomes. Dark grey chromosomes indicate ancestral spiralian fusion events, while light
132 grey chromosomes represent lineage-specific fusion events. Vertical lines between

133 chromosomes link the genomic positions of orthologous genes and are colour-coded based
134 on bilaterian ancestral linkage groups (ALGs)⁴¹. The *L. anatina* genome has undergone
135 extensive rearrangements, with lineage-specific fusion events resulting from chromosomes
136 1, 2, 3, and 7. Notably, the expansive *L. anatina* chromosome 1 equates to six distinct
137 chromosomes in *P. maximus*. In the selected bilaterians, the Hox cluster's location aligns
138 with its affiliation to ALG B2. **e**, Conserved associations of BMP signalling pathway genes
139 and ALGs in amphioxus, scallops and brachiopods.
140

141 The majority of the assembly consists of 10 chromosome-scale scaffolds accounting
142 for 97.8% of the total length, consistent with previous karyotype observations ($n = 10$)⁴². Gene
143 prediction and annotation using newly generated RNA sequencing data resulted in highly
144 complete gene models with a BUSCO score of 98.1% (Metazoa *odb10*) (Extended Data Fig.
145 1d and Supplementary Tables 6–10). These gene models comprise 29,458 transcripts
146 corresponding to 24,330 unique protein-coding genes, with extensive redundancy reduction
147 achieved compared to the previous assembly (Supplementary Fig. 1 and Supplementary
148 Table 3). Gene family analysis reveals a gene content that is more stable than those of other
149 Lophotrochozoans (Supplementary Fig. 2 and Supplementary Table 11). Notably, we found
150 that longer chromosomes have a higher density of protein-coding genes and a lower density
151 of repeats (Extended Data Fig. 3).
152

153 **Spiralian phylogeny and the Lophophorata hypothesis**

154 Reliable phylogenetic relationships are essential for understanding the direction of
155 evolutionary change⁴³, yet the phylogenetic relationships between spirilians remain highly
156 contentious^{44–46}. To explore the evolution of the BMP–Chordin pathway, we built an updated
157 phylogenetic tree focussed on the Lophotrochozoa, a major clade within Spiralia, by
158 integrating newly sequenced chromosome-level genomes of brachiopods (this study),
159 bryozoans^{47,48}, nemerteans⁴⁰, and molluscs^{39,49} (Supplementary Table 12). We then selected
160 only orthologues with the strongest signal for phylogenetic reconstruction (see Methods).
161 Using this method, we identified a monophyletic Lophophorata, in which Bryozoa and
162 Phoronida form a clade that is sister to Brachiopoda (Fig. 1b). Historically, the shared
163 morphological feature of the lophophore—a ciliated tentacle-like feeding structure—has
164 supported this clade, but several molecular studies have questioned the inclusion of
165 bryozoans in this taxonomic grouping^{50–52}. Intriguingly, we found that species trees
166 constructed from orthologues with weaker phylogenetic signals support a polyphyletic
167 Lophophorata (Extended Data Fig. 4). Our analysis suggests that the Polyzoa topology, which
168 groups Bryozoa with Entoprocta and Cycliophora⁵¹, may emerge when unreliable data with a
169 high signal-noise ratio is used.

170

171 **BMP pathway components in bilaterian genomes**

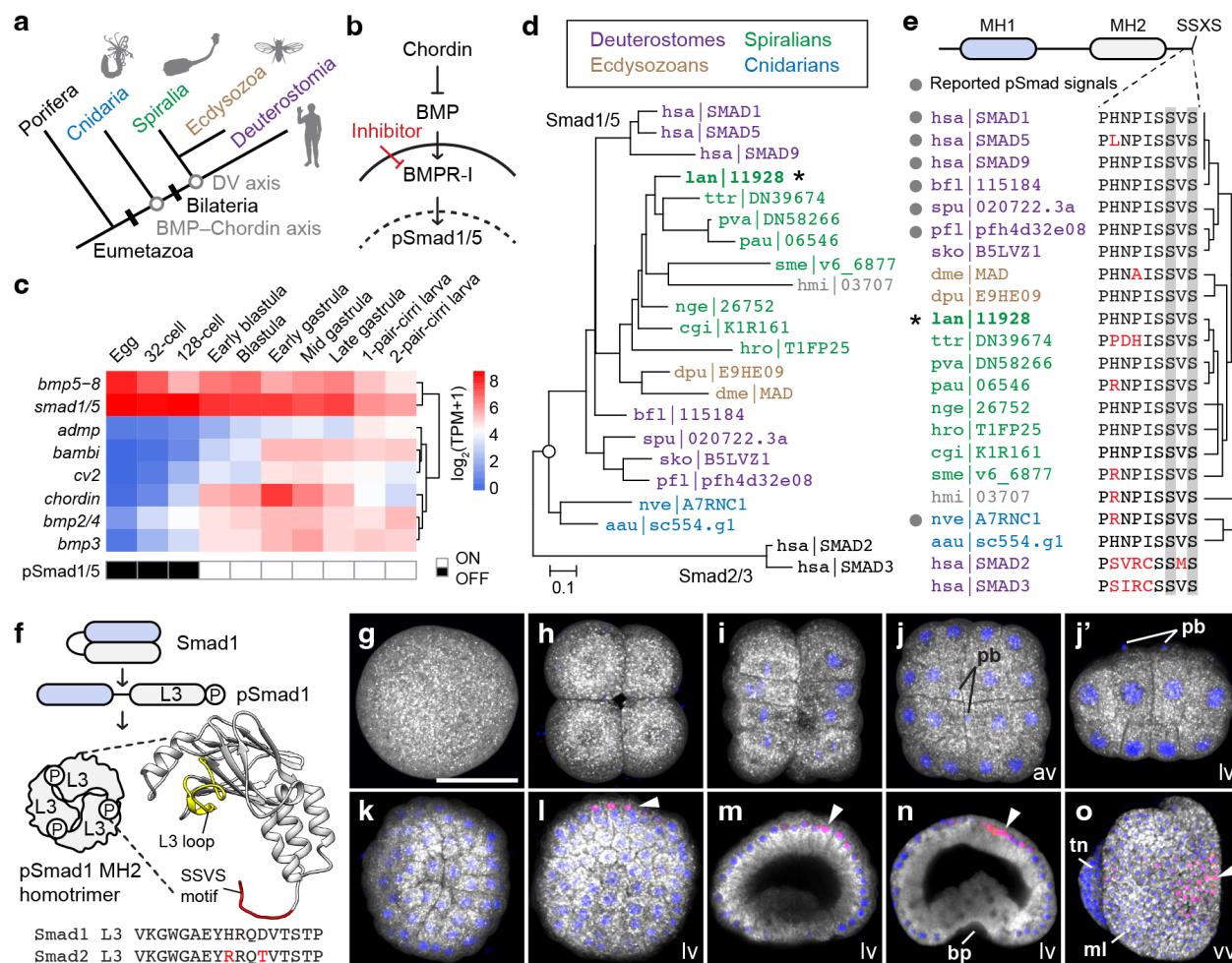
172 The absence of high-quality genomes has hindered accurate assessment of gene duplications
173 and losses in numerous spiralian groups, especially in understudied lineages such as
174 brachiopods, phoronids, bryozoans, and nemerteans. To reconstruct the evolution of the BMP
175 signalling pathway in bilaterians, we utilised several lophotrochozoan and outgroup species
176 with chromosome-level assemblies. We then annotated BMP pathway components in these
177 genomes based on reported pathway genes in model systems such as *Xenopus*⁵,
178 *Drosophila*⁵³ and sea urchins⁵⁴ and sought to characterise the evolution of BMP components
179 through gene duplication and loss analysis (Fig. 1c, Supplementary Fig. 3 and Supplementary
180 Tables 13 and 14). We found that the main ligands and modulators associated with dorsal–
181 ventral patterning, notably *bmp2/4* and *chordin*, are highly conserved in the Lophotrochozoa,
182 with *bmp2/4* present in all sampled species and *chordin* only lost within annelids²⁹ (Fig. 1c).

183 In contrast, other BMP components show remarkable variation considering their
184 developmental importance. This is epitomised by bryozoans, which possess numerous
185 lineage-specific duplications and losses to many key components at a scale comparable to
186 known divergent groups like platyhelminths⁵⁵. Two copies each of *admp*, *cv2* and *noggin* are
187 present and we failed to find *acvr1*, *noggin-like* and any of the three *DAN* family genes. We
188 also found 11 copies of *smad1/5* in the bryozoan *Membranipora membranacea*. Dynamic
189 duplications and losses are not limited to bryozoans: the brachiopod *L. anatina* has a *smad1/5*
190 duplicate, a partial *acvr1* duplicate and *noggin-like* is absent; the phoronid *Phoronis australis*
191 has two copies of *smad4* and three of *cv2*; the nemertean *Lineus longissimus* has two copies
192 of *bambi*; two mollusc assemblies lack *bmp3*; two annelid assemblies lack *sclerostin*; and *nbl1*
193 is missing from all selected species except *L. anatina* and *P. australis*. Numerous gene
194 duplicates are identified in the nemertean *Notospermus geniculatus*, but based on BUSCO
195 duplication scores (Extended Data Fig. 1) and the lack of duplicates in the nemertean *L.*
196 *longissimus*, these are likely attributable to false haplotypic duplications^{56,57}. This finding
197 highlights the need for high-quality chromosome-level genomes for gene content analyses.
198 Overall, BMP pathway repertoires exhibit notable evolutionary variation within spiralian,
199 indicating that BMP gradients are intricately modulated and may have evolved to adapt diverse
200 developmental modes and environmental contexts across various bilaterian lineages.

201

202 **Conserved syntenic associations of BMP pathway genes**

203 We next questioned whether the developmental importance of BMP genes as an ancestral
204 mechanism for body patterning in bilaterians has affected the evolution of their genomic
205 position. To explore this hypothesis, we analysed genome-scale linkage conservation,
206 focusing on the macrosynteny of BMP genes in five selected bilaterians: the brachiopod *L.*
207 *anatina*, the mollusc *Pecten maximus*³⁹, the nemertean *L. longissimus*⁴⁰, the annelid *Owenia*
208 *fusiformis*²⁹ and the chordate *Branchiostoma floridae*⁵⁸. We first identified the correspondence
209 between chromosomes and bilaterian ancestral linkage groups (ALGs)⁴¹, then characterised
210 the events of chromosome fusion and fission (Fig. 1d and Supplementary Tables 15 and 16).
211 Strikingly, our analysis reveals massive lineage-specific fusion-with-mixing in *L. anatina*, with
212 chromosomes 1, 2, 3 and 7 all the products of fusion events (Fig. 1d). The giant 71.9 Mb *L.*
213 *anatina* chromosome 1 consists of nine bilaterian ALGs (C1, G, I, J2, K, L, O1, O2 and R) and
214 corresponds to six separate *P. maximus* chromosomes (Extended Data Fig. 5). Further
215 comparison with the annelid *O. fusiformis* and nemertean *L. longissimus* suggests
216 independent fusion events in brachiopods and annelids (Extended Data Fig. 6). We next
217 identified the genomic locations of BMP pathway components to assess their associations
218 with an ALG. Our results show remarkable conservation: in each of the five selected bilaterian
219 genomes, all 23 annotated BMP components are invariably linked to the same ALG (Fig. 1e
220 and Supplementary Table 17). This exceeds the usual ALG conservation rate found in
221 randomly selected genes (chi-square test, $p = 0.003$) (Supplementary Table 18), suggesting
222 a higher tendency for BMP pathway genes to maintain their specific ALG associations.
223 Evolutionary conservation of the genomic locations of BMP pathway components may reflect
224 the preservation of regulatory programs across large evolutionary spans.


225 To determine if the conservation of ALG associations is a characteristic unique to BMP
226 pathway components, we extended our analysis to other genes with conserved, ancient roles
227 in development. Remarkably, all 12 Wnt ligands found in both spiralian and chordates
228 demonstrated 100% association with a single ALG across the five studied species, a rate
229 significantly higher than the average ALG conservation (chi-square test, $p = 0.038$)
230 (Supplementary Table 19). In addition, the Hox gene cluster is consistently associated with
231 bilaterian ALG B2 in all analysed species. This persistent conservation of developmental
232 genes' genomic locations, from brachiopods to chordates, despite widespread chromosomal
233 rearrangements, implies evolutionary constraints on the mobility of these genes among ALGs.
234 We propose that there is a stronger selective pressure at crucial developmental loci to
235 maintain associations with regulatory elements in nearby genomic regions, thereby preventing
236 their translocation and resulting in highly conserved macrosynteny.

237

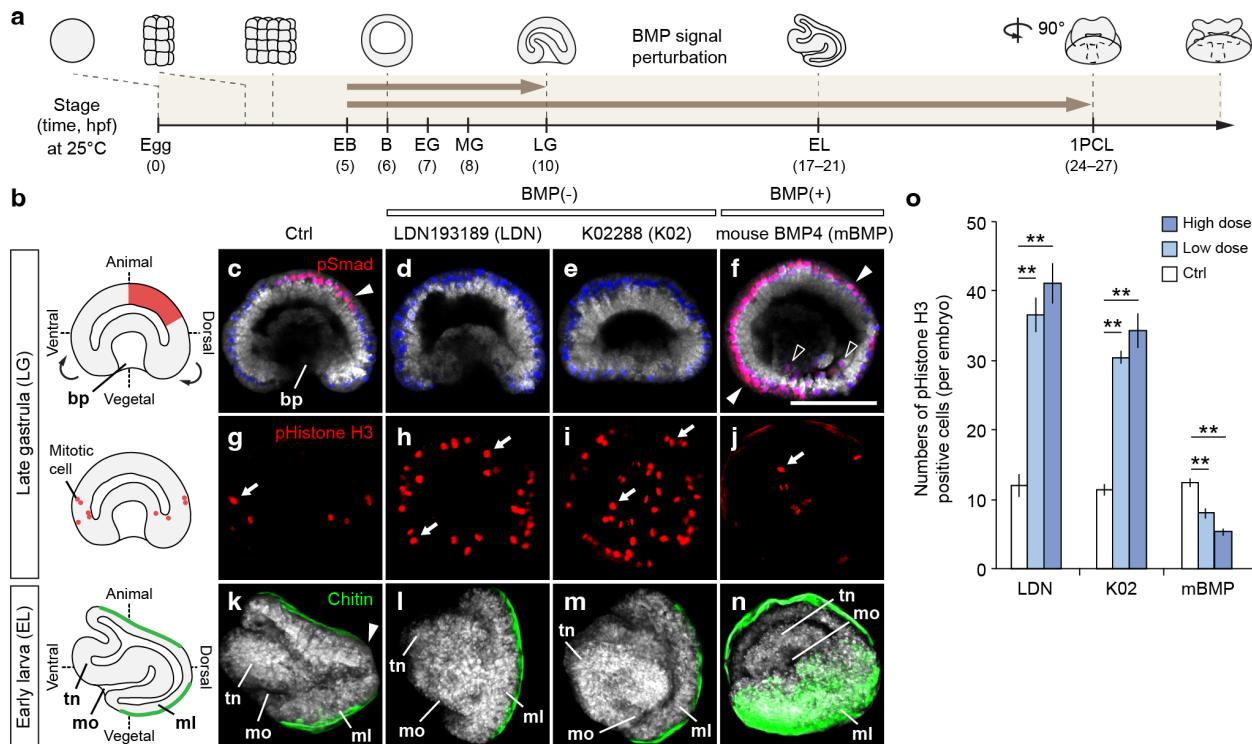
238 **Dynamic expression of BMP pathway genes and BMP gradients**

239 The co-option of BMP–Chordin signalling pathway into dorsal–ventral axis patterning is a
 240 cornerstone of the bilaterian body plan (Fig. 2a). This pathway operates through Smad1/5
 241 phosphorylation, leading to nuclear translocation and regulation of downstream BMP
 242 signalling genes (Fig. 2b). To explore BMP–Chordin pathway gene expression in *L. anatina*,
 243 we quantified the expression of BMP pathway genes in RNA-sequencing data³⁷ (Extended
 244 Data Fig. 7 and Supplementary Table 20). We found that *smad1/5* and *bmp5–8* are expressed
 245 maternally, with their expression persisting into the larval stages (Fig. 2c). Key BMP genes
 246 *bmp2/4* and *chordin* show early upregulation in the blastula, while modulators *bambi* and *cv2*
 247 increase during the gastrula stage. BMP receptors are ubiquitously expressed, indicating a
 248 non-crucial role in the timing of BMP pathway activation (Extended Data Fig. 8). Interestingly,
 249 modulators like *follistatin*, *gremlin*, *noggin* and *nbl1* show no expression in these stages,
 250 suggesting that they are not involved in dorsal–ventral patterning.

251

252

253 **Fig. 2 | Brachiopod embryos express all essential BMP pathway components and**
 254 **exhibit a BMP gradient.** a, Schematic illustration showing the evolution of the BMP–
 255 Chordin axis in animals. The BMP–Chordin axis predates the origin of bilaterians and,


256 therefore, the dorsal–ventral (DV) axis. **b**, Canonical BMP signalling pathway regulated by
257 Chordin and mediated through BMP type I receptor (BMPR-I) and phosphorylated Smad1/5
258 (pSmad1/5). Solid line represents the plasma membrane, while dashed line denotes the
259 nuclear envelope. **c**, Expression profiles of *L. anatina* main BMP signalling ligands,
260 mediators, and modulators. Appearance of nuclear pSmad1/5 signals is shown in blank
261 rectangles. TPM, transcripts per million. **d**, Phylogeny of receptor-regulated Smads (R-
262 Smads) inferred with 22 genes (427 amino acid positions) using the maximum likelihood
263 method with the LG model and 1,000 bootstrap replications. Numbers at the nodes indicate
264 bootstrap support values. Proteins are identified by their UniProt, gene model, or
265 transcriptome IDs. *L. anatina* Smad1/5 is indicated with an asterisk. **e**, Upper: Domain
266 composition of an R-Smad protein (400–500 amino acids). MH, mother against dpp
267 homology. Lower: Alignment of C-terminus of R-Smad proteins. Phosphorylated sites
268 corresponding to Ser463/465 in human Smad1 are shaded in grey. Different amino acids
269 compared to Smad1 are labelled in red. Grey circles indicate reported pSmad1/5 signals
270 using the antibody against the phosphopeptide PHNPISSVS. Species tree on the right. **f**,
271 Schematic illustration of R-Smad activation. MH1 domain for DNA binding is shown in blue,
272 and MH2 domain for interacting with other Smads, such as Smad4, is shown in grey. Model
273 of *L. anatina* Smad1/5 MH2 structure aligned to human Smad1 MH2 domain (Protein Data
274 Bank entry 1KHU). Conserved L3 loop and SSVS motif are coloured yellow and red,
275 respectively. The L3 loop contains 17 amino acids (VKGWGALEYHRQDVTSTP). Different
276 amino acids compared to Smad1 are labelled in red. **g–o**, Immunostaining of pSmad1/5
277 (red) at early embryonic stages shows signals with asymmetrical nuclear localisation
278 (arrowheads). Nuclei are labelled with Hoechst 33342 (blue). Cytosol is counterstained with
279 CellMask Deep Red (grey). Embryonic stages: 1-cell (**g**); 4-cell (**h**); 16-cell (**i**); 32-cell (**j** and
280 **j'**); 64-cell (**k**); blastula (**l**); early gastrula (**m**); late gastrula (**n**); early larva, ventral to the left
281 (**o**). pb, polar body; bp, blastopore; ml, mantle lobe; tn, tentacle; av, animal view; lv, lateral
282 view; vv, ventral view. Scale bar, 50 μ m. Three-letter species code: hsa, human (*Homo*
283 *sapiens*); bfl, amphioxus (*Branchiostoma floridae*); spu, sea urchin (*Strongylocentrotus*
284 *purpuratus*); pfl, hemichordate (*Ptychoderma flava*); sko, hemichordate (*Saccoglossus*
285 *kowalevskii*); dme, fruit fly (*Drosophila melanogaster*); dpu, water flea (*Daphnia pulex*); lan,
286 brachiopod (*Lingula anatina*); ttr, brachiopod (*Terebratalia transversa*); pva, phoronid
287 (*Phoronis vancouverensis*); pau, phoronid (*Phoronis australis*); nge, nemertean
288 (*Notospermus geniculatus*); hro, leech (*Helobdella robusta*); cgi, Pacific oyster (*Crassostrea*
289 *gigas*); sme, planarian (*Schmidtea mediterranea*); hmi, acoel (*Hofstenia miamia*); nve, sea
290 anemone (*Nematostella vectensis*); aau, jellyfish (*Aurelia aurita*).
291

292 The Smad1/5 protein, pivotal to BMP signalling across metazoans (Fig. 2d), possesses
293 MH1 and MH2 domains and an SSXS motif phosphorylation site essential for DNA binding
294 and protein trimerisation (Fig. 2e,f). We found that, although the *L. anatina* genome contains
295 two copies of the *smad1/5* gene, only one of these copies is active during early development,
296 while the other is most highly expressed in the gonad (Extended Data Fig. 8 and
297 Supplementary Fig. 4). Using an antibody targeting the conserved PHNPISSVS
298 phosphopeptide sequence, we examined the distribution of phosphorylated Smad1/5
299 (pSmad1/5) as an indicator of BMP signalling activity. We found that nuclearised pSmad1/5
300 is absent from the 1-cell to 64-cell stages (Fig. 2g–k) but appears in the blastula,

301 asymmetrically localised at the animal pole (Fig. 2l). This occurrence aligns with the
302 upregulation of *bmp2/4*, *bmp3* and *chordin* (Fig. 2c), suggesting their importance in early BMP
303 signalling regulation. The presence of pSmad1/5 then persists on the dorsal side through the
304 gastrula and early larval stages (Fig. 2m–o), demonstrating dorsal BMP activation. This
305 pattern is consistent with those found in other protostomes and basal deuterostomes,
306 underscoring a deeply conserved BMP gradient in spiralian. 307

308 **BMP gradients regulate dorsal–ventral patterning**

309 To investigate the role of the BMP signalling pathway's asymmetric activation, we applied
310 BMP receptor inhibitors and recombinant BMP proteins for two durations: from early blastula
311 to late gastrula and from early blastula to the one-pair-cirri larva (Fig. 3a and Supplementary
312 Table 21). Control late gastrula embryos immunostained for pSmad1/5 showed expected
313 dorsal localisation (Fig. 3b,c). However, embryos treated with the BMP receptor inhibitors
314 LDN-193189 (LDN)⁵⁹ and K02288 (K02)⁶⁰, collectively referred to as BMP(-), showed a
315 complete absence of pSmad1/5 staining (Fig. 3d–e). Conversely, treatment with recombinant
316 mouse BMP4 (mBMP4) protein⁶¹, referred to as BMP(+), led to a loss of dorsal pSmad1/5
317 localisation and an increase in pSmad1/5-positive nuclei across the gastrula (Fig. 3f),
318 validating the impact of our manipulations on BMP signalling. Notably, BMP(-) and BMP(+)
319 treatment also altered gastrula morphology (Fig. 3c–e), including by delaying gastrulation,
320 emphasising the significance of the BMP gradient for gastrula development. 321

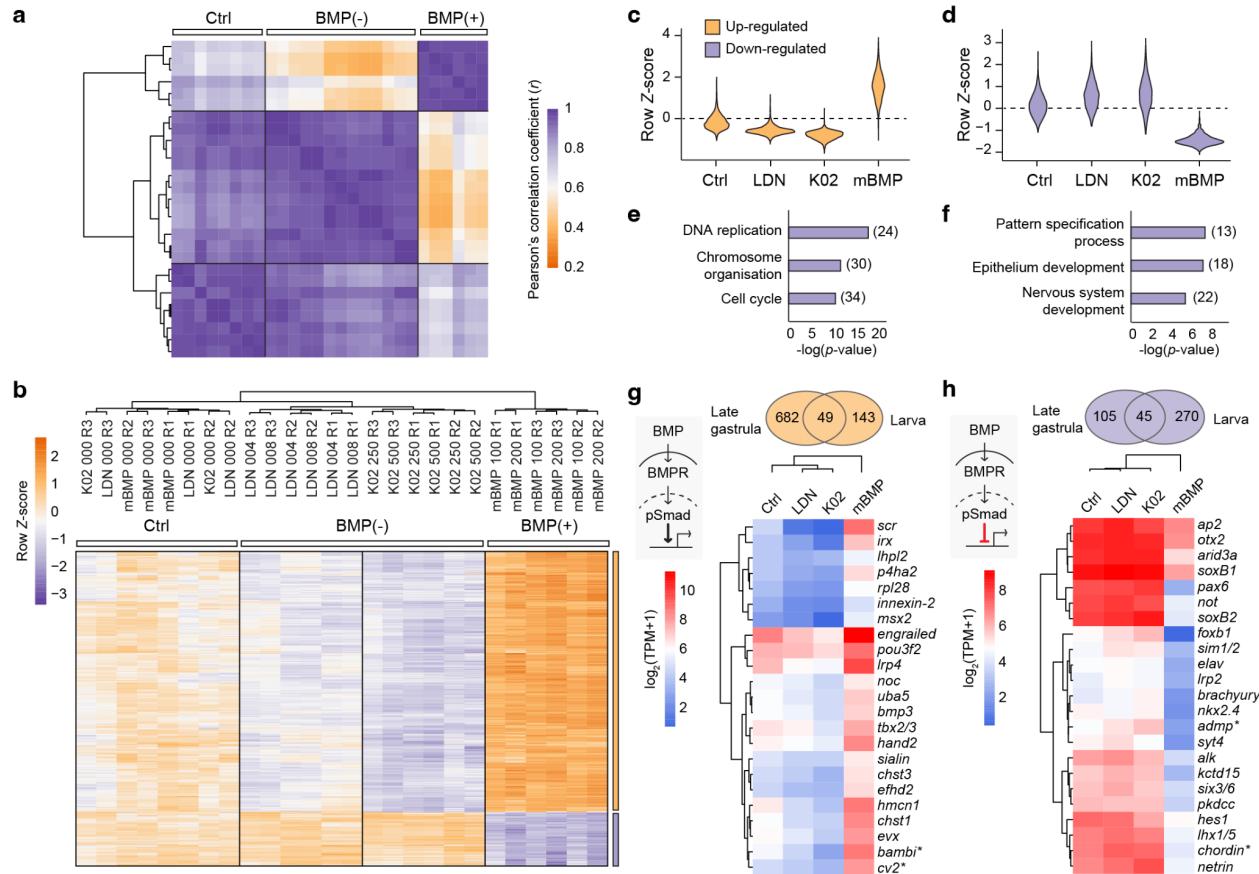
322

Fig. 3 | BMP gradients regulate brachiopod dorsal–ventral patterning and cell proliferation. **a**, Schematic illustration of *L. anatina* developmental timeline (hours post-fertilisation, hpf) and manipulation of BMP signalling. The embryos were treated with inhibitors (LDN193189 and K02288) or recombinant proteins (mouse BMP4) for two incubation windows (brown arrows). EB, early blastula; B, blastula; EG, early gastrula; MG, mid-gastrula; LG, late gastrula; EL, early larva; 1PCL, one-pair-cirri larva. 1PCL displays a view rotated 90 degrees from the plane relative to EL. **b**, Schematic diagram of *L. anatina* embryos with labelled body axes. bp, blastopore; tn, tentacle; mo, mouth; ml, mantle lobe. Curved arrows show the cell movement at the gastrula stage, giving rise to the early larva. A BMP gradient labelled with pSmad1/5 is shown as a red region. Mitotic cells labelled with phospho-Histone H3 (pHistone H3) are shown in red circles. Chitinous embryonic shells are shown in green. **c–f**, Immunostaining of pSmad1/5 antibody (red) in optical sectioned late gastrulae. Nuclei are labelled with Hoechst 33342 (blue). Cytosol is counterstained with CellMask Deep Red (grey). Nuclearised pSmad1/5 signals in red (overlap of pSmad1/5 and Hoechst 33342 signals) are indicated by arrowheads. Scale bar, 50 μ m. **g–j**, Immunostaining of pHistone H3 antibody (red). Mitotic cells are indicated by arrows. **k–n**, Staining of chitin with a chitin-binding probe (green). Chitin staining marks the embryonic shells. Note that the dorsal edge of the larva is absent of chitin staining in the control (**k**). **o**, Statistics of cell proliferation under BMP signalling perturbation ($n = 5$). High dose (LDN, 8 μ M; K02, 500 nM; BMP 200 ng/mL); low dose (LDN, 4 μ M; K02, 250 nM; BMP 100 ng/mL); error bars, standard errors of the mean; double asterisks, *t*-tests for comparing between control and treatments ($p < 0.01$).

345

346 We next explored BMP signalling's influence on cell proliferation by counting gastrula
 347 cells marked with the mitosis-specific phospho-histone H3. We observed that BMP(-)
 348 treatments significantly increased proliferative cell numbers compared to the control, whereas
 349 BMP(+) embryos showed a decrease in mitotic cells ($p < 0.01$) (Fig. 3g–j,o). This indicates

350 that one of the roles of BMP signalling is to inhibit cell proliferation in *L. anatina* gastrulae.
351 During *L. anatina* development, the anterior–posterior axis forms dorsal and ventral mantle
352 lobes through mantle lobe folding (Fig. 3b)³⁵. We assessed the necessity of BMP signalling to
353 this process by manipulating the BMP pathway and observing embryonic shell formation with
354 a chitin-binding probe. In control embryos, dorsal–ventral folding is marked by chitin staining
355 across both mantle lobes, excluding the dorsal edge (Fig. 3k). In contrast, BMP(-) embryos
356 showed disrupted dorsal–ventral folding, indicated by continuous chitin staining, including at
357 the dorsal edge (Fig. 3l–m). BMP(+) embryos exhibited 'over-folding', with the chitinous shell
358 extending ventrally, resulting in the tentacle and mouth being encased inside the shell (Fig.
359 3n). These findings indicate that dorsal BMP signalling is essential for dorsal–ventral folding
360 and splitting the developing larval shell into two distinct valves. In summary, our results show
361 that BMP signalling, highest at the dorsal side in *L. anatina* as in other protostomes and basal
362 deuterostomes, is crucial for regulating cell division and maintaining embryonic structural
363 integrity.


364

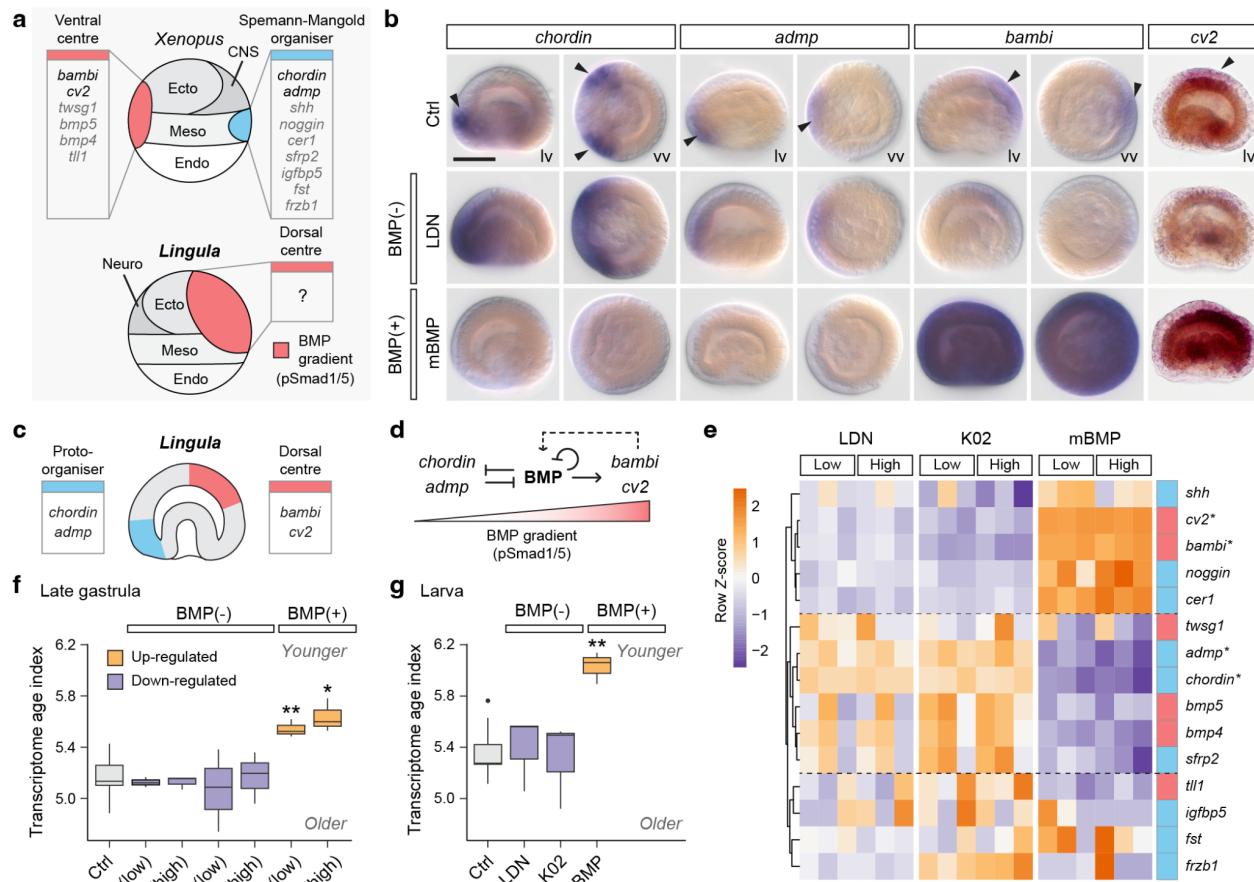
365 **BMP signals control neuronal and cell cycle gene expression**

366 We further explored the role of BMP signalling in *L. anatina* development through functional
367 transcriptomics, using RNA sequencing on control, BMP(-) and BMP(+) embryos
368 (Supplementary Tables 22 - 24). Analysis of differentially expressed genes at the gastrula
369 stage revealed differential transcriptomic changes: 881 genes showed strongly significant
370 expression changes (fold-change > 4, $p < 0.001$) under BMP manipulations, as identified by
371 hierarchical clustering (Fig. 4a–d). Gene ontology (GO) analysis (Supplementary Tables 25 -
372 28) highlighted 'nervous system development' as a highly enriched term among
373 downregulated genes (Fig. 4e,f). Focusing on a robust dataset of genes differentially
374 expressed at both gastrula and early larval stages (49 BMP-upregulated and 45 BMP-
375 downregulated genes) (Fig. 4g,h), we found the BMP-downregulated targets to be dominated
376 by neuronal genes, including *alk*, *elav*, *foxb1*, *lhx1/5*, *netrin*, *nkx2.4*, *otx2*, *pax6*, *six3/6*, *sim1/2*,
377 *soxB1* and *soxB2*^{62–69} (Fig. 4h). This finding contrasts with a recent study that highlights BMP's
378 positive influence on neurulation in spirilians^{31,32}, but is consistent with the observed inhibitory
379 effect of BMP in the neuroectoderm of non-spiralian protostomes⁷⁰ and deuterostomes^{16,20}.
380 Our results suggest that inhibition of neural development by elevated BMP levels is a
381 conserved mechanism among spirilians, despite the evolutionary diversification of
382 embryological development modes in molluscs³¹ and annelids²⁴. In addition, at the gastrula
383 stage, we found 'DNA replication', 'chromosome organisation' and 'cell cycle' as the most
384 statistically significant GO terms for downregulated genes. This is consistent with the above

385 result that the presence of mitotic cells was reduced in BMP(+) embryos and increased in
 386 BMP(-) embryos.

387

388


389 Fig. 4 | BMP signals suppress the expression of genes involved in neurogenesis. a,
 390 Pearson's correlation analysis based on 881 differentially expressed genes (fold-change > 4 ,
 391 $p < 0.001$) under the manipulation of BMP signals. Each row and column represents one
 392 sample. Pearson's correlation coefficient (r) measures the similarity of samples'
 393 transcriptomes: purple being the highest similarity and orange the lowest. **b**, Hierarchical
 394 clustering heat map of 881 differentially expressed genes at the late gastrula stage under
 395 the manipulation of BMP signals. The Z-score scale represents log-transformed and mean-
 396 subtracted transcripts per million (TPM). BMP up-regulated (731, orange) and down-
 397 regulated (150, purple) gene groups are labelled on the right. Treatments and units:
 398 LDN193189 (LDN), μM ; K02288 (K02), nM; mouse BMP4 (BMP), ng/mL. R1–R3, biological
 399 replications. **c** and **d**, Violin plots showing the expression distribution of up-regulated
 400 (orange) (**c**) and down-regulated (purple) (**d**) gene groups under treatments. **e** and **f**, Gene
 401 ontology enriched biological process terms at the late gastrula stage (**e**) and early larval
 402 stage (**f**) that are down-regulated (purple) under the manipulation of BMP signalling.
 403 Numbers of genes within the functional groups are shown in parentheses. **g** and **h**, Venn
 404 diagrams: Differentially expressed genes shared by late gastrula and early larval stages.
 405 Heatmaps: Expression profiles of selected BMP up-regulated (**g**) and down-regulated (**h**)
 406 genes at the late gastrula stage. Asterisks highlight Xenopus ventral centre and Spemann-
 407 Mangold organiser genes.

408

409 **Deep conservation of the dorsal–ventral patterning pathway within bilaterians**

410 We next investigated whether the downstream effects of BMP signalling on gene expression
 411 that we observed in *L. anatina* show similarities to those of other bilaterians. We selected the
 412 vertebrate model *Xenopus* for this comparison, as the role of BMP signalling in dorsal–ventral
 413 patterning is well characterised⁵ and its phylogenetic position within the deuterostomes means
 414 that evolutionary inferences can be made that span the entire Bilateria. In *Xenopus*, a ventral
 415 signalling centre produces the BMP ligand *Bmp4*⁷¹ plus feedback inhibitors like *Cv2*^{72,73},
 416 Twisted-gastrulation^{74–76} and *Bambi*⁷⁷, while the dorsal Spemann-Mangold organiser secretes
 417 a set of Bmp antagonists which includes *Chordin*^{4,6,7}, *Follistatin*⁷⁸, *Noggin*^{8,9} and *Admp*¹⁰.
 418 These antipodal signalling centres construct the dorsal–ventral BMP gradient that patterns the
 419 axis, with the neural inducers secreted from the Spemann-Mangold organiser causing the
 420 formation of neural tissue on the dorsal side. We found that several brachiopod homologues
 421 of key *Xenopus* dorsal–ventral patterning genes were up- or down-regulated at the RNA level
 422 in the above BMP signal manipulation experiments. Specifically, BMP signalling in *L. anatina*
 423 downregulates homologues of the *Xenopus* Spemann-Mangold organiser genes *chordin* and
 424 *admp*, while upregulating homologues of the *Xenopus* ventral centre genes *bambi* and *cv2*.
 425 (Fig. 4g,h).

426

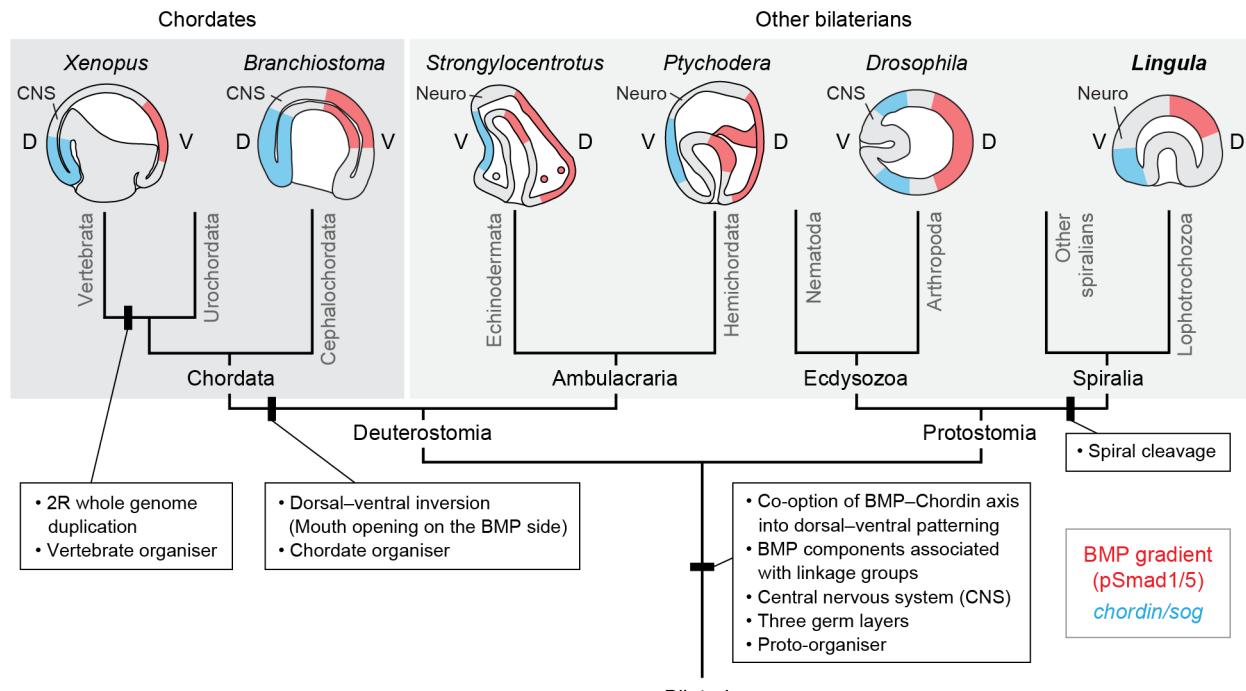
427

428 **Fig. 5 | Brachiopods exhibit BMP-mediated neural patterning and a primordial**
429 **organiser.** **a**, Top: Schematic illustration of proteins secreted by ventral and dorsal
430 (Spemann-Mangold organiser) signalling centres in the *Xenopus* gastrula. Bottom:
431 Illustration of the BMP gradient in the *L. anatina* gastrula, corresponding to the ventral centre
432 in *Xenopus*. Ecto, ectoderm; Meso, mesoderm; Endo, endoderm. **b**, The expression profile
433 of *Xenopus* dorsal genes (*chordin* and *admp*) and ventral genes (*bambi* and *cv2*) under the
434 manipulation of BMP signalling. lv, lateral view; vv, vegetal view. Scale bar, 50 μ m. **c**,
435 Cartoon illustration of the expression domains of kernel BMP signalling genes at the late
436 gastrula stage. **d**, Proposed molecular network of the BMP signalling genes in a BMP–
437 Chordin axis generating a BMP gradient (red triangle). BMP in bold indicates BMP signals.
438 Dashed line indicates an unknown interaction between the modulators and BMP signals. **e**,
439 Expression profile of orthologues of key *Xenopus* BMP pathway genes in the *L. anatina*
440 gastrula under BMP signalling manipulation. Low dose (BMP, 100 ng/mL; LDN, 4 μ M; K02,
441 250 nM); high dose (BMP, 200 ng/mL; LDN, 8 μ M; K02, 500 nM). *Xenopus* ventral centre
442 genes (red) and Spemann-Mangold organiser genes (blue) labelled on the right. Asterisks
443 highlight genes within the *Xenopus* ventral centre and the Spemann-Mangold organiser that
444 BMP signals similarly regulate in brachiopods. **f** and **g**, Transcriptome age index of *L.*
445 *anatina* late gastrula embryos (**f**) and larvae (**g**) under conditions of BMP signal
446 manipulation. Asterisks show significant differences from control samples at $p < 0.05$ (*) and
447 $p < 0.01$ (**) as determined by two-sided *t*-tests. A higher transcriptome age index indicates
448 an evolutionarily younger transcriptome.
449

450 The parallel in regulatory patterns between *Xenopus* and *L. anatina* suggests a
451 conserved BMP-mediated dorsal–ventral patterning system architecture (Fig. 5a). We next
452 investigated whether the spatial expression patterns of these genes in *Xenopus* are also
453 conserved in *L. anatina*. *In situ* hybridization experiments show that *bambi* and *cv2* are dorsally
454 localised in *L. anatina* gastrulae, while *chordin* and *admp* are found ventrally (Fig. 5b). This is
455 consistent with their expression in *Xenopus* when the axis inversion is taken into account.
456 Notably, both *chordin* and *admp* were expressed at the boundary of the oral ectoderm and
457 endomesoderm, similar to the expression pattern observed in the chordate *B. floridae*¹⁶ (Fig.
458 5b). In contrast, *bambi* and *cv2* were expressed in domains with active BMP signals. BMP(-)
459 treatment causes expansion of *chordin* and *admp* expression domains and the near absence
460 of *bambi* and *cv2* expression, suggesting ventralisation of the gastrula. In contrast, BMP(+)
461 treatment results in the near absence of expression of *admp* and *chordin* while *bambi* is
462 expressed universally, suggesting gastrula dorsalisation (Fig. 5b). These experiments support
463 our transcriptomic results showing that BMP signalling upregulates *bambi* and *cv2* while
464 downregulating *chordin* and *admp*. This result is also consistent with regulatory interactions
465 observed in *Xenopus*, where BMP signalling represses *chordin*⁵ and *admp*^{10,79} while activating
466 *bambi*^{77,80} and *cv2*^{5,73}. Overall, we found conservation of *Xenopus* dorsal–ventral patterning
467 gene regulatory relationships and gene expression patterns in the brachiopod *L. anatina* (Fig.
468 5c,d), indicating deep conservation of these pathways in spiralians.

469 Despite this remarkable conservation, several *Xenopus* Spemann-Mangold organiser
470 and ventral centre genes (e.g., *twsg*, *noggin* and *follistatin*) do not appear in our restricted
471 differentially expressed lists (Fig. 4g,h). We hypothesised that this may reflect either our highly
472 conservative approach to differentially expressed gene identification or genuine divergence in
473 the role of these genes between species. To investigate this, we studied the expression of 15
474 key *Xenopus* Spemann-Mangold organiser and ventral centre genes under each manipulation
475 condition. Intriguingly, many of these genes are differentially expressed in response to BMP
476 signalling in *L. anatina*, but not in the predicted direction. For instance, Spemann-Mangold
477 organiser genes *cer1*, *noggin* and *shh* are BMP-upregulated when they might be expected to
478 be downregulated like *chordin* and *admp* (Fig. 5e). This finding suggests that although the
479 central BMP–Chordin axis is conserved, its downstream effects are evolutionarily variable.
480 Accordingly, a phylostratigraphy approach using transcriptome age index (TAI) analysis⁸¹
481 shows that increasing the level of BMP signalling significantly decreases the evolutionary age
482 of the transcriptome during both gastrula and larval stages of development (*t*-test $p < 0.05$;
483 Fig. 5f,g and Supplementary Tables 29 – 31). This result suggests that activating the BMP
484 pathway in *L. anatina* leads to the upregulation of evolutionarily young genes. Indeed, our
485 findings show that during the developmental time course, the late blastula and early gastrula
486 stages—following BMP signal activation—exhibit the highest TAI, indicating the youngest
487 transcriptome (Supplementary Fig. 5). This aligns with transcriptome ages at similar stages in
488 zebrafish development⁸¹. This suggests that BMP signals are crucial for gastrulation, marked
489 by the high expression of genes that emerged during bilaterian evolution and are involved in
490 cellular interactions.

491 Finally, we investigated how BMP ligand expression relates to the BMP signalling
492 gradient in *L. anatina*. *In situ* hybridisation experiments revealed that, in the ectoderm, *bmp2/4*
493 and *bmp5-8* are expressed dorsally in the region of pSmad1/5 activation (Extended Data Fig.
494 9a), directly opposite *chordin* expression (Extended Data Fig. 9b). In contrast, *Bmp3* is
495 expressed in ventral ectoderm, while all three genes show expression in the endomesoderm
496 (Extended Data Fig. 9a). BMP manipulation experiments suggest that ectodermal *bmp2/4*,
497 *bmp3* and *bmp5-8* expression is autoinhibited by BMP signalling (Extended Data Fig. 9a-d).
498 This spatial expression data suggests that dorsal Bmp2/4 localisation is a possible driver of
499 the dorsal pSmad1/5 activation. Overall, our study shows that the *L. anatina* dorsal–ventral
500 axis is patterned by a BMP gradient that exhibits notable similarities of that of the vertebrate
501 *Xenopus*. This is consistent with a deeply conserved network maintained in both spiralian
502 and deuterostomes since their split at the base of the bilaterians.


503

504 **Discussion**

505 Elucidating the evolution of axial patterning mechanisms within bilaterians remains a key goal
506 of evolutionary developmental biology. Until now, direct topological comparisons of early
507 development between one of the three major clades of bilaterians and the other two groups
508 (i.e., Spiralia with Deuterostomia and Ecdysozoa) have been prevented by the unique
509 development of spiraliens^{33,34}. Our study fills this gap by using the brachiopod *L. anatina*, a
510 spiralian with deuterostome-like development. Importantly, we find BMP signal read-out and
511 *bmp2/4* expression at the dorsal side of the gastrula and *chordin* expression from the ventral
512 side, consistent with ecdysozoan protostomes like *Drosophila*^{11–13} and basal deuterostomes,
513 such as sea urchins^{17,20} and hemichordates^{15,20}. Indeed, manipulations to BMP signalling in *L.*
514 *anatina* interfere with proper dorsal–ventral axis patterning in both the gastrula and early larva.
515 For instance, BMP inhibition causes the expansion of the expression domains of ventralising
516 factors, particularly *chordin*. This has clear morphological effects including the failure of mantle
517 folding. Conversely, BMP pathway overstimulation expands the dorsal gene expression
518 domain and causes ‘over-folding’, accompanied by internalisation of the tentacle and mouth.
519 Overall, these results reveal the presence of BMP-mediated dorsal–ventral patterning that, in
520 contrast to that of other spiraliens, exhibits several features that are highly conserved with
521 distantly related bilaterians such as *Drosophila* and *Xenopus*.

522 The similarities between gene expression localisation and regulatory interactions in *L.*
523 *anatina* and *Xenopus*, particularly those regarding the Spemann-Mangold organiser, are
524 especially striking. In the basal chordate amphioxus, such similarities have been taken, along
525 with transplantation experiments⁸², as evidence that the organiser was present at the base of
526 the chordates^{16,83} or the deuterostomes⁸⁴, not just in vertebrates. In light of the extension of
527 these similarities to *L. anatina*, we consider it a possibility that these features have been
528 inherited and maintained in both lineages from a bilaterian ancestor that possessed a ‘proto-
529 organiser’. Transplantation experiments testing whether part of the dorsal region of *L. anatina*
530 embryos possesses organiser capabilities should therefore be a priority, although in any case
531 homology would be difficult to assess. Irrespective of the presence or absence of an organiser
532 in *L. anatina*, the results of this study suggest deep evolutionary conservation between
533 brachiopods and deuterostomes that supports the hypothesis that a classical Bmp2/4–Chordin
534 dorsal–ventral patterning system was present in the ancestor of spiraliens despite their
535 derived mechanism of early embryonic development (Fig. 6).

536

537

538 **Fig. 6 | Evolution of BMP gradients and dorsal–ventral patterning in bilaterians.**

539 Although the spatial expression patterns of BMP ligands are variable, the domain with high
 540 BMP signalling readout (pSmad1/5, red) and the anti-BMP domain (*chordin/sog*, blue) are
 541 on the dorsal and ventral sides, respectively, of the ecdysozoan and basal deuterostome
 542 embryos. Our data from *L. anatina* shows that this is also the case in spiraliani. Due to
 543 dorsal-ventral axis inversion, this is reversed in chordates. However, the core molecular
 544 patterning mechanisms remain unchanged, especially for those of kernel modulators and
 545 antagonists. In all cases, the neural domain develops on the side at which anti-BMP signals
 546 are produced, since BMP signalling inhibits neural (Neuro) and central nervous system
 547 (CNS) formation in most bilaterians.

548

549 One significant observation casting doubt on the ancestral state of BMP-mediated
 550 dorsal–ventral axis patterning in spiraliani²⁷ was the discovery that, in some molluscs and
 551 annelids, BMP signals have no effect or even a positive effect on neural development^{24,31,32}.
 552 This stands completely contrary to the predicted effect given results in ecdysozoans and
 553 deuterostomes²¹. Through functional transcriptomics of embryos with manipulated levels of
 554 BMP signalling, we find strong inhibition of neural genes by the *L. anatina* BMP pathway during
 555 development. This result demonstrates that the function of BMP signalling in restricting neural
 556 induction is also conserved in some spiraliani and supports the contention that this was the
 557 ancestral state of Spiralia.

558 Although core features of the dorsal–ventral patterning BMP pathway (e.g., *chordin*,
 559 *admp*, *bambi* and *cv2*) are conserved from *Xenopus* to brachiopods, many genes with
 560 important roles in *Xenopus*, such as *twsg*^{74–76}, *noggin*^{8,9} and *follistatin*⁷⁸, are not regulated by
 561 BMP signaling in the same way in *L. anatina*. This finding suggests that while the central BMP–
 562 Chordin dorsal–ventral patterning mechanism is highly conserved, peripheral components of

563 the gene regulatory network show considerably more evolutionary flexibility. Consistent with
564 this, we also find that the *L. anatina* BMP pathway upregulates the expression of evolutionarily
565 young genes. Variations in the role of BMP signalling in dorsal–ventral axis development in
566 spiraliens, such as the positive effect on neurogenesis in some molluscs, may therefore arise
567 from lineage-specific divergence in the pathway’s downstream responses, rather than a
568 different ancestral role in spiraliens. Our result supports a model where the core function of
569 the BMP pathway itself is ancient and deeply conserved but the downstream effects involve
570 evolutionarily younger and lineage-specific genes.

571

572 **Methods**

573 **Biological materials and artificial fertilisation**

574 Between 2013 to 2016, gravid adults of the brachiopod *L. anatina* (approximately 150 to 200)
575 were collected each August during low tide from Kasari Bay, Amami Island, Japan (28.440583
576 N, 129.667608 E). Around 50 individuals were housed in a 10-L aerated seawater tank and
577 fed daily with 25 mL/tank of *Chaetoceros calcitrans* (5×10^7 cells/ml). Oocyte maturation was
578 induced by injecting each gonad with 30 μ l of 40 mM dibutyryl-cAMP dissolved in phosphate-
579 buffered saline (PBS)^{37,42}. To control fertilisation timing, post-injection individuals were isolated
580 in separate Petri dishes. Artificial spawning was facilitated by adjusting the temperature from
581 25°C to 29°C over 2 h and then rapidly returning it to 25°C for a cold shock⁸⁵. Prior to inducing
582 fertilisation, sperm activity was inspected under a stereomicroscope. Fertilisation efficacy
583 decreased sharply 4 h after spawning. Depending on seasonal factors, spawning rates varied
584 from 20% to 70%.

585

586 **Genomic sample acquisition and DNA extraction**

587 In August 2021, fresh adults of *L. anatina* were collected with the objective of obtaining high-
588 quality genomic DNA suitable for both long-read and Hi-C sequencing methodologies. The
589 dissected tissues, including the mantle, lophophore, gonad, adductor muscle, and pedicle,
590 were immediately snap-frozen using liquid nitrogen. For genome resequencing, approximately
591 2 g of mantle and lophophore tissues and 1.5 g of adductor muscle tissue were collected.
592 These tissues were then divided into two equal portions. One portion was used for genomic
593 DNA extraction, while the other was reserved for Hi-C sequencing. The cetyltrimonium bromide
594 (CTAB) method was utilised to extract high molecular weight genomic DNA. After extraction,
595 the DNA was purified using the Blood & Cell Culture DNA Midi Kit (Qiagen 13343). DNA purity

596 was assessed with a NanoDrop spectrophotometer, and DNA concentration was determined
597 using the Qubit 4.0 Fluorometer.

598

599 **RNA sequencing of adult tissues**

600 Total RNA was extracted from the mantle, gonad, lophophore, adductor muscle and pedicle
601 using TRIzol. The RNA was reconstituted in 50 µl RNase-free water, and its concentration
602 was determined with a Nanodrop spectrophotometer. RNA quality was verified using the 5400
603 Fragment Analyzer System (Agilent Technologies). cDNA libraries for each tissue sample
604 were constructed with the TruSeq RNA Library Prep Kit v2. Libraries were sequenced as 150
605 bp paired-end reads on the Illumina NovaSeq 6000. Quality control was conducted using
606 FastQC⁸⁶. The reads were trimmed with Trimmomatic (v0.39)⁸⁷ and then aligned to the
607 genome using STAR (v2.7.10b)⁸⁸ for gene prediction (Supplementary Table 32). For gene
608 expression analysis, transcript abundances were quantified using kallisto (v0.43.0)⁸⁹. The
609 same method was used to process data from a published developmental dataset of *L.*
610 *anatina*³⁷ (PRJNA286275) (Supplementary Table 33).

611

612 **Genome sequencing and assembly**

613 For PacBio HiFi circular consensus sequencing, SMRTbell libraries were constructed
614 following PacBio's standard protocol, utilising the 15-kb preparation solutions. In brief, 15 µg
615 of DNA was extracted from the mantle, lophophore and adductor muscle tissue samples (5 µg
616 from each tissue) and was used for DNA library preparations. The genomic DNA was sheared
617 to the desired fragment size using g-TUBEs (Covaris). After removal of single-strand
618 overhangs, damage repair, end-repair and A-tailing, DNA fragments were ligated with the
619 hairpin adaptor. Post-ligation, the library was treated with nuclease, cleaned using the
620 SMRTbell Enzyme Cleanup Kit, and purified with AMPure PB Beads (Beckman Coulter). The
621 desired fragments were subsequently isolated using BluePippin (Sage Science). An Agilent
622 2100 Bioanalyzer was used to determine the size distribution of the library fragments. The
623 final sequencing of the SMRTbell library was conducted on the PacBio Sequel II platform,
624 utilising Sequencing Primer V2 and the Sequel II Binding 2.0 Kit at Grandomics Biosciences.

625 The Hi-C library was constructed following a previously described method⁹⁰. In brief,
626 mantle, lophophore, and adductor muscle tissues were cut into 2 cm segments and cross-
627 linked using a nuclei isolation buffer with 2% formaldehyde. Post cross-linking, tissues were
628 ground to produce a nuclei suspension. The isolated nuclei were digested with 100 units of
629 DpnII and labelled with biotin-14-dATP. Unligated fragments had their biotin removed using

630 T4 DNA polymerase. The DNA was sheared to 300–600 bp fragments, underwent blunt-end
631 repair and A-tailing, and was isolated with streptavidin beads. After quality checks with a Qubit
632 Fluorometer and an Agilent 2100 Bioanalyzer, the libraries were sequenced as 150 bp paired-
633 end reads on the Illumina NovaSeq 6000 platform.

634 Hi-C data was used for assembly scaffolding⁹¹ using the following pipeline:
635 trimmomatic (quality filtering)⁸⁷; FastQC (quality control)⁸⁶; bwa_mem2 (sequence
636 alignment)⁹²; Juicer (data filtering)⁹³; 3D-DNA (Hi-C-assisted assembly)⁹⁴; and JuiceBox
637 (visualisation and error correction)⁹⁵. Having obtained a preliminary assembly, blasts, read
638 coverage and GC content were used to check for sequences belonging to contaminants and
639 symbionts. The assembly was first subjected to Diamond⁹⁶ blastx against the nr database of
640 NCBI with ‘sensitive mode’ parameter and an E-value of 1e-25. Subsequently, Hi-C reads
641 were mapped to the original genome using HISAT2⁹⁷ with default parameters and in single-
642 end mode to calculate the coverage of each fragment. These three data types were visualised
643 using blob plots created with BlobToolKit⁹⁸. This methodology revealed a small cluster of short
644 sequences with an unusually high GC content (greater than 45%) which blasted to non-
645 brachiopod taxa. All such fragments were removed from the genome. A second blob plot,
646 produced from the remaining fragments, identified only sequences blasting to Brachiopoda.
647 Sequences present after this filtering process represent the final *L. anatina* assembly.

648

649 **Gene prediction and annotation**

650 Repetitive elements were annotated *de novo* using RepeatModeler (v2.0.4)⁹⁹. RepeatModeler
651 employs RepeatScout¹⁰⁰ and RECON¹⁰¹ to identify transposable elements and also uses the
652 long terminal repeat (LTR)-specific tools LTRharvest¹⁰² and LTR_retriever¹⁰³. The BRAKER
653 pipeline (v3.0.3)^{104–112} was then used for gene prediction and annotation. Genomes were first
654 soft-masked with RepeatMasker (v4.1.5; sensitive mode)¹¹³, and then BRAKER was run using
655 hints from mapped RNA sequencing data. RNA-seq reads (Supplementary Table 34) were
656 downloaded from the NCBI Sequence Read Archive, trimmed with Trimmomatic (v0.39)⁸⁷ and
657 aligned with STAR (v2.7.10b)⁸⁸ before input to BRAKER in BAM format. The RNA-seq
658 datasets generated in this study were also used as hints for BRAKER. Gene annotation quality
659 was assessed using BUSCO (v5.4.7)¹¹⁴. InterProScan¹¹⁵, KofamScan¹¹⁶ and EggNOG-
660 mapper^{117,118} were used for functional annotation. For KofamScan, output is limited to hits
661 where threshold > score (adjudged to be a significant hit; see¹¹⁹ for complete explanation).
662 Orthologues of *L. anatina* genes in human and mollusc (*Patella vulgata*) genomes were
663 identified with OrthoFinder¹²⁰. RepeatLandscape¹¹³ was used to create Kimura substitution
664 level plots for repeats in lophophorate genomes. Ribosomal RNA (rRNA) genes were

665 annotated with barrnap (v0.9)¹²¹. Gene density and repeat density plots were made with
666 Rldeogram (v0.2.2)¹²².

667

668 **Phylogenetic analysis**

669 Proteomes were downloaded from NCBI or produced by the gene prediction method outlined
670 above (Supplementary Table 12). Orthology assignment was performed with OrthoFinder
671 (v2.5.4)¹²⁰. OrthoSNAP (v0.01)¹²³ was then run with default parameters to recover additional
672 orthologues for phylogenetics. The resultant dataset contained 2,036 OrthoSNAP
673 orthogroups. To determine the strength of the phylogenetic signal possessed by each
674 orthogroup, we first aligned sequences with MAFFT (v7.520)^{124,125} and trimmed alignments
675 with ClipKIT (v1.4.1)¹²⁶. Individual gene trees were then constructed with IQ-TREE
676 (v2.2.2.3)¹²⁷ using ModelFinder automated model selection¹²⁸ and UFBoot2 ultra-fast
677 bootstrapping¹²⁹. Orthogroups with an average bootstrap score over 85 % (n = 109) were
678 selected for species tree building and alignments concatenated with PhyKIT (v1.11.7)¹³⁰. The
679 final tree was built using IQ-TREE as above (model LG+F+R5). In order to assess whether
680 constructing trees using orthologues with lower mean bootstrap scores (weaker phylogenetic
681 signal) gives different results, orthologues were subsetted by mean bootstrap scores at 5%
682 intervals, and trees were constructed for each group as above.

683

684 **Comparative genomics**

685 We used OrthoFinder (v2.5.4)¹²⁰ to identify BMP-related components in lophotrochozoan
686 genomes. All cases of putative gene losses and duplications were manually verified using
687 approaches such as reciprocal blast searches, microsynteny comparisons and gene tree
688 construction with IQ-TREE (v2.2.2.3)¹²⁷. Attempts to assess the functionality of genes based
689 solely on genomic sequence can lead to the erroneous designation of functional genes as
690 pseudogenes. Thus, for the purpose of this analysis, we consider genes as only the number
691 of copies of a gene and do not speculate on functionality. Human BMP-related genes are well-
692 characterised and gene counts are not re-assessed here.

693 Gene family evolution was modelled using CAFE (v5.0.0)¹³¹. CAFE implements a
694 stochastic birth and death model to estimate the number of gene gains and losses occurring
695 at each node in a tree. The species set used for this analysis was identical to that used for
696 phylogeny reconstruction with one exception: the nemertean *Notospermus geniculatus* was
697 removed because the published genome has high levels of redundancy, which would result in
698 inaccurate estimates. To run CAFE, an ultrametric version of the above species tree was

699 calculated using pyr8s from iTaxoTools¹³² to implement r8s¹³³. OrthoFinder was used as
700 above for the orthology assignment. Principal component analysis (PCA) was performed on
701 the orthogroup-species matrix using R.

702

703 **Homology modelling**

704 Homology modelling of the *L. anatina* Smad1/5 protein was completed using Modeller¹³⁴ in
705 UCSF Chimera (v1.15)¹³⁵. The human SMAD1 protein was used as a reference.

706

707 **Macro synteny analysis**

708 Macro synteny was compared between *L. anatina* and species representing four other phyla
709 with relatively conserved genomic organisations: *B. floridae* (Florida lancelet, Chordata), *P.*
710 *maximus* (scallop, Mollusca), *L. longissimus* (bootlace worm, Nemertea) and *O. fusiformis*
711 (Annelida). Proteomes for these species were obtained from NCBI. OrthoFinder (v2.5.4)¹²⁰
712 was then used to identify single-copy orthologues of *B. floridae* genes assigned to a bilaterian
713 ancestral linkage group (ALG) by Simakov et al. (2022)⁴¹. SyntenyFinder¹³⁶, which implements
714 the R package RIdogram (v0.2.2)¹²², was used to create ideogram plots and Oxford dot plots.
715 The genomic locations of BMP pathway-related genes, Wnt ligands, and Hox genes in each
716 of the five species were identified with blast (v2.14.1). Conserved associations with ALGs were
717 inferred from the genes' chromosomal locations. The rate of conserved associations of
718 developmental genes with a specific ALG was compared to that of a random sample of 100
719 single-copy orthologues using a chi-square test (Supplementary Table 35).

720

721 **Manipulation of BMP signals**

722 BMP signalling manipulation experiments were deployed to reveal the function of the BMP
723 pathway during *L. anatina* development. Two separate small molecule inhibitors were used to
724 block the BMP pathway: LDN193189 (LDN; Stemgent 04-0074)⁵⁹ and K02288 (K02; Tocris
725 4986)⁶⁰. These conditions are referred to as BMP(-). Exogenous mouse recombinant BMP4
726 (mBMP4; R&D Systems 5020-BP) was used to over-activate the BMP pathway⁶¹. This
727 condition is referred to as BMP(+). Manipulations were applied for two different durations, from
728 the early blastula stage (5 h post fertilisation, hpf) to either the late gastrula (10 hpf) or the 1-
729 pair-cirri larval stage (24–27 hpf). Two doses (high and low) of each manipulator were applied
730 to the late gastrula experiments: LDN (4 and 8 µM), K02 (250 and 500 nM) and mBMP4 (100
731 and 200 ng/mL). One dose was applied to the 1-pair-cirri larva experiments: LDN (2 µM), K02

732 (250 nM) and mBMP4 (200 ng/mL). Controls were run for each manipulator with the vehicle
733 only (bovine serum albumin (BSA) or dimethyl sulfoxide).

734

735 **Functional transcriptomics**

736 RNA sequencing was used to explore the impacts of BMP signal manipulation experiments
737 on the transcriptome. RNA was extracted for three biological replicates of each condition (45
738 samples, Supplementary Table 21) using TRIzol and sequenced using the Illumina HiSeq
739 4000 platform (total 855 million read pairs). After performing quality control with FastQC
740 (v0.11.5) and trimming with Trimmomatic (v0.36), transcript abundances were quantified using
741 kallisto (v0.43.0)⁸⁹. Differential expression analysis was conducted using a bundled script in
742 Trinity (v2.3.2)¹³⁷, primarily utilising edgeR with a dispersion parameter of 0.1¹³⁸. Transcripts
743 were considered statistically differentially expressed with a false discovery rate (FDR) of less
744 than 0.05. Pearson's correlation coefficient was used to assess the similarity of each
745 condition's transcriptome. Putative BMP signalling downstream genes were identified based
746 on their expression changes (at least fold-change > 2, $p < 0.01$). Genes that were upregulated
747 in the BMP(+) condition and downregulated in the BMP(-) condition were classified as BMP-
748 upregulated. Conversely, genes that were downregulated in the BMP(+) condition and
749 upregulated in the BMP(-) condition were classified as BMP-downregulated. Gene ontology
750 analysis was performed on upregulated and downregulated gene sets using reciprocal best
751 hits from BLAST searches against the Swiss-Prot database from UniProt¹³⁹. To focus on the
752 most robustly differentially expressed genes, we limited the dataset to genes that were
753 differentially expressed in both the late gastrula and 1-pair-cirri-larva experiments.
754 Differentially expressed gene sets were searched for genes known to be involved in dorsal-
755 ventral patterning in *Xenopus*.

756

757 **Transcriptome age index analysis**

758 The phylostratigraphic age of each gene in the *L. anatina* genome was first estimated using
759 GenEra (v1.2.0)^{140,141}. GenEra reduces biases in age assignment by using DIAMOND⁹⁶ to
760 search the entire NR database (Supplementary Table 36). To improve the resolution of age
761 assignment in the case of *L. anatina*, we also added one genome assembly for each animal
762 phylum that does not have a RefSeq annotated genome (Supplementary Table 37). This is
763 especially important within the Spiralia, where key phyla like Bryozoa and Phoronida are
764 unrepresented. Using the estimated gene ages, the R package myTAI (v1.0.1.9000)¹⁴² was
765 used to calculate the transcriptomic age index⁸¹ for several *L. anatina* transcriptomic datasets.

766 These were (i) a developmental time course from fertilised egg to two pair cirri larva (ii) *L.*
767 *anatina* adult tissues (adductor muscle, lophophore, ovary, mantle and pedicle) and (iii) *L.*
768 *anatina* late gastrula and larval stages with BMP signalling manipulation.

769

770 **Bacterial-cloning-free riboprobe preparation**

771 To prepare DNA templates for RNA probe synthesis, a bacterial-cloning-free protocol was
772 developed to maintain both rapid preparation and target specificity (Supplementary Fig. 6).
773 This protocol initially uses gene-specific primers (F1 and R1, designed from transcriptomes)
774 to amplify target sequences in the first PCR. The amplified sequences are then ligated into
775 the pGEM-T Easy Vector to attach an RNA polymerase promoter site. Inserts in the reverse
776 direction (antisense) to the T7 promoter site were further amplified using T7 and gene-specific
777 forward nested primers (F2) in a second PCR. This nested PCR ensures both the specificity
778 of the PCR products and the correct transcriptional direction of the inserts. The products from
779 the second PCR can then be used for sequencing validation and *in vitro* transcription. No
780 cloning-based screening is required to select target clones, allowing the entire procedure to
781 be completed within one day.

782 Total RNA from various embryonic stages was extracted using TRIzol and cleaned up
783 with the RNeasy Micro Kit (Qiagen 74004). cDNA synthesis was performed using the
784 SuperScript III First-Strand Synthesis System (Thermo Fisher Scientific 18080051). Target
785 sequences were amplified in a first PCR using gene-specific primers (F1 and R1) and
786 EmeraldAmp GT PCR Master Mix (TaKaRa RR320A). The PCR conditions were: 94°C for 2
787 min, followed by 30 cycles of 94°C for 15 seconds, 55°C for 15 seconds, and 72°C for 1 min
788 30 seconds, with a final extension at 72°C for 2 min. PCR products were analysed on a 1%
789 agarose TAE gel stained with SYBR Safe DNA Gel Stain (Thermo Fisher Scientific S33102),
790 and remaining products were purified using the QIAquick PCR Purification Kit (Qiagen 28104).

791 Purified PCR products were ligated into the pGEM-T Easy Vector (Promega A1360)
792 using 5 µl of 2X Rapid Ligation Buffer, 0.5 µl of pGEM-T Easy Vector (25 ng), 3.5 µl of PCR
793 product, and 1 µl of T4 DNA Ligase in a 10 µl reaction, incubated for 1 h at room temperature.
794 A second PCR was performed using T7 and gene-specific forward nested primers (F2). The
795 PCR conditions were: 94°C for 2 min, followed by 35 cycles of 94°C for 15 seconds, 55°C for
796 15 seconds, and 72°C for 1 min 30 seconds, with a final extension at 72°C for 2 min. PCR
797 products were analysed on a 1% agarose TAE gel, and target bands were purified using the
798 Wizard SV Gel and PCR Clean-Up System (Promega A9282).

799 *In vitro* transcription was performed using T7 RNA polymerase (Promega RP2075) and
800 DIG RNA Labeling Mix (Roche 11277073910). The reaction was incubated for 2–4 h at 37°C,

801 followed by DNase I treatment for 15 min at 37°C. RNA probes were precipitated with 50 µl of
802 nuclease-free water, 30 µl of 7.5 M LiCl, and 300 µl of 100% ethanol, chilled at -20°C for at
803 least 30 min, and centrifuged at 16,000xg for 20 min at 4°C. The RNA pellet was washed with
804 300 µl of cold 80% ethanol, air-dried, and resuspended in 25 µl of nuclease-free water. RNA
805 probes were then diluted with 25 µl of 100% formamide and stored at -20°C or -80°C.
806

807 ***In situ* hybridisation for localising gene expression**

808 Embryos were fixed overnight at 4°C with 4% paraformaldehyde (PFA; Electron Microscopy
809 Sciences 15714) in filtered seawater. Post-fixation, embryos were washed with filtered
810 seawater, dehydrated in 100% methanol, and stored at -20°C. For rehydration, embryos were
811 transferred from methanol into baskets with 40-µm nylon mesh, immersed in PBST (0.1%
812 Tween 20 in PBS) in a 24-well plate, and incubated for 10 min with 1 ml per well.
813 Permeabilisation was performed in PBSN (1% NP-40 and 1% SDS in PBS) for 10 min,
814 followed by PBSTX (0.2% Triton X-100 in PBS) for 10 min. Optional bleaching was done in
815 2% H₂O₂ in PBST at room temperature for 30–60 min under direct light. Embryos were washed
816 in PBST for 5 min, repeated three times, and rinsed with wash buffer (50% Formamide, 5X
817 SSC, 1% SDS, 5 mM EDTA, and 0.1% Tween 20). Prehybridization was conducted in
818 hybridization buffer (50% Formamide, 5% Dextran sulfate, 5X SSC, 1% SDS, 1X Denhardt's,
819 100 µg/ml Torula RNA, 5 mM EDTA, 0.1% Tween 20, and 50 µg/ml Heparin) at 60°C for at
820 least 1 h with slight rocking, with plates sealed in a plastic bag or covered with plastic wrap to
821 prevent evaporation.

822 For hybridisation, the hybridisation buffer with probe (1:100–1:250, >100 ng/ml) was
823 preheated at 70°C for 5 min, then applied to the embryos and incubated at 60°C overnight
824 with slight rocking. Post-hybridisation washes were done at 60°C for 15 min each, with three
825 washes in wash buffer, followed by washes with wash buffer + 2X SSCT (1:1), 2X SSCT, 0.2X
826 SSCT, and 0.1X SSCT. Embryos were then rinsed with wash buffer at room temperature for
827 15 min per wash. Blocking was performed in MAB blocking buffer (100 mM Maleic acid, 150
828 mM NaCl, 2% Blocking reagent [Roche, 1096176], 10% Sheep serum, 0.1% Tween 20, and
829 0.2% Triton X-100) at room temperature for at least 1 h. Primary antibody incubation was
830 carried out overnight at 4°C using anti-DIG-AP solution (Roche 11093274910) in MAB
831 blocking buffer. Embryos were washed in MABTX (100 mM Maleic acid, 150 mM NaCl with
832 0.1% Tween 20 and 0.2% Triton X-100) five times for 20 min each, followed by two washes in
833 TMN buffer (100 mM NaCl, 50 mM MgCl₂, 100 mM Tris-Cl, 0.05% Tween 20) for 5 min each.

834 For the chromogenic reaction, embryos were transferred to clean wells to avoid
835 staining from impurities. The reaction was carried out using BM Purple (Roche 1442074) in

836 the dark without rocking, ranging from 20 min to several days depending on the probe. The
837 reaction was stopped by washing in PBST, fixing in 4% PFA/PBST for 20–30 min, washing in
838 100% ethanol for 5–10 min, and rinsing in PBST. Finally, embryos were mounted in 70%
839 glycerol in PBS with 0.1% NaN₃ and stored overnight for full immersion at 4°C, protected from
840 light.

841 *In situ* hybridisation of *cv2*, *bmp2/4* and *bmp5–8* was performed using traditional
842 cloning methods and visualised with NBT/BCIP stock solution (Roche 11681451001), as
843 previously described¹⁴³.

844

845 **Immunostaining and imaging**

846 Immunostaining was performed to identify the presence of phospho-Smad1/5 (pSmad1/5;
847 BMP signalling readout) and phospho-Histone H3 (pHistone H3, indicator of mitotic cell at
848 metaphase) during *L. anatina* development under control and BMP signal manipulation
849 conditions. Embryos from early cleavage to larval stages were fixed in 4% PFA in filtered
850 seawater, followed by dehydration in chilled methanol and storage at -20°C. For
851 immunostaining, embryos were first rehydrated with PBST for 10 min and then subjected to
852 permeabilisation using PBSTX for 30 min. To block non-specific antigens, embryos were
853 treated with 3% BSA in PBST for at least 1 h. They were subsequently incubated with either
854 rabbit anti-phospho-Smad1/5 (1:200; Cell signalling 9511S) or rabbit anti-phospho-Histone H3
855 (Ser10) (1:100; Millipore 06-570) antibody in 3% BSA in PBST overnight at 4°C. Alexa Fluor
856 goat anti-rabbit secondary antibody (1:400; Invitrogen A-11037) was used for signal
857 visualisation of the primary antibodies. For chitin detection, a fluorescein-conjugated chitin-
858 binding probe (1:200; NEB P5211S) was applied. Nuclei were stained with Hoechst 33342
859 (1:1000 dilution from a 10 mg/mL solution; Invitrogen H1399), and cytoplasmic membranes
860 were labelled using CellMask Deep Red (1:2000; Invitrogen C10046). Imaging was performed
861 on a Zeiss LSM 710 or LSM 780 confocal microscope.

862

863 **Data availability**

864 Genome sequencing and RNA-sequencing datasets are accessible through NCBI BioProject
865 (PRJNA1068743).

866

867 **Code availability**

868 Code for analyses in this study is available at
869 https://github.com/symgenoevolab/lingula_genome.
870

871 **References**

- 872 1. De Robertis, E. M. & Sasai, Y. A common plan for dorsoventral patterning in Bilateria.
873 *Nature* **380**, 37–40 (1996).
- 874 2. Ferguson, E. L. Conservation of dorsal-ventral patterning in arthropods and chordates.
875 *Curr. Opin. Genet. Dev.* **6**, 424–431 (1996).
- 876 3. De Robertis, E. M. Evo-devo: variations on ancestral themes. *Cell* **132**, 185–195 (2008).
- 877 4. Sasai, Y., Lu, B., Steinbeisser, H. & De Robertis, E. M. Regulation of neural induction
878 by the Chd and Bmp-4 antagonistic patterning signals in *Xenopus*. *Nature* **377**, 757
879 (1995).
- 880 5. De Robertis, E. M. & Kuroda, H. Dorsal-ventral patterning and neural induction in
881 *Xenopus* embryos. *Annu. Rev. Cell Dev. Biol.* **20**, 285–308 (2004).
- 882 6. Sasai, Y. *et al.* *Xenopus* chordin: a novel dorsalizing factor activated by organizer-
883 specific homeobox genes. *Cell* **79**, 779–790 (1994).
- 884 7. Piccolo, S., Sasai, Y., Lu, B. & De Robertis, E. M. Dorsoventral patterning in *Xenopus*:
885 inhibition of ventral signals by direct binding of chordin to BMP-4. *Cell* **86**, 589–598
886 (1996).
- 887 8. Smith, W. C. & Harland, R. M. Expression cloning of noggin, a new dorsalizing factor
888 localized to the Spemann organizer in *Xenopus* embryos. *Cell* **70**, 829–840 (1992).
- 889 9. Zimmerman, L. B., De Jesús-Escobar, J. M. & Harland, R. M. The Spemann organizer
890 signal noggin binds and inactivates bone morphogenetic protein 4. *Cell* **86**, 599–606
891 (1996).
- 892 10. Moos, M., Jr, Wang, S. & Krinks, M. Anti-dorsalizing morphogenetic protein is a novel
893 TGF-beta homolog expressed in the Spemann organizer. *Development* **121**, 4293–4301

894 (1995).

895 11. Ray, R. P., Arora, K., Nüsslein-Volhard, C. & Gelbart, W. M. The control of cell fate
896 along the dorsal-ventral axis of the *Drosophila* embryo. *Development* **113**, 35–54
897 (1991).

898 12. Ferguson, E. L. & Anderson, K. V. Decapentaplegic acts as a morphogen to organize
899 dorsal-ventral pattern in the *Drosophila* embryo. *Cell* **71**, 451–461 (1992).

900 13. Srinivasan, S., Rashka, K. E. & Bier, E. Creation of a Sog morphogen gradient in the
901 *Drosophila* embryo. *Dev. Cell* **2**, 91–101 (2002).

902 14. Lynch, J. A. & Roth, S. The evolution of dorsal-ventral patterning mechanisms in
903 insects. *Genes Dev.* **25**, 107–118 (2011).

904 15. Lowe, C. J. *et al.* Dorsoventral patterning in hemichordates: insights into early chordate
905 evolution. *PLoS Biol.* **4**, e291 (2006).

906 16. Yu, J.-K. *et al.* Axial patterning in cephalochordates and the evolution of the organizer.
907 *Nature* **445**, 613–617 (2007).

908 17. Lapraz, F., Besnardieu, L. & Lepage, T. Patterning of the dorsal-ventral axis in
909 echinoderms: insights into the evolution of the BMP-chordin signaling network. *PLoS
910 Biol.* **7**, e1000248 (2009).

911 18. Arendt, D. & Nübler-Jung, K. Inversion of dorsoventral axis? *Nature* **371**, 26 (1994).

912 19. Lowe, C. J., Clarke, D. N., Medeiros, D. M., Rokhsar, D. S. & Gerhart, J. The
913 deuterostome context of chordate origins. *Nature* **520**, 456–465 (2015).

914 20. Su, Y.-H. *et al.* BMP controls dorsoventral and neural patterning in indirect-developing
915 hemichordates providing insight into a possible origin of chordates. *Proc. Natl. Acad.
916 Sci. U. S. A.* **116**, 12925–12932 (2019).

917 21. Bier, E. & De Robertis, E. M. BMP gradients: A paradigm for morphogen-mediated
918 developmental patterning. *Science* **348**, aaa5838 (2015).

919 22. Kuo, D.-H. & Weisblat, D. A. A new molecular logic for BMP-mediated dorsoventral
920 patterning in the leech *Helobdella*. *Curr. Biol.* **21**, 1282–1288 (2011).

921 23. Lyons, D. C., Perry, K. J., Batzel, G. & Henry, J. Q. BMP signaling plays a role in

922 anterior-neural/head development, but not organizer activity, in the gastropod *Crepidula*
923 *fornicata*. *Dev. Biol.* **463**, 135–157 (2020).

924 24. Webster, N. B., Corbet, M., Sur, A. & Meyer, N. P. Role of BMP signaling during early
925 development of the annelid *Capitella teleta*. *Dev. Biol.* **478**, 183–204 (2021).

926 25. Kuo, D.-H., Shankland, M. & Weisblat, D. A. Regional differences in BMP-dependence
927 of dorsoventral patterning in the leech *Helobdella*. *Dev. Biol.* **368**, 86–94 (2012).

928 26. Lanza, A. R. & Seaver, E. C. Activin/Nodal signaling mediates dorsal-ventral axis
929 formation before third quartet formation in embryos of the annelid *Chaetopterus*
930 *pergamentaceus*. *Evodevo* **11**, 17 (2020).

931 27. Webster, N. B. & Meyer, N. P. *Capitella teleta* gets left out: possible evolutionary shift
932 causes loss of left tissues rather than increased neural tissue from dominant-negative
933 BMPR1. *Neural Dev.* **19**, 4 (2024).

934 28. Lanza, A. R. & Seaver, E. C. Functional evidence that Activin/Nodal signaling is
935 required for establishing the dorsal-ventral axis in the annelid *Capitella teleta*.
936 *Development* **147**, (2020).

937 29. Martín-Zamora, F. M. *et al.* Annelid functional genomics reveal the origins of bilaterian
938 life cycles. *Nature* **615**, 105–110 (2023).

939 30. Kenny, N. J. *et al.* The Lophotrochozoan TGF- β signalling cassette - diversification and
940 conservation in a key signalling pathway. *Int. J. Dev. Biol.* **58**, 533–549 (2014).

941 31. Lambert, J. D., Johnson, A. B., Hudson, C. N. & Chan, A. Dpp/BMP2-4 Mediates
942 Signaling from the D-Quadrant Organizer in a Spiralian Embryo. *Curr. Biol.* **26**, 2003–
943 2010 (2016).

944 32. Tan, S., Huan, P. & Liu, B. Molluskan Dorsal-Ventral Patterning Relying on BMP2/4 and
945 Chordin Provides Insights into Spiralian Development and Evolution. *Mol. Biol. Evol.* **39**,
946 (2022).

947 33. Hejnol, A. A twist in time--the evolution of spiral cleavage in the light of animal
948 phylogeny. *Integr. Comp. Biol.* **50**, 695–706 (2010).

949 34. Martín-Durán, J. M. & Marlétaz, F. Unravelling spiral cleavage. *Development* **147**,

950 (2020).

951 35. Yatsu, N. On the development of Lingula anatina. *J. Coll. Sci. Imperial Univ. Tokyo* **17**,
952 1 (1902).

953 36. Martín-Durán, J. M., Passamaneck, Y. J., Martindale, M. Q. & Hejnol, A. The
954 developmental basis for the recurrent evolution of deuterostomy and protostomy. *Nat
955 Ecol Evol* **1**, 5 (2016).

956 37. Luo, Y.-J. *et al.* The Lingula genome provides insights into brachiopod evolution and the
957 origin of phosphate biominerilization. *Nat. Commun.* **6**, 8301 (2015).

958 38. Simakov, O. *et al.* Insights into bilaterian evolution from three spiralian genomes. *Nature*
959 **493**, 526–531 (2013).

960 39. Kenny, N. J. *et al.* The gene-rich genome of the scallop *Pecten maximus*. *Gigascience*
961 **9**, (2020).

962 40. Kwiatkowski, D. *et al.* The genome sequence of the bootlace worm, *Lineus longissimus*
963 (Gunnerus, 1770). *Wellcome Open Res* **6**, 272 (2021).

964 41. Simakov, O. *et al.* Deeply conserved synteny and the evolution of metazoan
965 chromosomes. *Sci Adv* **8**, eabi5884 (2022).

966 42. Nishizawa, A., Sarashina, I., Tsujimoto, Y., Iijima, M. & Endo, K. Artificial fertilization,
967 early development and chromosome numbers in the brachiopod *Lingula anatina*.
968 *Special Papers in Palaeontology* **84**, 309–316 (2010).

969 43. Hejnol, A. & Lowe, C. J. Embracing the comparative approach: how robust phylogenies
970 and broader developmental sampling impacts the understanding of nervous system
971 evolution. *Philos. Trans. R. Soc. Lond. B Biol. Sci.* **370**, (2015).

972 44. Laumer, C. E. *et al.* Revisiting metazoan phylogeny with genomic sampling of all phyla.
973 *Proceedings of the Royal Society B: Biological Sciences* **286**, 20190831 (2019).

974 45. Marlétaz, F., Peijnenburg, K. T. C. A., Goto, T., Satoh, N. & Rokhsar, D. S. A New
975 Spiralian Phylogeny Places the Enigmatic Arrow Worms among Gnathiferans. *Curr.
976 Biol.* **29**, 312–318.e3 (2019).

977 46. Liao, I. J.-Y., Lu, T.-M., Chen, M.-E. & Luo, Y.-J. Spiralian genomics and the evolution

978 of animal genome architecture. *Brief. Funct. Genomics* (2023)

979 doi:10.1093/bfgp/elad029.

980 47. Bishop, J. *et al.* The genome sequence of the sea mat, Membranipora membranacea

981 (Linnaeus, 1767). *Wellcome Open Research* **8**, 38 (2023).

982 48. Wood, C. *et al.* The genome sequence of an erect bryozoan, Bugulina stolonifera

983 (Ryland, 1960). *Wellcome Open Res.* **8**, 26 (2023).

984 49. Hawkins, S. J., Mieszkowska, N., Mrowicki, R. & Marine Biological Association Genome

985 Acquisition Lab. The genome sequence of the common limpet, Patella vulgata.

986 *Wellcome Open Research* **8**, 418 (2023).

987 50. Hejnol, A. *et al.* Assessing the root of bilaterian animals with scalable phylogenomic

988 methods. *Proc. Biol. Sci.* **276**, 4261–4270 (2009).

989 51. Khalturin, K. *et al.* Polyzoa is back: The effect of complete gene sets on the placement

990 of Ectoprocta and Entoprocta. *Sci Adv* **8**, eabo4400 (2022).

991 52. Kocot, K. M. *et al.* Phylogenomics of Lophotrochozoa with Consideration of Systematic

992 Error. *Syst. Biol.* **66**, 256–282 (2017).

993 53. Affolter, M., Marty, T., Vigano, M. A. & Jaźwińska, A. Nuclear interpretation of Dpp

994 signaling in Drosophila. *EMBO J.* **20**, 3298–3305 (2001).

995 54. Lapraz, F. *et al.* RTK and TGF-beta signaling pathways genes in the sea urchin

996 genome. *Dev. Biol.* **300**, 132–152 (2006).

997 55. Gaviño, M. A. & Reddien, P. W. A Bmp/Admp regulatory circuit controls maintenance

998 and regeneration of dorsal-ventral polarity in planarians. *Curr. Biol.* **21**, 294–299 (2011).

999 56. Ko, B. J. *et al.* Widespread false gene gains caused by duplication errors in genome

1000 assemblies. *Genome Biol.* **23**, 205 (2022).

1001 57. Rie, A. *et al.* Towards complete and error-free genome assemblies of all vertebrate

1002 species. *Nature* **592**, 737–746 (2021).

1003 58. Simakov, O. *et al.* Deeply conserved synteny resolves early events in vertebrate

1004 evolution. *Nat Ecol Evol* **4**, 820–830 (2020).

1005 59. Cuny, G. D. *et al.* Structure-activity relationship study of bone morphogenetic protein

1006 (BMP) signaling inhibitors. *Bioorg. Med. Chem. Lett.* **18**, 4388–4392 (2008).

1007 60. Sanvitale, C. E. *et al.* A new class of small molecule inhibitor of BMP signaling. *PLoS*
1008 *One* **8**, e62721 (2013).

1009 61. Luo, Y.-J. & Su, Y.-H. Opposing nodal and BMP signals regulate left-right asymmetry in
1010 the sea urchin larva. *PLoS Biol.* **10**, e1001402 (2012).

1011 62. Robinow, S. & White, K. The locus elav of *Drosophila melanogaster* is expressed in
1012 neurons at all developmental stages. *Dev. Biol.* **126**, 294–303 (1988).

1013 63. Acampora, D. *et al.* Forebrain and midbrain regions are deleted in *Otx2*-/- mutants due
1014 to a defective anterior neuroectoderm specification during gastrulation. *Development*
1015 **121**, 3279–3290 (1995).

1016 64. Pevny, L. & Placzek, M. SOX genes and neural progenitor identity. *Curr. Opin.*
1017 *Neurobiol.* **15**, 7–13 (2005).

1018 65. Bradford, D., Cole, S. J. & Cooper, H. M. Netrin-1: diversity in development. *Int. J.*
1019 *Biochem. Cell Biol.* **41**, 487–493 (2009).

1020 66. Zhang, X. *et al.* Pax6 is a human neuroectoderm cell fate determinant. *Cell Stem Cell* **7**,
1021 90–100 (2010).

1022 67. Takebayashi-Suzuki, K., Kitayama, A., Terasaka-Iioka, C., Ueno, N. & Suzuki, A. The
1023 forkhead transcription factor FoxB1 regulates the dorsal-ventral and anterior-posterior
1024 patterning of the ectoderm during early *Xenopus* embryogenesis. *Dev. Biol.* **360**, 11–29
1025 (2011).

1026 68. Yao, S. *et al.* Anaplastic lymphoma kinase is required for neurogenesis in the
1027 developing central nervous system of zebrafish. *PLoS One* **8**, e63757 (2013).

1028 69. Range, R. Specification and positioning of the anterior neuroectoderm in deuterostome
1029 embryos. *Genesis* **52**, 222–234 (2014).

1030 70. Biehs, B., François, V. & Bier, E. The *Drosophila* short gastrulation gene prevents Dpp
1031 from autoactivating and suppressing neurogenesis in the neuroectoderm. *Genes Dev.*
1032 **10**, 2922–2934 (1996).

1033 71. Fainsod, A., Steinbeisser, H. & De Robertis, E. M. On the function of BMP-4 in

1034 patterning the marginal zone of the *Xenopus* embryo. *EMBO J.* **13**, 5015–5025 (1994).

1035 72. Moser, M. *et al.* BMPER, a novel endothelial cell precursor-derived protein, antagonizes
1036 bone morphogenetic protein signaling and endothelial cell differentiation. *Mol. Cell. Biol.*
1037 **23**, 5664–5679 (2003).

1038 73. Ambrosio, A. L. *et al.* Crossveinless-2 Is a BMP feedback inhibitor that binds
1039 Chordin/BMP to regulate *Xenopus* embryonic patterning. *Dev. Cell* **15**, 248–260 (2008).

1040 74. Oelgeschläger, M., Larraín, J., Geissert, D. & De Robertis, E. M. The evolutionarily
1041 conserved BMP-binding protein Twisted gastrulation promotes BMP signalling. *Nature*
1042 **405**, 757–763 (2000).

1043 75. Larraín, J. *et al.* Proteolytic cleavage of Chordin as a switch for the dual activities of
1044 Twisted gastrulation in BMP signaling. *Development* **128**, 4439–4447 (2001).

1045 76. Oelgeschläger, M. *et al.* The pro-BMP activity of Twisted gastrulation is independent of
1046 BMP binding. *Development* **130**, 4047–4056 (2003).

1047 77. Onichtchouk, D. *et al.* Silencing of TGF-beta signalling by the pseudoreceptor BAMBI.
1048 *Nature* **401**, 480–485 (1999).

1049 78. Hemmati-Brivanlou, A., Kelly, O. G. & Melton, D. A. Follistatin, an antagonist of activin,
1050 is expressed in the Spemann organizer and displays direct neuralizing activity. *Cell* **77**,
1051 283–295 (1994).

1052 79. Dosch, R. & Niehrs, C. Requirement for anti-dorsalizing morphogenetic protein in
1053 organizer patterning. *Mech. Dev.* **90**, 195–203 (2000).

1054 80. Suzuki, A. *et al.* A truncated bone morphogenetic protein receptor affects dorsal-ventral
1055 patterning in the early *Xenopus* embryo. *Proc. Natl. Acad. Sci. U. S. A.* **91**, 10255–
1056 10259 (1994).

1057 81. Domazet-Lošo, T. & Tautz, D. A phylogenetically based transcriptome age index mirrors
1058 ontogenetic divergence patterns. *Nature* **468**, 815–818 (2010).

1059 82. Le Petillon, Y. *et al.* Nodal/Activin Pathway is a Conserved Neural Induction Signal in
1060 Chordates. *Nat Ecol Evol* **1**, 1192–1200 (2017).

1061 83. Garcia-Fernàndez, J., D'Aniello, S. & Escrivà, H. Organizing chordates with an

1062 organizer. *Bioessays* **29**, 619–624 (2007).

1063 84. Lapraz, F., Haillot, E. & Lepage, T. A deuterostome origin of the Spemann organizer
1064 suggested by Nodal and ADMPs functions in Echinoderms. *Nat. Commun.* **6**, 8927
1065 (2015).

1066 85. Tagawa, K., Nishino, A., Humphreys, T. & Satoh, N. The Spawning and Early
1067 Development of the Hawaiian Acorn Worm (Hemichordate), *Ptychoderma flava*. *Zoolog.*
1068 *Sci.* **15**, 85–91 (1998).

1069 86. Andrews, S. & Others. FastQC: a quality control tool for high throughput sequence data.
1070 Preprint at (2010).

1071 87. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina
1072 sequence data. *Bioinformatics* **30**, 2114–2120 (2014).

1073 88. Dobin, A. *et al.* STAR: ultrafast universal RNA-seq aligner. *Bioinformatics* **29**, 15–21
1074 (2013).

1075 89. Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-seq
1076 quantification. *Nat. Biotechnol.* **34**, 525–527 (2016).

1077 90. Rao, S. S. P. *et al.* A 3D map of the human genome at kilobase resolution reveals
1078 principles of chromatin looping. *Cell* **159**, 1665–1680 (2014).

1079 91. Burton, J. N. *et al.* Chromosome-scale scaffolding of de novo genome assemblies
1080 based on chromatin interactions. *Nat. Biotechnol.* **31**, 1119–1125 (2013).

1081 92. Vasimuddin, Misra, Li & Aluru. Efficient Architecture-Aware Acceleration of BWA-MEM
1082 for Multicore Systems. in *2019 IEEE International Parallel and Distributed Processing*
1083 *Symposium (IPDPS)* vol. 0 314–324 (2019).

1084 93. Durand, N. C. *et al.* Juicer Provides a One-Click System for Analyzing Loop-Resolution
1085 Hi-C Experiments. *Cell Syst* **3**, 95–98 (2016).

1086 94. Dudchenko, O. *et al.* De novo assembly of the *Aedes aegypti* genome using Hi-C yields
1087 chromosome-length scaffolds. *Science* **356**, 92–95 (2017).

1088 95. Durand, N. C. *et al.* Juicebox Provides a Visualization System for Hi-C Contact Maps
1089 with Unlimited Zoom. *Cell Syst* **3**, 99–101 (2016).

1090 96. Buchfink, B., Reuter, K. & Drost, H.-G. Sensitive protein alignments at tree-of-life scale
1091 using DIAMOND. *Nat. Methods* **18**, 366–368 (2021).

1092 97. Kim, D., Paggi, J. M., Park, C., Bennett, C. & Salzberg, S. L. Graph-based genome
1093 alignment and genotyping with HISAT2 and HISAT-genotype. *Nat. Biotechnol.* **37**, 907–
1094 915 (2019).

1095 98. Challis, R., Richards, E., Rajan, J., Cochrane, G. & Blaxter, M. BlobToolKit - Interactive
1096 Quality Assessment of Genome Assemblies. *G3* **10**, 1361–1374 (2020).

1097 99. Flynn, J. M. *et al.* RepeatModeler2 for automated genomic discovery of transposable
1098 element families. *Proc. Natl. Acad. Sci. U. S. A.* **117**, 9451–9457 (2020).

1099 100. Price, A. L., Jones, N. C. & Pevzner, P. A. De novo identification of repeat families in
1100 large genomes. *Bioinformatics* **21 Suppl 1**, i351–8 (2005).

1101 101. Bao, Z. & Eddy, S. R. Automated de novo identification of repeat sequence families in
1102 sequenced genomes. *Genome Res.* **12**, 1269–1276 (2002).

1103 102. Ellinghaus, D., Kurtz, S. & Willhöft, U. LTRharvest, an efficient and flexible software for
1104 de novo detection of LTR retrotransposons. *BMC Bioinformatics* **9**, 18 (2008).

1105 103. Ou, S. & Jiang, N. LTR_retriever: A Highly Accurate and Sensitive Program for
1106 Identification of Long Terminal Repeat Retrotransposons. *Plant Physiol.* **176**, 1410–
1107 1422 (2018).

1108 104. Hoff, K. J., Lomsadze, A., Borodovsky, M. & Stanke, M. Whole-Genome Annotation with
1109 BRAKER. *Methods Mol. Biol.* **1962**, 65–95 (2019).

1110 105. Brúna, T., Hoff, K. J., Lomsadze, A., Stanke, M. & Borodovsky, M. BRAKER2:
1111 automatic eukaryotic genome annotation with GeneMark-EP+ and AUGUSTUS
1112 supported by a protein database. *NAR Genom Bioinform* **3**, lqaa108 (2021).

1113 106. Hoff, K. J., Lange, S., Lomsadze, A., Borodovsky, M. & Stanke, M. BRAKER1:
1114 Unsupervised RNA-Seq-Based Genome Annotation with GeneMark-ET and
1115 AUGUSTUS. *Bioinformatics* **32**, 767–769 (2016).

1116 107. Li, H. *et al.* The Sequence Alignment/Map format and SAMtools. *Bioinformatics* **25**,
1117 2078–2079 (2009).

1118 108. Barnett, D. W., Garrison, E. K., Quinlan, A. R., Strömberg, M. P. & Marth, G. T.

1119 BamTools: a C++ API and toolkit for analyzing and managing BAM files. *Bioinformatics*

1120 **27**, 1691–1692 (2011).

1121 109. Lomsadze, A., Burns, P. D. & Borodovsky, M. Integration of mapped RNA-Seq reads

1122 into automatic training of eukaryotic gene finding algorithm. *Nucleic Acids Res.* **42**, e119

1123 (2014).

1124 110. Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using

1125 DIAMOND. *Nat. Methods* **12**, 59–60 (2015).

1126 111. Stanke, M., Diekhans, M., Baertsch, R. & Haussler, D. Using native and syntenically

1127 mapped cDNA alignments to improve de novo gene finding. *Bioinformatics* **24**, 637–644

1128 (2008).

1129 112. Stanke, M., Schöffmann, O., Morgenstern, B. & Waack, S. Gene prediction in

1130 eukaryotes with a generalized hidden Markov model that uses hints from external

1131 sources. *BMC Bioinformatics* **7**, 62 (2006).

1132 113. Smit, A. F. A., Hubley, R. & Green, P. RepeatMasker Open-4.0. (2015).

1133 114. Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M.

1134 BUSCO: assessing genome assembly and annotation completeness with single-copy

1135 orthologs. *Bioinformatics* **31**, 3210–3212 (2015).

1136 115. Jones, P. *et al.* InterProScan 5: genome-scale protein function classification.

1137 *Bioinformatics* **30**, 1236–1240 (2014).

1138 116. Aramaki, T. *et al.* KofamKOALA: KEGG Ortholog assignment based on profile HMM

1139 and adaptive score threshold. *Bioinformatics* **36**, 2251–2252 (2019).

1140 117. Huerta-Cepas, J. *et al.* eggNOG 5.0: a hierarchical, functionally and phylogenetically

1141 annotated orthology resource based on 5090 organisms and 2502 viruses. *Nucleic*

1142 *Acids Res.* **47**, D309–D314 (2018).

1143 118. Cantalapiedra, C. P., Hernández-Plaza, A., Letunic, I., Bork, P. & Huerta-Cepas, J.

1144 eggNOG-mapper v2: Functional Annotation, Orthology Assignments, and Domain

1145 Prediction at the Metagenomic Scale. *Mol. Biol. Evol.* **38**, 5825–5829 (2021).

1146 119. Aramaki, T. *Kofam_scan: CLI Tool to Annotate Genes with KOfam*. (Github).

1147 120. Emms, D. M. & Kelly, S. OrthoFinder: phylogenetic orthology inference for comparative
1148 genomics. *Genome Biol.* **20**, 238 (2019).

1149 121. Seemann, T. BAsic Rapid Ribosomal RNA Predictor (barrnap). Preprint at (2018).

1150 122. Hao, Z. *et al.* RIdogram: drawing SVG graphics to visualize and map genome-wide
1151 data on the idiograms. *PeerJ Comput Sci* **6**, e251 (2020).

1152 123. Steenwyk, J. L. *et al.* OrthoSNAP: A tree splitting and pruning algorithm for retrieving
1153 single-copy orthologs from gene family trees. *PLoS Biol.* **20**, e3001827 (2022).

1154 124. Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7:
1155 improvements in performance and usability. *Mol. Biol. Evol.* **30**, 772–780 (2013).

1156 125. Katoh, K., Misawa, K., Kuma, K.-I. & Miyata, T. MAFFT: a novel method for rapid
1157 multiple sequence alignment based on fast Fourier transform. *Nucleic Acids Res.* **30**,
1158 3059–3066 (2002).

1159 126. Steenwyk, J. L., Buida, T. J., 3rd, Li, Y., Shen, X.-X. & Rokas, A. ClipKIT: A multiple
1160 sequence alignment trimming software for accurate phylogenomic inference. *PLoS Biol.*
1161 **18**, e3001007 (2020).

1162 127. Minh, B. Q. *et al.* IQ-TREE 2: New Models and Efficient Methods for Phylogenetic
1163 Inference in the Genomic Era. *Mol. Biol. Evol.* **37**, 1530–1534 (2020).

1164 128. Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. & Jermiin, L. S.
1165 ModelFinder: fast model selection for accurate phylogenetic estimates. *Nat. Methods*
1166 **14**, 587–589 (2017).

1167 129. Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2:
1168 Improving the Ultrafast Bootstrap Approximation. *Mol. Biol. Evol.* **35**, 518–522 (2018).

1169 130. Steenwyk, J. L. *et al.* PhyKIT: a broadly applicable UNIX shell toolkit for processing and
1170 analyzing phylogenomic data. *Bioinformatics* **37**, 2325–2331 (2021).

1171 131. Mendes, F. K., Vanderpool, D., Fulton, B. & Hahn, M. W. CAFE 5 models variation in
1172 evolutionary rates among gene families. *Bioinformatics* **36**, 5516–5518 (2020).

1173 132. Vences, M. *et al.* iTaxoTools 0.1: Kickstarting a specimen-based software toolkit for

1174 taxonomists. *Megataxa* **6**, (2021).

1175 133. Sanderson, M. J. r8s: inferring absolute rates of molecular evolution and divergence
1176 times in the absence of a molecular clock. *Bioinformatics* **19**, 301–302 (2003).

1177 134. Sali, A. & Blundell, T. L. Comparative protein modelling by satisfaction of spatial
1178 restraints. *J. Mol. Biol.* **234**, 779–815 (1993).

1179 135. Pettersen, E. F. *et al.* UCSF Chimera--a visualization system for exploratory research
1180 and analysis. *J. Comput. Chem.* **25**, 1605–1612 (2004).

1181 136. Lewin, T. D. *et al.* Fusion, fission, and scrambling of the bilaterian genome in Bryozoa.
1182 *bioRxiv* 2024.02.15.580425 (2024) doi:10.1101/2024.02.15.580425.

1183 137. Haas, B. J. *et al.* De novo transcript sequence reconstruction from RNA-seq using the
1184 Trinity platform for reference generation and analysis. *Nat. Protoc.* **8**, 1494–1512
1185 (2013).

1186 138. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for
1187 differential expression analysis of digital gene expression data. *Bioinformatics* **26**, 139–
1188 140 (2010).

1189 139. UniProt Consortium. UniProt: the Universal Protein Knowledgebase in 2023. *Nucleic
1190 Acids Res.* **51**, D523–D531 (2023).

1191 140. Barrera-Redondo, J., Lotharukpong, J. S., Drost, H.-G. & Coelho, S. M. Uncovering
1192 gene-family founder events during major evolutionary transitions in animals, plants and
1193 fungi using GenEra. *Genome Biol.* **24**, 54 (2023).

1194 141. Domazet-Loso, T., Brajković, J. & Tautz, D. A phylostratigraphy approach to uncover
1195 the genomic history of major adaptations in metazoan lineages. *Trends Genet.* **23**, 533–
1196 539 (2007).

1197 142. Drost, H.-G., Gabel, A., Liu, J., Quint, M. & Grosse, I. myTAI: evolutionary
1198 transcriptomics with R. *Bioinformatics* **34**, 1589–1590 (2017).

1199 143. Shimizu, K., Luo, Y.-J., Satoh, N. & Endo, K. Possible co-option of engrailed during
1200 brachiopod and mollusc shell development. *Biol. Lett.* **13**, (2017).

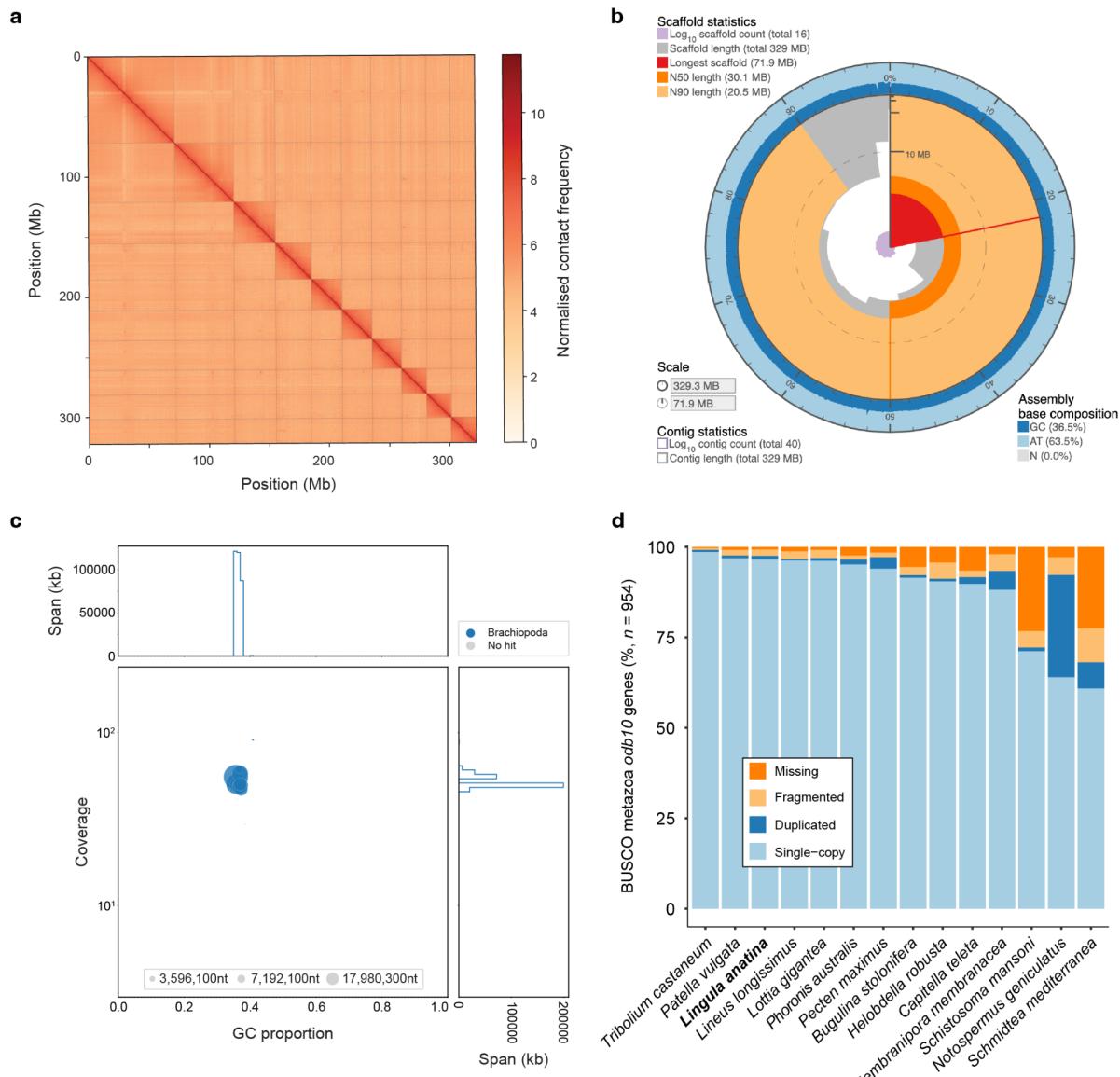
1201

1202 **Acknowledgments**

1203 We acknowledge the permission from Amami City, Kagoshima, Japan, for collecting *L. anatina*
1204 specimens. We thank Ryo Koyanagi in OIST DNA Sequencing Section for his support of RNA
1205 sequencing. We thank Asuka Sentoku for her support with the embryonic experiment at the
1206 University of Ryukyu. We also thank Keisuke Nakashima for a gift of chitin-binding probes.
1207 This work was funded by a Japan Society for the Promotion of Science Grant-in-Aid for JSPS
1208 Fellows (15J01101), a Royal Society Newton International Fellowship (NIF\R1\201315) and
1209 an Academia Sinica Career Development Award (AS-CDA-112-L06) to Y.-J.L. Y.H.W. was
1210 supported by the Innovation Team Project of Universities in Guangdong Province
1211 (2023KCXTD028) and the National Natural Science Foundation of China General Program
1212 (42276104). We thank the Symbiosis Genomics & Evolution Lab members for their assistance
1213 and support.

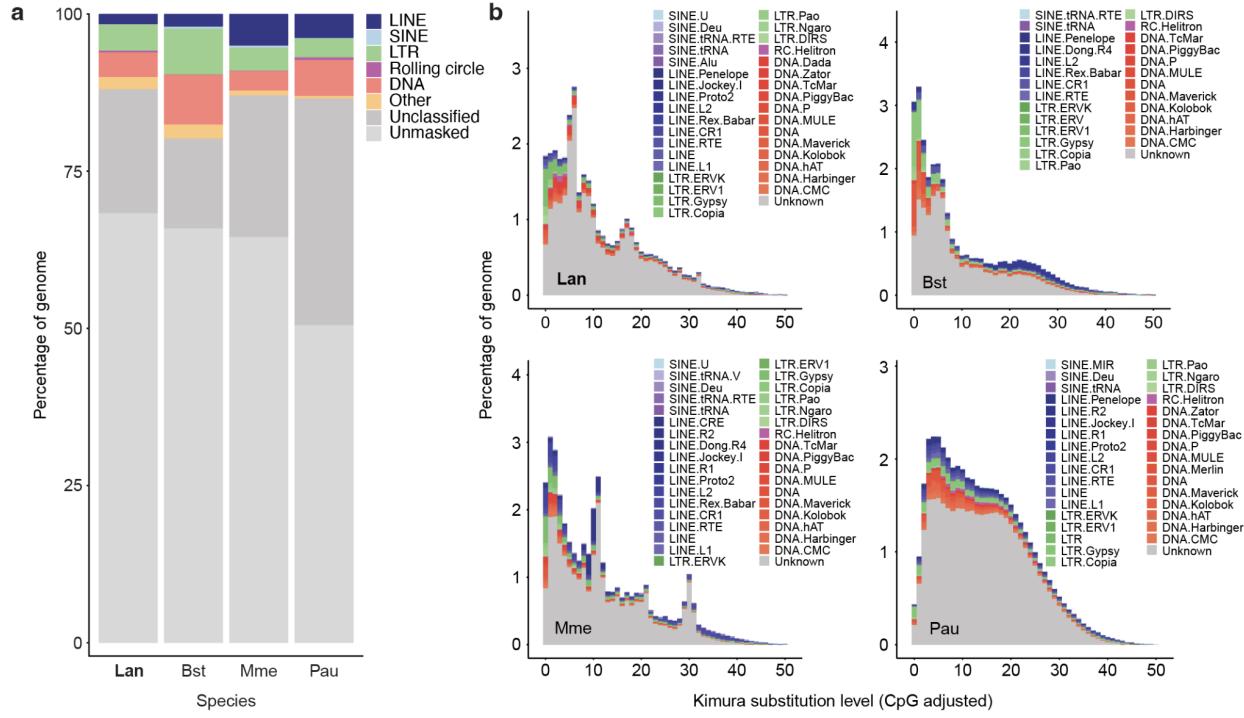
1214

1215 **Author contributions**


1216 T.D.L., Y.H.W. and Y.-J.L. conceived the project. K.S., K.E., N.S. and Y.-J.L. collected
1217 specimens. Y.H.W. sequenced the chromosome-scale genome and tissue transcriptomes.
1218 T.D.L. and M.-E.C. annotated the genomes. K.S. and Y.-J.L. conducted embryonic
1219 experiments and functional transcriptomics. T.D.L., I.J.-Y.L. and Y.-J.L. prepared code for
1220 GitHub. T.D.L. and Y.-J.L. analysed data and wrote the manuscript. K.E., N.S., P.W.H.H. and
1221 Y.H.W. discussed the results and edited the manuscript. All authors contributed to the revision
1222 of the manuscript.

1223

1224 **Competing interests**


1225 The authors declare no competing interests.

1226 **Extended Data Figures**

1227

1228 **Extended Data Fig. 1 | A chromosome-level assembly of the *L. anatina* genome. a, Hi-**
 1229 **C contact map of the *L. anatina* genome assembly. Axes are sorted by chromosome size**
 1230 **with highest at the top left. Colours represent intensity of interaction: darker colour = stronger**
 1231 **interaction. b, Snail plot showing key statistics for *L. anatina* genome assembly. The 329.3**
 1232 **Mb assembly is divided into 16 scaffolds, 10 of which are chromosome-scale. The longest**
 1233 **scaffold (red) is 71.9 Mb, the scaffold N50 (bright orange) is 30.1 Mb and the N90 (pale**
 1234 **orange) is 20.5 Mb. The genome has a 36.5% GC content. c, Blob plot for the final *L.***
 1235 ***anatina* assembly showing GC content, coverage, scaffold length and blast hits. d, BUSCO**
 1236 **metazoa odb10 results for selected spiralian genomes (n = 954). Statistics for *L. anatina*:**
 1237 **Complete: 97.5% [Single-copy: 96.6%, Duplicated: 0.9%], Fragmented: 1.8%, Missing:**
 1238 **0.7%.**

1239

1240 Extended Data Fig. 2 | Repeat content of Lophophorata genomes. a, Percent of genome

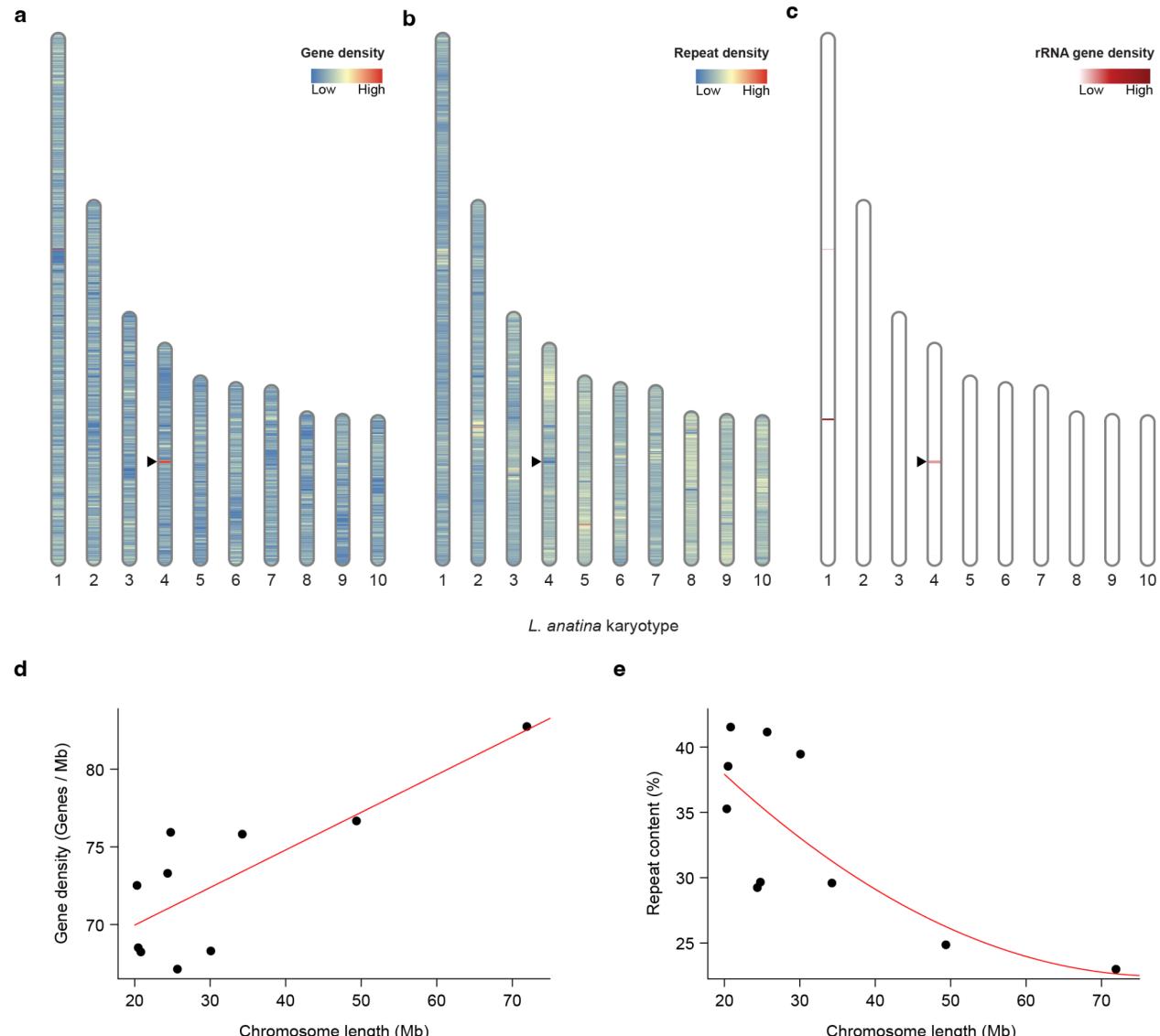
1241 assemblies composed of each repetitive element group for *Lingula anatina*, *Phoronis*

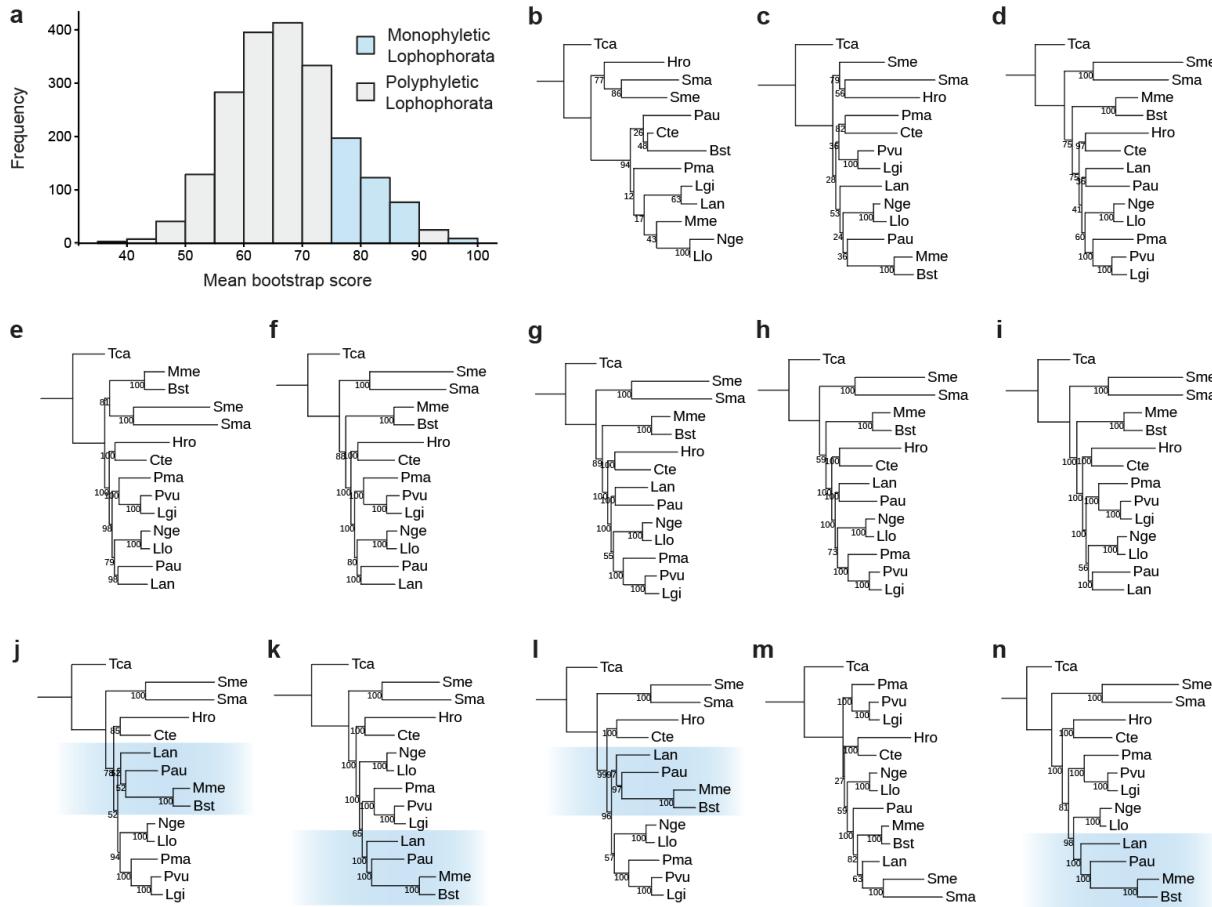
1242 *australis*, *Bugulina stolonifera* and *Membranipora membranacea* genomes. ‘Other’ includes

1243 Penelope elements, satellites, simple repeats and low complexity elements. *L. anatina* and

1244 the two bryozoans (*B. stolonifera* and *M. membranacea*) have highly similar repeat content

1245 composition. **b**, Output from RepeatLandscape. Plots show Kimura substitution level against

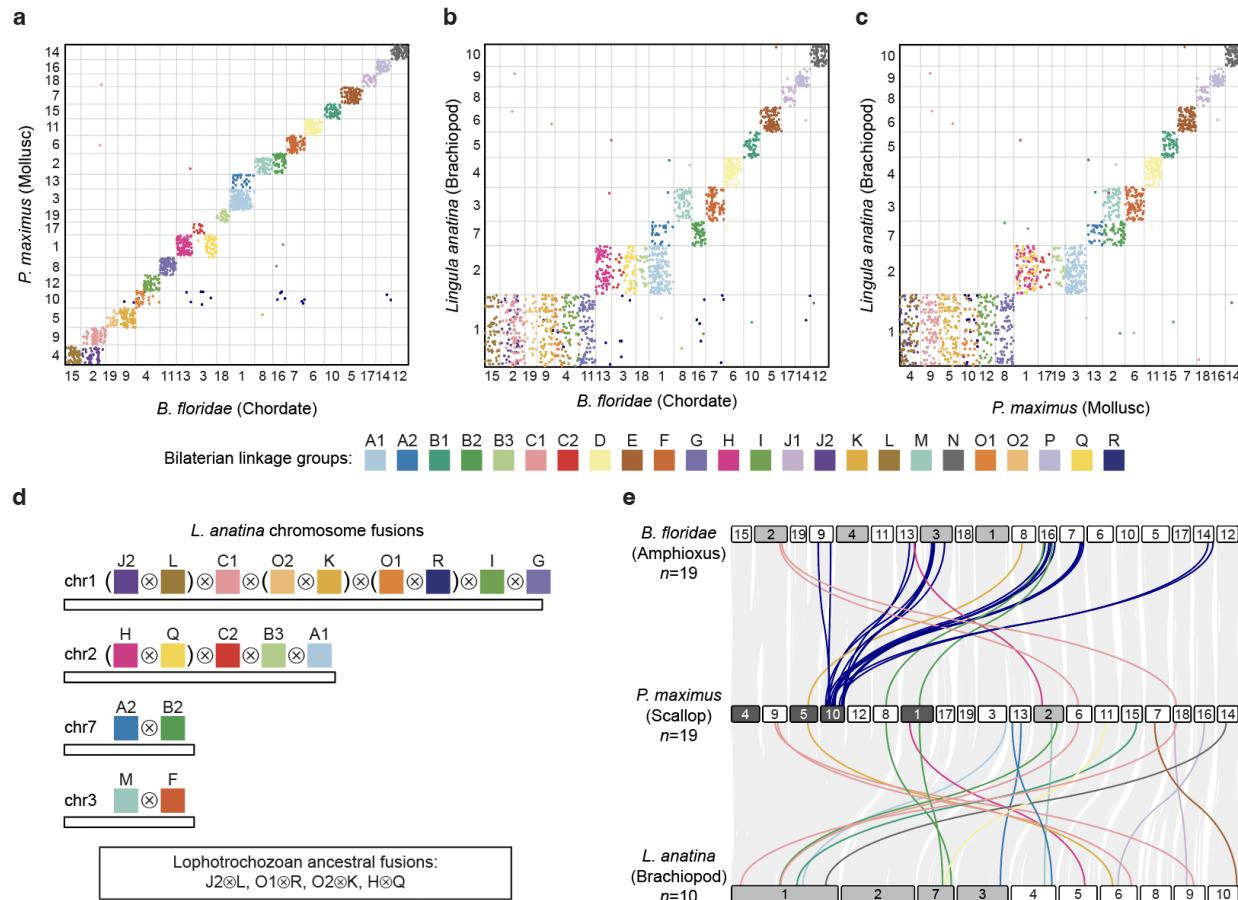

1246 percent of genome occupied and are coloured by transposable element taxonomy. Kimura


1247 substitution level is a proxy for transposable element age; the higher the substitution, the

1248 older the element insertion. There are recent repeat expansions in all Lophophorata

1249 genomes. In *L. anatina* and both bryozoans, a large proportion of the annotated elements

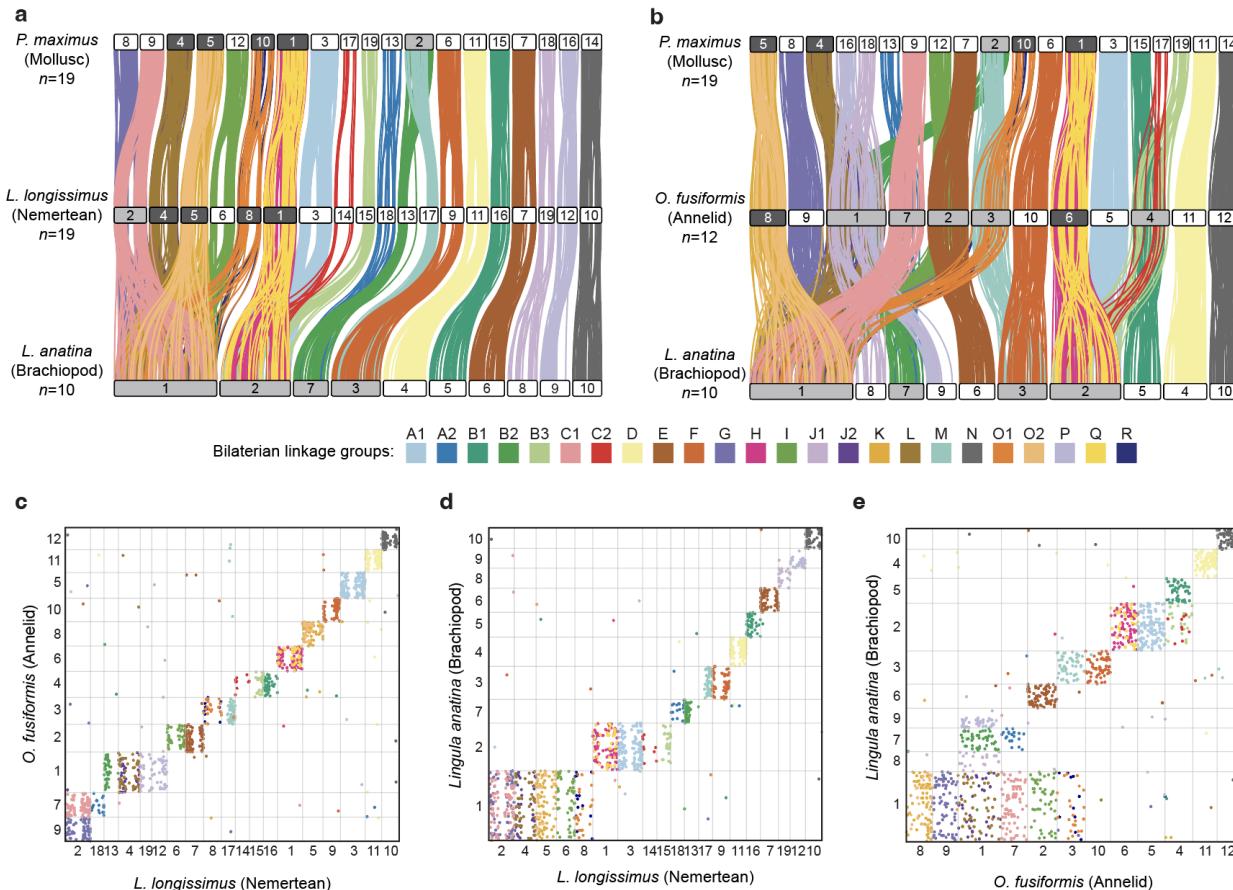
1250 with recent expansions are long terminal repeats (LTRs).



1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274

Extended Data Fig. 4 | Identification of orthologues with strong phylogenetic signals.

a, Distribution of mean bootstrap score for species trees built with each of 2,036 orthologues; bin width 5%. Bins are coloured grey or pale blue based on whether a tree made from those orthologues includes a polyphyletic or monophyletic Lophophorata, respectively. **b–n**, Maximum likelihood trees made from orthologues in 5% bins associated with the above analysis. Blue boxes mark the presence of the clade Lophophorata. Trees made from orthologues with higher bootstrap scores tend to support a monophyletic Lophophorata. Trees are made from the following mean bootstrap score bins: **b**, 35–40%; **c**, 40–45%; **d**, 45–50%; **e**, 50–55%; **f**, 55–60%; **g**, 60–65%; **h**, 65–70%; **i**, 70–75%; **j**, 75–80%; **k**, 80–85%; **l**, 85–90%; **m**, 90–95%; **n**, 95–100%.


1275

1276

1277 **Extended Data Fig. 5 | Chromosome-scale gene linkage between *L. anatina*, *P. maximus* and *B. floridae*.** **a**, Oxford dot plot revealing chromosome-scale gene linkage between the mollusc *P. maximus* and the chordate *B. floridae*. Each axis represents the entire length of the genome of one species. Grey bars separate chromosomes. Each point represents a pair of orthologues, placed by their ordinal position in each genome. Macrosynteny is highly conserved between these two groups, with few chromosome rearrangements. Linkage group R (dark blue) is lost in chordates, and is dispersed around the genome. **b**, Oxford dot plot revealing chromosome-scale gene linkage between the chordate *B. floridae* and the brachiopod *L. anatina*. *L. anatina* chromosome 1 corresponds to six *B. floridae* chromosomes (chr2, 4, 9, 11, 15, 19). *L. anatina* chromosome 2 corresponds to four *B. floridae* chromosomes (chr1, 3, 13, 18). *L. anatina* chromosome 7 corresponds to two *B. floridae* chromosomes (chr1, 16). *L. anatina* chromosome 3 corresponds to two *B. floridae* chromosomes (chr7, 8). **c**, Oxford dot plot revealing chromosome-scale gene linkage between the mollusc *P. maximus* and the brachiopod *L. anatina*. *L. anatina* chromosome 1 corresponds to six *P. maximus* chromosomes (chr4, 5, 8, 9, 10, 12). *L. anatina* chromosome 2 corresponds to four *P. maximus* chromosomes (chr1, 3, 17, 19). *L. anatina* chromosome 7 corresponds to two *P. maximus* chromosomes (chr2, 13). *L. anatina* chromosome 3 corresponds to two *P. maximus* chromosomes (chr2, 6). **d**, Summary of chromosome fusion events inferred from the *L. anatina* genome. The symbol \otimes represents a fusion-with-mixing event. Fusions that are present not only in brachiopods but also in other lophotrochozoans (annelids, molluscs and nemerteans) are highlighted with brackets. **e**,

1298 Macrosynteny between *B. floridae* (Chordata), *P. maximus* (Mollusca), and *L. anatina*
1299 (Brachiopoda). To create informative macrosynteny plots, cases where five or fewer genes
1300 are translocated to a different ALG are removed from the figures. This plot shows in colour
1301 the genes removed from main text Fig. 1b, while pale grey lines represent genes with a
1302 conserved ALG, showing relationships between chromosomes. While most chromosomes
1303 have few translocations, *P. maximus* chromosome 10 hosts many genes in ALG R that
1304 appear to have been translocated in the *B. floridae* genome. This is because, as previously
1305 reported, ALG R has been completely lost in *B. floridae*, so remaining genes are dispersed
1306 around the genome.

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

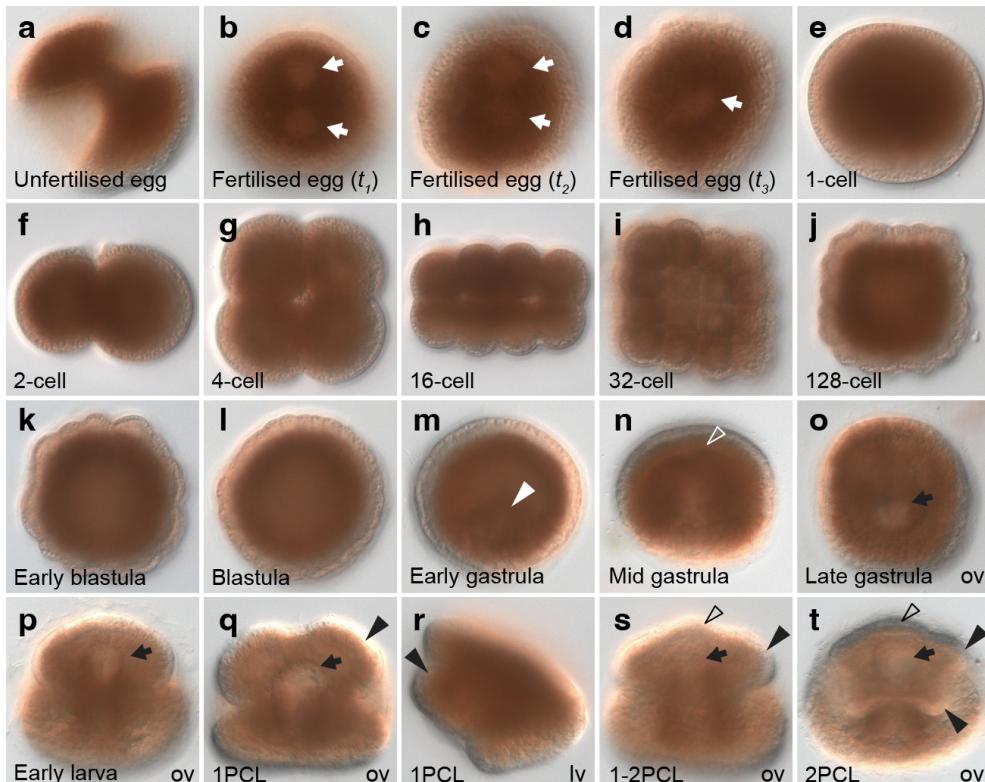
1324

1325

1326

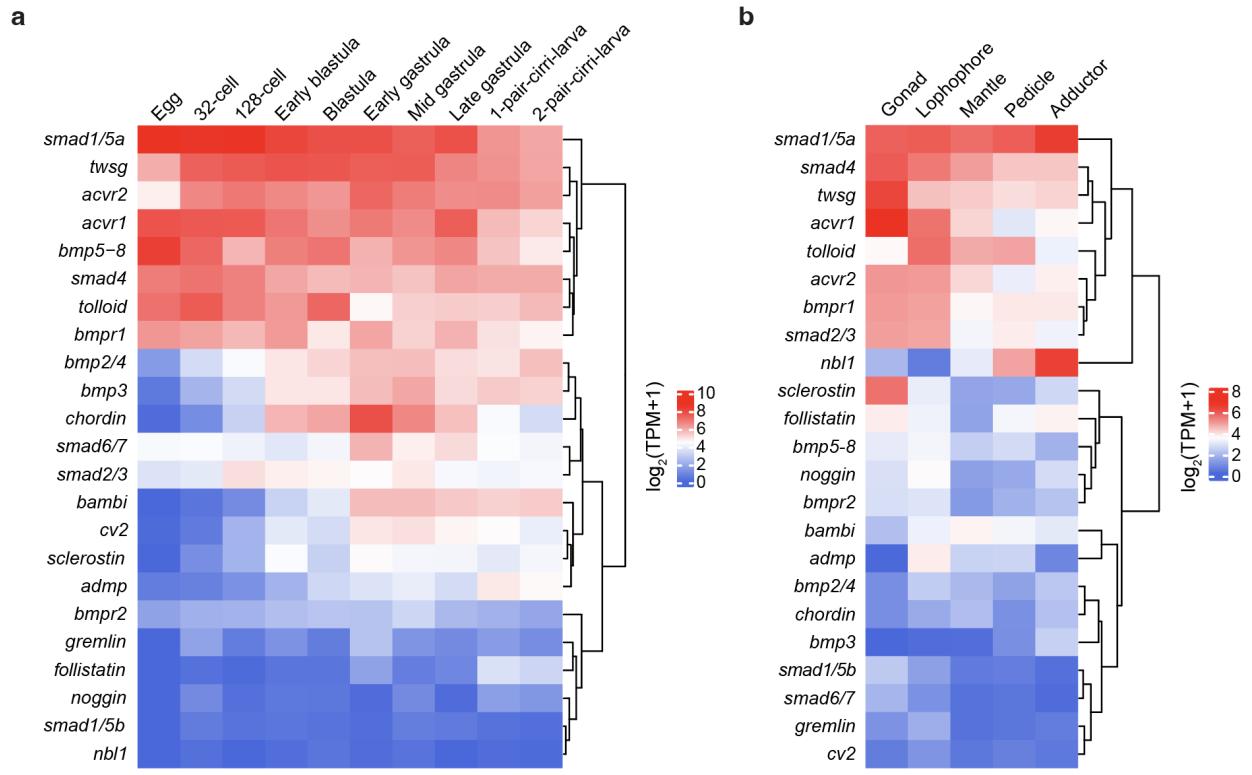
1327

1328

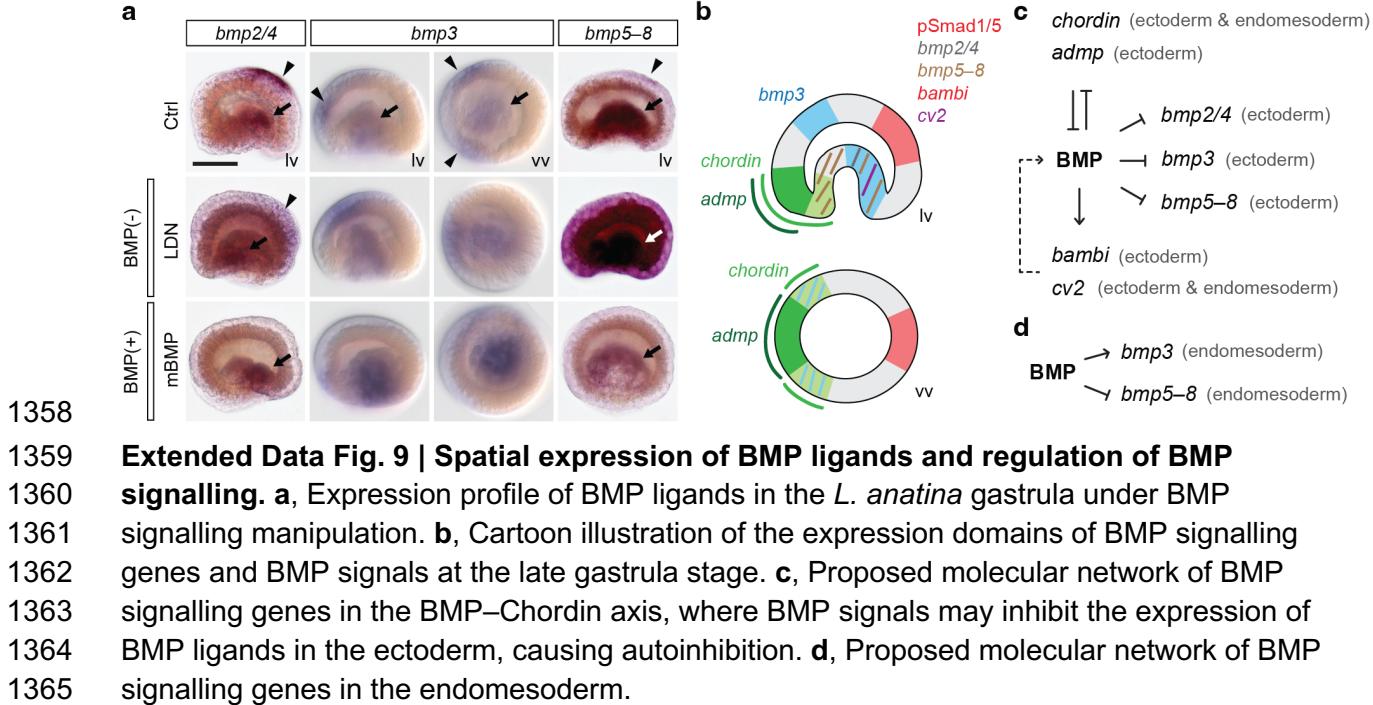

1329

1330

1331


Extended Data Fig. 6 | Chromosome-scale gene linkage between *L. anatina*, *L. longissimus*, *O. fusiformis* and *P. maximus*. **a**, Macrosynteny between *P. maximus* (Mollusca), *L. longissimus* (Nemertea) and *L. anatina* (Brachiopoda). Horizontal bars represent chromosomes. Dark grey chromosomes are the products of ancestral lophotrochozoan fusion events. Pale grey chromosomes are the products of lineage-specific fusion events. Vertical lines between chromosomes link orthologous genes and are coloured by bilaterian ALG. *L. longissimus* has undergone minimal genome rearrangements. In addition to the ancestral lophotrochozoan fusion events, it has one additional fusion-with-mixing event, bringing ALGs C1 and G together to form chromosome 2. ALGs C1 and G also occur together on *L. anatina* chromosome 1, but further analysis is required to determine whether these are independent fusions or are the product of a single fusion event in a common ancestor. A striking feature of this plot is the large gene deserts at the centre of the *L. longissimus* chromosomes, which are not observed in any other species. This may be indicative of large centromeric regions in *L. longissimus*. **b**, Macrosynteny between *P. maximus* (Mollusca), *O. fusiformis* (Annelida) and *L. anatina* (Brachiopoda). The *O. fusiformis* genome has undergone several fusion events independent to those occurring in *L. anatina*. In addition to the ancestral spiralian fusion events, chromosomes 1, 2, 3, 4 and 7 are the products of additional fusions. It is notable that only two ALGs (D and N; occupying chromosomes 4 and 10, respectively, in *L. anatina*) have not been involved in a fusion or fission event in the five species in our analysis. We questioned whether these chromosomes harbour specific genes that make fusions evolutionarily deleterious, but gene ontology analysis revealed no significant enrichment of specific gene types on these chromosomes. **c**, Oxford dot plot revealing chromosome-scale gene linkage between the annelid *O. fusiformis* and the nemertean *L. longissimus*. Each axis represents the entire length of the

1332 genome of one species. Grey bars separate chromosomes. Each point represents a pair of
1333 orthologues, placed by their ordinal position in each genome. **d**, Oxford dot plot revealing
1334 chromosome-scale gene linkage between the brachiopod *L. anatina* and the nemertean *L.*
1335 *longissimus*. **e**, Oxford dot plot revealing chromosome-scale gene linkage between the
1336 brachiopod *L. anatina* and the annelid *O. fusiformis*.



1337

1338 **Extended Data Fig. 7 | Early embryonic development of the brachiopod *L. anatina*.** **a**,
1339 Unfertilised eggs typically exhibit an irregular shape. Within 15 min post-insemination, these
1340 eggs transform dramatically into a more rounded form. **(b-d)** This time sequence, from t_1 to
1341 t_3 , illustrates the pronuclear fusion event post-fertilization. White arrows indicate the
1342 pronuclei. **(e-t)** Early developmental stages from a single cell to the larval stage. **e**, 1-cell. **f**,
1343 2-cell, **g**, 4-cell, **h**, 16-cell. **i**, 32-cell. **j**, 128-cell. **k**, Early blastula, distinguished by the
1344 presence of blastomeres. **l**, Blastula, where a blastoderm is formed. **m**, Early gastrula,
1345 starting with invagination (indicated by arrowhead). **n**, The mid gastrula, characterised by the
1346 archenteron contacting the ectoderm (shown by a blank arrowhead). **o**, Late gastrula, with
1347 the blastopore marked by an arrow. **p**, Early larva, identifiable by the absence of cirri. **q** and
1348 **r**, Larval stages with one pair of cirri (1PCL). **s**, Transitional stage from one to two pairs of
1349 cirri (1-2PCL), showing tentacle development. **t**, Larval stage with two pairs of cirri (2PCL).
1350 Arrows in these stages (**o-t**) denote the blastopore, which becomes the mouth area, while
1351 the arrowheads and blank arrowheads mark the cirri and tentacles, respectively. ov and lv
1352 represent oral and lateral views.

Extended Data Fig. 8 | Expression of BMP pathway genes in *L. anatina*. **a**, Expression profiles of BMP signalling ligands, mediators, and modulators during *L. anatina* development. **b**, Expression levels of BMP signalling ligands, mediators, and modulators in five adult *L. anatina* tissues. TPM, transcripts per million.

