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ABSTRACT  26 

Introduction 27 

Antibiotic treatment of chronic biofilm-associated infections can be challenging. Characterization of pharmacokinetic-28 

pharmacodynamic (PK-PD) relationships for biofilm-associated infections may be relevant to inform the design of 29 

antibiotic treatment regimens for biofilm-associated infections. To this end, we aim to develop a mathematical PK-PD 30 

model for planktonic and biofilm bacterial infections and demonstrate how PK-PD simulations can be used to design 31 

optimized dosing schedules, using imipenem and colistin as proof-of-concept examples. 32 

Methods 33 

Pharmacodynamic models were developed using time-kill assay data from planktonic and alginate-bead biofilm cultures 34 

of Pseudomonas aeruginosa exposed to imipenem or colistin. The PD models were coupled to population PK models 35 

for plasma and epithelial lining fluid (ELF) to translate PD relationships for clinical dosing schedules and PK-PD indices.  36 

Results 37 

The developed models incorporated sensitive and resistant bacterial subpopulations and were able to adequately 38 

capture the observed time-kill data. Simulation studies identified differences in suppression of bacterial growth dynamics 39 

for multiple clinical intravenous and inhalation-based treatment regimens and were used to infer biofilm-specific PK-PD 40 

indices associated with ELF target site concentrations.  41 

Conclusion 42 

In conclusion, we demonstrate the utility of mathematical modeling for the characterization of PK-PD relationships 43 

underlying time-kill kinetic profiles in biofilm-associated infections and their utility in translating experimental findings to 44 

inform the optimization of clinical dosing schedules.  45 

 46 

 47 
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INTRODUCTION 49 

Chronic lung infections associated with cystic fibrosis (CF) are typically associated with bacterial biofilms and respond 50 

poorly to antibiotic therapy [1–3]. Patients with chronic CF lung infections may receive long-term antibiotic therapy 51 

including daily nebulized antibiotic treatment and systemic antibiotic treatment during acute exacerbations [4, 5]. Biofilm-52 

associated pathogens often show reduced antibiotic sensitivity compared to their planktonic form, mediated by several 53 

mechanisms [6]. In addition, the antimicrobial target-site concentrations may differ significantly from plasma 54 

concentrations, i.e., the lungs in case of chronic CF lung infections [7, 8]. There is a need to further optimize antibiotic 55 

dosing schedules for the treatment of biofilm-associated chronic lung infections in CF patients. 56 

 57 

A rational treatment design for biofilm-associated bacterial infections requires information on the antibiotic 58 

concentration-time profile at the site of infection (pharmacokinetics, PK) and the observed relationship between drug 59 

exposure and response of bacterial pathogens (pharmacodynamics, PD). In terms of PD, different mechanisms 60 

contribute to the decreased susceptibility of biofilm bacteria [9]. For example, the formation of extracellular matrix 61 

protects the inside bacteria from the attack of immune system and poses a diffusion barrier against antibiotics. In addition, 62 

bacterial pathogens may develop resistance, i.e., resilience against antibiotic treatment mediated through transient 63 

adaptation or non-transient genetic mutations.  64 

 65 

Antimicrobial PK-PD relationships can be characterized using experimental in vitro and in vivo models. Although static 66 

in vitro assays such as MIC or MBIC are useful to obtain quick insight into antimicrobial sensitivity, they are evaluated 67 

at a single time point, for example, 24 h, and do not provide information on dynamic responses such as the emergence 68 

of transient or non-transient antimicrobial resistance [10]. In contrast, In vitro and in vivo time-kill assays enable 69 

characterization of the time course of bacterial response to antimicrobial agents [11–13], providing essential information 70 

about pathogen-associated PD relationships.  71 

 72 

Mathematical mechanism-based PD models are useful tools in quantitatively characterizing the bacterial growth and kill 73 

dynamics determined by time-kill assays. Such mechanism-based PD models support systematic testing of hypotheses 74 

that may explain observed pharmacodynamic responses with respect to delays (e.g., due to drug diffusion), differences 75 

in growth rates of bacterial subpopulations, and the shape of concentration-effect relationships [14]. More importantly, 76 

when PD models are coupled to population PK models that predict antimicrobial concentration-time profiles in patients 77 

[13, 15, 16], the efficacy of clinical dosing schedules can be evaluated to assess alternative optimal dosing regimens. 78 

Most antimicrobial PK-PD models have focused on planktonic bacterial pathogens, lacking attention to biofilm-79 

associated pathogens [17]. To optimize the dosing schedules for biofilm-associated infections, the characterization of 80 

PK-PD relationships for biofilm-associated infections is necessary. 81 

 82 

Here, we aim to demonstrate the utility of mathematical PK-PD modeling for the analysis of experimental biofilm time-83 

kill studies to ultimately guide the optimization of dosing schedules for biofilm-associated infections. We focus on 84 

imipenem and colistin for the treatment of the CF-associated pathogen P. aeruginosa, as proof of concept. We 85 

specifically aim to (1) develop PD models for imipenem and colistin using data generated from in vitro time-kill studies 86 

in planktonic and alginate-bead biofilm experiments [18, 19] and (2) pair the developed models to population PK models 87 

for plasma and lung concentrations to explore and evaluate dosing schedules and PK-PD targets for biofilm-associated 88 

infections, compared to planktonic infections. 89 

 90 
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METHODS 91 

Time-kill studies 92 

Previously published time-kill studies of P. aeruginosa PAO1 planktonic and alginate bead biofilm cultures exposed to 93 

imipenem or colistin were used for mathematical model development [18, 19]. Briefly, the inoculum for both planktonic 94 

and alginate bead experiments was 106 CFU/mL in lysogeny broth medium. Beads (50-100 µm) were produced by 95 

embedding P. aeruginosa in seaweed alginate [19]. For colistin, both planktonic and alginate bead biofilm cultures were 96 

exposed to colistin at concentrations of 0-256 mg/L for 24 hours. For imipenem, planktonic cultures were tested against 97 

imipenem at concentrations of 0-32 mg/L for 24 hours, while for the alginate bead biofilm experiments, additional 98 

concentrations up to 2048 mg/L were included (Table S1). The studied concentrations covered a relatively wide efficacy 99 

range. Samples were taken for CFU quantification at 0, 1, 2, 4, 8, 12 and 24 hours post antibiotic exposure. 100 

 101 

Mathematical model development 102 

Ordinary differential equation (ODE)-based compartmental models were developed to describe the bacterial growth and 103 

kill dynamics in planktonic and biofilm cultures. The models included subpopulations of sensitive (S) and resistant (R) 104 

bacteria, where resistant bacteria were assumed to reflect a bacterial subpopulation with reduced sensitivity. Colony 105 

forming units (CFU) data were log10-transformed prior to the analysis. Models for planktonic and biofilm bacteria were 106 

developed separately. Log-transformed predictions were used to estimate the parameters that maximized the log-107 

likelihood.  108 

 109 

We incorporated natural growth kinetics, the net growth of bacteria in absence of antibiotic, for planktonic and biofilm 110 

cultures. A capacity-limited growth model was used (Eq. 1), including parameters for the maximum bacterial density 111 

(𝐵𝑚𝑎𝑥), and a first-order net growth rate (𝑘𝑔𝑠), with a starting bacterial density (CFU/mL) of B0. 112 

𝑑𝑆

𝑑𝑡
= (1 −

𝑆 + 𝑅

𝐵𝑚𝑎𝑥

) ∙ 𝑘𝑔𝑠 ∙ 𝑆 (1) 

 113 

Drug concentration-effect functions evaluated included linear (Eq. 2) and (sigmoid) Emax functions (Eq. 3), separately, 114 

for each individual subpopulation (i.e., S, R). Antibiotic concentration-effect models (i.e., linear or Emax) were defined 115 

as follows: 116 

𝐸𝑑𝑟𝑢𝑔 = 𝑠𝑙𝑜𝑝𝑒 ∙ 𝐶𝑑𝑟𝑢𝑔 (2) 

𝐸𝑑𝑟𝑢𝑔 =  
𝐸𝑚𝑎𝑥 ∙ 𝐶𝑑𝑟𝑢𝑔

𝛾

𝐸𝐶50
𝛾 + 𝐶𝑑𝑟𝑢𝑔

𝛾 (3) 

 117 

where 𝑠𝑙𝑜𝑝𝑒  is the linear kill rate constant, 𝐸𝑚𝑎𝑥  represents the maximum kill effect, 𝐸𝐶50  indicates the drug 118 

concentration at which 50% of the maximum effect is obtained, and 𝛾 is the steepness of the concentration-effect 119 

relationship factor. Since drug concentration-effect models may vary across drugs, bacterial subpopulations and 120 

lifestyles (i.e., planktonic or biofilm), separate drug effect models were considered for each of these conditions. 121 

 122 

We investigated the occurrence of an effect delay in biofilm cultures, e.g., which could for example be explained by 123 

retarded drug diffusion into the biofilm. Such a delay would account for a possible discrepancy between the 124 

experimentally used drug concentration (𝐶𝑑𝑟𝑢𝑔𝑒𝑥𝑝
) and the effective drug concentration that exerted pharmacodynamic 125 

effect on bacteria. The delay was described using a transit model (Eq. 4), with a first-order transit rate constant 𝑘𝑡𝑟, 126 

including n transit compartments. The concentration in the last transit compartment ( 𝐶𝑑𝑟𝑢𝑔(𝑛)
)  represented the 127 
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concentration driving the effect. Mean transit time (MTT), the average time spent by drugs traveling from the first transit 128 

compartment to the last compartment, was calculated with 𝑘𝑡𝑟 and n (Eq. 5). 129 

𝑑𝐶𝑑𝑟𝑢𝑔(1)

𝑑𝑡
= 𝑘𝑡𝑟 ∙ 𝐶𝑑𝑟𝑢𝑔𝑒𝑥𝑝

− 𝑘𝑡𝑟 ∙ 𝐶𝑑𝑟𝑢𝑔1
 

(4) … 

𝑑𝐶𝑑𝑟𝑢𝑔(𝑛)

𝑑𝑡
= 𝑘𝑡𝑟 ∗ 𝐶𝑑𝑟𝑢𝑔(𝑛−1)

− 𝑘𝑡𝑟 ∗ 𝐶𝑑𝑟𝑢𝑔(𝑛)
 

𝑀𝑇𝑇 =  
𝑛 + 1

𝑘𝑡𝑟

 (5) 

 130 

We incorporated a drug-induced transition rate 𝑘𝑠𝑟 to describe the transfer of bacteria from S to R state, which only 131 

occurred if an antibiotic is present (Eq. 6-7), for both planktonic and biofilm bacteria. Initially, all bacteria were assumed 132 

to be in the sensitive (S) state. First-order growth rates for S and R populations were estimated separately. Drug-induced 133 

killing effect was described using a first-order rate process for each subpopulation separately. 134 

𝑑𝑆

𝑑𝑡
= (1 −

𝑆 + 𝑅

𝐵𝑚𝑎𝑥

) ∙ 𝑘𝑔𝑠 ∙ 𝑆 − 𝑘𝑠𝑟 ∙ 𝑆 − 𝐸𝑑𝑟𝑢𝑔,𝑆 ∙ 𝑆 ;  𝑆(0) = 𝐵0  (6) 

𝑑𝑅

𝑑𝑡
= (1 −

𝑆 + 𝑅

𝐵𝑚𝑎𝑥

) ∙ 𝑘𝑔𝑟 ∙ 𝑅 + 𝑘𝑠𝑟 ∙ 𝑆 − 𝐸𝑑𝑟𝑢𝑔,𝑅 ∙ 𝑅 ;  𝑅(0) = 0 (7) 

 135 

An additive error model for log-transformed data was used to estimate residual unexplained variability. Bacterial counts 136 

below the lower limit of quantitation (LLOQ, defined as 10 CFU/mL) were handled using the M3 method [20]. 137 

 138 

Sensitivity analysis 139 

To determine the relative importance of model parameters estimated, a sensitivity analysis was performed for each 140 

parameter (p) in the final model. The local sensitivity 𝑆𝑒𝑛𝑠 was evaluated using the relative change in the area under 141 

time-CFU curve (AUC) between 0 and 24 hours, in relation to the relative change of parameters  (Eq. 8) [21]. 142 

𝑆𝑒𝑛𝑠 =
∆𝐴𝑈𝐶

𝐴𝑈𝐶
÷

∆𝑝

𝑝
 (8) 

 143 

Dosing regimen simulations 144 

We implemented published population PK models for intravenous and inhaled colistin and intravenous imipenem [22, 145 

23] to predict the antibiotic concentration-time profiles in plasma and epithelial lining fluid (ELF) in the lung. 1000 146 

individuals were simulated to take the inter-individual variability into account. As patient covariates (i.e. body weight and 147 

creatinine clearance) acted as significant factors in the prediction of the concentration profiles of imipenem, a virtual 148 

population generated from the NHANES copula (https://cocosim.lacdr.leidenuniv.nl/) was used as the input to obtain 149 

realistic covariates combinations and simulation results [24, 25]. For colistin, we studied intravenous administration of 150 

160 mg (2 MIU) every 8 hours of colistimethate sodium (CMS), the inactive prodrug of colistin, 720 mg (9 MIU) CMS 151 

every 24 h, and inhalation of 160 mg (2 MIU) CMS every 8 hours, consistent with recommended clinical dosing regimens 152 

[26]. For imipenem, we simulated clinical tolerable doses [4]: 250, 500 and 1000 mg every 6 hours intravenously. The 153 

PK simulations for ELF antibiotic concentrations were linked to our PD models for planktonic and biofilm bacteria, to 154 

study the relative difference in bacterial dynamics under different dosing schedules for planktonic and biofilm-associated 155 

infections. Protein concentrations in ELF were considered negligible.  156 

 157 
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PK-PD target analyses 158 

To identify PK-PD indices for colistin and imipenem relating to planktonic and biofilm bacteria, we simulated extensive 159 

dose fractionation studies, using a wide dose range for a duration of 24 hours, similar to the method used by a previous 160 

study [27]. For each dosing schedule, we computed the PK-PD indices, including the maximum ELF concentration of 161 

drug over the minimum inhibitory concentration (Cmax/MIC) and over the minimum biofilm inhibitory concentration 162 

(Cmax/MBIC), area under the concentration-time curve for drug over the MIC (AUC/MIC) and over the MBIC (AUC/MBIC), 163 

and the fraction of time when the concentration was above the MIC ( fT>MIC) and above the MBIC (fT>MBIC). The PK profiles 164 

were used to predict the treatment response in planktonic and biofilm bacterial infections using the established PD 165 

models. For each bacterial lifestyle against each drug, we regressed PK-PD indices against the change of bacterial 166 

density (log10 CFU/mL) after 24 hours of treatment using a sigmoidal Emax equation, and the fit was evaluated by 167 

calculating the R2 value, to select the PK-PD indices that could best predict the killing effect after 24 hours (e.g.-1 and -168 

2 log10 kill).  169 

 170 

Software and model selection 171 

Model development was performed using non-linear mixed fixed effects modeling software NONMEM 7.5.  Graphical 172 

visualizations, simulations and interpretations were performed using R 4.3.2. Model selection was guided by successful 173 

minimization, successful covariance step, objective function value (OFV, 5% significance level), Akaike information 174 

criterion (AIC), precision of parameters’ estimates (relative standard errors < 30%), goodness-of-fit plots, and visual 175 

predictive checks [28].  176 

 177 

RESULTS 178 

Mathematical model development 179 

Both colistin and imipenem showed a concentration-dependent killing effect against planktonic and biofilm-embedded 180 

P. aeruginosa. Regrowth was observed after approximately 4 hours in both models when exposed to colistin and 4-8 181 

hours when exposed to imipenem (Figure S1). The time-kill kinetics of planktonic and alginate bead biofilm cultures 182 

were described separately using pharmacodynamic models for colistin (Figure 1A) and imipenem (Figure 1B). The 183 

models adequately captured the observed bacterial growth- and kill-profiles (Figure 2). Model parameters were 184 

estimated precisely, with relative standard errors ≤ 20% (Table 1).  185 

 186 

Emax models best described the drug concentration-effect relationship for colistin on the biofilm resistant bacteria 187 

population and imipenem on the planktonic sensitive bacteria population, while linear models were identified for all other 188 

drug effect relationships. Edrug of colistin and imipenem on S and R bacteria populations demonstrated comparable 189 

efficacy for planktonic bacteria across drug concentrations and showed less than 0.5 fold differences at the highest 190 

tested concentrations (Figure 3, left panel). However, significant differences were observed in Edrug between sensitive 191 

and resistant biofilm populations, with the difference increasing for higher drug concentrations (Figure 3, right panel), 192 

suggesting increased resistance in the biofilm population compared to planktonic populations.    193 

 194 

For both colistin and imipenem, we estimated the drug-specific rate of diffusion retardation into the biofilm. One transit 195 

compartment was implemented for colistin, while three transit compartments were employed for imipenem. We also 196 

evaluated models with 0 to 4 transit compartments, and found 1 and 3 transit compartment(s) fitted the colistin and 197 

imipenem data best. Parameter estimates (𝑘𝑡𝑟 and n) revealed that imipenem exhibited a slightly longer MTT (3.4 hours) 198 

compared to colistin (3.0 hours). Local sensitivity analysis identified the most sensitive parameters driving the predicted 199 
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response for each model, with resistant subpopulation-related parameters (i.e. 𝑠𝑙𝑜𝑝𝑒𝑅 , 𝑘𝑠𝑟 , 𝐸𝑚𝑎𝑥,𝑅  and 𝐸𝐶50,𝑅  ) 200 

demonstrating wide influence across both studied drugs (Figure S2).  201 

 202 

Dosing regimen simulations 203 

We simulated the treatment outcome of standard and adapted dosing schedules of colistin (Figure 4) and imipenem 204 

(Figure 5) against planktonic and biofilm-associated P. aeruginosa lung infections, using the PK-PD models (i.e., 205 

developed PD models coupled with clinical population PK models).  206 

 207 

For colistin, our simulations showed that under the treatment of 160 mg (2 MIU) every 8 hours (Figure 4A) and 720 mg 208 

(9 MIU) every 24 hours (Figure 4B), colistin was insufficient for patients with biofilm infections. An inhalation dose of 209 

160 mg (2 MIU) resulted in a high drug concentration at the ELF, leading to a successful eradication of both planktonic 210 

and biofilm bacteria (Figure 4C). 211 

 212 

For imipenem, a clear dose-dependent killing effect was found. For planktonic bacterial infection, both 250 mg and 500 213 

mg every 6 hours (Figure 5A, 5B) could suppress the growth of biofilm cells yet were unable to fully eliminate the 214 

infections within 24 hours; 1000 mg every 6 hours (Figure 5C) could efficiently kill the bacteria.  215 

 216 

PK-PD indices  217 

We investigated the PK-PD indices for the prediction of treatment response of planktonic and biofilm bacteria infections 218 

by performing intravenous dose fractionation studies (Figure 6), based on the target site drug concentration in the ELF. 219 

We found that AUC/MIC (R2=0.995 for colistin; R2=0.997 for imipenem) and AUC/MBIC (R2=0.956 for colistin; R2=0.997 220 

for imipenem) were best correlated with the observed effect for both planktonic and biofilm bacterial infections for both 221 

drugs. For planktonic bacteria, we found that for a CFU change from -1 log10 to -2 log10, the AUC/MIC target for colistin 222 

and imipenem increased from 46 to 48, and from 123.7 to 130.6, respectively.  For biofilm bacteria, a CFU change of -223 

1 log10 at 24 hours corresponded to 567.1 and 3 for the AUC/MBIC target of colistin and imipenem, respectively. 224 

However, no targets of AUC/MBIC were able to be derived for -2 log10 CFU change due to insufficient drug effect at 225 

tolerable intravenous dosages (Table 2). The treatment outcome under simulated dosing regimens aligned with the 226 

expected response based on the derived targets. For example, 160 mg (2 MIU) colistin every 8 hours (AUC/MIC = 39) 227 

did not achieve the PK-PD targets for planktonic infection and failed to eradicate the bacteria, while 720mg every 24 228 

hours (AUC/MIC = 70) reached the targets and eradicated the bacteria efficiently.  229 

 230 

In terms of PK-PD indices based on plasma drug concentration, AUC/MIC (R2=0.113) and AUC/MBIC (R2=0.171) were 231 

best correlated with the change of bacteria count for colistin, while AUC/MIC (R2=0.997) and AUC/MBIC (R2=0.997) 232 

were still most predictive of the effect for imipenem (Figure S3). A comparison between ELF-based (Figure 6) and 233 

plasma-based PK-PD indices (Figure S3) revealed an increased variation in responses to colistin and a consistent 234 

correlation between PK-PD indices and treatment effect for imipenem. 235 

 236 

DISCUSSION 237 

We developed a pharmacodynamic model to characterize growth and kill dynamics from in vitro biofilm assays, focusing 238 

on the pathogen P. aeruginosa treated with colistin or imipenem, as a proof-of-concept. Prior knowledge of patient-239 

specific antibiotic PK was integrated into the modeling framework and applied to investigate the effect of different dosing 240 

regimens, and the predictivity of different drug exposures (PK-PD indices) for bacterial response was assessed in clinical 241 

settings. 242 
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 243 

In this study, we derived models for different drugs, i.e., colistin and imipenem, as well as bacterial lifestyles, i.e., 244 

planktonic cells and biofilms. This model-based data-driven strategy enabled the evaluation of hypotheses with respect 245 

to differences in pharmacodynamic responses of planktonic versus biofilm cells. Emax models were identified for only 246 

two concentration-effect relationships while for the rest a simple linear model was identified, likely due to insufficient 247 

data availability, especially for high drug concentrations. The developed PD models facilitated the comparison of drug-, 248 

biological system- or experiment-specific parameters that ultimately characterize the observed response, providing 249 

insight into the underlying pharmacological basis of the antibiotic response. We identified distinct factors that contribute 250 

to increased resistance of biofilm cells compared to planktonic cells against both colistin and imipenem. First of all, 251 

biofilm cells exhibited slower growth rates (0.615 and 0.441 h-1) compared to planktonic cells (0.807 and 0.944 h-1), 252 

consistent with the literature [29, 30]. These reduced growth rates reflect biofilm cells’ adaptation to environments with 253 

limited nutrients and oxygen, which requires lower metabolic activity for survival. Secondly, a delay in antibiotic drug 254 

effect for biofilms, as represented by a transit model, was found for both colistin and imipenem against biofilm bacterial 255 

infections. This delay can be explained by the diffusion barrier presented by the extracellular matrix secreted by biofilm 256 

cells, the components of which could interact with antibiotics and slow their delivery. For example, the negatively 257 

charged polysaccharides could bind to positively charged colistin and impede penetration into biofilm [31]. Thirdly, 258 

compared to planktonic resistant species, a reduced susceptibility of biofilm resistant species was found (Figure 3). 259 

This discrepancy might be relevant to further physiological adaptations in biofilm cells compared to planktonic cells [32].  260 

 261 

Coupling PD models with clinical population PK models enabled us to make translational predictions about the expected 262 

effects of bacterial growth/kill dynamics in patients. We predicted for colistin that dosing of 2 MIU per inhalation q 8 h 263 

shows a better biofilm-eradicating effect in lung infection patients compared to intravenous treatment of 2 MIU q 8 h and 264 

9 MIU q 24 h. This result is in line with previous studies in COPD patients and ICU patients with pulmonary infections 265 

after lung transplantation [33, 34]. The regrowth of both planktonic and biofilm growing P. aeruginosa under exposure 266 

to colistin (planktonic: 1mg/L - 4 mg/L, biofilm: 1 mg/L - 64 mg/L) (Figure 2A) is probably due to the adaptive response 267 

that involved modifications of lipopolysaccharide (LPS) in the outer membrane, which prevents penetration of colistin 268 

[35–37]. Imipenem showed less predicted efficacy against planktonic and biofilm bacterial infections under standard 269 

clinical dosing, which might be partially because P. aeruginosa can readily develop adaptive responses (adaptive 270 

resistance) to imipenem and regrow under exposure to imipenem (Figure 2B) via upregulating production of alginate 271 

and AmpC β-lactamase [38, 39]. Although clinical implications of these model-based predictions should be treated with 272 

caution, they could provide additional insights into the differences observed in preclinical in vivo or in vitro studies, for 273 

instance when evaluating and comparing treatment regimens.  274 

 275 

ELF concentration-based AUC/MIC and AUC/MBIC were identified as the PK-PD indices that could best predict the 276 

treatment outcome for both colistin and imipenem based on in silico dose fractionation simulations. A study using a 277 

murine infection model identified serum AUC/MIC and AUC/MBIC as the best PK-PD indices of colistin for planktonic 278 

and biofilm infections, yet for imipenem fT>MIC and fT>MBIC were found to best predict the efficacy for planktonic cell and 279 

biofilm infections [40]. Plasma samples are more readily measurable than lung ELF concentrations in patients, thus, we 280 

examined the feasibility of using plasma concentration for the derivation of PK-PD indices. Plasma concentration-based 281 

PK-PD indices of imipenem were found to be more predictive compared to those of colistin. For both colistin and 282 

imipenem, the same PK-PD indices (AUC/MIC and AUC/MBIC) were identified based on plasma concentration and ELF 283 

concentrations. Yet for colistin, indices (AUC/MIC and AUC/MBIC) identified with ELF concentrations (R2=0.995, 0.956) 284 

got less informative when replaced with plasma concentrations (R2=0.113, 0.171). This is because of colistin’s bi-285 

directional transfer between plasma and ELF compartments in the population PK model [22], which leads to a non-linear 286 
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relationship between plasma and ELF concentrations. The consistency for imipenem PKPD indices stems from its linear 287 

relationship between plasma and ELF concentration characterized in the population PK model [23]. Given that this 288 

speculation was based on simulations, further validation with real-world data is needed. 289 

 290 

In the current study, pharmacodynamic models were developed based on bacteria data exposed to static concentrations 291 

of antibiotics measured up to 24 hours, which may not reflect the clinical reality for longer antibiotic treatment and time-292 

varying antibiotic concentration. Conducting longer-term time-kill assays that mimic clinical treatments, such as using 293 

CDC biofilm reactors with humanized dynamic exposure, may help overcome the limitation [41, 42]. Indeed, several 294 

studies have employed CDC biofilm reactor model to investigate the efficacy of antibiotics against biofilms [30–32].  295 

 296 

Our analysis demonstrates how a semi-mechanistic pharmacodynamic modeling approach can facilitate further 297 

pharmacological interpretation of in vitro biofilm infection models, through the separation of drug- and biological system 298 

(e.g. planktonic or biofilm)-specific parameters, in line with related publications describing similar semi-mechanistic 299 

mathematical models reported for in vitro flow cell models and an in vivo rat lung infection model [43–45]. We expect 300 

that semi-mechanistic modeling approaches are relevant to allow the simultaneous integration of multiple pertinent 301 

pharmacodynamic readouts, e.g. CFU counts, biofilm mass, and metabolic activity.   302 

 303 

In conclusion, we report a proof-of-concept analysis of the utility of mathematical pharmacodynamic modeling of in vitro 304 

biofilm time-kill assays and its integration with clinical PK models to derive translational predictions about expected 305 

effects in patients. 306 
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ACKNOWLEDGEMENTS 308 

The research was financially supported by the China Scholarship Council (CSC). 309 

 310 

REFERENCES 311 

1.  Wenzel RP (2007) Health Care–Associated Infections: Major Issues in the Early Years of the 21st 312 

Century. Clinical Infectious Diseases 45:S85–S88. https://doi.org/10.1086/518136 313 

2.  Boisvert A-A, Cheng MP, Sheppard DC, Nguyen D (2016) Microbial Biofilms in Pulmonary and Critical 314 

Care Diseases. Annals ATS 13:1615–1623. https://doi.org/10.1513/AnnalsATS.201603-194FR 315 

3.  Bardes JM, Gray D, Wilson A (2017) Effect of the endOclear Device on Biofilm in Endotracheal Tubes. 316 

Surgical Infections 18:293–298. https://doi.org/10.1089/sur.2016.052 317 

4.  Döring G, Conway SP, Heijerman HG, et al (2000) Antibiotic therapy against Pseudomonas 318 

aeruginosa in cystic fibrosis: a European consensus. Eur Respir J 16:749–767. 319 

https://doi.org/10.1034/j.1399-3003.2000.16d30.x 320 

5.  Heijerman H, Westerman E, Conway S, et al (2009) Inhaled medication and inhalation devices for 321 

lung disease in patients with cystic fibrosis: A European consensus. J Cyst Fibros 8:295–315. 322 

https://doi.org/10.1016/j.jcf.2009.04.005 323 

6.  Bjarnsholt T, Ciofu O, Molin S, et al (2013) Applying insights from biofilm biology to drug development 324 

— can a new approach be developed? Nat Rev Drug Discov 12:791–808. https://doi.org/10.1038/nrd4000 325 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 2, 2024. ; https://doi.org/10.1101/2024.05.28.596312doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.28.596312
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

7.  Välitalo PAJ, Griffioen K, Rizk ML, et al (2016) Structure-Based Prediction of Anti-infective Drug 326 

Concentrations in the Human Lung Epithelial Lining Fluid. Pharmaceutical Research. 327 

https://doi.org/10.1007/s11095-015-1832-x 328 

8.  Aulin LBS, Valitalo PA, Rizk ML, et al (2018) Validation of a Model Predicting Anti-infective Lung 329 

Penetration in the Epithelial Lining Fluid of Humans. Pharmaceutical Research 35:. 330 

https://doi.org/10.1007/s11095-017-2336-7 331 

9.  Christaki E, Marcou M, Tofarides A (2020) Antimicrobial Resistance in Bacteria: Mechanisms, 332 

Evolution, and Persistence. J Mol Evol 88:26–40. https://doi.org/10.1007/s00239-019-09914-3 333 

10.  Landersdorfer CB, Nation RL (2021) Limitations of Antibiotic MIC-Based PK-PD Metrics: Looking 334 

Back to Move Forward. Front Pharmacol 12:770518. https://doi.org/10.3389/fphar.2021.770518 335 

11.  Aulin LBS, Koumans CIM, Haakman Y, et al (2021) Distinct evolution of colistin resistance associated 336 

with experimental resistance evolution models in Klebsiella pneumoniae. The Journal of antimicrobial 337 

chemotherapy. https://doi.org/10.1093/jac/dkaa450 338 

12.  Aulin LBS, de Lange DW, Saleh MAA, et al (2021) Biomarker‐guided individualization of antibiotic 339 

therapy. Clinical Pharmacology & Therapeutics. https://doi.org/10.1002/cpt.2194 340 

13.  Nielsen EI, Friberg LE (2013) Pharmacokinetic-pharmacodynamic modeling of antibacterial drugs. 341 

Pharmacological reviews 65:1053–90. https://doi.org/10.1124/pr.111.005769 342 

14.  Tandar ST, Aulin LBS, Leemkuil EMJ, et al (2023) Semi-mechanistic modeling of resistance 343 

development to β-lactam and β-lactamase-inhibitor combinations. J Pharmacokinet Pharmacodyn. 344 

https://doi.org/10.1007/s10928-023-09895-3 345 

15.  Aulin LBS, De Paepe P, Dhont E, et al (2020) Population Pharmacokinetics of Unbound and Total 346 

Teicoplanin in Critically Ill Pediatric Patients. Clinical Pharmacokinetics. https://doi.org/10.1007/s40262-020-347 

00945-4 348 

16.  Illamola SM, Colom H, van Hasselt JGC (2016) Evaluating renal function and age as predictors of 349 

amikacin clearance in neonates: model-based analysis and optimal dosing strategies. Br J Clin Pharmacol 350 

82:793–805. https://doi.org/10.1111/bcp.13016 351 

17.  Committee for Human Medicinal Products (CHMP) (2016) Guideline on the use of pharmacokinetics 352 

and pharmacodynamics in the development of antibacterial medicinal products. European Medicines Agency. 353 

https://doi.org/10.1080/09500690010006473 354 

18.  Hengzhuang W, Wu H, Ciofu O, et al (2011) Pharmacokinetics/pharmacodynamics of colistin and 355 

imipenem on mucoid and nonmucoid Pseudomonas aeruginosa biofilms. Antimicrobial agents and 356 

chemotherapy 55:4469–74. https://doi.org/10.1128/AAC.00126-11 357 

19.  Hengzhuang W, Ciofu O, Yang L, et al (2013) High β-lactamase levels change the pharmacodynamics 358 

of β-lactam antibiotics in Pseudomonas aeruginosa biofilms. Antimicrobial Agents and Chemotherapy 359 

57:196–204. https://doi.org/10.1128/AAC.01393-12 360 

20.  Bergstrand M, Karlsson MO (2009) Handling data below the limit of quantification in mixed effect 361 

models. AAPS J 11:371–380. https://doi.org/10.1208/s12248-009-9112-5 362 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 2, 2024. ; https://doi.org/10.1101/2024.05.28.596312doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.28.596312
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

21.  Foehrenbacher A, Patel K, Abbattista MR, et al (2013) The role of bystander effects in the antitumor 363 

activity of the hypoxia-activated prodrug PR-104. Frontiers in Oncology. 364 

https://doi.org/10.3389/fonc.2013.00263 365 

22.  Matthieu B, Matthieu J, Nicolas G, et al (2014) Comparison of intrapulmonary and systemic 366 

pharmacokinetics of colistin methanesulfonate (CMS) and colistin after aerosol delivery and intravenous 367 

administration of CMS in critically ill patients. Antimicrobial Agents and Chemotherapy 58:7331–7339. 368 

https://doi.org/10.1128/AAC.03510-14 369 

23.  van Hasselt JGC, Rizk ML, Lala M, et al (2016) Pooled population pharmacokinetic model of 370 

imipenem in plasma and the lung epithelial lining fluid. British Journal of Clinical Pharmacology 81:1113–371 

1123. https://doi.org/10.1111/bcp.12901 372 

24.  Zwep LB, Guo T, Nagler T, et al (2024) Virtual Patient Simulation Using Copula Modeling. Clinical 373 

Pharmacology & Therapeutics 115:795–804. https://doi.org/10.1002/cpt.3099 374 

25.  Yuchen Guo, Tingjie Guo, Catherijne A.J. Knibbe, et al (2024) Generation of realistic virtual adult 375 

populations using a model-based copula approach. medRxiv 2024.02.22.24303086. 376 

https://doi.org/10.1101/2024.02.22.24303086 377 

26.  International Consensus Guidelines for the Optimal Use of the Polymyxins: Endorsed by the American 378 

College of Clinical Pharmacy (ACCP), European Society of Clinical Microbiology and Infectious Diseases 379 

(ESCMID), Infectious Diseases Society of America (IDSA), International Society for Anti‐infective 380 

Pharmacology (ISAP), Society of Critical Care Medicine (SCCM), and Society of Infectious Diseases 381 

Pharmacists (SIDP) - Tsuji - 2019 - Pharmacotherapy: The Journal of Human Pharmacology and Drug 382 

Therapy - Wiley Online Library. https://accpjournals.onlinelibrary.wiley.com/doi/full/10.1002/phar.2209. 383 

Accessed 15 Dec 2023 384 

27.  Nielsen EI, Cars O, Friberg LE (2011) Pharmacokinetic/Pharmacodynamic (PK/PD) Indices of 385 

Antibiotics Predicted by a Semimechanistic PKPD Model: a Step toward Model-Based Dose Optimization. 386 

Antimicrobial Agents and Chemotherapy 55:4619–4630. https://doi.org/10.1128/aac.00182-11 387 

28.  Nguyen T-H-T, Mouksassi M-S, Holford N, et al (2016) Model evaluation of continuous data 388 

pharmacometric models: Metrics and graphics. CPT: Pharmacometrics & Systems Pharmacology. 389 

https://doi.org/10.1002/psp4.12161 390 

29.  Thi MTT, Wibowo D, Rehm BHA (2020) Pseudomonas aeruginosa Biofilms. International Journal of 391 

Molecular Sciences 21:8671. https://doi.org/10.3390/ijms21228671 392 

30.  Spoering AL, Lewis K (2001) Biofilms and Planktonic Cells of Pseudomonas aeruginosa Have Similar 393 

Resistance to Killing by Antimicrobials. Journal of Bacteriology 183:6746–6751. 394 

https://doi.org/10.1128/jb.183.23.6746-6751.2001 395 

31.  Ciofu O, Moser C, Jensen PØ, Høiby N (2022) Tolerance and resistance of microbial biofilms. Nat 396 

Rev Microbiol 20:621–635. https://doi.org/10.1038/s41579-022-00682-4 397 

32.  Soares A, Alexandre K, Etienne M (2020) Tolerance and Persistence of Pseudomonas aeruginosa in 398 

Biofilms Exposed to Antibiotics: Molecular Mechanisms, Antibiotic Strategies and Therapeutic Perspectives. 399 

Front Microbiol 11:2057. https://doi.org/10.3389/fmicb.2020.02057 400 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 2, 2024. ; https://doi.org/10.1101/2024.05.28.596312doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.28.596312
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

33.  Carillo C, Pecoraro Y, Anile M, et al (2019) Colistin-based Treatment of Multidrug-resistant Gram-401 

negative Bacterial Pulmonary Infections After Lung Transplantation. Transplantation Proceedings 51:202–402 

205. https://doi.org/10.1016/j.transproceed.2018.04.068 403 

34.  Montón C, Prina E, Pomares X, et al (2019) Nebulized Colistin And Continuous Cyclic Azithromycin 404 

In Severe COPD Patients With Chronic Bronchial Infection Due To Pseudomonas aeruginosa: A 405 

Retrospective Cohort Study. Int J Chron Obstruct Pulmon Dis 14:2365–2373. 406 

https://doi.org/10.2147/COPD.S209513 407 

35.  McPhee JB, Lewenza S, Hancock REW (2003) Cationic antimicrobial peptides activate a two-408 

component regulatory system, PmrA-PmrB, that regulates resistance to polymyxin B and cationic 409 

antimicrobial peptides in Pseudomonas aeruginosa. Molecular Microbiology 50:205–217. 410 

https://doi.org/10.1046/j.1365-2958.2003.03673.x 411 

36.  Pamp SJ, Gjermansen M, Johansen HK, Tolker‐Nielsen T (2008) Tolerance to the antimicrobial 412 

peptide colistin in Pseudomonas aeruginosa biofilms is linked to metabolically active cells, and depends on 413 

the pmr and mexAB‐oprM genes. Molecular Microbiology 68:223–240. https://doi.org/10.1111/j.1365-414 

2958.2008.06152.x 415 

37.  Chiang W-C, Pamp SJ, Nilsson M, et al (2012) The metabolically active subpopulation in 416 

Pseudomonas aeruginosa biofilms survives exposure to membrane-targeting antimicrobials via distinct 417 

molecular mechanisms. FEMS Immunol Med Microbiol 65:245–256. https://doi.org/10.1111/j.1574-418 

695X.2012.00929.x 419 

38.  Horner C, Mushtaq S, Livermore DM, BSAC Resistance Surveillance Standing Committee (2019) 420 

Potentiation of imipenem by relebactam for Pseudomonas aeruginosa from bacteraemia and respiratory 421 

infections. Journal of Antimicrobial Chemotherapy 74:1940–1944. https://doi.org/10.1093/jac/dkz133 422 

39.  Bagge N, Schuster M, Hentzer M, et al (2004) Pseudomonas aeruginosa Biofilms Exposed to 423 

Imipenem Exhibit Changes in Global Gene Expression and β-Lactamase and Alginate Production. 424 

Antimicrobial Agents and Chemotherapy 48:1175–1187. https://doi.org/10.1128/aac.48.4.1175-1187.2004 425 

40.  Hengzhuang W, Wu H, Ciofu O, et al (2012) In vivo pharmacokinetics/pharmacodynamics of colistin 426 

and imipenem in Pseudomonas aeruginosa biofilm infection. Antimicrobial agents and chemotherapy 427 

56:2683–90. https://doi.org/10.1128/AAC.06486-11 428 

41.  Jahanbakhsh S, Singh NB, Yim J, et al (2020) Impact of daptomycin dose exposure alone or in 429 

combination with β-lactams or rifampin against vancomycin-resistant enterococci in an in Vitro biofilm model. 430 

Antimicrobial Agents and Chemotherapy. https://doi.org/10.1128/AAC.02074-19 431 

42.  Hall Snyder AD, Vidaillac C, Rose W, et al (2015) Evaluation of High-Dose Daptomycin Versus 432 

Vancomycin Alone or Combined with Clarithromycin or Rifampin Against Staphylococcus aureus and S. 433 

epidermidis in a Novel In Vitro PK/PD Model of Bacterial Biofilm. Infectious Diseases and Therapy. 434 

https://doi.org/10.1007/s40121-014-0055-5 435 

43.  Sou T, Kukavica-Ibrulj I, Levesque RC, et al (2020) Model-Informed Drug Development in Pulmonary 436 

Delivery: Semimechanistic Pharmacokinetic–Pharmacodynamic Modeling for Evaluation of Treatments 437 

against Chronic Pseudomonas aeruginosa Lung Infections. Mol Pharmaceutics 17:1458–1469. 438 

https://doi.org/10.1021/acs.molpharmaceut.9b00968 439 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 2, 2024. ; https://doi.org/10.1101/2024.05.28.596312doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.28.596312
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

44.  Roychowdhury S, Roth CM (2023) Pharmacodynamic Model of the Dynamic Response of 440 

Pseudomonas aeruginosa Biofilms to Antibacterial Treatments. Biomedicines 11:2316. 441 

https://doi.org/10.3390/biomedicines11082316 442 

45.  Cogan NG, Szomolay B, Dindos M (2013) Effect of Periodic Disinfection on Persisters in a One-443 

Dimensional Biofilm Model. Bull Math Biol 75:94–123. https://doi.org/10.1007/s11538-012-9796-z 444 

 445 

  446 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 2, 2024. ; https://doi.org/10.1101/2024.05.28.596312doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.28.596312
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Table 1. Parameter estimates of the pharmacodynamic model for imipenem and colistin for in vitro planktonic 447 
and biofilm time-kill assays. 448 

 Colistin (RSE%) Imipenem (RSE%) 

Parameter Description Units Planktonic Biofilm Planktonic Biofilm 

kgs 
Maximal growth rate of 

sensitive bacteria 
h−1 0.807 (6) 0.615 (7) 0.944 (3) 0.441 (11) 

kgr 
Maximal growth rate of 

resistant bacteria 
h−1 3.71 (21) 3.85 (2) 1.76 (4) 0.0614 (7) 

B0 Baseline bacterial count 
log10 

CFU/mL 
5.81 (1) 5.45 (3) 5.58 (2) 6.45 (2) 

Bmax 
Bacterial count in stationary 

phase 

log10 

CFU/mL 
9.35 (1) 8.85 (2) 9.42 (1) 9.38 (4) 

ksr 
Transfer rate from sensitive 

bacteria to resistant bacteria 
-log10 h−1 3.96 (16) 4.27 (2) 3.74 (1) 3.11 (9) 

Slopes 
Linear coefficient for drug 

effect in sensitive bacteria 
L/mg*h 1.29 (3) 1.21 (7) -  0.149 (11) 

Sloper 
Linear coefficient for drug 

effect in resistant bacteria 
L/mg*h 0.86 (20)   - 0.279 (5)  0.0008 (20) 

Emaxs 

The maximal achievable kill 

rate constant for sensitive 

bacteria 

h−1 -  9.28 (1) - 

EC50s 

Concentration that results in 

50% of Emax for sensitive 

bacteria 

mg/L -  19.1 (1) - 

Hills 
Hill coefficient for sensitive 

bacteria 
 -  0.285 (4) - 

Emaxr 

The maximal achievable kill 

rate constant for resistant 

bacteria 

h−1 - 4.06 (2) - - 

EC50r 

Concentration that results in 

50% of Emax for resistant 

bacteria 

mg/L -  0.416 (4) - - 

Hillr 
Hill coefficient for resistant 

bacteria 
 - 0.399 (3) - - 

ktr 
Distribution rate constant 

between transit compartments 
h−1 - 0.66 (3) - 1.19 (8) 

N 
Number of transit 

compartments 
- - 1 - 3 

RES 

Additive residual error in 

bacteria experiment (log10 

scale) 

- 0.364 (8) 0.564 (7) 0.394 (6) 0.898 (6) 

RSE, relative standard error; RES, residual variance error. 449 

 450 
Table 2. ELF-based PK-PD target values derived for colistin and imipenem at -1 and -2 log10 unit kill using 451 
simulated dose fractionation studies.  452 

 

Colistin Imipenem 

Planktonic Biofilm Planktonic Biofilm 

AUC/MIC AUC/MBIC AUC/MIC AUC/MBIC 

 (h) (h) (h) (h) 

-1 log10 46 567.1 123.7 3 

-2 log10 48 - 130.6 - 
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 453 

Figure 1. Schematic illustration of the pharmacokinetic-pharmacodynamic model structures. Model structures 454 

for colistin and imipenem included the pharmacodynamic models describing the time-kill kinetics in planktonic and 455 

alginate bead biofilm models, in combination with clinical pharmacokinetic models for plasma and lung epithelial lining 456 

fluid (ELF) compartments. Separate pharmacodynamic models were developed for biofilm and planktonic bacteria cells 457 

for colistin and imipenem. 458 

 459 

 460 
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 461 

Figure 2. Visual predictive check of the pharmacodynamic models for colistin (A) and imipenem (B). The black 462 

points are the observed bacterial count data (Log10 CFU); the red lines represent the median values of model 463 

predictions; The blue areas are the 10th to 90th percentile area of the model predictions. Observations below the 464 

quantification limit (gray dashed line) were displayed as half of the quantification limit. 465 

  466 
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 467 

 468 

Figure 3. Drug effect comparison. The intermediate variable, Edrug, was computed for each drug concentration studied 469 

in the time-kill assay using estimated parameters derived from drug concentration-effect models. Orange and blue lines 470 

represent exposure-response curves of sensitive and resistant subpopulations, respectively. Points on lines indicate the 471 

drug effect at the concentrations studied in time-kill experiments. 472 

 473 

 474 

 475 
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 476 

Figure 4. Dosing regimen simulations for colistin. Dosing regimens were simulated using clinical population 477 

pharmacokinetic models depicting the median (lines) and 25th and 75th percentiles (shaded areas) of drug concentration 478 

and bacteria count versus time. The predicted epithelial lining fluid (ELF) concentration was used as input for the 479 

pharmacodynamic models. Dosing regimens simulated included intravenous (i.v.) administration of 160 mg (2 MIU) q 8 480 

h (A), 720 mg (9 MIU) q 24 h (B), or aerosol (ae.) inhalation of 160 mg (2 MIU) q 8 h (C). 481 

 482 

 483 
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 484 

Figure 5. Dosing regimen simulations for imipenem. Dosing regimens were simulated using clinical population 485 

pharmacokinetic models depicting the median (lines) and 25 and 75th percentiles (shaded areas) of drug concentration 486 

and bacteria count versus time. The predicted epithelial lining fluid (ELF) concentration was used as input for the final 487 

pharmacodynamic models. Dosing regimens simulated included intravenous (i.v.) administration of 250 mg (A), 500 mg 488 

(B) or 1000 mg (C) every 6 hours. 489 

 490 

 491 
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 492 

Figure 6. Pharmacokinetic-pharmacodynamic (PK-PD) target analysis for colistin and imipenem against 493 

planktonic and biofilm infections based on epithelial lining fluid (ELF) antibiotic concentrations. Dose 494 

fractionation studies were simulated and resulting ELF concentrations were regressed against the change in model 495 

predicted bacterial densities at 24 hours (points) compared to the baseline using a sigmoidal Emax model resulting in 496 

optimal model fits (solid lines). 497 
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