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Abstract

Differences in the apparent 1/f component of neural power spectra require correction depending on
the underlying neural mechanisms, which remain incompletely understood. Past studies suggest that
neuronal spiking produces broadband signals and shapes the spectral trend of invasive macroscopic
recordings, but it is unclear to what extent action potentials (APs) influence scalp EEG. Here, we
combined biophysical simulations with statistical modelling to examine the amplitude and spectral
content of scalp potentials generated by the electric fields from spiking activity. We found that under
physiological conditions, synchronized aperiodic spiking can account for at most 1% of the spectral
density observed in EEG recordings, suggesting that the EEG spectral trend reflects only external
noise at high frequencies. Indeed, by analyzing previously published data from pharmacologically
paralyzed subjects, we confirmed that the EEG spectral trend is entirely explained by synaptic
timescales and electromyogram contamination. We also investigated rhythmic EEG generation,
finding that APs can generate narrowband power between approximately 60 and 600 Hz, thus
reaching frequencies much faster than the timescales of excitatory synaptic currents. Our results
imply that different spectral detrending strategies are required for high frequency oscillations
compared to slower synaptically generated EEG rhythms.

. Introduction

> Understanding the neural mechanisms underlying EEG generation is important for inferring changes
3 in brain state, as well as developing methods to filter out irrelevant signals. Towards this latter
4 aim, recent work has focused on characterizing the neural basis of broadband EEG signals and
s defining when and how EEG spectra need to be detrended! ™. Studies into the neural basis of
s broadband EEG have primarily focused on synaptic filtering® ® and low frequency, aperiodic network
7 fluctuations®"®. However, in addition to synaptic contributions, the spectral trend observed in
s invasive, large-scale neural recordings, such as the local field potential (LFP)?"!! and intracranial
o EEG (iEEG)'?'? including electrocorticography (ECoG)'* ' is believed to reflect broadband
10 contributions from spiking activity” 1% '® especially at frequencies above ~60 Hz, the so-called
1 high gamma range. Such high frequency broadband contributions are thought to be important for
1> determining the slope of the 1/f spectral trend.
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13 In comparison to invasive recording techniques, the majority of the unprocessed EEG signal
1= above 30 Hz reflects muscle activity?’ 3. Moreover, EEG is thought to be incapable of measuring
15 APs because they are believed to be too brief and unsynchronized®®?°. Nonetheless, when muscle
16 artifacts are corrected for, EEG recordings have displayed transients in the high gamma range?® 2%,
17 similar to those observed in LFP and iEEG recordings. If such high frequency transients are indeed
18 generated by synchronized APs, it would hold significant implication for interpreting spectral peaks
10 and correcting for the EEG spectral trend. Interestingly, a recent biophysical modelling study
20 showed that APs account for almost 20% of the amplitude of single-neuron dipoles, and concluded
21 that APs can contribute significantly to EEG rhythms®’. However, a systemic investigation into the
» ability of APs to produce detectable scalp potentials has not been undertaken. Additionally, the
23 potential contribution of APs to aperiodic EEG signals and the overall spectral trend has not been
24 explored.

25 In this study, we aim to address this gap by employing a quantitative approach that explores
% AP-generated EEG signals, a type of signal that we refer to hereafter as apEEG for brevity. To begin,
27 we employ a combination of biophysical simulations and statistical modelling to examine the impact
28 of single neuron properties and spike synchrony on the amplitude and spectral features of apEEG
20 signals. Using these results, we evaluate whether apEEG can exhibit experimentally-measurable
30 narrowband and broadband high gamma power. Our results have implications for interpreting high
s1 frequency EEG rhythms and for designing practical methods for spectral detrending.

» Results

;3 Unitary AP response of single-neuron dipoles is approximately linear

3¢ The contributions of an individual neuron to the electric potential measured by a distant electrode
55 can be modelled by a single dipole vector that varies with time3%3!. This case applies well to
36 EEG signals due to the distance between the brain and scalp electrodes. To understand how APs
37 contribute to EEG, we therefore first sought to characterize the contributions of APs to their
38 respective neurons’ dipoles. We simulated neuron models with detailed morphologies and distributed
3 passive and voltage-gated ion channels on the soma, axon initial segment, and dendrites (Fig. 1A).
a0 To induce spiking, we bombarded the dendrites of this active model with background synaptic
a1 input, whereas to block spiking in the presence of such synaptic inputs, we set the conductance of
a2 voltage-gated sodium channels in the soma and axon initial segment to zero, obtaining a passive
53 model that allowed us to characterize the dipole generated in the absence of firing (Fig. 1B).
s By subtracting the active and passive simulation results and thereafter taking the spike-triggered
s average of the single-neuron dipole, we estimated the unitary AP response of the electric field
s (Fig. 1C).

a7 The ensemble electric field is equal to the linear summation of those generated by each individual
s mneuron in the brain®*??. However, the electric fields generated by individual neurons are not
s in general linear; sublinear and supralinear interactions among synaptic currents prevent this®?.
50 Nonetheless, one might hypothesize the contributions of APs to be linear. In this case, the spectrum
51 of the single-neuron dipole, S(f) would be proportional to the energy spectrum of the unitary AP
52 response, Sgp(f), satisfying the equation

S(f) = Ssyn(f) + 6Sap(f)a (Eq' 1)

53 where Sy (f) is the power spectrum of the synaptic contributions, and j is a scaling factor that
s¢  should be equal to the cell’s firing rate, as we demonstrate below. To test the accuracy of this
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Fig 1. Calculating the unitary AP response. (A) The extracellular electric field generated
by a neuron is shown at the peak of an AP. (B) Left: The single-neuron dipole, g, associated
with the neuron in panel A for the active model (black) and passive model with sodium channels
removed (grey). The x, y, and z components of the vector are plotted from top to bottom. Notice
the correspondence in the subthreshold fluctuations between the two sets of simulations. Right:
The power spectrum of each dipole component trace on the left for the active (black) and passive
(gray) model. (C) Left: The difference between the single-neuron dipoles calculated with the active
and passive model aligned to each AP (light blue), along with the spike-triggered average (dark
blue) which defines the unitary AP response. x, y, and z components are shown from top to bottom.
Right: the power spectrum of the unitary AP response. (D) The firing rate of the active (black) and
passive (gray) model as a function of E:I ratio, defined as the ratio between the rate of excitatory
synapse activation, A\g, to that of inhibitory synapse activation, A;. (E) The power spectrum of the
z component of the single-neuron dipole (black) at three different firing frequencies: 0 Hz (left), 3 Hz
(middle) and 7 Hz(right), along with the spectra of the passive models (gray) and the spectra of
the unitary AP response (blue) shown previously in panel C. Notice how the unitary AP spectrum
matches, up to a scaling factor (), the single-neuron dipole spectrum at high frequency. (F) The
scaling factor for the unitary AP spectrum that fits the single-neuron dipole spectrum, plotted as a
function of the firing rate (black dots). These data points almost align perfectly with the unity line
(black line). The x and y components of the dipole vector show the same behaviour (Fig. S1).

55 simplified model, we calculated single-neuron dipoles while varying the firing rate of the neuron
ss by altering the ratio of excitatory to inhibitory input (Fig. 1D). We estimated Sy, for each EI
57 ratio by considering the passive model in which the sodium channel conductance was set to zero.
ss Meanwhile, S,, was defined as the energy spectrum of the unitary AP response calculated at low
so firing rates (see Methods). By fitting the power spectrum of the single-neuron dipole at each EI
60 ratio with Eq. 1, we estimated the scaling factor 8 and showed that it closely matches the firing
o1 rate (Fig. 1E, F).

62 We performed this analysis on biophysical models of 68 representative neuron classes®* (Table S1).
63 Across all models, the unitary AP scaling factor g closely followed the firing rate (Fig. 2A). However,
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Fig 2. AP contributions to single-neuron dipoles are linear with firing rate. (A) Fitted
unitary AP scaling factor (3; see Eq. 1) plotted against firing rate for 68 neuron models covering
the 55 neuron classes identified by Markram et al.** (Table S1). These data points align almost
perfectly with the unity line (red line). (B) The R? value obtained from fitting a linear model (Eq.
1) to the spectra of the AP dipole response in each simulation. Notice how the line of best fit (red
line) shows that Eq. 1 gets less accurate at high firing rate. (C) The spectra of the z component of
the single-neuron dipoles (black), averaged across all simulations with firing rates in the specified
ranges, compared to the spectra predicted from the linear model (blue). For firing rates less than
80 Hz, the linear model produces spectra nearly identical to the simulations. At firing rates above
80 Hz, there is a slight departure is spectral density around 100 Hz. The same results were obtained
with the x and y components of the dipole (Fig. S1).

6« as the firing rate increased, the accuracy of the linear approximation decreased (Fig. 2B). This was
65 Dbecause the unitary AP responses were less representative of the AP responses occurring at high
66 frequencies. Nonetheless, we found that the spectral profile of the AP-generated signal was nearly
7 identical to that predicted by the linear model up to firing rates of approximately 80 Hz (Fig. 2C).
68 We concluded that the amplitude of AP responses are captured well by a linear model, but that the
60 precise spectral properties of these responses may be slightly different than those predicted by a
70 fully linear model during sustained high frequency firing above 80 Hz. However, considering that the
71 average firing rates of active neurons typically fall below 60 Hz?7 38
72 of AP signals to be acceptable.

, we deemed this simplification

7z A linear model for the spectrum of AP electric fields

74 Based on the foregoing linearity assumption outlined in Eq. 1, we derived a general equation for
75 the ensemble electric fields generated by APs. In general, the potential between two electrodes can
76 be calculated from their lead field*?, v(x), which describes the sensitivity of the measured potential
77 with respect to a unit dipole vector at the spatial point @. Using this formalism, we can write the
78 potential generated by N neurons as

N
o(t) =) vT(@)ai(t) (Eq. 2)
1=1

79 where g; is the single-neuron dipole of neuron 7, located at coordinate @; in the brain. This equation
so leads to the following power spectrum for the ensemble signal

N
67 = v Riv(x:) + > vT(x) Ry jv(x)) (Eq. 3)
i=1 i
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s1 where R, ;(7) is the auto-correlation matrix of the single-neuron dipole for neuron i, R; ;(7) is the
82 cross-correlation matrix for two neurons ¢ and j, and RH and RH denote their Fourier transforms,
83 respectively.

84 We now make use of the linearity result from the previous section by describing g; as a linear
ss filter, g;(t) = q;¥" + (q;" * w;)(t), where the vector ¢;” is the unitary AP response of neuron i, w; is
8 a point process describing the spike times of the neuron, and qf Y™ is the synaptic component of the
&7 single-neuron dipole, assumed to be statistically independent of ¢;” (Eq. 1; see also Discussion).

ss The AP component of the ensemble potential is therefore

N
|Papl? = ZR?@”‘“‘E T(x;) R "v(x;) ZRsmke (z;) R} u(acj) (Eq. 4)
i=1 1#£]

s where R(7) is the auto-correlation matrix of the unitary AP response for neuron i, R;"(7) is the

spike . . . .
90 cross-correlation matrix for two neurons ¢ and j, R p (1) is the spike train auto-correlation of

o1 neuron i, Rf”}lke( ) is the spike train cross-correlation of neurons 7 and j, and Rff , Rf’; , RSp ke and
szike denote their Fourier transforms, respectively.

93 We estimated the average auto- and cross-correlations between unitary AP responses based
s on biophysical simulations of all 1035 neuron models generated by the Blue Brain project®*. As
o5 expected, when the neurons fired APs with zero lag, their dipoles exhibited strong cross-correlations
o along the apical-basal axes of their respective neurons (Fig. S2). Interestingly, these calculations
o7 also revealed significant cross-correlations between the dipoles’ apical-basal component and their
¢ azimuthal components (Fig. S2). This observation suggests that even neurons that are not aligned
99 in parallel may still generate coherent electric fields during synchronous firing, thus further boosting
100 the signals generated by populations of AP responses.

92

w1 Magnitude of apEEG depends on dendrite asymmetry

102 Using the above linear model, we sought to calculate the potential measured at an EEG electrode
103 generated by APs under various conditions. To begin, we investigated the simple case where neurons
4 fire according to uncorrelated Poisson spike trains. In this case, RSP Zke( f) =0 and RfﬁZke( =X\,
105 although for simplicity we assumed a single average A for all neurons. To estimate the solution to
106 this equation, we divided our neuron models into the 55 different morphology classes defined by
107 Markram et al.>* (Table S2). Under this scenario, the apEEG spectrum was calculated as

M
|bapl® = XD maSk(f), (Eq. 5)

108 where Sj is equal to the expected EEG spectrum generated by a neuron of class k firing a single
100 AP, and my is the number of neurons that fall into each class. Si was calculated by averaging the
1o EEG spectra generated by simulating many neurons of class k£ and placing them at each of the
11 75,000 cortical locations available in the New York Head model® (Fig. 3A). This is identical to
12 the procedure used previously to calculate the unitary spectrum for the synaptic component of the
13 EEG?. To then calculate the ensemble apEEG spectrum, the number of neurons in each class, my,
e was calculated by multiplying the estimated abundance of each cell type** (Fig. 3B) by the total
us  number of neurons in the cortex, which we took to be 16 billion*’

116 Among neuron classes, the average power of the unitary apEEG response varied by almost two
u7 orders of magnitude (Fig. 3B). Excitatory pyramidal cells tended to generate larger amplitude
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Fig 3. Diverse cell types’ unitary AP contributions to scalp EEG. (A) An example unitary
apEEG response (top) computed by placing a simulated single-neuron dipole at a random cortical
location in the New York Head model (bottom) and calculating the signal at the Cz electrode site.
(B) The unitary apEEG power, averaged across simulations of all possible neuron locations in the
cortex, for each of the 1035 neuron models, split into various morphology classes; a description of
each morphology class is provided in Table S2. Excitatory neurons are shown in red and inhibitory
neurons in blue. The relative abundance of each morphology type is shown at the top of the panel.
(C) The location-averaged unitary apEEG power of each neuron model plotted against the neuron’s
dendrite asymmetry index (Eq. 8, see Methods). The size and opacity of each point is directly
proportional to the neuron’s relative abundance in the brain. Black line: line of best fit. (D) The
expected unitary apEEG spectrum, averaged over all neuron models and weighted by the relative
abundance of each neuron type. (E) The power spectrum of EEG collected by Scheer et al.*! (black)
and the associated noise floor (red). Blue lines: the simulated apEEG spectrum generated by the
entire brain firing asynchronously at various frequencies.

apEEG signals than inhibitory neurons, as expected?’. However, certain inhibitory neurons also
generated surprisingly large amplitude signals (Fig. 3B). Whereas the average excitatory neuron
generated a unitary apEEG response with an energy of ~0.09 pV?, the average inhibitory neuron
generated signals of ~0.02 pV2. Because pyramidal neurons are thought to dominate EEG signals
due to their polarized dendrite morphology, we hypothesized that many interneurons have significant
asymmetries in their dendritic arbours. To test this, we defined a dendrite asymmetry index (Eq.
8; see Methods) and evaluated the predictive power of this measure on apEEG signal strength.
Consistent with our hypothesis, the unitary apEEG power for each neuron was strongly correlated
with its dendrite asymmetry index (Fig. 3C). While in general excitatory neurons exhibited more
dendrite asymmetry, many interneuron dendrites displayed equal or greater asymmetry (Fig. 3C).
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128 This result demonstrates that interneuron spikes can generate large electric fields, commensurate
120 with those of many excitatory neurons.

130 Interestingly, the expected unitary apEEG spectrum revealed both low pass and bandpass
11 properties (Fig. 3D). The bandpass property, which is reflected in the peak in the power spectrum
132 around 100 Hz, arises from the fast temporal dynamics of the up and downstroke of the AP
133 waveform. The low-pass filtering properties are evident in the low frequency power below 10 Hz.
134 This power was disproportionately contributed by certain neuron classes which exhibited significant,
135 slow after-hyperpolarizations that often took tens to hundreds of milliseconds to return to baseline
e (Fig. S3).

137 Finally, we examined the ensemble apEEG spectrum (Fig. 3D). Even with an unrealistically high
138 brain-wide firing rate of 100 Hz, the amplitude of the ensemble apEEG signal barely reached the
139 noise floor of high resolution, low noise EEG recordings (Fig. 3E). Given the absence of synchrony,
1o these spectra serve as indicators for defining lower bounds on any contributions of APs to scalp
11 EEG. Unsurprisingly, asynchronous firing does not produce detectable apEEG signals.

12 Spike synchrony cannot produce high frequency broadband apEEG

13 We next investigated the effects of spike synchrony on apEEG generation, and turned to the full
s Eq. 4. We used a minimal model for spike synchrony based on two general observations:

145 1. Spike synchrony is strongest among nearby neurons*? 4. This was implemented in our model
146 by synchronizing the spike timing of neurons depending on their pairwise distance according to
147 Rf?kes(T) o< exp(—d; i/ 202), where d; j is the Euclidean distance between neurons i and j, and
148 02 is a parameter that controls the cortical distance over which activity becomes uncorrelated.
149 In accordance with unit recordings in visual cortex*?*? we set o2 to be 3 mm? (Fig. 4A).
150 Although recordings from prefrontal cortex suggest a slightly lower value of around 1 mm? %7,
151 differences in the value of o, at the scale of millimeters did not have meaningful effects on the
152 results that follow (Fig. S5).

153 2. Even neurons with correlated spiking do not fire at exactly the same time. Therefore, the
154 timescale of correlation was captured by modelling the spike train cross-correlation as a
155 Gaussian function, whose variance, o7, reflects the jitter in spike times*>*%40 (Fig. 4B).

156 Together, these two experimental observations give rise to the following equation describing spike

157 synchrony
)\Rmax

V/2mo?

155 where R,,q, represents the noise correlation between neurons’® and \ is the average firing rate of
150 the neurons. According to this model, the dynamics of AP firing and synchrony are both entirely
10 aperiodic, thus allowing us to examine whether apEEG signals can generate aperiodic EEG signals
161 and contribute to the EEG spectral trend.

162 We estimated the ensemble apEEG spectrum generated by the entire brain using Monte Carlo
163 simulations (see Methods). As a specific example, Fig. 4C shows the spectra calculated for
166 Rpygr = 0.2 and A = 1 Hz. When oy = 0, spiking occurs with perfect synchrony, producing an
165 apEEG spectrum that is essentially a scaled version of the average cross-spectrum among unitary
166 AP responses. This spectrum exhibited large amplitude, high frequency broadband EEG signals that
167 would be detectable in EEG recordings. On the other hand, when oy = oo, the spectrum is identical

Rspik;es (7_) _

i.j exp(—d; ;/20%) exp(—7°/207) (Eq. 6)
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Fig 4. Aperiodic APs cannot generate detectable EEG signals. (A) Schematic illustration
of the local nature of correlated activity in the model. Neighbouring neurons fire spikes with a
correlation of Ry,,., while neuron pairs that are increasingly separated show gradually decreasing
correlation. (B) Schematic illustrating the timescale of correlation. Correlated neurons have a given
fraction of their spikes synchronized (left) with a jitter value drawn from a Gaussian distribution
of standard deviation oy (right). (C) The power spectrum of EEG collected by Scheer et al.*!
(black) and the example ensemble apEEG spectra of a brain with an average firing rate of 1 Hz
and maximal correlation of R,,., = 0.2, plotted for various values of o; (blue). Red line: The
associated noise floor of the experimental EEG spectrum. (D) Maximal spectral density above
30 Hz generated by the model for a whole range of firing rates (A) and jitter values (o), as well as
for various maximal correlation values (Rj,q.). Red line: The boundary delineating spectral density
above and below the noise floor of the amplifier. Dotted box: the regime of physiologically realistic
parameter values (see Methods). (E) The maximal power below 30 Hz generated by the model,
relative to the experimentally measured spectrum in panel C. Contour lines indicate parameter
values where the model generates 1%, 10% and 100% the spectral density of the data. Dotted box:
the regime of physiologically realistic parameter values (see Methods).

to the asynchronous case (Fig. 3) and would lie far below the noise floor of the experimental
EEG spectrum (Fig. 4C). For intermediate values, the spectra follow the perfectly synchronous
spectrum until a cut-off frequency, determined by o, above which the spectrum drops down to the

May 28, 2024 8/32


https://doi.org/10.1101/2024.05.28.596262
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.28.596262; this version posted June 1, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

i1 asynchronous spectrum (Fig. 4C). This indicates that the timescale of correlation, oy, is critical in
12 allowing or preventing APs from generating high frequency, broadband EEG signals.

173 To investigate further, we performed a full sensitivity analysis of model outcomes with respect to
17a the jitter (07), maximal correlation (Rp,qz), and firing rate (A). Figure 4D illustrates the maximal
175 spectral density produced at frequencies above 30 Hz. The red line indicates where the apEEG
176 crosses the noise floor and the dotted box shows a physiologically reasonable parameter range for
177 A, 0y, and Ryae (see Methods: Determining ranges for parameters). This dotted box is entirely
178 contained below the noise floor of EEG amplifiers, indicating that APs cannot contribute to the
179 high frequency plateau observed in EEG spectra.

180 At lower frequencies, APs and their after-hyperpolarizations (Fig. S3) generated detectable EEG
181 signals even with high jitter values (Fig. 4C). To investigate this phenomenon further, we calculated
1.2 the power generated below 30 Hz as a fraction of that in experimentally recorded EEG, and plotted
183 the maximum obtained power across these frequencies (Fig. 4E). For reasonable parameter values,
18« we found that APs could generate maximally ~1% of the spectral density seen in recorded EEG
15 signals (Fig. 4E). We conclude that while aperiodic APs can generate signals above the detection
156 limit of EEG amplifiers, these signals are dwarfed by the contributions of synaptic currents.

117 Excitatory synapses are the only neural sources of spectral trend at high frequency

188 If APs do not generate detectable aperiodic EEG signals, the EEG spectral trend at higher
180 frequencies should be fully explained by muscle activity?® and excitatory synaptic time scales®*. To
10 test this hypothesis, we analyzed EEG data collected from subjects during peripheral blockade of
101 nicotinic cholinergic receptors®’, which causes muscle paralysis and removes contamination of EMG
192 signals®®??. In EEG collected from unparalyzed individuals, synaptic timescales were insufficient to
193 explain the high frequency EEG spectral trend especially its plateau (Fig. 5A), consistent with
104 previous studies®. However, following neuromuscular blockade, this high frequency component
105 of the trend reduced in amplitude in such a way that synaptic timescales could entirely explain
s the spectral trend (Fig. 5B). These results validate our theoretical calculations that APs do not
107 contribute to the EEG spectral trend under baseline conditions, and further validate the role of

108 synaptic timescales in shaping EEG spectra.

19 Synchronous APs can produce EEG rhythms in gamma range and above

200 Even if APs do not produce aperiodic EEG signals, it may still be possible that they contribute
20 to EEG rhythms?’. We therefore used our framework to investigate the consequences of rhythmic
202 synchrony in AP firing activity. We modelled oscillatory synchronization by making the cross-
23 correlation between pairs of neurons a damped sine wave'”4®. Mathematically, this means that the
204 spike train cross-correlation is now described by the following equation,

/\sz%z exp(—d3;/203) exp(—7% /207 ) cos (277 fo), (Eq. 7)
o}

Rspikes (7_) _

,J

205 where fy is the synchronous rhythm frequency. A representative parameterization of this equation
206 is plotted in Fig. 6 A. Based on this, we investigated the EEG spectra produced by APs when the
207 frequency of synchronous oscillation, fy, was systematically varied. The value of oy only altered the
208 sharpness of the oscillations spectral peak, but did not affect its amplitude (Fig. S6); we therefore
200 set oy to be 11.3 ms in the subsequent simulations.
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Fig 5. EEG spectral trend is explained entirely by synaptic timescales. (A) Spectra
of EEG signals collected from unparalyzed subjects by Whitham et al.?’ (black), fit with Eq. 9
(solid blue; see Methods). The dashed blue lines indicate the contributions of GABA receptor
(GABAR) and AMPA receptor (AMPAR) timescales to the fit. Notice that the fit will never be
able capture the high frequency plateau observed in the data. Parameter values: 771 = 4 ms,
T2 =20 ms, 7p1 = 1 ms, 7po = 3 ms, Ay = 3.6, and Ap = 4.6. Red line: Noise floor. (B) Same as
in A, but with the spectra of EEG signals collected following muscle paralysis and presumed to
be free of electromyogram contamination. Parameter values: 771 = 4 ms, 7790 = 20 ms, 751 = 1 ms,
TEo = 3 ms, A; = 3.6, and Ag = 3.3. Red line: Noise floor.

To evaluate the relevance of simulated apEEG amplitudes, we computed its power relative to the
synaptic trend fit to the data of paralyzed subjects (Fig. 5B). In this way, we could compare the
oscillatory power generated by APs to a “null” EEG spectrum that exhibited no brain rhythms.

When the firing rate or the magnitude of the spiking correlation was too low, APs could not
generate any detectable EEG signals (Fig. 6B). Interestingly, when the product of the two scaling
factors in our model, AR ,q., Was above approximately 1073, synchronous rhythmic AP firing could
generate pronounced spectral peaks in the EEG spectrum, but only if the oscillation frequency was
around 200 Hz. When the value of AR,,,q, was further increased, the regime of oscillation frequencies
that produced detectable apEEG signals expanded (Fig. 6B).

To better illustrate how these values arose, we plotted one specific example when A = 1 Hz and
Rinae = 0.2. By superimposing the apEEG spectra on the example EEG data, one can see that APs
with slower synchronous rhythm frequencies, fo, produce apEEG signals well below the amplitude of
the EEG spectral trend (Fig. 6C-E). However, at higher fy, the amplitude of the generated spectral
peak increased significantly. The amplitudes of these peaks trace out the spectrum generated by
the model when synchrony is entirely aperiodic with zero jitter (Fig. 4F-H). It follows that the
amplitude of apEEG rhythms can be predicted by the simplified synchrony model described in the
previous section.

For an 80 Hz rhythm, the parameter combination AR,,q, needs to be at least 10~2 for APs to
produce a peak with 1% the amplitude of the background spectral trend, and be at least 10~! to
produce a signal of equal or greater amplitude than the spectral trend (Fig. 6B). These values are
commensurate with average firing rates between 0.1 and 1 Hz and maximal correlation values around
0.1, which are within the range of values measured experimentally (see Methods, Determining ranges
for parameter values). In contrast, no reasonable set of parameters would allow APs to contribute
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Fig 6. APs can contribute to gamma and higher frequency oscillations. (A) The spike
train cross-correlation used to model rhythmic spike synchrony, with o, = 11.3 ms and fy = 40
Hz as an example. (B) Simulated amplitudes of spectral peaks generated by APs synchronized at
rhythm frequencies between 1 and 1000 Hz. The simulated peak amplitude was defined relative to
the fitted spectral trend from Fig. 5B. (C-H) The average spectra of paralyzed patients (grey) and
the fitted spectral trend (black). Notice how at higher frequencies, the spectral trend is constrained
by the noise floor (red). The simulated spectrum of the apEEG signal (solid blue) generated by
rhythmic spike synchrony at fo = 5 Hz (C), 10 Hz (D), 20 Hz (E), 40 Hz (F), 80 Hz (G) and 160 Hz
(H). Dotted blue line: the apEEG spectrum generated by the brain with the same average firing rate
and maximal correlation as solid blue lines, but with perfectly synchronized spikes, i.e., oy = 0 ms.
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significantly to EEG signals of lower frequency rhythms. We conclude that lower frequency EEG
rhythms likely reflect purely synaptic activity, whereas rhythmic EEG signals in the gamma range
or higher may be generated by APs and thus directly reflect spiking activity.

Discussion

We have shown that asynchronous spiking activity cannot cross the noise floor of EEG amplifiers
and that, while synchronous aperiodic spiking can generate detectable EEG signals, these signals
are dwarfed by the contributions of synaptic currents. On the other hand, we found that rhythmic
spiking activity can potentially generate significant EEG oscillations depending on the frequency of
such rhythmicity. Together, our results provide quantitative insights into the neural basis of EEG
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22 and have direct practical implications for interpreting EEG spectra.

23 Interpreting and analyzing EEG spectra

24 To detrend or not to detrend EEG spectra depends on the mechanisms underlying the changes in the
25 spectral trend?. Our results therefore have several important implications for spectral detrending.
26 First, our analysis shows that the high frequency plateau in EEG spectra is entirely determined by
27 excitatory synaptic currents, muscle activity, and amplifier noise. Consequently, any broadband
s power beyond the frequency range of excitatory synaptic timescales must come from additive noise
240 processes, and therefore should be removed through subtractive detrending”®. This point highlights
20 that detrending requires different methodologies at high and low frequencies. While the high
1 frequency plateau should be corrected through subtractive detrending, synaptic timescales still need
22 to be corrected divisively?. Notably, “whitening” EEG spectra typically involves subtracting the log
253 slope of the spectrum® 4, which is a divisive operation. Our results suggest that this process will
24 overestimate changes in higher frequency EEG oscillations, particularly above 30 Hz. We illustrate
255 this point using a toy model in Fig. 7. Suppose two EEG spectra are being compared, one of which
26 reflects a lower excitatory to inhibitory (E:I) ratio and less electromyogram (EMG) (Fig. 7A1,B1).
257 Due to the difference in E:I ratio, the spectra need to be detrended of synaptic timescales prior to
253 comparison, as described previously®* (Fig. 7C1). However, in cases where the high frequency
29 plateau is also changing, for example due to differences in muscle tone, the high frequency plateau
20 needs to be subtracted first. Otherwise, peak estimates will be nonuniformly biased (Fig. 7TD1-E1).
261 Importantly, correcting for synaptic timescales assumes that spectral peaks are generated by
262 synaptic currents. Our results suggest that this is may not be the case for high frequency oscillations,
263 because these oscillations may be generated principally by APs. In this case, correcting for synaptic
264 timescales when analyzing high frequency oscillations would lead to incorrect conclusions (Fig. 7A2-
265 E2). Our results thus strongly indicate that high frequency oscillations should be analyzed separately
%66 from lower frequency oscillations. Our simulations provide a reasonable frequency range where
%7 oscillations can be generated by AP activity and therefore suggest principled cutoff frequencies for
268 performing different spectral trend analyses. However, this frequency range depended on parameters
%0 that we still lack brain-wide estimates for, specifically levels of spiking synchrony and average firing
a0 rates. Spectral analysis of EEG would thus benefit from future experimental work investigating
o711 these parameters in more detail.

»» Neural basis of EEG

213 Past work has found that apEEG signals can account for up to 20% of EEG rhythms?’, contrary
274 to our findings. In this previous study, the relative contributions of APs and synaptic currents to
a5 the single-neuron dipole were investigated, concluding that APs contribute a large fraction of the
276 single-neuron dipole signal. Our simulations indicated that the average unitary apEEG response is
o7 approximately 0.08 pV?, whereas the average single-neuron EEG power generated in our passive
s simulations was 0.09 pV2. Thus, at the single-neuron level, our results agree with this previous
a9 study, assuming an average firing rate of approximately 0.25Hz. However, this ratio would only
230 persist in the ensemble EEG if the synaptic and AP components were similarly coherent. Our
251 findings indicate that, even at upper parameter bounds, APs and their after-hyperpolarizations can
22 yield EEG signals with only 1% the spectral density of synaptically-generated EEG signals. We
283 thus conclude that the relative contribution of APs and synaptic currents to single-neuron signals
23  does not translate into ensemble EEG signals.
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Fig 7. A toy model illustrating the implications of this study’s results on spectral
detrending. (A1) EEG spectrum (black) modelled with (i) Gaussian functions at 10 and 40 Hz, a
constant offset and 1/f noise at low frequencies, all filtered by synaptic timescales (the synaptic
timescales fitted in Fig. 5 were used), plus (ii) additive EMG noise. The equation describing the
spectrum was P(f) = (14 a(f) +v(f) + 1/ f?)Psyn + noise, where « and +y represent the Gaussian
peaks. The spectral density from synaptic timescales (blue) and additive noise (red) are overlaid on
the simulated spectrum. (B1) Same as in Al, but the EMG noise has been decreased by 50% and
the E:I ratio was decreased ~2.5 fold. The spectrum from panel Al is shown in grey for comparison.
The amplitude of the the Gaussian functions were not changed. (C1) Power of spectrum after
parameter modifications relative to before (i.e., black vs gray lines in B1). Differences in the spectral
trend were not corrected for. (D1) The same as in C1, but with the spectral trend, defined as
P,y + noise, removed divisively from the spectra. Notice how this analysis artifactually displays
an increase in the alpha and especially the gamma peak, even though these components of the
spectrum were not changed. (E1) The same as in C1, but with spectra detrended using a mixed
approach. Here, the EMG noise was subtracted prior to detrending divisively with the synaptic
timescales, producing correctly no changes in rhythmic power. (A2-E2) The same as in A1-E2,
respectively, but with the inclusion of a high frequency oscillation (HFO) generated by APs using
the equation P(f) = (14 a(f) +v(f) + 1/ f?) Psyn + HFO(f) + noise.

285 Our work also has implications for understanding the cellular basis of EEG signals. In particular,
26 EEG signals are typically thought to be generated by pyramidal neurons?®°°. However, despite
257 the prototypical morphology of an inhibitory neuron as a stellate cell, with a closed field structure
s that would prevent them from generating EEG signals®!, the reconstructed morphologies of the
20 Blue Brain models®! displayed significant asymmetries, allowing interneurons to generate apEEG
200 signals only four-fold smaller than excitatory neurons. This result is broadly in line with those of
21 Tenke et al.”?, who found that small asymmetries in stellate cells allow them to exhibit open field
202 configurations and generate significant current source densities. Moreover, we found that almost
203 the entirety of the apEEG signal amplitude is conferred by spiking synchrony. While cell-type
204 specific synchrony was not included in our modelling, its inclusion would likely boost the relative
205 contributions of inhibitory neurons, as their APs tend to be more highly synchronized than those
26 of excitatory neurons®. This observation, combined with the fact that inhibitory neurons tend
207 to fire faster than excitatory neurons and therefore contribute more APs, suggests that inhibitory
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208 neurons may contribute significantly to the apEEG signal. In future work, it would be interesting
200 to quantify precisely how much these phenomena compensate for the weaker unitary AP responses
s0 and lower abundance of inhibitory neurons. Combined with our other results, these insights may
so0  inform what cell types are predominately responsible for high frequency EEG rhythms.

w2 Modelling assumptions and limitations

303 In modelling the apEEG signal, we assumed that the AP component of the EEG is independent of
s+ the synaptically-generated EEG signal. Although synaptic activity of a population is not statistically
305 independent from its APs, we do not believe that assuming independence distorts our conclusions.
s06  Firstly, at the single-cell level, we confirmed that AP power and synaptic power are approximately
307 independent. This can be understood by recognizing that, because of the low firing rate of APs, the
308 majority of power from subthreshold fluctuation will be unrelated to the synaptic events that elicit
300 spikes. Therefore, the more pertinent assumption is that in Eq. 4 we assume a null cross-spectrum
si0  between electric fields generated by APs and postsynaptic potentials (PSPs). We reason that this
s assumption is plausible because the electric fields generated by APs are determined by the gross
sz morphologies of the presynaptic neurons, whereas the fields generated by PSPs are determined by
a3 the precise locations of the synapses on the postsynaptic neurons®°*. Consequently, even if the
314 timing of these events are correlated, the orientation of the resulting current dipoles would only
315 be weakly related on average. The AP-PSP cross-spectrum could be estimated from simulations
a6 of neural circuits with morphologically detailed neuron models. However, the results would likely
s1i7 depend strongly on the precise network topology and sub-cellular targeting of synaptic connections
s1is which remain only vaguely constrained by experiments. For all the above reasons, we leave these
s calculations to future studies.

320 In modelling various neural oscillations, we assumed a constant spatial extent over which spiking
sz activity is coherent. However, lower frequency oscillations are thought to recruit more widely
s distributed neural ensembles than higher frequency oscillations®®. Because we did not find reliable
323 parameter values for the spatial extents of each brain rhythm, we assumed that rhythms differed
324 only in their frequency of oscillation. Future work incorporating the spatial topology of different
35 brain rhythms could provide a more complete picture of the role APs play in EEG oscillations.

32 Finally, recent work has suggested that APs propagating along axons generate dipoles that
27 contribute to LFP recordings®®. On the other hand, it has been argued that due to the random
25 orientations of axonal termination segments, these signals would not contribute to EEG?”. In the
320 current study, we only considered back-propagating APs. However, a similar theoretical framework
330 could be used to investigate the electric fields generated by forward propagating APs in more detail.
331 Including these contributions could increase the amplitude of the unitary AP response, potentially
332 expanding the parameter range that permits AP-generated EEG oscillation. On the other hand,
333 including forward propagating APs would not change our finding that jitter in spike timing prohibits
s34 high frequency aperiodic apEEG signals, and therefore our conclusions pertaining to the spectral
335 trend would be unaffected.

;3 Conclusion

337 Based on our findings, we conclude that APs cannot contribute to the EEG spectral trend, which
33 can be explained entirely by synaptic timescales, electromyogram contamination, and amplifier
330 noise. However, we also conclude that APs can produce narrowband EEG power at high frequencies.
30 These results together suggest that high frequency oscillations and low frequency oscillations interact
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a1 with the spectral trend differently. While low frequency oscillations require detrending of synaptic
32 timescales, applying this analysis to high frequency oscillations will likely produce incorrect results,
a3 and these high frequency oscillations should thus be analyzed separately. Altogether, this work
344 indicates that the interactions between spectral peaks and the spectral trend is frequency dependent,
a5 further highlighting that the EEG spectral trend is not a singular phenomenon and should not be
36 removed as a single parameterized function.
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w Met hO dS

us  Biophysical simulations of unitary AP responses

a0 To calculate the unitary AP responses of various neuron types, we simulated 1034 biophysical neuron
350 models originally developed by the Blue Brain Project®*. These models have detailed morphological
351 reconstructions of the dendritic arbours and 13 voltage-dependent channels distributed throughout
352 the axonal, somatic, and dendritic segments. For the present work, background synaptic input was
353 added to the model to drive AP firing by distributing 1 excitatory synapse and 0.15 inhibitory
354 synapses per pm of dendrite. The average firing rate of all synapses was set to 1.75 Hz and the
355 ratio of excitation to inhibition, defined as the ratio of mean activation rates between excitatory
356 and inhibitory synapses, was tuned for each neuron model to bring the firing rate above 1 Hz and
357 below 40 Hz. This ensured that APs occurred sparsely enough that the electric fields they generated
358 were independent of one another. To compute each neuron’s unitary AP response, every model was
350 simulated to obtain at least 10 spikes for averaging.

360 Models were simulated using the python package LEPy®”, built on top of the NEURON simulation
361 environment®®, and the single-neuron dipole generated at each time point was calculated using
32 the totality of the current in the dendritic and somatic compartments, as described by Naess et
53 al.?’. APs were identified in the somatic compartment using MATLAB’s findpeaks algorithm with
364 a minimum peak height set to 0 mV. The spike-triggered average of the single-neuron dipole was
35 then computed for each neuron model.

w6 Dendrite asymmetry index

7 Each dendritic arbour was defined by N truncated cones with volumes V; and midpoints x;, for
s @ € {1,2,...N}. The dendrite asymmetry index was then defined as

N N

1

Al = E Viz; © N_1 E x; © x|, (Eq. 8)
i=1 =1

30 where |-| denotes the Euclidean norm, while @ and ® denote element-wise division and multiplication,
30 respectively. The calculation of this index is illustrated in Fig. S7. Conceptually, this equation
s measures how far the weighted centroid of the dendrites is from zero, normalized in a sense by
s the span of the dendritic tree. We found that normalization by the actual span of the dendrites
a3 over-penalized cells with long apical dendrites. Conversely, without any normalization, cells with
s+ large dendritic spans could have relatively symmetric dendrites but large absolute asymmetries,
a5 causing their apEEG signals to be overestimated. We found that normalizing by the standard
s7e  deviation balanced these two extremes well.

s7 Monte Carlo simulations of ensemble apEEG spectrum

sis 1o estimate the ensemble apEEG signal, we evaluated Eq. 4 numerically using the New York Head
579 model lead field®’. The New York Head model is based on the ICBM152 v6 brain template®” Y, and
30 has the EEG lead field calculated at approximately 75,000 cortical mesh points. All the simulations
ss1 results here are based on the potential at the Cz electrode site measured against the common average
32 reference.

383 Evaluating the second term in Eq. 4 requires computing the cross spectra for all pairwise
s« combinations of cortex coordinates and neuron models (> 10 unique pairings), making this step
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ss5  intractable. We therefore used a Monte Carlo sampling approach®!. Because spike synchrony was
386 assumed to be local in nature with

A R
RE(f) = h(f) exp(=d; ;/207),

ss7  for a spike train cross correlogram of the form h(t), we could rewrite the second term in Eq. 4 as

s follows

ZRspzke -|— RZI])V(QJJ) _ iL(f)/ —r2/2 S ( )dN(T)

=+
i reR

380  Here, S’m’y(r) is the expected cross-spectrum between single-neuron EEG signals generated by cells
30 separated by a distance r. Note the assumption that h is independent of space.

301 The density dN(r) reflects the number of neuron pairs in the cortex separated by a distance
32 . We estimated this density as described previously®. Briefly, we started by sampling cortex
33 coordinates, x;, for i € {1,2,...10000}, from the New York head model. Then, for each coordinate,
a4 we calculated the total cortical surface area contained in balls of radii r ranging from 0 to 200 mm
305 (Fig. S4A). Assuming a uniform distribution of 16 billion neurons across the cortical surface area?
306 we determined the empirical density of neuron pairs for each pairwise distance, r (Fig. S4B). For
37 each pairwise distance, the expected cross-spectrum was computed based on neuron models sampled
3¢ proportionally to their relative abundance (Fig. 3B), and placed at two locations in the cortex;
300 the first location was sampled uniformly and the second location was sampled relative to the first
200 location, according to the density function dN.

401 We terminated our Monte Carlo simulations when there was less than 1% probability that our
w2 estimate was off by an absolute error of 645 = 4 x 1072° 1V?, which we determined conservatively
w3 using Chebyshev’s inequality®%?. This absolute error rate translates into an error in the ensemble
ws EEG spectrum of approximately 10~ pV? when all APs are firing in perfect synchrony, an error
a5 bound that was chosen because it was equal to the noise floor of high resolution, low noise EEG
ws data®!. This termination condition was reached after approximately 44 million samples.

w7 Determining ranges for parameter values
108 Magnitude and timescale of correlation

209 Co-tuned neurons in area MT exhibit correlations of approximately R,q. = 0.2 with a timescale
a0 estimated to be around o; = 11.3 ms*®. Unless otherise stated, we used these values in our example
a1 simulations. For two reasons, these parameter values likely represent upper bounds for brain-wide
a2 spike train correlations. First, neurons that are not co-tuned exhibit less correlated activity®?,
4213 meaning that the average spike synchrony among all neighbouring neurons is likely lower than that
414 between co-tuned neurons. Consistent with this, a survey of studies across different experimental
as  paradigms and cortical areas found correlation values ranging between 0.05 and 0.25**. In area
se  MT, the timescale of correlation was found to be around 10 ms’®, whereas studies in V4 indicate
a7 timescales of tens or hundreds of milliseconds*® %%, We therefore took a liberal range of 10 to 100 ms
418 as an acceptable range for oy.

219 Mean firing rate

20 Because activity is sparse in the cortex, most neurons are silent at any particular moment; this
w21 silent fraction has been estimated to be up to 90% of all cells®®. As a consequence, the average
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42 firing rate across the entire brain is significantly lower than would be expected from measurements
w23 of only responsive neurons, with estimates averaging around 0.1 to 2 Hz6°67,

2 EEG data and spectral trend fitting

425 The experimental data shown in Figs. 3E, 4C and 5 were extracted directly from the figures in
w6 Scheer et al.*' and Whitham et al.?’. The spectra from Whitham et al.? were fit with the equation

(f) = Ar(tn — 712)° n Ap(TE1 — TR2)”
(1 + (27Tf7'[1)2)(1 + (27Tf7']2)2) (1 + (27TfTE1)2)(1 + (27TfTE2)2)

427 where 777 and 772 are the rise and decay time constants associated with inhibitory synaptic responses
28 and Tg1 and Tgo are the rise and decay time constants associated with excitatory synaptic responses,
429 while Ay and Ag govern the relative contribution of inhibitory and excitatory currents to the
0 EEG spectrum. This equation was adapted from Eq. 6 in Brake et al.?, except that here the high
a1 frequency plateau was explicitly decomposed into excitatory synaptic contributions and the noise
a2 floor, which was empirically determined to be ~1073 pV2Hz . The same 7 values were used to fit
43 both the unparalyzed and paralyzed data; only the scaling factors A; and Ag were adjusted.

+107%,  (Eq. 9)

= Code availability

435 Code used to run simulations, analyze data, and generate manuscript figures is available on GitHub
a6 (github.com/niklasbrake/apEEG_modelling).
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Supplementary Fig. S1. Scaling of the x and y components of the unitary AP spectrum.
(A-C) Same as Fig. 2, but for the z component of the single-neuron dipole. (D-F) Same as Fig. 2,
but for the y component of the single-neuron dipole.
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Supplementary Fig. S2. Cross-correlation among unitary AP responses. Solid black line
indicates average across all pairs of 1035 neuron models, weighted by the relative abundance of the
pairing (Fig. 3B). Shading reflects 95% confidence interval of the mean.
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Supplementary Fig. S3. Low frequency apEEG power generated by afterpotentials.
(A) The slope of the unitary AP spectrum for every neuron model, calculated between 1-10 Hz.
A neuron (ID: L4 BP_bAC217_1) with a particular negative slope is indicated in blue. (B) Power
spectrum of the unitary AP spectrum for the neuron indicated in panel A, with 1/f trend fitted at
low frequencies (dashed black line). (C) Top: z component of the single-neuron dipole of the neuron
indicated in panel A (black) and with somatic and axonal sodium channels removed to generate a
passive model (grey). Bottom: Difference between the active and passive neuron models. Note that
the spikes have been truncated at +0.5 nA pm. After each spike, the active model’s dipole takes
hundreds of milliseconds to reconverge to the passive model. The same phenomena were observed
in the dipoles x and y components.
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Supplementary Fig. S4. Distribution of neuron pairs with respect to pairwise distance.
(A) Surface area (SA) of the cortex from New York head model enclosed within balls of increasing
radii, with the origin of the ball placed at 10,000 cortical locations. Black dots indicate the discrete
ball radii for which the surface area was calculated. Shading reflects standard deviation across
the 10,000 starting points. (B) The derivative of the surface area with respect to radius (black),
scaled to obtain the density of neuron pairs for each pairwise distance (see Methods). The red curve
illustrates the coupling kernel, as in Fig. 4A. The vast majority of neuron pairs are separated by
more than 10 mm and are therefore not correlated in the model.
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Supplementary Fig. S5. Sensitivity of aperiodic apEEG to 0z (A) Same as in Fig. 4B,
but for 62 = 1 mm?2. (B) Same as in Fig. 4B, but for 62 = 5 mm?

and Fig. 4D (bottom), but for o2

but for o3

2 — 5 mm?2.

=1 mm?2.

. (C) Same as in Fig. 4C (top)
(D) Same as in Fig. 4C (top) and Fig. 4D (bottom),
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Supplementary Fig. S6. Timescale of correlation affects spectral peak width of apEEG
rhythm. (A) Plot of Eq. 7 for 67 = 60 ms. (B) Same as in Fig. 6G, but for 07 = 60 ms.
(C) Same as in Fig. 6B, but for 67 = 60 ms. (D-F) Same as in A-B, but for 07 = 4 ms.
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Supplementary Fig. S7. Schematic of dendrite asymmetry index calculation. (A)
Example morphology of a layer 6 pyramidal cell. Note that the diameter of the dendrites have been
increased by a factor of two in the figure to better illustrate the variation in dendrite diameter
throughout the arbour. (B) Zoomed in view of the indicated dendritic branch, showing that
the dendrite morphology is represented by truncated cone segments.The diameter and length of
each truncated cone is printed. For illustrative purposes, the dendrite diameter is drawn with a
scaling factor of 10. The same dendrite segment with correct proportions is shown in the insert for
comparison. (C) To calculate the dendrite asymmetry index (Eq. 8), each segment is represented by
its midpoint in space («;) and its total volume (V;), calculated as 1/37L(r? 4+ 172 + r3). The black
dots plotted at the midpoint of each dendrite segment are scaled proportionally to the segment’s
volume. (D) The black dots represent the midpoints and their sizes represent the volume of all
dendrite segments. The red star indicates the result of the asymmetry index calculation (Eq. 8),
prior to taking the Euclidean norm. The length of the red line is thus the asymmetry index of this
neuron. For illustrative purposes, the equation result has been scaled here by 0.01 as otherwise
the vector would be too long to depict. Note, however, that the regression in Fig. 3 holds for any
arbitrary scaling of Eq. 8.
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