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Abstract

Differences in the apparent 1/f component of neural power spectra require correction depending on
the underlying neural mechanisms, which remain incompletely understood. Past studies suggest that
neuronal spiking produces broadband signals and shapes the spectral trend of invasive macroscopic
recordings, but it is unclear to what extent action potentials (APs) influence scalp EEG. Here, we
combined biophysical simulations with statistical modelling to examine the amplitude and spectral
content of scalp potentials generated by the electric fields from spiking activity. We found that under
physiological conditions, synchronized aperiodic spiking can account for at most 1% of the spectral
density observed in EEG recordings, suggesting that the EEG spectral trend reflects only external
noise at high frequencies. Indeed, by analyzing previously published data from pharmacologically
paralyzed subjects, we confirmed that the EEG spectral trend is entirely explained by synaptic
timescales and electromyogram contamination. We also investigated rhythmic EEG generation,
finding that APs can generate narrowband power between approximately 60 and 600 Hz, thus
reaching frequencies much faster than the timescales of excitatory synaptic currents. Our results
imply that different spectral detrending strategies are required for high frequency oscillations
compared to slower synaptically generated EEG rhythms.

Introduction1

Understanding the neural mechanisms underlying EEG generation is important for inferring changes2

in brain state, as well as developing methods to filter out irrelevant signals. Towards this latter3

aim, recent work has focused on characterizing the neural basis of broadband EEG signals and4

defining when and how EEG spectra need to be detrended1–3. Studies into the neural basis of5

broadband EEG have primarily focused on synaptic filtering3–6 and low frequency, aperiodic network6

fluctuations3,7, 8. However, in addition to synaptic contributions, the spectral trend observed in7

invasive, large-scale neural recordings, such as the local field potential (LFP)9–11 and intracranial8

EEG (iEEG)12,13 including electrocorticography (ECoG)14–17, is believed to reflect broadband9

contributions from spiking activity9,10,18, especially at frequencies above ∼60 Hz, the so-called10

high gamma range. Such high frequency broadband contributions are thought to be important for11

determining the slope of the 1/f spectral trend19.12
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In comparison to invasive recording techniques, the majority of the unprocessed EEG signal13

above 30 Hz reflects muscle activity20–23. Moreover, EEG is thought to be incapable of measuring14

APs because they are believed to be too brief and unsynchronized24,25. Nonetheless, when muscle15

artifacts are corrected for, EEG recordings have displayed transients in the high gamma range26–28,16

similar to those observed in LFP and iEEG recordings. If such high frequency transients are indeed17

generated by synchronized APs, it would hold significant implication for interpreting spectral peaks18

and correcting for the EEG spectral trend. Interestingly, a recent biophysical modelling study19

showed that APs account for almost 20% of the amplitude of single-neuron dipoles, and concluded20

that APs can contribute significantly to EEG rhythms29. However, a systemic investigation into the21

ability of APs to produce detectable scalp potentials has not been undertaken. Additionally, the22

potential contribution of APs to aperiodic EEG signals and the overall spectral trend has not been23

explored.24

In this study, we aim to address this gap by employing a quantitative approach that explores25

AP-generated EEG signals, a type of signal that we refer to hereafter as apEEG for brevity. To begin,26

we employ a combination of biophysical simulations and statistical modelling to examine the impact27

of single neuron properties and spike synchrony on the amplitude and spectral features of apEEG28

signals. Using these results, we evaluate whether apEEG can exhibit experimentally-measurable29

narrowband and broadband high gamma power. Our results have implications for interpreting high30

frequency EEG rhythms and for designing practical methods for spectral detrending.31

Results32

Unitary AP response of single-neuron dipoles is approximately linear33

The contributions of an individual neuron to the electric potential measured by a distant electrode34

can be modelled by a single dipole vector that varies with time30,31. This case applies well to35

EEG signals due to the distance between the brain and scalp electrodes. To understand how APs36

contribute to EEG, we therefore first sought to characterize the contributions of APs to their37

respective neurons’ dipoles. We simulated neuron models with detailed morphologies and distributed38

passive and voltage-gated ion channels on the soma, axon initial segment, and dendrites (Fig. 1A).39

To induce spiking, we bombarded the dendrites of this active model with background synaptic40

input, whereas to block spiking in the presence of such synaptic inputs, we set the conductance of41

voltage-gated sodium channels in the soma and axon initial segment to zero, obtaining a passive42

model that allowed us to characterize the dipole generated in the absence of firing (Fig. 1B).43

By subtracting the active and passive simulation results and thereafter taking the spike-triggered44

average of the single-neuron dipole, we estimated the unitary AP response of the electric field45

(Fig. 1C).46

The ensemble electric field is equal to the linear summation of those generated by each individual47

neuron in the brain24,32. However, the electric fields generated by individual neurons are not48

in general linear; sublinear and supralinear interactions among synaptic currents prevent this33.49

Nonetheless, one might hypothesize the contributions of APs to be linear. In this case, the spectrum50

of the single-neuron dipole, S(f) would be proportional to the energy spectrum of the unitary AP51

response, Sap(f), satisfying the equation52

S(f) = Ssyn(f) + βSap(f), (Eq. 1)

where Ssyn(f) is the power spectrum of the synaptic contributions, and β is a scaling factor that53

should be equal to the cell’s firing rate, as we demonstrate below. To test the accuracy of this54
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Fig 1. Calculating the unitary AP response. (A) The extracellular electric field generated
by a neuron is shown at the peak of an AP. (B) Left: The single-neuron dipole, q, associated
with the neuron in panel A for the active model (black) and passive model with sodium channels
removed (grey). The x, y, and z components of the vector are plotted from top to bottom. Notice
the correspondence in the subthreshold fluctuations between the two sets of simulations. Right:
The power spectrum of each dipole component trace on the left for the active (black) and passive
(gray) model. (C) Left: The difference between the single-neuron dipoles calculated with the active
and passive model aligned to each AP (light blue), along with the spike-triggered average (dark
blue) which defines the unitary AP response. x, y, and z components are shown from top to bottom.
Right: the power spectrum of the unitary AP response. (D) The firing rate of the active (black) and
passive (gray) model as a function of E:I ratio, defined as the ratio between the rate of excitatory
synapse activation, λE , to that of inhibitory synapse activation, λI . (E) The power spectrum of the
z component of the single-neuron dipole (black) at three different firing frequencies: 0 Hz (left), 3 Hz
(middle) and 7 Hz(right), along with the spectra of the passive models (gray) and the spectra of
the unitary AP response (blue) shown previously in panel C. Notice how the unitary AP spectrum
matches, up to a scaling factor (β), the single-neuron dipole spectrum at high frequency. (F) The
scaling factor for the unitary AP spectrum that fits the single-neuron dipole spectrum, plotted as a
function of the firing rate (black dots). These data points almost align perfectly with the unity line
(black line). The x and y components of the dipole vector show the same behaviour (Fig. S1).

simplified model, we calculated single-neuron dipoles while varying the firing rate of the neuron55

by altering the ratio of excitatory to inhibitory input (Fig. 1D). We estimated Ssyn for each EI56

ratio by considering the passive model in which the sodium channel conductance was set to zero.57

Meanwhile, Sap was defined as the energy spectrum of the unitary AP response calculated at low58

firing rates (see Methods). By fitting the power spectrum of the single-neuron dipole at each EI59

ratio with Eq. 1, we estimated the scaling factor β and showed that it closely matches the firing60

rate (Fig. 1E, F).61

We performed this analysis on biophysical models of 68 representative neuron classes34 (Table S1).62

Across all models, the unitary AP scaling factor β closely followed the firing rate (Fig. 2A). However,63
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Fig 2. AP contributions to single-neuron dipoles are linear with firing rate. (A) Fitted
unitary AP scaling factor (β; see Eq. 1) plotted against firing rate for 68 neuron models covering
the 55 neuron classes identified by Markram et al.34 (Table S1). These data points align almost
perfectly with the unity line (red line). (B) The R2 value obtained from fitting a linear model (Eq.
1) to the spectra of the AP dipole response in each simulation. Notice how the line of best fit (red
line) shows that Eq. 1 gets less accurate at high firing rate. (C) The spectra of the z component of
the single-neuron dipoles (black), averaged across all simulations with firing rates in the specified
ranges, compared to the spectra predicted from the linear model (blue). For firing rates less than
80 Hz, the linear model produces spectra nearly identical to the simulations. At firing rates above
80 Hz, there is a slight departure is spectral density around 100 Hz. The same results were obtained
with the x and y components of the dipole (Fig. S1).

as the firing rate increased, the accuracy of the linear approximation decreased (Fig. 2B). This was64

because the unitary AP responses were less representative of the AP responses occurring at high65

frequencies. Nonetheless, we found that the spectral profile of the AP-generated signal was nearly66

identical to that predicted by the linear model up to firing rates of approximately 80 Hz (Fig. 2C).67

We concluded that the amplitude of AP responses are captured well by a linear model, but that the68

precise spectral properties of these responses may be slightly different than those predicted by a69

fully linear model during sustained high frequency firing above 80 Hz. However, considering that the70

average firing rates of active neurons typically fall below 60Hz35–38, we deemed this simplification71

of AP signals to be acceptable.72

A linear model for the spectrum of AP electric fields73

Based on the foregoing linearity assumption outlined in Eq. 1, we derived a general equation for74

the ensemble electric fields generated by APs. In general, the potential between two electrodes can75

be calculated from their lead field32, ν(x), which describes the sensitivity of the measured potential76

with respect to a unit dipole vector at the spatial point x. Using this formalism, we can write the77

potential generated by N neurons as78

ϕ(t) =

N∑
i=1

ν⊺(xi)qi(t) (Eq. 2)

where qi is the single-neuron dipole of neuron i, located at coordinate xi in the brain. This equation79

leads to the following power spectrum for the ensemble signal80

|ϕ̂|2 =
N∑
i=1

ν⊺(xi)R̂i,iν(xi) +
∑
i̸=j

ν⊺(xi)R̂i,jν(xj) (Eq. 3)
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where Ri,i(τ) is the auto-correlation matrix of the single-neuron dipole for neuron i, Ri,j(τ) is the81

cross-correlation matrix for two neurons i and j, and R̂i,i and R̂i,i denote their Fourier transforms,82

respectively.83

We now make use of the linearity result from the previous section by describing qi as a linear84

filter, qi(t) = qsyni + (qapi ∗wi)(t), where the vector qapi is the unitary AP response of neuron i, wi is85

a point process describing the spike times of the neuron, and qsyni is the synaptic component of the86

single-neuron dipole, assumed to be statistically independent of qapi (Eq. 1; see also Discussion).87

The AP component of the ensemble potential is therefore88

|ϕ̂ap|2 =
N∑
i=1

R̂spike
i,i ν⊺(xi)R̂

ap
i,iν(xi) +

∑
i̸=j

R̂spike
i,j ν⊺(xi)R̂

ap
i,jν(xj) (Eq. 4)

where Rap
i,i(τ) is the auto-correlation matrix of the unitary AP response for neuron i, Rap

i,j(τ) is the89

cross-correlation matrix for two neurons i and j, Rspike
i,i (τ) is the spike train auto-correlation of90

neuron i, Rspike
i,j (τ) is the spike train cross-correlation of neurons i and j, and R̂ap

i,i , R̂
ap
i,j , R̂

spike
i,i and91

R̂spike
i,j denote their Fourier transforms, respectively.92

We estimated the average auto- and cross-correlations between unitary AP responses based93

on biophysical simulations of all 1035 neuron models generated by the Blue Brain project34. As94

expected, when the neurons fired APs with zero lag, their dipoles exhibited strong cross-correlations95

along the apical-basal axes of their respective neurons (Fig. S2). Interestingly, these calculations96

also revealed significant cross-correlations between the dipoles’ apical-basal component and their97

azimuthal components (Fig. S2). This observation suggests that even neurons that are not aligned98

in parallel may still generate coherent electric fields during synchronous firing, thus further boosting99

the signals generated by populations of AP responses.100

Magnitude of apEEG depends on dendrite asymmetry101

Using the above linear model, we sought to calculate the potential measured at an EEG electrode102

generated by APs under various conditions. To begin, we investigated the simple case where neurons103

fire according to uncorrelated Poisson spike trains. In this case, R̂spike
i,j (f) = 0 and R̂spike

i,i (f) = λi,104

although for simplicity we assumed a single average λ for all neurons. To estimate the solution to105

this equation, we divided our neuron models into the 55 different morphology classes defined by106

Markram et al.34 (Table S2). Under this scenario, the apEEG spectrum was calculated as107

|ϕ̂ap|2 = λ
M∑
k=1

mkSk(f), (Eq. 5)

where Sk is equal to the expected EEG spectrum generated by a neuron of class k firing a single108

AP, and mk is the number of neurons that fall into each class. Sk was calculated by averaging the109

EEG spectra generated by simulating many neurons of class k and placing them at each of the110

75,000 cortical locations available in the New York Head model39 (Fig. 3A). This is identical to111

the procedure used previously to calculate the unitary spectrum for the synaptic component of the112

EEG3. To then calculate the ensemble apEEG spectrum, the number of neurons in each class, mk,113

was calculated by multiplying the estimated abundance of each cell type34 (Fig. 3B) by the total114

number of neurons in the cortex, which we took to be 16 billion40.115

Among neuron classes, the average power of the unitary apEEG response varied by almost two116

orders of magnitude (Fig. 3B). Excitatory pyramidal cells tended to generate larger amplitude117

May 28, 2024 5/32

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 1, 2024. ; https://doi.org/10.1101/2024.05.28.596262doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.28.596262
http://creativecommons.org/licenses/by/4.0/


Fig 3. Diverse cell types’ unitary AP contributions to scalp EEG. (A) An example unitary
apEEG response (top) computed by placing a simulated single-neuron dipole at a random cortical
location in the New York Head model (bottom) and calculating the signal at the Cz electrode site.
(B) The unitary apEEG power, averaged across simulations of all possible neuron locations in the
cortex, for each of the 1035 neuron models, split into various morphology classes; a description of
each morphology class is provided in Table S2. Excitatory neurons are shown in red and inhibitory
neurons in blue. The relative abundance of each morphology type is shown at the top of the panel.
(C) The location-averaged unitary apEEG power of each neuron model plotted against the neuron’s
dendrite asymmetry index (Eq. 8, see Methods). The size and opacity of each point is directly
proportional to the neuron’s relative abundance in the brain. Black line: line of best fit. (D) The
expected unitary apEEG spectrum, averaged over all neuron models and weighted by the relative
abundance of each neuron type. (E) The power spectrum of EEG collected by Scheer et al.41 (black)
and the associated noise floor (red). Blue lines: the simulated apEEG spectrum generated by the
entire brain firing asynchronously at various frequencies.

apEEG signals than inhibitory neurons, as expected29. However, certain inhibitory neurons also118

generated surprisingly large amplitude signals (Fig. 3B). Whereas the average excitatory neuron119

generated a unitary apEEG response with an energy of ∼0.09 pV2, the average inhibitory neuron120

generated signals of ∼0.02 pV2. Because pyramidal neurons are thought to dominate EEG signals121

due to their polarized dendrite morphology, we hypothesized that many interneurons have significant122

asymmetries in their dendritic arbours. To test this, we defined a dendrite asymmetry index (Eq.123

8; see Methods) and evaluated the predictive power of this measure on apEEG signal strength.124

Consistent with our hypothesis, the unitary apEEG power for each neuron was strongly correlated125

with its dendrite asymmetry index (Fig. 3C). While in general excitatory neurons exhibited more126

dendrite asymmetry, many interneuron dendrites displayed equal or greater asymmetry (Fig. 3C).127
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This result demonstrates that interneuron spikes can generate large electric fields, commensurate128

with those of many excitatory neurons.129

Interestingly, the expected unitary apEEG spectrum revealed both low pass and bandpass130

properties (Fig. 3D). The bandpass property, which is reflected in the peak in the power spectrum131

around 100 Hz, arises from the fast temporal dynamics of the up and downstroke of the AP132

waveform. The low-pass filtering properties are evident in the low frequency power below 10 Hz.133

This power was disproportionately contributed by certain neuron classes which exhibited significant,134

slow after-hyperpolarizations that often took tens to hundreds of milliseconds to return to baseline135

(Fig. S3).136

Finally, we examined the ensemble apEEG spectrum (Fig. 3D). Even with an unrealistically high137

brain-wide firing rate of 100 Hz, the amplitude of the ensemble apEEG signal barely reached the138

noise floor of high resolution, low noise EEG recordings (Fig. 3E). Given the absence of synchrony,139

these spectra serve as indicators for defining lower bounds on any contributions of APs to scalp140

EEG. Unsurprisingly, asynchronous firing does not produce detectable apEEG signals.141

Spike synchrony cannot produce high frequency broadband apEEG142

We next investigated the effects of spike synchrony on apEEG generation, and turned to the full143

Eq. 4. We used a minimal model for spike synchrony based on two general observations:144

1. Spike synchrony is strongest among nearby neurons42–44. This was implemented in our model145

by synchronizing the spike timing of neurons depending on their pairwise distance according to146

Rspikes
i,j (τ) ∝ exp(−d2i,j/2σ

2
x), where di,j is the Euclidean distance between neurons i and j, and147

σ2
x is a parameter that controls the cortical distance over which activity becomes uncorrelated.148

In accordance with unit recordings in visual cortex42,43, we set σ2
x to be 3 mm2 (Fig. 4A).149

Although recordings from prefrontal cortex suggest a slightly lower value of around 1 mm2 45,150

differences in the value of σx at the scale of millimeters did not have meaningful effects on the151

results that follow (Fig. S5).152

2. Even neurons with correlated spiking do not fire at exactly the same time. Therefore, the153

timescale of correlation was captured by modelling the spike train cross-correlation as a154

Gaussian function, whose variance, σ2
t , reflects the jitter in spike times42–44,46 (Fig. 4B).155

Together, these two experimental observations give rise to the following equation describing spike156

synchrony157

Rspikes
i,j (τ) =

λRmax√
2πσ2

t

exp(−d2i,j/2σ
2
x) exp(−τ2/2σ2

t ) (Eq. 6)

where Rmax represents the noise correlation between neurons46 and λ is the average firing rate of158

the neurons. According to this model, the dynamics of AP firing and synchrony are both entirely159

aperiodic, thus allowing us to examine whether apEEG signals can generate aperiodic EEG signals160

and contribute to the EEG spectral trend.161

We estimated the ensemble apEEG spectrum generated by the entire brain using Monte Carlo162

simulations (see Methods). As a specific example, Fig. 4C shows the spectra calculated for163

Rmax = 0.2 and λ = 1 Hz. When σt = 0, spiking occurs with perfect synchrony, producing an164

apEEG spectrum that is essentially a scaled version of the average cross-spectrum among unitary165

AP responses. This spectrum exhibited large amplitude, high frequency broadband EEG signals that166

would be detectable in EEG recordings. On the other hand, when σt = ∞, the spectrum is identical167
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Fig 4. Aperiodic APs cannot generate detectable EEG signals. (A) Schematic illustration
of the local nature of correlated activity in the model. Neighbouring neurons fire spikes with a
correlation of Rmax, while neuron pairs that are increasingly separated show gradually decreasing
correlation. (B) Schematic illustrating the timescale of correlation. Correlated neurons have a given
fraction of their spikes synchronized (left) with a jitter value drawn from a Gaussian distribution
of standard deviation σt (right). (C) The power spectrum of EEG collected by Scheer et al.41

(black) and the example ensemble apEEG spectra of a brain with an average firing rate of 1 Hz
and maximal correlation of Rmax = 0.2, plotted for various values of σt (blue). Red line: The
associated noise floor of the experimental EEG spectrum. (D) Maximal spectral density above
30 Hz generated by the model for a whole range of firing rates (λ) and jitter values (σt), as well as
for various maximal correlation values (Rmax). Red line: The boundary delineating spectral density
above and below the noise floor of the amplifier. Dotted box: the regime of physiologically realistic
parameter values (see Methods). (E) The maximal power below 30 Hz generated by the model,
relative to the experimentally measured spectrum in panel C. Contour lines indicate parameter
values where the model generates 1%, 10% and 100% the spectral density of the data. Dotted box:
the regime of physiologically realistic parameter values (see Methods).

to the asynchronous case (Fig. 3) and would lie far below the noise floor of the experimental168

EEG spectrum (Fig. 4C). For intermediate values, the spectra follow the perfectly synchronous169

spectrum until a cut-off frequency, determined by σt, above which the spectrum drops down to the170
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asynchronous spectrum (Fig. 4C). This indicates that the timescale of correlation, σt, is critical in171

allowing or preventing APs from generating high frequency, broadband EEG signals.172

To investigate further, we performed a full sensitivity analysis of model outcomes with respect to173

the jitter (σ2
t ), maximal correlation (Rmax), and firing rate (λ). Figure 4D illustrates the maximal174

spectral density produced at frequencies above 30 Hz. The red line indicates where the apEEG175

crosses the noise floor and the dotted box shows a physiologically reasonable parameter range for176

λ, σt, and Rmax (see Methods: Determining ranges for parameters). This dotted box is entirely177

contained below the noise floor of EEG amplifiers, indicating that APs cannot contribute to the178

high frequency plateau observed in EEG spectra.179

At lower frequencies, APs and their after-hyperpolarizations (Fig. S3) generated detectable EEG180

signals even with high jitter values (Fig. 4C). To investigate this phenomenon further, we calculated181

the power generated below 30 Hz as a fraction of that in experimentally recorded EEG, and plotted182

the maximum obtained power across these frequencies (Fig. 4E). For reasonable parameter values,183

we found that APs could generate maximally ∼1% of the spectral density seen in recorded EEG184

signals (Fig. 4E). We conclude that while aperiodic APs can generate signals above the detection185

limit of EEG amplifiers, these signals are dwarfed by the contributions of synaptic currents.186

Excitatory synapses are the only neural sources of spectral trend at high frequency187

If APs do not generate detectable aperiodic EEG signals, the EEG spectral trend at higher188

frequencies should be fully explained by muscle activity23 and excitatory synaptic time scales3,4. To189

test this hypothesis, we analyzed EEG data collected from subjects during peripheral blockade of190

nicotinic cholinergic receptors20, which causes muscle paralysis and removes contamination of EMG191

signals20,22. In EEG collected from unparalyzed individuals, synaptic timescales were insufficient to192

explain the high frequency EEG spectral trend especially its plateau (Fig. 5A), consistent with193

previous studies3. However, following neuromuscular blockade, this high frequency component194

of the trend reduced in amplitude in such a way that synaptic timescales could entirely explain195

the spectral trend (Fig. 5B). These results validate our theoretical calculations that APs do not196

contribute to the EEG spectral trend under baseline conditions, and further validate the role of197

synaptic timescales in shaping EEG spectra.198

Synchronous APs can produce EEG rhythms in gamma range and above199

Even if APs do not produce aperiodic EEG signals, it may still be possible that they contribute200

to EEG rhythms29. We therefore used our framework to investigate the consequences of rhythmic201

synchrony in AP firing activity. We modelled oscillatory synchronization by making the cross-202

correlation between pairs of neurons a damped sine wave47,48. Mathematically, this means that the203

spike train cross-correlation is now described by the following equation,204

Rspikes
i,j (τ) =

λRmax√
2πσ2

t

exp(−d2i,j/2σ
2
x) exp(−τ2/2σ2

t ) cos(2πτf0), (Eq. 7)

where f0 is the synchronous rhythm frequency. A representative parameterization of this equation205

is plotted in Fig. 6A. Based on this, we investigated the EEG spectra produced by APs when the206

frequency of synchronous oscillation, f0, was systematically varied. The value of σt only altered the207

sharpness of the oscillations spectral peak, but did not affect its amplitude (Fig. S6); we therefore208

set σt to be 11.3 ms in the subsequent simulations.209
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Fig 5. EEG spectral trend is explained entirely by synaptic timescales. (A) Spectra
of EEG signals collected from unparalyzed subjects by Whitham et al.20 (black), fit with Eq. 9
(solid blue; see Methods). The dashed blue lines indicate the contributions of GABA receptor
(GABAR) and AMPA receptor (AMPAR) timescales to the fit. Notice that the fit will never be
able capture the high frequency plateau observed in the data. Parameter values: τI1 = 4 ms,
τI2 = 20 ms, τE1 = 1 ms, τE2 = 3 ms, AI = 3.6, and AE = 4.6. Red line: Noise floor. (B) Same as
in A, but with the spectra of EEG signals collected following muscle paralysis and presumed to
be free of electromyogram contamination. Parameter values: τI1 = 4 ms, τI2 = 20 ms, τE1 = 1 ms,
τE2 = 3 ms, AI = 3.6, and AE = 3.3. Red line: Noise floor.

To evaluate the relevance of simulated apEEG amplitudes, we computed its power relative to the210

synaptic trend fit to the data of paralyzed subjects (Fig. 5B). In this way, we could compare the211

oscillatory power generated by APs to a “null” EEG spectrum that exhibited no brain rhythms.212

When the firing rate or the magnitude of the spiking correlation was too low, APs could not213

generate any detectable EEG signals (Fig. 6B). Interestingly, when the product of the two scaling214

factors in our model, λRmax, was above approximately 10−3, synchronous rhythmic AP firing could215

generate pronounced spectral peaks in the EEG spectrum, but only if the oscillation frequency was216

around 200 Hz. When the value of λRmax was further increased, the regime of oscillation frequencies217

that produced detectable apEEG signals expanded (Fig. 6B).218

To better illustrate how these values arose, we plotted one specific example when λ = 1 Hz and219

Rmax = 0.2. By superimposing the apEEG spectra on the example EEG data, one can see that APs220

with slower synchronous rhythm frequencies, f0, produce apEEG signals well below the amplitude of221

the EEG spectral trend (Fig. 6C-E). However, at higher f0, the amplitude of the generated spectral222

peak increased significantly. The amplitudes of these peaks trace out the spectrum generated by223

the model when synchrony is entirely aperiodic with zero jitter (Fig. 4F-H). It follows that the224

amplitude of apEEG rhythms can be predicted by the simplified synchrony model described in the225

previous section.226

For an 80 Hz rhythm, the parameter combination λRmax needs to be at least 10−2 for APs to227

produce a peak with 1% the amplitude of the background spectral trend, and be at least 10−1 to228

produce a signal of equal or greater amplitude than the spectral trend (Fig. 6B). These values are229

commensurate with average firing rates between 0.1 and 1 Hz and maximal correlation values around230

0.1, which are within the range of values measured experimentally (see Methods, Determining ranges231

for parameter values). In contrast, no reasonable set of parameters would allow APs to contribute232
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Fig 6. APs can contribute to gamma and higher frequency oscillations. (A) The spike
train cross-correlation used to model rhythmic spike synchrony, with σt = 11.3 ms and f0 = 40
Hz as an example. (B) Simulated amplitudes of spectral peaks generated by APs synchronized at
rhythm frequencies between 1 and 1000 Hz. The simulated peak amplitude was defined relative to
the fitted spectral trend from Fig. 5B. (C-H) The average spectra of paralyzed patients (grey) and
the fitted spectral trend (black). Notice how at higher frequencies, the spectral trend is constrained
by the noise floor (red). The simulated spectrum of the apEEG signal (solid blue) generated by
rhythmic spike synchrony at f0 = 5 Hz (C), 10 Hz (D), 20 Hz (E), 40 Hz (F), 80 Hz (G) and 160 Hz
(H). Dotted blue line: the apEEG spectrum generated by the brain with the same average firing rate
and maximal correlation as solid blue lines, but with perfectly synchronized spikes, i.e., σt = 0 ms.

significantly to EEG signals of lower frequency rhythms. We conclude that lower frequency EEG233

rhythms likely reflect purely synaptic activity, whereas rhythmic EEG signals in the gamma range234

or higher may be generated by APs and thus directly reflect spiking activity.235

Discussion236

We have shown that asynchronous spiking activity cannot cross the noise floor of EEG amplifiers237

and that, while synchronous aperiodic spiking can generate detectable EEG signals, these signals238

are dwarfed by the contributions of synaptic currents. On the other hand, we found that rhythmic239

spiking activity can potentially generate significant EEG oscillations depending on the frequency of240

such rhythmicity. Together, our results provide quantitative insights into the neural basis of EEG241
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and have direct practical implications for interpreting EEG spectra.242

Interpreting and analyzing EEG spectra243

To detrend or not to detrend EEG spectra depends on the mechanisms underlying the changes in the244

spectral trend3. Our results therefore have several important implications for spectral detrending.245

First, our analysis shows that the high frequency plateau in EEG spectra is entirely determined by246

excitatory synaptic currents, muscle activity, and amplifier noise. Consequently, any broadband247

power beyond the frequency range of excitatory synaptic timescales must come from additive noise248

processes, and therefore should be removed through subtractive detrending5. This point highlights249

that detrending requires different methodologies at high and low frequencies. While the high250

frequency plateau should be corrected through subtractive detrending, synaptic timescales still need251

to be corrected divisively3. Notably, “whitening” EEG spectra typically involves subtracting the log252

slope of the spectrum1,49, which is a divisive operation. Our results suggest that this process will253

overestimate changes in higher frequency EEG oscillations, particularly above 30Hz. We illustrate254

this point using a toy model in Fig. 7. Suppose two EEG spectra are being compared, one of which255

reflects a lower excitatory to inhibitory (E:I) ratio and less electromyogram (EMG) (Fig. 7A1,B1).256

Due to the difference in E:I ratio, the spectra need to be detrended of synaptic timescales prior to257

comparison, as described previously3,4 (Fig. 7C1). However, in cases where the high frequency258

plateau is also changing, for example due to differences in muscle tone, the high frequency plateau259

needs to be subtracted first. Otherwise, peak estimates will be nonuniformly biased (Fig. 7D1-E1).260

Importantly, correcting for synaptic timescales assumes that spectral peaks are generated by261

synaptic currents. Our results suggest that this is may not be the case for high frequency oscillations,262

because these oscillations may be generated principally by APs. In this case, correcting for synaptic263

timescales when analyzing high frequency oscillations would lead to incorrect conclusions (Fig. 7A2-264

E2). Our results thus strongly indicate that high frequency oscillations should be analyzed separately265

from lower frequency oscillations. Our simulations provide a reasonable frequency range where266

oscillations can be generated by AP activity and therefore suggest principled cutoff frequencies for267

performing different spectral trend analyses. However, this frequency range depended on parameters268

that we still lack brain-wide estimates for, specifically levels of spiking synchrony and average firing269

rates. Spectral analysis of EEG would thus benefit from future experimental work investigating270

these parameters in more detail.271

Neural basis of EEG272

Past work has found that apEEG signals can account for up to 20% of EEG rhythms29, contrary273

to our findings. In this previous study, the relative contributions of APs and synaptic currents to274

the single-neuron dipole were investigated, concluding that APs contribute a large fraction of the275

single-neuron dipole signal. Our simulations indicated that the average unitary apEEG response is276

approximately 0.08 pV2, whereas the average single-neuron EEG power generated in our passive277

simulations was 0.09 pV2. Thus, at the single-neuron level, our results agree with this previous278

study, assuming an average firing rate of approximately 0.25Hz. However, this ratio would only279

persist in the ensemble EEG if the synaptic and AP components were similarly coherent. Our280

findings indicate that, even at upper parameter bounds, APs and their after-hyperpolarizations can281

yield EEG signals with only 1% the spectral density of synaptically-generated EEG signals. We282

thus conclude that the relative contribution of APs and synaptic currents to single-neuron signals283

does not translate into ensemble EEG signals.284
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Fig 7. A toy model illustrating the implications of this study’s results on spectral
detrending. (A1) EEG spectrum (black) modelled with (i) Gaussian functions at 10 and 40 Hz, a
constant offset and 1/f noise at low frequencies, all filtered by synaptic timescales (the synaptic
timescales fitted in Fig. 5 were used), plus (ii) additive EMG noise. The equation describing the
spectrum was P (f) = (1 + α(f) + γ(f) + 1/f2)Psyn + noise, where α and γ represent the Gaussian
peaks. The spectral density from synaptic timescales (blue) and additive noise (red) are overlaid on
the simulated spectrum. (B1) Same as in A1, but the EMG noise has been decreased by 50% and
the E:I ratio was decreased ∼2.5 fold. The spectrum from panel A1 is shown in grey for comparison.
The amplitude of the the Gaussian functions were not changed. (C1) Power of spectrum after
parameter modifications relative to before (i.e., black vs gray lines in B1). Differences in the spectral
trend were not corrected for. (D1) The same as in C1, but with the spectral trend, defined as
Psyn + noise, removed divisively from the spectra. Notice how this analysis artifactually displays
an increase in the alpha and especially the gamma peak, even though these components of the
spectrum were not changed. (E1) The same as in C1, but with spectra detrended using a mixed
approach. Here, the EMG noise was subtracted prior to detrending divisively with the synaptic
timescales, producing correctly no changes in rhythmic power. (A2-E2) The same as in A1-E2,
respectively, but with the inclusion of a high frequency oscillation (HFO) generated by APs using
the equation P (f) = (1 + α(f) + γ(f) + 1/f2)Psyn +HFO(f) + noise.

Our work also has implications for understanding the cellular basis of EEG signals. In particular,285

EEG signals are typically thought to be generated by pyramidal neurons24,50. However, despite286

the prototypical morphology of an inhibitory neuron as a stellate cell, with a closed field structure287

that would prevent them from generating EEG signals51, the reconstructed morphologies of the288

Blue Brain models34 displayed significant asymmetries, allowing interneurons to generate apEEG289

signals only four-fold smaller than excitatory neurons. This result is broadly in line with those of290

Tenke et al.52, who found that small asymmetries in stellate cells allow them to exhibit open field291

configurations and generate significant current source densities. Moreover, we found that almost292

the entirety of the apEEG signal amplitude is conferred by spiking synchrony. While cell-type293

specific synchrony was not included in our modelling, its inclusion would likely boost the relative294

contributions of inhibitory neurons, as their APs tend to be more highly synchronized than those295

of excitatory neurons53. This observation, combined with the fact that inhibitory neurons tend296

to fire faster than excitatory neurons and therefore contribute more APs, suggests that inhibitory297
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neurons may contribute significantly to the apEEG signal. In future work, it would be interesting298

to quantify precisely how much these phenomena compensate for the weaker unitary AP responses299

and lower abundance of inhibitory neurons. Combined with our other results, these insights may300

inform what cell types are predominately responsible for high frequency EEG rhythms.301

Modelling assumptions and limitations302

In modelling the apEEG signal, we assumed that the AP component of the EEG is independent of303

the synaptically-generated EEG signal. Although synaptic activity of a population is not statistically304

independent from its APs, we do not believe that assuming independence distorts our conclusions.305

Firstly, at the single-cell level, we confirmed that AP power and synaptic power are approximately306

independent. This can be understood by recognizing that, because of the low firing rate of APs, the307

majority of power from subthreshold fluctuation will be unrelated to the synaptic events that elicit308

spikes. Therefore, the more pertinent assumption is that in Eq. 4 we assume a null cross-spectrum309

between electric fields generated by APs and postsynaptic potentials (PSPs). We reason that this310

assumption is plausible because the electric fields generated by APs are determined by the gross311

morphologies of the presynaptic neurons, whereas the fields generated by PSPs are determined by312

the precise locations of the synapses on the postsynaptic neurons3,54. Consequently, even if the313

timing of these events are correlated, the orientation of the resulting current dipoles would only314

be weakly related on average. The AP-PSP cross-spectrum could be estimated from simulations315

of neural circuits with morphologically detailed neuron models. However, the results would likely316

depend strongly on the precise network topology and sub-cellular targeting of synaptic connections317

which remain only vaguely constrained by experiments. For all the above reasons, we leave these318

calculations to future studies.319

In modelling various neural oscillations, we assumed a constant spatial extent over which spiking320

activity is coherent. However, lower frequency oscillations are thought to recruit more widely321

distributed neural ensembles than higher frequency oscillations55. Because we did not find reliable322

parameter values for the spatial extents of each brain rhythm, we assumed that rhythms differed323

only in their frequency of oscillation. Future work incorporating the spatial topology of different324

brain rhythms could provide a more complete picture of the role APs play in EEG oscillations.325

Finally, recent work has suggested that APs propagating along axons generate dipoles that326

contribute to LFP recordings56. On the other hand, it has been argued that due to the random327

orientations of axonal termination segments, these signals would not contribute to EEG29. In the328

current study, we only considered back-propagating APs. However, a similar theoretical framework329

could be used to investigate the electric fields generated by forward propagating APs in more detail.330

Including these contributions could increase the amplitude of the unitary AP response, potentially331

expanding the parameter range that permits AP-generated EEG oscillation. On the other hand,332

including forward propagating APs would not change our finding that jitter in spike timing prohibits333

high frequency aperiodic apEEG signals, and therefore our conclusions pertaining to the spectral334

trend would be unaffected.335

Conclusion336

Based on our findings, we conclude that APs cannot contribute to the EEG spectral trend, which337

can be explained entirely by synaptic timescales, electromyogram contamination, and amplifier338

noise. However, we also conclude that APs can produce narrowband EEG power at high frequencies.339

These results together suggest that high frequency oscillations and low frequency oscillations interact340
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with the spectral trend differently. While low frequency oscillations require detrending of synaptic341

timescales, applying this analysis to high frequency oscillations will likely produce incorrect results,342

and these high frequency oscillations should thus be analyzed separately. Altogether, this work343

indicates that the interactions between spectral peaks and the spectral trend is frequency dependent,344

further highlighting that the EEG spectral trend is not a singular phenomenon and should not be345

removed as a single parameterized function.346
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Methods347

Biophysical simulations of unitary AP responses348

To calculate the unitary AP responses of various neuron types, we simulated 1034 biophysical neuron349

models originally developed by the Blue Brain Project34. These models have detailed morphological350

reconstructions of the dendritic arbours and 13 voltage-dependent channels distributed throughout351

the axonal, somatic, and dendritic segments. For the present work, background synaptic input was352

added to the model to drive AP firing by distributing 1 excitatory synapse and 0.15 inhibitory353

synapses per µm of dendrite. The average firing rate of all synapses was set to 1.75 Hz and the354

ratio of excitation to inhibition, defined as the ratio of mean activation rates between excitatory355

and inhibitory synapses, was tuned for each neuron model to bring the firing rate above 1Hz and356

below 40 Hz. This ensured that APs occurred sparsely enough that the electric fields they generated357

were independent of one another. To compute each neuron’s unitary AP response, every model was358

simulated to obtain at least 10 spikes for averaging.359

Models were simulated using the python package LFPy57, built on top of the NEURON simulation360

environment58, and the single-neuron dipole generated at each time point was calculated using361

the totality of the current in the dendritic and somatic compartments, as described by Næss et362

al.30. APs were identified in the somatic compartment using MATLAB’s findpeaks algorithm with363

a minimum peak height set to 0 mV. The spike-triggered average of the single-neuron dipole was364

then computed for each neuron model.365

Dendrite asymmetry index366

Each dendritic arbour was defined by N truncated cones with volumes Vi and midpoints xi, for367

i ∈ {1, 2, ...N}. The dendrite asymmetry index was then defined as368

AI =

∣∣∣∣∣∣
N∑
i=1

Vixi ⊘

√√√√ 1

N − 1

N∑
i=1

xi ⊙ xi

∣∣∣∣∣∣ , (Eq. 8)

where |·| denotes the Euclidean norm, while ⊘ and ⊙ denote element-wise division and multiplication,369

respectively. The calculation of this index is illustrated in Fig. S7. Conceptually, this equation370

measures how far the weighted centroid of the dendrites is from zero, normalized in a sense by371

the span of the dendritic tree. We found that normalization by the actual span of the dendrites372

over-penalized cells with long apical dendrites. Conversely, without any normalization, cells with373

large dendritic spans could have relatively symmetric dendrites but large absolute asymmetries,374

causing their apEEG signals to be overestimated. We found that normalizing by the standard375

deviation balanced these two extremes well.376

Monte Carlo simulations of ensemble apEEG spectrum377

To estimate the ensemble apEEG signal, we evaluated Eq. 4 numerically using the New York Head378

model lead field39. The New York Head model is based on the ICBM152 v6 brain template59,60, and379

has the EEG lead field calculated at approximately 75,000 cortical mesh points. All the simulations380

results here are based on the potential at the Cz electrode site measured against the common average381

reference.382

Evaluating the second term in Eq. 4 requires computing the cross spectra for all pairwise383

combinations of cortex coordinates and neuron models (> 1015 unique pairings), making this step384
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intractable. We therefore used a Monte Carlo sampling approach61. Because spike synchrony was385

assumed to be local in nature with386

R̂spike
i,j (f) = ĥ(f) exp(−d2i,j/2σ

2
r ),

for a spike train cross correlogram of the form h(t), we could rewrite the second term in Eq. 4 as387

follows388 ∑
i̸=j

R̂spike
i,j ν⊺(xi)R̂

ap
i,jν(xj) = ĥ(f)

∫
r∈R+

e−r2/2σ2
r S̄x,y(r)dN(r).

Here, S̄x,y(r) is the expected cross-spectrum between single-neuron EEG signals generated by cells389

separated by a distance r. Note the assumption that h is independent of space.390

The density dN(r) reflects the number of neuron pairs in the cortex separated by a distance391

r. We estimated this density as described previously3. Briefly, we started by sampling cortex392

coordinates, xi, for i ∈ {1, 2, ...10000}, from the New York head model. Then, for each coordinate,393

we calculated the total cortical surface area contained in balls of radii r ranging from 0 to 200 mm394

(Fig. S4A). Assuming a uniform distribution of 16 billion neurons across the cortical surface area40,395

we determined the empirical density of neuron pairs for each pairwise distance, r (Fig. S4B). For396

each pairwise distance, the expected cross-spectrum was computed based on neuron models sampled397

proportionally to their relative abundance (Fig. 3B), and placed at two locations in the cortex;398

the first location was sampled uniformly and the second location was sampled relative to the first399

location, according to the density function dN .400

We terminated our Monte Carlo simulations when there was less than 1% probability that our401

estimate was off by an absolute error of δabs = 4× 10−25 µV2, which we determined conservatively402

using Chebyshev’s inequality61,62. This absolute error rate translates into an error in the ensemble403

EEG spectrum of approximately 10−4 µV2 when all APs are firing in perfect synchrony, an error404

bound that was chosen because it was equal to the noise floor of high resolution, low noise EEG405

data41. This termination condition was reached after approximately 44 million samples.406

Determining ranges for parameter values407

Magnitude and timescale of correlation408

Co-tuned neurons in area MT exhibit correlations of approximately Rmax = 0.2 with a timescale409

estimated to be around σt = 11.3 ms46. Unless otherise stated, we used these values in our example410

simulations. For two reasons, these parameter values likely represent upper bounds for brain-wide411

spike train correlations. First, neurons that are not co-tuned exhibit less correlated activity63,412

meaning that the average spike synchrony among all neighbouring neurons is likely lower than that413

between co-tuned neurons. Consistent with this, a survey of studies across different experimental414

paradigms and cortical areas found correlation values ranging between 0.05 and 0.2544. In area415

MT, the timescale of correlation was found to be around 10 ms46, whereas studies in V4 indicate416

timescales of tens or hundreds of milliseconds43,64. We therefore took a liberal range of 10 to 100 ms417

as an acceptable range for σt.418

Mean firing rate419

Because activity is sparse in the cortex, most neurons are silent at any particular moment; this420

silent fraction has been estimated to be up to 90% of all cells65. As a consequence, the average421
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firing rate across the entire brain is significantly lower than would be expected from measurements422

of only responsive neurons, with estimates averaging around 0.1 to 2 Hz65–67.423

EEG data and spectral trend fitting424

The experimental data shown in Figs. 3E, 4C and 5 were extracted directly from the figures in425

Scheer et al.41 and Whitham et al.20. The spectra from Whitham et al.20 were fit with the equation426

S(f) =
AI(τI1 − τI2)

2

(1 + (2πfτI1)2)(1 + (2πfτI2)2)
+

AE(τE1 − τE2)
2

(1 + (2πfτE1)2)(1 + (2πfτE2)2)
+ 10−3, (Eq. 9)

where τI1 and τI2 are the rise and decay time constants associated with inhibitory synaptic responses427

and τE1 and τE2 are the rise and decay time constants associated with excitatory synaptic responses,428

while AI and AE govern the relative contribution of inhibitory and excitatory currents to the429

EEG spectrum. This equation was adapted from Eq. 6 in Brake et al.3, except that here the high430

frequency plateau was explicitly decomposed into excitatory synaptic contributions and the noise431

floor, which was empirically determined to be ∼10−3 µV2Hz−1. The same τ values were used to fit432

both the unparalyzed and paralyzed data; only the scaling factors AI and AE were adjusted.433

Code availability434

Code used to run simulations, analyze data, and generate manuscript figures is available on GitHub435

(github.com/niklasbrake/apEEG modelling).436
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Konstantinos Sfyrakis, Ying Shi, Julian C. Shillcock, Gilad Silberberg, Ricardo Silva, Farhan565

Tauheed, Martin Telefont, Maria Toledo-Rodriguez, Thomas Tränkler, Werner Van Geit,566

Jafet Villafranca Dı́az, Richard Walker, Yun Wang, Stefano M. Zaninetta, Javier DeFelipe,567
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Supporting Information657

Supplementary Fig. S1. Scaling of the x and y components of the unitary AP spectrum.
(A-C) Same as Fig. 2, but for the x component of the single-neuron dipole. (D-F) Same as Fig. 2,
but for the y component of the single-neuron dipole.
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Supplementary Fig. S2. Cross-correlation among unitary AP responses. Solid black line
indicates average across all pairs of 1035 neuron models, weighted by the relative abundance of the
pairing (Fig. 3B). Shading reflects 95% confidence interval of the mean.
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Supplementary Fig. S3. Low frequency apEEG power generated by afterpotentials.
(A) The slope of the unitary AP spectrum for every neuron model, calculated between 1-10 Hz.
A neuron (ID: L4 BP bAC217 1) with a particular negative slope is indicated in blue. (B) Power
spectrum of the unitary AP spectrum for the neuron indicated in panel A, with 1/f trend fitted at
low frequencies (dashed black line). (C) Top: z component of the single-neuron dipole of the neuron
indicated in panel A (black) and with somatic and axonal sodium channels removed to generate a
passive model (grey). Bottom: Difference between the active and passive neuron models. Note that
the spikes have been truncated at ±0.5 nA µm. After each spike, the active model’s dipole takes
hundreds of milliseconds to reconverge to the passive model. The same phenomena were observed
in the dipoles x and y components.
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Supplementary Fig. S4. Distribution of neuron pairs with respect to pairwise distance.
(A) Surface area (SA) of the cortex from New York head model enclosed within balls of increasing
radii, with the origin of the ball placed at 10,000 cortical locations. Black dots indicate the discrete
ball radii for which the surface area was calculated. Shading reflects standard deviation across
the 10,000 starting points. (B) The derivative of the surface area with respect to radius (black),
scaled to obtain the density of neuron pairs for each pairwise distance (see Methods). The red curve
illustrates the coupling kernel, as in Fig. 4A. The vast majority of neuron pairs are separated by
more than 10 mm and are therefore not correlated in the model.
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Supplementary Fig. S5. Sensitivity of aperiodic apEEG to σx. (A) Same as in Fig. 4B,
but for σ2

x = 1 mm2. (B) Same as in Fig. 4B, but for σ2
x = 5 mm2. (C) Same as in Fig. 4C (top)

and Fig. 4D (bottom), but for σ2
x = 1 mm2. (D) Same as in Fig. 4C (top) and Fig. 4D (bottom),

but for σ2
x = 5 mm2.
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Supplementary Fig. S6. Timescale of correlation affects spectral peak width of apEEG
rhythm. (A) Plot of Eq. 7 for σ2

t = 60 ms. (B) Same as in Fig. 6G, but for σ2
t = 60 ms.

(C) Same as in Fig. 6B, but for σ2
t = 60 ms. (D-F) Same as in A-B, but for σ2

t = 4 ms.
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Supplementary Fig. S7. Schematic of dendrite asymmetry index calculation. (A)
Example morphology of a layer 6 pyramidal cell. Note that the diameter of the dendrites have been
increased by a factor of two in the figure to better illustrate the variation in dendrite diameter
throughout the arbour. (B) Zoomed in view of the indicated dendritic branch, showing that
the dendrite morphology is represented by truncated cone segments.The diameter and length of
each truncated cone is printed. For illustrative purposes, the dendrite diameter is drawn with a
scaling factor of 10. The same dendrite segment with correct proportions is shown in the insert for
comparison. (C) To calculate the dendrite asymmetry index (Eq. 8), each segment is represented by
its midpoint in space (xi) and its total volume (Vi), calculated as 1/3πL(r21 + r1r2 + r22). The black
dots plotted at the midpoint of each dendrite segment are scaled proportionally to the segment’s
volume. (D) The black dots represent the midpoints and their sizes represent the volume of all
dendrite segments. The red star indicates the result of the asymmetry index calculation (Eq. 8),
prior to taking the Euclidean norm. The length of the red line is thus the asymmetry index of this
neuron. For illustrative purposes, the equation result has been scaled here by 0.01 as otherwise
the vector would be too long to depict. Note, however, that the regression in Fig. 3 holds for any
arbitrary scaling of Eq. 8.
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