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Abstract

It is important to assess the quality of modeled biomolecules to
benchmark and assess the performance of different prediction
methods. Dock(Q has emerged as the standard tool for assessing
the quality of protein interfaces in model structures against
given references. However, as predictions of large multimers
with multiple chains become more common, there is a need
to update DockQ with more functionality for robustness and
speed. Moreover, as the field progresses and more methods
are released to predict interactions between proteins and other
types of molecules, such as nucleic acids and small molecules,
it becomes necessary to have a tool that can assess all types of
interactions. Here, we present a complete reimplementation
of DockQ in pure Python. The updated version of DockQ
is more portable, faster and introduces novel functionalities,
such as automatic DockQ calculations for multiple interfaces
and automatic chain mapping with multi-threading. These
enhancements are designed to facilitate comparative analyses
of protein complexes, particularly large multi-chain complexes.
Furthermore, DockQ is now also able to score interfaces
between proteins, nucleic acids, and small molecules.
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Introduction

Protein interactions are crucial for most biological functions,
including metabolism, gene expression, cell signaling, and
immune response. Structural characterization of protein in-
teractions at the molecular level is important to understand-
ing basic biology, as well as disease mechanisms. Thus, elu-
cidating protein structures has been the subject of immense
research in previous decades. Experimental methods such
as X-ray crystallography, NMR, and cryo-EM have deter-
mined the three-dimensional structure of over 200,000 pro-
teins. However, experimental determination of protein struc-
ture is difficult, time-consuming, and sometimes even impos-
sible given experimental constraints. Also, 200,000 struc-
tures are a small number compared to the over 250,000,000
proteins known to date. Thus, there has been a massive drive
to develop computational methods to close this gap by pre-
dicting the structural properties of proteins.

To be able to compare the performance of computa-
tional methods it is important to have robust measures that
can assess the quality of predicted models. Many such meth-

ods have been developed over the years, mostly for assess-
ing monomer structures: MaxSub (1), GDT_TS (2), TM-
score (3), and LDDT (4). Lately, methods have been de-
veloped also for multimers: DockQ (5), oligoLDDT (6), or
US-align (7). In contrast to oligoLDDT and US-align, which
measure the overall structural similarity of multimers, DockQ
assesses the quality of the interactions between chains in mul-
timers. This is an advantage since the quality of these inter-
actions might be obscured in the overall structural similarity.

Lately, next-generation prediction tools, such as
RoseTTAFold-All Atom (8) and AlphaFold 3 (9), have been
released that can predict interactions between proteins, nu-
cleic acids, and small molecules alike. In order to bench-
mark these new methods, it is important for a tool like DockQ
to be able to evaluate interactions between all these types of
molecules rather than forcing users to rely on multiple spe-
cialized tools.

‘We now introduce a new version of DockQ (v2). DockQ
v2 is faster than the previous version, easier to install, and
more portable. In this version, we include new functionali-
ties: DockQ v2 can score multiple interfaces simultaneously
in complexes with more than two chains and automatically
detects the model-to-native chain mapping that maximizes
the global quality of the complex. We also include the possi-
bility of scoring interactions between proteins, nucleic acids,
and small molecules. To the best of our knowledge, DockQ
is the only tool that can seamlessly handle all these types of
molecules.

In addition, we have also added interface clash detec-
tion, multithreading, transparent handling of mmCIF and
gzipped files, the possibility to install it with pip, and the
possibility to import it as Python module.

Method description

DockQ - assessing the quality of multimers. DockQ as-
sesses the quality of a multimeric model by comparing it
to a reference structure (typically an experimentally deter-
mined structure). The comparison is performed by assessing
the similarity of the interfaces between protein chains. For
a given protein-protein or protein-nucleic acid interface, the
DockQ score is the average of the fraction of native contacts
(fnat), scaled interface RMSD (iRMSD), and scaled ligand
RMSD (LRMSD):
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Where 1.5 and 8.5 are scaling parameters that moni-
tors how fast iRMSD and LRMSD, respectively, should go
to zero. These parameters were determined by maximizing
the ability of DockQ to classify protein interfaces according
to the CAPRI metrics ("Incorrect”, "Acceptable", "Medium"
and "High quality") (10). The advantage of the DockQ score
is that it is a continuous score in the [0,1] range, from in-
correct to high quality, which facilitates method comparisons
since distributions, instead of classifications, of model qual-
ity scores can be compared. This also makes it better suited
for machine learning (11).
To calculate the DockQ score using Eq. 1, the fj,¢,
iRMSD, and LRMSD need to be calculated, below we de-
scribe how these measures are defined.

Fraction of correctly predicted reference contacts. The ;¢
measure is the fraction of correctly predicted reference or na-
tive contacts in the interface. An interface is a set of inter-
acting amino acids or nucleotides sitting in separate chains
with at least one pair of heavy atoms within 5A of each other
(4A in the case of peptides). A contact is correct if a pair
of interfacial amino acids in the model are also interacting in
the reference. The total number of correct contacts is then di-
vided by the total number of contacts in the model interfaces.
A problem with f, . is that it does not consider the number of
false predictions. Thus, a model with a large number of false
positives might still receive a fairly high f,,¢. Also, models
with clashes will obtain higher f, ., taking it to the extreme,
a model with all (x,y,z) coordinates at 0 will have f;,5;=1.0.
This is, in general, only a problem for models with many
clashes. Therefore, the number of clashes is automatically
detected and reported to the user in DockQ v2.

Interface RMSD. The interface RMSD, iRMSD, is the back-
bone RMSD of the interface residues. Interface residues are
defined as pairs of residues between protein and/or nucleic
acid chains where any two heavy atoms are within 10A of
each other (8A between pairs of C'3 atoms in case of pep-
tides).

Ligand RMSD. The ligand RMSD, LRMSD, is the backbone
RMSD of the ligand when superimposing on the receptor.
The receptor is defined as the larger of the two chains by
number of amino acids or nucleotides. If two chains are equal
in size, the first will be considered the receptor. In the case of
small molecule ligands, LRMSD is calculated on the position
of all heavy atoms in the ligand when superimposing on the
receptor interface (pocket-aligned LRMSD).

Workflow and new functionalities. DockQ used to be
protein-only. We have now added the functionality to
also score interactions involving nucleic acids, and small
molecule ligands. In the case of small molecule ligands,
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only the pocket-aligned ligand RMSD (LRMSD) is reported,
as commonly done in other methods (12, 13) and the cor-
responding DockQ score is calculated only based on the
LRSMD component in Eq. 1 (fyay = ¢tRMSD = 0). Since
small molecules are not ordered like proteins and nucleic
acids, we use NetworkX’s (14) graph matching function-
ality and report the solution with lowest LRMSD when
multiple matches are possible (e.g. symmetric molecules).
Graph edges are calculated according to the atoms’ covalent
radii (15).

DockQ reads the coordinates of a model and reference
structure in PDB or mmCIF format, either uncompressed or
compressed with gzip, to calculate the DockQ score (Eq. 1)
for each interface in the reference structure. It returns the
DockQ score for each interface as well as an overall Global-
DockQ, defined as the average of DockQ scores over all in-
terfaces. Equivalent residues in the model and reference are
mapped using sequence alignment (default) or by following
the residue numbering.

For multimeric complexes with subunit stoichiometry
larger than one, there is a need to find the optimal chain map-
ping, i.e. the chain mapping that maximizes the overall Glob-
alDockQ. This is also needed when multiple small molecules
of the same type are being evaluated at once. The number of
possible chain mappings grows with the factorial of the num-
ber of equivalent molecules, i.e., a homodimer of stoichiom-
etry A2 has 2! = 2 possible mappings, while a homooctamer
of stoichiometry A8 has 8! = 40,320. The default behavior
is that DockQ will identify equivalent subunits by sequence
alignment (by molecule name in the case of small molecule
ligands) and exhaustively permutate the chain mappings to
find the one with the highest GlobalDockQ. It is also possi-
ble to provide a given chain mapping with the — — mapping
option or to limit the search to a subset of native chains. The
search is parallelized over multiple threads (default=8) us-
ing LRU caching and with computationally intensive func-
tions, such as distance calculations, implemented in Cython
for speed.

DockQ v2 is released as a pip-installable Python pack-
age. This allows you to import and use DockQ as a module
in other software.

Results

To verify that DockQ v2 is able to reproduce the DockQ
scores generated with the previous version, we compared
DockQ scores calculated for 17,409 models from 37 CASP15
targets. The agreement is almost perfect (R=1.000) between
the new and the previous version; see Figure la. Thus, the
scores from both versions can be used interchangeably.

The updated version is generally faster, especially for
larger targets, as shown in Figure 1b. The linear portion of the
time complexity is decreased approximately four times (4.08)
compared to the previous version. This leads to significantly
reduced runtimes in practice.

An important new feature is automatic chain mapping,
which simplifies the problem of finding the optimal chain
mapping between symmetric chains. Previously, the optimal
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Fig. 1. (a) We evaluated DockQ v2 against the old DockQ (v1.0) on a large benchmark of 17,049 models from 37 CASP15 targets. The DockQ scores are equivalent between
the two versions. (b) The new version of DockQ is faster than the previous due to optimised implementation of computationally expensive functions in Cython, especially for
larger complexes. (c) Comparison of methods to perform automatic mappings between model and native chains: the automatic mapping done in DockQ yields the same or
better GlobalDockQ than when using mappings optimised by QS-score. (d) Time to exhaustively optimise the mapping between sets of chains for complexes with different
stoichiometry. The time complexity is linear with the number of chain mapping combinations, and can be proportionally cut down by increasing the number of parallel threads

in DockQ.

chain mapping has either been ignored, assuming a one-to-
one correspondence between the chains in model and ref-
erence, or had to be determined with some other software
like the chain mapping routine in QS-score (16). The lat-
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ter was used when calculating DockQ in the evaluation of
multimer predictions in CASP15 (17). We compared the
DockQ scores obtained using the new automatic chain map-
ping to the DockQ scores obtained by using the mapping
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from the chain mapping routine in QS-score. In all cases,
the automatic chain mapping in DockQ produces an iden-
tical or higher GlobalDockQ compared to using the map-
ping provided by QS-score, Figure lc. This is expected
since the mapping using QS-score is optimized using QS-
score, while the automatic chain mapping in DockQ is opti-
mized on GlobalDockQ. To make the automatic chain map-
ping faster, it is parallelized on multiple threads, making it
possible to exhaustively map a homomer with stoichiometry
A8 (8! = 40,320 chain combinations) in less than a minute
on 8 threads or one with stoichiometry A7 (7! = 5040 com-
binations) in less than 30 seconds, see Figure 1d.

Taken together, we believe that this new, improved ver-
sion of DockQ will become an essential tool for evaluating
models of biomolecular complexes, regardless of the type of
molecule they may include.
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